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Abstract. Motivated by radiation hydrodynamics, we analyse a 2× 2
system consisting of a one-dimensional viscous conservation law with
strictly convex flux –the viscous Burgers’ equation being a paradigmatic
example– coupled with an elliptic equation. In the regime of small vis-
cosity and for large shocks, namely when the profile of the corresponding
underlying inviscid model undergoes a discontinuity –usually called sub-
shock– it is proved the existence of a smooth propagating front, which
regularises the jump of the corresponding inviscid equation. The proof
is based on Geometric Singular Perturbation Theory (GSPT) as intro-
duced in the pioneering work of Fenichel [5] and subsequently developed
by Szmolyan [19]. In addition, the case of small shocks and large vis-
cosity is also addressed via a standard bifurcation argument.
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1. Introduction

The dynamics of a gas in presence of radiation can be described by the

classical compressible Euler equations with an additional term in the energy

balance modelling the radiation effects (see [16, 21]). The extra state vari-

able, describing the intensity of radiation, is often modelled positing that it

obeys to an elliptic equation, leading to the hyperbolic–elliptic system
∂tρ+ ∂x(ρ u) = 0

∂t(ρ u) + ∂x(ρ u2 + p) = 0

∂t(ρE) + ∂x(ρEu+ p u− κ ∂xn) = 0

−∂xxn+ τ {n− g(θ)} = 0

(1.1) generalrad

where ρ denotes density, u velocity, p pressure, E specific total energy and

θ temperature to be linked by some appropriate constitutive relations. The

classical Euler system is then coupled through the term κ ∂xn to an addi-

tional quantity driven by the variable n, describing the average of the photon

density by means of the positive parameters κ and τ , and the function g,

who is usually assumed to have a power-like form. Such model is obtained

in the non relativistic limit of a corresponding hyperbolic–kinetic system
1
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where the variable describing the photon density obeys to a transport equa-

tion with interaction kernel given by the Stefan–Boltzmann law (see [1, 6, 14]

for further details).

A simplified model for radiation dynamics is the 2 × 2 system for the

scalars unknowns u and v having the specific form{
∂tu+ ∂x

(
1
2u

2
)

= ∂xv

v − ∂xxv = ∂xu,
(1.2) Hamoriginal

which is known as Hamer model for radiating gas, see [7] (setting q := −v).

The inviscid scalar conservation law is augmented with a scalar elliptic equa-

tion, mimicking the coupling present in system (1.1). The well-posedness of

(1.2) is proved in [10] by adding a vanishing viscosity term, thus ending up

in a parabolic-elliptic system (see also [2, 20]).

In the analysis of both systems (1.1) and (1.2), an intriguing issue is the

study of existence and stability of shock profiles. Specifically, the weak dissi-

pation properties –due to the coupling with the elliptic equation– give rise to

the existence of sub–jumps for sufficiently strong shocks. Correspondingly,

an increasing amount of regularity of the profile emerges as the magnitude

of the shock decreases.

Such problem has been addressed in various cases, that is for the “scalar”

models –a single conservation law with general flux functions coupled with

the elliptic equation– both for small and regular profiles [18], and for possi-

bly large and discontinuous ones [8, 11, 12]. The cases of systems has been

addressed as well, and in particular for the specific Euler model with radia-

tion effects (1.1) in [13] for weak (regular) profiles, and in [3, 15] for strong

(discontinuous) shocks. The case of general hyperbolic–elliptic systems for

small and large shocks is investigated in [11] for linear coupling and in [12]

for nonlinear coupling.

Here, we are interested in exhibiting how the presence of a viscosity term

in the simplified Hamer model (1.2) modifies the existence and regularity

properties of the shock profiles. Therefore, in the sequel we consider the

following regularised version of system (1.2){
∂tu+ ∂xf(u)− ε ∂xxu = ∂xv

v − ∂xxv = ∂xg(u),
(1.3) genintro

where the flux function f ∈ C2(R) is (uniformly) convex and the coupling

function g ∈ C1(R) is (strictly) increasing, that is

d2f(u) > 0 and dg(u) > 0 for any u ∈ R, (1.4) hypFG
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where d denotes the derivative with respect to u. The corresponding one-

field equation for the unknown u is

∂tu+ ∂xf(u)− ∂xx(ε u+ g(u)) = ∂xx {∂tu+ ∂xf(u)− ε∂xxu} (1.5) onefield

The main topic of this paper is to investigate the existence of shock profiles

for model (1.3) –equivalently, for (1.5)– in the specific case of end states

leading to the presence of a sub–shock in the inviscid model (see [8, 11, 12]).

For completeness, let us start with a classical definition.

Definition 1.1. Given the states u± ∈ R, a propagating front for the

hyperbolic-elliptic system (1.3) is a triple (u, v; c) where (u, v) is a travelling

wave solution (u, v) = (u, v)(x − ct) satisfying the asymptotic conditions

(u, v)(±∞) = (u±, 0) and c is a given constant.

The couple (u, v) is called the profile and the parameter c is the speed.

Incidentally, we are denoting with the same symbol both the general so-

lution to (1.3), and the specific propagating front. Being this manuscript

devoted exclusively to the existence of fronts, we are confident that this will

not generate confusion.

The asymptotic states (u±, v±) are forced to be equilibria of (1.3), i.e.

u± ∈ R with u+ 6= u− and v± = 0. Consequently, the speed c is forced to

satisfy the Rankine–Hugoniot relation

c =
f(u+)− f(u−)

u+ − u−
, (1.6) RH

as it is readily seen by integrating in R the ordinary differential equation for

the profile (u, v). A standard assumption in the context of scalar conserva-

tion laws with convex flux is the Lax condition

df(u+) < c < df(u−), (1.7) Lax

guaranteeing that the jump from u− is u+ satisfies the entropy condition.

Given the Rankine–Hugoniot condition (1.6) and the convexity assumption

on the flux f , inequalities (1.7) are satisfied if and only if u+ < u−.

Next, we state the two main theorems of our work. The first one is based

on a singular perturbation approach relative to the (small) parameter ε.

thm:main1 Theorem 1.2. Assume (1.4)-(1.6)-(1.7). Moreover, let u+, u− be such that

the inviscid profile undergoes a sub-shock in the u variable. Then, for ε >

0 sufficiently small, the parabolic-elliptic system (1.3) support propagating

fronts with speed c given by the Rankine-Hugoniot relation (1.6).

This result is obtained in the case of small viscosity coefficient ε and for

sufficiently large shocks, namely when the corresponding inviscid profile ex-

periences a discontinuity, by taking advantage of the Fenichel’s Geometric
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Singular Perturbation Theory, in what follows shortened as GSPT (for de-

tails, see [5, 19] and the Appendix at the end of the paper). The condition

which locates the sub–shock in the profiles for the inviscid models agrees

with the one needed to apply the aforementioned theory, leading to the ex-

istence of the connection which smoothes out the discontinuity.

Our second main result, proved in Section 3, is based on a direct application

of bifurcation theory, where we consider fixed O(1) viscosity and sufficiently

small shocks.

thm:main3 Theorem 1.3. Assume (1.4)-(1.6)-(1.7). Moreover, let u+, u− be such that

|u+−u−| is sufficiently small. Then for any fixed ε > 0 the parabolic-elliptic

system (1.3) supports propagating fronts with speed c given by the Rankine-

Hugoniot relation (1.6).

The paper includes a final Appendix A with, the main general results of

GSPT needed in the present analysis.

