SCHAUM’S OUTLINE OF

THEORY AND PROBLEMS

OF

FEEDBACK and
CONTROL SYSTEMS

Second Edition

CONTINUOUS (ANALOG) AND DISCRETE (DIGITAL)

JOSEPH J. DiSTEFANO, III, Ph.D.

Departments of Computer Science and Medicine
University of California, Los Angeles

ALLEN R. STUBBERUD, Ph.D.

Department of Electrical and Computer Engineering
University of California, Irvine

IVAN J. WILLIAMS, Ph.D.
Space and Technology Group, TRW, Inc.

SCHAUM’S OUTLINE SERIES
McGRAW-HILL

New York San Francisco Washington, D.C. Auckland Bogotd
Caracas Lisbon London Madrid Mexico Citv  Milan
Montreal New Delhi San Juan Singapore
Sydney Tokyo Toronto

JOSEPH J. DiSTEFANO, 111 received his M.S. in Control Systems and Ph.D. in
Biocybernetics from the University of California, Los Angeles (UCLA) in 1966. He
is currently Professor of Computer Science and Medicine, Director of the Biocyber-
netics Research Laboratory, and Chair of the Cybernetics Interdepartmental Pro-
gram at UCLA. He is also on the Editorial boards of Annals of Biomedical
Engineering and Optimal Control Applications and Methods, and is Editor and
Founder of the Modeling Methodology Forum in the American Journals of Physiol-
ogy. He is author of more than 100 research articles and books and is actively
involved in systems modeling theory and software development as well as experi-
mental laboratory research in physiology.

ALLEN R. STUBBERUD was awarded a B.S. degree from the University of
Idaho, and the M.S. and Ph.D. degrees from the University of California, Los
Angeles (UCLA). He is presently Professor of Electrical and Computer Engineer-
ing at the University of California, Irvine. Dr. Stubberud is the author of over 100
articles, and books and belongs to a number of professional and technical organiza-
tions, including the American Institute of Aeronautics and Astronautics (AIAA).
He is a fellow of the Institute of Electrical and Electronics Engineers (IEEE), and
the American Association for the Advancement of Science (AAAS).

IVAN J. WILLIAMS was awarded B.S., M.S,, and Ph.D. degrees by the University
of California at Berkeley. He has instructed courses in control systems engineering
at the University of California, Los Angeles (UCLA), and is presently a project
manager at the Space and Technology Group of TRW, Inc.

Appendix C is jointly copyrighted © 1995 by McGraw-Hill, Inc. and Mathsoft, Inc.

Schaum’s Outline of Theory and Problems of
FEEDBACK AND CONTROL SYSTEMS

Copyright © 1990, 1967 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in
the United States of America. Except as permitted under the Copyright Act of 1976, no part
of this publication may be reproduced or distributed in any form or by any means, or stored in
a data base or retrieval system, without the prior written permission of the publisher.

678910111213 141516 17 18 19 20 BAW BAW 99

ISBN 0-07-017052 - 5 (Formerly published under ISBN 0-07-017047-9).

Sponsoring Editor: John Aliano
Production Supervisor: Louise Karam
Editing Supervisors: Meg Tobin, Maureen Walker

Library of Congress Cataloging-in-Publication Data

DiStefano, Joseph J.

Schaum’s outline of theory and problems of feedback and control
systems/Joseph J. DiStefano, Allen R. Stubberud, Ivan J. Williams.
—2nd ed.

p. cm. — (Schaum’s outline series)

ISBN 0-07-017047-9

1. Feedback control systems. 2. Control theory. 1. Stubberud,
Allen R. II. Williams, Ivan J. IIL Title. IV. Title: Outline of
theory and problems of feedback and control systems.

TJ216.5.D57 1990
629.8'3—dc20 89-14585

McGraw-Hill =

{
A Division of The McGraw-Hill Companies



Preface

Feedback processes abound in nature and, over the last few decades, the word feedback, like
computer, has found its way into our language far more pervasively than most others of technological
origin. The conceptual framework for the theory of feedback and that of the discipline in which it is
embedded—control systems engineering-have developed only since World War I1. When our first
edition was published, in 1967, the subject of linear continuous-time (or analog) control systems had
already attained a high level of maturity, and it was (and remains) often designated classical control by
the conoscienti. This was also the early development period for the digital computer and discrete-time
data control processes and applications, during which courses and books in “sampled-data” control
systems became more prevalent. Computer-controlled and digital control systems are now the terminol-
ogy of choice for control systems that include digital computers or microprocessors.

In this second edition, as in the first, we present a concise, yet quite comprehensive, treatment of
the fundamentals of feedback and control system theory and applications, for engineers, physical,
biological and behavioral scientists, economists, mathematicians and students of these disciplines.
Knowledge of basic calculus, and some physics are the only prerequisites. The necessary mathematical
tools beyond calculus, and the physical and nonphysical principles and models used in applications, are
developed throughout the text and in the numerous solved problems.

We have modernized the material in several significant ways in this new edition. We have first of all
included discrete-time (digital) data signals, elements and control systems throughout the book,
primarily in conjunction with treatments of their continuous-time (analog) counterparts, rather than in
separate chapters or sections. In contrast, these subjects have for the most part been maintained
pedagogically distinct in most other textbooks. Wherever possible, we have integrated these subjects, at
the introductory level, in a unified exposition of continuous-time and discrete-time control system
concepts. The emphasis remains on continuous-time and linear control systems, particularly in the
solved problems, but we believe our approach takes much of the mystique out of the methodologic
differences between the analog and digital control system worlds. In addition, we have updated and
modernized the nomenclature, introduced state variable representations (models) and used them in a
strengthened chapter introducing nonlinear control systems, as well as in a substantially modernized
chapter introducing advanced control systems concepts. We have also solved numerous analog and
digital control system analysis and design problems using special purpose computer software, illustrat-
ing the power and facility of these new tools.

The book is designed for use as a text in a formal course, as a supplement to other textbooks, as a
reference or as a self-study manual. The quite comprehensive index and highly structured format should
facilitate use by any type of readership. Each new topic is introduced either by section or by chapter,
and each chapter concludes with numerous solved problems consisting of extensions and proofs of the
theory, and applications from various fields.

JosepH J. DiSTEFANO, III
ALLEN R. STUBBERUD
IvaN J. WILLIAMS

Los Angeles, Irvine and
Redondo Beach, California
March, 1990
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Chapter 1

Introduction

1.1 CONTROL SYSTEMS: WHAT THEY ARE

In modern usage the word system has many meanings. So let us begin by defining what we mean
when we use this word in this book, first abstractly then slightly more specifically in relation to scientific
literature.

Definition 1.1a: A system is an arrangement, set, or collection of things connected or related in such

a manner as to form an entirety or whole.
Definition I.1b: A system is an arrangement of physical components connected or related in such a
manner as to form and/or act as an entire unit.

The word control is usually taken to mean regulate, direct, or command. Combining the above
definitions, we have

Definition 1.2: A control system is an arrangement of physical components connected or related in

such a manner as to command, direct, or regulate itself or another system.

In the most abstract sense it is possible to consider every physical object a control system.
Everything alters its environment in some manner, if not actively then passively—like a mirror directing
a beam of light shining on it at some acute angle. The mirror (Fig. 1-1) may be considered an
elementary control system, controlling the beam of light according to the simple equation “the angle of
reflection « equals the angle of incidence a.”

Reflected /
Incident Reflected Beam TN
nciden
ek Beam ~ / +— Mirror
/ /
/ ~
} Light
/ e Source i
: / - o Adjustable
‘L|ghl ~8 - ——— Screw
Source - e
;} ~ ~ /(n — Mirror

Fig. 1-1

In engineering and science we usually restrict the meaning of control systems to apply to those
systems whose major function is to dynamically or actively command, direct, or regulate. The system
shown in Fig. 1-2, consisting of a mirror pivoted at one end and adjusted up and down with a screw at
the other end, is properly termed a control system. The angle of reflected light is regulated by means of
the screw.

It is important to note, however, that control systems of interest for analysis or design purposes
include not only those manufactured by humans, but those that normally exist in nature, and control
systems with both manufactured and natural components.

1



2 INTRODUCTION [CHAP. 1

1.2 EXAMPLES OF CONTROL SYSTEMS

Control systems abound in our environment. But before exemplifying this, we define two terms:
input and output, which help in identifying, delineating, or defining a control system.

Definition 1.3 The input is the stimulus, excitation or command applied 70 a control system,
typically from an external energy source, usually in order to produce a specified
response from the control system.

Definition 1.4: The output is the actual response obtained from a control system. It may or may not
be equal to the specified response implied by the input.

Inputs and outputs can have many different forms. Inputs, for example, may be physical variables,
or more abstract quantities such as reference, setpoint, or desired values for the output of the control
system.

The purpose of the control system usually identifies or defines the output and input. If the output
and input are given, it is possible to identify, delineate, or define the nature of the system components.

Control systems may have more than one input or output. Often all inputs and outputs are well
defined by the system description. But sometimes they are not. For example, an atmospheric electrical
storm may intermittently interfere with radio reception, producing an unwanted output from a
loudspeaker in the form of static. This “noise” output is part of the total output as defined above, but
for the purpose of simply identifying a system, spurious inputs producing undesirable outputs are not
normally considered as inputs and outputs in the system description. However, it is usually necessary to
carefully consider these extra inputs and outputs when the system is examined in detail.

The terms input and output also may be used in the description of any type of system, whether or
not it is a control system, and a control system may be part of a larger system, in which case it is called
a subsystem or control subsystem, and its inputs and outputs may then be internal variables of the larger
system.

EXAMPLE 1.1. An electric switch is a manufactured control system, controlling the flow of electricity. By
definition, the apparatus or person flipping the switch is not a part of this control system.

Flipping the switch on or off may be considered as the input. That is, the input can be in one of two states, on
or off. The output is the flow or nonflow (two states) of electricity.

The electric switch is one of the most rudimentary control systems.

EXAMPLE 1.2. A thermostatically controlled heater or furnace automatically regulating the temperature of a room or
enclosure is a control system. The input to this system is a reference temperature, usually specified by appropriately
setting a thermostat. The output is the actual temperature of the room or enclosure.

When the thermostat detects that the output is less than the input, the furnace provides heat until the
temperature of the enclosure becomes equal to the reference input. Then the furnace is automatically turned off.
When the temperature falls somewhat below the reference temperature, the furnace is turned on again.

EXAMPLE 1.3. The seemingly simple act of pointing ar an object with a finger requires a biological control system
consisting chiefly of the eyes, the arm, hand and finger, and the brain. The input is the precise direction of the
object (moving or not) with respect to some reference, and the output is the actual pointed direction with respect to
the same reference.

EXAMPLE 1.4. A part of the human temperature control system is the perspiration system. When the temperature
of the air exterior to the skin becomes too high the sweat glands secrete heavily, inducing cooling of the skin by
evaporation. Secretions are reduced when the desired cooling effect is achieved, or when the air temperature falls
sufficiently.

The input to this system may be “normal” or comfortable skin temperature, a “setpoint,” or the air
temperature, a physical variable. The output is the actual skin temperature.
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EXAMPLE 1.5. The control system consisting of a person driving an automobile has components which are clearly
both manufactured and biological. The driver wants to keep the automobile in the appropriate lane of the roadway.
He or she accomplishes this by constantly watching the direction of the automobile with respect to the direction of
the road. In this case, the direction or heading of the road, represented by the painted guide line or lines on either
side of the lane may be considered as the input. The heading of the automobile is the output of the system. The
driver controls this output by constantly measuring it with his or her eyes and brain, and correcting it with his or
her hands on the steering wheel. The major components of this control system are the driver’s hands, eyes and
brain, and the vehicle.

1.3 OPEN-LOOP AND CLOSED-LOOP CONTROL SYSTEMS

Control systems are classified into two general categories: open-loop and closed-loop systems. The
distinction is determined by the control action, that quantity responsible for activating the system to
produce the output.

The term control action is classical in the control systems literature, but the word action in this
expression does not always directly imply change, motion, or activity. For example, the control action in
a system designed to have an object hit a target is usually the distance between the object and the target.
Distance, as such, is not an action, but action (motion) is implied here, because the goal of such a
control system is to reduce this distance to zero.

Definition 1.5: An open-loop control system is one in which the control action is independent of the
output.
Definition 1.6: A closed-loop control system is one in which the control action is somehow

dependent on the output.

Two outstanding features of open-loop control systems are:

1. Their ability to perform accurately is determined by their calibration. To calibrate means to
establish or reestablish the input-output relation to obtain a desired system accuracy.

2. They are not usually troubled with problems of instability, a concept to be subsequently
discussed in detail.

Closed-loop control systems are more commonly called feedback control systems, and are consid-
ered in more detail beginning in the next section.

To classify a control system as open-loop or closed-loop, we must distinguish clearly the compo-
nents of the system from components that interact with but are not part of the system. For example, the
driver in Example 1.5 was defined as part of that control system, but a human operator may or may not
be a component of a system.

EXAMPLE 1.6. Most automatic toasters are open-loop systems because they are controlled by a timer. The time
required to make “good toast” must be estimated by the user, who is not part of the system. Control over the
quality of toast (the output) is removed once the time, which is both the input and the control action, has been set.
The time is typically set by means of a calibrated dial or switch.

EXAMPLE 1.7. An autopilot mechanism and the airplane it controls is a closed-loop (feedback) control system. Its
purpose is to maintain a specified airplane heading, despite atmospheric changes. It performs this task by
continuously measuring the actual airplane heading, and automatically adjusting the airplane control surfaces
(rudder, ailerons, etc.) so as to bring the actual airplane heading into correspondence with the specified heading.
The human pilot or operator who presets the autopilot is not part of the control system.
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1.4 FEEDBACK

Feedback is that characteristic of closed-loop control systems which distinguishes them from
open-loop systems.

Definition 1.7: Feedback is that property of a closed-loop system which permits the output (or
some other controlled variable) to be compared with the input to the system (or an
input to some other internally situated component or subsystem) so that the
appropriate control action may be formed as some function of the output and input.

More generally, feedback is said to exist in a system when a closed sequence of cause-and-effect
relations exists between system variables.

EXAMPLE 1.8. The concept of feedback is clearly illustrated by the autopilot mechanism of Example 1.7. The
input is the specified heading, which may be set on a dial or other instrument of the airplane control panel, and the
output is the actual heading, as determined by automatic navigation instruments. A comparison device continu-
ously monitors the input and output. When the two are in correspondence, control action is not required. When a
difference exists between the input and output, the comparison device delivers a control action signal to the
controller, the autopilot mechanism. The controller provides the appropriate signals to the control surfaces of the
airplane to reduce the input-output difference. Feedback may be effected by mechanical or electrical connections
from the navigation instruments, measuring the heading, to the comparison device. In practice, the comparison
device may be integrated within the autopilot mechanism.

1.5 CHARACTERISTICS OF FEEDBACK
The presence of feedback typically imparts the following properties to a system.
1. Increased accuracy. For example, the ability to faithfully reproduce the input. This property is
illustrated throughout the text.

2. Tendency toward oscillation or instability. This all-important characteristic is considered in
detail in Chapters 5 and 9 through 19.

3. Reduced sensitivity of the ratio of output to input to variations in system parameters and other
characteristics (Chapter 9).

Reduced effects of nonlinearities (Chapters 3 and 19).
5. Reduced effects of external disturbances or noise (Chapters 7, 9, and 10).

Increased bandwidth. The bandwidth of a system is a frequency response measure of how well
the system responds to (or filters) variations (or frequencies) in the input signal (Chapters 6, 10,
12, and 15 through 18).

1.6 ANALOG AND DIGITAL CONTROL SYSTEMS

The signals in a control system, for example, the input and the output waveforms, are typically
functions of some independent variable, usually time, denoted r.

Definition 1.8: A signal dependent on a continuum of values of the independent variable ¢ is called
a continuous-time signal or, more generaily, a continuous-data signal or (less fre-
quently) an analog signal.

Definition 1.9: A signal defined at, or of interest at, only discrete (distinct) instants of the

independent variable ¢ (upon which it depends) is called a discrete-time, a discrete-
data, a sampled-data, or a digital signal.
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We remark that digital is a somewhat more specialized term, particularly in other contexts. We use
it as a synonym here because it is the convention in the control systems literature.

EXAMPLE 1.9. The continuous, sinusoidally varying voltage v(¢) or alternating current i(z) available from an
ordinary household electrical receptable is a continuous-time (analog) signal, because it is defined at each and every
instant of time ¢ electrical power is available from that outlet.

EXAMPLE 1.10. If a lamp is connected to the receptacle in Example 1.9, and it is switched on and then
immediately off every minute, the light from the lamp is a discrete-time signal, on only for an instant every minute.

EXAMPLE 1.11. The mean temperature T in a room at precisely 8 A.M. (08 hours) each day is a discrete-time
signal. This signal may be denoted in several ways, depending on the application; for example 7(8) for the
temperature at 8 o’clock—rather than another time; T(1), 7(2),... for the temperature at 8 o’clock on day 1, day 2,
etc., or, equivalently, using a subscript notation, 7}, T, etc. Note that these discrete-time signals are sampled values
of a continuous-time signal, the mean temperature of the room at all times, denoted 7(r).

EXAMPLE 1.12. The signals inside digital computers and microprocessors are inherently discrete-time, or
discrete-data, or digital (or digitally coded) signals. At their most basic level, they are typically in the form of
sequences of voltages, currents, light intensities, or other physical variables, at either of two constant levels, for
example, +15 V; light-on, light-off; etc. These binary signals are usually represented in alphanumeric form
(numbers, letters, or other characters) at the inputs and outputs of such digital devices. On the other hand, the
signals of analog computers and other analog devices are continuous-time.

Control systems can be classified according to the types of signals they process: continuous-time
(analog), discrete-time (digital), or a combination of both (hybrid).

Definition 1.10:  Continuous-time control systems, also called continuous-data control systems, or
analog control systems, contain or process only continuous-time (analog) signals and
components.

Definition 1.11: Discrete-time control systems, also called discrete-data control systems, or sampled-
data control systems, have discrete-time signals or components at one or more points
in the system.

We note that discrete-time control systems can have continuous-time as well as discrete-time
signals; that is, they can be hybrid. The distinguishing factor is that a discrete-time or digital control
system must include at least one discrete-data signal. Also, digital control systems, particularly of
sampled-data type, often have both open-loop and closed-loop modes of operation.

EXAMPLE 1.13. A target tracking and following system, such as the one described in Example 1.3 (tracking and
pointing at an object with a finger), is usually considered an analog or continuous-time control system, because the
distance between the “tracker” (finger) and the target is a continuous function of time, and the objective of such a
control system is to continuously follow the target. The system consisting of a person driving an automobile
(Example 1.5) falls in the same category. Strictly speaking, however, tracking systems, both natural and manufac-
tured, can have digital signals or components. For example, control signals from the brain are often treated as
“pulsed” or discrete-time data in more detailed models which include the brain, and digital computers or
microprocessors have replaced many analog components in vehicle control systems and tracking mechanisms.

EXAMPLE 1.14. A closer look at the thermostatically controlled heating system of Example 1.2 indicates that it
is actually a sampled-data control system, with both digital and analog components and signals. If the desired room
temperature is, say, 68°F (22°C) on the thermostat and the room temperature falls below, say, 66°F, the thermostat
switching system closes the circuit to the furnace (an analog device), turning it on until the temperature of the room
reaches, say, 70°F. Then the switching system automatically turns the furnace off until the room temperature again
falls below 66°F. This control system is actually operating open-loop between switching instants, when the
thermostat turns the furnace on or off, but overall operation is considered closed-loop. The thermostat receives a
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continuous-time signal at its input, the actual room temperature, and it delivers a discrete-time (binary) switching
signal at its output, turning the furnace on or off. Actual room temperature thus varies continuously between 66°
and 70°F, and mean temperature is controlled at about 68°F, the setpoint of the thermostat.

The terms discrete-time and discrete-data, sampled-data, and continuous-time and continuous-data
are often abbreviated as discrete, sampled, and continuous in the remainder of the book, wherever the
meaning is unambiguous. Digital or analog is also used in place of discrete (sampled) or continuous
where appropriate and when the meaning is clear from the context.

17 THE CONTROL SYSTEMS ENGINEERING PROBLEM

Control systems engineering consists of analysis and design of control systems configurations.

Analysis is the investigation of the properties of an existing system. The design problem is the
choice and arrangement of system components to perform a specific task.

Two methods exist for design:

1. Design by analysis
2. Design by synthesis

Design by analysis is accomplished by modifying the characteristics of an existing or standard
system configuration, and design by synthesis by defining the form of the system directly from its
specifications.

1.8 CONTROL SYSTEM MODELS OR REPRESENTATIONS

To solve a control systems problem, we must put the specifications or description of the system
configuration and its components into a form amenable to analysis or design.

Three basic representations (models) of components and systems are used extensively in the study
of control systems:

1. Mathematical models, in the form of differential equations, difference equations, and /or other
mathematical relations, for example, Laplace- and z-transforms

2. Block diagrams
3. Signal flow graphs

Mathematical models of control systems are developed in Chapters 3 and 4. Block diagrams and
signal flow graphs are shorthand, graphical representations of either the schematic diagram of a system,
or the set of mathématical equations characterizing its parts. Block diagrams are considered in detail in
Chapters 2 and 7, and signal flow graphs in Chapter 8.

Mathematical models are needed when quantitative relationships are required, for example, to
represent the detailed behavior of the output of a feedback system to a given input. Development of
mathematical models is usually based on principles from the physical, biological, social, or information
sciences, depending on the control system application area, and the complexity of such models varies
widely. One class of models, commonly called linear systems, has found very broad application in
control system science. Techniques for solving linear system models are well established and docu-
mented in the literature of applied mathematics and engineering, and the major focus of this book is
linear feedback control systems, their analysis and their design. Continuous-time (continuous, analog)
systems are emphasized, but discrete-time (discrete, digital) systems techniques are also developed
throughout the text, in a unifying but not exhaustive manner. Techniques for analysis and design of
nonlinear control systems are the subject of Chapter 19, by way of introduction to this more complex
subject.
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In order to communicate with as many readers as possible, the material in this book is developed
from basic principles in the sciences and applied mathematics, and specific applications in various
engineering and other disciplines are presented in the examples and in the solved problems at the end of
each chapter.

Solved Problems

INPUT AND OUTPUT
1.1. Identify the input and output for the pivoted, adjustable mirror of Fig. 1-2.

ois

The input is the angle of inclination of the mirror ¢, varied by turning the screw. The output is the
&d angular position of the reflected beam 8 + « from the reference surface.

1.2. Identify a possible input and a possible output for a rotational generator of electricity.

The input may be the rotational speed of the prime mover (e.g., a steam turbine), in revolutions per
minute. Assuming the generator has no load attached to its output terminals, the output may be the
induced voltage at the output terminals.

Alternatively, the input can be expressed as angular momentum of the prime mover shaft, and the
output in units of electrical power (watts) with a load attached to the generator.

1.3. Identify the input and output for an automatic washing machine.

Many washing machines operate in the following manner. After the clothes have been put into the
machine, the soap or detergent, bleach, and water are entered in the proper amounts. The wash and spin
cycle-time is then set on a timer and the washer is energized. When the cycle is completed, the machine
shuts itself off.

If the proper amounts of detergent, bleach, and water, and the appropriate temperature of the water
are predetermined or specified by the machine manufacturer, or automatically entered by the machine
itself, then the input is the time (in minutes) for the wash and spin cycle. The timer is usually set by a
human operator.

The output of a washing machine is more difficult to identify. Let us define clean as the absence of
foreign substances from the items to be washed. Then we can identify the output as the percentage of
cleanliness. At the start of a cycle the output is less than 100%, and at the end of a cycle the output is
ideally equal to 100% (clean clothes are not always obtained).

For most coin-operated machines the cycle-time is preset, and the machine begins operating when the
coin is entered. In this case, the percentage of cleanliness can be controlled by adjusting the amounts of
detergent, bleach, water, and the temperature of the water. We may consider all of these quantities as
inputs.

Other combinations of inputs and outputs are also possible.

1.4. Identify the organ-system components, and the input and output, and describe the operation of
the biological control system consisting of a human being reaching for an object.

The basic components of this intentionally oversimplified control system description are the brain, arm
and hand, and eyes.

The brain sends the required nervous system signal to the arm and hand to reach for the object. This
signal is amplified in the muscles of the arm and hand, which serve as power actuators for the system. The
eyes are employed as a sensing device, continuously “feeding back™ the position of the hand to the brain.

Hand position is the output for the system. The input is object position.
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The objective of the control system is to reduce the distance between hand position and object position
to zero. Figure 1-3 is a schematic diagram. The dashed lines and arrows represent the direction of
information flow.
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Fig. 1-3
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Explain how a closed-loop automatic washing machine might operate.

Assume all quantities described as possible inputs in Problem 1.3, namely cycle-time, water volume,
water temperature, amount of detergent, and amount of bleach, can be adjusted by devices such as valves
and heaters.

A closed-loop automatic washer might continuously or periodically measure the percentage of
cleanliness (output) of the items being washing, adjust the input quantities accordingly, and turn itself off
when 100% cleanliness has been achieved.

How are the following open-loop systems calibrated: (a) automatic washing machine,
(b) automatic toaster, (c¢) voltmeter?

(a) Automatic washing machines are calibrated by estimating any combination of the following input
quantities: (1) amount of detergent, (2) amount of bleach or other additives, (3) amount of water,
(4) temperature of the water, (5) cycle-time.

On some washing machines one or more of these inputs is (are) predetermined. The remaining
quantities must be estimated by the user and depend upon factors such as degree of hardness of the
water, type of detergent, and type or strength of the bleach or other additives. Once this calibration
has been determined for a specific type of wash (e.g., all white clothes, very dirty clothes), it does not
normally have to be redetermined during the lifetime of the machine. If the machine breaks down and
replacement parts are installed, recalibration may be necessary.

(b) Although the timer dial for most automatic toasters is calibrated by the manufacturer (e.g., light-
medium-dark), the amount of heat produced by the heating element may vary over a wide range. In
addition, the efficiency of the heating element normally deteriorates with age. Hence the amount of
time required for “good toast” must be estimated by the user, and this setting usually must be
periodically readjusted. At first, the toast is usually too light or too dark. After several successively
different estimates, the required toasting time for a desired quality of toast is obtained.

(¢) In general, a voltmeter is calibrated by comparing it with a known-voltage standard source, and
appropriately marking the reading scale at specified intervals.

Identify the control action in the systems of Problems 1.1, 1.2, and 1.4.

For the mirror system of Problem 1.1 the control action is equal to the input, that is, the angle of
inclination of the mirror 8. For the generator of Problem 1.2 the control action is equal to the input, the
rotational speed or angular momentum of the prime mover shaft. The control action of the human reaching
system of Problem 1.4 is equal to the distance between hand and object position.
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Which of the control systems in Problems 1.1, 1.2, and 1.4 are open-loop? Closed-loop?

Since the control action is equal to the input for the systems of Problems 1.1 and 1.2, no feedback
exists and the systems are open-loop. The human reaching system of Problem 1.4 is closed-loop because the
control action is dependent upon the output, hand position.

Identify the control action in Examples 1.1 through 1.5.

The control action for the electric switch of Example 1.1 is equal to the input, the on or off command.
The control action for the heating system of Example 1.2 is equal to the difference between the reference
and actual room temperatures. For the finger pointing system of Example 1.3, the control action is equal to
the difference between the actual and pointed direction of the object. The perspiration system of Example
1.4 has its control action equal to the difference between the “normal” and actual skin surface temperature.
The difference between the direction of the road and the heading of the automobile is the control action for
the human driver and automobile system of Example 1.5.

Which of the control systems in Examples 1.1 through 1.5 are open-loop? Closed-loop?

The electric switch of Example 1.1 is open-loop because the control action is equal to the input, and
therefore independent of the output. For the remaining Examples 1.2 through 1.5 the control action is
clearly a function of the output. Hence they are closed-loop systems.

FEEDBACK

111

Lis

jﬂhcad

Consider the voltage divider network of Fig. 1-4. The output is v, and the input is v,.

Fig. 1-4

(a) Write an equation for v, as a function of v,, R, and R,. That is, write an equation for v,
which yields an open-loop system.

(b) Write an equation for v, in closed-loop form, that is, v, as a function of v,, v,, R,, and
R,.

This problem illustrates how a passive network can be characterized as either an open-loop
or a closed-loop system.
(a) From Ohm’s law and Kirchhoff’s voltage and current laws we have
2
R, +R,

vy = Ryi i

R,
R, + R,

Therefore v, =

)Ul =f(v;, Ry, Ry)

(b) Writing the current i in a slightly different form, we have i = (v, — v,)/R,. Hence

0 0 R, R,
=R, R, = R_l o~ R vy =f(v,v,, Ry, Ry)
1
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1.12. Explain how the classical economic concept known as the Law of Supply and Demand can be
interpreted as a feedback control system. Choose the market price (selling price) of a particular
item as the output of the system, and assume the objective of the system is to maintain price
stability.

The Law can be stated in the following manner. The market demand for the item decreases as its price
increases. The market supply usually increases as its price increases. The Law of Supply and Demand says
that a stable market price is achieved if and only if the supply is equal to the demand.

The manner in which the price is regulated by the supply and the demand can be described with
feedback control concepts. Let us choose the following four basic elements for our system: the Supplier, the
Demander, the Pricer, and the Market where the item is bought and sold. (In reality, these elements
generally represent very complicated processes.)

The input to our idealized economic system is price stability the “desired” output. A more convenient
way to describe this input is zero price fluctuation. The output is the actual market price.

The system operates as follows: The Pricer receives a command (zero) for price stability. It estimates a
price for the Market transaction with the help of information from its memory or records of past
transactions. This price causes the Supplier to produce or supply a certain number of items, and the
Demander to demand a number of items. The difference between the supply and the demand is the control
action for this system. If the control action is nonzero, that is, if the supply is not equal to the demand, the
Pricer initiates a change in the market price in a direction which makes the supply eventually equal to the
demand. Hence both the Supplier and the Demander may be considered the feedback, since they determine
the control action.

MISCELLANEOUS PROBLEMS

1.13. (a) Explain the operation of ordinary traffic signals which control automobile traffic at roadway
intersections. (b) Why are they open-loop control systems? (¢) How can traffic be controlled
more efficiently? (d) Why is the system of (c) closed-loop?

(a) Traffic lights control the flow of traffic by successively confronting the traffic in a particular direction
(e.g., north-south) with a red (stop) and then a green (go) light. When one direction has the green
signal, the cross traffic in the other direction (east-west) has the red. Most traffic signal red and green
light intervals are predetermined by a calibrated timing mechanism.

(b) Control systems operated by preset timing mechanisms are open-loop. The control action is equal to
the input, the red and green intervals.

(c) Besides preventing collisions, it is a function of traffic signals to generally control the volume of
traffic. For the open-loop system described above, the volume of traffic does not influence the preset
red and green timing intervals. In order to make traffic flow more smoothly, the green light timing
interval must be made longer than the red in the direction containing the greater traffic volume. Often
a traffic officer performs this task.

The ideal system would automatically measure the volume of traffic in all directions, using
appropriate sensing devices, compare them, and use the difference to control the red and green time
intervals, an ideal task for a computer.

(d) The system of (c) is closed-loop because the control action (the difference between the volume of
traffic in each direction) is a function of the output (actual traffic volume flowing past the intersection
in each direction).

1.14. (a) Describe, in a simplified way, the components and variables of the biological control system
involved in walking in a prescribed direction. (b) Why is walking a closed-loop operation?
(c¢) Under what conditions would the human walking apparatus become an open-loop system? A
sampled-data system? Assume the person has normal vision.

(a) The major components involved in walking are the brain, eyes, and legs and feet. The input may be
chosen as the desired walk direction, and the output the actual walk direction. The control action is
determined by the eyes, which detect the difference between the input and output and send this
information to the brain. The brain commands the legs and feet to walk in the prescribed direction.

(b) Walking is a closed-loop operation because the control action is a function of the output.
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(¢) If the eyes are closed, the feedback loop is broken and the system becomes open-loop. If the eyes are
opened and closed periodically, the system becomes a sampled-data one, and walking is usually more
accurately controlled than with the eyes always closed.

1.15. Devise a control system to fill a container with water after it is emptied through a stopcock at the
bottom. The system must automatically shut off the water when the container is filled.

The simplified schematic diagram (Fig. 1-5) illustrates the principle of the ordinary toilet tank filling

system.
L s
~—— Pulleys— i
— Cord
—— Stopper

é Water N
] '

Ball
Float l.— Container
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i

The ball fioats on the water. As the ball gets closer to the top of the container, the stopper decreases
the flow of water. When the container becomes full, the stopper shuts off the flow of water.

Fig. 1-5

1.16. Devise a simple control system which automatically turns on a room lamp at dusk, and turns it
off in daylight.

A simple system that accomplishes this task is shown in Fig. 1-6.

At dusk, the photocell, which functions as a light-sensitive switch, closes the lamp circuit, thereby
lighting the room. The lamp stays lighted until daylight, at which time the photocell detects the bright
outdoor light and opens the lamp circuit.

Room l

Fig. 1-6 Fig. 1-7

1.17. Devise a closed-loop automatic toaster.

Assume each heating element supplies the same amount of heat to both sides of the bread, and toast
quality can be determined by its color. A simplified schematic diagram of one possible way to apply the
feedback principle to a toaster is shown in Fig. 1-7. Only one side of the toaster is illustrated.
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The toaster is initially calibrated for a desired toast quality by means of the color adjustment knob.
This setting never needs readjustment unless the toast quality criterion changes. When the switch is closed,
the bread is toasted until the color detector “sees” the desired color. Then the switch is automatically
opened by means of the feedback linkage, which may be electrical or mechanical.

Is the voltage divider network in Problem 1.11 an analog or digital device? Also, are the input
and output analog or digital signals?

It is clearly an analog device, as are all electrical networks consisting only of passive elements such as
resistors, capacitors, and inductors. The voltage source v, is considered an external input to this network. If
it produces a continuous signal, for example, from a battery or alternating power source, the output is a
continuous or analog signal. However, if the voltage source v, is a discrete-time or digital signal, then so is
the output v, = v, R,/(R, + R,). Also, if a switch were included in the circuit, in series with an analog
voltage source, intermittent opening and closing of the switch would generate a sampled waveform of the
voltage source ¢, and therefore a sampled or discrete-time output from this analog network.

Is the system that controls the total cash value of a bank account a continuous or a discrete-time
system? Why? Assume a deposit is made only once, and no withdrawals are made.

If the bank pays no interest and extracts no fees for maintaining the account (like putting your money
“under the mattress”), the system controlling the total cash value of the account can be considered
continuous, because the value is always the same. Most banks, however, pay interest periodically, for
example, daily, monthly, or yearly, and the value of the account therefore changes periodically, af discrete
times. In this case, the system controlling the cash value of the account is a discrete system. Assuming no
withdrawals, the interest is added to the principle each time the account earns interest, called compounding,
and the account value continues to grow without bound (the “greatest invention of mankind,” a comment
attributed to Einstein).

What rype of control system, open-loop or closed-loop, continuous or discrete, is used by an
ordinary stock market investor, whose objective is to profit from his or her investment.

Stock market investors typically follow the progress of their stocks, for example, their prices,
periodically. They might check the bid and ask prices daily, with their broker or the daily newspaper, or
more or less often, depending upon individual circumstances. In any case, they periodically sample the
pricing signals and therefore the system is sampled-data, or discrete-time. However, stock prices normally
rise and fall between sampling times and therefore the system operates open-loop during these periods. The
feedback loop is closed only when the investor makes his or her periodic observations and acts upon the
information received, which may be to buy, sell, or do nothing. Thus overall control is closed-loop. The
measurement (sampling) process could, of course, be handled more efficiently using a computer, which also
can be programed to make decisions based on the information it receives. In this case the control system
remains discrete-time, but not only because there is a digital computer in the control loop. Bid and ask
prices do not change continuously but are inherently discrete-time signals.

Supplementary Problems
Identify the input and output for an automatic temperature-regulating oven.
Identify the input and output for an automatic refrigerator.

Identify an input and an output for an electric automatic coffeemaker. Is this system open-loop or
closed-loop?
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Devise a control system to automatically raise and lower a lift-bridge to permit ships to pass. No
continuous human operator is permissible. The system must function entirely automatically.

Explain the operation and identify the pertinent quantities and components of an automatic, radar-con-
trolled antiaircraft gun. Assume that no operator is required except to initially put the system into an
operational mode.

How can the electrical network of Fig. 1-8 be given a feedback control system interpretation? Is this system
analog or digital?

(o]

+

Voltage
Source v, ) § R V2

Fig. 1-8

Devise a control system for positioning the rudder of a ship from a control room located far from the
rudder. The objective of the control system is to steer the ship in a desired heading.

What inputs in addition to the command for a desired heading would you expect to find acting on the
system of Problem 1.27?

Can the application of “laissez faire capitalism” to an economic system be interpreted as a feedback control
system? Why? How about “socialism” in its purest form? Why?

Does the operation of a stock exchange, for example, buying and selling equities, fit the model of the Law
of Supply and Demand described in Problem 1.12? How?

Does a purely socialistic economic system fit the model of the Law of Supply and Demand described in
Problem 1.12? Why (or why not)?

Which control systems in Problems 1.1 through 1.4 and 1.12 through 1.17 are digital or sampled-data and
which are continuous or analog? Define the continuous signals and the discrete signals in each system.

Explain why economic control systems based on data obtained from typical accounting procedures are
sampled-data control systems? Are they open-loop or closed-loop?

Is a rotating antenna radar system, which normally receives range and directional data once each
revolution, an analog or a digital system?

What type of control system is involved in the treatment of a patient by a doctor, based on data obtained
from laboratory analysis of a sample of the patient’s blood?
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Answers to Some Supplementary Problems
The input is the reference temperature. The output is the actual oven temperature.
The input is the reference temperature. The output is the actual refrigerator temperature.

One possible input for the automatic electric coffeemaker is the amount of coffee used. In addition, most
coffeemakers have a dial which can be set for weak, medium, or strong coffee. This setting usually regulates
a timing mechanism. The brewing time is therefore another possible input. The output of any coffeemaker
can be chosen as coffee strength. The coffeemakers described above are open-loop.

