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Abstract. In this paper we investigate spectral stability of traveling wave
solutions to 1-D quantum hydrodynamics system with nonlinear viscosity in

the (ρ, u), that is, density and velocity, variables. We derive a sufficient condi-
tion for the stability of the essential spectrum and we estimate the maximum

modulus of eigenvalues with non-negative real part. In addition, we present

numerical computations of the Evans function in sufficiently large domain of
the unstable half-plane and show numerically that its winding number is (ap-

proximately) zero, thus giving a numerical evidence of point spectrum stability.

1. Introduction

The aim of this paper is to investigate stability properties of the following quan-
tum hydrodynamics (QHD) system with nonlinear viscosity:{

ρt +mx = 0,

mt +
(
m2

ρ + p(ρ)
)
x

= εµρ
(
mx

ρ

)
x

+ ε2k2ρ
(

(
√
ρ)xx√
ρ

)
x
.

(1.1)

Here ρ ≥ 0 is the density, m = ρu is the momentum, where u denotes the fluid
velocity, and 0 < ε � 1 and µ, k > 0 are constants. Moreover, εµ and ε2k2 are
the viscosity and dispersion coefficients, respectively, and p(ρ) = ργ with γ ≥ 1
is the pressure. The form of the dispersive term is known as the Bohm potential,
while the nonlinear viscosity chosen here appears in the theory of superfluidity;
see, for instance, [21], page 109. This term describes the interactions between a
super fluid and a normal fluid; in addition, it can also be interpreted as describing
the interactions of the fluid with a background. The first studies of models with
dispersive terms are [17,26]; see also [16,18,25]. Moreover, quantum hydrodynamic
systems have been considered from a mathematical perspective in [1–6,8–12,14].

Specifically, in what follows we shall deal with traveling wave solutions, or disper-
sive shocks, for the system (1.1), namely solutions depending on the ratio (x−st)/ε,
where the constant s stands for the speed of the traveling wave, with given end
states at ±∞. The existence of such solutions, under appropriate conditions on the
end states, is investigated in [24]. More precisely, for strictly positive end states for
the density, the corresponding profile stays away from vacuum (in ρ). Therefore,
the velocity u is well defined and the system can be recast in the (ρ, u) variables.
This reformulation is also justified by the fact that the QHD system is related to
the Schrödinger equation, and the velocity can be written in terms of the phase of
the associated wavefunction as u = φx; see for instance [13]. Hence, we divide the
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second equation of (1.1) by ρ to obtain

ρt + (ρu)x = 0, (1.2)

(ρu)t
ρ

+
1

ρ

(
ρu2 + p(ρ)

)
x

= εµ
( (ρu)x

ρ

)
x

+ ε2k2
( (
√
ρ)xx√
ρ

)
x
. (1.3)

Let us define the enthalpy h(ρ) by

h(ρ) =


ln ρ, γ = 1
γ

γ − 1
ργ−1, γ > 1;

(1.4)

see, for instance, [13]. Then h satisfies the identity

h(ρ)x =
1

ρ
(p(ρ))x

and the momentum equation can be simplified by using the continuity equation as
follows:

(ρu)t
ρ

+
1

ρ
(ρu2)x =

ρtu

ρ
+ ut +

1

ρ
ρxu

2 + (u2)x

= − (ρu)xu

ρ
+ ut +

1

ρ
ρxu

2 + (u2)x = ut +
(u2)x

2
.

As a consequence, the system (1.2)-(1.3) can be rewritten in conservative form using
the velocity and the enthalpy as follows:

ρt + (ρu)x = 0, (1.5)

ut +
(u2)x

2
+ (h(ρ))x = εµ

( (ρu)x
ρ

)
x

+ ε2k2
( (
√
ρ)xx√
ρ

)
x
. (1.6)

In the present work, we shall study the spectrum of the linearization of (1.5)-(1.6)
around traveling wave profiles

ρ(t, x) = P
(x− st

ε

)2

, u(t, x) = U
(x− st

ε

)
. (1.7)

As a final remark, it is worth observing that the present spectral analysis applies
also to non-monotone shocks.

Stability analysis of traveling wave solutions of partial differential equations is
a widely studied problem. In particular, for the case of this kind of hydrodynamic
models involving dispersion terms, we recall here [19], where the spectral stability of
traveling wave profiles for the p−system with real viscosity and linear capillarity has
been discussed. Moreover, spectral analysis of the linearization around dispersive
shocks for a variant of the QHD system (1.1) with linear viscosity can be found
in [22], and the related Evans function computations in [23].

The remaining part of this paper is organized as follows. In Section 2 we show
that the essential spectrum of the linearized operator around a profile is stable
for subsonic or sonic end states. In Section 3 we estimate the maximum modulus
of possible eigenvalues with non-negative real part, giving an explicit bound for
the constant, and using this bound we perform numerics about the Evans function,
providing numerical evidence for point spectrum stability of a non-monotone profile.

2. Linearization and essential spectrum

We start by performing a linearization of system (1.5)-(1.6) around a profile (1.7)
with end states

ρ± = lim
y→±∞

P (y)2, u± = lim
y→±∞

U(y),
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For the sake of completeness, we state here the existence theory for such profiles
established in [24]. To this end, let us recall that the Rankine–Hugoniot conditions
for a shock (ρ±, u±; s) of the underlying system

ρt + (ρu)x = 0, (2.1)

ut +
(u2)x

2
+ (h(ρ))x = 0, (2.2)

read
s((P 2)+ − (P 2)−) = (P 2u)+ − (P 2u)−,

s(u+ − u−) =
(u2

2
+ h(P 2)

)+

−
(u2

2
+ h(P 2)

)−
.

(2.3)

Moreover, the characteristic speeds λ1,2(ρ, u) of the hyperbolic system (2.1)-(2.2)
are given by

λ1(W ) = u− cs(ρ), λ2(W ) = u+ cs(ρ),

where we used the notation cs(ρ) =
√
ρh′(ρ) ≥ 0 for the sound speed. Indeed, from

the definition of the enthalpy in (1.4) we readily obtain

h′(ρ) =


1

ρ
, γ = 1

γργ−2, γ > 1.

Therefore, h′(ρ) ≥ 0, and in fact h′(ρ) > 0 for any ρ > 0, and the sound speed cs(ρ)
is well defined and non-negative for any ρ, and strictly positive for ρ > 0. Then,
we recall that a discontinuity (ρ±, u±; s) verifyng the Rankine-Hugoniot conditions
(2.3) is a Lax k–shock, k = 1, 2, if

λk(ρ+, u+) < s < λk(ρ−, u−).

Moreover, the state (ρ±, u±) is referred to as supersonic (resp. subsonic; sonic) if
|u±| > cs(ρ

±) (resp. |u±| < cs(ρ
±); |u±| = cs(ρ

±)). We are now ready to state the
main existence result for profiles to (1.5)-(1.6) proved in [24].

Theorem 2.1. Suppose the end states (ρ±, u±) and the speed s satisfy the Rankine–
Hugoniot conditions (2.3) with ρ± > 0, and (ρ±, u±; s) defines

(i) a Lax 2–shock with a subsonic right state;
(ii) a Lax 1–shock with a subsonic left state.