Notations. For readers’ convenience, we list (some) symbols used in the text:

x and y = x/ε denotes the slow and fast variable, respectively;
u = (u, v, w) slow/fast variables for ε ≥ 0;

f ′ and ḟ denotes the derivatives of the function f with respect to the slow
and the fast variable, respectively;
S := {u : F (u) = 0} slow manifold with its subsets S∗, S±;
v = (u, v, w, ε) slow/fast variables;
πS projection onto the surface S
C, Cs, Cu center/center-stable/center-unstable manifolds for equilibrium point
of limiting fast system
Fs,u = {Ψs,u(v) : v ∈ Cs,u} family of stable/unstable manifolds for Cs,u
W s,u stable/unstable manifolds of critical points for reduced slow system

However, all the notations will be restated at their first occurrence.

2. General strictly convex case and nonlinear coupling
sec:genconvnon

To start with, we rephrase the existence of a propagating front in the

formalism of singular perturbation theory.

Since f is convex, the function df is strictly increasing and, thanks to

(1.7), there exists a unique point u∗ such that df(u∗) = c. Hence, setting

fc(u) := f(u)− cu. (2.1) deficit

there holds dfc(u∗) = 0. The function fc describe the flux in a frame that

is co-moving with the propagating front. The value fc(u+) coincides with

fc(u−) as a consequence of the Rankine–Hugoniot condition (1.6) and we

use the notation fc(u±) to stress this coincidence. In addition, the Lax

condition becomes

dfc(u+) < 0 < dfc(u−). (2.2) LaxBis
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For traveling wave solutions, system (1.3) rewrites as

εu′′ = {fc(u)− v}′ , v′′ = v − g(u)′,

where we have used the notation ′ = d/dx. Integrating the first equation

from −∞ to x, and setting w := g(u)− v′, we obtain the slow system
εu′ = F (u, v, w) := fc(u)− fc(u±)− v ,

v′ = G(u, v, w) := w − g(u) ,

w′ = H(u, v, w) := v ,

(2.3) SLOW SYSTEM

which is a special case belonging to the class of singular perturbed problems.

The adjective singular refers to the presence of the parameter ε multiplying

first order derivatives of some state variables and assumed to be small (and

positive). A significant regime is then obtained as ε→ 0 giving raise to the

reduced limit 
v = fc(u)− fc(u±) ,

v′ = w − g(u) ,

w′ = v .

(2.4) SLOW SYSTEM 0

which is called limiting slow system. The first equality in (2.4) can be

regarded as an additional constraint along the dynamics, linking the value

of the variable u with the slow variables (v, w). As in the present case, the

relation F (u, v, w) = 0 is not invertible with respect to u and the use of

appropriate restrictions have to be considered.

After the rescaling y := x/ε, we get the so-called fast system
u̇ = F (u, v, w) ,

v̇ = εG(u, v, w) ,

ẇ = εH(u, v, w) .

with the notation · = d/dy = ε d/dx. In compact form, setting u = (u, v, w),

the above system can be rewritten as

u̇ = Fε(u) :=
(
F (u), εG(u), εH(u)

)
. (2.5) FAST SYSTEM

As ε→ 0+ in (2.5), we deduce the limiting fast system
u̇ = fc(u)− fc(u±)− v ,

v̇ = 0 ,

ẇ = 0 .

(2.6) FAST SYSTEM 0

The variable u is said to be the fast variable of the system.

From now on, we are confronted with the problem of rigorously establish-

ing the existence of a heteroclinic orbit connecting at ∓∞ the critical points

of (2.3) –or, equivalently, (2.5)– which are

u± = (u±, v±, w±) :=
(
u±, 0, g(u±)

)
.
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under the assumptions (1.4)–(2.2). To this aim, we follow the classical sin-

gular perturbation approach, consisting in the separate study of dynamical

systems (2.3)–(2.5) in the limiting slow and fast regimes described by (2.4)–

(2.6), respectively.

Let S := {u ∈ R3 : F (u) = 0} be the slow manifold of critical points for

(2.6) and let S∗ be the open subset of the slow manifold S defined by

S∗ : = {u ∈ S : ∂uF (u) 6= 0}

= S \
{(
u∗, fc(u∗)− fc(u±), 0

)
+ te3 : t ∈ R

}
,

Since the restrictions of the function ∂uF in the open halflines (−∞, u∗) and

(u∗,+∞) are invertible. system (2.4) reduces to a two dimensional dynam-

ical system for the slow variables (v, w). Denoting such inverse functions

with the symbols h±, we can split the subset S∗ as the (disjoint) union

S∗ = S− ∪ S+

where

S− := {u ∈ S∗ : ∂uF (u) > 0}

=
{

(u, v, w) ∈ R3 : v ∈
(
fc(u∗)− fc(u±),+∞

)
, u = h−(v)

}
,

S+ := {u ∈ S∗ : ∂uF (u) < 0}

=
{

(u, v, w) ∈ R3 : v ∈
(
fc(u∗)− fc(u±),+∞

)
, u = h+(v)

}
.

By Lax condition (2.2), there holds u− ∈ S− and u+ ∈ S+.

The analysis for the slow system (2.3) exhibits the existence of a discon-

tinuous propagating front for |u+ − u−| sufficiently large (in the case of the

Hamer model (1.2), the critical threshold is
√

2, as shown in [8]). Specifi-

cally, we are interested in showing how the presence of viscosity in the first

equation of (1.3) restores the regularity of the profile by smoothing out the

internal jump of the shock solution. This task can be accomplished by work-

ing on the fast system at ε = 0 from [8, 11, 12] and, then, taking advantage

from the results in [19] to perform a rigorous matching.

2.1. Splitting consistency. The first step consists in the analysis of the

linearization at u± of the fast system (2.5) for ε ≥ 0. Denoting by d the

derivative with respect to u, the jacobian of Fε is

dFε(u) =

 dfc(u) −1 0
−εdg(u) 0 ε

0 ε 0


with characteristic polynomial

det (dFε(u)− λ I) = −λ3 + dfc(u)λ2 + ε
(
dg(u) + ε

)
λ− ε2dfc(u),
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where I denotes the identity matrix. Denoting with λ1, λ2 and λ3 the roots

of the polynomial, there hold

tr dFε(u) = dfc(u) = λ1 + λ2 + λ3 ,

det dFε(u) = −ε2dfc(u) = λ1 · λ2 · λ3 .

Next, we analyze the real part of the eigenvalues λ1, λ2 and λ3 of dFε(u±).

Indeed, from the Lax condition (2.2), it follows

a. tr dFε computed at u+ (respectively u−) is negative (resp. positive);

b. det dFε computed at u+ (resp. u−) is positive (resp. negative),

Since the characteristic polynomial has degree 3, there are two cases:

i. either 3 real roots;

ii. or 1 real root and 2 complex conjugates.

Next, we limit the investigation to the case u+, the other being analogous.

i. Thanks to b., we have either 3 positive eigenvalues or 2 negative

eigenvalues and 1 positive. The first case is excluded by a.; thus,

there are 2 negative and 1 positive roots.

ii. Let us set λ1 ∈ R, λ2 = α+ iβ and λ3 = α− iβ with β > 0. Then

tr dFε = λ1 + 2α < 0 and det dFε = λ1(α2 + β2) > 0.

These conditions imply λ1 > 0 and α = Reλ2 = Reλ3 < 0.

Summarizing, at u+, the matrix dFε has a two-dimensional stable manifold

and an one-dimensional stable manifold. At u− the situation is reversed:

the dimension of the stable manifold is 1 and that of the unstable manifold

is 2. We infer that the splitting is consistent since the sum of the dimension

of the unstable manifold at u− and the one of the stable manifold at u+ is

equal to 4 and the state space has dimension equal to 3.
sec:extfs

2.2. Extended fast system. Next, we extend the fast system (2.5) adding

a trivial equation for the parameter ε, that is

v̇ = Φ(v) :=
(
F (u), εG(u), εH(u), 0

)
, (2.7) layer

where v = (u, ε) ∈ R3 × (−ε0, ε0) and F , G and H are still defined in (2.3).

Incidentally, let us observe that system (2.7) is equivalent to (2.5) for ε > 0

and to (2.6) for ε = 0.