Chapter 2

Control Systems Terminology

2.1 BLOCK DIAGRAMS: FUNDAMENTALS

A block diagram is a shorthand, pictorial representation of the cause-and-effect relationship
between the input and output of a physical system. It provides a convenient and useful method for
characterizing the functional relationships among the various components of a control system. System
components are alternatively called elements of the system. The simplest form of the block diagram is
the single block, with one input and one output, as shown in Fig, 2-1.

Block

Input Output

Fig. 2-1

The interior of the rectangle representing the block usually contains a description of or the name of
the element, or the symbol for the mathematical operation to be performed on the input to yield the
output. The arrows represent the direction of information or signal flow.

EXAMPLE 2.1
dx
Input Control Output x d T
(@) — | Element [ (b) 1 dt — =

Fig. 2-2

The operations of addition and subtraction have a special representation. The block becomes a
small circle, called a summing point, with the appropriate plus or minus sign associated with the arrows

entering the circle. The output is the algebraic sum of the inputs. Any number of inputs may enter a
summing point.

EXAMPLE 2.2

15
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Some authors put a cross in the circle: (Fig. 2-4)

Fig. 2-4

This notation is avoided here because it is sometimes confused with the multiplication operation.

In order to have the same signal or variable be an input to more than one block or summing point,
a takeoff point is used. This permits the signal to proceed unaltered along several different paths to
several destinations.

EXAMPLE 2.3
[rr——————_
Takeoff Point
(a) x x (b) z x
Takeoff Point
——— X el

Fig. 2-5

2.2 BLOCK DIAGRAMS OF CONTINUOUS (ANALOG) FEEDBACK CONTROL SYSTEMS

The blocks representing the various components of a control system are connected in a fashion
which characterizes their functional relationships within the system. The basic configuration of a simple
closed-loop (feedback) control system with a single input and a single output (abbreviated SISO) is
illustrated in Fig. 2-6 for a system with continuous signals only.

Disturbance

Control "
Actuating s‘g{.ml
Reference (Error) Manipulated [FNBIERT ] Controlled
Input N\ Signal Variable Output
r + e=rxb ¢
FORWARD PATH
Primary
Feedback
Signal
AT
FEEDBACK PATH
Fig. 2-6

We emphasize that the arrows of the closed loop, connecting one block with another, represent the
direction of flow of control energy or information, which is not usually the main source of energy for the
system. For example, the major source of energy for the thermostatically controlled furnace of Example
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1.2 is often chemical, from burning fuel oil, coal, or gas. But this energy source would not appear in the
closed control loop of the system.

2.3 TERMINOLOGY OF THE CLOSED-LOOP BLOCK DIAGRAM

It is important that the terms used in the closed-loop block diagram be clearly understood.

Lowercase letters are used to represent the input and output variables of each element as well as the
symbols for the blocks g,, g,, and k. These quantities represent functions of time, unless otherwise
specified.

EXAMPLE 2.4. r=r(1)

In subsequent chapters, we use capital letters to denote Laplace transformed or :z-transformed
quantities, as functions of the complex variable s, or z, respectively, or Fourier transformed quantities
(frequency functions), as functions of the pure imaginary variable jw. Functions of s or z are often
abbreviated to the capital letter appearing alone. Frequency functions are never abbreviated.

EXAMPLE 2.5. R(s) may be abbreviated as R, or F(z) as F. R(jw) is never abbreviated.

The letters r, ¢, e, etc., were chosen to preserve the generic nature of the block diagram. This
convention is now classical.

Definition 2.1: The plant (or process, or controlled system) g, is the system, subsystem, process, or
object controlled by the feedback control system.

Definition 2.2: The controlled output c¢ is the output variable of the plant, under the control of the
feedback control system.

Definition 2.3: The forward path is the transmission path from the summing potint to the controlled
output c.

Definition 2.4: The feedforward (control) elements g, are the components of the forward path that

generate the control signal u or m applied to the plant. Note: Feedforward elements
typically include controller(s), compensator(s) (or equalization elements), and /or
amplifiers.

Definition 2.5: The control signal u (or manipulated variable m) is the output signal of the
feedforward elements g, applied as input to the plant g,.

Definition 2.6: The feedback path is the transmission path from the controlled output ¢ back to the
summing point.

Definition 2.7: The feedback elements h establish the functional relationship between the con-
trolled output ¢ and the primary feedback signal b. Nore: Feedback elements
typically include sensors of the controlled output ¢, compensators, and/or con-
troller elements.

Definition 2.8: The reference input r is an external signal applied to the feedback control system,
usually at the first summing point, in order to command a specified action of the
plant. It usually represents ideal (or desired) plant output behavior.
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Definition 2.9: The primary feedback signal b is a function of the controlled output c, algebraically
summed with the reference input r to obtain the actuating (error) signal e, that is,
r+b=e. Note: An open-loop system has no primary feedback signal.

Definition 2.10:  The actuating (or error) signal is the reference input signal r plus or minus the
primary feedback signal b. The control action is generated by the actuating (error)
signal in a feedback control system (see Definitions 1.5 and 1.6). Note: In an
open-loop system, which has no feedback, the actuating signal is equal to r.

Definition 2.11:  Negative feedback means the summing point is a subtractor, that is, e=r—b.
Positive feedback means the summing point is an adder, that is, e = r + b.

2.4 BLOCK DIAGRAMS OF DISCRETE-TIME (SAMPLED-DATA, DIGITAL) COMPONENTS,
CONTROL SYSTEMS, AND COMPUTER-CONTROLLED SYSTEMS

A discrete-time (sampled-data or digital) control system was defined in Definition 1.11 as one having
discrete-time signals or components at one or more points in the system. We introduce several common
discrete-time system components first, and then illustrate some of the ways they are interconnected in
digital control systems. We remind the reader here that discrete-time is often abbreviated as discrete in
this book, and continuous-time as continuous, wherever the meaning is unambiguous.

EXAMPLE 2.6. A digital computer or microprocessor is a discrete-time (discrete or digital) device, a common
component in digital control systems. The internal and external signals of a digital computer are typically
discrete-time or digitally coded.

EXAMPLE 2.7. A discrete system component (or components) with discrete-time input u(z,) and discrete-time
output y(r,) signals, where ¢, are discrete instants of time, k=1,2,..., etc., may be represented by a block
diagram, as shown in Fig. 2-7.

u(r,) Discrete-Time vit,)
—— | Component pb———»
Discrete-Time or System | Discrete-Time
Input Output
k=12,...
Fig. 2-7

Many digital control systems contain both continuous and discrete components. One or more
devices known as samplers, and others known as holds, are usually included in such systems.

Definition 2.12: A sampler is a device that converts a continuous-time signal, say u(r), into a
discrete-time signal, denoted u*(¢), consisting of a sequence of values of the signal
at the instants ¢, ¢,,..., thatis, u(t,), u(t,),..., etc.

Ideal samplers are usually represented schematically by a switch, as shown in Fig. 2-8, where the
switch is normally open except at the instants 1, ¢,, etc., when it is closed for an instant. The switch also
may be represented as enclosed in a block, as shown in Fig. 2-9.
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uth) i u(t) u*(1)

I

Fig. 2-8

Fig. 2-9

EXAMPLE 2.8. The input signal of an ideal sampler and a few samples of the output signal are illustrated in Fig.
2-10. This type of signal is often called a sampled-data signal.

u(t)) ulty)
u(t)
[

L2 Y l t, s Iy ty &y,

Fig. 2-10

Discrete-data signals u(t,) are often written more simply with the index k as the only argument,
that is, u(k), and the sequence u(t,), u(t,),..., etc., becomes u(1), u(2),..., etc. This notation is
introduced in Chapter 3. Although sampling rates are in general nonuniform, as in Example 2.8,
uniform sampling is the rule in this book, that is, ¢, ,, — 2, = T for all k.

Definition 2.13: A hold, or data hold, device is one that converts the discrete-time output of a
sampler into a particular kind of continuous-time or analog signal.

EXAMPLE 2.9. A zero-order hold (or simple hold) is one that maintains (i.e., holds) the value of u(f,) constant

until the next sampling time f, , ,, as shown in Fig. 2-11. Note that the output yu,(7) of the zero-order hold is
continuous, except at the sampling times. This type of signal is called a piecewise-continuous signal.

Fuol1)

u(t)) \ u(ty)
DA g

u(t) ut(r) Yuol1)

Fig. 2-12

Definition 2.14:  An anatog-to-digital (A /D) converter is a device that converts an analog or
continuous signal into a discrete or digital signal.
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Definition 2.15: A digital-to-analog (D /A) converter is a device that converts a discrete or digital
signal into a continuous-time or analog signal.

EXAMPLE 2.10. The sampler in Example 2.8 (Figs. 2-9 and 2-10) is an A/D converter.

EXAMPLE 2.11. The zero-order hold in Example 2.9 (Figs. 2-11 and 2-12) is a D /A converter.

Samplers and zero-order holds are commonly used A/D and D/A converters, but they are not the
only types available. Some D/A converters, in particular, are more complex.

EXAMPLE 2.12. Digital computers or microprocessors are often used to control continuous plants or processes.
A/D and D/A converters are typically required in such applications, to convert signals from the plant to digital
signals, and to convert the digital signal from the computer into a control signal for the analog plant. The joint
operation of these elements is usually synchronized by a clock and the resulting controller is sometimes called a
digital filter, as illustrated in Fig. 2-13.

Fig. 2-13

Definition 2.16: A computer-controlled system includes a computer as the primary control element.

The most common computer-controlled systems have digital computers controlling analog or
continuous processes. In this case, A/D and D /A converters are needed, as illustrated in Fig. 2-14.

gr———
H
|
1
H
H
H
1

——— el

L--—Conm)]ln:r Q

Fig. 2-14

The clock may be omitted from the diagram, as it synchronizes but is not an explicit part of signal
flow in the control loop. Also, the summing junction and reference input are sometimes omitted from
the diagram, because they may be implemented in the computer.

2.5 SUPPLEMENTARY TERMINOLOGY

Several other terms require definition and illustration at this time. Others are presented in
subsequent chapters, as needed.
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Definition 2.17: A transducer is a device that converts one energy form into another.

For example, one of the most common transducers in control systems applications is the poten-
tiometer, which converts mechanical position into an electrical voltage (Fig. 2-15).

+ | Arm
'osition
[ | Positi »
| Input Position Voltage
Reference Input B A Qutput
Voltage ~t—0 m T
Source : Voltage
r Output
° o
Schematic Block Diagram

Fig. 2-15

Definition 2.18: The command v is an input signal, usually equal to the reference input r. But when
the energy form of the command v is not the same as that of the primary feedback
b, a transducer is required between the command v and the reference input r as
shown in Fig. 2-16(a).

Reference Input
Command T A Input -~ ] Transducer
v 4 T
Transducer c
(a) (b
Fig. 2-16

Definition 2.19: When the feedback element consists of a transducer, and a transducer is required at

the input, that part of the control system illustrated in Fig. 2-16(b) is called the
error detector.

Definition 2.20: A stimulus, or test input, is any externally (exogenously) introduced input signal
affecting the controlled output ¢. Nore: The reference input r is an example of a
stimulus, but it is not the only kind of stimulus.

Definition 2.21: A disturbance n (or noise input) is an undesired stimulus or input signal affecting
the value of the controlled output ¢. It may enter the plant with u or m, as shown in
the block diagram of Fig. 2-6, or at the first summing point, or via another
intermediate point.

Definition 2.22: The time response of a system, subsystem, or element is the output as a function of
time, usually following application of a prescribed input under specified operating
conditions.

Definition 2.23: A multivariable system is one with more than one input (multiinput, MI-), more than

one output (multiontput, -MO), or both (multiinput-multioutput, MIMO).
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Definition 2.24: The term controller in a feedback control system is often associated with the
elements of the forward path, between the actuating (error) signal ¢ and the control
variable . But it also sometimes includes the summing point, the feedback
elements, or both, and some authors use the term controller and compensator
synonymously. The context should eliminate ambiguity.

The following five definitions are examples of control laws, or control algorithms.

Definition 2.25: An on-off controller (two-position, binary controller) has only two possible values at
its output u, depending on the input e to the controller.

EXAMPLE 2.13. A binary controller may have an output u = +1 when the error signal is positive, that is, e > 0,
and u= —1 when e<0.

Definition 2.26: A proportional (P) controller has an output u proportional to its input e, that is,
u = K e, where K is a proportionality constant.

Definition 2.27: A derivative (D) controller has an output proportional to the derivative of its input
e, that is, u = K, de/dt, where K, is a proportionality constant.

Definition 2.28: An integral (I) controller has an output u proportional to the integral of its input e,
that is, u = K, fe(t) dt, where K, is a proportionality constant.

Definition 2.29: PD, PI, DI, and PID controllers are combinations of proportional (P), derivative
(D), and integral () controllers.

EXAMPLE 2.14. The output u of a PD controller has the form:

de
upp = Kpe + KD—J_I

The output of a PID controller has the form:

de
uPlD=KPe+KDE +K,fe(l) dr

2.6 SERVOMECHANISMS

The specialized feedback control system called a servomechanism deserves special attention, due to
its prevalence in industrial applications and control systems literature.

Definition 2.30: A servomechanism is a power-amplifying feedback control system in which the
controlled variable ¢ is mechanical position, or a time derivative of position such as
velocity or acceleration.

EXAMPLE 2.15. An automobile power-steering apparatus is a servomechanism. The command input is the
angular position of the steering wheel. A small rotational torque applied to the steering wheel is amplified
hydraulically, resulting in a force adequate to modify the output, the angular position of the front wheels. The
block diagram of such a system may be represented by Fig. 2-17. Negative feedback is necessary in order to return
the control valve to the neutral position, reducing the torque from the hydraulic amplifier to zero when the desired
wheel position has been achieved.
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‘ Control El ts: g, ] Plant
Gear Ty Control Hydraulie Drive | “ | Wheels ¢
Angular Ratio r € Valve Amplifier Linkage 1] Angular
position e position
of the b of the
steering wheel road wheels
Feedback
Linkage
h
Fig. 2-17

2.7 REGULATORS

Definition 2.31: A regulator or regulating system is a feedback control system in which the reference
input or command is constant for long periods of time, often for the entire time
interval during which the system is operational. Such an input is often called a

setpoint.

A regulator differs from a servomechanism in that the primary function of a regulator is usually to
maintain a constant controlled output, while that of a servomechanism is most often to cause the output
of the system to follow a varying input.

Solved Problems

BLOCK DIAGRAMS

2.1. Consider the following equations in which x|, x,,..., x,, are variables, and a,, a,,..., a, are
general coefficients or mathematical operators:

(a) xy=ax,+ax,~5
(b) x,=ax;+tayx,+ - +a, 1x,,
Draw a block diagram for each equation, identifying all blocks, inputs, and outputs.

(a) In the form the equation is written, x, is the output., The terms on the right-hand side of the equation
are combined at a summing point, as shown in Fig. 2-18.

The a,x, term is represented by a single block, with x, as its input and a,x, as its output.
Therefore the coefficient 4, is put inside the block, as shown in Fig. 2-19. @, may represent any
mathematical operation. For example, if @, were a constant, the block operation would be “multiply
the input x, by the constant a,.” It is usually clear from the description or context of a problem what
is meant by the symbol, operator, or description inside the block.

axy

+
+
Ay T3
} — xy a; a,xy
5

Fig. 2-18 Fig. 2-19
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The a,x, term is represented in the same manner.
The block diagram for the entire equation is therefore shown in Fig. 2.20.

(b) Following the same line of reasoning as in part (a), the block diagram for

X, =aX +a,x,+ - +a,_x,
is shown in Fig, 2-21.
d| a ] a1%
[E5d
X asx
2 - g ] + +
. . t )—— Ty
. . - +
Tp—y* IE '“n-l“n-l
Fig. 2-20 Fig. 2-21
2.2. Draw block diagrams for each of the following equations:
ik
dx, dix, dx
Mathcad (a) x=a| -~ () x=—5+—-x (c) x4=fx3dt

(a) Two operations are specified by this equation, a, and differentiation d/dr. Therefore the block
diagram contains two blocks, as shown in Fig. 2-22. Note the order of the blocks.

dx,
dt & Z2 % (d\, Z2
1 o (=
dt)

o |

S
dt

Fig, 2-23

Now, if a, were a constant, the a; block could be combined with the d/dr block, as shown in
Fig. 2-23, since no confusion about the order of the blocks would result. But, if ¢, were an unknown
operator, the reversal of blocks d/dt and a; would not necessarily result in an output equal to x,, as
shown in Fig, 2-24.

d ) = dzx,
z an | 4 a0 Tyl g
ay

Fig. 2-24

(b) The + and — operations indicate the need for a summing point. The differentiation operation can be
treated as in part (a), or by combining two first derivative operations into one second derivative
operator block, giving two different block diagrams for the equation for x5, as shown in Fig. 2-25.

CHAP. 2] CONTROL SYSTEMS TERMINOLOGY 25

|

£ 3
d2z, 1+ dz, d2z, 1+
% a@ | ade zy d dt_| 4 | ae

Fig. 2-25

(¢) The integration operation can be represented in block diagram form as Fig. 2-26.

3 fdt i

Fig. 2-26

2.3. Draw a block diagram for the pivoted, adjustable mirror mechanism of Section 1.1 with the
output identified as in Problem 1.1. Assume that each 360° rotation of the screw raises or lowers
the mirror k degrees. Identify all the signals and components of the control system in the
diagram.

The schematic diagram of the system is repeated in Fig, 2-27 for convenience.

Reflected

Beam —\y

Light
Source
L G
%
// Reference %’ivot
A .
Fig. 2-27

Whereas the input was defined as 6 in Problem 1.1, the specifications for this problem imply an input
equal to the number of rotations of the screw. Let n be the number of rotations of the screw such that n =0
when 6 = 0°. Therefore n and § can be related by a block described by the constant k, since 8 = kn, as
shown in Fig. 2-28.

Pivoted
Mirror
n [ ] 29
rotations k degrees 2

Fig. 2-28 Fig. 2-29
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The output of the system was determined in Problem 1.1 as & + a. But since the light source is directed
parallel to the reference surface, then « = 6. Therefore the output is equal to 26, and the mirror can be
represented by a constant equal to 2 in a block, as shown in Fig. 2-29.

The complete open-loop block diagram is given by Fig. 2-30. For this simple example we also note that
the output 26 is equal to 2kn rotations of the screw. This yields the simpler block diagram of Fig. 2-31.

Pivoted
Screw Mirror Directed angle of
the reflected beam
n__ | Gegrees | o0 20 | S degrees Ze
rotations k rotation | degrees 2 degrees rotations 2k rotation degrees
Fig. 2-30 Fig. 2-31

2.4. Draw an open-loop and a closed-loop block diagram for the voltage divider network of Problem
1.11.

The open-loop equation was determined in Problem 1.11 as v, = (R,/(R, + R,))v,, where v, is the
input and v, is the output. Therefore the block is represented by R,/(R; + R,) (Fig. 2-32), and clearly the
operation is multiplication.

The closed-loop equation is

R, R, R,
Uz=(?l)vl-('El‘)')z:(?l)(vl‘uz)

The actuating signal is v; — v,. The closed-loop negative feedback block diagram is easily constructed with
the only block represented by R,/R;, as shown in Fig. 2-33.

VN T Y ﬁ ]
Ry
" Ry bt ]
R, + R,
Fig. 2-32 Fig. 2-33

2.5. Draw a block diagram for the electric switch of Example 1.1 (see Problems 1.9 and 1.10).

Both the input and output are binary (two-state) variables. The switch is represented by a block, and
the electrical power source the switch controls is not part of the control system. One possible open-loop
block diagram is given by Fig. 2-34.

on Power on
—— g T b o s BN
Input of Switch R Output
Fig. 2-34

For example, suppose the power source is an electrical current source. Then the block diagram for the
switch might take the form of Fig. 2-35, where (again) the current source is not part of the control system,
the input to the switch block is shown as a mechanical linkage to a simple “knife” switch, and the output is
a nonzero current only when the switch is closed (on). Otherwise it is zero (off).
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Mechanically
Operated
Switch
On Current On
INPUT OUTPUT
Off | Current Off

Fig. 235

2.6. Draw simple block diagrams for the control systems in Examples 1.2 through 1.5.

From Problem 1.10 we note that these systems are closed-loop, and from Problem 1.9 the actuating
signal (control action) for the system in each example is equal to the input minus the output. Therefore
negative feedback exists in each system.

For the thermostatically controlled furnace of Example 1.2, the thermostat can be chosen as the
summing point, since this is the device that determines whether or not the furnace is turned on. The
enclosure environment (outside) temperature may be treated as a noise input acting directly on the
enclosure.

The eyes may be represented by a summing point in both the human pointing system of Example 1.3
and the driver-automobile system of Example 1.5. The eyes perform the function of monitoring the input
and output.

For the perspiration system of Example 1.4, the summing point is not so easily defined. For the sake of
simplicity let us call it the nervous system.

The block diagrams are easily constructed as shown below from the information given above and the
list of components, inputs, and outputs given in the examples.

The arrows between components in the block diagrams of the biological systems in Examples 1.3
through 1.5 represent electrical, chemical, or mechanical signals controlled by the central nervous system.

Actual
Thermostat e Enclosure
+ﬂ ¥ Temperature
—_—
Reference
Temperature
{Setpoint)
Example 1.2
Eyes Pointed
+ f_\ Brain | Am.":and' Direction
Object | Finger
Direction - :

Example 1.3
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Nervous Actual
System . Skin
‘emperature
LAV Sweat Skin >
Normal Glands
Skin -
Temperature
or
Air
Temperature
Example 1.4
Eyes - A bt
Steering Heading
Brain Hands ‘Wheel and
Road Automobile
Heading —_
Example 15

BLOCK DIAGRAMS OF FEEDBACK CONTROL SYSTEMS

2.7. Draw a block diagram for the water-filling system described in Problem 1.15. Which component
£l+  or components comprise the plant? The controller? The feedback?

Mathcad The container is the plant because the water level of the container is being controlled (see Definition
2.1). The stopper valve may be chosen as the control element; and the ball-float, cord, and associated
linkage as the feedback elements. The block diagram is given in Fig. 2-36.

Control Element Flow Plant Actual Water
r + N\ e Rate Level
Reference ® %
Water Level -
(Full) b

Feedback Elements

Fig. 2-36

The feedback is negative because the water flow rate to the container must decrease as the water level
rises in the container.

2.8. Draw a simple block diagram for the feedback control system of Examples 1.7 and 1.8, the
airplane with an autopilot.

The plant for this system is the airplane, including its control surfaces and navigational instruments.
The controller is the autopilot mechanism, and the summing point is the comparison device. The feedback
linkage may be simply represented by an arrow from the output to the summing point, as this linkage is not
well defined in Example 1.8.

The autopilot provides control signals to operate the control surfaces (rudder, flaps, etc.). These signals
may be denoted u,, u,,... .
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The simplest block diagram for this feedback system is given in Fig. 2-37.

Controller w Plant Actual Airplane
. N e i, Heading
Ao s
P : Airplane c
— ul
Fig. 2-37

SERVOMECHANISMS

29.

Draw a schematic and a block diagram from the following description of a position servomecha-
nism whose function is to open and close a water valve.

At the input of the system there is a rotating-type potentiometer connected across a battery
voltage source. Its movable (third) terminal is calibrated in terms of angular position (in
radians). This output terminal is electrically connected to one terminal of a voltage amplifier
called a servoamplifier. The servoamplifier supplies enough output power to operate an electric
motor called a servomotor. The servomotor is mechanically linked with the water valve in a
manner which permits the valve to be opened or closed by the motor.

Assume the loading effect of the valve on the motor is negligible; that is, it does not “resist”
the motor. A 360° rotation of the motor shaft completely opens the valve. In addition, the
movable terminal of a second potentiometer connected in parallel at its fixed terminals with the
input potentiometer is mechanically connected to the motor shaft. It is electrically connected to
the remaining input terminal of the servoamplifier. The potentiometer ratios are set so that they
are equal when the valve is closed.

When a command is given to open the valve, the servomotor rotates in the appropriate
direction. As the valve opens, the second potentiometer, called the feedback potentiometer,
rotates in the same direction as the input potentiometer. It stops when the potentiometer ratios
are again equal.

A schematic diagram (Fig. 2-38) is easily drawn from the preceding description. Mechanical connec-
tions are shown as dashed lines.

______ Mechanical
B | Valve
¥ radians | |
Battery 4 | |
Voltage + = Servo- L Servo- | | ¢ |
Source —T + | Amplifier ot motor radians
b
Input  Feedback
Pot. Pot.
Fig. 2-38’

The block diagram for this system (Fig. 2-39) is easily drawn from the schematic diagram.
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Input Feedforward
Transducer Control Element Plant Load
) Input . 4
- Potenti- — As"l‘;;; = 5";"' £ Valve
radians St volts volts mplifier | volts motor radians
b
volts
Feedback
Elements
Feedback
Potenti-
ometer
Fig. 2-39

2.10. Draw a block diagram for the elementary speed control system (velocity servomechanism) given

in Fig. 2-40.
o
e

Input
Pot.
v radians/sec A
Battery 4 T v €
Volage § Amplifier Generator| u Motor —3»— =
Source — ?]“ radians/sec |
voits
Motor  (TURRIIT) ‘
_ Field L| '—J \
‘Windil
inding +|| - |
+ Battery |
|
y A g
volts
Tachometer
Fig. 2-40

The potentiometer is a rotating-type, calibrated in radians per seconds, and the prime-mover
speed, motor field winding, and input potentiometer currents are constant functions of time. No
load is attached to the motor shaft.

Control Elements
Plant
v Input r + 4 . u ¢
— ] Mot
radians/sec| Pot. volts volts Amplifier Generator volts otor radians/sec

b
volts

Feedback

Elements

Tachomet

Fig. 2-41
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The battery voltage sources for both the input potentiometer and motor field winding, and the
prime-mover source for the generator are not part of the control loop of this servomechanism. The output
of each of these sources is a constant function of time, and can be accounted for in the mathematical
description of the input potentiometer, generator, and motor, respectively. Therefore the block diagram for
this system is given in Fig. 2-41.

MISCELLANEOUS PROBLEMS

2.11. Draw a block diagram for the photocell light switch system described in Problem 1.16. The light
intensity in the room must be maintained at a level greater than or equal to a prespecified level.

One way of describing this system is with two inputs, one input chosen as minimum reference
room-light intensity r;, and the second as room sunlight intensity r,. The output ¢ is actual room-light
intensity.

The room is the plant. The manipulated variable (control signal) is the amount of light supplied to the
room from both the lamp and the sun. The photocell and the lamp are the control elements because they
control room-light intensity. Assume the minimum reference room-light intensity r, is equal to the intensity
of room-light supplied by the lighted lamp alone. A block diagram for this system is given in Fig. 2-42.

Plant

Ty on ! + u [4
Photocell R -
e = r—r, otoce of ] Lamp \_/ oom

Fig. 2-42

The system is clearly open-loop. The actuating signal e is independent of the output ¢, and is equal to
the difference between the two inputs: r, — r,. When e <0, /=0 (the light is off). When e >0, /=r; (the
light is on).

2.12. Draw a block diagram for the closed-loop traffic signal system described in Problem 1.13.

Plant A
Roadway in
[— Control Elements —I direction A v'l;r-ﬂ!cd
olume
+ Red-green
* e Time Trafiie u
r=0 Interval Signal
- Computer
Plant B Traffic
Roadway in Volume B
direction B

Fig. 2-43
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This system has two outputs, the volume of traffic passing the intersection in one direction (the A4
direction), and the volume passing the intersection in the other direction (the B direction). The input is the
command for equal traffic volumes in directions A and B; that is, the input is zero volume difference.

Suppose we call the mechanism for computing the appropriate red and green timing intervals the
Red-Green Time Interval Computer. This device, in addition to the traffic signal, makes up the control
elements. The plants are the roadway in direction A and the roadway in direction B. The block diagram of
this traffic regularor is given in Fig, 2-43.

Draw a block diagram illustrating the economic Law of Supply and Demand, as described in
Problem 1.12.

The block diagram is given by Fig. 2-44.

by = supply ,,
0 +
r= N e u c
Price
Zero market  \__/ = B Actual market
price fluctuation = price
b, = demand
D, 4
Fig. 2-44

The following very simplified model of the biological mechanism regulating human arterial blood
pressure is an example of a feedback control system.

A well-regulated pressure must be maintained in the blood vessels (arteries, arterioles, and
capillaries) supplying the tissues, so that blood flow is adequately maintained. This pressure is
usually measured in the aorta (an artery) and is called the blood pressure p. It is not constant and
normally has a range of 70-130 mm of mercury (mm Hg) in adults. Let us assume that p is
equal to 100 mm Hg (on the average) in a normal individual.

A fundamental model of circulatory physiology is the following equation for arterial blood
pressure:

p=0p
where Q is the cardiac output, or the volume flow rate of blood from the heart to the aorta, and p
is the peripheral resistance offered to blood flow by the arterioles. Under normal conditions, p is
approximately inversely proportional to the fourth power of the diameter d of the vessels
(arterioles).

Now d is believed to be controlled by the vasomotor center (VMC) of the brain, with
increased activity of the VMC decreasing d, and vice versa. Although several factors affect VMC
activity, the baroreceptor cells of the arterial sinus are believed to be the most important.
Baroreceptor activity inhibits the VMC, and therefore functions in a negative feedback mode.
According to this theory, if p increases, the baroreceptors send signals along the vagus and
glossopharyngeal nerves to the VMC, decreasing its activity. This results in an increase in
arteriole diameter d, a decrease in peripheral resistance p, and (assuming constant cardiac output
Q) a corresponding drop in blood pressure p. This feedback network probably regulates, at least
in part, blood pressure in the aorta.

Draw a block diagram of this feedback control system, identifying all signals and compo-
nents.
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Let the aorta be the plant, represented by Q (cardiac output); the VMC and arterioles may be chosen
as the controller; the baroreceptors are the feedback elements. The input p, is the average normal
(reference) blood pressure, 100 mm Hg. The output p is the actual blood pressure. Since p = k(1/d)?,
where k is a proportionality constant, the arterioles can be represented in the block by k(-)*. The block
diagram is given in Fig. 2-45.

C

— ontrol Elements = it

Vasomotor
+ 1/d Arterioles p Aorta P
Po ' Center £
Average reference (VMC) k()4 Q Actual
blood pressure - blood pressure
100 mm Hg
Vagus and
Glossopharyngeal
Nerves
Baroreceptors

Feedback Sensor Elements

Fig. 245

The thyroid gland, an endocrine (internally secreting) gland located in the neck in the human,
secretes thyroxine into the bloodstream. The bloodstream is the signal transmission system for
most of the endocrine glands, just as conductive wires are the transmission system for the flow of
electrical current, or pipes and tubes may be the transmission system for hydrodynamic fluid
flow.

Like most human physiological processes, the production of thyroxine by the thyroid gland
is automatically controlled. The amount of thyroxine in the bloodstream is regulated in part by a
hormone secreted by the anterior pituitary, an endocrine gland suspended from the base of the
brain. This “control” hormone is appropriately called thyroid stimulating hormone (TSH). In a
simplified view of this control system, when the level of thyroxine in the circulatory system is
higher than that required by the organism, TSH secretion is inhibited (reduced), causing a
reduction in the activity of the thyroid. Hence less thyroxine is released by the thyrotd.

Draw a block diagram of the simplified system described, identifying all components and
signals.

Let the plant be the thyroid gland, with the controlled variable the level of thyroxine in the
bloodstream. The pituitary gland.is the controller, and the manipulated variable is the amount of TSH it
secretes. The block diagram is given in Fig. 2-46.

+ir\ Pituitary TSH Thyroid
Normal Gland Gland Blood
Thyroxine - Thyroxine
Level Level

Fig. 2-46

We reemphasize that this is a very simplified view of this biological control system, as was that in the
previous problem.
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2.16. What type of controller is included in the more realistic thermostatically controlled heating

2.17.

system described in Example 1.14?

The thermostat-furnace controller has a binary output: furnace (full) on, or furnace off. Therefore it is
an on-off controller. But it is not as simple as the sign-sensing binary controller of Example 2.13. The
thermostat switch turns the furnace on when room temperature falls to 2° below its setpoint of 68°F
(22°C), and turns it oflf when it rises to 2° above its setpoint.

Graphically, the characteristic curve of such a controller has the form given in Fig. 2-47.

Off

Fig. 2-47

This is called a hysteresis characteristic curve, because its output has a “memory”; that is, the

switching points depend on whether the input e is rising or falling when the controller switches states from
on to off, or off to on.

Sketch the error, control, and controlled output signals as functions of time and discuss how the

on-off controller of Problem 2.16 maintains the average room temperature specified by the
setpoint (68°F) of the thermostat?

The signals e(¢), u(t), and c(r) typically have the form shown in Fig. 2-48, assuming the temperature
was colder than 66°F at the start.

e(t)
\\
+2 ~J

u(t)

" THIVT7

///]

c(t)
70°

¢8° 7
66°
yd

Fig, 2-48
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2.22.

2.23.

2.24.

2.25.
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The room temperature c(?) is constantly varying. In each switching interval of the controller, it rises at
an approximately constant rate, from 66° to 70°, or falls at an approximately constant rate, from 70° to
66°. The average temperature of the room is the mean value of this function c(t), which is approximately
68°F.

What major advantage does a computer-controlled system have over an analog system?

The controller (control law) in a computer-controlled system is typically implemented by means of
software, rather than hardware. Therefore the class of control laws that can be implemented conveniently is
substantially increased.

Supplementary Problems

The schematic diagram of a semiconductor voltage amplifier called an emirter follower is given in Fig. 2-49.
An equivalent circuit for this amplifier is shown in Fig. 2-50, where r, is the internal resistance of, and
e is a parameter of the particular semiconductor. Draw both an open-loop and a closed-loop block diagram

for this circuit with an input v;, and an output v,,,.
Tp
AW ©
B+ +
Battery +
- Power rVGK <> Ry Vout
Supply o
"’m
_ °
Yok = Vin T Your
Fig. 2-49 Fig. 2-50

Draw a block diagram for the human walking system of Problem 1.14.

Draw a block diagram for the human reaching system described in Problem 1.4.
Draw a block diagram for the automatic temperature-regulated oven of Problem 1.21.
Draw a block diagram for the closed-loop automatic toaster of Problem 1.17.

State the common dimensional units for the input and output of the following transducers: (a) accelerome-
ter, (b) generator of electricity, (¢) thermistor (temperature-sensitive resistor), (d) thermocouple.

Which systems in Problems 2.1 through 2.8 and 2.11 through 2.21 are servomechanisms?

The endocrine gland known as the adrenal cortex is located on top of each kidney (two parts). It secretes
several hormones, one of which is cortisol. Cortisol plays an important part in regulating the metabolism of
carbohydrates, proteins, and fats, particularly in times of stress. Cortisol production is controlled by
adrenocorticotrophic hormone (ACTH) from the anterior pituitary gland. High blood cortisol inhibits
ACTH production. Draw a block diagram of this simplified feedback control system.
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2.27.

2.28.

2.29.

2.30.
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2.32.

2.33.

2.34.

2.19.
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Draw block diagrams for each of the following elements, first with voltage v as input and current i as
output, and then vice versa: (a) resistance R, (b) capacitance C, (¢) inductance L.

Draw block diagrams for each of the following mechanical systems, where force is the input and position
the output: (@) a dashpot, (») a spring, (¢) a mass, (d) a mass, spring, and dashpot connected in series and
fastened at one end (mass position is the output).

Draw a block diagram of a (a) parallel, (b) series R-L-C network.
Which systems described in the problems of this chapter are regulators?

What type of sampled-data system described in this chapter might be used in implementing a device or
algorithm for approximating the integral of a continuous function u(r), using the well-known rectangular
rule, or rectangular integration technique?

Draw a simple block diagram of a computer-controlled system in which a digital computer is used to
control an analog plant or process, with the summing point and reference input implemented in software in
the computer.

What type of controller is the stopper valve of the water-filling system of Problem 2.7?

What types of controllers are included in: (a) each of the servomechanisms of Problems 2.9 and 2.10, (b)
the traffic regulator of Problem 2.127

Answers to Supplementary Problems

The equivalent circuit for the emitter follower has the same form as the voltage divider network of Problem
1.11. Therefore the open-loop equation for the output is
#Ry )
iy

pRx (v o) = —
T ) T S T+ R Re

rp+RK

=

Uou

and the open-loop block diagram is given in fig. 2-51.

Vin nRy Vout
rp + (1+ p)Rx

Fig. 2-51

The closed-loop output equation is simply
mRy
voul =
r,+ Ry

(010 — o)

and the closed-loop block diagram is given in Fig. 2-52.

Vin _+ aRy Vout
ry+ By

Fig. 2-52
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2.20.
E Control Element Plant
es
¥ Legs
Brain and
Desired Feet Actual
Walk Walk
Direction Direction
2.21.
Control Element Plant
Eyes
Arm
Brain and
Object Hand Hand
Position Position
2.22.
—— Control Elements
Plant
Thermostat
5T e
g () Switch |———»{ Heater Oven
Reference off u Oven
Oven - Temperature
Temperature b

When e > 0 (r> b), the switch turns the heater on. When e < 0, the heater is turned off.

2.23.
Color ]— Control Elements —_I
Detector Plant
i Switch on Tt i
Desired off -
Toast =
Color

Toast
Color

2.24. (a) The input to an accelerometer is acceleration. The output is displacement of a mass, voltage, or
another quantity proportional to acceleration.

(b) See Problem 1.2.

(¢) The input to a thermistor is temperature. The output is an electrical quantity measured in ohms, volts,

Or amperes.

(d) The input to a thermocouple is a temperature difference. The output is a voltage.

2.25. The following problems describe servomechanisms: Examples 1.3 and 1.5 in Problem 2.6, and Problems 2.7,

2.8,2.17, and 2.21.
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2.26.

ACTH Adrenal
Pituita
Normal & Cortex Blood
Cortisol — Cortisol
Level Level

2.30. The systems of Examples 1.2 and 1.4 in Problem 2.6, and the systems of Problems 2.7, 2.8, 2.12, 2.13, 2.14,
2.15, 2.22, 2.23, and 2.26 are regulators.