Then there exists a traveling wave profile connecting (ρ−, u−) to (ρ+, u+).

It is worth to observe that the resulting profile may be non-monotone in ρ,
depending on the magnitude of the ratio µ/k, yet it stays away from vacuum;
see [24] for details.

Changing the variables τ = t/ε, y = (x − st)/ε, and denoting by R(y) = P (y)2

and by (ρ, u) the deviation from (R,U), we obtain the following full linearized
operator around the profile

L

[
ρ
u

]
=

 sρy − (Ru+ Uρ)y
suy − (Uu)y − ( dhdR (R)ρ)y

+µ
(
(R−1(Ru+ Uρ)y)y − (R−2(RU)yρ)y

)
+ k2LQρ

 , (2.4)

where

LQρ =
1

2
(R−1/2(R−1/2ρ)yy)y −

1

2
(R−3/2(R1/2)yyρ)y,

and associated eigenvalue problem

λ

[
ρ
u

]
= L

[
ρ
u

]
. (2.5)
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With the notation

R± = lim
y→±∞

R(y), U± = lim
y→±∞

U(y)

for the end states, the asymptotic operators at ±∞ for (2.4) are given by

L±∞

[
ρ
u

]
=

[
(s− U±)ρ′ −R±u′

(s− U±)u′ − dh
dR (R±)ρ′ + µ

(
u′′ + U±

R± ρ
′′
)

+ k2

2
ρ′′′

R±

]
,

where ′ denotes d/dy. We rewrite the eigenvalue problem associated to the asymp-
totic operators

λ

[
ρ
u

]
= L±∞

[
ρ
u

]
as the following first order system

V ′ = M±V. (2.6)

In (2.6), the limit matrices are given by

M± =


0 0 1 0

− λ
R± 0 s−U±

R± 0
0 0 0 1

2(s−U±)λ
k2

2R±λ
k2

2
k2 (R± dh

dR (R±)− (s− U±)2 + µλ) − 2sµ
k2

 (2.7)

and V = [ρ, u, u1, u2]T with ρ′ = u1 and u′1 = u2.

2.1. Essential spectrum and consistent splitting. The spectrum of the lin-
earized operator L consists of the essential spectrum and the point spectrum; in
this section, we shall investigate the stability of the former. In particular, we shall
obtain sufficient conditions on the end states so that essential spectrum is confined
on the (stable) left half-plane <λ ≤ 0. To this end, let us consider the characteristic
equation det(νId−M±) = 0 of M±, that is

ν4 +
2sµ

k2
ν3 +

2

k2
((s−U±)2−R±h′(R±)−λµ)ν2 +

4(U± − s)
k2

λν+
2λ2

k2
= 0. (2.8)

Setting ν = iξ, ξ ∈ R, in (2.8) and dividing by 2/k2, we obtain the dispersion
relation:

λ2 + (µξ2− 2iξ(s−U±))λ+ (R±h′(R±)− (s−U±)2)ξ2 +
k2

2
ξ4− isµξ3 = 0. (2.9)

Proposition 2.2. If the end states are subsonic or sonic, then the curves λ(ξ)
solving (2.9) are in the closed left half-plane. Moreover, if ξ 6= 0, then <λ1,2 < 0.

Proof. To simplify notation in this proof we are going to drop the superscript of R
and U .
The roots of the dispersion relation (2.9) are (see Figure 1)

λ1,2 =
−µξ2 + 2iξ(s− U)±

√
D

2
,

where the discriminant is

D = (µξ2 − 2iξ(s− U))2 − 4
(

(Rh′(R)− (s− U)2)ξ2 +
k2

2
ξ4 − isµξ3

)
= p+ iq,

with

p = −4Rh′(R)ξ2 + (µ2 − 2k2)ξ4,

q = 4µUξ3.
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Figure 1. The bound for the essential spectrum for parameters
k =
√

2, µ = 0.1, s = 1, γ = 3/2, R = 0.5, U = −0.746.

Clearly, if ξ = 0, then the roots of (2.9) are λ1,2 = 0.
Suppose now ξ 6= 0. The condition

− µξ2 + |<
√
D| < 0 (2.10)

guarantees that λ1,2 are in the left half-plane. Since µξ2 > 0, it is equivalent to

(<
√
D)2 < µ2ξ4. (2.11)

By direct inspection we obtain

<
√
D =

√
2

2

√√
p2 + q2 + p

and the condition (2.11) is equivalent to√
p2 + q2 < 2µ2ξ4 − p. (2.12)

Since h′(R) ≥ 0 implies in particular

2µ2ξ4 − p = 4Rh′(R)ξ2 + (µ2 + 2k2)ξ4 > 0,

(2.12) is equivalent to
p2 + q2 < (2µ2ξ4 − p)2,

that is
B := q2 + 4µ2pξ4 − 4µ4ξ8 < 0.

Since the end states are subsonic or sonic, after squaring the corresponding inequal-
ity |U | ≤ cs(R), we end up to U2 −Rh′(R) ≤ 0. Finally,

B

8µ2
= 2(U2 −Rh′(R))ξ6 − k2ξ8 < 0

and (2.10) holds, concluding the proof. �

In the next proposition we examine the behavior of roots to (2.8) to conclude in
particular consistent splitting : on the right of the curves λ(ξ) solving (2.9), i.e. the
values of λ such that real part of roots of (2.8) is zero, we have two roots of (2.8)
with positive real part and two roots with negative real part.

Proposition 2.3. If µ2 6= 2k2, on the right of the curves λ(ξ) solving (2.9), equa-
tion (2.8) has two solutions with positive real part and two solutions with negative
real part.
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Proof. Again, in order to simplify notation, we shall drop the superscript of U .
Let λ ∈ R, λ� 1. The Discriminant of (2.8) is

∆ =
512

k6

(µ2

k2
− 2
)2

λ6 +O(λ5).

Consider the depressed quartic equation, associated to (2.8):

z4 + c2z
2 + c1z + c0 = 0,

which is obtained from (2.8) by the change of variable ν = z − a3/4, where a3 is
the third order coefficient of (2.8). Since µ2 6= 2k2, we have ∆ > 0. Moreover,

c2 = −2µ

k2
λ+O(1),

and therefore c2 < 0. With the notation

D = 64
(
c0 −

c22
4

)
,

the following holds:

(i) if D < 0, since c2 < 0, then the roots of (2.8) are real and distinct;

(ii) if D > 0, then (2.8) has two pairs of (non-real) complex conjugated roots.

Since

D =
64(2k2 − µ2)

k4
λ2 +O(λ),

then we are in case (i) (resp. case (ii)) for µ2 > 2k2 (resp. µ2 < 2k2).
Assume µ2 > 2k2. We will apply the Descartes’ rule of signs to determine the

signs of the four real roots of (2.8). Since λ � 1, then, disregarding the sign of
the term U − s, the number of sign changes between consecutive coefficients is two,
hence there are at most 2 positive roots. If we substitute ν with −ν, then there are
again two sign changes, so there are at most two negative roots. Since all roots are
real, we can conclude that in that case the characteristic equation has two positive
and two negative roots.