The matrix of the linearization of Φ at v is

dΦ(v) =


dfc(u) −1 0 0
−ε dg(u) 0 ε w − g(u)

0 ε 0 v
0 0 0 0


with characteristic polynomial at v0 := (u, 0)

det (dΦ(v0)− λI) = λ3
(
λ− dfc(u)

)
.
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The polynomial has two roots, λ = 0 and λ = dfc(u), which are distinct

if dfc(u) 6= 0. The multiplicity 3 of the eigenvalue 0 corresponds to the

dimension of the slow variable (v, w) plus the dimension of the fictitious

variable ε; the multiplicity 1 of the eigenvalue dfc(u), coincides with the

dimension of the fast variable u. Moreover, since λ = dfc(u) > 0 on S− and

λ = dfc(u) < 0 on S+, the unstable manifold of u− in S− and the stable

manifold of u− in S+ have both dimension equal to 1.

For readers’ convenience, let us recall a basic definition valid for generic

compact manifold M and diffeomorphism f .

def:normallyhyperbolic Definition 2.1. An f -invariant submanifold Λ of M is said to be normally

hyperbolic if the restriction TΛM to Λ of the tangent bundle TM admits

a splitting into a sum of three df -invariant sub-bundles,

TΛM = TΛ + Es + Eu.

where TΛ is the tangent bundle of Λ and Es,u denotes the stable/unstable

bundle, respectively.

Here, we consider compact subsets K b S0 that are normally hyperbolic

invariant manifolds of the layer problem (2.6).

Since F0 restricted to S± is identically zero, there holds

TuS± = ker dF0.

The subspace TuS± is invariant under the action of dF0 and, therefore, the

linear map induced by the linearization

QF0(u) : TuR3/TuS± → TuR3/TuS±

is well defined.

The eigenvalues of dF0 are exactly the nontrivial ones cited before, since

dF0(u) =

(dfc ◦ h±)(v) −1 0
0 0 0
0 0 0

 .

Moreover, a generic element v ∈ TuS± is v = α ū + β e3 for (α, β) ∈ R2

where ū := (1, (dfc ◦ h±)(v), 0).

Next, following [19], we define the projection map πS by the splitting

T R3 = TS± ⊕N,

where N is the complement of TS± invariant under dF0. The matrix dF0

maps the vector v = (a, b, c) ∈ R3 into(dfc ◦ h±)(v) −1 0
0 0 0
0 0 0

ab
c

 =

(dfc ◦ h±)(v)a− b
0
0

 .
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Therefore, for a nonzero vector (a, b, c) to be invariant under the action of

JF0 it is required b = c = 0. Since (dfc ◦ h±)(v) 6= 0, the subspace N is

thus spanned by e1 := (1, 0, 0). Summarizing, the splitting is

T R3
∣∣
S± = 〈ū, e3〉 ⊕ 〈e1〉.

Let us denote with C, Cs and Cu and the center, center-stable, center-

unstable manifolds generated by the extended fast system Φ. They are

locally invariant manifolds containing K×{0} and tangent to the correspond-

ing center, center-stable, center-unstable eigenspaces of the linearization dΦ

at v = (u, 0) ∈ K × {0}, denoted here by Ecu, Esu ⊕ Ecu and Euu ⊕ Ecu,

In the case under scrutiny, the dimension kc of the center manifold for the

system (2.5) is 0. We recall that n = 2 is the dimension of the slow variable

(v, w) and k = ku + ks = 1 equals the dimension of the fast variable. The

following statements are true:

1. dim C = n+ 1 = 3;

2. for the surface S+, ks = 1 and ku = 0, so that dim Cs = n+1+ks = 4

and dim Cu = n+ 1 + ku = 3;

3. for the surface S−, ks = 0 and ku = 1 so that dim Cs = n+1+ks = 3

and dim Cu = n+ 1 + ku = 4.

Given constants p, q ∈ [1,+∞), let Cs be a center-stable manifold for Φ

in a neighborhood of K × {0}. At this point, we need to introduce also the

notion of family of stable (resp. unstable) manifolds for Cs (resp. Cu).

Definition 2.2. A family Fs = {Ψs(v) : v ∈ Cs} is a Cq-family of Cp-

stable manifold for Cs near K if

i. Ψs(v) is Cp-manifold for each v ∈ Cs;
ii. v ∈ Ψs(v) for each v ∈ Cs;

iii. Ψs(v1) and Ψs(v2) are disjoint if v1 6= v2 for each v1,v2 ∈ Cs;
iv. Ψs(u, 0) is tangent to Esu at (u, 0) for each u ∈ S;

v. the set {Ψs(v) : v ∈ Cs} is a positively invariant Cq-family of

manifolds with respect to the flow Φ.

The case of the unstable manifolds Fu is defined in an analogous way.

These families provide a foliation of Cs and Cu, i.e.

Cs = {Ψs(v) : v ∈ C} and Cu = {Ψu(v) : v ∈ C} .
sec:red0

2.3. Construction of the profile for the reduced system. We want

to apply Lemma A.2 in Appendix A to system (2.5) to describe the flow

induced on S when it is given by the graph of a function, i.e. in S±.
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Adapting Lemma 5.4 in [5] to (2.5), we infer that the projections π± on

the surfaces S± are given by the multiplication against the matrices

A± =

0 dh±(v) 0
0 1 0
0 0 1

 ,

so that the reduced systems are

u′ = A±
 0
G
H

 =

dh±(v)G(h±(v), v, w)
G(h±(v), v, w)
H(h±(v), v, w)


In components, for any (u, v, w) ∈ S±, the above systems become

u′ =
w − (g ◦ h±)(v)

(dfc ◦ h±)(v)

v′ = w − (g ◦ h±)(v)

w′ = v.

(2.8) reduced

In what follows, we refer to the vector field as FR.

Remark 2.3. In the case under investigation, the computations yielding to

(2.8) reduces to differentiate (2.4)1 along the profile lying on S±. Hence, for

u = h±(v), and using (2.4)2 we end up with

u′ =
w − (g ◦ h±)(v)

(dfc ◦ h±)(v)

and thus (2.8). On the other hand, Lemma A.2 in Appendix A refers to

a general framework, where the vector field in (2.5) merely depends in a

regular way on ε.

Upon observation, it is readily seen that the critical points of the limiting

slow system (2.4), or equivalently (2.8), where we have desingularized the

problem, are

u± :=
(
u±, 0, g(u±)

)
∈ S±,

and hence they concide with the ones of the perturbed slow systems (2.3).

Theorem A.3 in Appendix guarantees the existence for ε > 0 sufficiently

small of a sequence of critical points uε for the perturbed vector field in

(2.3), smoothly depending on ε, and which reduces for ε = 0 to the critical

points of (2.4). In our case, again in view of the independence from ε of the

vector field in (2.3), we have u± = u = uε, without invoking Theorem A.3.

However, in order to define the local stable/unstable manifolds of uε needed

for the connection, we shall refer to the general framework of Theorem A.4

and therefore one has to check that λ = 1 is not an eigenvalue of the Jacobian
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dFR(u±). To this end, we compute the Jacobian of the vector fields in (2.8)

dFR(u±) =

0 −dg/df2
c 1/dfc

0 −dg/df2
c 1

0 1 0


where dfc and dg are computed at u±. The corresponding characteristic

polynomials p± are

p±(λ) := −λ q±(λ) with q±(λ) = λ2 +
dg(u±)

dfc(u±)
λ− 1.

These have three roots: the trivial one, given by λ0
± = 0, and the roots of

q±, which can be expressed as

λ1
± = −

√
dg2 + 4 df2

c + (sgn dfc) dg

2|dfc|
,

λ2
± =

√
dg2 + 4 df2

c − (sgn dfc) dg

2|dfc|
,

where dfc and dg are computed at u±. Recalling the Lax condition (2.2)

and the monotonicity assumption (1.4) on function g, a direct computation

shows that

λ1
− < −1 < λ1

+ < 0 < λ2
− < 1 < λ2

+,

so that, in particular, λ2
± 6= 1.