231. The sampler and zero-order hold device of Example 2.9 performs part of the process required for
rectangular integration. For this simplest numerical integration algorithm, the “area under the curve” (ie.,
the integral) is approximated by small rectangles of height u(z,) and width 7, | — ¢,. This result could be
obtained by first multiplying the output of the hold device u*(¢) by the width of the interval ¢, ,, — 1,
when w*(7) is on the interval between 1, and ¢, ,. The sum of these products is the desired result.

2.32.

2.33. If the stopper valve is a simple one of the type that can be only fully open or fully closed, it is an on-off
controller. But if it is that type that closes gradually as the tank fills, it is a proportional controller.

Chapter 3

Differential Equations, Difference Equations,
and Linear Systems

3.1 SYSTEM EQUATIONS

A property common to all basic laws of physics is that certain fundamental quantities can be
defined by numerical values. The physical laws define relationships between these fundamental
quantities and are usually represented by equations.

EXAMPLE 3.1. The scalar version of Newton's second law states that, if a force of magnitude f is applied to a
mass of M units, the acceleration a of the mass is related to f by the equation = Ma.

EXAMPLE 3.2. Ohm’s law states that, if a voltage of magnitude v is applied across a resistor of R units, the
current i through the resistor is related to v by the equation v = Ri.

Many nonphysical laws can also be represented by equations.

EXAMPLE 3.3. The compound interest law states that, if an amount P(0) is deposited for n equal periods of time
at an interest rate I for each time period, the amount will grow to a value of P(n) = P(OX1 + I)".

3.2 DIFFERENTIAL EQUATIONS AND DIFFERENCE EQUATIONS

Two classes of equations with broad application in the description of systems are differential
equations and difference equations.

Definition 3.1: A differential equation is any algebraic or transcendental equality which involves
either differentials or derivatives.

Differential equations are useful for relating rates of change of variables and other parameters.

EXAMPLE 3.4. Newton's second law (Example 3.1) can be written alternatively as a relationship between force f,
mass M, and the rate of change of the velocity v of the mass with respect to time ¢, that is, f= M(dv/dr).

EXAMPLE 3.5. Ohm’s law (Example 3.2) can be written alternatively as a relationship between voltage v,
resistance R, and the time rate of passage of charge through the resistor, that is, v = R(dg/dr).

EXAMPLE 3.6. The diffusion equation in one dimension describes the relationship between the time rate of
change of a quantity T in an object (e.g., heat concentration in an iron bar) and the positional rate of change of T
dT/dx = k(9T/3t), where k is a proportionality constant, x is a position variable, and  is time.

Definition 3.2: A difference equation is an algebraic or transcendental equality which involves more
than one value of the dependent variable(s) corresponding to more than one value
of at least one of the independent variable(s). The dependent variables do not
involve either differentials or derivatives.

Difference equations are useful for relating the evolution of variables (or parameters) from one
discrete instant of time (or other independent variable) to another.

39
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EXAMPLE 3.7. The compound interest law of Example 3.3 can be written alternatively as a difference equation
relationship between P(k), the amount of money after k periods of time, and P(k + 1), the amount of money after
k + 1 periods of time, that is, P(k +1)= (1 + I)P(k).

3.3 PARTIAL AND ORDINARY DIFFERENTIAL EQUATIONS

Definition 3.3: A partial differential equation is an equality involving one or more dependent and
two or more independent variables, together with partial derivatives of the depen-
dent with respect to the independent variables.

Definition 3.4: An ordinary (total) differential equation is an equality involving one or more
dependent variables, one independent variable, and one or more derivatives of the
dependent variables with respect to the independent variable.

EXAMPLE 3.8. The diffusion equation d7/dx = k(dT/dt) is a partial differential equation. T= T(x, ) is the
dependent variable, which represents the concentration of some quantity at some position and some time in the
object. The independent variable x defines the position in the object, and the independent variable ¢ defines the
time.

EXAMPLE 3.9. Newton’s second law (Example 3.4) is an ordinary differential equation: f= M(dv/dt). The
velocity v = v(t) and the force f= f(r) are dependent variables, and the time ¢ is the independent variable.

EXAMPLE 3.10. Ohm’s law (Example 3.5) is an ordinary differential equation: v = R(dq/dr). The charge
q = q(t) and the voltage v = v(t) are dependent variables, and the time ! is the independent variable.
EXAMPLE 3.11. A differential equation of the form:

dny dnly

o4
a,——+a, ,—— + - +a,— +ayy=u(t)
dr dt" ! dt

or, more compactly,

= dy(1)
a =u(t 3.1
Lo =40 (31)
where a, a,,..., a, are constants, is an ordinary differential equation. y(¢) and u(t) are dependent variables, and

t is the independent variable.

3.4 TIME VARIABILITY AND TIME INVARIANCE

In the remainder of this chapter, time is the only independent variable, unless otherwise specified.
This variable is normally designated ¢, except that in difference equations the discrete variable k is
often used, as an abbreviation for the time instant ¢, (see Example 1.11 and Section 2.5); that is, y(k)
is used instead of y(1,), etc.

A term of a differential or difference equation consists of products and/or quotients of explicit
functions of the independent variable, the dependent variables, and, for differential equations, deriva-
tives of the dependent variables.

In the definitions of this and the next section, the term equation refers to either a differential
equation or a difference equation.

Definition 3.5: A time-variable equation is an equation in which one or more terms depend
explicitly on the independent variable time.

Definition 3.6: A time-invariant equation is an equation in which none of the terms depends
explicitly on the independent variable time.
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EXAMPLE 3.12. The difference equation ky(k + 2)+ y(k) =u(k), where u and y are dependent variables, is
time-variable because the term ky(k + 2) depends explicitly on the coefficient k, which represents the time 1,.

EXAMPLE 3.13. Any differential equation of the form:
n d'y m d’u

LA Pl (3.2)
im0 df [y i

where the coefficients ay, ay,..., a,, b, b;,..., b, are constants, is time-invariant. The equation depends implicitly
on ¢, via the dependent variables ¥ and y and their derivatives.

3.5 LINEAR AND NONLINEAR DIFFERENTIAL AND DIFFERENCE EQUATIONS

Definition 3.7: A linear term is one which is first degree in the dependent variables and their

derivatives.
Definition 3.8: A linear equation is an equation consisting of a sum of linear terms. All others are

nonlinear equations.

If any term of a differential equation contains higher powers, products, or transcendental functions
of the dependent variables, it is nonlinear. Such terms include (dy/dr)’, u(dy/dt), and sin u, respec-
tively. For example, (5/cost)(d2y/dt?) is a term of first degree in the dependent variable y, and
2uy(dy/dt) is a term of fifth degree in the dependent variables u and y.

EXAMPLE 3.14. The ordinary differential equations (dy/dt)? +y=0 and d2y/dt? + cos y =0 are nonlinear
because (dy/dt)? is second degree in the first equation, and cos y in the second equation is nor first degree, which
is true of all transcendental functions.

EXAMPLE 3.15. The difference equation y(k+2)+ u(k+1)y(k+ 1)+ y(k)=u(k), in which u and y are
dependent variables, is a nonlinear difference equation because u(k + 1) y(k + 1) is second degree in u and y. This
type of nonlinear equation is sometimes called bilinear in u and y.

EXAMPLE 3.16. Any difference equation

n

Za,(k)y(k+i)=Z":ob,(k)u(k+i) (3.3)

i=0
in which the coefficients a,(k) and b,(k) depend only upon the independent variable k, is a linear difference
equation.

EXAMPLE 3.17. Any ordinary differential equation
" dy d'u
t)— =) b(1)— 3.4
i?oa’( )d" ,‘?0 r(l) drt ( )

where the coefficients a,(¢) and b,(r) depend only upon the independent variable ¢, is a linear differential equation.

3.6 THE DIFFERENTIAL OPERATOR D AND THE CHARACTERISTIC EQUATION

Consider the nth-order linear constant-coefficient differential equation

d"y d"_ly dy
d—t”—+a"71F+-~~+a,Z+a0y=u (35)
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It is convenient to define a differential operator

d
P=a
and more generally an nth-order differential operator
n— d"
b= dr”

The differential equation can now be written as
D"y +a, D" Y+ ---+aDy+agy=u
or (D"+a, \D"'+ .- +a,D+ag)y=u
Definition 3.9: The polynomial in D:
D"+a, D" '+ ... +a,D+a, (3.6)
is called the characteristic polynomial.
Definition 3.10: The equation
D"+a, D" '+ ---+aD+ay=0 (3.7)
is called the characteristic equation.

The fundamental theorem of algebra states that the characteristic equation has exactly n solutions
D=D,D=D,,...,D=D, These n solutions (also called roots) are not necessarily distinct.

EXAMPLE 3.18. Consider the differential equation
d’y dy

—+3 +2y=
dr? dt ryew

The characteristic polynomial is D?+ 3D + 2. The characteristic equation is D?+ 3D +2 =0,
which has the two distinct roots: D= —1and D= —2.

3.7 LINEAR INDEPENDENCE AND FUNDAMENTAL SETS

Definition 3.11: A set of n functions of time fi(?), f,(¢),..., f,(¢) is called linearly independent if the

only set of constants ¢, c,,..., ¢, for which
ah(t)+efo(t) + - +e,f,(1) =0
for all t are the constants ¢, =c,= --- =¢,=0.

EXAMPLE 3.19. The functions ¢ and * are linearly independent functions since
at+ett=t(c +cyt) =0

implies that ¢, /c, = —t. There are no constants that satisfy this relationship.

A homogeneous nth-order linear differential equation of the form:

n dy

E g dit

has at least one set of n linearly independent solutions.
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Definition 3.12:  Any set of n linearly independent solutions of a homogeneous nth-order linear
differential equation is called a fundamental set.

There is no unique fundamental set. From a given fundamental set other fundamental sets can be
generated by the following technique. Suppose that y,(?), y,(¢),..., (1) is a fundamental set for an

nth-order linear differential equation. Then a set of » functions z/(1), z,(t),..., z,(t) can be formed:
7(1) = X ayyi(1). 25(t) = L ayy,(1),....2,(1) = ¥ a,y,(1) (3.8)
i=1 i=1 i=1

where the a, are a set of n? constants. Each z,(¢) is a solution of the differential equation. This set of n
solutions is a fundamental set if the determinant

an 4 Q1
4y apn az, £0
anl %] arm

EXAMPLE 3.20. The equation for simple harmonic motion, d%y/dt> + w’y = 0, has as a fundamental set

¥y =sinwt Yy = Cos wt
A second fundamental set is*
2, = coswt + j sinwt = e/ z;=coswt—jsinwt=e '
Distinct Roots
If the characteristic equation
n
YabD =0
i=0
has distinct roots D,, D,,..., D,, then a fundamental set for the homogeneous equation
n 1
Z I dt' =
is the set of functions y, =e®, y, = ebl’,“., y,=ebn"

EXAMPLE 3.21. The differential equation

has the characteristic equation D? + 3D + 2 =0 whose roots are D= D, = —1 and D= D, = —2. A fundamental
set for this equation is y, =e' and y, = 2.

Repeated Roots

If the characteristic equation has repeated roots, then for each root D, of multiplicity n, (i.e., n,
roots equal to D,) there are n, elements of the fundamental set e 2, te2* ... 1%~ TP,

EXAMPLE 3.22. The equation

d’y dy
— 42— +y=0
ar? a

*The complex exponential function e*, where w = u + jv for real u and v, and j =V — 1, is defined in complex variable theory by
e" = e“(cos v + jsinv). Therefore e * /" = cos wi + j sinwt.
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with characteristic equation D? + 2D + 1 =0, has the repeated root D = —1, and a fundamental set consisting of
e "and te '

3.8 SOLUTION OF LINEAR CONSTANT-COEFFICIENT ORDINARY
DIFFERENTIAL EQUATIONS

Consider the class of differential equations of the form:

I m dl
¥ a2 .

= L
oo dtt [T dt
where the coefficients a, and b, are constant, u = u(t) (the input) is a known time function, and y = y(t)
(the output) is the unknown solution of the equation. If this equation describes a physical system, then
generally m <n, and n is called the order of the differential equation. To completely specify the
problem so that a unique solution y(t) can be obtained, two additional items must be specified: (1) the
interval of time over which a solution is desired and (2) a set of n initial conditions for y(1) and its first
n — 1 derivatives. The time interval for the class of problems considered is defined by 0 <7 < + 0. This
interval is used in the remainder of this book unless otherwise specified. The set of initial conditions is
dy d"ly
0 ST
y ( ) dt" 1

(3.9)

(3.10)

yeos

=0

=0

A problem defined over this interval and with these initial conditions is called an initial value problem.
The solution of a differential equation of this class can be divided into two parts, a free response

and a forced response. The sum of these two responses constitutes the rotal response, or solution y(7), of

the equation.

3.9 THE FREE RESPONSE

The free response of a differential equation is the solution of the differential equation when the
input u(1) is identically zero.
If the input u(r) is identically zero, then the differential equation has the form:

n dy
3.11
Lo (3.11)

The solution y(¢) of such an equation depends only on the » initial conditions in Equation (3.10).

EXAMPLE 3.23. The solution of the homogeneous first-order differential equation dy/dr+y =0 with initial
condition y(0)=c, is y(#)=ce ‘. This can be verified by direct substitution. ce”* is the free response of any
differential equation of the form dy/dr + y = u with the initial condition y(0) = c.

The free response of a differential equation can always be written as a linear combination of the
elements of a fundamental ser. That is, if y,(¢), y,(1),-.., y,(1) is a fundamental set, then any free
response y,(¢) of the differential equation can be represented as

n
va(t) = ¥ ey (1) (3.12)
il
where the constants c; are determined in terms of the initial conditions
dy dn ly

y(0), — @l oo

=0
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from the set of n algebraic equalions
dnf ly
" drn—l

i d"_l.,v‘
= c; =
o i=1 ar”

)": ay,
frt € dt
The linear independence of the y,(¢) guarantees that a solution to these equations can be obtained for
€1y Capenns €y

y(0) = ): ¢ y,(O)

i=1

(3.13)

t=0 =0

e

EXAMPLE 3.24. The free response y,(t) of the differential equation

d%y
W + 37 +2y=u
with initial conditions y(0) =0, (dy/dt)],.o =1 is determined by letting

y,(t) =cie™' + ce ¥

where ¢, and ¢, are unknown coefficients and e’ and ¢~ %

Since y,(t) must satisfy the initial conditions, that is,

are a fundamental set for the equation (Example 3.21).

dya (1) dy
= =0= == =1=-—¢=2
(0 =p(0) =0=¢; + ¢ a |, dtl, 1 0~ 26
then ¢, =1 and ¢, = — 1. The free response is therefore given by y, () =e  — e~ 2

3.10 THE FORCED RESPONSE
The forced response y,(7) of a differential equation is the solution of the differential equation when

all the initial conditions

dn 1 y

dy
Y(O)-E v T

=0 =0
are identically zero.

The implication of this definition is that the forced response depends only on the input u(7). The
Jorced response for a linear constant-coefficient ordinary differential equation can be written in terms of

a convolution integral (see Example 3.38):

wo(1) = fw(e=r) ibd'“( )]d, (3.14)

where w(t— 1) is the weighting function (or kernel) of the differential equation. This form of the
convolution integral assumes that the weighting function describes a causal system (see Definition 3.22).
This assumption is maintained below.

The weighting function of a linear constant-coefficient ordinary differential equation can be written

as
n
w(t) = Zciyi(t) 120
im1
=0 t<0 (3.15)
where ¢,,..., ¢, are constants and the set of functions y,(r), y,(¢),..., y,(¢) is a fundamental set of the

differential equation. It should be noted that w(t) is a free response of the differential equation and
therefore requires n initial conditions for complete specification. These conditions fix the values of the
constants ¢, c,,...,c, The initial conditions which all weighting functions of linear differential
equations must satisfy are

d"lw

=0, ——
° n-1
=0 ar

=1 (3.16)

t=0

0 =0 daw 0 d" 2w
w(0) =0, 7 1_0— e AT
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EXAMPLE 3.25. The weighting function of the differential equation
d’y  dy
— +
dr? dt
is a linear combination of ¢ * and ¢ ¥’ (a fundamental set of the equation). That is,
w(t)=cie " +ce ¥

¢, and ¢, are determined from the two algebraic equations

dw
w(0)=0=c, +c, El-0=l=—q~2('2
The solution is ¢, =1, ¢; = ~ 1, and the weighting function is w(r)=¢" " — e~ .

EXAMPLE 3.26. For the differential equation of Example 3.25, if u(r) = 1, then the forced response y,(7) of the
equation is

(1) =](;'w(r47}u(‘r) d‘r=/0'[e (Mg MmN gy

1
—p ! L _ 20 2r = — _ -1 -2
e j;e dr—e foe dr 2(1 2e " +e7%)

3.11 THE TOTAL RESPONSE

The total response of a linear constant-coefficient differential equation is the sum of the free
response and the forced response.

EXAMPLE 3.27. The total response y(t) of the differential equation

d’y dy
43— 42y=1
dr? a7

with initial conditions y(0) =0 and (dy/dt)|,., =1 is the sum of the free response y,() determined in Example

3.24 and the forced response y,(t) determined in Example 3.26. Thus

O =) (D =(e =) 4 S (1-2e The ) =2 (1-e )

3.12 THE STEADY STATE AND TRANSIENT RESPONSES

The steady state response and transient response are another pair of quantities whose sum is equal to
the total response. These terms are often used for specifying control system performance. They are
defined as follows.

Definition 3.13: The steady state response is that part of the total response which does not approach
zero as time approaches infinity.

Definition 3.14:  The transient response is that part of the total response which approaches zero as
time approaches infinity.

EXAMPLE 3.28. The total response for the differential equation in Example 3.27 was determined as y = 1 — e .

Clearly, the steady state response is given by y, =4. Since lim,_ [~ 1e ‘]=0, the transient response is
= 1 I

Yr= "€
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3.13 SINGULARITY FUNCTIONS: STEPS, RAMPS, AND IMPULSES

In the study of control systems and the equations which describe them, a particular family of
functions called singularity functions is used extensively. Each member of this family is related to the
others by one or more integrations or differentiations. The three most widely used singularity functions
are the unit step, the unit impulse, and the unit ramp.

Definition 3.15: A unit step function 1(1 — #,) is defined by

1 for t>1,
— 1) = A7
1t =) {0 for 1<t, (3.17)
The unit step function is illustrated in Fig. 3-1.
1(r) = 1(r - A7)
Unit Step Unit Ramp 1 - Aar
1 at
11— e
|
T t=t t | =1, t at t
t=0 t=20
Fig. 3-1 Fig. 3-2 Fig. 3-3
Definition 3.16: A unit ramp function is the integral of a unit step function
' i) for 1>1,
f,ml(‘r_t“)dfa{ 0 for t1<1, (3.18)
The unit ramp function is illustrated in Fig. 3-2.
Defnition 3.17: A unit impulse function §(7) may be defined by
1(¢) = 1(r - Ar)
8(t)= lim | ——— 3.19)*
- [ 2 (319

Ar>0
where 1(¢) is the unit step function.
ﬁ’t:g} may be abbreviated by Ar — 0*, meaning that Ar approaches zero from the

right. The quotient in brackets represents a rectangle of height 1/Ar and width Ar as shown in Fig. 3-3.
The limiting process produces a function whose height approaches infinity and width approaches zero.
The area under the curve is equal to 1 for all values of Az. That is,

f_w 8(1)dr=1

The unit impulse function has the following very important property:

The pair {

Screening Property: The integral of the product of a unit impulse function 8(¢ — #,) and a function
f(t), continuous at t = t, over an interval which includes ¢, is equal to the function

*In a formal sense, Equation (3./9) defines the one-sided derivative of the unit step function. But neither the limit nor the
derivative exist in the ordinary mathematical sense. However, Definition 3.17 is satisfactory for the purposes of this book. and
many others.
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f(¢) evaluated at ¢, that is,
" 08015y dr=1(sy) (3.20)

Definition 3.18: The unit impulse response of a system is the output y(7) of the system when the
input u(¢)=8(¢) and all initial conditions are zero.

EXAMPLE 3.29. If the input-output relationship of a linear system is given by the convolution integral
y(1) =f[w(t— tu(r) dr
(]
then the unit impulse response y;(¢) of the system is

(1) =j0'w(,—1)sﬁ)m:/ﬁl.«(:-ﬂ 8(7) dr=w(1) (3.21)

since w(sr—r1)=0 for r>r, 8(r) =0 for 1 <0, and the screening property of the unit impulse has been used to
evaluate the integral.

Definition 3.19: The unit step response is the output y(¢) when the input u(¢) = 1(¢) and all initial
conditions are zero.

Definition 3.20:  The unit ramp response is the output y(z) when the input u(z)=1¢ for +>0,
u(1) =0 for t <0, and all initial conditions are zero.

3.14 SECOND-ORDER SYSTEMS

In the study of control systems, linear constant-coefficient second-order differential equations of the

form:
2
% +2§'oo,,fjdzr + Wiy =wlu (3.22)

are important because higher-order systems can often be approximated by second-order systems. The
constant { is called the damping ratio, and the constant w, is called the undamped natural frequency of
the system. The forced response of this equation for inputs u belonging to the class of singularity
functions is of particular interest. That is, the forced response to a unit impulse, unit step, or unit ramp
is the same as the wunit impulse response, unit step response, or unit ramp response of a system
represented by this equation.

Assuming that 0 < § < 1, the characteristic equation for Equation (3.22) is

D?+ 2w, D+ W= (D+§w,I — jwyl —{2)(D+{w"+jw"\/l —{2) =0
Hence the roots are
D= —{w, +jo 1§ = —a+tju, Dy = ~{w, —juy1-§* = —a—ju,

where a ={w, is called the damping coefficient, and w,= w1 —{? is called the damped natural
frequency. a is the inverse of the time constant 7 of the system, thatis, 7=1/a.

The weighting function of Equation (3.22) is w(r) = (1/w,;)e” *sinw,r. The unit step response is
given by

af
w,e

y,(t) = f’w(:af)wgdm 1~ sin(w,t + ¢) (3.23)
0
where ¢ = tan~ }(w,/a).
Figure 3-4 is a parametric representation of the unit step response. Note that the abscissa of this
family of curves is normalized time w,?, and the parameter defining each curve is the damping ratio {.
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Fig. 3-4

3.15 STATE VARIABLE REPRESENTATION OF SYSTEMS DESCRIBED BY LINEAR
DIFFERENTIAL EQUATIONS

In some problems of feedback and control, it is more convenient to describe a system by a set of
first-order differential equations rather than by one or more nth-order differential equations. One
reason is that quite general and powerful results from vector-matrix algebra can then be easily applied
in deriving solutions for the differential equations.
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EXAMPLE 3.30. Consider the differential equation form of Newton’s second law, f= M(d2x/dt?). It is clear
from the meanings of velocity v and acceleration a that this second-order equation can be replaced by two
first-order equations, v = dx/dt and f= M(dv/dr).

There are numerous ways to transform nth-order differential equations into n first-order equations.
One of these is quite prevalent in the literature, and straightforward, and we introduce only this
transformation here, to illustrate the approach. Consider the nth-order, single-input linear constant-
coefficient differential equation

a v =u
iwo di
This equation can always be replaced by the following n first-order differential equations:
dx,
a7
dx,
a
dxn—l
a0
dx 1 [nz) 1
T~ - — ax,., |+ —u 3.24,
dI an{:1§0 o l:l an ( a)
where we have chosen x, = y. Using vector-matrix notation, this set of equations can be written as
[ P 0 o [« [°]
dr o 0
e 0 0 1 0 :
a |= REN R I (3.24b)
dx,, a, a, a, a,_, 1
o] | e, e e, a, IL"] La, |

or, more compactly, as
+b 3.
’ X u C

In Equation (3.24c) x = x(7) is called the state vector, with n time functions x,(¢), x,()...., x,(t) as its
elements, called the state variables of the system. The scalar input of the system is u(z).

More generally, multiinput-multioutput (MIMO) systems described by one or more linear constant-
coefficient differential equations can be represented by a vector-matrix differential equation of the form:

[ dx, T T m 7 T T 1
a,, 4ap T Ay, (| X1 by by T by, || m
dr
dx,
- a a e a X b b - b u
dt - 2 22 2n 2 + 21 22 2r 2 (325‘1)
dx,
a, (%) Tt a,, X, bnl bnl e bnr u,
L dt - L -~ L = - L -
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or, more compactly, as

= + .
” X u

In Equation (3.25b) x is defined as in Equation (3.24c), 4 is the n X n matrix of constants a,,, and B is
the n X r matrix of constants b, each given in Equation (3.254), and u is an r-vector of input
functions.

'

The Transition Matrix

The matrix equation

A%

where @ is an n X n matrix of time functions, called the transition matrix of the differential equation
(3.24¢) or (3.25b), has a special role in the solution of vector-matrix differential equations like Equation
(3.25b). If I is the nXn identity or unit matrix, and ®(0)= 17 is the initial condition of this
homogeneous equation, the transition matrix has the special solution: ®(¢) = e*". In this case e*' is an
n X n matrix function defined by the infinite series:

A4? ABr]
At = — ...
et'=1+At+ o + 3 +
® also has the property, called the transition property, that for all 1,, t,, and ;: ®(t, — 1,)®(1, — 13) =

Oty - 15).

To solve the differential equation (3.24) or (3.25), the time interval of interest must be specified, for
example, 0 < ¢ < +00, and an initial condition vector x(0) is also needed. In this case, the general
solution of Equation (3.25) ts

x(1) =e*x(0) + [e**""Bu(r) dr (3.26)

The initial condition x(0) is sometimes referred to as the state of the system at time t=0. From
Equation (3.26) we see that knowledge of x(0), and the input u(¢) on the interval 0 <t < + 00, are
adequate to completely determine the state variables for all time 7 > 0. Actually, knowledge of the state
of the system at any time ¢', 0 <1’ < + 00, and knowledge of the input u(z), 1" <t < + o0, are adequate
to completely define the state vector x(z) at all subsequent times 1 > ¢’.

3.16 SOLUTION OF LINEAR CONSTANT-COEFFICIENT DIFFERENCE EQUATIONS

Consider the class of difference equations

n m
Yay(k+i)y=Y bu(k+i) (3.27)
i=0 i=0
where k is the integer-valued discrete-time variable, the coefficients a; and b, are constant, a4, and a,
are nonzero, the input u(k) is a known time sequence, and the output y(k) is the unknown sequence
solution of the equation. Since y(k + n) is an explicit function of y(k), y(k + 1),..., y(k + n —1), then
n is the order of the difference equation. To obtain a unique solution for y(k), two additional items
must be specified, the time sequence over which a solution is desired, and a set of » initial conditions
for y(k). The time sequence for the class of problems treated in this book is the set of nonnegative
integers, that is, k =0,1,2,.... The set of initial conditions is

¥(0), y(1),..., y(n—-1) (3.28)

A problem defined over this time sequence and with these initial conditions is called an initial value
problem.
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Consider the nth-order linear constant-coefficient difference equation
ylk+n)+a, ylk+n=-1)+ - +a,p(k+1) +ayylk)=u(k) (3.29)
It is convenient to define a shift operator Z by the equation
Z[y(k)] =y(k+1)
By repeated application of this operation, we obtain
Zr [y =2z[Z[...z[y(k)]...]] =y(k +n)
Similarly, a unity operator / is defined by
Iy(k)] =y(k)
and Z°%=I. The operator Z has the following important algebraic properties:
1. For constant ¢, Z[cy(k)] = cZ[y(k)]
2. ZMy(k) + x(k)) = ZM y(k))+ Z7[x(k)]
The difference equation can thus be written as
Z' [yl +a,, 27y + - +a Z[ (k)] +agy(k) = u(k)
or (Z"+a,.,.27 '+ - +a Z +ap) [ p(k)] = u(k)
The equation
Z'+a, \Z" '+ - +a;Z+ay=0 (3.30)

is called the characteristic equation of the difference equation, and, by the fundamental theorem of
algebra, it has exactly n solutions: Z=2,,Z=2,,...,Z=2Z,.

EXAMPLE 3.31. Consider the difference equation
5 1
y(k+2)+ —éy(k-(> 1) + gy(k) =u(k)
The characteristic equation is Z% + £Z + £ = 0 with two solutions, Z= ~4{ and Z= - 1.

A homogeneous nth-order linear difference equation has at least one set of n linearly independent
solutions. Any such set is called a fundamental set. As with differential equations, fundamental sets are
not unique.

If the characteristic equation has distinct roots Z,, Z,,..., Z,, a fundamental set for the homoge-
neous equation .,

Yaylk+i)=0 (3.31)
i=0
is the set of functions Z¥, Z%,..., ZX.

EXAMPLE 3.32. The difference equation
5 1
y(k+2)+ gy(k+l) + gy(k)=0

has the characteristic equation Z*> + $Z + 1 =0, with roots Z=Z, = —  and Z=Z, = — }. A fundamental set of
this equation is y,(k) =(— 3)* and y(k)=(- Hk

If the characteristic equation has repeated roots, then for each root Z, of multiplicity n,, there are
n, elements of the fundamental set Z¥, kZ¥, ..., k™" =2Zk km1Zk,

EXAMPLE 3.33. The equation y(k +2) + y(k + 1) + Lp(k) = O with the repeated root Z = — ! has a fundamen-
tal set consisting of (— 4)* and k(— 1)

The free response of a difference equation of the form of Equation (3.27) is the solution when the
input sequence is identically zero. The equation then has the form of Equation (3.37) and its solution
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depends only on the » initial conditions (3.28). If y,(k), y,(k),..., y.(k) is a fundamental set, then
any free response of the difference equation (3.27) can be represented as

R = Eenlk)

where the constants ¢; are determined in terms of the initial conditions y,(0) from the set of » algebraic
equations:

»(0) = ):1 e (0)

y(1) = ): ey, (1)

i=1

yn-1)= L ey(n-1) (3.32)

i=1

The linear independence of the y,(k) guarantees a solution for ¢,, ¢,,..., ¢

ne

EXAMPLE 3.34. The free response of the difference equation y(k +2) + 2y(k + 1) + Ly(k) = u(k) with initial
conditions y(0) =0 and y(1) =1 is determined by letting

sl o3

where ¢, and ¢, are unknown coefficients and (— 1)* and (- 4)* are a fundamental set for the equation (Example
3.32). Since y,(k) must satisfy the initial conditions, that is,

Ya(0) =y(0) =0=c, +c,
1
)=y =1=--a-3¢
then ¢, = — 6 and ¢, = 6. The free response is therefore given by y,(k) = —6(— L)* + 6(— 1)~

The forced response y,(k) of a difference equation is its solution when all initial conditions
y(0), y(1),..., y(n—1) are zero. It can be written in terms of a convolution sum:

k~-1 m
y(k)= Zw(k—j)[zbiu(j+i)] k=0,1,...,n (3.33)
j=0 i=0
where w(k — j) is the weighting sequence of the difference equation. Note that y,(0) = 0 by definition of
the forced response, and w(k —j)=0 for k <j (see Section 3.19). If u(j)=8(j)=1 for j=0, and
8(j)=0 for j+0, the special input called the Kronecker delta sequence, then the forced response
yu(k) = yg(k) is called the Kronecker delta response.
The weighting sequence of a linear constant-coefficient difference equation can be written as

" M)
w(k—l)=j§l a,,M(I)yj(k) (3.34)

where y,(k), y,(k),..., y,(k) is a fundamental set of the difference equation, M(/) is the determinant:

n(+1) yI+1) -y (I+1)
M(I)= )’1(1:+Z) )’2(1:“’ 2) yn(1;+ 2)
n(+n) y(i+n) o p(i+n)

and M (/) is the cofactor of the last element in the jth column of M(/).
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EXAMPLE 3.35. Consider the difference equation y(k + 2) + 2y(k + 1) + Ly(k) = u(k). The weighting sequence
is given by
M (1) M, (1)
+
M) n(k) M) y.(k)

where (k) = (= D", pak) = (= DA M) = = (= D' My() =(=}'"*?, and

wlk-1)=

o d O sy

Therefore

wom 3 o)

As for continuous systems, the total response of a difference equation is the sum of the free and
forced responses of the equation. The transient response of a difference equation is that part of the total
response which approaches zero as time approaches infinity. That part of the total response which does
not approach zero is called the steady state response.

3.17 STATE VARIABLE REPRESENTATION OF SYSTEMS DESCRIBED BY LINEAR
DIFFERENCE EQUATIONS

As with differential equations in Section 3.15, it is often useful to describe a system by a set of
first-order difference equations, rather than by one or more nth-order difference equations.

EXAMPLE 3.36. The second-order difference equation
5 1
y(k+2)+ cy(k+1) + 2y(k) =u(k)

can be written as the two first-order equations:
x(k+1)=x,(k)

5 1
x(k+1)= - zxz(k) - '6"‘1(") +u(k)
where we have chosen x,(k) = y(k).

Consider the nth-order, single-input, linear constant-coefficient difference equation

n
Yoay(k+i)=u(k)
i=0
This equation can always be replaced by the following n first-order difference equations:
x(k+1)=x,(k)
x3(k +1) = x3(k)

%y (k4 1) = x, (k)
x,(k+1)= —al[nila,-x,ﬂ(k)]+ alu(k) (3.35a)

n i=0Q

where we have chosen x,(k) = y(k). Using vector-matrix notation, this set of equations can be written
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as the vector-marrix difference equation

weenl [0 o ] [
. k .
x(k+1) : 0 0N L L, ()
: . . 1 . 0
x"(k+1) ‘—(10/(1" —al/an —anfl/an X"(k) l/a"
or, more compactly, as
x(k+1) = Ax(k) + bu (3.35¢)

In these equations, x(k) is an n-vector element of a time sequence called the state vector, made up of
scalar elements x,(k), x,(k),..., x,(k) called the state variables of the system at time k.

In general, multiinput-multioutput (MIMO) systems described by one or more linear constant-coef-
ficient difference equations can be represented by

x(k+1)=Ax(k) + Bu(k) (3.36)

where x(k) is the state vector of the system, as above, 4 is an n X n matrix of constants a,, and B is
an n X r matrix of constants b, , each defined as in Equation (3.25a), and u(k) is an r-vector element
of a (multiple) input sequence. Given a time sequence of interest k = 0,1,2,..., and an initial condition
vector x(0), the solution of Equation (3.36) can be written as

(k) = 44%(0) + 3 451 7Bu(j) (3.37)
Jj=0

Note that Equation (3.37) has a form similar to Equation (3.26). In general, however, 4* need not have
the properties of a transition matrix of a differential equation. But there is one very important case
when A* does have such properties, that is, where A% is a transition matrix. This case provides the basis
for discretization of differential equations, as illustrated next.

Discretization of Differential Equations

Consider a differential system described by Equation (3.26). Suppose it is only necessary to have
knowledge of the state variables at periodic time instants t =0, T,27T,..., k7,..., . In this case, the
following sequence of state vectors can be written as

x(T) = e*7x(0) + jo TeAT-0By(r) dr

x(2T) = e*™x(T) + e"TfZTe'“T")Bu(T) dr
T

k
X(KT) = e*"™x((k = 1)T) + e**- 07 [ T eAT-"Bu(7) dr
(k-1DT

If we suppress the parameter T, use the abbreviation x(k) = x(kT'), and define a new input sequence by

k+D)T
u(k) =e"‘Tf( = eT~"Bu(r1) dr
kT

then the set of solution equations above can be replaced by the single vector-matrix difference equation
x(k+1)=eTx(k)+w'(k) (3.38)

Note that 4’ =7 is a transition matrix in Equation (3.38).
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3.18 LINEARITY AND SUPERPOSITION

The concept of linearity has been presented in Definition 3.8 as a property of differential and
difference equations. In this section, linearity is discussed as a property of general systems, with one
independent variable, time ¢. In Chapters 1 and 2, the concepts of system, input, and output were
defined. The following definition of linearity is based on these earlier definitions.

Definition 3.21: If all initial conditions in the system are zero, that is, if the system is completely at
rest, then the system is a linear system if it has the following property:

(a) If an input u\(¢) produces an output y,(r), and
(b) an input u,(¢) produces an output y,(r),

(¢) then input c,u,(1) + c,u,(t) produces an output ¢, y;(1) + ¢, y,(¢) for all pairs
of inputs u)(t) and u,(¢) and all pairs of constants ¢, and c,.

Linear systems can often be represented by linear differential or difference equations.

EXAMPLE 3.37. A system is linear if its input-output relationship can be described by the linear differential
equation

d d' m d'u
an,(t)d—l),’ - LG (3.39)

where y = y(¢) is the system output and u = u(t) is the system input.

EXAMPLE 3.38. A system is linear if its input-output relationship can be described by the convolution integral
o«
y(!)=f w(i,7)u(r) dr (3.40)

where w(t, 7) is the weighting function, which embodies the internal physical properties of the system, y(¢) is the
output, and u(t) is the input.

The relationship between the systems of Examples 3.37 and 3.38 is discussed in Section 3.10.
The concept of linearity is often expressed by the principle of superposition.

Principle of Superposition: The response y(r) of a linear system due to several inputs
u (1), u(2),..., u,(r) acting simultaneously is equal to the sum of the responses of each input
acting alone, when all initial conditions in the system are zero. That is, if y,(¢) is the response due
to the input u,(z), then

20 = £ 50

EXAMPLE 3.39. A linear system is described by the linear algebraic equation

y() =2u (1) +uy(r)

where u,(1) =t and u,(t) = ¢* are inputs, and y(¢) is the output. When u,(#) = and u,(¢) =0, then p(t) =y, (1)
=2t When u(¢)=0 and u,(t) =13, then y(t)=y,(t) =12 The total output resulting from u(r)=¢ and
uy(t) =1* is then equal to

() =n() +p()=2+r

The principle of superposition follows directly from the definition of linearity (Definition 3.21). Any
system which satisfies the principle of superposition is linear.

CHAP. 3] DIFFERENTIAL AND DIFFERENCE EQUATIONS, AND LINEAR SYSTEMS 57

3.19 CAUSALITY AND PHYSICALLY REALIZABLE SYSTEMS

The properties of a physical system restrict the form of its output. This restriction is embodied in
the concept of causality.

Definition 3.22: A system in which time is the independent variable is called causal if the output
depends only on the present and past values of the input. That is, if y(?) is the
output, then y(¢) depends only on the input u(r) for values of 7 <1t.

The implication of Definition 3.22 is that a causal system is one which cannot anticipate what its
future input will be. Accordingly, causal systems are sometimes called physically realizable systems. An
important consequence of causality (physical realizability) is that the weighting function w(t, 1) of a
causal linear continuous system is identically zero for 7> ; that is, future values of the input are
weighted zero. For causal discrete systems, the weighting sequence w(k —j) =0 for j > k.