Now, consider the case µ2 < 2k2. On the right of λ(ξ), (2.8) does not have
a purely imaginary root. Moreover, the second order coefficient of that equation
is negative in the regime λ � 1 and the leading coefficient is equal to 1. Hence,
the roots of the equation can not be all in the left half-plane, as in this case the
coefficient should be all positive. Indeed, in that case the equation can be written
as a product of linear factors ν − ν0, with ν0 < 0, which correspond to real roots,
and quadratic factors (ν − a)2 + b2, which correspond to complex conjugated roots
a±ib, with a < 0. Each of these factors has positive coefficients, hence the equation
has only positive coefficients. Moreover, with the substitution ν → −ν, the second
order coefficient is still negative, hence there are roots also in the left half-plane.
In conclusion, there are two complex conjugate roots in the left half-plane and two
complex conjugate roots in the right half-plane and the proof is complete. �

3. Analysis of point spectrum

For the analysis of the point spectrum of our linearized operator around the
profile, namely to locate its eigenvalues solving the problem (2.5), we shall use the
Evans function, as eigenvalues are zeros of the latter. To this end, we need to be
in the situation of consistent splitting and therefore in the sequel we shall assume
µ2 6= 2k2; see Proposition 2.3.
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3.1. System in integrated variables. In order to remove the zero eigenvalue,
which is always present, being the corresponding eigenfunction given by the deriva-
tive of the profile, without further modifications of the spectrum [19], we re–express
the above linearized systems in terms of integrated variables. To this end, we con-
sider the integrated variables

ρ̂(x) =

∫ x

−∞
ρ(y)dy, û(x) =

∫ x

−∞
u(y)dy

and we rewrite the eigenvalue equation (2.5) as a first order system as follows:

V ′ = M(x, λ)V, (3.1)

for

M(x, λ) =


0 0 1 0

−λ+U ′(x)
R(x) −R

′(x)
R(x)

s−U(x)
R(x) 0

0 0 0 1
m4,1 m4,2 m4,3 m4,4

 ,
where, as before, V = [ρ, u, u1, u2]T , ρ′ = u1 and u′1 = u2, and

m4,1 =
2

k2

(
(f2 + g2)(U ′ + λ)−R(f ′1 + g3 + f3) + µ

(
U ′′ − 2R′U ′

R
− 2R′λ

R

))
,

m4,2 =
2

k2

(
R(λ− f ′2 − g1) +R′(f2 + g2) + µ

(
R′′ − 2(R′)2

R

))
,

m4,3 =
2

k2

(
−R(f1 + f4 + g4)− f2(f2 + g2) + µ

(2f2R
′

R
− f ′2 + U ′ + λ

))
,

m4,4 = − 2

k2

(
R(f5 + g5) + µf2

)
,

with the following notations:

f1(x) = − dh
dR

(R(x)),

f2(x) = s− U(x),

f3(x) =
k2

2

(
(R(x)−

1
2 (R(x)−

1
2 )′′)′ − (R(x)−

3
2 (R(x)

1
2 )′′)′

)
,

f4(x) =
k2

2

(
R(x)−

1
2 (R(x)−

1
2 )′′ + 2(R(x)−

1
2 (R(x)−

1
2 )′)′ −R(x)−

3
2 (R(x)

1
2 )′′
)
,

f5(x) = −k2 R
′(x)

R(x)2
,

g1(x) = µ
(R(x)′

R(x)

)′
,

g2(x) = µ
R′(x)

R(x)
,

g3(x) = µ
((U ′(x)

R(x)

)′
−
( (R(x)U(x))′

R(x)2

)′)
,

g4(x) = µ
(U ′(x)

R(x)
+
(U(x)

R(x)

)′
− (R(x)U(x))′

R(x)2

)
,

g5(x) = µ
U(x)

R(x)
.

Since the profile [R(x), U(x)] converges as x → ±∞, the system (3.1) has expo-
nential dichotomies on R+

0 and R−0 . Let S± be the subspaces of initial conditions
that decay exponentially as x → ±∞. Since any eigenfunction V (x) is bounded
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and solves (3.1), V (0) lies in S+ and in S− and therefore, ρ(x) and u(x) decay
exponentially as |x| → +∞.

For λ 6= 0, integrating (2.5) yields∫
ρdx = 0,

∫
udx = 0.

In addition, we will show that ρ̂(x) and û(x) decay exponentially as |x| → +∞.
Let us consider the case for x → +∞; the other cases being similar. Since, in
particular, we have |ρ(x)| ≤ C1 exp(−C2x), we get

|ρ̂(x)| =
∣∣∣∣∫ ∞
x

ρ(y)dy

∣∣∣∣ ≤ ∫ ∞
x

|ρ(y)|dy ≤ C1

∫ ∞
x

exp(−C2y)dy

=
C1

C2
exp(−C2x).

Hence, ρ̂(x) decays exponentially as x→ +∞.
Expressing ρ and u in terms of ρ̂ and û and integrating (2.5) from −∞ to x we

get the system in integrated variables:

λρ̂ = f2ρ̂
′ −Rû′, (3.2)

λû = f1ρ̂
′ + f2û

′ + µ
(
R−1(Rû′ + Uρ̂′)′ −R−2(RU)′ρ̂′

)
+
k2

2

(
R−

1
2 (R−

1
2 ρ̂′)′′ −R− 3

2 (R
1
2 )′′ρ̂′

)
, (3.3)

where

f1(x) = − dh
dR

(R(x)),

f2(x) = s− U(x).

Correspondingly, the system (3.2)-(3.3) can be rewritten as

V̂ ′ = M̂(x, λ)V̂ ,

where V̂ = [ρ̂, û, û1, û2]T , with ρ̂′ = û1 and û′1 = û2, and

M̂(x, λ) =


0 0 1 0

− λ
R 0 f2

R 0
0 0 0 1

m̂4,1 m̂4,2 m̂4,3 m̂4,4

 , (3.4)

with

m̂4,1 =
2λf2

k2
,

m̂4,2 =
2λR

k2
,

m̂4,3 =
2

k2

(
−Rf1 − f2

2 + µ
( (RU)′

R
+ λ
))

+
R′′

R
− (R′)2

R2
,

m̂4,4 = −2µs

k2
+
R′

R
.

3.2. The Evans function for large |λ|. To define the Evans function, let us

consider the equation Y ′ = M̂(y, λ)Y , where M̂(y, λ) is defined in (3.4). As it
is manifest, its limits at ±∞ are given by the matrices M±, defined by (2.7),
corresponding to limit states P±, and we assume these matrices are hyperbolic.
This is always true if we are to the right of the bound for the essential spectrum;
see Proposition 2.3. In addition, we assume that M− has k unstable eigenvalues
ν−1 , . . . , ν

−
k (i.e. <(ν−i ) > 0), and M+ has n− k stable eigenvalues ν+

1 , ..., ν
+
n−k (i.e.

<(ν+
i ) < 0), and denote the corresponding (normalized) eigenvectors by v±i . In
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our case n = 4 and k = 2. Let Y −i be a solution of Y ′ = M(y, λ)Y , satisfying
exp(ν−i y)Y −(y) tends to v−i as y → −∞ and exp(ν+

i y)Y +(y) tends to v+
i as y →

+∞. Then, the Evans function can be defined by

E(λ) = det(Y −1 (0), .., Y −k (0), Y +
1 (0), ..., Y +

n−k(0)).