Therefore we can apply Theorem A.4 to characterize the local stable-

unstable manifolds of the perturbed critical points. These manifolds are

of dimension 1 for both u± and thus the critical points for the perturbed

system are saddles in the slow directions.

Now we pass to the study of the reduced system (2.8) to briefly recast

the results by Lattanzio et al. [11, 12] in the present framework (see also

[8]). To this end, we focus on the case of sufficiently large shocks so that the

profile exhibits a sub–shock for the variable u, case for which GSPT can be

directly applied, because the two branches of the profile belong to S− and

S+, respectively.

In the case of the singularly perturbed systems (2.3), we prove the ex-

istence of the heteroclinic orbit as a perturbation of the so-called singular

heteroclinic orbit. The latter consists of orbits of the reduced systems lying

on the two surfaces S± of the critical manifold S, linked by a heteroclinic

connection of the layer system (2.6).

For completeness, we adapt here the results proved in [11] for system

(1.3) with g(u) = u and in [12] for general increasing functions g. For

readers’ convenience, we observe that the variable (u, v, w) of the present

paper corresponds to (u,−q, z) of [11, 12].
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Let (v±, w±) be the maximal solutions to the problems

v′ = w − (g ◦ h±)(v) , w′ = v , (2.9) wpm

with the asymptotic conditions (v±, w±)(±∞) = (0, g(u±)), describing the

dynamics of the reduced system (2.8) along the surfaces S±.

Functions v−, w± are decreasing and v+ is increasing. In addition, there

exist x± ∈ R such that

w±(x±)− v′±(x±) = g(u∗) and v±(x±) = −fc(u±)

In particular, the solution (v−, w−) is defined in (−∞, x∗] and the solution

(v+, w+) is defined in [x∗,+∞).

As a consequence of the monotonicity of functions v±, there holds

w−(x∗) ≤ g(u∗) ≤ w+(x∗).

The complete heteroclinic orbit is built by matching two branches of the

maximal solutions (v±, w±) at a given point x∗ which can be arbitrarily

chosen taking advantage of translation invariance.

teo3.5 Proposition 2.4. Assume hypotheses (1.4). Then, there exists a function

(v, w) with v ∈ C0(R)∩C1 (R \ {x∗}) and w ∈ C1(R)∩C2 (R \ {x∗}) solving

the first order system (not in normal form)

(fc ◦ g−1)(w − v′) = v , w′ = v ,

satisfying the asymptotic conditions (v, w)(±∞) = (0, g(u±)). Moreover,

the function v′ = w′′ has at most a jump discontinuity at x∗.

The existence theorem of propagating fronts for system (1.3) with ε = 0

is a simple consequence of the above construction.

teo:existsinglim Theorem 2.5. Assume hypotheses (1.4). For any u± satisfying the Lax

condition (1.7), there exists a propagating front for system (1.3) with ε = 0.

The profile (u, v) is unique up to translation and the speed c is given by the

Rankine–Hugoniot condition (1.6).

Moreover, the component u belongs to C1(R \ {x∗}), eventually with a

jump discontinuity at x∗.

For the complete proofs of Proposition 2.4 and Theorem 2.5, we refer to

[11, 12]. Here, we limit to sketch the basic steps in the matching procedure

with the aim of providing support to the subsequent parts.

We define a profile w by matching together the two maximal solutions

w(x) =

{
w−(x) x < x∗

w+(x) x ≥ x∗,
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relying on the monotonicity of maximal solutions w±, such that w(x∗) = w∗.

The latter equality can be written also as

g(ur) + v′r = g(u`) + v′`.

Analogously, the continuity of w′ at x∗ gives

w′+(x∗) = vr = v` = w′−(x∗).

Since we are investigating a discontinuous profile u, we know that

v∗ := v` = vr < 0, (2.10) vastnegative

and

ur = g−1
(
w∗ − v′+(x∗)

)
< u∗ < g−1

(
w∗ − v′−(x∗)

)
= u`. (2.11) eq:ulurdiff

Therefore, there exists δ > 0 sufficiently small such that, along the con-

structed profile, we have

h+(v) ∈ [u+, u∗ − δ], h−(v) ∈ [u∗ + δ, u−],

and GSPT is applicable.

Remark 2.6. The present analysis is valid also for the particular case of the

Hamer model with linear coupling (1.2), namely for f(u) = u2/2, g(u) = u.

In that case, the slow manifolds are given by:

S± = {(u, v, w) ∈ R3 / u = ∓
√

1 + 2v}.

If we choose the asymptotic states as u± = (∓1, 0,∓1), we obtain u∗ = 0 and

c = 0. In [8, 11], the authors showed that the profile increases its regularity

as the strength of the shock decreases. Moreover, for that specific model,

from [8] we know that , u has precisely an ammissible jump discontinuity

at a single point if |u+ − u−| >
√

2, which is the case we are referring to

here. Therefore we get only the C1-continuity of w. The maximal solution

w+ decreases from zero toward -1 at +∞ and w− decreases from 1 at −∞
toward 0. Due to the particular choice of the flux f , and thus of the inverse

function h±(v), we get u` = −ur. We shall give a partial answer in the

case of small schocks in Section 3, when we shall discuss the existence of the

profile for sufficiently small shocks and arbitrary diffusion.
subsec:singular

2.4. Construction and persistence of the orbit. In the previous sec-

tion we have constructed the first two pieces of the singular heteroclinic

orbit, namely orbits of the reduced systems FR lying on S±. Here, we aim

to substitute the istantaneous jump for u among these branches with an ap-

propriate smoothed version described by the limiting equation (2.4) of the

original differential equations (2.3) in the regime ε→ 0+.
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The limiting fast system (2.6) has critical points given by (h±(v), v, w) for

arbitrary v, w. Therefore, we make use of it to connect the two manifolds

S± at points u` = (u`, v∗, w∗) ∈ S− and ur = (ur, v∗, w∗) ∈ S+, where

u` = h−(v∗) and ur = h+(v∗) The dynamics are completely described by

the reduced equation

u̇ = F (u, v∗, w) = fc(u)− fc(u±)− v∗. (2.12) eq:ODE1non

Thus, for fixed v∗ > fc(u∗)− fc(u−), it is easily checked that

F (u, v∗, w) = 0 if and only if u = u` or u = ur ,

F (u, v∗, w) < 0 for u ∈ (ur, u`) ,

with the opposite sign for u ∈ (−∞, ur) ∪ (u`,∞). We infer the existence

of a global and decreasing solution u0 to (2.12) verifying the asymptotic

conditions u0(−∞) = u` and u0(+∞) = ur.

rem:Hamer_u0 Example 2.7 (Hamer model). Let u∓ = ±1. As a consequence of the Rankine–

Hugoniot (1.6), the speed c is zero and

f0(u) = f(u)− 0 · u = 1
2u

2.

Moreover, since |u− − u+| = 2 >
√

2, the inviscid profile undergoes a Lax

sub–shock between u` and ur = −u` < 0. For any fixed value v∗ ∈
(
−1

2 , 0
)
,

we can explicitly solve the equation (2.12) for u. Indeed, setting v∗ :=

−1
2(u2
− − 1) for some u` ∈ (0, 1), there holds

u̇ = 1
2(u2 − 1)− v∗ = 1

2(u2 − u2
` ).

Separating the variables and integrating by parts, we obtain

u0(x) = −u` ·
eu`x − 1

eu`x + 1
= −u` tanh

(
1

2
u`x

)
,

which satisfies the required asymptotic conditions u0(±∞) = ∓u`.