Solved Problems

SYSTEM EQUATIONS

3.1. Faraday’s law states that the voltage v induced between the terminals of an inductor is equal to
the time rate of change of flux linkages. (A flux linkage is defined as one line of magnetic flux
linking one turn of the winding of the inductor.) Suppose it is experimentally determined that
the number of flux linkages X is related to the current i in the inductor as shown in Fig. 3-5. The
curve is approximately a straight line for — 1, <i < I,. Determine a differential equation, valid
for — I, <i < I, which relates the induced voltage v and current i.

Agl-———-2

_____ —Ag

Fig. 3-5

Faraday’s law can be written as v = dX/dr. It is seen from the graph that

Ao
A=|—|]i=Li —L<i<l
I

where L =A/], is called the inductance of the inductor. The equation relating v and i is obtained by
substituting Li for A:

ar_d o b ‘
v= dfzd‘( )= o Where -L<i<l,
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3.2. Determine a differential equation relating the voltage v(¢) and the current i(z) for ¢ > 0 for the
electrical network given in Fig. 3-6. Assume the capacitor is uncharged at 7= 0, the current i is
zero at ¢ =0, and the switch S closes at ¢+ =0.

R
S
+ T
Voltage L
source v
- C
I
u
Fig. 3-6

By Kirchhoff’s voltage law, the applied voltage v(7) is equal to the sum of the voltage drops vg, v,
and v, across the resistor R, the inductor L, and the capacitor C, respectively. Thus

d 1.,
v=vR+vL+vC=Ri+LE+Ej;i(-r)d'r

To eliminate the integral, both sides of the equation are differentiated with respect to time, resulting in the
desired differential equation:
L di R d i dv
— +R—+—=—
ar  a C 4t

3.3. Kepler’s first two laws of planetary motion state that:

1. The orbit of a planet is an ellipse with the sun at a focus of the ellipse.
2. The radius vector drawn from the sun to a planet sweeps over equal areas in equal times.
Find a pair of differential equations that describes the motion of a planet about the sun, using
Kepler’s first two laws.

From Kepler’s first law, the motion of a planet satisfies the equation of an ellipse:

P
1+ecosd

where r and @ are defined in Fig. 3-7, and p=b*/a=a(l — €?).

Fig. 3-7

In an infinitesimal time 4t the angle f increases by an amount df. The area swept out by r over the
period dr is therefore equal to dd = 4r2dd. The rate at which the area is swept out by r is constant
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34.

(Kepler’s second law). Hence

dA 1 _df dé
— = —-r?— =constant or r*— =k
d 2 4 dt
The first differential equation is obtained by differentiating this result with respect to time:
drdg  d% dr df . d* 0
—_—— 4yt — = —_— _—=
"@d T ar or didi " ar

The second equation is obtained by differentiating the equation of the ellipse:
dr pesinf db
ar [ (1 + ecos8)’ dr
Using the results that d6/dt =k/r* and (1 + ecos@) = p/r, dr/dt can be rewritten as
ff = iIisinf?

d p
Differentiating again and replacing r?(d8/dr) with k yields

d*r e\[ k?
E;=(;) F cos@

d*r kz[p } k2 k?

it pr? 3 2

But cos @ = (1/¢)[ p/r — 1]. Hence

7_ B pr

Substituting r(d8/dr)? for k*/r>, we obtain the required second differential equation:
d’r (dﬂ)z k? d*r (da)z k2
+ r =

R _ —_— =0 —_— J—
a? "\ prt o dr

pr’

A mathematical model for a feature of nervous system organization called lateral inhibition has
been produced as a result of the work of several authors [2, 3, 4]. Lateral inhibitory phenomena
can be simply described as inhibitory electrical interaction among laterally spaced, neighboring
neurons (nerve cells). Each neuron in this model has a response ¢, measured by the frequency of
discharge of pulses in its axon (the connection “cable” or “wire”). The response is determined by
an excitation r supplied by an external stimulus, and is diminished by whatever inhibitory
influences are acting on the neurons as a result of the activity of neighboring neurons. In a
system of n neurons, the steady state response of the kth neuron is given by

n
k=T ™ Z ay_C;
i=]

where the constant a, _, is the inhibitory coefficient of the action of neuron i on k. It depends
only on the separation of the kth and ith neurons, and can be interpreted as a spatial weighting
function. In addition, a,, = a_,, (symmetrical spatial interaction).

(a) If the effect of neuron i on k is not immediately felt, but exhibits a small time lag Az, how
should this model be modified?

(b) If the input r (t) is determined only by the output ¢,, At seconds prior to ¢ [r, (1) =
¢, (t — At)), determine an approximate differential equation for the system of part (a).

(a) The equation becomes

() =r(0) - ¥ a1~ A1)

f=1
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(b) Substituting ¢, (1 — Ar) for r(¢),

() —q(t—-at)y =~ a,_,c(1-Ar)
im]
Dividing both sides by Ar,
(1) - (1-Ar) & Gk
a2 (G-

The left-hand side is approximately equal to dc,/dr for small Ar. If we additionally assume that
¢,(t— A1) = ¢ (1) for small Ar, then we get the approximate differential equation

£ (om0

i=1

i=1

de;
d

Determine a mathematical equation describing the sampled-data output of the ideal sampler
described in Definition 2.12 and Example 2.8.

A convenient representation of the output of an ideal sampler is based on an extension of the concept
of the unit impulse function §(7) into an impulse train, defined for ¢ > 0 as the function

oc
mr(1) =8() +8(r—0)+8(t—1)+ - = ¥ 8(1—-1,)
k=0
where ¢, =0 and t,,, > t,. The sampled signal u*(¢) is then given by
w() =u()mr(1) =u(r) ¥ 8(1-1,)
k=0

The utility of this representation is developed beginning in Chapter 4, following the introduction of
transform methods.

Show how the simple R-C network given in Fig. 3-8 can be used to approximate the sample and
(zero-order) hold function described in Example 2.9.

This system element operates as follows. When the sampling switch S is closed, the capacitor C is
charged through the resistor R, and the voltage across C approaches the input u(¢). When § is opened, the
capacitor cannot release its charge, because the current (charge) has nowhere to dissipate, so it holds its
voltage until the next time S is closed. If we describe the opening and closing of the switch by the simple

N

._/ '’

+ | +

u(t) i1 C Yol t)
Fig. 3-8
function:
mg(1) = 1 if § is closed

ST if S is open

we can say the current through R and C is modulated by mg(r). In these terms, we can write

(1) =ms(t)( u(1) _;HO(I))
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and, since i = Cdyy,/dt, the differential equation for this circuit is

Do _ (220 1

dt RC

We note that this is a fime-varying differential equation, due to the multiplicative function mg(t) on the
right-hand side. Also, as RC becomes smaller, that is, 1/RC becomes larger, dy;,/dt becomes larger and
the capacitor charges faster. Thus a smaller RC in this circuit creates a better approximation of the sample
and hold function.

3.7. If the sampler in the previous problem is ideal, and the sampling rate is uniform, with period T,
what is the differential equation?

The ideal sampler impulse train modulating function m;;(7) was defined in Problem 3.5. Thus the
differential equation of the sample and hold becomes

— o0
fyﬂ=(ﬂ) 8(t— kT)
dt RC | 5,

In this idealization, impulses replace current pulses.

CLASSIFICATIONS OF DIFFERENTIAL EQUATIONS

3.8. Classify the following differential equations according to whether they are ordinary or partial.
Indicate the dependent and independent variables.

dx dy _
(a) E—+:17+x+y—0 x=x(1) y=y(1)
a a
(b) a—f+-a—f+X+y=0 f=f(x,y)
X Yy
dfaf _ ) dx
(¢) E E =0 f—-x +‘d—l
dj_ ., dy
(d) it f—}’(x)+E

(a) Ordinary; independent variable ¢; dependent variables x and y.

(b) Partial; independent variables x and y; dependent variable f.

(c¢) Since df/dx =2x, then (d/dt)[df/dx)=2(dx/dt) =0, which is an ordinary differential equation;
independent variable ¢; dependent variable x.

(d) df/dx=2y(dy/dx)+ d*y/dx* = x, which is an ordinary differential equation; independent variable
x; dependent variable y.

3.9. Classify the following linear differential equations according to whether they are time-variable or
time-invariant. Indicate any time-variable terms.
d?y 1re0 1 \d¥ 1 0
— +2y= — = +— 1y =
(a) ar () (r+l)dt2 (r+1)y
d2

Y
(d) s +(cost)y=0

d 2
() 2= 0
(a) Time-invariant.
(b) (d/dt)(t*y) =2ty + t}(dy/dt) = 0. Dividing through by 1, #(dy/dt) + 2y =0 which is time-variable.
The time-variable term is ¢(dy/dt).
(¢) Multiplying through by r + 1, we obtain d2y/dt* + y = 0 which is time-invariant.

(d) Time-variable. The time-variable term is (cos ) y.
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3.10. Classify the following differential equations according to whether they are linear or nonlinear.
Indicate the dependent and independent variables and any nonlinear terms.

dy d¥y
(a) e +y=0 y=y@) (d) (cost)—5 +(sin20)y=0  y=y(1)
't dt
dy oo
(&) Y +y=0 y=y() (e) (cosy)—5 +sin2y=0 y=xy()
t dt
dy dry
(c) Z+y2=0 y=y@) H (cosx)F +sin2x=0 y=y(), x=x(1)

(a) Linear; independent variable ¢; dependent variable y.

(b) Nonlinear; independent variable r; dependent variable y; nonlinear term y(dy/dt).

(¢) Nonlinear; independent variable t; dependent variable y; nonlinear term y2.

(d) Linear; independent variable ¢; dependent variable y.

(e) Nonlinear; independent variable ; dependent variable y; nonlinear terms (cos y) d*y/dt? and sin2 y.

(f) Nonlinear; independent variable ¢; dependent variables x and y; nonlinear terms (cos x) d2y/dt*
and sin2x.

3.11. Why are all transcendental functions nor of first degree?

Transcendental functions, such as the logarithmic, trigonometric, and hyperbolic functions and their
corresponding inverses, are not of first degree because they are either defined by or can be written as infinite
series. Hence their degree is in general equal to infinity. For example,

o0 xZn‘l XJ XS
inx= ) e - -
simx ");'1( e TR TR

where the first term is first degree, the second is third degree, and so on.

THE CHARACTERISTIC EQUATION

3.12. Find the characteristic polynomial and characteristic equation for each system:
<l
s dly  d dty  d’ ,

711_‘+9-d—t?+7y=u (b) ?+9F+7y=smu

Mathcad  (Q)

(a) Putting D"=d"/dt" for n=2 and n=4, the characteristic polynomial is D* + 9D? + 7; and the
characteristic equation is D* + 9D? + 7=0.

(b) Although the equation given in part (b) is nonlinear by Definition 3.8 (the term sin « is not first
degree in u), we can treat it as a linear equation if we arbitrarily put sin u = x, and treat x as a second
dependent variable representing the input. In this case, part (b) has the same answer as
part (a).

3.13. Determine the solution of the characteristic equation of the preceding problem.

ol
< Let D?= E. Then D* = E?, and the characteristic equation becomes quadratic:
Mathead /& 7
9+v53 -9+v53
E'+9E+17=0 E= - 3 and D=1t T
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LINEAR INDEPENDENCE AND FUNDAMENTAL SETS

3.14. Show that a sufficient condition for a set of n functions f}, f,,..., f, to be linearly independent
is that the determinant

h f /s
I

dt dt dt
dn—lfl d"_lfz dn—ln
amt o di! drn!

be nonzero. This determinant is called the Wronskian of the functions f,, f,,..., f,.

Assuming the f; are differentiable at least n ~ 1 times, let n — 1 derivatives of
ahtafpt o +e,f=0

be formed as follows, where the ¢, are unknown constants:

¢ % c ﬁ ¢ ﬁ =0
Yd " dt
dn—lfl drr*lf2 dnflfn

cl__dt"“ +c1——dl"_l + .+, )

These equations may be considered as n simultaneous linear homogeneous equations in the n unknown
constants ¢, ¢;,.. ., ¢,, with coefficients given by the elements of the Wronskian. It is well known that these
equations have a nonzero solution for ¢, ¢,,...,¢, (ie, not all ¢, are equal to zero) if and only if the
determinant of the coefficients (the Wronskian) is equal to zero. Hence if the Wronskian is nonzero, then

the only solution for ¢, c,,...,¢, is the degenerate one, ¢; =c¢, = --- =, =0. Clearly, this is equivalent
to saying that if the Wronskian is nonzero the functions f,, f,,..., f, are linearly independent, since the
only solution to ¢, f, + ¢; o+ -+ +¢,f,=01is then ¢, =¢; =¢c; = -+ =¢,=0. Hence a sufficient condi-

tion for the linear independence of f,, f,,..., f, is that the Wronskian be nonzero. This condition is not
necessary; that is, there exist sets of linearly independent functions for which the Wronskian is zero.

3.15. Show that the function 1, ¢, t? are linearly independent.
The Wronskian of these three functions (see Problem 3.14) is

1 ¢+
0 1 24f=2
00 2

Since the Wronskian is nonzero, the functions are linearly independent.

3.16. Determine a fundamental set for the differential equations:

dy  dy  dy dy dYy &

—= +5—5 +8— +4y=u b) —S +4—5 +6— +4y=u

ar’ ar? a ®) dr’ dr? a7

(a) The characteristic polynomial is D*+ 5D? + 8D + 4, which can be written in factored form as
(D +2)(D+2Y(D+1). Corresponding to the root D, = —1 there is a solution e”‘, and

Mathcad (g
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corresponding to the repeated root D, = D, = —2 are the two solutions e~ % and fe~%. The three
solutions constitute a fundamental set.
(b) The characteristic polynomial is D*+4D? + 6D + 4, which can be written in factored form as
(D+1+(D+1~{D+2).
A fundamental set is then el =17/ =1+ and ¢~ 2

3.17. For the differential equations of Problem 3.16, find fundamental sets different from those found

':fi in Problem 3.16
Mathcas (@) Choose any 3 X 3 nopzero determipant, say

-1
0
-2

--5

W

1
-3
1
Using the elements of the first row as coefficients a,; for the fundamental set ¢/, e~ %', te~ % found in
Problem 3.16, form
=€ '+ 2e e Y
Using the second row, form
z;= -3¢ +2e7
From the third row, form
y=e 43V -2 Y

The functions z, z,, and z; constitute a fundamental set.
(b) For this equation generate the second fundamental set by letting

-2

2 =g
D veey i o 4
z,= e + e M= —/——
2 2 2
cost—jsint+cost+jsint
= ! 5 =e 'cost

Lt
zlsie( 1+1)l_le( 1= = o=t e ¢
2j 2j 25

=e 'sint

_,fcost+jsint—cost+sint
=e
2j

The coefficient determinant in this case is

1 0 0

o . L 1
22 |=-—

o 1 1 2j
2j 2j
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SOLUTION OF LINEAR CONSTANT-COEFFICIENT ORDINARY
DIFFERENTIAL EQUATIONS

3.18. Show that any free response y,(1) = Li_ ¢, v, (t) satisfies X7_ga,(d'y/dt') = 0.

By the definition of a fundamental set, y, (1), k=1,2,..., n, satisfies £'_,a,(d'y;/dt') = 0.
Substituting £ _ ¢, y, (7) into this differential equation yields

):a E Ck}’k(‘)] Z E a:d,(ckyk(l))— Z Ck[é)a dy,\(r)} 0

i=0 f=0 k=1 -

The last equality is obtained because the term in the brackets is zero for all .

3.19. Show that the forced response given by Equation (3.14)

mo gl u( )
y,,(:)-fw(r—ﬂ[}:b ]d
i=0
satisfies the differential equation
n y m d'u
= b—
an, dr' i)-:o ar'

For simplification, let r(¢) =X b,(d'u/dt’'). Then y,(t) = fyw(t — 7)r(r)dr and

dj aw(1 aw(t
% =fo'¥r(f) dr+w(t—1)r(r) -'—j(;l—(a—lr(‘r) dr+0-r(1)
Similarly,
dy, (8?2 w(t—f) d" "y, 8" 'w(t—1)
dar? ’(7)d7' e =f0 FYEED r(r)dr
since, by Equation (3.!6),
dw(t—-r d'w(t
( ) = () =0 for i=0,1,2,...,n-2
ar' - ar ,_,

The nth derivative is

d"y 3" w(l ) " tw(t—1) an w(r ™)
W&—f{ - r(7)dr +_——n_l__- r(e) = f’ r(7r)dr+r(1)
since, by Equation (3.16),
3" w(t—1) d"'w(t) .
! e dr! ,_0—

The summation of the » derivatives is

; a@—f[ ; -aw(t—T)]r(r)dr+r(1)
i=0

ico ' d
Finally, making the change of variables 1 -t = § in the bracketed term yields
"o 3'w(8) n o d'w(6)

far a6 =0 dé
because w(#) is a free response (see Section 3.10 and Problem 3.18). Hence
Z al i = I‘( ‘) 2 il
i=0 d i=0 d’
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3.20.

sz

lillicld

3.21.

i+

sthcad
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Find the free response of the differential equation

&’y dly  dy
214t v 62 1 4y=

dr? dr? 6 a7

with initial conditions y(0) =1, (dy/dt)|,_o=0, and (d2y/dt?)|,_.o= — 1.

From the results of Problems 3.16 and 3.17, a fundamental set for this equation is ¢~ %, e~/ cos1,
e~ ' sin 1. Hence the free response can be written as

y.(£) =cie™ + c,e” " cost + cye” " sin s
The initial conditions provide the following set of algebraic equations for ¢, ¢;, ¢;:

&y, d’y,
—‘;I_D=—2c,—cz+c3=0 a

V()= +e=1 =4c¢, —2¢,= -1

=0

from which ¢, =1, ¢; = 1, ¢; = 2. Therefore the free response is

y.(1) =le’z’+1e"cost+ Ee”sint
“ 2 2 2

Find the weighting function of the differential equation

dy dy du
— 44— +4y=3— +2
dr? a Ty T

The characteristic equation is D? + 4D + 4 = (D + 2)2 = 0 with the repeated root D = —2. A funda-
mental set is therefore given by e™ ', te~ %, and the weighting function has the form

w(t) =ce ¥+ cyte” ¥
with the initial conditions

dw
w(0)=[c,e’2’+czle'2'” =c

- -2 -2 -2 - =
—o= =0 Z —[—2cle "+ ce” % = 2c,1e '”,_0—52-1
t~0

Thus w(t) =te” ¥,

Find the forced response of the differential equation (Problem 3.21):

L PN P
az Tty T T g T
where u(t)=e > 120.

The forced response is given by Equation (3.14) as
du du
(1) sj(;'w(t—'r)[SE + Zu] d1'=3f0'w(r—1)z d7+2£w(r—1)ua’-r

Integrating the first integral by parts,
. du . Ow(t—1)
Lw(t—f);d‘r=w(t~‘r)u(r)|o~foTudr
Aw(t—1)
=w(0)u(1) — w(£)u(0) —foTudT

But w(0) = 0; hence the forced response can be written as

y(1) =f0‘[—3a—w(;:—7) + 2w(r—f)]u(‘r)d‘r~ 3w(1) u(0)
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From Problem 3.21, w(t—7)=(t—)e 2'~"; hence

[_33w(r—7)

o +2w(t—'r)]=39 D _Yg—r)e W

and the forced response is

t t 1
w(t) = 3e'2’f e ¥ dr — 4re‘2’f ele 3 dr + de” Z’f re¥e ™3 dr — 31e™ ¥
o () ()

=7[e—21 - e—]l - Ie—ZI]

Find the output y of a system described by the differential equation

d’y dy
— +3—42y=1+1t
a? a7

with initial conditions y(0) =0 and (dy/dt)|,—o=1.

Let u, =1, u, = 1. The response y due to u, alone was determined in Example 3.27 as y; = (1 — e~ ).
The free response y, for the differential equation was found in Example 3.24 to be y,=¢ '~ ¢ % The
forced response due to u, is given by Equation (3./4). Using the weighting function determined in
Example 3.25, the forced response due to u, is

» =j:w(t -1)u,(7) d-r=fol[e"'*” —e XD 1dr

t t 1
=e¢ " [reTdr—e ¥ [ rerdr=—[4e ' —e ¥ +21-3
A firerar=31 ]
Thus the forced response is
1
Vo=nty= z[4e"— 3e ¥ +21-1)
and the total response is

1
y=y,+ty= 2[8(’— Te=2 + 21— 1]
Find the transient and steady state responses of a system described by the differential equation

¥

— +3—+2y=1+
a? Vg T

with the initial conditions y(0) =0 and (dy/dt)|,.o= 1.

The total response for this equation was determined in Problem 3.23 as
1
y= z[8e" —Te ¥ +2:-1]

Since lim, . [4(8¢™"— Te” )] =0, the transient response is y;=1(8e ' — Te™?'). The steady state re-
sponse is y, = 1(21-1).

SINGULARITY FUNCTIONS

3.25.

Evaluate: (a) [&28(1 — 6) dt, (b) [isint8(1—T)dr.

(a) Using the screening property of the unit impulse function, [&#28(1 — 6) dr = 12|, = 36.
(b) Since the interval of integration 0 < t < 4 does not include the position of the unit impulse function
t=17, then f§ sint8(z— T7)dt=0.
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3.26. Show that the unit step response y,(¢) of a causal linear system described by the convolution
integral

w(1) = [w(e=r)u(r) dr
(i
is related to the unit impulse response y;(¢) by the equation y,(t) = [{ys(7)dT.

The unit step response is given by y,(1) = [jw(¢ — 7)u(7)d7, where 1(¢) is a unit step function. In
Example 3.29 it was shown that y,(r) = w(t). Hence

n(1) = [t =1)u(z) dr= [n(1=7) dr

Now make the change of variable # =t — 7. Then dr = ~d#, =0 implies § = ¢, =1 implies § = 0, and
the integral becomes

7(0) == [*(8) 40 = ['35() do

3.27. Show that the unit ramp response y,(7) of a causal linear system described by the convolution
integral (see Problem 3.26) is related to the unit impulse response y,(¢) and the unit step
response y,(¢) by the equation

! , ‘o t ot ,
)= [ydrydr = [ [1(8) dodr
Proceeding as in Problem 3.26 with w(t — 1) =y;(¢ — 1) and 7 changed to 1 — 7', we get

y(0) = [me=m)rdr=['(e= 1) u(r) dv' = ['oy() dr’ = [755(7) dr’

From Problem 3.26, the first term can be written as ¢f]y;(7') d7’ =ty,(1). The second term can be
integrated by parts, yielding

¢ ’ ’ 7’ ’ ’ 4 ’ ’
[rm(rydr =en(m)ly= [n(r) ar
where dy,(7') = y;(1') dv’. Therefore

3(0) =on(0) = () * [l dr' = (7 dr

Again using the result of Problem 3.26, we obtain the required equation.

SECOND-ORDER SYSTEMS
3.28. Show that the weighting function of the second-order differential equation
d?y
7 + Z{w,,-—; + iy =wiu
is given by w(f) = (1/w,)e”* sinw,t, where a = fw,, w,= w1 -¢2,0<{<1.
The characteristic equation
D*+ 2w, D+ w2 =0
has the roots
D = —{w +jo,fl — {2 = ~a+juw,
Dy = —tw, —ju 1=t = —a—juy,
One fundamental set is y, = e~ *'e/“¢', y, = e~ *¢™/“4*; and the weighting function can be written as

w(t) = cie” e /9 + cpe” Hesvd!
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where ¢, and ¢, are, as yet, unknown coeflicients. w(r) can be rewritten as
w(t) =e %[ ¢, cos wyt — jc, sinw,t + ¢, COs Wyt + je; sinw,t]
=(c +¢)e “coswyt+j(c; —c;) e sinw,?
=Ae * cosw,t + Be”* sinw,t
where A = ¢, + ¢, and B =j(c, — ¢;) are unknown coefficients determined from the initial conditions given
by Equation (3.16). That is,
= —at —at : =4 =
w(0) —[Ae e cos wyt + Be smw,,t”,_0 A=0
dw

d —_
an di|,_,

=Be *[w, cos wyt — asinwyt]| _, = Buw,=1

1
Hence w(t) = —e ' sinwyt
Wy

3.29. Determine the damping ratio {, undamped natural frequency w,, damped natural frequency w,,
damping coefficient a, and time constant 7 for the following second-order system:
dy  dy
2—+4— +8y=8u
dr? a
Dividing both sides of the equation by 2, d2y/dt? + 2(dy/dt) + 4y = 4u. Comparing the coefficients
of this equation with those of Equation ( 3.22), we obtain 2{w, = 2 and w? = 4 with the solutions w, = 2 and

¢=1=05Noww,=wyl-¢?=y3,a=fw,=1,and r=1/a=1.

3.30. The overshoot of a second-order system in response to a unit step input is the difference between
the maximum value attained by the output and the steady state solution. Determine the

overshoot for the system of Problem 3.29 using the normalized family of curves given in Section
3.14.

Since the damping ratio of this system is { = 0.5, the normalized curve corresponding to § = 0.5 is used.
This curve has its maximum value (peak) at w,t=3.4. From Problem 3.29, w, =2; hence the time ¢, at
which the peak occurs is 2, =3.4/w, =3.4/2=1.7 sec. The value attained at this time is 1.17, and the
overshoot is 1.17 - 1.00 = 0.17.

STATE VARIABLE REPRESENTATION OF SYSTEMS DESCRIBED BY LINEAR
DIFFERENTIAL AND DIFFERENCE EQUATIONS

3.31. Put the differential equation
d?
it
with initial conditions y(0) =1 and (dy/dt)|,.o = —1, into state variable form. Then develop a
solution for the resulting vector-matrix equation in the form of Equation (3.26) and, from this

specify the free response and the forced response. Also, for u(r) =1, specify the transient and
steady state responses.

u

Letting x, =y and dx, /dt = x,, the state variable representation is dx, /dt = x, with x;(0) =1, and
dx,/dt = u with x,(0) = —~ 1. The matrices 4 and B in the general equation form (3.25) are

_fo 1 _fo
=[5 5] e=[f]
Since A* =0 for k > 2, the transition matrix is

ar_ _|1
e I+ At [0 1]
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and the solution of the state variable equation can be written as

x(1) _[1 t” 1] 1 (1-7) 0
[xz(t)]— 0 1]l-1 +j(; 0 1 u(r) dr
or, after multiplying the matrices in each term,

xl(r)=l—t+j;'(t—'r)u(r) dr

x(1)=-1 +j(;'u(r) dr

The free responses are
x,(1)=1-1¢

x3,(1) = —1
and the forced responses are

x,(1) =f:(l—1')u(1>) dr

x5 (1) =f0'u(f)d7

For u(t)=1, x;(1)=1—1t+1>/2 and x,(¢+)= —1 + . The transient responses are x,;(¢)=0 and x,7(1)
=0 and the steady state responses are x, (1) =1—t+1*/2 and p, (t)= -1+t

Show that the weighting sequence of the difference equation (3.29) has the form of Equation
(3.34).

The technique used to solve this problem is called variation of parameters. It is assumed that the forced
response of Equation (3.29) has the form:

5k = £ 6 (k)5(5)

where y,(k),....y,(k) is a fundamental set of solutions and ¢;(k),...,c,(k) is a set of unknown
time-variable parameters to be determined. Since y,(0) = 0 for any forced response of a difference equation,
then ¢,(0)=0,...,¢,(0) = 0. The parameter ¢,(k + 1) is written as ¢;(k + 1) = ¢,(k) + Ac, (k). Thus

n n
y(k+1) =3 c;(k)y(k+1) + [ Y A (k) y(k+ 1)]
Jj=1 j=1
The increments Ac,(k),..., Ac,(k) are chosen such that the term in the brackets is zero. This process is
then repeated for y,(k + 2) so that
j=1 J=1

y(k+2)= 2": ¢, (k)y(k+2) + [ i: Ac (k) y,(k+ 2)]

Again the bracketed term is made zero by choice of the increments Ac;(k)...., Ac,(k). Similar expressions
are generated for y,(k +3), y,(k+4),..., y,(k + n—1). Finally,

n n
»wik+n)= Z cj(k)yl(k+ n)+ [ Y Acl(k)yl(k+ n)]
Jj=1 j=1
In this last expression, the bracketed term is not set to zero. Now the summation in Equation (3.29) is

i: ay(k+i)= Zﬂ: ¢, (k) Zn:oa,yj(k+i) +a, X": Ac, (k) y,(k+n) =u(k)
i- =1

i=0 j=1

Since each element of the fundamental set is a free response, then

n
Ea,yj(k+i)=0
i=0
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for each ;. A set of n linear algebraic equations in » unknowns has thus been generated:

¥ Ac,(k)y,(k+1)=0
J=1

¥ A, (k)3 (k+2) =0

Jj=1

u(k)

X Ac,(k)y,(k+n)= ;
j=1 n
Now Ac;(k) can be written as
M, (k) u(k)
(0= o,
where M(k) is the determinant
nlk+1) yp(k+1) - p(k+1)
M(k)=y1(k.+2) n(k+2) - p(k+2)
nlk+n) yk+m) - y(k+n)

M;(k) is the cofactor of the last element in the jth column of this determinant. The parameters
c(k),...,c,(k) are thus given by

k-1 k-1 MJ(I) “(1)
c = A =
0= F o= L 40

The forced response then becomes

n k-1 u
O ETH LN

Jj=11=0

k-1 n IVIJ(I)
=X [): a, M(1)

1=0 | j=1

Y,(k)]“(’)

This last equation is in the form of a convolution sum with weighting sequence

"M
wk-0= ¥ - fu((z))

Jj=1

¥ (k)

LINEARITY AND SUPERPOSITION
3.33. Using the definition of linearity, Definition 3.21, show that any differential equation of the form:

n

d'y
1)— =
% a2 =

i=0
where y is the output and u is the input, is linear.
Let 4, and u, be two arbitrary inputs, and let y, and y, be the corresponding outputs. Then, with all

initial conditions equal to zero,

n d'y, “ d'y,
E:oa,(t)7=ul and E:oa,(l)ﬁ- =u,
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Now form

n

d'y = d'y,
C1ux+52”z=cl[za,(') dt.-]“z[za,-(t) ar
i=0

i=0

u d'(n) id d'(¢e; )
= Zdl(!) i + Zal(t) i
i=0 dt i=0 dr
n dl
=X “i(‘);(ﬁyl +ey)
i=0

Since this equation holds for all ¢; and c,, the equation is linear.

3.34. Show that a system described by the convolution integral
00
y(t)= f w(t, t)u(7)dr
—oe

is linear, y is the output and u the input.

Let #, and u, be two arbitrary inputs and let
o0 o0
n=[ wenu(r)ydr  p=[ wr)u(r)dr
—o )
Now let ¢,u) + c,u, be a third input and form
[m w(z, 7} c (1) + cuuy(7)] d'r=c,f°° w(t, Ty (r) dr+ czfx w(t,7)uy(1)dr
- - —®

=antoan

Since this relationship holds for all ¢; and ¢,, the convolution integral is a lincar operation (or
transformation).

3.35. Use the Principle of Superposition to determine the output y of Fig. 3-9.

ug = cos2t ug = t?
+ -
uy =sint tu d: + 5 i

dt N A

Fig. 3-9

For u, =u; =0, y, =5(d/dt)sint)=5cost. For uy =u; =0, y, = 5(d/dt)(cos2t) = —10sin2¢. For
u, =u, =0, y, = — 52 Therefore

Y=y +y+y=5(cost—2sin2s — 1?)

3.36. A linear system is described by the weighting function
w(t,r)=e """ forall ¢,7
Suppose the system is excited by an input
u(ty=¢ forall ¢
Find the output y(t).
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The output is given by the convolution integral (Example 3.38):

© t ® -
y(1) =f e""”‘rd1'=f e_(""fd‘r+f e~ rdr
— o0 ~ 00

1

1 o0
=e"‘f e’rd'r+e‘f e "rdr

— o0 t

e fete-nt eletrnr] -

CAUSALITY

3.37. Two systems are defined by the relationships between their inputs and outputs as follows:

System 1: The input is #(¢) and at the same instant of time the output is y(¢)=u(t+T), T>0.
System 2: The input is u(¢) and at the same instant of time the output is y(t)=u(r—T), T> 0.

Are either of these systems causal?
In System 1, the output depends only on the input T seconds in the future. Thus it is not causal. An
operation of this type is called prediction.

In System 2, the output depends only on the input T seconds in the past. Thus it is causal. An
operation of this type is called a time delay.

Supplementary Problems

338  Which of the following terms are first degree in the dependent variable y = y(1)? (a) %y, (b) tan y,
(c) cost, (d) e, (e) te™".

3.39. Show that a system defined by the equation y = mu + b, where y is the output, u is the input, and m and b
are nonzero constants, is nonlinear according to Definition 3.21.

3.40. Show that any differential equation of the form
" diy m d'u
La()—2 =L b()—
=0 [ dt
satisfies Definition 3.21. (See Example 3.37 and Problem 3.33).
341. Show that the functions cost and sin ¢ are linearly independent.

3.42.  Show that the functions sin nt and sin kz, where n and k are integers, are linearly independent if n # k.

3.43. Show that the functions ¢ and r* constitute a fundamental set for the differential equation

diy  dy
P— - 2t— +2y=0
dr? a7

3.44. Find a fundamental set for

&y dYy dy
@ —‘172—+21~d7+26y=u



Chapter 4

The Laplace Transform and the z-Transform

4.1 INTRODUCTION

Several techniques used in solving engineering problems are based on the replacement of functions
of a real variable (usually time or distance) by certain frequency-dependent representations, or by
functions of a complex variable dependent upon frequency. A typical example is the use of Fourier
series to solve certain electrical problems. One such problem consists of finding the current in some part
of a linear electrical network in which the input voltage is a periodic or repeating waveform. The
periodic voltage may be replaced by its Fourier series representation, and the current produced by each
term of the series can then be determined. The total current is the sum of the individual currents
(superposition). This technique often results in a substantial savings in computational effort.

Two very important transformation techniques for linear control system analysis are presented in
this chapter: the Laplace transform and the z-transform. The Laplace transform relates time functions to
frequency-dependent functions of a complex variable. The z-transform relates time sequences to a
different, but related, type of frequency-dependent function. Applications of these mathematical
transformations to solving linear constant-coefficient differential and difference equations are also
discussed here. Together these methods provide the basis for the analysis and design techniques
developed in subsequent chapters.

4.2 THE LAPLACE TRANSFORM

The Laplace transform is defined in the following manner:

Definition 4.1: Let f(¢) be a real function of a real variable ¢ defined for ¢ > 0. Then
LIf()] = F(s) = lim ij(t)e“‘dt= fw/(t)e"'dt O<e<T
et iy "

is called the Laplace transform of f(¢). s is a complex variable defined by
s =0 + jw, where o and  are real variables* and j=v-1.

Note that the lower limit on the integral is ¢ = ¢ > 0. This definition of the lower limit is sometimes
useful in dealing with functions that are discontinuous at ¢ = 0. When explicir use is made of this limit,
it will be abbreviated ¢ = lim,_ ye = 0%, as shown above in the integral on the right.

The real variable ¢ always denotes time.

Definition 4.2: If f(¢) is defined and single-valued for ¢ > 0 and F(o) is absolutely convergent for
some real number o,, that is,

o T,
[ |f(t)|e " dt = lim f |£(£) e~ dt < + o0 0O<e<T
o et i

then f(z) is Laplace transformable for Re(s) > g,.

*The real part o of a complex variable s is often written as Re(s) (the real part of s) and the imaginary part w as Im(s) (the
imaginary part of s). Parentheses are placed around s only when there is a possibility of confusion.
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EXAMPLE 4.1. The function e ' is Laplace transformable since

o

1
1+a

o0 00 1
f le” e %" dt=f e o = —— {1+ 0 < +o
0t 0*

—(1+ap)

0*

ifl+ao,>00rg,> -1

EXAMPLE 4.2. The Laplace transform of e™ " is

o
! for Re(s)> -1

= (el —_

s 1 or s

(s+1)

—(s+1u

.Y’[e”]=/(;°e”e"”dt= e

4.3 THE INVERSE LAPLACE TRANSFORM

The Laplace transform transforms a problem from the real variable time domain into the complex
variable s-domain. After a solution of the transformed problem has been obtained in terms of s, it is
necessary to “invert” this transform to obtain the time domain solution. The transformation from the
s-domain into the t-domain is called the inverse Laplace transform.

Definition 4.3: Let F(s) be the Laplace transform of a function f(¢), ¢ > 0. The contour integral
1  +joc
-1 = _ st
LV F(s)] =1(1) 2”[(_]‘oc F(s)e* ds

where j=v—1 and c> g, (0, as given in Definition 4.2), is called the inverse
Laplace transform of F(s).

It is seldom necessary in practice to perform the contour integration defined in Definition 4.3. For
applications of the Laplace transform in this book, it is never necessary. A simple technique for
evaluating the inverse transform for most control system problems is presented in Section 4.8.

44 SOME PROPERTIES OF THE LAPLACE TRANSFORM AND ITS INVERSE

The Laplace transform and its inverse have several important properties which can be used
advantageously in the solution of linear constant-coefficient differential equations. They are:

1. The Laplace transform is a linear transformation between functions defined in the s-domain
and functions defined in the s-domain. That is, if Fi(s) and F,(s) are the Laplace transforms
of f1(1) and f,(1), respectively, then a,F,(s) + a,F,(s) is the Laplace transform of a, f,(#) +
a, f5(t), where a, and a, are arbitrary constants.

2. The inverse Laplace transform is a linear transformation between functions defined in the
s-domain and functions defined in the t-domain. That is, if f,(r) and f,(¢) are the inverse
Laplace transforms of Fi(s) and F,(s), respectively, then b, f,(1)+ b,f,(¢) is the inverse
Laplace transform of b,F,(s)+ b, F,(s), where b, and b, are arbitrary constants.