As a consequence, λ is in the point spectrum of L if and only if E(λ) = 0.
Now, to analyze the behavior of the Evans function for large λ, let us start by

recalling the eigenvalue problem (2.5):

λρ = sρ′ − (Ru+ Uρ)′, (3.5)

λu = (f1ρ)′ + (f2u)′

+ µu′′ + g1u+ g2u
′ + g3ρ+ g4ρ

′ + g5ρ
′′

+ f3ρ+ f4ρ
′ + f5ρ

′′ +
k2

2R
ρ′′′, (3.6)

where fi and gi, i = 1, . . . , 5 are defined above. Integrating equation (3.5) from
−∞ to x and expressing ρ in terms of the integrated variable ρ̂, we get:

λρ̂ = (s− U)ρ̂′ −Ru. (3.7)

We solve the above equation for u and substitute in (3.6) to end up to the following
scalar equation:

ρ̂(4) + 2
(sµ
k2
− R′

R

)
ρ̂′′′

+
2

k2

(
R(f1 + f4 + 2µf ′6 + g4) + (s− U)(f2 + g2)− λµ

)
ρ̂′′

+
2

k2

(
R(f ′1 + f3 + (f2 + g2)f ′6 + µf ′′6 + g3) + (s− U)(f ′2 + g1)

+ λ
(

2(U − s) + µ
R′

R

))
ρ̂′

+
2

k2

(
λ
(
− f ′2 − g1 + (f2 + g2)

R′

R
− µR(R−1)′′

)
+ λ2

)
ρ̂ = 0, (3.8)

where

f6(x) =
s− U(x)

R(x)
.

Lemma 3.1. λ 6= 0 is an eigenvalue for (3.5)-(3.6) if and only if it is an eigenvalue
for (3.8). The Evans function for (3.8) does not vanish for <(λ) ≥ 0 and |λ| large
enough.

Proof. As said before, for λ 6= 0 we integrate (3.5)-(3.6) to obtain∫
ρdx = 0,

∫
udx = 0.

We are thus allowed to use the integrated variable

ρ̂(x) =

∫ x

−∞
ρ(y)dy,

which decays exponentially as |x| → +∞. Thus, from (3.7) we get

u = − λ
R
ρ̂+

s− U
R

ρ̂′

and hence (3.8). In particular, if λ 6= 0 is not an eigenvalue of (3.8), it is also not
an eigenvalue of (3.5)-(3.6).
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Now, we make a change of variable

x =
y

|λ| 12

and, dividing (3.8) by |λ|2 yields

d4ρ̂

dy4
+

2

|λ| 12

(sµ
k2
− R′

R

)d3ρ̂

dy3

+
2

k2

(R(f1 + f4 + 2µf ′6 + g4) + (s− U)(f2 + g2)

|λ|
− λ

|λ|
µ
)d2ρ̂

dy2

+
2

k2|λ| 32

(
R(f ′1 + f3 + (f2 + g2)f ′6 + µf ′′6 + g3) + (s− U)(f ′2 + g1)

+ λ
(

2(U − s) + µ
R′

R

))dρ̂
dy

+
2

k2

( λ

|λ|2
(
− f ′2 − g1 + (f2 + g2)

R′

R
− µR(R−1)′′

)
+

λ2

|λ|2
)
ρ̂ = 0. (3.9)

Taking the limit |λ| → +∞ in (3.9) we end up with

d4ρ̂

dy4
− 2µ

k2
λ̃
d2ρ̂

dy2
+

2

k2
λ̃2ρ̂ = 0, (3.10)

where λ̃ = λ/|λ|. The equation (3.10) can be rewritten in a standard way as a
first-order system as follows:

d

dy


ρ1

ρ2

ρ3

ρ4

 =


0 1 0 0
0 0 1 0
0 0 0 1

− 2
k2 λ̃

2 0 2µ
k2 λ̃ 0



ρ1

ρ2

ρ3

ρ4

 , (3.11)

with associated characteristic equation given by

z4 − 2µ

k2
λ̃z2 +

2λ̃2

k2
= 0. (3.12)

Let <(λ) ≥ 0. We claim that, under the condition µ2 6= 2k2, (3.12) has four distinct

roots, with <(z1),<(z2) < 0 and <(z3),<(z4) > 0. Indeed, since in addition λ̃ 6= 0,
then

D =
4

k2

(µ2

k2
− 2
)
λ̃2 6= 0.

Then, we make the change of variable w = z2 to rewrite (3.12) as follows:

w2 − 2µ

k2
λ̃w +

2λ̃2

k2
= 0. (3.13)

If <(λ) ≥ 0, then <(λ̃) ≥ 0 and, since D 6= 0, and in particular λ̃ 6= 0, the equation
(3.13) has two distinct nonzero roots w1,2. Hence, the four roots zi, i = 1, . . . 4, of
(3.12) are distinct as well.

Case 1: µ2 > 2k2 — viscosity dominant case. In that case, w1,2 are given by:

w1,2 =

(
µ

k2
± 1

k

√
µ2

k2
− 2

)
λ̃ = w±λ̃ (3.14)

for w+ > µ/k2 > w− > 0 real, positive numbers. Hence, w1,2 are not real negative,
so that the four solutions of z2 = wj , j = 1, 2, are not purely imaginary and, more
precisely, z2 = wj has one solution with positive real part and one with negative
real part, for j = 1, 2.
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Case 2: µ2 < 2k2 — dispersion dominant case. In that case, w1,2 are given by:

w1,2 =

(
µ

k2
± i

k

√
2− µ2

k2

)
λ̃. (3.15)

and |wj | =
√

2/k, j = 1, 2. Let λ̃ = exp(iθ), and θ ∈ [0, π/2] ∪ [3π/2, 2π[. We have

Arg

(
µ

k2
+
i

k

√
2− µ2

k2

)
∈]0, π/2[.

If θ ∈ [0, π/2], then Arg(w1) ∈]0, π[; if θ ∈ [3π/2, 2π[, then <(w1) > 0. In both
cases, w1 is not real negative. Analogously,

Arg

(
µ

k2
− i

k

√
2− µ2

k2

)
∈]3π/2, 2π[.

If θ ∈ [0, π/2], then <(w2) > 0; if θ ∈ [3π/2, 2π[, then Arg(w1) ∈]π, 2π[. Again, in
both cases w2 is not real negative and we conclude as before.