Let a, b ∈ R with a ≤ b. Then, given δ ∈
(
0, fc(u±)

)
, the compact

normally hyperbolic invariant manifolds K± have the form

K± =
{
u ∈ S± : (v, w) ∈

[
δ − fc(u±), 0

]
× [a, b]

}
.

It is clearly seen that the two parameter sets coincide.

Let Wu
−,0 be the unstable manifold of u− and Ws

+,0 the stable manifold

of u+ with respect to the reduced slow system (2.8). Then, the singular

unstable manifold of u− and singular stable manifold of u+ are given by

Nu
−,0 =

⋃
u∈Wu

−,0

Ψu(u) and N s
+,0 =

⋃
u∈Ws

+,0

Ψs(u),

where Ψu,s(u) are the unstable/stable fibers of the limiting fast system (2.6)

based at u, which are tangent to the eigenvectors associated to the non-

trivial eigenvalue of the Jacobian dF0(u) with an appropriate sign choice.
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The construction of the singular heteroclinic orbit is complete if and only if

we show that the intersection of the manifolds Nu
−,0 and N s

+,0 is transver-

sal along the solution of (2.12), namely upon construction of the smooth

connection between u` and ur recalled above.

For u ∈ S∗, the non trivial eigenvalue of the Jacobian dF0(u) is λ = dfc(u)

which is negative in S+ and positive in S−. At u ∈ S−, the eigenvector

relative to the eigenvalue dfc(u) is readily seen to be e1 = (1, 0, 0), so that

the unstable fiber Ψu(u) is explicitly given by u + te1 for t ∈ R. The same

computation is valid for u ∈ S+ so that the elements of Ψs(u) have the form

u + te1 for some t ∈ R.

Example 2.8 (Hamer model). For the Hamer model K± are of the form

K± =

{
u ∈ S± : (v, w) ∈

[
δ − 1

2
, 0

]
× [a, b]

}
.

for δ ∈
(
0, 1

2

)
. The unstable/stable fibers Ψu,s(u) at u± = (∓1, 0,∓1) are

also tangent to e1.

In view of the previous discussion, for v∗ > fc(u∗) − fc(u−), there exists

a connection u0, solution to (2.12), between the points

u` = (u`, v∗, w∗) ∈ Wu
−,0 ⊂ K− and ur = (ur, v∗, w∗) ∈ Ws

+,0 ⊂ K+,

where ul = h−(v∗) and ur = h+(v∗). Such connections are uniquely de-

termined in view of the monotonicity of the component w along the sta-

ble/unstable manifolds Ws
+,0 and Wu

−,0.

The subsequent Theorem –an ultra-simplified version of [19, Theorem 4.1]

which for completeness we stated in the Appendix (see Theorem A.6)– gives

conditions to prove transversality in the regime ε = 0.

thm:trans Theorem 2.9. Let φ(Wu
−,0) and φ(Ws

+,0) denote the (v, w)-coordinates of

the manifolds Wu
−,0 ⊂ S− and Ws

+,0 ⊂ S+, respectively. Then, the manifolds

Nu
−,0 and N s

+,0 intersect transversally at the points of the heteroclinic orbit

if and only if

T(v∗,w∗)φ(Wu
−,0) ∩ T(v∗,w∗)φ(Ws

+,0) = {0}. (2.13) nointer

For the proof, see [19]. In the sequel, we check the validity of (2.13).

Remark 2.10. The intersection of Nu
−,0 and N s

+,0 at a point of the form

u = (u0(x̄), v∗, w∗) (for some generic x̄ ∈ R) is transversal if and only if

TuN
u
−,0 + TuN

s
+,0 = R3, that is if and only if

dim(TuN
u
−,0 + TuN

s
+,0) = 3.



16 G. CIANFARANI CARNEVALE, C. LATTANZIO, AND C. MASCIA

Following the notation in [19], the equality

dim(TuN
u
−,0 + TuN

s
+,0) = dim(TuN

u
−,0) + dim(TuN

s
+,0)

− dim(TuN
u
−,0 ∩ TuN s

+,0)

implies that the intersection in (2.13) is transversal if and only if

dim(TuN
u
− ∩ TuN s

+) = d,

where d in our case is given by

d = ju− + ku− + js+ + ks+ − n− k = 1 + 1 + 1 + 1− 2− 1 = 1,

with ju−, ks−, js+ and ks+ describing the dimensions of the stable and unstable

reduced manifolds of the singular points u±. In the general setting, Theo-

rem A.6 guarantees the needed transversal intersection along points of the

heteroclinic orbit if and only if there exist exactly d−1 linearly independent

solutions ξ ∈ T(v∗,w∗)φ(W u
−,0)

⋂
T(v∗,w∗)φ(W s

+,0) of the equation

(M, ξ) = 0,

where M ∈ R2 is defined by

M :=

∫
R
ψ(ξ) ∂v,w

{
fc(u)− fc(u−) + v

}
dξ

and ψ is defined as the unique bounded solution of

ψ′ = −dfc(u0(x))ψ.

Here d− 1 = 0 and ∂v,w(fc(u)− fc(u−) + v) = (1, 0). Moreover

ψ(x) = ψ(0) exp

{
−
∫ x

0
dfc(u0) dξ

}
.

Since ur < u0(x) < u` and dfc is monotone, then

dfc(ur) < dfc(u0(x)) < dfc(u`),

which implies

ψ(0)e−dfc(u`)x < ψ(0)e−
∫ x
0 dfc(u0)ds < ψ(0)e−dfc(ur)x.

In view of the conditions dfc(ur) < 0 < dfc(u`), we can conclude that the

only ψ which is globally bounded in R is the trivial one, that is ψ ≡ 0 and as

a consequence the vector M is identically 0. In other words, in the present

case, the requirements of Theorem A.6 reduce to (2.13).

Analyzing the intersection in (2.13), this condition is equivalent to inquire

the existence of a couple (v0, w0) ∈ R := [δ − fc(u±), 0] × [a, b] ⊂ R2 such

that the points (h−(v), v, w) ∈ Wu
−,0 and (h+(v), v, w) ∈ Ws

+,0 are connected

by a heteroclinic orbit of the layer problem (2.6), i.e. a solution u0 to (2.12)

for some constant w ∈ R. By construction, both the maximal solution

w− (describing the unstable manifold Wu
−,0) and the maximal solution w+
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(describing the stable manifold Ws
+,0) are monotone decreasing. Hence,

since w− decreases from g(u−) at −∞ toward w∗ and w+ decreases from w∗

toward g(u+) at +∞, we conclude that the only point in R verifying the

above conditions is

(v0, w0) = (vr, w∗) = (v`, w∗) = (v∗, w∗).

In other words, in order to construct the required smooth connection we

are looking for, we have obtained the same condition which locates the

discontinuity in u of the profile for ε = 0.

Finally, computing the vector field (G,H) = (w − g(u), v) at two given

points (u`, v∗, w∗) ∈ Wu
−,0 and (ur, v∗, w∗) ∈ Ws

+,0 and taking a linear com-

bination of them, we infer

α(G,H)(u`, v∗, w∗) + β(G,H)(ur, v∗, w∗)

= ((α+ β)w∗ + αg(u`) + βg(ur), (α+ β)v∗).

Since v∗ < 0, see (2.10), ur < u`, see (2.11), and g is monotone increasing,

see (1.4), the two vectors are linearly independent which implies (2.13) and

then, invoking Theorem 2.9, Nu
−,0 and N s

+,0 intersect transversally. Finally,

the heteroclinic orbit for the reduced system at ε = 0 persists for ε > 0

sufficiently small and the proof of Theorem 1.2 is complete. Indeed, thanks

to GSPT, we obtain the existence of the perturbed manifolds Nu
−,ε and

N s
+,ε, and their trasversality along a transversal heteroclinic orbit is given

by Theorem A.5 (details on the construction of the manifolds Nu
−,ε and N s

+,ε

can be found in [19]).