3. The Laplace transform of the derivative df/dt of a function f(r) whose Laplace transform is
F(s) is

2| 2| -sr0s)-100%)

where f(0*) is the initial value of f(t), evaluated as the one-sided limit of f(r) as ¢
approaches zero from positive values.
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4. The Laplace transform of the integral [;f(7) dr of a function f(1) whose Laplace transform is
F(s)is

F(s)

.z’[fo’f(r)df] =

5. The initial value f(0*) of the function f(¢) whose Laplace transform is F(s) is
f(()*)=lin(1)f(l)= lim sF(s) >0
[nd §—00

This relation is called the Initial Value Theorem.
6. The final value f(oo0) of the function f(¢) whose Laplace transform is F(s) is

f(e0) = lim f(r) = lim sF(s)

if lim f(1) exists. This relation is called the Final Value Theorem.

t—oc

7. The Laplace transform of a function f(t/a) (Time Scaling) is
t
.‘Z’[f(;” = aF(as)

where F(s)=2[f(1)).
8. The inverse Laplace transform of the function F(s/a) (Frequency Scaling) is

- (e
where L7 [F(s)] = f(2).

9. The Laplace transform of the function f(t — T') (Time Delay), where T>0and f(1—T)=0
fort<T,is

Z[f(1-T)} =eTF(s)
where F(s)=22[f(1)].
10. The Laplace transform of the function e~ “'f(t) is given by
Lle ()] = F(s+a)
where F(s)=2[f(¢)] (Complex Translation).

11. The Laplace transform of the product of two functions f(t) and f,(¢) is given by the complex
convolution integral

1 ¢+ joo
g[fl(’)fz(’)] = 2‘#—][(_}& Fw)FR(s-w)dw

where Fi(s)=Z[/,(D], K(s)=2(f,(1)]
12. The inverse Laplace transform of the product of the two transforms F,(s) and F,(s) is given by
the convolution integrals

LERG)] = [ AN ft-n)dr= [ LD (1 -1)dr
(] [
where L7 Fi(s)] = f1(1), L7 F()}=f2(0).

EXAMPLE 4.3. The Laplace transforms of the functions e™' and e 2 are e '|=1/(s+1), L[e M=
1/(s + 2). Then, by Property 1,
1 2s+5

3
LBe - M) =3[e | -Zle V] = T -5 " T
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EXAMPLE 4.4. The inverse Laplace transforms of the functions 1/(s + 1) and 1/(s + 3) are

gfl[ 11 =e ! _gfl[ 13]=e~]1
s s

Then, by Property 2,

- 7r,_443:
s+3 2e €

y—l[ . ]-zw ! ] 4z
s+1 s+3) s+1

EXAMPLE 4.5. The Laplace transform of (d/dt)(e”") can be determined by application of Property 3. Since
Lle '}=1/(s+1) and lim, _4e” ' =1, then

P d, _, ] 1 ) -1
dt(e ) s(s+1)_ s+l
EXAMPLE 4.6. The Laplace transform of [je " d7 can be determined by application of Property 4. Since

Lle "1=1/(s+1), then
- i1y 1
“[fo“ "’]‘;(m)'——sml)

EXAMPLE 4.7. The Laplace transform of ¢~ is #[e~¥]=1/(s +3). The initial value of e” ¥ can be
determined by the Initial Value Theorem as

1
lime %= lim s( )=1
=0 s— o0 s+3

EXAMPLE 4.8. The Laplace transform of the function (1 — e™’) is 1/s(s + 1). The final value of this function
can be determined from the Final Value Theorem as

lim (1-e™*) = lim ———— = 1
r—o!?c( ¢ ) J-EI(I)S(S+1)

EXAMPLE 4.9. The Laplace transform of e~/ is 1 /(s + 1). The Laplace transform of e~ ¥ can be determined by
application of Property 7 (Time Scaling), where a = 1:

a1 1
“1e1-3| ]

EXAMPLE 4.10. The inverse transform of 1/(s+1) is e ’. The inverse transform of 1/(}s+1) can be
determined by application of Property 8 (Frequency Scaling):

P2a) ISR PPV
is+1

EXAMPLE 4.11. The Laplace transform of the function e™‘ is 1/(s + 1). The Laplace transform of the function
defined as

_ e~ -2 1>2
1) { 0 1<2

can be determined by Property 9, with T'=2:

e~ 2s

L)) =e 2] =

s+1

EXAMPLE 4.12. The Laplace transform of cost is s/(s2+1). The Laplace transform of e~ * coss can be
determined from Property 10 with a = 2:

s+2 s+2

Zle¥cost]=———5— = ———
[ ] (s+2)°+1 s +4s5+5
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EXAMPLE 4.13. The Laplace transform of the product e ' cost can be determined by application of Property
11 (Complex Convolution). That is, since L[e 2] =1/(s + 2) and Z[cost]=s5/(s? + 1), then

e f'cos;]=Lf(.+,m( w )(_1_“)‘1”: 542

21 e e VW + 1\ s—w+2 si+4s+5

The details of this contour integration are not carried out here because they are too complicated (see, e.g.,
Reference [1]) and unnecessary. The Laplace transform of e 2 cos¢ was very simply determined in Example 4.12
using Property 10. There are, however, many instances in more advanced treatments of automatic control in which
complex convolution can be used effectively.

EXAMPLE 4.14. The inverse Laplace transform of the function F(s)=s/(s + 1)s? + 1) can be determined by
application of Property 12. Since & '{1/(s+ 1)]=¢ " and .2 '{s/(s* + 1)] = cos1, then

1 s ' 1
&£ '[( )(———)]=[ e " Neosrdr=e ’f e'costdr=1(cost +sinr—e ')
o

s+1/\s+1 +

4.5 SHORT TABLE OF LAPLACE TRANSFORMS

Table 4.1 is a short table of Laplace transforms. It is not complete, but when used in conjunction
with the properties of the Laplace transform described in Section 4.4 and the partial fraction expansion
techniques described in Section 4.7, it is adequate to handle all of the problems in this book. A more
complete table of Laplace transform pairs is found in Appendix A.

TABLE 4.1
Time Function Laplace Transform
Unit Impulse 8(0) 1
1
Unit Step I(¢) -
s
. 1
Unit Ramp t s
n!
Polynomial " =T
s
1
Exponential e
s+a
w
Sine Wave sin wt T
s°+ w”
s
Cosine Wave cos wt 53
s+ W
. . w
Damped Sine Wave e ¢ sinwt —_—
(s+a) +o
s+a
Damped Cosine Wave e ' coswt —
(s+a) +w

Table 4.1 can be used to find both Laplace transforms and inverse Laplace transforms. To find the
Laplace transform of a time function which can be represented by some combination of the elementary
functions given in Table 4.1, the appropriate transforms are chosen from the table and are combined
using the properties in Section 4.4.
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EXAMPLE 4.15. The Laplace transform of the function f(r)=e * +sin(z—2)+ 1%~ 2" is determined as
follows. The Laplace transforms of e *, sin, and ¢ are given in the table as

.,2"[e"‘]=s+4 S’[Sint]=sz+1 3’[13]=;
Application of Properties 9 and 10, respectively, yields
.Sf’[sin(t—Z)]=z_—zs .S,”[tze'z']-:——z——,
s7+1 (s+2)
Then Property 1 (Linearity) gives
e 2

1
5’[!(')]=m+m+m

To find the inverse of the transform of a combination of those in Table 4.1, the corresponding time
functions (inverse transforms) are determined from the table and combined appropriately using the
properties in Section 4.4,

EXAMPLE 4.16. The inverse Laplace transform of F(s)={[(s+2)/s> + 4]-¢* can be determined as follows.
F(s) is first rewritten as

A se”* 2e "
==+
$) s2+4  s2+4
Now
s 2
_?"[ 5 ]=00521 £ 5 =sin2¢
s°+4 s +4

Application of Property 9 for ¢ > 1 yields

se”* 2e7"

£ = =cos2(t—1) 2 = =sin2(r-1)
s +4 s°+4

Then Property 2 (Linearity) gives
L[ F(s)] =cos2(s—1) +sin2(r—1) >1
=0 t<l

4.6 APPLICATION OF LAPLACE TRANSFORMS TO THE SOLUTION OF LINEAR
CONSTANT-COEFFICIENT DIFFERENTIAL EQUATIONS

The application of Laplace transforms to the solution of linear constant-coefficient differential
equations is of major importance in linear control system problems. Two classes of equations of general
interest are treated in this section. The first of these has the form:

n d'y
¥ a5 = (4.1)
i=0 4
where y is the output, u is the input, the coefficients ag, a,,..., a,_,, are constants, and a,=1. The
initial conditions for this equation are written as
d*y
— =pk k=0,1,...,n-1
di* |, Yo

where y& are constants. The Laplace transform of Equation (4.1) is given by

i [a‘(s’}’(s)— iilsilkyé‘)]=U(s) (4.2)
i=0

k=0
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and the transform of the output is

n i—-1
L Yas ' hy
U(s h !
Y(s) = "() + ,-Ok-(zl
Las Las
i=0

i=0

(4.3)

Note that the right side of Equation (4.3) is the sum of two terms: a term dependent only on the input
transform, and a term dependent only on the initial conditions. In addition, note that the denominator
of both terms in Equation (4.3), that is,

n

Yas'=s"+a,_s" '+ ... +as+a,

i=0
is the characteristic polynomial of Equation (4.1) (see Section 3.6).

The time solution y(t) of Equation (4./) is the inverse Laplace transform of Y(s), that is,

n oi—1
i—1-k,k
y(t)=2""! vis) +71 E“E"ais N (4.4)
= 7 _——”—___— .
Yas Y as'
=0 =0

The first term on the right is the forced response and the second term is the free response of the system
represented by Equation (4.1).

Direct substitution into Equations (4.2), (4.3), and (4.4) yields the transform of the differential
equation, the solution transform Y(s), or the time solution y(r), respectively. But it is often easier to
directly apply the properties of Section 4.4 to determine these quantities, especially when the order of
the differential equation is low.

EXAMPLE 4.17. The Laplace transform of the differential equation
4y +3 i

dr? dt
with initial conditions y(0*)= —1 and (dy/dt)|,.q-=2 can be written directly from Equation (4.2) by first
identifying n, a,, and y§: n=2, 0= -1, ¥y =2, ay=2, a; =3, a,=1. Substitution of these values into
Equation (4.2) yields

+ 2y =1(t) = unit step

1 s —(s?+s5-1)
2Y+3(:Y+1)+1(s2Y+s—2)=; or  (s*+3s5+2)¥Y=————

It should be noted that when i = 0 in Equation (4.2), the summation interior to the brackets is, by definition,

-1 k=1
Y| = ¥ =0
k=0|,.o k=0

The Laplace transform of the differential equation can also be determined in the following manner. The
transform of d’p/ds’ is given by

d?y dy

L —5 [ =s2¥(s) - sp(0*) - =
[ dt’] $(s) = 9(07) dr |,y
This equation is a direct consequence of Property 3, Section 4.4 (see Problem 4.17). With this information the
transform of the differential equation can be determined by applying Property 1 (Linearity) of Section 4.4; that is,

d? d’y & 1
.2’[ y +3% +2y] =.Z’[Ii—] +Y[3%] + &2y =(s?+3s+2)Y+s+1=2[1(1)] = 3

dr’
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The output transform Y(s) is determined by rearranging the previous equation and is
—(s2+s-1)

Y [, S

) s(s2+35+2)

The output time solution y(t) is the inverse transform of Y(s). A method for determining the inverse transform of
functions like Y(s) above is presented in Sections 4.7 and 4.8.

Now consider constant-coefficient equations of the form:

nodly  modlu
a—5=Lbr (4.5)
im0 dt' [Tyt
where y is the output, u is the input, a,=1, and m < n. The Laplace transform of Equation (4.5) is
given by

™=

l:a,(s’}’(s)— izls’l“‘ycf)]= i [b,.(s’U(s)— 'ils"""ug)] (4.6)
i=0 k=0 k=0

i i=0

where uf = (d*u/dt*)|,_q. The output transform Y(s) is

m m i—1 n i-1
> b N o
Y(s)= | 52— |U(s) - =24=2 TRl (4.7)
Y as Y as Y as'
i=0 i=0 i=0

The time solution y(r) is the inverse Laplace transform of Y(s):

m m i—1 n i—1
Tos L L bs Tk T T as by
y(1) = 52— u(s) - £24=5 A R (4.8)
Las' Lags Las'
i=0 i=0 i=0

The first term on the right is the forced response, and the second term is the free response of a system
represented by Equation (4.5).

Note that the Laplace transform Y(s) of the output y(7) consists of ratios of polynomials in the
complex variable s. Such ratios are generally called rational (algebraic) functions. If all initial conditions
in Eq. (4.8) are zero and U(s) = 1, (4.8) gives the unit impulse response. The denominator of each term
in (4.8) is the characteristic polynomial of the system.

For problems in which initial conditions are not specified on y(z) but on some other parameter of
the system (such as the initial voltage across a capacitor not appearing at the output), y&, k=0,1,...,
n — 1, must be derived using the available information. For systems represented in the form of Equation
(4.5), that is, including derivative terms in &, computation of y£ will also depend on u¥. Problem 4.38
illustrates these points.

The restriction n > m in Equation (4.5) is based on the fact that real systems have a smoothing
effect on their input. By a smoothing effect, it is meant that variations in the input are made less
pronounced (at least no more pronounced) by the action of the system on the input. Since a
differentiator generates the slope of a time function, it accentuates the variations of the function. An
integrator, on the other hand, sums the area under the curve of a time function over an interval of time
and thus averages (smooths) the variations of the function.

In Equation (4.5), the output y is related to the input « by an operation which includes m
differentiations and »n integrations of the input. Hence, in order that there be a smoothing effect (at
least no accentuation of the variations) between the input and the output, there must be more (at least
as many) integrations than differentiations; that is, n > m.
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EXAMPLE 4.18. A certain system is described by the differential equation
d%y  du
@ a

where the input u is graphed in Fig. 4-1. The corresponding functions du/dr and

y(y)=j()"f()f%dada=j()"u(o)da

are also shown. Note from these graphs that differentiation of u accentuates the variations in u while integration
smooths them.

=0

=0

w_ b
»(0 )=dr

du t
puked = 8)db
“ dt ! j;u()
[ Sp— 1 p—— — e —— - — =
! |
| I
i I
T T ~ T +
1 2 3 t 4 2 3 t 1 2 3 4t
1 |
1 |
DY . [P S T —
Fig. 4-1

dr’ dt T a
with initial conditions y§ =1, y} = 0. If the input is given by u(¢) = e~ %, then the Laplace transform of the output
»(1) can be obtained by direct application of Equation (4.7) by first identifying m, n, a,, b, and u: n=2, a, =2,
a=3,a,=1, m=1,u)=1lim,_ e *=1, b,=3, b, = 1. Substitution of these values into Equation (4.7) yields
Y(s) s+3 )( 1 s+3 1
= ——— —_— “+ .
= s+4) T+35+2 243542

This transform can also be obtained by direct application of Properties 1 and 3 of Section 4.4 to the differential
equation, as was done in Example 4.17.

The linear constant-coefficient vector-matrix differential equations discussed in Section 3.15 also
can be solved by Laplace transform techniques, as illustrated in the following example.

EXAMPLE 4.20. Consider the vector-matrix differential equation of Problem 3.31:

X

E =Ax + bu
REG _[o 1 _[o] [ 1]

"(’)‘LZ(:) a=9 0] b=|9 xo)=| 1

and with u = 1(1), the unit step function. The Laplace transform of the vector-matrix form of this equation is

where

sX(s) — x(0) = AX(s) + %b

where X(s) is the vector Laplace transform whose components are the Laplace transforms of the components of
x(r). This can be rewritten as

[s1 - A)X(s) = x(0) + %b
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where I is the identity or unit matrix. The Laplace transform of the solution vector x(¢) can thus be written as
1
X(s) =[s1 - 4] 'x(0) + ;[:I—A]_lb
where [-]7! represents the inverse of the matrix. Since

g5 -1
sIA[O s]

then

s~1 1

2 3

s s

X(s) = L +[ 3
s 5

where the first term is the Laplace transform of the free response, and the second term is the Laplace transform of
the forced response. Using Table 4.1, the Laplace transform of these vectors can be inverted term by term,

providing the solution vector:
x(1) = 1) —t+ 22
~1(s) +1¢

4.7 PARTIAL FRACTION EXPANSIONS

In Section 4.6 it was shown that the Laplace transforms encountered in the solution of linear
constant-coefficient differential equations are rational functions of s (i.e., ratios of polynomials in s). In
this section an important representation of rational functions, the partial fraction expansion, is
presented. It will be shown in the next section that this representation greatly simplifies the inversion of
the Laplace transform of a rational function.

Consider the rational function

i b,st
F(s)= 32 (4.9)

Las'

i=0

where a, =1 and n > m. By the fundamental theorem of algebra, the denominator polynomial equation

" N
Yas'=0
i=0
has n roots. Some of these roots may be repeated.

EXAMPLE 4.21. The polynomial s* + 552 + 85 + 4 has three roots: —2, —2, —1. —2 is a repeated root.

Suppose the denominator polynomial equation above has n, roots equal to —p,, n, roots equal to
—P3s..., h, 100ts equal to —p,, where L7_,n, = n. Then

Y a5 T1(s+p)"

i=0
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The rational function F(s) can then be written as
E blS,
F(s)= _’&____
H (s+p) "
i=1
The partial fraction expansion representation of the rational function F(s) is
F(s)=b,+ Z Z (4.10a)
i=1k=1 (s “’P.)
where b, = 0 unless m = n. The coefficients c,, are given by
1
k[(s+p) "F(s)) (4.10b)

Ci = (—n-__)T ds™™

S==pi

The particular coefficients ¢;;, i =1,2,...,r, are called the residues of F(s) at —p, i=1,2,...,r. If

none of the roots are repeated, then

4.11
F(s)=b, +,§1S+P. (4.11a)
where ca=(s+p)F(s)|,=_,, (4.11b)

EXAMPLE 4.22. Consider the rational function
s24+25+2
s2435+2

s2+25+2
(s+1)(s+2)

F(s) =

The partial fraction expansion of F(s) is

F(s)= b+———-+ el
2T s+l s+2

The numerator coefficient of s is b, = 1. The coefficients ¢,, and c,, are determined from Equation (4./1b) as

DF 242542 )
w(s+ = =
n=(s+1) (F)L--l 42 .
A sP42542 s
=(s+ = = -

e =(s+2) (5)L-_z s+ 1 .

H F 1+ ! 2
ence () s+1 542
EXAMPLE 4.23. Consider the rational function
1

&) = G r2)

The partial fraction expansion of F(s) is

€1z €
s+1 0 (s+1)2 s+2

F(s)=b+
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The coefficients by, ¢}, ¢,5, ¢;; are given by

by=0

d
o= (s + )7 F(s) __ISZ.H-_Z} AT
1
2 =(s+1) F(S)|-—l 3+2' _1=1
=(3+2)F(5)|:-—2
1 1
Thus ==

4
s+1 0 (s+1)2 s+2

4.8 INVERSE TRANSFORMS USING PARTIAL FRACTION EXPANSIONS

In Section 4.6 it was shown that the solution to a linear constant-coefficient ordinary differential
equation can be determined by finding the inverse Laplace transform of a rational function. The general
form of this operation can be written using Equation (4.10) as

m
Z bnsl r n,

5= b+22 =535(1) +Z): :“-P' (4.12)
Y oas i=0 k= 1(3+P.) im1am (
i=0

where 8(¢) is the unit impulse function and b, = 0 unless m = n. We remark that the rightmost term in
Equation (4./2) is the general form of the unit impulse response for Equation (4.5).

EXAMPLE 4.24. The inverse Laplace transform of the function

s24+2s5+2
Fls)= (s+1)(s+2)

is given by
P s24+25+2 ot 1 2 Z1[1] 41 =5(1) +et =26
(s+1)(s+2) s+1  s+2 (1) s+1 (1) +e
which is the unit impulse response for the differential equation:
dzy dy d*u du
— -—+2—+
dar? 3 +2y dr? zdt 2u

EXAMPLE 4.25. The inverse Laplace transform of the function

1
Fs) = G+ 1)(s+2)

is given by

. 1 NEE 1 1
[(s+l)z(s+2)]= [_s—+—l_+(s+1)2+;_+-2]

] =—e "+t +e ¥

1 1
L1 Lt
s+l] i [(,+1)z i s+2
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49 THE z-TRANSFORM

The z-transform is used to describe signals and components in discrete-time control systems. It is
defined as follows:

Definition 4.4: Let { f(k)} denote a real-valued sequence f(0), f(1), f(2),..., or equivalently, f(k)
for k=0,1,2,.... Then

2{f(k)) = F(z) = ¥ f(k)z"*
k=0

is called the z-transform of { f(k)}. z is a complex variable defined by z = p + jv,

where p and » are real variables and j=v-1.

Remark 1: The kth term of the series in this definition is always the kth element of the
sequence being z-transformed times z ™%,

Remark 2: Often { f(k)} is defined over equally spaced times: 0, T, 2T,..., kT,..., where T is

a fixed time interval. The resulting sequence is thus sometimes written as { f(kT)},
or f(kT), k=0,1,2,..., and Z{ f(kT)} = Z‘;"_Of(kT)z"‘, but the dependence on
T is usually suppressed. We use the variable arguments k and kT interchangeably
for time sequences, when there is no ambiguity.

Remark 3: The z-transform is defined differently by some authors, as the transformation
z=¢*T, which amounts to a simple exponential change of variables between the
complex variable z=p + jr and the complex variable s =0 + jw in the Laplace
transform domain, where 7 is the sampling period of the discrete-time system. This
definition implies a sequence { f(k)}, or { f(kT)}, obtained by ideal sampling
(sometimes called impulse sampling) of a continuous signal f(¢) at uniformly spaced
times kT, k=1,2,.... Then s=1Inz/T, and our definition above, that is, F(z)=
TE_of (kT)z™*, follows directly from the result of Problem 4.39. Additional rela-
tionships between continuous and discrete-time systems, particularly for systems
with both types of elements, are developed further beginning in Chapter 6.

EXAMPLE 4.26. Theseries F(z)=1+z"'+z"2+ --- +2 ¥+ ... is the z-transform of the sequence f(k) =1,
k=012,....

If the rate of increase in the terms of the sequence { f(k)} is no greater than that of some geometric
series as k approaches infinity, then { f(k)} is said to be of exponential order. In this case, there exists a
real number r such that

F(z)= ¥ f(k)z*
k=0

converges for |z| > r. r is called the radius of convergence of the series. If r is finite, the sequence
{ f(k)} is called z-transformable.

EXAMPLE 4.27. The series in Example 4.26 is convergent for |z| > 1 and can be written in closed form as the
function

1
F(Z)=1—jT for |z|>1
-2z

If F(z) exists for |z| > r, then the integral and derivative of F(z) can be evaluated by operating term by term
on the defining series. In addition, if

F(z)= X fi(k)z™ for |z]>n
k=0

o
and E(2)= X (k)2 for Jzi>n
k=0
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then

] ) k
F(2)E(2) = Z ( 3 fl(k_i)/z(i))2—k= Z ( Zfz(k"‘)fl(i))zik
0

k=0 k=0 \i=0

i-

The term £X_, f,(k — i)f,(i) is called the convolution sum of the sequences { f;(k)} and { f,(k)), where the radius
of convergence is the larger of the two radii of convergence of Fi(z) and F(z).

EXAMPLE 4.28. The derivative of the series in Example 4.26 is
dF

il Y SEUOY S (L P

dz
The indefinite integral is

fF(z)dz=z+lnz—z“+
EXAMPLE 4.29. The z-transform of the sequence f,(k) =2%, k=0,1,2,..., is

F(z)=1+2z""+42%+..-
for |z| > 2. Let Fi(z) be the z-transform in Example 4.26. Then

0 k oG
F(2)R(z)= Y (E 1"’12‘)1"‘= Y@ -1z k for zy>2

k=0 \i=0 k=0

The z-transform of the sequence f(k) = A% k=0,1,2,..., where 4 is any finite complex number,

1+Az7 Y+ 4%+ -
1 z
1-A4z7' z-4

where the radius of convergence r = |4[. By suitable choice of 4, the most common types of sequences
can be defined and their z-transforms generated from this relationship.

Z{ 4%}

EXAMPLE 4.30. For 4 = e, the sequence { 4¥} is the sampled exponential 1,e%7,¢2%7, ..., and the z-trans-
form of this sequence is
1
kT
Z{e™T} = 1_ ool 1
with radius of convergence r = |¢°7],
The z-transform has an inverse very similar to that of the Laplace transform.

Definition 4.5: Let C be a circle centered at the origin of the z-plane and with radius greater than
the radius of convergence of the z-transform F(z). Then

1
27 F(2)] = {f(k)} = ;jj;F(Z)z*‘ldz
is the inverse of the z-transform F(z).

In practice, it is seldom necessary to perform the contour integration in Definition 4.5. For
applications of z-transforms in this book, it is never necessary. The properties and techniques in the
remainder of this section are adequate to evaluate the inverse transform for most discrete-time control
system problems.

Following are some additional properties of the z-transform and its inverse which can be used
advantageously in discrete-time control system problems.

1. The z-transform and its inverse are linear transformations between the time domain and the
z-domain. Therefore, if { fi(k)} and F,(z) are a transform pair and if { f,(k)} and F,(z) are a
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transform pair, then {a, f,(k) + a,f,(k)} and a,F(z) + a,F,(z) are a transform pair for any
a, and a,.
2. M F(z) is the z-transform of the sequence £(0), f(1), f(2),...,then
2"F(z) = 27f(0) = 2" f (1) = -+ = 2f(n—1)
is the z-transform of the sequence f(n), f(n + 1), f(n+2),..., for n> 1. Note that the kth
element of this sequence is f(n + k).

3. The initial term f(0) of the sequence { f(k)} whose z-transform is F(z) is
f(0)= Lim (1-2z"")F(z) = F(0)
Z =00

This relation is called the Initial Value Theorem

4. Let the sequence { f(k)} have the z-transform F(z), with radius of convergence < 1.
Then the final value f(o0) of the sequence is given by

f(e0) = lim (1~ z7) F(z)

if the limit exists. This relation is called the Final Value Theorem.
5. The inverse z-transform of the function F(z/a) (Frequency Scaling) is

Z“[F(%)]=a"/(k) k=0,1,2,...

where Z 7 Y[F(z)]= { f(K))}.

6. If F(z) is the z-transform of the sequence f(0), f(1), f(2),..., then z7'F(z) is the z-transform
of the time-shifted sequence f(—1), f(0), f(1),..., where f(—1) = 0. This relationship is called
the Shift Theorem.

EXAMPLE 4.31. The z-transforms of the sequences {(3)*} and {()*} are Z{(})*}=z/(z-}), and Z{(H*}
=z/(z - !). Then, by Property 1,
2ls 1V 1k 3z z
(2)”(3) IR

222—i
2

5z 1
22— — 4~

6 6

EXAMPLE 4.32. The inverse z-transforms of the functions z/(z + 1) and z/(z — 1) are

a3 = {6
I | B e R e 1 AR

EXAMPLE 4.33. The z-transform of the sequence 1,1,4,...,(3)*,... is z/(z - }). Then, by Property 2, the
z-transform of the sequence %,4,...,(3)**2,.. is

Y L DS N S
z-4 2 4z-1%

EXAMPLE 4.34. The z-transform of {(})*} is z/(z ~ }). The initial value of {()*} can be determined by the
Initial Value Theorem as

-1

Then, by Property 1,

> 1
Z

im (1)} = tim (-2 7 ) -1

k=0 z—13
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EXAMPLE 4.35. The :-transform of the sequence (1 —(3)*} is 2z/(2% - % +1). The final value of this
sequence can be determined from the Final Value Theorem as

lim {1 (l)k tim (1 - )| — & 1

m{1-|- = lim (1 - — | =

k—+o00 4 z—+1 z 2 5z 1
2ot

EXAMPLE 4.36. The inverse z-transform of z/(z— 1) is {(})*). The inverse transform of (%)/(% -bis
2! ={dh).

For the types of control problems considered in this book, the resulting z-transforms are rational
algebraic functions of z, as illustrated below, and there are two practical methods for inverting them.
The first is a numerical technique, generating a power series expansion by long division.

Suppose the z-transform has the form:

b2"+b,_z" '+ - +bz+ b,

n n—1
a,z"+a, iz + - +az+a,

F(z)=

1

It is easily rewritten in powers of z7" as

by+b,_z7 4 - +byz "

F(z)=
(2) a,+a, z7'+ - +agz"

by multiplying each term by z~". Then, by long division, the denominator is divided into the numerator,
yielding a polynomial in z~! of the form: .

b, 1 ba,_
F(z)=—"+a—(b,,_1——"1 PR

a'l a’l

EXAMPLE 4.37. The z-transform z/(z — %) is rewritten as 1/(1 — z~' /2) which, by long division, has the form:
1 1 1\?
— =14+ —) 74
1-z71/2 2 2

For the second inversion method, F(z) is first expanded into a special partial fraction form and
each term is inverted using the properties previously discussed.

Table 4.2 is a short table of z-transform pairs. When used in conjunction with the properties of the
z-transform described earlier, and the partial fraction expansion techniques described in Section 4.7, it

Table 4.2
k th Term of the Time Sequence z-Transform
1 at k, 0 elsewhere 27k
(Kronecker delta sequence)
z
1 (unit step sequence) 7-1
z
k (unit ramp sequence) —
(z-1)
z
A* (for complex numbers A) o
At Az
(z-4)
(k+1)(k+2)“'(k+"_1)Ak z"
(n—1)! (z-4)"
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is adequate to handle all the problems in this book. A more complete table of z-transform pairs is given
in Appendix B.

The final transform pair in Table 4.2 can be used to generate many other useful transforms by
proper choice of 4 and use of Property 1.

The following examples illustrate how :z-transforms can be inverted using the partial fraction
expansion method.

EXAMPLE 4.38. To invert the z-transform F(z)=1/(z + 1)(z + 2), we form the partial fraction expansion of
F(z)/z:
F(: 1 4 -1 i
) __ i -t %
z+1  z+42
Then

1 z 1 =z
F(z)=5—

+
z+1 2:2+42

which can be inverted term by term as

/(0)=0

flk)y=-(-)*+ %(—2)" forall k=1

EXAMPLE 4.39. To invert F(z)=1/(z + 1)’(z + 2), we take the partial fraction expansion of F(z)/z:

F(z) 1} 0 -1 -}
==+ o+
z z  z+1  (z+1) z+2
Then
F z 1z
(z) 2_(z+1)2 2:z+2

flk) = —k(-1)* - %(—2)* forall k>1and f(0) =0

EXAMPLE 4.40. Using the last transform pair in Table 4.2, the z-transform of the sequence {k2/2} can be
generated by noting the following transform pairs:

{(k+1)(k+2)}.—. 23

2! (z-1)
¥4
{k} e 3
(z-1)
Z
{1} e -
Since
k+1)(k+2) Kk 3
£_L_)=7+7k+1
2 2 2
then, by Property 1,
Z{k"} 2 3z z (z+1)2
N2f -1y 2(-) -1 (-1

Linear nth-order constant-coefficient difference equations can be solved using z-transform methods
by a procedure virtually identical to that used to solve differential equations by Laplace transform
methods. This is illustrated step by step in the following example.

!

Mathcad
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EXAMPLE 4.41. The difference equation
5 1
x(k+2)+ gx(k+ 1)+ gx(k) =1
with initial conditions x(0) =0 and x(1)=1 is z-transformed by applying Properties 1 and 2. By Property 1
(Linearity):

5 1
Z{x(k+2) +%x(k+l) +%x(k)} =2 (x(k+2)} + 22 (x(k+ D} + 22(x(k)) = 2(1)

By Property 2, if Z[x(k)}= X(z), then
Z {x(k+1)} =zX(z) — zx(0) =zX(2)
2 {x(k+2)} =22X(z) - z22x(0) - zx(1) = 22X(z) - 2

From Table 4.2, the z-transform of the unit step sequence is

s

Direct substitution of these expressions into the transformed equation then gives
(z’+ Ez+ l))((z) —a=
6 6 z-1
Thus the z-transform X(z) of the solution sequence x(k) is
z z

+
(z-1)(2+2z+1})
Note that the first term X, (z) results from the initial conditions and the second term X, (z) results from the input

sequence. Thus the inverse of the first term is the free response, and the inverse of the second term is the forced
response. The first term can be inverted by forming the partial fraction expansion

X,(2) 1 6 6
BTy

X(Z)= =Xu(z)+xb(z)

2+ i+t

2 2+iz+1
From this,

: 6—r
+
z+13 z+4

X,(z)=-6

and from Table 4.2, the inverse of X,(z) (the free response) is

o) 1)

Similarly, to find the forced response, the following partial fraction expansion is formed:

k=0,1,2,...

X,(z) _ 1
: (=D 3)(a+3)
Poe

+ +
-1 z+4%  z+}3
Thus

iz 4z 2z

X (2)=—=+
»(2) z—-1 z+3% z+4}

Then, from Table 4.2, the inverse of X,(z) (the forced response) is

1 1V5 97 1v4
x,,(k)=5+4(—5) —E(—s) k=0,1,2,...
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The total response x(k) is

h=n )+ n@ =3 -2 -3) +2(-3) k=orze

Linear constant-coefficient vector-matrix difference equations presented in Section 3.17 can also be
solved by z-transform techniques, as illustrated in the following example.

EXAMPLE 4.42. Consider the difference equation of Example 4.41 written in state variable form (see Example
3.36):

x(k+1)=x,(k)
S 1
xz(k + 1) = — gxz(k) - gxl(k) +1
with initial conditions x,(0) =0 and x,(0) = 1. In vector-matrix form, these two equations are written as
x(k+1) = Ax(k) + bu(k)

where

L B R W IRCRI

u(k) = 1. The z-transform of the vector-matrix form of the equation is
V4
zX(z) — 2x(0) = AX(z) + :b

where X(z) is a vector-valued z-transform whose components are the z-transforms of the corresponding compo-
nents of the state vector x(k). This transformed equation can be rewritten as

(I - A)X(z) = zx(0) + z—j—lb

where 7 is the identity or unit matrix. The z-transform of the solution vector x(k) is
¥4

z—1

X(z) = z(2f — 4) " 'x(0) + (zZI-A)""

where (-)~! represents the inverse of the matrix. Since

IA-Z -1
AT 2+

then

Substituting for (z/ — A)~!, x(0), and b yields

z z
22+iz+! (z-1)(2+2z2+1)

X(z) = 22 + 22
2Z2+iz+ !t (z~1D(2+%z2+1)

where the first term is the z-transform of the free response and the second of the forced response. Using the partial
fraction expansion method and Table 4.2, the inverse of this z-transform is

] k=0,1,2,...
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4.10 DETERMINING ROOTS OF POLYNOMIALS

The results of Sections 4.7, 4.8, and 4.9 indicate that finding the solution of linear constant-coeffi-
cient differential and difference equations by transform techniques generally requires the determination
of the roots of polynomial equations of the form:

n
0.(5)= S as'=0
i=0
where a,=1, a,,4a,,...,a,_,, are real constants and s is replaced by z for z-transform polynomials.
The roots of a second-order polynomial equation s2+ a,s + a, =0 can be obtained directly from
the quadratic formula and are given by

—a, + \/af—4a0 —a, — yal - 4a,
NMELERES St & Sp= ———————
2 2
But for higher-order polynomials such analytical expressions do not, in general, exist. The expressions
that do exist are very complicated. Fortunately, numerical techniques exist for determining these roots.
To aid in the use of these numerical techniques, the following general properties of Q,(s) are given:

5=

1. If a repeated root of multiplicity n; is counted as n, roots, then Q,(s) =0 has exactly »n roots
(Fundamental theorem of algebra).

2. If Q,(s) is divided by the factor s + p until a constant remainder is obtained, the remainder is
2.(=p)

s+ p is a factor of Q,(s) if and only if Q,(—p)=0[—p is a root of Q,(s)=0].

If 0 + jw (0, w real) is a root of Q,(s) =0, then ¢ — jw is also a root of Q,(s)=0.

If n is odd, Q,(s)=0 has at least one real root.

The number of positive real roots of @,(s) =0 cannot exceed the number of variations in sign
of the coefficients in the polynomial Q,(s), and the number of negative roots cannot exceed the
number of variations in sign of the coefficients of Q,(—s) (Descartes’ rule of signs).

AN AP

Of the techniques available for iteratively determining the roots of a polynomial equation (or
equivalently the factors of the polynomial), some can determine only real roots and others both real and
complex roots. Both types are presented below.

Horner’'s Method

This method can be used to determine the real roots of the polynomial equation Q,(s)=0. The
steps to be followed are:

1. Evaluate Q,(s) for real integer values of s, s=0, + 1, + 2,..., until for two consecutive integer
values such as k, and k4 + 1, Q,(ky) and Q,(k, + 1) have opposite signs. A real root then lies
between k, and ky+ 1. Assume this root is positive without loss of generality. A first
approximation of the root is taken to be k. Corrections to this approximation are obtained in
the remaining steps.

2. Determine a sequence of polynomials Q!(s) using the recursive relationship

k ”
Qf,”(s)=Qf,(l—Ol, +s)= Y altls 1=0,1,2,... (4.13)
i=0

where Q?,(s) = Q,(s), and the values k,, /=1,2,..., are generated in Step 3.

3. Determine the integer k, at each iteration by evaluating Q!(s) for real values of s given by
s=k/10', k=0,1,2,...,9. For two consecutive values of k, say k, and k,,,, the values
Q,(k,/10"y and Q,(k,,,/10') have opposite signs.
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4. Repeat until the desired accuracy of the root has been achieved. The approximation of the real
root after the Nth iteration is given by
Nk,

Sv= Z

= (4.14)
S0

Each iteration increases the accuracy of the approximation by one decimal place.

Newton’s Method

This method can determine real roots of the polynomial equation Q,(s)=0. The steps to be
followed are:
1. Obtain a first approximation s, of a root by making an *“educated” guess, or by a technique
such as the one in Step 1 of Horner’s method.

2. Generate a sequence of improved approximations until the desired accuracy is achieved by the
recursive relationship

0,(s)
Sty =S g
E[Qn(s)] -
which can be rewritten as
¥ (i-1)agt
Sy = 25— (4.15)

n
Z ia,s}™!

i=1
where /=0,1,2,....

This method does not provide a measure of the accuracy of the approximation. Indeed, there is no
guarantee that the approximations converge to the correct value.