The equation (3.10) has constant coefficients, so its Evans function can be com-
puted explicitly as follows. Let zi be a simple eigenvalue of the matrix

0 1 0 0
0 0 1 0
0 0 0 1

− 2
k2 λ̃

2 0 2µ
k2 λ̃ 0

 (3.16)

with associated eigenvector vi = [1, zi, z
2
i , z

3
i ]T . Then, the Evans function is given

by

Ẽ(λ) = det([v1, v2, v3, v4]) =
∏
j<k

(zj − zk)

= (z1 − z2)(z1 − z3)(z1 − z4)(z2 − z3)(z2 − z4)(z3 − z4)

6= 0,

because the eigenvalues zi are distinct.
Now, as already done for (3.10), we rewrite (3.9) in a standard way as a first

order system as follows:

W ′ = A(y, λ)W. (3.17)

The matrix (3.16) is hyperbolic, so the system (3.11) has exponential dichotomies
on R+

0 and R−0 . For sufficiently large |λ|, the coefficients of (3.11) and (3.17) are
close to each other, uniformly in y. Thus, from [27, Theorem 3.1] it follows that
the system (3.17) also has exponential dichotomies and, moreover, the projections
corresponding to (3.11) are close to the ones corresponding to (3.17). So, the Evans
functions of (3.10) and (3.9) are uniformly close in λ. Therefore the Evans function
for (3.8) never vanishes for <(λ) ≥ 0 and |λ| > C, where C is some (sufficiently
big) constant. �

In the previous lemma we proved that, if λ is an eigenvalue of (3.8) with <(λ) ≥ 0,
then we must have |λ| ≤ C, for a constant C sufficiently big. In the next sections
we shall obtain a quantitative estimate for that constant C to be able to analyze
numerically the behaviour of the Evans function on {<(λ) ≥ 0, |λ| < C}.
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3.3. Estimate for the maximum of |λ|. In this section we decompose the sys-
tem into a constant coefficients part, which depends only on the direction λ/|λ|,
and a perturbation, which becomes small for large |λ|. Then, we use exponential
dichotomies to estimate the difference between the Evans functions of the constant
coefficient system and the perturbed system.

To this end, let us consider
du

dx
= A(λ̃)u (3.18)

where λ̃ = λ
|λ| and A(λ̃) is defined in (3.16). The matrix A(λ̃) does not depend

on x and it has simple eigenvalues zj , j = 1, ..., 4, with <(z1),<(z2) < 0 and

<(z3),<(z4) > 0 and we may consider λ̃ fixed. The system (3.18) has an exponential
dichotomy (see [7], Chapter 4) on R+

0 , namely, there are positive constants K, α
and projection P such that

‖X(x)PX−1(y)‖2 ≤ Ke−α(x−y), x ≥ y ≥ 0,

‖X(x)(Id− P )X−1(y)‖2 ≤ Ke−α(y−x), y ≥ x ≥ 0,

where X(x) is the fundamental solutions matrix for (3.18) with X(0) = Id. We
introduce the usual notations for the scalar product 〈v, w〉 = v · w̄, the vector

norm |v| =
√
〈v, v〉, and the 2-norm ‖A‖2 = sup|v|=1 |Av|. Moreover, for later

use, let us also introduce the norm ‖A‖F =
√∑

j,k |aj,k|2 and recall the inequality

‖A‖2 ≤ ‖A‖F holds. Since the matrix A(λ̃) has constant coefficients, the constants
K and α can be explicitly computed.

Now, we rewrite system (3.17) as the following perturbed system

du

dx
= A(λ̃)u+B(x, λ)u, (3.19)

where
lim

|λ|→+∞
sup
x≥0
‖B(x, λ)‖2 = 0,

and, more precisely,

sup
x≥0
‖B(x, λ)‖2 = O(|λ|− 1

2 ).

Denote δ = supx≥0 ‖B(x, λ)‖2. If δ < α/(4K2), then the perturbed system (3.19)
also has an exponential dichotomy with projection Q and, moreover

‖P −Q‖2 ≤ 4α−1K3δ;

see [7, Chapter 4, Proposition 1] for details. Denoting with M and N the 2–
dimensional subspaces related to the projections P and Q, thanks to [20, page 58,

Theorem 6.35], there exist unique orthogonal projections P̃ and Q̃ onto M and N
which verify

‖P̃ − Q̃‖2 ≤ ‖P −Q‖2 ≤ ε,
for ε = 4α−1K3δ.

Let vj be the eigenvectors of A(λ̃) related to the stable eigenvalues zj , j = 1, 2,

and normalized so that |vj | = 1. Then we have vj ∈M , that is P̃ vj = vj . Denoting

hj = vj − Q̃vj , we have

|hj | = |vj − Q̃vj | = |P̃ vj − Q̃vj | ≤ ‖P̃ − Q̃‖2|vj | ≤ ε.

Still for j = 1, 2, let us define ṽj = Q̃vj . Then 〈ṽj , hj〉 = 〈Q̃vj , vj − Q̃vj〉 = 0.
Hence |vj |2 = |ṽj |2 + |hj |2 and therefore |ṽj |2 ≥ |vj |2 − ε2 = 1 − ε2, as well as
|ṽ1||ṽ2| ≥ 1 − ε2. As a consequence, there exists ε0 > 0 such that for any ε < ε0,
ṽj 6= 0. Also,

|〈ṽ1, ṽ2〉| = |〈v1 − h1, v2 − h2〉| ≤ |〈v1, v2〉|+ 2ε+ ε2.
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Hence, since v1 and v2 are linearly independent unit vectors, |〈v1, v2〉| < 1 and we
can further choose ε0 > 0 such that, if ε < ε0,

|ṽ1||ṽ2| ≥ 1− ε2 > |〈v1, v2〉|+ 2ε+ ε2 ≥ |〈ṽ1, ṽ2〉|.

Finally, as ṽ1 and ṽ2 verify strict Cauchy–Schwarz inequality, they are linearly
independent and thus {ṽ1, ṽ2} is a basis ofN , namelyN = span({ṽ1, ṽ2}). Referring
to R−0 , we argue in an analogous way to obtain the vectors ṽ3 and ṽ4 needed to
compute the Evans function we are looking for. Indeed, denoting with E(λ) the
Evans function for (3.18), we have E(λ) = det([v1, v2, v3, v4]). Moreover, if Ep(λ)
denotes the Evans function for (3.19), then Ep(λ) = det([ṽ1, ṽ2, ṽ3, ṽ4]).

In what follows, we shall obtain sufficient conditions to (numerically) conclude
that Ep(λ) 6= 0 in the region |λ| ≥ C of the unstable half-plane. This will be
obtained by proving that 0 can not be an eigenvalue of the matrix V −H, where
H = [h1, ..., h4], V = [v1, ..., v4], using the Bauer–Fike Theorem [15]. To this end,
let us first diagonalize system (3.19) as follows:

dv

dx
= D(λ̃)v + S−1B(x, λ)Sv, (3.20)

for u = Sv, where we denote with S the matrix of eigenvectors of A(λ̃) and D(λ̃) =

diag(z1, z2, z3, z4) = S−1A(λ̃)S. Since D(λ̃) is diagonal, its eigenvectors are given
by ej , the standard basis vectors, for j = 1, . . . , 4, and, referring to exponential
dichotomy properties for that diagonalized system, we conclude P = diag(1, 1, 0, 0)
and K = 1. Moreover, in the notation before, V = Id and det(V ) = ‖V ‖2 =
‖V −1‖2 = 1. Now, let q be an eigenvalue of V −H. Hence, a direct application of
the Bauer–Fike Theorem implies that

|1− q| ≤ ‖H‖2.