Example 2.11 (Hamer model). The same conclusion holds for the Hamer

model, for which R =
[
δ − 1

2 , 0
]
× [a, b] and d = 1. Thus we refer to The-

orem 2.8 to check the transversality of N s
+,0 and Nu

−,0. As before, the con-

dition of Theorem 2.8 is equivalent to find (v0, w0) ∈ R such that points

(
√

1 + 2v0, v0, w0) ∈ Wu
−,0 and (−

√
1 + 2v0, v0, w0) ∈ Ws

+,0 are connected by

u0(x) = −u` tanh
(

1
2u`x

)
.

As said before, the two maximal solution of the reduced systems w± are

monotone decreasing, namely w+ decreases from zero toward -1 at +∞ and

w− decreases from 1 at −∞ toward 0. Hence, we can conclude that the only

point in R verifying the conditions of Theorem 2.8 is (v0, w0) = (v∗, 0). The

vector field (G,H) = (w − u, v) computed at (u`, v
∗, 0) ∈ Wu

−,0 is given by

(−u`, v∗), and at (ur, v
∗, 0) ∈ Ws

+,0 is given by (−ur, v∗) = (u`, v
∗). Since

v∗ ∈
[
δ − 1

2 , 0
]

is not zero, the two vectors are linearly independent and this

gives (2.13). We stress that w = 0, guaranteeing the existence of the smooth
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connection between u` and ur, is the same condition found in [8] to locate

the admissible sub–shock for the linear, inviscid Hamer model.

3. Viscous radiating profile for small shocks
sec:smallshocks

In the previous sections we proved the existence of viscous radiating pro-

files for sufficiently small viscosity and large shocks, in particular under the

hypothesis that the profiles in the variable u has a sub–shock. Here we com-

plement such result by proving this existence in the case of O(1)-viscosity,

fixed to be equal to 1, and sufficiently small shocks via a bifurcation argu-

ment with respect to the strength of the shock. This leads to the following

system: {
∂tu+ ∂xf(u)− ∂xv = ∂xxu

v − ∂xxv = ∂xg(u),
(3.1) PDE2

where we assume always hypotheses (1.4). We shall prove the existence of

solutions to (3.1) in form of travelling waves, i.e. (u, v)(x, t) = (u(ξ), v(ξ))

where ξ := x− ct (with a slight abuse of notation), when the strength of the

underlying Lax shock is sufficiently small:

u(±∞) = u±, v(±∞) = 0,

c =
f(u+)− f(u−)

u+ − u−
,

f ′(u+) < c < f ′(u−) ⇐⇒ u+ < u−,

δ := u+ − u− < 0,

δ being the (negative) bifurcation parameter. In what follows, for the sake
of simplicity, we shall focus on the Hamer model, namely when f(u) = u2/2
and g(u) = u, being the general case presented above analogous.
System (3.1) reduces to (1.2): ∂tu + ∂x

(
1

2
u2

)
− ∂xv = ∂xxu

v − ∂xxv = u,

(3.2) PDE22

and the Rankine-Hugoniot condition becomes:

c =
1

2

(u+)2 − (u−)2

u+ − u−
=

1

2
(u+ + u−). (3.3) c

Moreover, the Lax condition rewrites:

u+ < c < u−. (3.4) lax3

In particular, we prove a simplified version of Theorem 1.3, that is:

thm:main2 Theorem 3.1. Assume (3.3), (3.4). Moreover, let u− and u+ be such that |u+ − u−| is
sufficiently sufficiently small. Then the parabolic-elliptic system (3.2) supports propagating
fronts with speed c given by the Rankine-Hugoniot relation (3.3).
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The remaining part of this section is devoted to the proof of this result.

To this aim, let us start by recalling the dynamical system solved by the profile:{
− cu′ +

(
1
2 u

2
)′ − v′ = u′′

− v′′ + v = u′.

Integrating the first equation in dξ, ξ = x− ct, from ±∞ we get:{
u′ = 1

2

(
u2 − u±

)
− v − c(u− u±)

− v′′ + v = u′.
(3.5) ode

Moreover, we can express the speed of the wave c in (3.3) as a function of

u+ and δ as follows

c = 1
2(2u+ − δ)

and therefore {
u′ = 1

2(u− u+)[(u− u+) + δ]− v

− v′′ + v = u′.

With the notation ũ = u−u+ and z = ũ+v′, the dynamical system becomes:

X ′ = F (X; δ), (3.6) ODE

where X = (z, v, ũ) and

F (z, v, ũ; δ) =
(
v, z − ũ, 1

2 ũ
2 + 1

2 ũδ − v
)
.

Hence we observe that p1 = (0, 0, 0) is a critical point for any δ, which

corresponds to the point (u+, 0, u+) in the original variables. Moreover,

depending on δ, we have two different situations:

1) if δ = 0 then p1 is the only (trivial) critical point;

2) if δ < 0, then a second critical point p2 = (−δ, 0,−δ) bifurcates from

the trivial one, the latter corresponds to the point (u−, 0, u−) in the

original variables.

We want to transform (3.6) into its normal form performing a center man-

ifold reduction, and prove a transcritical bifurcation that occurs at δ = 0.

This will then imply the existence of the desired heteroclinic orbit, connect-

ing p2 at −∞ to p1 at +∞. To this end we start by rewriting (3.6) with

respect to the eigenbasis of the linearized system at the trivial critical point

for δ = 0.

Let A = A(z, v, ũ; δ) be the Jacobian of F at (z, v, ũ), namely

A(z, v, ũ; δ) =

0 1 0
1 0 −1
0 −1 ũ+ 1

2δ


The characteristic equation at p1 = (0, 0, 0) is given by

−λ3 + 1
2δλ

2 + 2λ− 1
2δ = 0.
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We study the real part of the eigenvalues at p1 using the information coming

from tr (A|p1) and det(A|p1). Since tr (A|p1) = λ1 + λ2 + λ3 = 1
2δ < 0 and

det(A|p1) = λ1λ2λ3 = −1
2δ > 0, we have two possibilities:

1) one real positive eigenvalue and two complex and conjugates eigen-

values with negative real part;

2) two real negative eigenvalues and one real positive eigenvalue.

Therefore at p1 we have two stable direction and one unstable direction. For

p2 = (−δ, 0,−δ) the situation is clearly reversed, being tr (A|p2) = −1
2δ > 0

and det(A|p2) = 1
2δ < 0. Hence at p2 we have two unstable direction and

one stable direction.

For δ = 0 the Jacobian at p1 reduces to

A(0, 0, 0; 0) =

0 1 0
1 0 −1
0 −1 0


with eigenvalues λ1 = 0, λ2 =

√
2, λ3 = −

√
2 and corresponding eigen-

vectors given by (1, 0, 1), (−1,
√

2, 1) and (1,
√

2,−1). Therefore, setting

Y := (w1, w2, w3), the desired change of basis is defined by the explicit

matrix

C =

1 −1 1

0
√

2
√

2
1 1 −1


giving raise to

Y = C−1X. (3.7) coo

As a consequence, our original system (3.6) becomes

Y ′ = BY + C−1F̃ (CY ; δ),

where B := C−1AC and F̃ (X; δ) = F (X; δ)−A(0, 0, 0) ·X, namely:

d

dx

w1

w2

w3

 =

0 0 0

0 −
√

2 0

0 0 +
√

2

w1

w2

w3


+

1

4

 (w1 + w2 − w3)2 + δ(w1 + w2 − w3)
1
2(w1 + w2 − w3)2 + 1

2δ(w1 + w2 − w3)
−1

2(w1 + w2 − w3)2 − 1
2δ(w1 + w2 − w3)

 (3.8) DEC

In this way the system consists of a linear part and a perturbation. The

Center Manifold Theorem guarantees the existence for δ sufficiently small

of two C1-functions ψ2(w1, δ) and ψ3(w1, δ) such that

w2 = ψ2(w1, δ) , w3 = ψ3(w1, δ),
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and the following tangency conditions hold:

ψ2(0, 0) = ψ3(0, 0) = 0;

∂ψ2

∂w1
(0, 0) =

∂ψ3

∂w1
(0, 0) = 0;

∂ψ2

∂δ
(0, 0) =

∂ψ3

∂δ
(0, 0) = 0.