Lin-Bairstow Method

This method can determine both real and complex roots of the polynomial equation Q (s)=0.
More exactly, this method determines quadratic factors of Q,(s) from which two roots can be
determined by the quadratic formula. The roots can, of course, be either real or complex. The steps to
be followed are:

1. Obtain a first approximation of a quadratic factor
s+ a5+ ag

of Q,(s)=2X7 sa;s' by some method, perhaps an “educated” guess. Corrections to this

approximation are obtained in the remaining steps.
2. Generate a set of constants b, _,,b,_4,..., by, b_,, b_, from the recursive relationship

b y=a;-ab, , —agb,

where b, =5, ,=0,and i=n,n-1,...,1,0.

3. Generate a set of constants ¢,_,,c,_s,-.., ¢}, ¢, from the recursive relationship

o1 =bi_y —ac;—age; g

where ¢,=c,_;=0,and i=n,n—-1,... 1.
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4. Solve the two simultaneous equations
cola, +cjAag=b_,
(—ayco— agey) Ay + cghag=b_,
for Aa; and Aa,. The new approximation of the quadratic factor is
24 (a4 Aay) s + (& + Aay)
5. Repeat Steps 1 through 4 for the quadratic factor obtained in Step 4, until successive
approximations are sufficiently close.

This method does not provide a measure of the accuracy of the approximation. Indeed, there is no
guarantee that the approximations converge to the correct value.

Root-Locus Method

This method can be used to determine both real and complex roots of the polynomial equation
Q,(s) = 0. The technique is discussed in Chapter 13.

4.11 COMPLEX PLANE: POLE-ZERO MAPS

The rational functions F(s) for continuous systems can be rewritten as

b, 3 (b/b)s' b, TT(s+2)

F(s) = im0 — =l
Y as I1G+2)
i=0

i=0

where the terms s + z, are factors of the numerator polynomial and the terms s + p; are factors of the
denominator polynomial, with a,=1. If s is replaced by z, F(z) represents a system function for
discrete-time systems.

Definition 4.6: Those values of the complex variable s for which |F(s)| [absolute value of F(s)] is
zero are called the zeros of F(s).

Definition 4.7: Those values of the complex variable s for which |F(s)| is infinite are called the
poles of F(s).

EXAMPLE 4.43. Let F(s) be given by
252 -2s—-4
Fis)= s2+5s2+8s+6
which can be rewritten as
s+ 1)(s-2)
(s+3)(s+1+)(s+1-))

F(s) has finite zeros at s= ~1 and s =2, and a zero at s = 00. F(s) has finite poles at s= ~3, s= -1 -, and
s=—-1+,.

F(s) =

Poles and zeros are complex numbers determined by two real variables, one representing the real
part and the other the imaginary part of the complex number. A pole or zero can therefore be
represented as a point in rectangular coordinates. The abscissa of this point represents the real part and
the ordinate the imaginary part. In the s-plane, the abscissa is called the o-axis and the ordinate the
jw-axis. In the z-plane, the abscissa is called the p-axis and the ordinate the jv-axis. The planes defined
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by these coordinate systems are generally called the complex plane (s-plane or z-plane). That half of the
complex plane in which Re(s) <0 or Re(z) <0 is called the left half of the s-plane or z-plane (LHP),
and that half in which Re(s) > 0 or Re(z) > 0 is called the right half of the s-plane or z-plane (RHP).
That portion of the z-plane in which |z| <1 is called (the interior of) the unit circle in the z-plane.

The location of a pole in the complex plane is denoted symbolically by a cross (X), and the
location of a zero by a small circle (O). The s-plane including the locations of the finite poles and zeros
of F(s) is called the pole-zero map of F(s). A similar comment holds for the z-plane.

EXAMPLE 4.44. The rational function
F(s)

has finite poles s= —3, s= —1 —j, and s = —1 +, and finite zeros s = —1 and s = 2. The pole-zero map of F(s)
is shown in Fig. 4-2.

_ (s+1)(s-2)
(s+3)(s+1+)(s+1-})

Juw axis §
32

|
i
1
I
1
-

L
-

s

-3 -2 é o axis

Xe — =
[
|
1

- -

- —j2

Fig. 4-2

4.12 GRAPHICAL EVALUATION OF RESIDUES*
Let F(s) be a rational function written in its factored form:
bm I_I (.S‘ +2z i )
F(s) = —+—

[1(s+p)

i=1

Since F(s) is a complex function, it can be written in polar form as
F(s)=|F(s)le” =|F(s)| /¢

where |F(s)| is the absolute value of F(s) and ¢ = arg F(s) = tan~!{Im F(s)/Re F(s)].
F(s) can further be written in terms of the polar forms of the factors s + z, and s + p, as

bmHIS+zi| m n
F(s)= —ami [m,— m.,,]
ITis+p) =l
=1

where s +2,=|s+ 2z, /¢, and s+p,=|s+p,| 54:,.,,.

*While s is used to represent the complex variable in this section, it is not intended to represent the Laplace variable only but
rather to be a general complex variable and the discussion is applicable to both the Laplace and :-transforms.
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Each complex number s, z;, p,, s + z,, and s + p, can be represented by a vector in the s-plane. If p
is a general complex number, then the vector representing p has magnitude |p| and direction defined by
the angle

X Imp
=tan" | ——
A Rep
measured counterclockwise from the positive o-axis.
A typical pole —p; and zero —z; are shown in Fig. 4-3, along with a general complex variable s.
The sum vectors s + z; and s + p; are also shown. Note that the vector s + z, is a vector which starts at
the zero —z; and terminates at s, and s + p, starts at the pole —p; and terminates at s.

Jw axis

—_ ~Z;
Z; i

8+ 2z

¢ axis

—Pi

4 s+ p;

Fig. 43

For distinct poles of the rational function F(s), the residue c,, = ¢, of the pole —p, is given by

Bols +p4) ﬁ(s+z,)

ﬁ(s+p,)

i=1

Ck=(s+pk)F(s)|s-—pk=
$= =Pk

These residues can be determined by the following graphical procedure:

1. Plot the pole-zero map of (s + p, ) F(s).

2. Draw vectors on this map starting at the poles and zeros of (s + p,)F(s), and terminating at
— py- Measure the magnitude (in the scale of the pole-zero map) of these vectors and the angles
of the vectors measured from the positive real axis in the counterclockwise direction.

3. Obtain the magnitude |c,| of the residue ¢, as the product of b, and the magnitudes of the
vectors from the zeros to —p,, divided by the product of the magnitudes of the vectors from
the poles to —p,.

4. Determine the angle ¢, of the residue c, as the sum of the angles of the vectors from the zeros
to —p,, minus the sum of the angles of the vectors from the poles to —p,. This is true for
positive b,,. If b,, is negative, then add 180° to this angle.

The residue ¢, is given in polar form by
= leyle’® = |Ck|&;

¢, = leilcos ¢, + flc,|sin ¢,

or in rectangular form by

This graphical technique is not directly applicable for evaluating residues of multiple poles.
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4.13 SECOND-ORDER SYSTEMS
As indicated in Section 3.14, many control systems can be described or approximated by the
general second-order differential equation
d? d
—t_y + wa"d—}; +wly=wlu
The positive coefficient w, is called the undamped natural frequency and the coefficient { is the damping

ratio of the system.
The Laplace transform of y(r), when the initial conditions are zero, is

2

Y(s) = [*—L]um

24 2b0,5 + o
where U(s) =%[u(1)]. The poles of the function Y(s)/U(s) = w2/(s? + 2¢w,s + w?) are

s=—tw, twyt?-1

Note that:

1. If { > 1, both poles are negative and real.

2. If ¢{ =1, the poles are equal, negative, and real (s = —w,).

3. If 0 < ¢ <1, the poles are complex conjugates with negative real parts (s = — {w, + jwny’l——f—l).
4. If ¢{ =0, the poles are imaginary and complex conjugate (s = +jw,).

5. If { <0, the poles are in the right half of the s-plane (RHP).

Of particular interest in this book is Case 3, representing an underdamped second-order system. The
poles are complex conjugates with negative real parts and are located at

s= —{w, +jwy1-¢?

or at §s=—atje,

where 1/a =1/¢w, is called the time constant of the system and w,= w,/1 — {2 is called the damped
natural frequency of the system. For fixed w,, Fig. 4-4 shows the locus of these poles as a function of ¢,
0 < ¢ <1. The locus is a semicircle of radius w,. The angle 8 is related to the damping ratio by
@=cos™1¢.

jw axis
£=0 !
Juy
8 = —atjog | jog
i
NG
! é
=1 I
—
o axis
—————— —joq
8 = —a~— jud .
o,

{=0
Fig. 4-4

A similar description for second-order systems described by difference equations does not exist in
such a simple and useful form.
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Solved Problems

LAPLACE TRANSFORMS FROM THE DEFINITION

4.1. Show that the unit step function 1(z) is Laplace transformable and determine its Laplace
transform.

Direct substitution into the equation of Definition 4.2 yields

]

o0 © 1 1
f |l(t)|e"’°’dr=f e dr=——e % =—<+om
0* (e % b+ %
for 6, > 0. The Laplace transform is given by Definition 4.1:
.5!’[1(:)]=‘/'°°l(t)e'"dt=—le‘”w=l for Res>0
o+ s o+ S

4.2. Show that the unit ramp function ¢ is Laplace transformable and determine its Laplace
transform.

Direct substitution into the equation of Definition 4.2 yields

o<
—ogt

o0
f|r|e"’°’dt= (~ot-1)) =<+
o+

o

%
for o, > 0. The Laplace transform is given by Definition 4.1:

£

0+

-5t

e

© 1
2[1]=£‘re dr = -st—1) -3 for Res>0

s2

o0+

4.3. Show that the sine function sin ¢ is Laplace transformable and determine its Laplace transform.
The integral /3% |sin 7]e” "’ df can be evaluated by writing the integral over the positive half cycles of
sint as

—dgnm
(e e

f "sin re ofdt=———[e %" +1]
ne Gy +1

for n even, and over negative half-cycles of sin ¢ as
—agnn

—j'(nﬂ)"sinte‘"“' dt=— [e o™ +1]
nn Gy +1

for n odd. Then

o0 . 8700" + 1 x
[sinfle % dt=——— 3 e %"
. 7+1
0 % n=0

The summation converges for e %" < 1 or &, > 0 and can be written in closed form as

x 1
—agnm _
o o 14 e %" 1
Then j(;+|smt|e ol dt = m W < + o0 for 60>0
Finally, Z[si o ag e *(—ssint—cost) |~ 1
inally, #[sint]= [ sinte %dt= =
ly ] j(;* Y Maibe et for Res>0
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4.4. Show that the Laplace transform of the unit impulse function is given by #[8(¢)] =1.

Direct substitution of Equation (3.19) into the equation of Definition 4.1 yields

f s(l)e—udl .fo‘ A]}iglo{w]e—udt

SR JNPES (Cy-Y) J 1[1 e
A:ao[-{ dt—j;)* v e Ydt|= lim —|— —

Ar—0 At 5

where the Laplace transform of 1(¢) is 1/s, as shown in Problem 4.1, and the second term is obtained using
Property 9. Now

(A1s)®  (Ars)? .

~A&rs 1 —_
e 1-Ats+ 7 3

(see Reference {1]). Thus

.9’[8(1)]== h oAt s s EAI:E'OA_I Ar- 2! * 3!

1[1 e—A.’} ! (A1)’ (Af)isz_--']'l

PROPERTIES OF THE LAPLACE TRANSFORM AND ITS INVERSE

4.5. Show that Zla,f,(¢)+a,fr,())=a,F(s)+ a,E(s), where F(s)=2(f,(1)] and Fy(s)=
2Z[ f2(1)] (Property 1).

By definition,

Llafi(1) +a ()] = _{:[“Jl(‘) +ayfo(r)]e " dr
=fma|fl(!)e"’d1+fwa2f2(t)e"“ dt
0+ 0+

=af f(0edrtay [ f(0)e dr

=a, Z[ /()] +a,2[ ()] =aF(s) +a,F(s)

4.6. Show that £ '[a,F(s) + a,Fy(s)] = a,f1(r) + a,f5(t), where L [F(s)] = fi(+) and
LU Fy(s)] = /(1) (Property 2).

By definition,

C+ joo

1
£ aR(s) + aB()] = 5 [T @A) + arF(s)] e ds

1 €+ joo 1 C + joo
= — a, Fi(s)e ds+ a,E(s)e’ ds
[T aR (e ds+ o [T 0 B(s)

PL IS

1 C + joo ¢+ joo
=a1[—2:jfc:;; F(s)e'ds +az[-i:jj;_j; Fz(s)e"ds]
=a 2 [R(s)] +a, 2 ' [R(s)] =a fi(t) + a, /2(1)

4.7. Show that the Laplace transform of the derivative df/dr of a function f(t) is given by
Lldf/dt] = sF(s) — f(0"), where F(s) =2][f(t)] (Property 3).

By definition,
g9 _ .y
Y[E]—Tlin%j: e
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4.8

4.9.

4.10.

Integrating by parts,

4
lim T;{e’”dt= r]i"%o [f(r)e"”l.r+sf(rf(z)e“'dt] = ~f(0) +sF(s)

T
=0
where lim,_, o f(€) =f(0*).

Show that

1 _ F(s)
.z’[fof(1)d ] -
where F(s) =] f(1)] (Property 4).

By definition and a change in the order of integrations, we have
o -] -]
2l [1(r)a ] = dre " dt= e dtd
[ [y ae] = [ i NI
* P e F(s)
s

= *® 1 — st d - =
=[O =ge| = [ —dr=

Show that f(0*)=1lim,_of(¢) =lim,_ sF(s), where F(s)=.%[f(1)] (Property 5).
From Problem 4.7,
df + : Tdf -1
.z’[z] =sF(s) - f(0*) = Tleaof( e
Now let s — o0, that is,

Jim [sF(s) - £(0%)] =

- Tdf - st
hq;[rlimmj: Ze dt}

€

Since the limiting processes can be interchanged, we have

g [dera] - g [ )

=0

But lim _, _e™*" =0. Hence the right side of the equation is zero and lim, | _sF(s)=/(0%).

Show that if lim, , . f(1) exists then f(o0) =1lim,_, . f(¢) = lim, _, osF(s), where F(s)=2[f(1)]
(Property 6).

From Problem 4.7,
daf rdf
— | =sF — +) = 1 REAEX 1
‘?[m] sF(s) - f(0*) Tﬁmgof( e
Now let s — 0, that is,
rdf
IR Fi _ ] = 1§ : Lt
APl =100 !*fz,[r'tmwl at df]
«—0
Since the limiting processes can be interchanged, we have

o (7Y e o
xh_%{rlimmj; i dt]—rlimsoj: dt(sh—?:)e ) dt= hm f ~dl f(e0) —f(0")

(—00

Adding f(0*) to both sides of the last equation yields lim, _, osF(s) = f(o0) if f(o0) =1lim,_ f(¢) exists.



102

4.11.

4.12,

4.13.

4.14.

4.15.
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Show that 2| f(t/a)) = aF(as), where F(s)=2[f(t)] (Property 7).
By definition, £[f(t/a)} = [g2f(1/a)e ' dt. Making the change of variable T =t/a,

3’{}'("’;)] =af(:/('r)e (@97 dr = aF(as)

Show that ¥~ '[F(s/a)] = af(at), where f(1) ="' F(s)] (Property 8).

By dcﬁnilion,
)] - ! ( ) f
[ [ 27‘_] - joo a

Making the change of variable w =s/a,

F1 [F( %)] = Ej'—jj;:;mF(w)e”(“” dw =af(at)

Show that L[ f(t — T)) = e *TF(s), where f(t — T)=0for t < T and F(s)=2[f(¢)] (Property
9).

By definition,
Llf(1-T)]) = _[(:/(: —T)e ' di= [:’f(, ~T)e " dr
Making the change of variable 8§ =1~ T,
2[/(t-T)] = j“/(&)e—*’e-" d6 = e~TF(s)
A

Show that #[e~*f(¢)] = F(s + a), where F(s) =] f(1)] (Property 10).
By definition,

Zleap(0)] = j;:e“”f(r)e’” dr= f:f(r)e-““)' dt = F(s+a)

Show that
AGIAGIE %jfc‘_jiwfl(w)rz(s—w)dw
where Fy(s) =Z[f,(1)] and Fy(s) =L /()] (Property 11).
By definition,
LUROAO] = [TH) A e dr
But
K= 2 [P
Hence
LUANAD) =5 7] [ R0y dofy (e
Interchanging the order of integrations yields

¢+ joo

LUDAD] =3 [ Fo) [T
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Since [§2fy (1™ dt = Fy(s - w),

LU = 577 [T Fs = o) da

4.16. Show that

LR EG)] = [ A=) dr

where f,(1) =% Y F(s)] and f,(¢) =L Y Fy(s)] (Property 12).

By definition,
1
LU R()R(s)) =5— fcfjwﬂ(s)Fz(s)e"ds
mj Je—joo

But Fi(s)= [5%f,(t)e *" d1. Hence

1 ¢+joo O
'y'l[Fl(S)I"z(-‘)] = 2—7”];_1; j;’fl(‘r)e_” drF(s)e" ds

Interchanging the order of integrations yields

£ R() B9 = [ wa‘”‘”r( s)e " dsfy(1) dr

Since
1 ¢+ joo
T o R()e T ds=fo(1=)
then L UROE®] = [TAD A=) dr= [ f() =) dr

where the second equality is true since f,(r—7)=0 for 7> 1.
4.17. Show that
d'y ) i-1
.?[——;] =5Y(s)— Y s'T1kyk
dt £=0
for i > 0, where Y(s) =2[y(1)] and y§ = (d*y/dt*)|,_o+
This result can be shown by mathematical induction. For i =1,
d N
2| 2] =sv(5) - 50) =570 - ¢

as shown in Problem 4.7. Now assume the result holds for i = n — 1, that is,

dn-! n-2
.?[—_y] =571y (s) = X iRy

1
ar" Pyry

Then £[d"y/dt"] can be written as

i 1 dn-ly dn-—ly
[dr" [ (.)]”’[w—]‘a—

1=0*

n—1
(n 1y()_zsn2 kk) yé’ l_sﬂ}’(s)7 zsn»l—l.}k:
k=0

For the special case n =2, we have L[d%y/di*] =5Y(s) — 5 — .

103
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LAPLACE TRANSFORMS AND THEIR INVERSE FROM THE TABLE OF TRANSFORM PAIRS
4.18. Find the Laplace transform of f(¢)=2e ‘cos10t —t*+ 619 for ¢ > 0.

From the table of transform pairs,

s+1 20 4! P 1
—_— = — 1] =
(s +1)* +10? ] L

Ze ' cos10t] = 3
s

Using Property 9, #[e™*'~19] = ¢~ 10 /(5 + 1). Using Property 1,
2(s+1) 24 6e 1%

K74 =2%[e! - 4 % ~(r-10)] = - —
[£(0)] = 22[¢”" cos100] ~L[1*] + 62 [ 0] = e - Sy 2

4.19. Find the inverse Laplace transform of

2e70% s—1
Fs)= sT—6s+13  sI—2s+2
for t > 0.
2 2 s—1 s~—1
52—6s+13-(3—3)2+22 s2—23+2=(3—1)2+1

The inverse transforms are determined directly from Table 4.1 as

1 s—1
£ ——F—— | =€¥sin2s F N —F— ] =¢"cost
(s-3)+22 (s-1)%+1
Using Property 9, then Property 2, results in
(1) = —e'cost 0<r<0S5
09 gin2(¢~0.5) — e’ cost +>0.5

LAPLACE TRANSFORMS OF LINEAR CONSTANT-COEFFICIENT
DIFFERENTIAL EQUATIONS

4.20. Determine the output transform Y(s) for the differential equation

zl
ﬁ d’y 3 d¥y dy p d*u
—St3I—S - —+by=—5—u
hesd a* " ar T a T Al
where y = output, ¥ = input, and initial conditions are
dy d’y
YO =5 e
t=0" t=0*
Using Property 3 or the result of Problem 4.17, the Laplace transforms of the terms of the equation are
given as
d’y dy d%y
=3 o2 +y _ o2 7 - _
3’[ 1= Y(s) - s¥(0%) =5 al .| s°Y(s) -1
t=0
d’y dy
== s2Y(s) —sy(0*) - @l s2Y(s)
dy d*u du
£ E-‘ =5Y(s) —y(0*) =5Y(s) £ e = 52U(s) — su(0*) — p e

where Y(s) =%[y(1)] and U(s) =L[u(r)]. The Laplace transform of the given equation can now be
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written as

dt
=53¥(s) — 1+ 352Y(s) — sY(s) + 6Y(s)

3 dZ
.2’[5—':] +3.?[ﬁ—] —.9?[%] +62(y]

du U
7| T UG)

t=0*

dzll 2 +
=9 ra ~&Z[u] =s2U(s) —su(0*) ~

Solving for Y(s), we obtain

du
+ —
-nui) O o 1

2 +3s2-5+6 S +3s2-5+6 2 4+3s2-5+6

¥(s) =

4.21. What part of the solution of Problem 4.20 is the transform of the free response? The forced

5 response?
% The transform of the free response Y,(s) is that part of the output transform Y(s) which does not

depend on the input u(t), its derivatives or its transform; that is,
Y,( !
a(s) 432 -5+6

The transform of the forced response Y,(s) is that part of Y(s) which depends on u(r), its derivative and
its transform; that is,

. du
t-nusy MOl L

s24+352—5+6 S +3s5-5+6

Yy(s) =

4.22. What is the characteristic polynomial for the differential equation of Problems 4.20 and 4.217

z The characteristic polynomial is the denominator polynomial which is common to the transforms of
S the free and forced responses (see Problem 4.21), that is, the polynomial s® + 3s% — 5 + 6.

4.23. Determine the output transform Y(s) of the system of Problem 4.20 for an input u(t) = 5sin¢t.

£ From Table 4.1, U(s) = 2{u(t)] = L[Ssin t] = 5 /(s* + 1).
- The initial values of u(t) and du/dt are u(0*) =lim,_ 4Ssint =20, (du/dt)|,_q+=1lim, o Scost=5.
Substituting these values into the output transform Y(s) given in Problem 4.20,
s2-9

Y(s) = (P+3s2—5+6)(s*+1)

PARTIAL FRACTION EXPANSIONS
4.24. A rational function F(s) can be represented by

ib‘d‘i r
F ="'L= ik |
(S) H(s-q.pi)n, b"+,~§1 kgl (S+P,-)k (410(1)

i-1
where the second form is the partial fraction expansion of F(s). Show that the constants c;, are
given by
1 dank
= s+ p)F .
Cvk (n,-—-k)! dt""—k [(S pr) (S)] (410b)

$=-p,
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4.25.

4.26.
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Let (s + p,) be the factor of interest and form

(s+p)"
(s+p)"F(s)=(s+p)"b,+ Z ): %
im1 k=1 (5+P.)
This can be rewritten as

(s+5)"F(s) =(s+p)"b,+ £ 5 T8
s1im1 (s+p)"
4 (s+p)ch X ek,
¥ -%lkzl (s+p)* " z (s+p)"
n,—l

Now form ds"/"[(s+p’ 'F(J)]

s=—p;

Note that the first three terms on the right-hand side of (s + P )"lF(s) will have a factor s+ p, in the
numerator even after being differentiated n -/ times (/=1,2,..., ;) and thus these three terms become
zero when evaluated at s = — p,. Therefore

dn]fl n,
=;f;;,[kzl(s +P,)""k0,k]

{
=El(n/ —k)(m—k=1) - (I—k+1)(s+p) * e,

s=-p,

[(s +p,)" F(s)]

e, -1
ds"
s=oh 5= —p,

Except for that term in the summation for which k =/, all the other terms are zero since they contain
factors s + p,. Then

n, =1

F[(Sﬂ’,)"’f’(ﬂ]

=(n=0)(n,=1=1) - (1),

s=~p,

1
or cﬂs(n Ty 7,[(s+p/ ’F(s)]
s=-p,
Expand Y(s) of Example 4.17 in a partial fraction expansion.

Y(s) can be rewritten with the denominator polynomial in factored form as

—(s2+s-1
y(s)=Ls~)
s(s+1)(s+2)
The partial fraction expansion of Y(s) is [see Equation (4 1)
€3
Y| ca,
(s) =, s s+1 s+2
where b, =0,
—(s2+s-1) 1 —(s+s-1) . ~(s*+s5-1) 1
MGG T2 BT TGy | TGy |, 2
1 1
Thus Y(:)——————-

2s s+l 2(s+2)

Expand Y(s) of Example 4.19 in a partial fraction expansion.
Y(s) can be rewritten with the denominator polynomial in factored form as
s24+95+19

YO = GGG+ 9

CHAP. 4] THE LAPLACE TRANSFORM AND THE z-TRANSFORM 107

The partial fraction expansion of Y(s) is [see Equation (4./])]
€21 €31

=b,+
Y =bt Ca it e
where b, =0,
s2+95+19 11 s2+95+19 5
NI EEY)] B DTGy, 2
5T+ 95+ 19 1
STGrnGs+o)| 6
11 5 1
Thus Y(s)=

(s+1)  2s+2)  6(s+4)

INVERSE LAPLACE TRANSFORMS USING PARTIAL FRACTION EXPANSIONS
4.27. Determine y(t) for the system of Example 4.17.

4 From the result of Problem 4.25, the transform of y(r) can be written as

Mathcad 1 1

Zy(0)]=¥(s )——s-m T 2s+2)

Therefore
L[ 1] [ ] L[ 1
n=3 s177 5+ 727 se2

4.28. Determine y(r) for the system of Example 4.19.

1
=5[1-2e"~e’2’] >0

From the result of Problem 4.26, the transform of y(r) can be written as

5 1
L[y(n]=7Y(s) = 3(s +1) T As+2) 6(s+4)
Therefore Y(’)=?e_17§e72{4%274,

ROOTS OF POLYNOMIALS
4.29. Find an approximation of a real root of the polynomial equation
0s(s)=s3-3s2+45-5=0
to an accuracy of three significant figures using Horner’s method.

By Descartes’ rule of signs, Q4(s) has three variations in the signs of its coefficients (1 to =3, —3 to 4,
and 4 to —5). Thus there may be three positive real roots. Qy(—s)= —s — 35> — 45— 5 has no sign
changes; therefore Q,(s) has no negative real roots and only real values of s greater than zero need be
considered.

Step 1—We have 0,(0)= -5, O;(1)= -3, 0;(2)= -1, 0;(3)=7. Therefore k, =2 and the first

approximation is 5, =k, = 2.
Step 2—Determine Q}(s) as

Qi(s)=0%2+s)=(2+5)° —3(2+s5) " +4(2+5)—5=5>+3s7+4s— 1
Step 3—Q1(0) = —1, QL(%) = —0.569, Q}(Z) = —0.072, QL() = 0.497. Hence k, = 0.2 and s, = ko

+k, =22
Now repeat Step 2 to determine Q3(s):

03(s) = Q0.2 +5) =(0.2+5) +3(0.2+5)* +4(02+5) -1 =5>+3.65>+ 5.325 - 0.072
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4.30.

4.31.
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Repeating Step 3: Q3(0) = —0.072, Q3(1/100) = —0.018, Q%(2,/100) = 0.036. Hence k, =0.01 and
s, = kg + k; + k, =221 which is an approximation of the root accurate to three significant figures.

Find an approximation of a real root of the polynomial equation given in Problem 4.29 using
Newton’s method. Perform four iterations and compare the result with the solution of Problem
4.29.

The sequence of approximations is defined by letting n=3, a;=1, a, = —3, g, =4, and g;= -5 in
the recursive relationship of Newton’s method [Equation (4.15)]. The result is

257 - 37 +5

S Py [=0,1,2,...
Let the first guess be s, = 0. Then
5 2(3.55)° - 3(3.55)° + 5
n=gml® BT 33E55) 6355 + 4

2(1.25)° - 3(1.25)2 + 5

2(2.76)° — 3(2.76)* + 5
2T (1257 - 6(1.25) + 4

T 32767 -6(2.76) +4

S4

The next iteration yields s, = 2.22 and the sequence is converging.

Find an approximation of a quadratic factor of the polynomial
0:(s5)=5>-352+45-5
of Problems 4.29 and 4.30, using the Lin-Bairstow method. Perform two iterations.

Step 1—Choose as a first approximation the factor s — s + 2.
The constants needed in Step 2 are &y = —1, @y=2, n=3, a,=1,a,= ~3, a, =4, a3 = -5.
Step 2—From the recursive relationship

b_,=a,—ab _, —ayb,
i=n,n—1,...,1,0, the following constants are formed:
b =a;=1 by=a,+b =-2
b_,=a,+b—-2b=0 b ,=ag+b_,—2h=-1
Step 3—From the recursive relationship
¢_1=b_,—ac;—agc,,
i=n,n-1,...,1, the following constants are determined:
oq=b=1 g=byte=-1
Step 4—The simultaneous equations
oAy + ¢ Aay=b_,
(—eycp — agey) Aey + g dag=b_,
can now be written as
—Aa; + Ay =0
—3Aa; ~ Aag= -1

whose solution is Aa; = 1, Aay = 1, and the new approximation of the quadratic factor is
s2-0.755+2.25
If Steps 1 through 4 are repeated for @, = —0.75, a, = 2.25, the second iteration produces

52— 0.7861s + 2.2583
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POLE-ZERO MAPS
4.32. Determine all of the poles and zeros of F(s) = (s~ 16)/(s> — 7s* — 30s%).

ﬁ The finite poles of F(s) are the roots of the denominator polynomial equation
Mathcad 5= 754 =305 =53(s+3)(5s-10) =0

Therefore s =0, s = — 3, and s = 10 are the finite poles of F(s). s =0 is a triple root of the equation and is
called a triple pole of F(s). These are the only values of s for which | F(s)] is infinite and are all the poles of
F(s). The finite zeros of F(s) are the roots of the numerator polynomial equation

s?—16=(s—-4)(s+4)=0

Therefore s =4 and s = —4 are the finite zeros of F(s). As |s| > o0, F(s)=1/s’>0. Then F(s) has a
triple zero at s = co.

4.33. Draw a pole-zero map for the function of Problem 4.32.

4 From the solution of Problem 4.32, F(s) has finite zeros at s =4 and s = —4, and finite poles at s=0
&d (a triple pole), s = — 3 and s = 10. The pole-zero map is shown in Fig. 4-5.
Ju axis
—— triple pole
= o axis
e T 10
Fig. 4-5

4.34. Using the graphical technique, evaluate the residues of the function

~ 20
F(s)= (s+10)(s+1+/)(s+1—))

The pole-zero map of F(s) is shown in Fig. 4-6.

Jw axis
907 186° 20’

J f
2.0

o axis

Fig. 4-6

Included in this pole-zero map are the vector displacements between the poles. For example, A is the
vector displacement of the pole s = —10 relative to the pole s= —1 +. Clearly then, — A is the vector
displacement of the pole s = —1 + relative to the pole s = —10.

The magnitude of the residue at the pole s = —10 is

20
|41B|  (5.07)(9.07)

The angle ¢; of the residue at s = —10 is the negative of the sum of the angles of 4 and B, that is,
¢, = —[186°20" + 173°40') = —360°. Hence ¢, = 0.243.

o] = =0.243
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The magnitude of the residue at the pole s= —1 +; is

The angle ¢, of the residue at the pole s = —1 + j is the negative of the sums of the angles of — 4 and C:
= —[6°20" + 90°] = —96°20". Hence ¢, = 1.102/ —96°20'= —0.128 — j1.095.
The magnitude of the residue at the pole s= —1—; is
il 20 20 1102
G| = = =1.
TU-BI-C (001(2)
The angle ¢, of the residue at the pole s = —1 — is the negative of the sum of the angles of — B and - C:
¢, = —~[—90° - 6°20'] = 96°20". Hence ¢, = 1.102 1/_ 96°20'= —0.128 + ;1.095.
Note that the residues ¢, and ¢, of the complex conjugate poles are also complex conjugates. This is
always true for the residues of complex conjugate poles.

SECOND-ORDER SYSTEMS

4.35. Determine (a) the undamped natural frequency w,, (b) the damping ratio {, (c¢) the time
i constant 7, (d) the damped natural frequency w,, (e) characteristic equation for the second-order

W system given by
2
Yy W

l + 5— + 9y =9u

Comparing this equation with the definitions of Section 4.13, we have

1 2
(a) w! =9orw, =3 rad/sec (c) 1=§—=gsec (e) s2+5s+9=0
w’!
s s J—
(b) 2§w,,=50r§’=2—-=g (d) w,=w,y1l-{* =1.66rad/sec
w’l

4.36. How and why can the following system be approximated by a second-order system?

g dy d?y dy
— E— + 12—‘}7 +22— 7 + 20y = 20u
When the initial conditions on y(r) and its derivatives are zero, the output transform is

20
s3 41252+ 225+ 20

£ly(0)=Y(s)= U(s)

where U(s) =2[u(t)). This can be rewritten as
v 10/ 1 s u 80 U(s)
= — 4 —
() 41(s+10 52+2s+2) DA\ sz

The constant factor ¥ of the second term is 8 times the constant factor i of the first term. The output y(r)
will then be dominated by the time function

o]
41 sT4+25+2
The output transform ¥Y(s) can then be approximated by this second term; that is,
Y(s 80( U(s) ):( 2 )U(s)
a\st+25+2 242542

The second-order approximation is d2y/dt? + 2(dy/dt) + 2y = 2u.

4.37. In Chapter 6 it will be shown that the output y(¢) of a time-invariant linear causal system with
all initial conditions equal to zero is related to the input u(¢) in the Laplace transform domain
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by the equation Y(s) = P(s)U(s), where P(s) is called the transfer function of the system. Show
that p(r), the inverse Laplace transform of P(s), is equal to the weighting function w(t) of a
system described by the constant-coefficient differential equation

n dy
E‘Oa' ar

The forced response for a system described by the above equation is given by Equation (3./5). with all
b, =0 except b, =1:

y(t)=j(.)iw(!—'r)u(7) dr

and w(7 — 7) is the weighting function of the differential equation.
The inverse Laplace transform of Y(s) = P(s)U(s) is easily determined from the convolution integral
of Property 12 as

W) =2 (V)] =27 [P()U(s)] = [ p(1=7)u(r) dr

Hence f;}r‘w(l*r)u(-r)d-r=foip(r~-r)u(r)d-r or w(r)=p(1)

MISCELLANEOUS PROBLEMS
4.38. For the R-C network in Fig. 4-7:

(a) Find a differential equation which relates the output voltage y and the input voltage u.

(b) Let the initial voltage across the capacitor C be v, =1 volt with the polarity shown, and
let u=2e™". Using the Laplace transform technique, find y.

c=1 ,

+
Input % R=1 y

voltage u

Fig. 4-7

(a) From Kirchhofl’s voltage law
Lo ) 1 .
u=uv,y+ Ej(;xdt+ Ri=uv,+ foldl+l
But y=Ri=i Therefore u=uv,+ [jydr+y. Differentiating both sides of this integral equation
yields the differential equation p + y =i
(b) The Laplace transform of the differential equation found in part (a) is
sY(s) = p(0*) + Y(s) =sU(s) —u(0%)
where U(s)=2[2¢"'|=2/(s+1) and u(0*)=1lim,_ ,2e " =2. To find y(0"), limits are taken on
both sides of the original voltage equation:
u(07) = limu(t) = lim [Ul»o + f'ydl +y(t)] =0,+1(07)
t—0 =0 0
Hence y(0")=u(0") — v, =2 — 1 =1. The transform of y(r) is then
2s 1 2 2 1 2 1
——t— — +
s+1 (s+1) s+1 s+1 (s+1)7  s+1
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4.39.

4.40.

441.

4.42.

443.
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Finally,

1
+Y"l[s+ 1] =~2te"'+e!

y(!)=-?"[—;2
(s+1)

Determine the Laplace transform of the output of the ideal sampler described in Problem 3.5.

From Definition 4.1 and Equation (3.20), the screening property of the unit impulse, we have

U*(s) =f‘)f°e-!'u‘(z)dz=f[]f°e-s' f; (1) 8(t— kT) dr

-0
x )

= Zf e u(t) 8(1 - kT)dr= E: e *Tu(kT)
o* k=0

Compare the result of Problem 4.39 with the :z-transform of the sampled signal u(kT),
k=0,1,2,....

By definition the z-transform of the sampled signal is

]

U(z)= Y u(kT)z*

k=0

This result could have been obtained directly by substituting z = ¢*7 in the result of Problem 4.39.

Prove the Shift Theorem (Property 6, Section 4.9).
By definition,
o0
) =F(z)= ¥ f(k)z*
k=0
If we define a new, shifted sequence by g(0)=f(~1)=0and g(k)=f(k-1), k=1,2,..., then

Sa()) = 3 gk)t= T g()e7= L A1)z
k=0

Jj=0 j=0

(see Remark 1 following Definition 4.4). Now let k be redefined as k =; — 1 in the last equation. Then

:‘-{f(k*l)}=k§_lf(k)2‘*"‘=2' T (k)

1
k=—1

=Y (-1 + ! i f(k)z=*
k~0

=20.0+2z7"! i f(k)z *=271F(z2)
k=0

Note that repeated application of this result gives

Z[ f(k=j)) =27F(2)

Supplementary Problems
Show that £{—tf(1)] = dF(s)/ds, where F(s)=2[f(1)}

Using the convolution integral find the inverse transform of 1/s(s + 2).
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4.4.

4.45.

4.46.

447,

4.48.

4.49.

4.50.

4.51.

4.43.

4.44.

4.45.

4.46.

4.47.

4.49.

4.50.

4.51.
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Determine the final value of the function f(r) whose Laplace transform is
2As+1)

Fls)= s(s+3)(s+5)°

Determine the initial value of the function f(r) whose Laplace transform is

A 4s
(S)_s3+2s2+9s+6

Find the partial fraction expansion of the function F(s)=10/(s + 4)(s + 2)°.
Find the inverse Laplace transform f() of the function F(s)=10/(s + 4)(s + 2)°.
Solve Problem 3.24 using the Laplace transform technique.

Using the Laplace transform technique, find the forced response of the differential equation

&y & du
AN LAY S|
ar T a TV Ty T

where u(t)=e¥, t > 0. Compare this solution with that obtained in Problem 3.26.

Using the Laplace transform technique, find the transient and steady state responses of the system
described by the differential equation d?y/dr®+ 3(dy/dt) +2y =1 with initial conditions y(0*) and
(dy/dD)]|,—o+=1.