Since ‖H‖2 ≤ ‖H‖F , ‖H‖F < 1 implies in particular that 0 can not be an eigenvalue
for V −H, that is det(V −H) 6= 0, namely, Ep(λ) 6= 0. In next sections we shall
prove the above estimate for |λ| ≥ C, with C explicit.

To this end, we can directly compute S−1B(x, λ)S and obtain an explicit bound
for its norms. For this, let δ± (depending on |λ|) be upper bounds for the norm
‖S−1B(x, λ)S‖F on R±0 , so that

‖S−1B(x, λ)S‖2 ≤ ‖S−1B(x, λ)S‖F ≤ δ±, x ∈ R±0 .

Moreover, denote

ε± = 4α−1δ± (3.21)

and consider the condition √
2
√
ε2+ + ε2− < 1. (3.22)

Clearly, (3.22) in particular implies ε2± < 1/2 and, from the definition of ε± in (3.21),
we readily obtain δ± < α/4. The latter condition on δ± guarantees the existence
of exponential dichotomies on R±0 with the properties stated above, which implies
|hj | ≤ ε+, for j = 1, 2, and |hj | ≤ ε−, for j = 3, 4. Hence, we obtain

‖H‖F =
√
|h1|2 + ...+ |h4|2 ≤

√
2ε2+ + 2ε2− =

√
2
√
ε2+ + ε2− < 1.

Therefore, if (3.22) holds, then we have ‖H‖F < 1, which shows that the Evans
function for (3.20) does not vanish in the value λ under consideration, that is
Ep(λ) 6= 0.

The final result we are interesting in, that is the fact that the Evans function for
(3.8) does not vanish, is a consequence of the condition Ep(λ) 6= 0, after a change
of varible, which for completeness we shall present here below.
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Let u ∈ Cn by a solution of a general system of ODEs:

du

dx
= A(x, λ)u,

where A(x, λ) ∈ Cn×n. Then, after a change the independent variable y = cx,
c > 0, for an invertible matrix T ∈ Cn×n, v(y) = Tu(y/c) solves

dv

dy
=

1

c
TA
(y
c
, λ
)
T−1v.

Hence, let us rewrite (3.8) as a first order system

dũ

dx
= Ã(x, λ)ũ. (3.23)

The rescaled equation (3.17) is obtained from (3.23) by the aforementioned change
of variables:

y = |λ| 12x, W (y) = D̃ũ(y/|λ| 12 ),

where

D̃ = diag(1, |λ|− 1
2 , |λ|−1, |λ|− 3

2 ).

Moreover, the diagonalized system (3.20) is obtained from (3.17) by a further change
of the unknown v(y) = S−1W (y). Suppose now ũ?(x) is an eigenfunction of (3.23).
Then

v?(x) = S−1D̃ũ?
( x

|λ| 12

)
is an eigenfunction of (3.20), which is impossible if Ep(λ) 6= 0. Therefore, there
exist no eigenfunctions for (3.23) under this condition, or, equivalently, the Evans
function for (3.8) does not vanish, provided Ep(λ) 6= 0.

Summarizing, to conclude our analysis we shall prove we can find an explicit
constant C, such that, for |λ| ≥ C and <(λ) ≥ 0, (3.22) is satisfied. To this end, in
the following sections we shall consider two regimes, namely the viscosity dominant
and the dispersion dominant one. In both cases, δ± can be chosen to be of the

form
√
p̃(|λ|− 1

2 ), where p̃ is a polynomial with explicit coefficients. Hence, the

condition (3.22) involves a function of the same form and we can easily find an
explicit constant C such that, for |λ| ≥ C, (3.22) is satisfied; see Lemma 3.2 and
Lemma 3.3 below.

3.3.1. Estimate for the maximum of |λ|— viscosity dominant case. In the viscosity
dominant case µ2 > 2k2, the roots zi, i = 1, . . . , 4, of the characteristic equation
(3.12) of (3.10) are given by

z1,3 = ∓√w+ exp(iθ/2), z2,4 = ∓√w− exp(iθ/2), (3.24)

where the real, positive numbers w± are defined in (3.14) and we recall the notation

λ̃ = exp(iθ).
The distances between the roots |zj − zk| are

|z1 − z2| = |z3 − z4| =
√
w+ −

√
w−,

|z1 − z3| = 2
√
w+,

|z1 − z4| = |z2 − z3| =
√
w+ +

√
w−,

|z2 − z4| = 2
√
w−.
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In preparation to stating Lemma 3.2 let us introduce the notation

m1(λ) =
2

k2
|λ|−1 sup

x≥0

∣∣∣∣−f ′2 − g1 + (f2 + g2)
R′

R
− µR(R−1)′′

∣∣∣∣ ,
m2(λ) =

2

k2

(
|λ|− 3

2 sup
x≥0
|R(f ′1 + f3 + (f2 + g2)f ′6 + µf ′′6 + g3)

+(s− U)(f ′2 + g1)|+ |λ|− 1
2 sup
x≥0

∣∣∣∣2(U − s) + µ
R′

R

∣∣∣∣ ),
m3(λ) =

2

k2
|λ|−1 sup

x≥0
|R(f1 + f4 + 2µf ′6 + g4) + (s− U)(f2 + g2)| ,

m4(λ) = 2|λ|− 1
2 sup
x≥0

∣∣∣∣sµk2
− R′

R

∣∣∣∣ .

(3.25)

We have |z1| = |z3| =
√
w+ and |z2| = |z4| =

√
w−. Furthermore,

b̃j,k =
pk
qj
,

pk =

4∑
l=1

ml(λ)|zk|l−1 =



4∑
l=1

ml(λ)(w+)
l−1
2 , k ∈ {1, 3}

4∑
l=1

ml(λ)(w−)
l−1
2 , k ∈ {2, 4},

and

q1 = |z1 − z2||z1 − z3||z1 − z4|, q2 = |z1 − z2||z2 − z3||z2 − z4|,
q3 = |z1 − z3||z2 − z3||z3 − z4|, q4 = |z1 − z4||z2 − z4||z3 − z4|.

Hence,

q1 = q3 = 2
√
w+(w+ − w−),

q2 = q4 = 2
√
w−(w+ − w−),

and
B̃+ = [b̃j,k]. (3.26)

Analogously, the matrix B̃− is constructed in the same way with the suprema in
the definition of mk(λ) taken for x ≤ 0. Finally, we consider

ε± = 4α−1‖B̃±‖F ,
that is, we can choose δ± = ‖B̃±‖F and, being α = mink |<(zk)|, in view of (3.24)
we can take

α =

√
w−
2
.

Lemma 3.2. Suppose µ2 > 2k2. Then, we can find a constant C > 0 such that
√

2
√
ε2+ + ε2− < 1 for all λ with <(λ) ≥ 0 and |λ| ≥ C. As a consequence, the

Evans function E(λ) for (3.8) has no zeros in this region.