(3.9) eq:tang

Thus for δ < 0 small enough, ψ2 and ψ3 are tangent in (0, 0) to the plane

identified by (w1, δ) = (0, 0). Moreover, the Center Manifold Theorem shows

that, again for δ < 0 small, in a neighborhood of the non hyperbolic crit-

ical point (0, 0, 0), the original system (3.6), rewritten as in (3.8), is C1

topologically conjugate to the following decoupled system:
w′1 = 1

4 {w1 + ψ2(w1, δ)− ψ3(w1, δ)}2 + 1
4δ {w1 + ψ2(w1, δ)− ψ3(w1, δ)}

w′2 = −
√

2w2,

w′3 = +
√

2w3.
(3.10) G

Thus, to study the qualitative behaviour of the flow given by (3.6) in a

neighborhood of the non hyperbolic critical point (0, 0, 0) and δ < 0 suffi-

ciently small, we are reduced to the flow on the center manifold, which is

given by (3.10)1. We want to apply Sotomayor Theorem [17, p. 338] to see

which type of bifurcation occurs for δ = 0. For completeness we report the

statement below.

Theorem 3.2 (Sotomayor). Suppose that F (X0, δ0) = 0 and that the 3× 3

matrix A = JF (X0, δ0) has a simple eigenvalue λ = 0 with eigenvector v

and that AT has an eigenvector w corresponding to the eigenvalue λ = 0.

Furthermore, suppose that A has one eigenvalue with positive real part and

one with negative real part and that the following conditions are satisfied:

wT · Fδ(X0, δ0) = 0;

wT · [DFδ(X0, δ0)v] 6= 0;

wT · [D2F (X0, δ0)](v, v) 6= 0.

(3.11) w

Then there is a smooth curve of equilibrium points of X ′ = F (X; δ) in R3×R
passing through (X0, δ0) and tangent to the hyperplane R3×{δ0}. Depending

on the sign of the expressions in (3.11), there are no equilibrium points near

X0 when δ < δ0 (or when δ > δ0) and there are two equilibrium points near

X0 when δ > δ0 (or when δ < δ0). The two equilibrium points of the vector

field F (X; δ) are hyperbolic and have stable manifolds of dimension one and

two respectively; i.e., the system X ′ = F (X; δ) experiences a transcritical

bifurcation at the equilibrium point X0 as the parameter δ passes through

the bifurcation value δ = δ0.
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Introducing the same notation of the theorem, with F̂ (w1, w2, w3; δ) de-

noting the vector field1
4 {w1 + ψ2(w1, δ)− ψ3(w1, δ)}2 + 1

4δ {w1 + ψ2(w1, δ)− ψ3(w1, δ)}
−
√

2w2

+
√

2w3


we clearly have

F̂ (0, 0, 0; 0) =

0
0
0

 and JF̂ (0, 0, 0; 0) = B =
√

2

0 0 0
0 −1 0
0 0 +1

 .

The eigenvector associated to λ = 0 is v = (1, 0, 0) and since B = BT we

have that the corresponding eigenvector to λ = 0 for this matrix is the same,

namely wT = (1, 0, 0). Moreover, in view of the tangency conditions (3.9),

a direct calculation shows

F̂δ(0, 0, 0; 0) = (0, 0, 0); DF̂δ(0, 0, 0; 0) =
1

4

1 0 0
0 0 0
0 0 0

 .

Therefore wT · F̂δ(0, 0, 0; 0) = 0 and wT · DF̂δ(0, 0, 0; 0)v = 1/4 6= 0. Fi-

nally we have to compute wT · [D2F̂ (0, 0, 0; 0)(v, v)] and we have to check

that is different from zero. The computation of [D2F̂ (0, 0, 0; 0)(v, v)] gives

the vector (1/2, 0, 0) and thus wT · [D2F̂ (0, 0, 0; 0)(v, v)] 6= 0. In view of

Sotomayor Theorem, these three conditions imply that the original system

(3.6) experiences a transcritical bifurcation at the equilibrium point (0, 0, 0)

as the parameter δ varies through the bifurcation value δ = 0.

The presence of the parameter δ is only in the first component F̂ 1 of the

vector field, for which, evaluating F̂ 1
w1w1

(0, 0, 0; 0) = 1/2 and F 1
δw1

(0, 0, 0; 0) =

1/4, we obtain the following the normal form (see for instance [4, Theorem

1.3]):

w′1 = 1
4δw1 + 1

4w
2
1 = 1

4w1(w1 + δ).

Since δ < 0, the trivial equilibrium w1 = 0 is stable and w1 = −δ > 0

is unstable, and the same is true for the one–dimensional center manifold

reduction given by

w′1 =1
4 {w1 + ψ2(w1, δ)− ψ3(w1, δ)}2

+ 1
4δ {w1 + ψ2(w1, δ)− ψ3(w1, δ)} .

(3.12) eq:G1

As a consequence, there exists an heteroclinic conncetion between w1 = −δ
at −∞ and w1 = 0 at +∞ for that equation. Then [9, Theorem 5.4, p. 159]

implies that (3.6) is locally topologically equivalent to (3.12) augmented

with the two linear equations

w′2 = −
√

2w2, w
′
3 = +

√
2w3,
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namely, system (3.10). The number of positive and negative eigenvalues is

preserved, as well as the trajectories of the two dynamical systems. We have

two unstable and one stable directions for the equilibrium point (−δ, 0, 0)

and two stable directions and only one unstable at (0, 0, 0). The two–

dimensional unstable eigenspace of (−δ, 0, 0) and the two–dimensional sta-

ble eigenspace of (0, 0, 0) intersect along the direction given by the vector

(1, 0, 0), namely the tangential direction of the center manifold in a neighbor-

hood of the trivial equilibrium point. This implies the heteroclinic actually

exists for (3.10). Back to the original variables, using (3.7) we have:

1) the point (0, 0, 0) is mapped to (u+, 0, u+),

2) the point (−δ, 0, 0) is mapped to (u−, 0, u−),

and we have finally proved the existence of an heteroclinic orbit between

these two points as stated in Theorem 3.1, thanks to the aforementioned

local topological equivalence.

Appendix A. Geometric Singular Perturbation Theory
app:GSPT

A.1. Invariant Manifold Theorems. In this section we recall the main

results about Geometric Singular Perturbation Theory developed in [5, 19].

Let us consider the vector field Xε × {0} defined in the following way:
x′ = εf(x, y, ε)

y′ = g(x, y, ε)

ε′ = 0

where x ∈ Rn are the slow variables, y ∈ Rk are the fast variables. The alge-

braic costraint g(x, y, 0) = 0 defines the slow manifold S and correspondingly

the two invertible branches S±. The following invariant manifold theorem

describes the flow induced by Xε × {0} near S± × {0} for small ε.

existence Theorem A.1. Let M be a Cr+1 manifold, 1 ≤ r < ∞. Let Xε, ε ∈
(−ε0, ε0) be a Cr family of vector fields on M , and let S be a Cr submanifold

of M consisting entirely of equilibrium points of X0. Let ks, kc and ku be

fixed integers, and let K ⊂ S± be a compact subset such that QX0(m) has

ks eigenvalues in the left half plane, kc eigenvalues on the imaginary axis,

and ku in the right half plane, for all m ∈ K. Then:

1) There is a Cr center- stable manifold Cs for Xε × 0 near K. There

is a Cr center- unstable manifold Cu for Xε × 0 near K. There is a

Cr center manifold C for Xε × 0 near K.