Using the Laplace transform technique, find the unit impulse response of the system described by the
differential equation d’y/dt® + dy/dt = u.

Answers to Some Supplementary Problems

i — e

S 5 5 5
— + p—
(s+2)° 2As+2)? Hs+2) 4(s+4)
St%e”¥ St Sem 5%

/= 7 " 4

F(s)=

Yp(1)=7Te % — Te=3 — Tt~ %
Transient response = 2¢~‘ — 272, Steady state response = 1.

ya(1)=1—cost



Chapter 5

Stability

5.1 STABILITY DEFINITIONS

The stability of a continuous or discrete-time system is determined by its response to inputs or
disturbances. Intuitively, a stable system is one that remains at rest unless excited by an external source
and returns to rest if all excitations are removed. Stability can be precisely defined in terms of the
impulse response ys(¢) of a continuous system, or Kronecker delta response ys(k) of a discrete-time
system (see Sections 3.13 and 3.16), as follows:

Definition 5.1a: A continuous system (discrete-time system) is stable if its impulse response y,(7)
(Kronecker delta response yg(k)) approaches zero as time approaches infinity.

Alternatively, the definition of a stable system can be based upon the response of the system to
bounded inputs, that is, inputs whose magnitudes are less than some finite value for all time.

Definition 5.1b: A continuous or discrete-time system is stable if every bounded input produces a
bounded output.

Consideration of the degree of stability of a system often provides valuable information about its
behavior. That is, if it is stable, how close is it to being unstable? This is the concept of relative stability.
Usually, relative stability is expressed in terms of some allowable variation of a particular system
parameter, over which the system remains stable. More precise definitions of relative stability indicators
are presented in later chapters. Stability of nonlinear systems is treated in Chapter 19.

5.2 CHARACTERISTIC ROOT LOCATIONS FOR CONTINUOUS SYSTEMS

A major result of Chapters 3 and 4 is that the impulse response of a linear time-invariant
continuous system is a sum of exponential time functions whose exponents are the roots of the system
characteristic equation (see Equation 4.12), A necessary and sufficient condition for the system to be stable
is that the real parts of the roots of the characteristic equation have negative real parts. This ensures that
the impulse response will decay exponentially with time.

If the system has some roots with real parts equal to zero, but none with positive real parts, the
system is said to be marginally stable. In this instance, the impulse response does not decay to zero,
although it is bounded, but certain other inputs will produce unbounded outputs. Therefore marginally
stable systems are unstable.

EXAMPLE 5.1. The system described by the Laplace transformed differential equation,
(s*+1)Y(s) =U(s)
has the characteristic equation
s241=0

This equation has the two roots +j. Since these roots have zero real parts, the system is not stable. It is, however,
marginally stable since the equation has no roots with positive real parts. In response to most inputs or
disturbances, the system oscillates with a bounded output. However, if the input is « = sin ¢, the output will contain
a term of the form: y = rcos 1, which is unbounded.
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53 ROUTH STABILITY CRITERION

The Routh criterion is a method for determining continuous system stability, for systems with an
nth-order characteristic equation of the form:

a,s"+a, s"'+ - +as+ag=0

The criterion is applied using a Routh table defined as follows:

s a, a,_3 Qp_g4
1] q a a
n-1 n-3 n-5
b by by
G 31 €3

where a,,a,_,,..., a, are the coefficients of the characteristic equation and
a,_,\a,_,—a,a a,_.a,_,—a,a
n—1%n-2 n“n-3 n-1%n-4 n“n-5
bys——m by=s —— etc.

a,_1 an_

ba, s—a, b o= ba, s—a, b etc
b, 2 :

bl
The table is continued horizontally and vertically until only zeros are obtained. Any row can be
multiplied by a positive constant before the next row is computed without disturbing the properties of
the table.
The Routh Criterion: All the roots of the characteristic equation have negative real parts if and only if
the elements of the first column of the Routh table have the same sign. Otherwise, the number of roots with
positive real parts is equal to the number of changes of sign.

=

EXAMPLE 5.2.
$+652+1254+8=0
53 1 120
52 6 8 0
s ¢ o
$° 8

Since there are no changes of sign in the first column of the table, all the roots of the equation have negative real
parts.

Often it is desirable to determine a range of values of a particular system parameter for which the
system is stable. This can be accomplished by writing the inequalities that ensure that there is no change
of sign in the first column of the Routh table for the system. These inequalities then specify the range of
allowable values of the parameter.

EXAMPLE 5.3.
P +352435+1+K=0

For no sign changes in the first column, it is necessary that the conditions 8 — K > 0, 1 + K > 0 be satisfied. Thus
the characteristic equation has roots with negative real parts if —1 < K < 8, the simultaneous solution of these two
inequalities.
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A row of zeros for the s' row of the Routh table indicates that the polynomial has a pair of roots
which satisfy the auxiliary equation formed as follows:
As?’+B=0
where 4 and B are the first and second elements of the s? row.
To continue the table, the zeros in the s' row are replaced with the coefficients of the derivative of
the auxiliary equation. The derivative of the auxiliary equation is
24s+0=0
The coefficients 24 and O are then entered into the s' row and the table is continued as described
above.

EXAMPLE 5.4. In the previous example, the s’ row is zero if K=8. In this case, the auxiliary equation is
3s? + 9 = 0. Therefore two of the roots of the characteristic equation are s = +¥/3 .

5.4 HURWITZ STABILITY CRITERION

The Hurwitz criterion is another method for determining whether all the roots of the characteristic
equation of a continuous system have negative real parts. This criterion is applied using determinants
formed from the coefficients of the characteristic equation. It is assumed that the first coefficient, a,,, is
positive. The determinants A, i=1,2,..., n~ 1, are formed as the principal minor determinants of the
determinant

a, ifnodd
Gn-1 Gn-3 [al if neven} 0
a, if nodd
A, = @n a2 [ao if n evenJ 0
0 Buoy @yogc o 0
0 . T 0
§ S a,

The determinants are thus formed as follows:

dy=a,,
A, =]t Ol 4 -aa
2 a, a,_, n-1%n-2 n%n-3
Ap_1 Q-3 Gys
—la a,._ Ap_4| = - 2 2
A, =149 n-2 n-d|l=a, 14, .4, yta,a, 4, s—a,a,_3—a, 44,
0 ap_y Gu-3

and soonuptod, ;.
Hurwitz Criterion: A/l the roots of the characteristic equation have negative real parts if and only if
A, >0,i=12,...,n

EXAMPLE §.5. For n=3,

a;, a; 0
2 a; 4y
Ay=|a; a; 0|=aya0,—aja,, A, = a; ay|=92% = dds, A =a,
0 a, a,

Thus all the roots of the characteristic equation have negative real parts if

a,>0 a,a, —apga; >0 a,aay—ala; >0

CHAP. 5] STABILITY 117

5.5 CONTINUED FRACTION STABILITY CRITERION
This criterion is applied to the characteristic equation of a continuous system by forming a
continued fraction from the odd and even portions of the equation, in the following manner. Let
Q(s)=a,s"+a,_;s" '+ - +a;s+a,
Qs)=a,s"+a, ,s""1+ -
Q:(s) =a, " 4, 5

Form the fraction Q,/Q,, and then divide the denominator into the numerator and invert the
remainder, to form a continued fraction as follows:

a,a, - a,a,_s
a, = 2t 2y (g, - g
Ql(s) _ a,s + a,_1 a

0,(s) a,, 0,

n—1

If hy, hy,..., h, are all positive, then all the roots of Q(s) =0 have negative real parts.

EXAMPLE 5.6.
Q(s)=s3+6s2+125+8
32
Qi(s) $£+12s 1 EN
2.(s) T 6T+ 8 =gs+ 652+ 8
1 1
=g.§'+—_’9 1
TES+~§—S‘

Since all the coefficients of s in the continued fraction are positive, that is, h; = %, h, = %, and hy =%, all the
roots of the polynomial equation Q(s) = 0 have negative real parts.

5.6 STABILITY CRITERIA FOR DISCRETE-TIME SYSTEMS

The stability of discrete systems is determined by the roots of the discrete system characteristic
equation

Q(z)=a,z"+a,_;z" '+ --- +taz+ay=0 (s.1)
n n-1 0

However, in this case the stability region is defined by the unir circle |z}=1 in the z-plane. A necessary
and sufficient condition for system stability is that all the roots of the characteristic equation have a
magnitude less than one, that is, be within the unit circle. This ensures that the Kronecker delta response
decays with time.
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A stability criterion for discrete systems similar to the Routh criterion is called the Jury test. For
this test, the coefficients of the characteristic equation are first arranged in the Jury array:

row
1 |a aq a, a, , a,
2 ay, ay_y Gy_2 T a, 4o
316 & b e by
4 bnfl bn—l bn—3 e bO
51 o €2 Tt G2
6 Ca2 Cn-3 Ca—a " Co
n=-5|rn n n N
2n—4 | n r n To
2n=3 | s 5 5y
where
b= a4y Gk o= by by1_k
a, a; b,_1 by
ron rp n b n
50| n 1% n 525\ ny

The first two rows are written using the characteristic equation coefficients and the next two rows are
computed using the determinant relationships shown above. The process is continued with each
succeeding pair of rows having one less column than the previous pair until row 2n — 3 is computed,
which only has three entries. The array is then terminated.

Jury Test: Necessary and sufficient conditions for the roots of Q(2) =0 to have magnitudes less than

one are.

o(1)>0
>0 for neven
e(-1) {<O for n odd

Iaol < an
186l > 16,1

leal > 1€a-al

frol > i3

sl > Isal
Note that if the Q(1) or Q(—1) conditions above are not satisfied, the system is unstable and it is not
necessary to construct the array.

EXAMPLE 5.7. For Q(z) =3z*+22*+ 22+ 2+ 1=0(n even),
Q(1)=3+2+14+1+1=8>0
Q(-1)=3-2+1-1+1=2>0
Thus the Jury array must be completed as

row
1 1 1 1 23
2 3 2 1 11
3 -8 -5 -2 -1

4 -1 -2 -5 -8

S 63 38 11

vit

lathcad
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The remaining test condition constraints are therefore
lag]=1<3=a,
lbol =1-8|>]—1]=]b,_,]
|col =63 > 11 = |c,_,|

Since all the constraints of the Jury test are satisfied, all the roots of the characteristic equation are within the unit
circle and the system is stable.

The w-Transform

The stability of a linear discrete-time system expressed in the z-domain also can be determined
using the s-plane methods developed for continuous systems (e.g., Routh, Hurwitz). The following
bilinear transformation of the complex variable z into the new complex variable w given by the
equivalent expressions:

1+w
z= (5.2)
1-w
z—1 53
YE T (53)

transforms the interior of the unit circle in the z-plane onto the left half of the w-plane. Therefore the
stability of a discrete-time system with characteristic polynomial Q(z) can be determined by examining
the locations of the roots of

Q(w) =Q(Z)|z—(l+w)/(l—w) =0

in the w-plane, treating w like s and using s-plane techniques to establish stability properties. This
transformation is developed more extensively in Chapter 10 and is also used in subsequent frequency
domain analysis and design chapters.

EXAMPLE 5.8. The polynomial equation

27342722+ 924 1=0
is the characteristic equation of a discrete-time system. To test for roots outside the unit circle {z| = 1, which would
signify instability, we set
1+w
T1-w
which, after some algebraic manipulation, leads to a new characteristic equation in w:
w?+ 6w+ 12w+ 8=0
This equation was found to have roots only in the left half of the complex plane in Example 5.2. Therefore the
original discrete-time system is stable.

Solved Problems

STABILITY DEFINITIONS

5.1. The impulse responses of several linear continuous systems are given below. For each case
i+ determine if the impulse response represents a stable or an unstable system.

mathcad (@) A(t)=e~" (b) h(t)=te™", (¢) h(1)=1,(d) h(t) =e " 'sin3t, (e) h(1) =sinw!.

If the impulse response decays to zero as time approaches infinity, the system is stable. As can be seen
in Fig. 5-1, the impulse responses (a), (b), and (d) decay to zero as time approaches infinity and therefore
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5.2,

5.3.
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h{t) h(t) h(t)
1.0 1.0 1.0
s et 5
te ~t
0 ‘—Y—V—ﬁ_"ﬁt 0 T T T ' t
] 2 3 4 1 2 3 4
(a) ) (e}
h(t)
104
e~t gin 3¢
e — ¢
~1.0
(d)

Fig. 5-1

represent stable systems. Since the impulse responses (¢) and (e¢) do not approach zero, they represent
unstable systems.

If a step function is applied at the input of a continuous system and the output remains below a
certain level for all time, is the system stable?

The system is not necessarily stable since the output must be bounded for every bounded input. A
bounded output to one specific bounded input does not ensure stability.

If a step function is applied at the input of a continuous system and the output is of the form
y =, is the system stable or unstable?

The system is unstable since a bounded input produced an unbounded output.

CHARACTERISTIC ROOT LOCATIONS FOR CONTINUOUS SYSTEMS

54.

The roots of the characteristic equations of several systems are given below. Determine in each
case if the set of roots represents stable, marginally stable, or unstable systems.

(a) —-1,-2 (d) ~1+j,-1-j (8) —6,-47
(b)) —-1.+1 (6) —2+j,-2-j2j,—-2j (k) —2+3j,-2-3j,-2
(¢) —-3-20 (f) 2,-1,-3 ) -5iJj-1L1

The sets of roots (a), (d), and (k) represent stable systems since all the roots have negative real parts.
The sets of roots (c) and (e) represent marginally stable systems since all the roots have nonpositive real
parts, that is, zero or negative. The sets (b), ( /), (g), and (/) represent unstable systems since each has at
least one root with a positive real part.
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5.5.

5.6.

5.7.

5.8.
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A system has poles at —1 and —5 and zeros at 1 and —2. Is the system stable?

The system is stable since the poles are the roots of the system characteristic equation (Chapter 3)
which have negative real parts. The fact that the system has a zero with a positive real part does not affect
its stability.

Determine if the system with the following characteristic equation is stable:
(s+1)(s+2)(s-3)=0.

This characteristic equation has the roots —1, —2, and 3 and therefore represents an unstable system
since there is a positive real root.

The differential equation of an integrator may be written as follows: dy/dt = u. Determine if an
integrator is stable.

The characteristic equation of this system is s = 0. Since the root does not have a negative real part, an
integrator is not stable. Since it has no roots with positive real parts, an integrator is marginally stable.

Determine a bounded input which will produce an unbounded output from an integrator.

The input u =1 will produce the output y = ¢, which is unbounded.

ROUTH STABILITY CRITERION

5.9.

5.10.

Determine if the following characteristic equation represents a stable system:
s3+45s2+85+12=0
The Routh table for this system is

s$$11 8
2] 412
s S 0
s |12

Since there are no changes of sign in the first column, all the roots of the characteristic equation have
negative real parts and the system is stable.

Determine if the following characteristic equation has any roots with positive real parts:
s*+s3—5-1=0
Note that the coefficient of the s? term is zero. The Routh table for this equation is

- N W

new

Yo w et ot

o

The presence of the zeros in the s' row indicates that the characteristic equation has two roots which satisfy
the auxiliary equation formed from the s? row as follows: s2 — 1 =0. The roots of this equation are +1
and —1.

The new s' row was formed using the coefficients from the derivative of the auxiliary equation:
25 — 0 =0. Since there is one change of sign, the characteristic equation has one root with a positive real
part, the one at +1 determined from the auxiliary equation.
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5.11. The characteristic equation of a given system is

s+ 657+ 1152+ 65+ K=0

What restrictions must be placed upon the parameter K in order to ensure that the system is
stable?

The Routh table for this system is

For the system to be stable, 60 — 6K >0, or K <10, and K> 0. Thus 0 < X < 10.

5.12. Construct a Routh table and determine the number of roots with positive real parts for the
equation
25>+ 452 +45+12=0

The Routh table for this equation is given below. Here the s? row was divided by 4 before the s' row
was computed. The s' row was then divided by 2 before the s° row was computed.

3

2
L
-1
3

O W

5
S
Sl
$

Since there are two changes of sign in the first column of the Routh table, the equation above has two roots
with positive real parts.

HURWITZ STABILITY CRITERION
5.13. Determine if the characteristic equation below represents a stable or an unstable system.

s+ 8s2+145+24=0
The Hurwitz determinants for this system are

8 24 0
4,=[1 14 o|-u2  4,-[" f:|=ss A =8
0 8 24

Since each determinant is positive, the system is stable. Note that the general formulation of Example 5.5
could have been used to check the stability in this case by substituting the appropriate values for the
coefficients a,), a, a;, and a;.

5.14. For what range of values of K is the system with the following characteristic equation stable?
s?+Ks+2K-1=0
The Hurwitz determinants for this system are

K 0

8511 2k-1

=2K'-K=K(2K-1) A=K

In order for these determinants to be positive, it is necessary that X > 0 and 2K — 1 > 0. Thus the system is
stable if K> 4.
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5.15. A system is designed to give satisfactory performance when a particular amplifier gain K =2.
Determine how much K can vary before the system becomes unstable if the characteristic
equation is

s3+(4+K)s2+6s+16+8K=0

Substituting the coefficients of the given equation into the general Hurwitz conditions of Example 5.5
results in the following requirements for stability:

4+K>0 (4+K)6~(16+8K)>0 (4+ K)(6)(16 + 8K) — (16 + 8K)* >0

Assuming the amplifier gain K cannot be negative, the first condition is satisfied. The second and third
conditions are satisfied if X is less than 4. Hence with an amplifier gain design value of 2, the system could
tolerate an increase in gain of a factor of 2 before it would become unstable. The gain could also drop to
zero without causing instability.

5.16. Determine the Hurwitz conditions for stability of the following general fourth-order characteris-
tic equation, assuming a, is positive.

as*+asi+a,sitas+a,=0
The Hurwitz determinants are
a; a 0

0

a, a, a, O R
A, = =a,(a,a,a, — a;a3) — alaya
4 0 03 ﬂ] 0 3( 241%0 30) 1%0%4

0 a, a, ag

a; a 0

Ay=|as @y 4y|=g,a,a, - aya}-a,al
0 a; aq

A,= a4 =a,a,—asa

2= |a, a, 38 — s

A =a,

The conditions for stability are then

ay,>0 a,a, —a,a, >0 aya,a, — aga’ — agat >0 a;(aya,0y — a;a}) — aaga, > 0

5.17. Is the system with the following characteristic equation stable?

s 4353+ 652+9s+12=0

Substituting the appropriate values for the coefficients in the general conditions of Problem 5.16, we
have

3>0 18-9>0 162-108 - 81 #0 3(648 - 432) —972» 0

Since the last two conditions are not satisfied, the system is unstable.

CONTINUED FRACTION STABILITY CRITERION
5.18. Repeat Problem 5.9 using the continued fraction stability criterion.
The polynomial Q(s)=s* + 4s? + 85 + 12 is divided into the two parts:

Qi(s)=5>+8s Q:(s)=4s2+12
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The continued fraction for @,(s)/Q,(s) is

Qi(s) s°+8 1 55 1 1

s+ ry 1
5 &s

= = + = —
0,(s) a2+12 4 4+12 4

Since all the coefficients of s are positive, the polynomial has all its roots in the left half-plane and the
system with the characteristic equation Q(s) = 0 is stable.

5.19. Determine bounds upon the parameter K for which a system with the following characteristic
equation is stable:
s3+ 1452+ 565+ K=0
(56 - K/14)s 1 1
_IGZGF'=E’*I 14 ]+ 1
s6-K/14|° [56— K/l4]s
K

Q(s) s+56s 1
0,(s) lass+K 1a°

For the system to be stable, the following conditions must be satisfied: 56 — K/14 > 0 and K > 0, that is,
0< K<784.

5.20. Derive conditions for all the roots of a general third-order polynomial to have negative real

parts.
For Q(s) = ays* + a,s2 + ay5 + aq,
3
Qi(s) as’+as  as + [a, —aya0/a,])s “:s+ 1
= = =25+~ _
0,(s)  ayst+ay, a a,s% +a, a, a; - 1
a, — aa,/a, [“1 _“3“0/“z]
—_ s
ao
The conditions for all the roots of Q(s) to have negative real parts are then
a; ] a, —azay/a,
—=>0 — >0 ——->0
a, a, — a;6,/4a, ay

Thus if a, is positive, the required conditions are a,, a,, a, > 0 and a,a, — @;a, > 0. Note that if a; is not
positive, Q(s) should be multiplied by —1 before checking the above conditions.

5.21. Is the system with the following characteristic equation stable?

s44+453+852+165+32=0
Q(s) s*+82+32 1 452+ 32

= +
0,(s)  as+16s 4 a5’ +16s

1 1 1 1

‘z.!"i* 165 =ZS+ 1

S+—————l T

47 —is

s+ ——r
457+ 32
Since the coefficients of s are not all positive, the system is unstable.

DISCRETE-TIME SYSTEMS

5.22. Is the system with the following characteristic equation stable?

ﬁ 0(z)=z*+223+3:2+241=0
athcad
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5.24.

Applying the Jury test, with n =4 (even),
0(1)=1+2+3+1+1=8>0
Q(-1)=1-2+3-1+1=2>0

The Jury array must be constructed, as follows:

row
1 1 1 321
2 1 2 311
3 0 -1 01
4 1 0 -1 0
5 -1 1 0

The Jury test constraints are
lag|=1¢1=a,

ol =0%1=b,_,]|

leol =1 —1}>0=|c,_,|

Since all the constraints are not satisfied, the system is unstable.

Is the system with the following characteristic equation stable?
0(z)=2z4+2z2+322+2z+1=0
Applying the Jury test, with n = 4 (even),
Q(1)=2+2+3+1+1=9>0
0(-1)=2-2+3-1+1=3>0
The Jury array must be constructed, as follows:

row

A I

The test constraints are
lagl =1<2=a,
lbol =3>0=b,_,!

feol =9>0=c,_,}

Since all the constraints are satisfied, the system is stable.

Is the system with the following characteristic equation stable?
0(z)=2°+32*+322+322+2:4+41=0
Applying the Jury test, with n =15 (odd),
Q1) =1+3+3+3+2+1=13>0
Q(-1)=-1+3-3+3-2+1=1>0

Since n is odd, Q(—1) must be less than zero for the system to be stable. Therefore the system is unstable.
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MISCELLANEOUS PROBLEMS

5.25.

5.26.

5.27.

5.28.

If a zero appears in the first column of the Routh table, is the system necessarily unstable?

Strictly speaking, a zero in the first column must be interpreted as having no sign, that is, neither
positive nor negative. Consequently, all the elements of the first column cannot have the same sign if one of
them is zero, and the system is unstable. In some cases, a zero in the first column indicates the presence of
two roots of equal magnitude but opposite sign (see Problem 5.10). In other cases, it indicates the presence
of one or more roots with zero real parts. Thus a characteristic equation having one or more roots with zero
real parts and no roots with positive real parts will produce a Routh table in which all the elements of the
first column do not have the same sign and do not have any sign changes.

Prove that a continuous system is unstable if any coefficients of the characteristic equation are
zero.

The characteristic equation may be written in the form
(s=s)(s—5)(s-53) - (s-5,)=0

where s,,s;,..., 5, are the roots of the equation. If this equation is multiplied out, » new equations can be
obtained relating the roots and the coefficients of the characteristic equation in the usual form. Thus
n n-1 wy Gty %
a,s"+a, s +-- +ay=0 or st ——s" '+ -+ — =0
n a’l
and the relations are
a, LGy & a,_; o ap "
T T T D VD YT G} PR
a, i-1 a, i=1 j=1 a, i=1 j=1 k=1 a,
inj 1#jEk
The coefficients a, _,, a,_,...., 4, all have the same sign as a, and are nonzero if all the roots s, 5,,..., 5,

have negative real parts. The only way any one of the coefficients can be zero is for one or more of the roots
to have zero or positive real parts. In either case, the system would be unstable.

Prove that a continuous system is unstable if all the coefficients of the characteristic equation do
not have the same sign.

From the relations presented in Problem 5.26, it can be seen that the coefficients a,,_,.a,_;..... 4,
have the same sign as a, if all the roots s, 5,,..., s, have negative real parts. The only way any of these
coefficients may differ in sign from a,, is for one or more of the roots to have a positive real part. Thus the
system is necessarily unstable if all the coefficients do not have the same sign. Note that a system is nor
necessarily stable if all the coefficients do have the same sign.

Can the continuous system stability criteria presented in this chapter be applied to continuous
systems which contain time delays?

No they cannot be directly applied because systems which contain time delays do not have characteris-
tic equations of the required form, that is, finite polynomials in s. For example, the following characteristic
equation represents a system which contains a time delay:

s2+s+e*T=0

Strictly speaking, this equation has an infinite number of roots. However, in some cases an approximation
may be employed for e™*T to give useful, although not entirely accurate, information concerning system
stability. To illustrate, let e~*7 in the equation above be replaced by the first two terms of its Taylor series.
The equation then becomes

s2+s5s+1-sT=0 or s*+(1-T)s+1=0

One of the stability criteria of this chapter may then be applied to this approximation of the characteristic
equation.

CHAP. 5}
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Determine an approximate upper limit on the time delay in order that the system discussed in
the solution of Problem 5.28 be stable.

Employing the approximate equation s2 + (1 — T')s + 1 =0, the Hurwitz determinants are A, =4, =
1 — T. Hence for the system to be stable, the time delay T must be less than 1.

Supplementary Problems

For each characteristic polynomial, determine if it represents a stable or an unstable system.
(a) 25*°+857+10s? +10s+20  (c) s’ +6s*+10s2+55+24  (e) s*+8s*+ 2452+ 325+ 16
(b) $*+7sr+7Ts+46 (d) s*-2s?+4s+6 (f) s®+4s*+8s2+16

For what values of K does the polynomial s> + (4 + K)s? + 65 + 12 have roots with negative real parts?

How many roots with positive real parts does each polynomial have?
(a) sP+s2—5+1 (b)) s*+22+252+25+1  (¢) s3+s2-2 (d) s*'—-s'-25+2

() s+s2+5+6

For what positive value of K does the polynomial s* + 85° + 2452 + 325 + K have roots with zero real
parts? What are these roots?

Answers to Supplementary Problems
(b) and (e) represent stable systems; (a), (c), (d), and (f) represent unstable systems.
K> -2
(a)2,(b)0,(c)1,(d) 2,(e) 2

K=80; s= +j2



Chapter 6

Transfer Functions

6.1 DEFINITION OF A CONTINUOUS SYSTEM TRANSFER FUNCTION

As shown in Chapters 3 and 4, the response of a time-invariant linear system can be separated into
two parts: the forced response and the free response. This is true for both continuous and discrete
systems. We consider continuous transfer functions first, and for single-input, single-output systems
only. Equation (4.8) clearly illustrates this division for the most general constant-coefficient, linear,
ordinary differential equation. The forced response includes terms due to initial values u¥ of the input,
and the free response depends only on initial conditions y& on the output. If terms due to a// initial
values, that is, u% and y§, are lumped together, Equation (4.8) can be written as

m n
(1) =f‘[( Y bsi/ Y a,-s') U(s) + (terms due to all initial values uf, y¢)
i=0 i=0
or, in transform notation, as
m n )
Y(s)= ( Ybs'l Y a,.s') U(s) + (terms due to all initial values uf, y&)
=0 i=0

The transfer function P(s) of a continuous system is defined as that factor in the equation for Y(s)
multiplying the transform of the input U(s). For the system described above, the transfer function is

bs™+b, ;5™ + - +b,

n n-1
a,s"+a, s"" '+ - +a,

P(s)= f: bs' i as'=

i=0 i=0Q

the denominator is the characteristic polynomial, and the transform of the response may be rewritten as
Y(s) = P(s)U(s) + (terms due to afl initial values u, y§)

If the quantity (terms due to al/l initial values uk, yk) is zero, the Laplace transform of the output
Y(s) in response to an input U(s) is given by

Y(s)=P(s)U(s)

If the system is at rest prior to application of the input, that is, d*y/dt*=0, k=0,1,..., n—1, for
t <0, then

(terms due to all initial values uf, y&) =0

and the output as a function of time y(¢) is simply the inverse transform of P(s)U(s).

It is emphasized that not all transfer functions are rational algebraic expressions. For example, the
transfer function of a continuous system including time delays contains terms of the form ¢ *7 (e.g.,
Problem 5.28). The transfer function of an element representing a pure time delay is P(s) = e~ *7, where
T is the time delay in units of time.

Since the formation of the output transform Y(s) is purely an algebraic multiplication of P(s) and
U(s) when (terms due to all initial values u&, y&) =0, the multiplication is commutative; that is,

Y(s) =U(s)P(s)=P(s)U(s) (6.7)
128
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6.2 PROPERTIES OF A CONTINUOUS SYSTEM TRANSFER FUNCTION
The transfer function of a continuous system has several useful properties:

1. Itis the Laplace transform of its impulse response ys(t), t = 0. That is, if the input to a system
with transfer function P(s) is an impulse and all initial values are zero the transform of the
output is P(s).

2. The system transfer function can be determined from the system differential equation by taking
the Laplace transform and ignoring all terms arising from initial values. The transfer function
P(s) is then given by

¥(s)

P(s)= 7G)

3. The system differential equation can be obtained from the transfer function by replacing the s
variable with the differential operator D defined by D = d/dt.

4. The stability of a time-invariant linear system can be determined from the characteristic
equation (see Chapter 5). The denominator of the system transfer function is the characteristic
polynomial. Consequently, for continuous systems, if all the roots of the denominator have
negative real parts, the system is stable.

5. The roots of the denominator are the system poles and the roots of the numerator are the
system zeros (see Chapter 4). The system transfer function can then be specified to within a
constant by specifying the system poles and zeros. This constant, usually denoted by X, is the
system gain factor. As was described in Chapter 4, Section 4.11, the system poles and zeros can
be represented schematically by a pole-zero map in the s-plane.

6. If the system transfer function has no poles or zeros with positive real parts, the system is a
minimum phase system.

EXAMPLE 6.1. Consider the system with the differential equation dy/dr + 2y = du/dt + u.

The Laplace transform version of this equation with all initial values set equal to zero is (s +2)Y(s) =
(s + HU(s).

The system transfer function is thus given by P(s) = Y(s)/U(s)=(s + 1)/(s + 2).

EXAMPLE 8.2. Given P(s)=(2s+ 1)/(s*+s+ 1), the system differential equation is

dly dy du
t =2t

[ 2D+1
r= T d di

_ ot Dy +Dy+y=2Du+
D~+D+1]“ y+Dy+y=2Duru o

EXAMPLE 6.3. The transfer function P(s) = K(s + a)/(s + b)(s + ¢) can be specified by giving the zero location
—a, the pole locations —b and —c, and the gain factor K.

6.3 TRANSFER FUNCTIONS OF CONTINUOUS CONTROL SYSTEM COMPENSATORS
AND CONTROLLERS

The transfer functions of four common control system components are presented below. Typical
mechanizations of three of these transfer functions, using R-C networks, are presented in the solved
problems.

EXAMPLE 6.4. The general transfer function of a continuous system lead compensator is
sta
s+b

Pleaa(s) = b>a (6.2)

This compensator has a zero at s = —a and a pole at s = —b.
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EXAMPLE 6.5. The general transfer function of a continuous system lag compensator is
a(s+b)
PLas(s)=m b>a (6.3)
However, in this case the zero is at s = — b and the pole is at s = —a. The gain factor a/b is included because of
the way it is usually mechanized (Problem 6.13).
EXAMPLE 6.6. The general transfer function of a continuous system lag-lead compensator is
(s+a)(s+b)
P (s) l : by >a,, by>a, (6.4)

T (s+b)(s+ay)
This compensator has two zeros and two poles. For mechanization considerations, the restriction a,b, = b,a. is
usually imposed (Problem 6.14).
EXAMPLE 6.7. The transfer function of the PID controller of Example 2.14 is

Upin () K, Kps’+Kps+K,

=K, +Kps+ — = —mm-—— .
E(S) P DS s s (65)

Ppp(s) =

This controller has two zeros and one pole. It is similar to the lag-lead compensator of the previous example except
that the smallest pole is at the origin (an integrator) and it does not have the second pole. It is typically mechanized
in an analog or digital computer.

6.4 CONTINUOUS SYSTEM TIME RESPONSE

The Laplace transform of the response of a continuous system to a specific input is given by

Y(s)=P(s)U(s)

when all initial conditions are zero. The inverse transform y(t)=%"'[P(s)U(s)] is then the time
response and y(t) may be determined by finding the poles of P(s)U(s) and evaluating the residues at
these poles (when there are no multiple poles). Therefore y(r) depends on both the poles and zeros of
the transfer function and the poles and zeros of the input.

The residues can be determined graphically from a pole-zero map of Y(s), constructed from the
pole-zero map of P(s) by simply adding the poles and zeros of U(s). Graphical evaluation of the
residues may then be performed as described in Chapter 4, Section 4.12.

6.5 CONTINUOUS SYSTEM FREQUENCY RESPONSE

The steady state response of a continuous system to sinusoidal inputs can be determined from the
system transfer function. For the special case of a step function input of amplitude A, often called a d.c.
input, the Laplace transform of the system output is given by

A
Y(S)=P(S);

If the system is stable, the steady state response is a step function of amplitude AP(0), since this is
the residue at the input pole. The amplitude of the input signal is thus multiplied by P(0) to determine
the amplitude of the output. P(0) is therefore the d.c. gain of the system.

Note that for an unstable system such as an integrator (P(s) = 1/s), a steady state response does
not always exist. If the input to an integrator is a step function, the output is a ramp, which is
unbounded (see Problems 5.7 and 5.8). For this reason, integrators are sometimes said to have infinite
d.c. gain.

The steady state response of a stable system to an input u = A4 sin wt is given by

Yoo = A|P(jo)[sin(w! + ¢)
where |P(jw)| = magnitude of P(jw), ¢ = arg P(jw), and the complex number P(jw) is determined

iy}
=
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from P(s) by replacing s by jw (see Problem 6.20). The system output has the same frequency as the
input and can be obtained by multiplying the magnitude of the input by |P(jw)| and shifting the phase
angle of the input by arg P( jw). The magnitude |P( jw)| and angle arg P( jw) for all w together define
the system frequency response. The magnitude |P( jw)| is the gain of the system for sinusoidal inputs
with frequency .

The system frequency response can be determined graphically in the s-plane from a pole-zero map
of P(s) in the same manner as the graphical calculation of residues. In this instance, however, the
magnitude and phase angle of P(s) are computed at a point on the jw axis by measuring the
magnitudes and angles of the vectors drawn from the poles and zeros of P(s) to the point on the jw
axis.

EXAMPLE 6.8. Consider the system with the transfer function

1
P(s)= (+1)(s+2)

Referring to Fig. 6-1, the magnitude and angle of P(jw) for w =1 are computed in the s-plane as follows. The
magnitude of P( ;1) is

1

P(j1)|= =0.316
ju
j1

v G
26.8° 45°
2 21 v
Fig. 6-1

and the angle is
arg P(j1) = —26.6° — 45° = —71.6°

EXAMPLE 8.9. The system frequency response is usually represented by two graphs (see Fig. 6-2): one of
|P(jw)| as a function of w and one of arg P(jw) as a function of w. For the transfer function of Example 6.8,
P(s)=1/(s+ 1)(s + 2), these graphs are easily determined by plotting the values of |P(jw)| and arg P(jw) for
several values of w as shown below.

@ 0 0.5 1.0 2.0 4.0 8.0
|1P(jw)| 05 0.433 0.316 0.158 0.054 0.015
arg P(jw) 0 —-40.6° -71.6° -108.5° -139.4° —158.9°
1Pi)| o S
0.5 —40°
0.4 —80°
0.3 — 120"
0.2 -~ 160"
0.1 ~200°
0 . - - = ; W arg P(jw)
0 2 ] 8 8 10

Fig. 6-2
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6.6 DISCRETE-TIME SYSTEM TRANSFER FUNCTIONS,
COMPENSATORS AND TIME RESPONSES

The transfer function P(z) for a discrete-time system is defined as that factor in the equation for
the transform of the output Y(z) that multiplies the transform of the input U(z). If all terms due to
initial conditions are zero, then the system response to an input U(z) is given by: Y(z) = P(z)U(z) in
the z-domain, and { y(k)} = 2 Y[ P(z)U(z)] in the time-domain.

The transfer function of a discrete-time system has the following properties:

1. P(z)is the z-transform of its Kronecker delta response y;(k), k=0,1,....

2. The system difference equation can be obtained from P(z) by replacing the z variable with the

shift operator Z defined for any integers k and n by
Z [ y(k)] =y(k+n) (6.6)

3. The denominator of P(z) is the system characteristic polynomial. Consequently, if all the roots

of the denominator are within the unit circle of the z-plane, the system is stable.

4. The roots of the denominator are system poles and the roots of the numerator are the system

zeros. P(z) can be specified by specifying the system poles and zeros and the gain factor K:
K(z+z))(z+2,) - (z+2z,)

(z+p)z+p) - (2+p,)

The system poles and zeros can be represented schematically by a pole-zero map in the z-plane.
The pole-zero map of the output response can be constructed from the pole-zero map of P(z)
by including the poles and zeros of the input U(z).

5. The order of the denominator polynomial of the transfer function of a causal (physically
realizable) discrete-time system must be greater than or equal to the order of the numerator
polynomial.

P(z) = (6.7)

6. The steady state response of a discrete-time system to a unit step input is called the d.c. gain
and is given by the Final Value Theorem (Section 4.9):

lim y(k) = nm[fllp(z) : ]=p(1) (6.8)
k—o —1| z z—-1
EXAMPLE 6.10. Consider a discrete-time system characterized by the difference equation
y(k+2) +11p(k+1) +03p(k) =u(k+2) +02u(k+1)
The z-transform version of this equation with all initial conditions set equal to zero is
(22+1.12+403)¥(2) = (22 +0.22) U(2)
The system transfer function is given by
2(z+0.2) z(z+0.2)
224112403 (2+05)(z+06)

P(z) =

This system has a zero at —0.2 and two poles, at —0.5 and —0.6. Since the poles are inside the unit circle, the
system is stable. The d.c. gain is
1(1.2)

asae -0

P(1) =

EXAMPLE 6.11. The general transfer function of a digital lead compensator is

Kieal(2z-2,)
Prega(z) = — T—p Z.>p. (6.9)

This compensator has a zero at z =z_ and a pole at z = p,. Its steady state gain is

K aa(l—2.)
Ppew(1) = 4“‘{'_}) (6.10)
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The gain factor K, .4 is included in the transfer function to adjust its gain at a given w to a desired value. In
Problem 12.13, for example, K|,,q is chosen to render the steady state gain of P, 4 (at w = 0) equal to that of its
analog counterpart.