Proof. We compute directly the matrix S−1B(x, λ)S in (3.20) and we see that

b̃j,k are upper bounds for the absolute values of its entries. The terms mk(λ) in
(3.25) are upper bounds for the terms b4,k(λ) of the matrix B(x, λ) from (3.19):
|b4,k(x, λ)| ≤ mk(λ), while |zk| and |zj − zk| come from S and S−1. Moreover,

note that the matrices B̃±(λ) from (3.26) have monotonically decreasing in |λ|
entries, therefore, from the bound above, we can easily find C > 0 such that
√

2
√
ε2+ + ε2− < 1 for all λ with <(λ) ≥ 0 and |λ| ≥ C and the proof is complete. �
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3.3.2. Estimate for the maximum of |λ| — dispersion dominant case. For the sake

of simplicity, we fix in this section k =
√

2 so that the dispersion dominant case
reduces to µ2 < 4 and, with the definition in (3.15),

|w1,2| =

∣∣∣∣∣µ2 ± i
√

1− µ2

4

∣∣∣∣∣ = 1.

Moreover, still in preparation to stating Lemma 3.3, let us introduce the following
notations:

θ1,2 = Arg

(
µ

2
± i
√

1− µ2

4

)
,

z1,3 = ∓ exp(i(θ + θ1)/2), z2,4 = ∓ exp(i(θ + θ2)/2),

(3.27)

where, as before, we recall λ̃ = exp(iθ). The distances |zj − zk| between the roots
of the characteristic equation (3.12) of (3.10) still do not depend on θ and we can
compute them e.g. for θ = 0.
Also,

m1(λ) = |λ|−1 sup
x≥0

∣∣∣∣−f ′2 − g1 + (f2 + g2)
R′

R
− µR(R−1)′′

∣∣∣∣ ,
m2(λ) = |λ|− 3

2 sup
x≥0
|R(f ′1 + f3 + (f2 + g2)f ′6 + µf ′′6 + g3) + (s− U)(f ′2 + g1)|

+ |λ|− 1
2 sup
x≥0

∣∣∣∣2(U − s) + µ
R′

R

∣∣∣∣ ,
m3(λ) = |λ|−1 sup

x≥0
|R(f1 + f4 + 2µf ′6 + g4) + (s− U)(f2 + g2)| ,

m4(λ) = |λ|− 1
2 sup
x≥0

∣∣∣∣sµ− 2R′

R

∣∣∣∣ . (3.28)

Moreover,

b̃j,k =
pk
qj
, pk =

4∑
l=1

ml(λ)|zk|l−1 =

4∑
l=1

ml(λ),

q1 = |z1 − z2||z1 − z3||z1 − z4|, q2 = |z1 − z2||z2 − z3||z2 − z4|,
q3 = |z1 − z3||z2 − z3||z3 − z4|, q4 = |z1 − z4||z2 − z4||z3 − z4|,

B̃+ = [b̃j,k], (3.29)

As before, the matrix B̃− has the suprema in the definition of mk(λ) taken for
x ≤ 0 and we define

ε± = 4α−1‖B̃±‖F ,
that is δ± = ‖B̃±‖F . We have 0 < θ1 < π/2, −π/2 < θ2 < 0, θ2 = −θ1, and recall

λ̃ = exp(iθ), θ ∈ [−π/2, π/2]. Then

−π
4

+
θj
2
≤ θ + θj

2
≤ π

4
+
θj
2
, j = 1, 2.

Hence,

−π
4
<
θ + θ1

2
<
π

2
, − π

2
<
θ + θ2

2
<
π

4
.

Since cos(x) is positive for −π/2 < x < π/2, in view of (3.27), we have

|<(z1)| = |<(z3)| = cos
(θ + θ1

2

)
,

|<(z2)| = |<(z4)| = cos
(θ + θ2

2

)
.
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Moreover,
α = min

θ∈[−π/2,π/2]
min

k∈{1,...,4}
|<(zk)|.

Since cos(x) is strictly increasing on [−π/2, 0], and strictly decreasing on [0, π/2], it
follows in particular that cos((θ + θ1)/2) is strictly increasing for θ ∈ [−π/2,−θ1],
and strictly decreasing for θ ∈ [−θ1, π/2]. Hence,

min
θ∈[−π/2,−θ1]

cos
(θ + θ1

2

)
= cos

(
− π

4
+
θ1

2

)
= cos

(π
4
− θ1

2

)
,

min
θ∈[−θ1,π/2]

cos
(θ + θ1

2

)
= cos

(π
4

+
θ1

2

)
.

Moreover, in view of the following inequalities

0 <
π

4
− θ1

2
<
π

4
,

π

4
<
π

4
+
θ1

2
<
π

2
,

π

4
+
θ1

2
>
π

4
− θ1

2
,

we conclude

cos
(π

4
+
θ1

2

)
< cos

(π
4
− θ1

2

)
.

Finally, we obtain

min
θ∈[−π/2,π/2]

cos
(θ + θ1

2

)
= cos

(π
4

+
θ1

2

)
,

that is, the minimum is attained for θ̄ = π/2. Similarly, it follows that

min
θ∈[−π/2,π/2]

cos
(θ + θ2

2

)
= cos

(
− π

4
+
θ2

2

)
= cos

(
− π

4
− θ1

2

)
= cos

(π
4

+
θ1

2

)
and therefore we can take

α = <(exp(i(θ̄ + θ1)/2)); θ̄ = π/2.

Lemma 3.3. Suppose µ < 2. Then, we can find a constant C > 0 such that
√

2
√
ε2+ + ε2− < 1 for all λ with <(λ) ≥ 0 and |λ| ≥ C. As a consequence, the

Evans function E(λ) for (3.8) has no zeros in this region.

Proof. As in the viscosity dominant case, we compute directly the entries of the
matrix S−1B(x, λ)S in (3.20) and we observe that b̃j,k are upper bounds for their
absolute values. The terms mk(λ) in (3.28) are upper bounds for the terms b4,k(λ)
of the matrix B(x, λ) from (3.19): |b4,k(x, λ)| ≤ mk(λ), while the terms |zk| and
|zj − zk| come from S and S−1. Moreover, as in the proof of Lemma 3.2, the

matrices B̃±(λ) from (3.29) have monotonically decreasing in |λ| entries, therefore,

from the bound above, we can easily find C > 0 such that
√

2
√
ε2+ + ε2− < 1 for

all λ with <(λ) ≥ 0 and |λ| ≥ C and the proof is complete. �

3.4. Numerical evidence of point spectrum stability. To conclude our anal-
ysis leading to point spectrum stability, we shall now exclude the presence of eigen-
value in a bounded region |λ| ≤ C inside the unstable half-plane, where C is given
in terms of the quantitative bound about the modulus of possible eigenvalues ob-
tained above. To this end, under the assumption that the Evans function E(λ) is
analytic in the region surrounded by a closed contour Γ, and it does not vanish on
the contour, we can use the winding number

1

2πi

∫
Γ

E′(z)

E(z)
dz (3.30)
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to count the number of zeros inside the contour. The remaining part of this paper
is devoted to provide numerical evidence that the integral (3.30) is indeed zero
in a sufficiently large contour Γ lying in the unstable half-plane, according to the
aforementioned quantitative bound.