2) There is a Cr−1 family Fs = {Ψs(p) : p ∈ Cs} of Cr stable manifolds

for Cs near K. If p ∈M×{ε}, then Ψs(p) ∈M×{ε}. Each manifold

Ψs(p) intersects C transversally, in exactly one point. There is a
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Cr−1 family Fu = {Ψu(p) : p ∈ Cu} of Cr unstable manifolds for

Cu near K. If p ∈ M × {ε}, then Ψu(p) ∈ M × {ε}. Each manifold

Ψu(p) intersects C transversally, in exactly one point.

3) Let Ks < 0 be larger then the real parts of the eigenvalues of QX0(m)

in the left half plane, for all m ∈ K. Then, there is a constant Cs

such that if p ∈ Cs and q ∈ Ψs(p), then

d(p · x̄, q · x̄) ≤ CseKsx̄d(p, q)

for all x̄ ≥ 0 such that p · [0, x̄] ⊂ Cs. Let Ku > 0 be smaller than

the real parts of the eigenvalues of QX0(m) in the right half plane,

for all m ∈ K. Then there exists a constant Cu such that if p ∈ Cu

and q ∈ Ψu(p), then

d(p · x̄, q · x̄) ≤ CueKux̄d(p, q)

for all x̄ ≤ 0 such that p · [x̄, 0] ⊂ Cu.

4) Let SH ⊂ S± such that QX0(m) has not eigenvalue with zero real

part. If K ⊂ SH , define for (m, ε) ∈ C,

FR(m) := πS
(
∂

∂ε

)
Xε(m)|ε=0

and

XC(m, ε) :=

{
ε−1Xε(m)× {0}, if ε 6= 0

FR(m)× {0}, if ε = 0

Then XC is a Cr−1 vector field on C near K × {0}.

A.2. Reduced System. The following lemma gives the reduced system

in Theorem A.1 of the previous section in local coordinates in which S
appears as graph of a function (see [5]). From now on Di, i = 1, 2, 3 denote

the derivative with respect to slow variables Dx, fast variables Dy and Dε

respectively.

lemma3.1 Lemma A.2. Consider the system

ẋ = f(x, y, ε), ẏ = g(x, y, ε),

defined for (x, y) in an open subset of Rn×Rk, for ε near zero. Let y = h(x)

be a function such that

f(x, h(x), 0) ≡ 0, and g(x, h(x), 0) ≡ 0.

Suppose (x0, h(x0)) ∈ SH, so that the matrix(
α β
γ δ

)
=

(
∂xf(x0, h(x0), 0) ∂yf(x0, h(x0), 0)
∂xg(x0, h(x0), 0) ∂yg(x0, h(x0), 0)

)
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has rank k. Let ν = ∂xh(x0). Then the projection πS = πS(x0, u(x0)) is

multiplication by the matrix

A =

(
I + β(δ − νβ)−1ν −β(δ − νβ)−1

ν + νβ(δ − νβ)−1ν −νβ(δ − νβ)−1

)
and the reduced system is given by:(

ẋ
ẏ

)
= A

(
∂εf(x, h(x), 0)
∂εg(x, h(x), 0)

)
A.3. Local theory near an equilibrium point of the reduced vector

field. The next theorem explains how the critical points of the reduced

vector field at ε = 0 – denoted by FR – are related to the critical points of

the original vector field Xε in the regime of small ε > 0.

Given ε ∈ (−ε0, ε0), let Xε be a Cr family of vector fields on R3 and let S
be a Cr submanifold of R3 consisting entirely of equilibrium points of X0.

Moreover, let u ∈ SH be an equilibrium point of the reduced vector field

FR.

teo3.3 Theorem A.3 (Theorem 12.1, [5]). If λ = 1 is not an eigenvalue of TFR(m),

then there exists ε1 > 0 and a Cr−1 family of points uε with ε ∈ (−ε1, ε1)

such that u0 = u and uε is an equilibrium point of Xε.

Let M be a manifold and ·t a flow on M . Given a subset V ⊂ M , we

denote by

A+(V ) :=
{

u ∈ V : u · [0,+∞) ⊂ V
}
,

A−(V ) :=
{

u ∈ V : u · (−∞, 0] ⊂ V
}
,

I(V ) :=
{

u ∈ V : u · (−∞,∞) ⊂ V
}
.

The following result characterizes the local stable/unstable manifolds of nor-

mally hyperbolic invariant manifold of FR.

s-u-mxr Theorem A.4 (Theorem 12.2, [5], Theorem 2.2, [19]). Under the hypothe-

sis of the previous Theorem, suppose TFR(u0) has ju eigenvalues in the

right half plane, no eigenvalues on the imaginary axis and js eigenvalues

in the left half plane. Suppose QF0(u0) has ku eigenvalues in the right half

plane and ks eigenvalues in the left half plane.

Then, there exists ε1 > 0 such that

i. there is a Cr−1-family of hyperbolic equilibrium points of Fε, denoted

by {uε : ε ∈ (−ε1, ε1)}, such that lim
ε→0

uε = u0 and there is a family

of neighborhoods of u0, denoted by {Uε : ε ∈ (−ε1, ε1)}, such that

I(Uε) = {uε} for any ε 6= 0;
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ii. there is a Cr−1-families of (ju+ku)-dimensional manifolds {W u
ε : ε ∈

(−ε1, ε1)} and (js + ks)-dimensional manifolds {Ws
ε : ε ∈ (−ε1, ε1)}

such that

A−(Uε) = W u
ε and A+(Uε) =Ws

ε ∀ ε > 0;

iii. the local stable and unstable manifolds of uε for ε > 0 are given by

N s
ε =

⋃
p∈Ws

ε

Ψs
ε(p) and Nu

ε =
⋃

p∈Wu
ε

Ψu
ε (p),

where {Ψs
ε(u) : ε ∈ (−ε1, ε1),u ∈ Ws

ε } is a Cr−1-family of k1-

dimensional manifolds such that {Ψs
ε(m) : m ∈ Ws

ε } for each ε > 0

is a positively invariant family of manifolds (the same for Ψu
ε (m)).

theo:a5 Theorem A.5 (Theorem 3.1, [19]). Let the manifolds N1 and N2 satisfy

the assumptions of Theorem A.4. Assume that the manifolds

Nu
1 :=

⋃
p∈Wu

1

Ψu(p), N s
2 :=

⋃
p∈Ws

2

Ψs(p)

intersect transversally along the singular heteroclinic orbit. Then, there ex-

ists ε1 > 0 such that there exists a transversal heteroclinic orbit of the singu-

larly perturbed system (1.1) in [19] connecting the manifolds N1,ε and N2,ε

for 0 < ε < ε1.

Finally, the last needed result concerns sufficient (transversality) condi-

tions needed to obtain the connections between the two branches of the

involved invariant manifold.

teo3.12 Theorem A.6 (Theorem 4.1, [19]). Let the manifolds N1 and N2 satisfy

the assumption of Theorem A.4. Let φ(W u
1 ) and φ(W s

2 ) denote the x-

coordinates of the manifolds Wu
1 and Ws

2 . Then the manifolds Nu
1 and

N s
2 intersect transversally in the points of the heteroclinic orbit (x0, y0(x)),

if and only if there exist exactly d − 1 linearly independent solutions ξ ∈
Tx0φ(Wu

1 )
⋂
Tx0φ(Ws

2) of the equation

(M, ξ) = 0, (A.1) eq:M

where M ∈ Rn is defined by

M :=

∫
R
ψ(ξ) · ∂xg(x0, y0(ξ)) dξ.

The function ψ is the unique (up to a scalar multiple) bounded solution of

the adjoint equation

ψ′ = −∂yg(x0, y0(x))Tψ.
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