Specifically, to compute the Evans function numerically, we use the compound
matrix method; for instance, see [19]. This method is used in order to get a sta-
ble numerical procedure, in spite of the fact that the system Y ′ = M(y, λ)Y is
numerically stiff. Specifically, the compound matrix B(y, λ) is given by:

B =


m11 +m22 m23 m24 −m13 −m14 0

m32 m11 +m33 m34 m12 0 −m14

m42 m43 m11 +m44 0 m12 m13

−m31 m21 0 m22 +m33 m34 −m24

−m41 0 m21 m43 m22 +m44 m23

0 −m41 m31 −m42 m32 m33 +m44

 .

We integrate the equation φ′ = (B(y, λ)−µ−)φ numerically on a sufficiently large in-
terval [−L1, 0], where µ− is the unstable eigenvalue of B at −∞ with maximal (pos-
itive) real part. Denote the profile [R(y), U(y)] by ζ(y). Given a numerical approxi-
mation of (ζk)Nk=1 of ζ(y) at points (yk)Nk=1 with −L1 = y1 < y2 < ... < yN = L1, let

ζ̃(y) be the piecewise linear interpolant of (y1, ζ1), ..., (yN , ζN ). We obtain the ma-

trix B(y, λ) using ζ̃(y). Similarly we integrate the equation φ′ = (B(y, λ) − µ+)φ
on [0, L1] backwards, where this time µ+ is the stable eigenvalue of B at +∞
with minimal (negative) real part. Then, the coefficients µ± compensate for the
growth/decay at infinity. Finally, the Evans function can be constructed by means
of linear combination of the components of the two solutions φ± = (φ±1 , . . . , φ

±
6 ) as

follows:

E(λ) = φ−1 φ
+
6 − φ

−
2 φ

+
5 + φ−3 φ

+
4 + φ−4 φ

+
3 − φ

−
5 φ

+
2 + φ−6 φ

+
1

∣∣∣
y=0

.

For our calculations we use L1 = 40 and we confine ourselves to the following
set of parameters, included in the dispersion dominant case, as defined above:

P+ = 0.6, P− = 0.8, s = 1, γ = 3/2, µ = 1, k =
√

2,

where P± =
√
R±. The values for the velocity defining an admissible Lax 2–shock

are U+ = −0.32 and U− = 0.25. The sufficient conditions for existence of profile
of [24, Lemma 1], case (i) are verified. Moreover, since

|U+| = 0.32 < 0.95 = cs(R
+),

conditions (i) of [24, Corollary 2] hold as well. Also the condition of [24, Lemma
1], case (i) is satisfied, because

sµ

k
= 0.71 < 1.3 =

√
−f ′(P+),

and the profile is non-monotone.
As pointed out already in Section 3.1, to avoid the smallness of E(λ) near zero,

we use integrated variables, namely, we solve the ODEs φ′ = (B̂(y, λ)−µ±)φ, where

the compound matrix B̂ is constructed from M̂ defined in (3.4). To numerically
check the Evans function is indeed well defined and different from zero at λ = 0,
we evaluate it on a small semi-circular contour without a vertical segment in the
unstable half-plane with radius 10−6 and with center at λ = 0, showing that it is
almost constant (and non zero); see Figure 2.

To compute the initial conditions we integrate the reduced Kato ODE

dr±
dλ

=
dP±
dλ

r±,
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Figure 2. The image of a small semi-circular contour without a
vertical segment, with radius 10−6, and center at the origin through
E(λ).

where P± stands for the spectral projection of B̂± = limy→±∞ B̂(y, λ) associated
to µ±. For this, we use the algorithm from [28], that is |r1

±| = 1 eigenvector as
before (referring to maximal/minimal decay/growth rate of B±) and for k > 0

rk+1
± = Pk+1

± rk±.

It is worth observing that, since the Evans functions corresponding to the profiles
ζ(y) and ζ(y− y0) have the same zero set and the estimate for the constant C that
bounds the modulus of eigenvalues with nonegative real part provided by Lemma
3.3 depends on y0, it may be possible to obtain a smaller bound for C by shifting the
profile. Therefore, let y0 ∈ (−L1, L1) so that the translated interpolant ζ̃(y − y0)
is defined on [−L1 + y0, L1 + y0]. We discretize the two domains [−L1 + y0, 0] and

[0, L1 + y0] using uniform grids (ỹk)
N−
k=1 and (ȳk)

N+

k=1, with

ỹk = −L1 + y0 + (k − 1)∆y−, k = 1, ..., N−,

ȳk = (k − 1)∆y+, k = 1, ..., N+,

where ∆y± are the grid sizes. Then, we compute the suprema in (3.28) on the grids

and construct the matrices B̃±. Finally, we evaluate δ± and ε±. It is sufficient to
choose λ ∈ R+ sufficiently large, so that the condition of Lemma 3.3 is satisfied.
We choose y0 = 10 and, being the interpolant ζ̃(y) defined on [−40, 40], we have

that ζ̃(y − y0) is defined on [−30, 50]. Moreover, we set ∆y± = 0.1. With these
choices, using Lemma 3.3, we obtain numerically that there are no eigenvalues for
|λ| ≥ 1.5 · 104. In the sequel we complement this information with a numerical
evidence of absence of eigenvalues inside that circle.

We have to initialize the computation on the real axis and, for stability reasons,
for a not very large value of λ. For these reasons, we cover the region of the
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unstable half-plane inside |λ| ≤ 1.5 · 104 with the union of the areas surrounded by
the following two contours:

(1) One semi-circular contour with radius 10, center at λ = 0 and vertical
segment on the imaginary axis. Here we do not evaluate the Evans function
at 0, but evaluate it up to ±i10−6.

(2) One contour which surrounds a semi-annular region in the right half-plane
with two semi-circles with radii 5 and 1.5 · 104, center at λ = 0 and vertical
segment on the imaginary axis.

Along the first contour we integrate the Kato ODE using 4 ·104 points, while along
the second one we use 106 points with higher density near the origin. Then, using
these initial conditions, we compute E(λ) with the stiff solver ode15s in matlab,
with relative tolerance 10−6 and, as said before, we set L1 = 40. Finally, we apply
the symmetry of E(λ̄) = E(λ). The Evans function E(λ) is plotted in Figures 3
and 4 and its winding number is (approximately) 0, giving a numerical evidence of
point spectrum stability.

Moreover, we present a computation of the Evans function along a contour,
surrounding a semi-annular region with radii 10−6 and 1.5 · 104, center at λ = 0
and vertical segment on the imaginary axis. Along the contour we integrate the
Kato ODE with 106 points; see Figure 5. Again, the winding number of the Evans
function is (numerically) 0.

Finally, we note that if λ ∈ R, then E(λ) ∈ R. Our numerics agrees with this
simple observation, because we get =E(λ) ≈ 0 for λ = 1.5 · 104. Moreover, to
corroborate this accuracy, we also use the Cauchy integral formula

E(a) =
1

2πi

∫
Γ

E(z)

z − a
dz

for a inside the contour Γ surrounding the semi-annular region with inner radius
10−6, and, for a = 1.5 · 104 − 20, we get a relative error less than 5 · 10−4.
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in red.
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Figure 5. The image of a contour, surrounding a semi-annular
region with radii 10−6 and 1.5 · 104 through E(λ). The origin is
marked in red.
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