EXAMPLE 6.12. The general transfer function of a digital lag compensator is
a-pG-2)
(-z)z-p)

This compensator has a zero at z =z, and a pole at z = p,.. The gain factor (1 — p.)/(1 — z,) is included so that the
low frequency or steady state gain Py,,(1) =1, analogous to the continuous-time lag compensator.

PLag(z)= (6.11)

EXAMPLE 6.13. Digital lag and lead compensators can be designed directly from s-domain specifications by
using the transform between the s- and z-domains defined by z = ¢°T. That is, the poles and zeros of

s+a a(s+b)

PLe;\d(S)=s+b and Lag=m

can be mapped according to z=e¢'". For the lead compensator, the zero at s= —a maps into the zero at

z=2z_=e"“" and the pole at s = — b maps into the pole at z =p_ = e *7. This gives

e~ 4T

2 —
Pl’_ead(z)zz_e_’,r (6.12)
Similarly,
1-e “"\{z-e"T
Piag(Z)=(—1_e_,,r)(z_e_ar) (6.13)

Note that P{,.(1)=1.

This transformation is only one of many possible for digital lead and lag compensators, or any type
of compensators for that matter. Another variant of the lead compensator is illustrated in Problems
12.13 through 12.15.

An example of how Equation (6./3) can be used in applications is given in Example 12.7.

6.7 DISCRETE-TIME SYSTEM FREQUENCY RESPONSE

The steady state response to an input sequence { u(k) = A4 sin wkT } of a stable discrete-time system
with transfer function P(z) is given by

Yoo = A|P(e7°T) |sin( kT + ) k=0,1,2,... (6.14)

where |P(e/°T)| is the magnitude of P(e/“T), ¢ = arg P(e/7), and the complex function P(e’*7) is
determined from P(z) by replacing z by e/“7 (see Problem 6.40). The system output is a sequence of
samples of a sinusoid with the same frequency as the input sinusoid. The output sequence is obtained
by multiplying the magnitude 4 of the input by |P(e/7)| and shifting the phase angle of the input by
arg P(e/“T). The magnitude |P(e/“T)| and phase angle arg P(e/7), for all w, together define the
discrete-time system frequency response function. The magnitude |P(e/“T)| is the gain of the system for
sinusoidal inputs with angular frequency w.

A discrete-time system frequency response function can be determined in the z-plane from a
pole-zero map of P(z) in the same manner as the graphical calculation of residues (Section 4.12). In this
instance, however, the magnitude and phase angle are computed on the e/“7 circle (the unit circle), by
measuring the magnitude and angle of the vectors drawn from the poles and zeros of P to the point on
the unit circle. Since P(e/*T) is periodic in w, with period 27 /T, the frequency response function need
only be determined over the angular frequency range —#/T < w <#/T. Also, since the magnitude
function is an even function of w, and the phase angle is an odd function of w, actual computations
need only be performed over half this angular frequency range, thatis, 0 < w <7/T.
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6.8 COMBINING CONTINUOUS-TIME AND DISCRETE-TIME ELEMENTS

Thus far the z-transform has been used mainly to describe systems and elements which operate on
and produce only discrete-time signals, and the Laplace transform has been used only for continuous-
time systems and elements, with continuous-time input and output signals. However, many control
systems include both types of elements. Some of the important relationships between the z-transform
and the Laplace transform are developed here. to facilitate analysis and design of mixed
(continuous /discrete) systems.

Discrete-time signals arise either from the sampling of continuous-time signals, or as the output of
inherently discrete-time system components, such as digital computers. If a continuous-time signal y(r)
with Laplace transform Y(s) is sampled uniformly, with period 7. the resulting sequence of samples
¥(kT), k=0,1.2,..., can be written as

1T e ;

y(kr)=—,j 7Y (5)e™T ds k=0.1.2....
27"] c=jx

where ¢ > o, (see Definition 4.3). The :-transform of this sequence is Y*(z)=Z%_,3(kT)z * (Defini-

tion 4.4) which, as shown in Problem 6.41, can be written as

] -4 1
* — ey g
y(z)_;j[pc Y(s)(]- ‘,_l)as (6.15)
for the region of convergence |z| > e‘?. This relationship between the Laplace transform and the
z-transform can be evaluated by application of Cauchy’s integral law [1). However. in practice. it is
usually not necessary to use this complex analysis approach.

The continuous-time function y(t)=."'[Y(s)] can be determined from Y(s) and a table of
Laplace transforms, and the time vanable ¢ is then replaced by k7. providing the kth element of the
desired sequence:

y(kT) =2 1 [Y()],_, 7
Then the z-transform of the sequence y(kT). k=0.1.2,.... is generated by referring to a table of
z-transforms, which yields the desired result:
Y*(2) == {y(kT)} == {&[Y(5)]],r } (6.16)
Thus, in Equation (6./6), the symbollc operations & ! and I represent straightforward table

lookups, and [,. ., generates the sequence to be z-transformed.
A common combination of discrete-time and continuous-time elements and signals is shown in Fig.
6-3.

y*(1)
———b

Y*(z)
u(r) , u*(r) Xpolt) yir)
U(s) U*(z Xyols) Y(s)

Fig. 6-3

If the hold circuit is a zero-order hold. then as shown in Problem 6.42. the discrete-time transfer
function from U*(z) to Y*(z) is given by
} (6.17)
t=kT

Y (z)
U*(z)

In practice, the sampler at the output, generating »*(¢) in Fig. 6-3, may not exist. However, it is
sometimes convenient to assume one exists at that point, for purposes of analysis (see. e.g.. Problem
10.13). When this is done, the sampler is often called a fictitious sampler.

If both the input and output of a system like the one shown in Fig. 6-3 are continuous-time signals,
and the input is subsequently sampled, then Equation (6./7) generates a discrete-time transfer function

rs)

s

=(1—.~*1):<f”1
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which relates the input at the sampling times 7,27,... to the output at the same sampling times.
However, this discrete-time system transfer function does nor relate input and output signals at times =
between sampling times, that is, for kAT <7< (k+ 1)T, k=0,1,2,....

EXAMPLE 6.14. In Fig. 6-3, if the hold circuit is a zero-order hold and P(s) =1/(s + 1), then from Equation
(6.17), the discrete-time transfer function of the mixed-element subsystem is
T}

Y*(z2) -1 1 ;
vz "0 )Z{y(s(s“)).-k
1
=(1~z")2{i’”(;111) }
=(1—z‘1)Z{(l(f)_97')|,-n}
=(1-2")2{1(kT) - T}
=(1-27)[2 (k7)) -2 (e 7)]
-1 1 1
=(1-z )[1_ _1_“Tﬁ]

z l1-e 'z
(5=
_ 1~e::

Solved Problems

TRANSFER FUNCTION DEFINITIONS
6.1.  What is the transfer function of a system whose input and output are related by the following
differential equation?
dly  dy du
— 43— 42y=u+ —
ar Ca YT g
Taking the Laplace transform of this equation, ignoring terms due to initial conditions, we obtain
s2Y(s) +3s¥(s) + 2¥(s) = U(s) + sU(s)

This equation can be written as

Y(s) = [S +3S+2]U(S)

The transfer function of this system is therefore given by

p s+1
(S)_sz+3s+2

6.2. A particular system containing a time delay has the differential equation (d/dr) y(1) + y(1) =
u(t — T). Find the transfer function of this system.

The Laplace transform of the differential equation, ignoring terms due to initial conditions, is
sY(s)+ Y(s)=e"*TU(s). Y(s) and U(s) are related by the following function of s, which is the system
transfer function

Y(s) e 7

U(s) el

P(s) =
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6.3. The position y of a moving object of constant mass M is related to the total force f applied to
the object by the differential equation M(d2y/dt?) = f. Determine the transfer function relating
the position to the applied force.

Taking the Laplace transform of the differential equation, we obtain Ms?Y(s) = F(s). The transfer
function relating Y(s) to F(s) is therefore P(s)= Y(s)/F(s)=1/Ms>.

64. A motor connected to a load with inertia J and viscous friction B produces a torque
proportional to the input current i. If the differential equation for the motor and load is
J(d*9/dt*) + B(d8/dt) = Ki, determine the transfer function between the input current i and
the shaft position 8.

The Laplace transform version of the differential equation is (Js2 + Bs)8(s) = KI(s), and the required
transfer function is P(s) = 0(s)/I(s) = K/s(Js + B).

PROPERTIES OF TRANSFER FUNCTIONS

6.5. An impulse is applied at the input of a continuous system and the output is observed to be the
time function e~%, Find the transfer function of this system.

The transfer function is P(s) = Y(s)/U(s) and U(s) =1 for u(t) = 8(t). Therefore

1
P(S) = Y(s) = 'S—+—2

6.6. The impulse response of a certain continuous system is the sinusoidal signal sin r. Determine the
system transfer function and differential equation.

The system transfer function is the Laplace transform of its impulse response, P(s)=1/(s? + 1). Then
P(D)=y/u=1/(D*+1), D}y +y=uordiy/dt® +y=u.

6.7. The step response of a given system is y=1— le '+ 3¢7% — le=% What is the transfer
function of this system?

Since the derivative of a step is an impulse (see Definition 3.17), the impulse response for this system is
p()=dy/dt="1le " —3e ¥+ 2%,
The Laplace transform of p(?) is the desired transfer function. Thus
3 -3 z s+8
+ e
s+1  s+2 s+4  (s+1)(s+2)(s+4)

P(s)=

Note that an alternative solution would be to compute the Laplace transform of y and then multiply
by s to determine P(s), since a multiplication by s in the s-domain is equivalent to differentiation in the
time domain.

6.8. Determine if the transfer function P(s)=(2s+ 1)/(s%+ s+ 1) represents a stable or an unsta-
ble system.

The characteristic equation of the system is obtained by setting the denominator polynomial to zero,
that is, s> + s+ 1 =0, The characteristic equation may then be tested using one of the stability criteria
described in Chapter 5. The Routh table for this system is given by

s2 1

Since there are no sign changes in the first column, the system is stable.
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6.9. Does the transfer function P(s) = (s +4)/(s+ 1)(s + 2)(s — 1) represent a stable or an unstable
system?

The stability of the system is determined by the roots of the denominator polynomial, that is, the poles
of the system. Here the denominator is in factored form and the poles are located at s = —1, — 2, +1. Since
there is one pole with a positive real part, the system is unstable.

6.10. What is the transfer function of a system with a gain factor of 2 and a pole-zero map in the
s-plane as shown in Fig. 6-47

The transfer function has a zero at —1 and poles at —2 and the origin. Hence the transfer function is

P(s)=2s+1)/s(s+2).
jw jo
s-plane O-——-x--- j
| | s-plane
1 |
| |
:’(2 3‘ M .vg |—2 T—l ¢
| |
| |
S
Fig. 6-4 Fig. 6-5

6.11. Determine the transfer function of a system with a gain factor of 3 and the pole-zero map shown
iz in Fig. 6-5

&d The transfer function has zeros at —2 +; and poles at ~3 and at —1 + . The transfer function is
therefore P(s)=3(s+2+j s+2—4)/(s+3)s+1+)(s+1—)).
TRANSFER FUNCTIONS OF CONTINUOUS CONTROL SYSTEM COMPONENTS

6.12, An R-C network mechanization of a lead compensator is shown in Fig. 6-6. Find its transfer

function.
R,
AAAA
YyYvvy
L ——
L
11‘ C
o
Fig. 6-6

Assuming the circuit is not loaded, that is, no current flows through the output terminals, Kirchhoff’s
current law for the output node yields

d 1 1
CE(UI'-UO) + El'(vi_vo) = Evo

The Laplace transform of this equation (with zero initial conditions) is

1 1
Cs[¥i(s) - V()] + E[V,»(J) - V()] = R_,V"(’)
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The transfer function is Taking the Laplace transform of these two equations (with zero initial conditions) and eliminating /(s)

Vy(s) Cs+1/R, s+a results in the equation
Preaa ™ - iy
i +1/R, +1/R + 1 Vo(s
() Crl/RT /Ry s |7+ et - non - e
where a=1/R,C and b=1/R,C +1/R,C. ! 1/sG+ R,
The transfer function of the network is therefore
6.13. Determine the transfer function of the R-C network mechanization of the lag compensator . 1 . 1
R s+ — s+ —
! shown in Fig. 6-7. po- (s) R R,G, _(s+a)(s+b)
L= - -
V, 1 1 1 1 +b +

% ‘{?,Al“ () sz+( + 4 )s+ (s+b)(s+ay)

:-% WV 1 e RG  RG RG R\G R,G,

m C where

Yi Yo 1 1 1

_ R, _ a, = Rlcl blal = alb2 bl +a,=a + bZ + "}E bZ = RzCl

O O

Fig, 6-7 ' ) , -
6.15. Find the transfer function of the simple lag network shown in Fig. 6-9.
Kirchhoff’s voltage law for the loop yields the equation This network is a special case of the lag compensation network of Problem 6.13 with R, set equal to
1 . zero. Hence the transfer function is given by
1R1+Ej‘;xdt+zkz=v, ) v,(s) 1/Cs 1/RC
5) = = -

whose Laplace transform is V(s) R+1/Cs s+1/RC

1
(R1+Rz+a)l(~‘)"vl(5) R R, R,
is gi o—IWWW—p—0
The output voltage is given by

AL AW
1 . N -
Vo(s)=(Rz+a-)l(s) ’ TN v " TN l TN e, v

= T

+
+

+9
+0

The transfer function of the lag network is therefore

Q!
ol
ol
ol

Vo(s) R, +1/Cs a(s+b) 1 1 Fig. 6-9 Fig. 6-10
Pio= - = where g=——7+= b=—
2TV () TR +R,+1/Cs b(s+a) (R +R;)C R,C
6.16. Determine the transfer function of two simple lag networks connected in series as shown in Fig.
. L ol 6-10.
6.14. Derive the transfer function of the R-C network mechanization of the lag-lead compensator 5
<l shown in Fig. 6-8. Mathcad The two loop equations are
g 1
R R+ — [ (4 —iy) dit=
cad ) ANARA ‘ 11 C]L('l i) U;
|‘l + R'+1f"d+1f’(' i) di=0
+ i — | i dt+ — iy— i) dt=
<IF C, 282 G 2 c b 274
v, C i) R Vg Using the Laplace transformation and solving the two loop equations for 1,(s), we obtain
2

Gs¥(s)

I -
8) = R R T (RC, + RG + RG)s 7 1

ol
ol

Fig. 6-8 o .

The output voltage is given by y, = (I/Q)f i, dr. Thus
()}

Equating currents at the output node a yields

Wis) 1
Ri(u,—no)+cld£(u,~uo)-i V(s)  RRGGs*+(RG +RG+RG)s+1
) t
The voltage v, and the current i are related by CONTINUOUS SYSTEM TIME RESPONSE
i f fidt+ iR,y =1, 6.17. What is the unit step response of a continuous system whose transfer function has a zero at —1,
G

a pole at —2, and a gain factor of 2?
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The Laplace transform of the output is given by Y(s) = P(s)U(s). Here

As+1) 1 1
)=+ " T

U( :
$) S
Evaluating the inverse transform of the partial fraction expansion of Y(s) gives y(1)=1+e %,

Graphically evaluate the unit step response of a continuous system whose transfer function is
given by
(s+2
p( s) = .—)_
(s+0.5)(s+4)
The pole-zero map of the output is obtained by adding the poles and zeros of the input to the pole-zero

map of the transfer function. The output pole-zero map therefore has poles at 0, —0.5, and —4 and a zero
at —2 as shown in Fig. 6-11.

j
poles of P(s) “ s-plane
* o * ’
4 /—z
zero of P(s) —

-0.3
x pole due to the input
Fig. 6-11

The residue for the pole at the origin is

1 arg R, =0°

2
Ril=55@ =

For the pole at —0.5,

IR =0.857 arg R, = —180°

LS
1= 05(3.9)
For the pole at —4,

[Ry| = =0.143 arg R, = —180°

2
4(3.5)
The time response is therefore y(f) = R, + R,e %% 4+ Rje™* =1 - 0.857¢ %% — 0.143¢ %
Evaluate the unit step response of the system of Problem 6.11.

The Laplace transform of the system output is

I(s+2+5)(s+2-))
s(s+3)(s+1+5)(s+1-))

Y(s) =P(s)U(s) =

Expanding Y(s) into partial fractions yields

R, R, R,
+ + —
s+3 s+l+j s+1-j

R,
Y(S) - T +

CHAP. 6]

TRANSFER FUNCTIONS 141

where
_32+)e-))
RN )
L 3(14)(-1-j) -2

oo3(=244)(-2-j) S

30)(1 - 2)) 3
S e o) Ty Bl R
IR N P
ey - w7

5
2

Evaluating the inverse Laplace transform,

5 2 2 ) 5 2 2
y=35- ;e"'— Tre“[e‘f‘"”+e/“””] =7 ge_i‘f Te”cos(l+0)

where 6 = —tan"'[}] = ~8.13°.

CONTINUOUS SYSTEM FREQUENCY RESPONSE

6.20.

6.21.

Pl

Mathcad

Prove that the steady state output of a stable system with transfer function P(s) and input
u = Asinwt is given by

Ys=A|P(jw)lsin(wr +¢)
The Laplace transform of the output is Y(s) = P(s)U(s) = P(s)[Aw/(s* + «?)].

When this transform is expanded into partial fractions, there will be terms due to the poles of P(s)
and two terms due to the poles of the input (s = +jw). Since the system is stable, all time functions
resulting from the poles of P(s) decay to zero as time approaches infinity. Thus the steady state output
contains only the time functions resulting from the terms in the partial fraction expansion due to the poles
of the input. The Laplace transform of the steady state output is therefore

AP(jw) AP(—jw)
2j(s—je)  -2j(s+jw)

where ¢ = arg P(jw)

Y (s) =

The inverse transform of this equation is
elPelw! — g it Iwl

T ] =A|P(jw)|sin(wr+¢)  where ¢=arg P(jw)
J

y»=A|P(J‘w)l[

Find the d.c. gain of each of the systems represented by the following transfer functions:

(b) P(s)= 10 (s+38)

1
(a) P(s)=—= GrDG+2) () P(s)=(s+2)(s+4)

s+1

The d.c. gain is given by P(0). Then (a) P(0) =1, (b) P(0)=35, (¢) P(0)=1.

Evaluate the gain and phase shift of P(s)=2/(s+2) for w =1, 2, and 10.

The gain of P(s) is given by |P(jw)] =2/Vw? +4. For w=1, |P(j1)| =2/V5 = 0.894; for w=2,
|P(j2)} = 2/V/8 =0.707; for w =10, |P(j10)| = 2/v104 = 0.19.

The phase shift of the transfer function is the phase angle of P(jw), arg P(jw)= —tan™'w/2. For
w=1,arg P(jl)= —tan"'4 = —26.6°; for w =2, arg P(j2) = —tan"'l = —45°; for w = 10, arg P(j10) =
—tan”'§ = —78.7°.

Sketch the graphs of |P(jw)| and arg P(jw) as a function of frequency for the transfer function
of Problem 6.22.

In addition to the values calculated in Problem 6.22 for |P(jw)| and arg P( jw), the values for w =0
will also be useful: [P(j0)| =2/2=1, arg P(j0)= —tan"! 0=0.

As w becomes large, |P(jw)| asymptotically approaches zero while arg P(jw) asymptotically ap-
proaches — 90°. The graphs representing the frequency response of P(s) are shown in Fig. 6-12.
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IP(jw)l
1.0
08
0.6
04
0.2 -
0 T T T T w
[ 2 4 6 8 10
0° 1 i j - 1 w
- 20°
- 40° A
-60°
- 80° -——-
arg P(jo)

Fig. 6-12

DISCRETE-TIME SYSTEM TRANSFER FUNCTIONS AND TIME RESPONSES

6.24. The Kronecker delta response of a discrete-time system is given by ys(k) =1 for all k > 0. What
is its transfer function?

The transfer function is the z-transform of the Kronecker delta response, as given in Example 4.26:
P(z)=1+z'4z27242 Y4 0.
To determine a pole-zero representation of P(z), note that
2P(z) —z=P(2)

or (z-1)P(z)=2
so that
z
Po=i
Alternatively, note that the Kronecker delta response is the unit step sequence, which has the :z-transform
z
M=

(see Table 4.2).

6.25. The Kronecker delta response of a particular discrete system is given by y;(k) = (0.5)* for k > 0.
What is its transfer function?

The form of the Kronecker delta response indicates the presence of a single pole at 0.5. The Kronecker
delta response of a system with a single pole and no zero has no output at k = 0. That is,
1
z—0.5

Consequently, the transfer function must have a zero in the numerator to advance the output sequence one
sample interval. That is,

=271 4052724025270+ - +(0.5)" 4 -

z
z-05

P(z)=
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6.26. What is the difference equation for a system whose transfer function is
z—0.1

P(2) = 753702
Replacing 2" with Z", we get
Z-01
P2) = oazv oz

Then
(Z-01)u(k) u(k+1)-01u(k)

k) = P(Z)u(k) = _
WK =P uk) = 02~ 27032402

and, by cross multiplying,
y(k+2)+03y(k+1)+02p(k) =u(k+1) —0.1u(k)

6.27. What is the transfer function of a discrete system with a gain factor of 2, zeros at 0.2 and —0.5,
byl and poles at 0.5, 0.6, and —0.4? Is it stable?

Mathcad The transfer function is
2(z—-0.2)(z+0.5)
(z-05)(z-0.6)(z+0.4)

Since all the system poles are inside the unit circle, the system is stable.

P(z) =

MISCELLANEOUS PROBLEMS

6.28. A d.c. (direct current) motor is shown schematically in Fig. 6-13. L and R represent the
inductance and resistance of the motor armature circuit, and the voltage v, represents the
generated back e.m.{. (electromotive force) which is proportional to the shaft velocity d8/dr. The
torque T generated by the motor is proportional to the armature current i. The inertia J
represents the combined inertia of the motor armature and the load, and B is the total viscous
friction acting on the output shaft. Determine the transfer function between the input voltage V'
and the angular position © of the output shaft.

Motor Armature Circuit Inertial Load
L R J
o—— 00 ——WW
+ N T=Ki
: 4 ~
Shaft
Inpat ' " = K% Q = Jo
Voltage / dt \J,\ua
- B
o
Fig. 6-13

The differential equations of the motor armature circuit and the inertial load are

Ri+Lﬁ=ufKé£ and Ki=1d—20+Bd—0
dt I dt ! ar? dt
Taking the Laplace transform of each equation, ignoring initial conditions,
(R+sLYI=V-K;s® and  K,I=(Js’+Bs)®
Solving these equations simultaneously for the transfer function between ¥ and ©, we have
(S} K, K,/JL
VT (JsP+Bs)(Ls+R) + K,K;s  s[s*+(B/J+R/L)s+BR/JL+K,K,/JL]
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6.29. The back e.m.f generated by the armature circuit of a d.c. machine is proportional to the angular
velocity of its shaft, as noted in the problem above. This principle is utilized in the d.c.
tachometer shown schematically in Fig. 6-14, where v, is the voltage generated by the armature,
L is the armature inductance, R, is the armature resistance, and v, is the output voltage. If K,
is the proportionality constant between v, and shaft velocity d6/dt, that is, v, = K (d6/dt),
determine the transfer function between the shaft position ® and the output voltage V,. The
output load is represented by a resistance R; and R, + R, =R.

Fig. 6-14

The Laplace transformed equation representing the tachometer is /(R + sL) = K,s©. The output
voltage is given by
R K58
Vo=IR, = ——
0 r R+sL

The transfer function of the d.c. tachometer is then
Vo R, K /( s )

e L \s+R/L

6.30. A simple mechanical accelerometer is shown in Fig. 6-15. The position y of the mass M with
respect to the accelerometer case is proportional to the acceleration of the case. What is the
transfer function between the input acceleration 4 (a = d>x/d:?) and the output Y?

i——-‘-— x = case position
—— ¥ .1' -
K B L Case

% B

Spring

Fig. 6-15

Equating the sum of the forces acting on the mass M to its inertial acceleration, we obtain

dy d?
B TR M)
dy dy dx
or ‘Ma'tz +BE+K)}=MF=M“

where a is the input acceleration. The zero initial condition transformed equation is
(Ms*+Bs+K)Y=MA
The transfer function of the accelerometer is therefore
Y 1
A 5T+ (B/M)s+K/M
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6.31. A differential equation describing the dynamic operation of the one-degree-of-freedom gyroscope
shown in Fig. 6-16 is
J ahkd B 40 K@=H

— +B— +Kf=

dr? dr ©
where w is the angular velocity of the gyroscope about the input axis, 6 is the angular position of
the spin axis—the measured output of the gyroscope, H is angular momentum stored in the
spinning wheel, J is the inertia of the wheel about the output axis, B is the viscous friction
coefficient about the output axis, and X is the spring constant of the restraining spring attached
to the spin axis.

output axis

—C -—= input axis
w

Wheel spins at
constant
veloeity

Cest

B>
spin axis

Fig. 6-16

(a) Determine the transfer function relating the Laplace transforms of w and 4, and show that
the steady state output is proportional to the magnitude of a constant rate input. This type
of gyroscope is called a rate gyro.

(b) Determine the transfer function between w and  with the restraining spring removed
(K = 0). Since here the output is proportional to the integral of the input rate, this type of
gyroscope is called an integrating gyro.

(a) The zero initial condition transform of the gyroscope differential equation is
(Js2+ Bs+ K)O=HQ
where © and © are the Laplace transforms of 8 and w, respectively. The transfer function relating 6
and § is therefore
8 H
Q- (Is*+Bs+K)
For a constant or d.c. rate input w,, the magnitude of the steady state output 6, can be obtained by

multiplying the input by the d.c. gain of the transfer function, which in this case is H/K. Thus the
steady state output is proportional to the magnitude of the rate input, that is, 6, = (H/K )wy.

(b) Setting K equal to zero in the transfer function of (a) yields 8/Q = H/s(Js + B). This transfer
function now has a pole at the origin, so that an integration is obtained between the input £ and the
output 8. The output is thus proportional to the integral of the input rate or, equivalently, the input
angle

6.32. A differential equation approximating the rotational dynamics of a rigid vehicle moving in the
atmosphere is
29
J—5 = NL§=T
dr®
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where § is the vehicle attitude angle, J is its inertia, N is the normal-force coefficient, L is the
distance from the center of gravity to the center of pressure, and T is any applied torque (see
Fig. 6-17). Determine the transfer function between an applied torque and the vehicle attitude
angle.

velocity with
respect to the
atmosphere

center of
gravity

/_\‘Q

Fig. 6-17

The zero initial condition, transformed system differential equation is
(Js’-NLYO=T
The desired transfer function is
2] 1 1/J
T J?-NL s*-NLjJ

Note that if NL is positive (center of pressure forward of the vehicle center of gravity), the system is
unstable because there is a pole in the right half-plane at s=/NL/J. If NL is negative, the poles are
imaginary and the system is oscillatory (marginally stable). However, aerodynamic damping terms not
included in the differential equation are actually present and perform the function of damping out any
oscillations.

Pressure receptors called baroreceptors measure changes in arterial blood pressure, as outlined in
Problem 2.14. They are shown as a block in the feedback path of the block diagram determined
in the solution of that problem. The frequency b(r) at which signals (action potentials) move
along the vagus and glossopharyngeal nerves from the baroreceptors to the vasomotor center
(VMC) in the brain is proportional to arterial blood pressure p plus the time rate of change of
blood pressure. Determine the form of the transfer function for the baroreceptors.

From the description given above, the equation for b is
dp

b=k p+k,—

1P L

where k; and k, are constants, and p is blood pressure. [ p should not be confused here with the notation
p(1), the inverse Laplace transform of P(s) introduced in this chapter as a general representation for a
transfer function.] The Laplace transform of the above equation, with zero initial conditions, is

B=k P+ kysP=P(k, +kys)

The transfer function of the baroreceptors is therefore B/P = k| + k,s. We again remind the reader that P
represents the transform of arterial blood pressure in this problem.

Consider the transfer function C,/R, for the biological system described in Problem 3.4(a) by
the equations

(1) =r (1) = X ay ic,(1—Ar)
i=1
for k =1,2,..., n. Explain how C,/R, may be computed.
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Taking the Laplace transform of the above equations, ignoring initial conditions, yields the following
set of equations:

n
Ci=R,~ Y a,_Ce ¥
i=1
for k=1,2,..., n. If all n equations were written down, we would have n equations in » unknowns (C, for
k=1,2,..., n). The general solution for any C, in terms of the inputs R, can then be determined using the
standard techniques for solving simultaneous equations. Let D represent the determinant of the coefficient
matrix:

1+ aoe—:m aile—:Ar e a,-,,e""'
D= ale—:Al 1+ aoe—sm . az_"e—:Ar
a,_ e—JA' ae—.cAr 14+a e—sAr
Then in general,
D
k
C, ==
kD

where D, is the determinant of the coefficient matrix with the kth column replaced by
R,

R,
The transfer function C,/R, is then determined by setting all the inputs except R, equal to zero,
computing C; from the formula above, and dividing C, by R,.

Can you determine the s-domain transfer function of the ideal sampler described in Problems 3.5
and 4.39? Why?

No. From the results of Problem 4.39, the output transform U(s) of the ideal sampler is
o0
U*(s)= Y e **Tu(kT)
k=0

It is not possible to factor out the transform U(s) of the input signal u(r) applied to the sampler, because
the sampler is not a time-invariant system element. Therefore it cannot be described by an ordinary transfer
function.

Based on the developments of the sampler and zero-order hold function given in Problems 3.5,
3.6, 3.7, and 4.39, design an idealization of the zero-order hold transfer function.

In Problem 3.7, impulses in m;1(t) replaced the current pulses modulated by m(¢) in Problem 3.6.
Then, by the screening property of the unit impulse, Equation (3.20), the integral of each impulse is the
value of u(r) at the sampling instant kT, k=0,1,..., etc. Therefore it is logical to replace the capacitor
(and resistor) in the approximate hold circuit of Problem 3.6 by an integrator, which has the Laplace
transform 1/s. To complete the design, the output of the hold must be equal to u at each sampling time,
not u — y,,; therefore we need a function that automatically resets the integrator to zero after each
sampling period. The transfer function of such a device is given by the “pulse” transfer function:

Punls) = ~(1- &™)

Then we can write the transform of the output of the ideal hold device as
1 0
Yuo(s) = Puo(s)U*(s) = (1 —™*7) L e™Tu(kT)

k=0
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Can you determine the s-domain transfer function of the ideal sampler and ideal zero-order hold
combination of the previous problem? Why?

No. It is not possible to factor out the transform U(s) of u(¢) applied to the sampler. Again, the
sampler is not a time-invariant device.

The simple lag circuit of Fig. 6-3, with a switch S in the input line, was described in Problem 3.6
as an approximate sample and zero-order hold device, and idealized in Problem 6.36. Why is this
the case, and under what circumstances?

The transfer function of the simple lag was shown in Problem 6-15 to be
1/RC
P(s)= ———
=77 /RC

If RC <1, P(s) can be approximated as P(s) =1, and the capacitor ideally holds the output constant
until the next sample time.

Show that for a rational function P(z) to be the transfer function of a causal discrete-time
system, the order of its denominator polynomial must be equal to or greater than the order of its
numerator polynomial (Property 6, Section 6.6).

In Section 3.16 we saw that a discrete-time system is causal if its weighting sequence w(k)=0 for
k < 0. Let P(z), the system transfer function, have the form:

bz 4 b, 2" 4 bzt by

P(z)=
(2) a,z"+a,_ 2" '+ - +az+a,

where a, # 0 and b,, # 0. The weighting sequence w(k) can be generated by inverting P(z), using the long
division technique of Section 4.9.
We first divide the numerator and denominator of P(z) by z™, thus forming:
b,+b, ;27 4 - bz

n-m n-m-1 -m
nZ +a, ,z + e +ayz

P(:)=-

Dividing the denominator of P(z) into its numerator then gives

bm bmanfl
P(z)=|—=|z"""+|bp.,— —— |z "+ ...
a

n a,

k

The coefficient of z™* in this expansion of P(z) is w(k), and we see that w(k) =0 for k <n — m and

bm
w(n—m)-;—#O

For causality, w(k) =0 for k <0, therefore n—m >0 and n > m.

Show that the steady state response of a stable discrete-time system to an input sequence
u(k)=AsinwkT, k=0,1,2,..., is given by

Vs =A|P(e7T) [sin(wkT + ¢) k=0,1,2,... (6.14)
where P(z) is the system transfer function.

Since the system is linear, if this result is true for 4 = 1, then it is true for arbitrary values of 4. To
simplify the arguments, an input «'(k) = e/“7, k =0,1,2,..., is used. By noting that

u'(k) = e/**T = cos wkT + j sin wkT

the response of the system to {u’(k)} is a complex combination of the responses to {coswkT} and
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{sinwkT}, where the imaginary part is the response to {sinwkT }. From Table 4.2 the z-transform of
{e/* T} is
Z

z - e/wT
Thus the z-transform of the system output Y'(z) is

z
Y(2)=P(2) —57

To invert Y’(z), we form the partial fraction expansion of
¥(z)

r4

1
P(z) P
This expansion consists of terms due to the poles of P(z) and a term due to the pole at z = e’“7. Therefore

P( e/wT)

Y'(z) =z| Y terms due to poles of P(z) + s

and
{y(k)} = Z"[zz: terms due to poles of P(z)] +{P(eT)er*T}
Since the system is stable, the first term vanishes as k becomes large and
Yo = P(e/T) elkT =| P(£/9T) |e/wAT+9)
=|P(e*T)|[cos(wkT + ¢) +jsin(wkT+¢)]  k=0,1,2,...
where ¢ = arg P(e/*T). The steady state response to the input sin wkT is the imaginary part of y,, or
Yo =| P(7°T) |sin( wkT + ¢) k=0,1,2,...

Show that, if a continuous-time function y(¢) with Laplace transform Y(s) is sampled uniformly
with period T, the z-transform of the resulting sequence of samples Y*(z) is related to Y(s) by
Equation (6.15).

From Definition 4.3:
1 ¢+ joo
‘ T — Y st d‘
y(1) 2 j:_jw (s)e
where ¢ > g,. Uniformly sampling y() generates the samples y(kT), k=0,1,2,... . Therefore
1 revjw
TY= — skT =
y(kT) Zijc_jm ¥(s)e*Tds  k=0,1,2,

The z-transform of this sequence is

o0 ) sz
Y(2)= X y(kT)z7 k= ¥ Tfﬁ_m)’(s)e”‘rds
k=0 k=0 <TJ Jc—joo

and after interchanging summation and integration,

1 ¢+ joo had
Y*(z)=— Y(s ek Tz  gs
()= = [N VI
Now
oc oo &
Z essz—k= Z (est—l)
k=0 k=0

is a geometric series, which converges if |e*7z~ l| < 1. In this case,

00 x 1
-1
Z (T

The inequality |e'”z7!| <1 implies that |z| > |¢°7|. On the integration contour, |e7| = |e(“*/*)7| =T
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Thus the series converges for |z| > e”. Therefore

Y*(z)=—1—/c“°°Y(s) tr —

21l’j c—joo 1-¢e'"z

for |z| > e*T, which is Equation (6.15).

Show that if the hold circuit in Fig. 6-3 is a zero-order hold, the discrete-time transfer function is
given by Equation (6.17).

Let p(1) =% '[P(s)]. Then, using the convolution integral (Definition 3.23), the output of P(s) can
be written as

() = [[p(t=7)xol7) dr

Since x,,,(1) is the output of a zero-order hold, it is constant over each sampling interval. Thus y(r) can be
written as

(1) =j;rp(l~‘r)x(0) d'r+j:rp(r—r)x(1) dr+ -

i-NT . t .
+f(j’_2;’rp(,—1)x[(,—z)r] d‘r+f(1_l)rp(f‘7)x[(l -1)T]dr

where (j — 1)T <t <jT. Now

() =jf(

f(Hl)Tp(jT— 7) d-r)x(iT)
jmQ T

By letting 8 = ;T — 7, the integral can be rewritten as

i+ DT (j-0OT
[ (T =y dr= [V p(8) a8
iT (—1=-DT

where i =0,1,2,3,..., j— 1. Now, defining A(¢)= [;p(#)d6 and k=, -1 or j =k + 1 yields

(j~-DT -i)T —i-DT (k—i+ DT (k-1)T
fv" p(o)do=f“ p(e)do—[“ p(8)do= [ p(8)do— [ p(8) s
(j—i—-1T (] 0 0 0

=h[(k—i+1)T] - h[(k—i)T}
Therefore we can write

k k
y[(k+1)T] = Zﬂh[(k—i+ ) T]x(iT) - Zoh[(k— i)T)x(iT)

Using the relationship between the convolution sum and the product of z-transforms in Section 4.9, the
Shift Theorem (Property 6, Section 4.9), and the definition of the z-transform, the z-transform of the last
equation is
2Y*(z) = zH*(z) X*(2) — H*(z) X*(z2)

where Y*(z) is the z-transform of the sequence y(kT), k=0,1,2,..., H*(z) is the z-transform of
$7p(0)d8, k=0,1,2,..., and X*(z) is the z-transform of x(kT), k=0,1,2,.... Rearranging terms
yields

r(z)

X*(z)

=(1-z")H¥(z)
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Then, since A(1) = [{p(8)d6, L[h(1)] = P(s)/s and
(z) P(S))

X'(z) “”*')z{g’ (& }

Compare the solution in Problem 6.42 with that in Problem 6.37. What is fundamentally
different about Problem 6.42, thereby permitting the use of linear frequency domain methods on
this problem?

The presence of a sampler at the output of P(s) permits the use of z-domain transfer functions for the
combination of the sampler, zero-order hold, and P(s).

Supplementary Problems

Determine the transfer function of the R-C network shown in Fig. 6-18

Q

ol
ol

Fig. 6-19

Fig. 6-18
An equivalent circuit of an electronic amplifier is shown in Fig. 6-19. What is its transfer function?
Find the transfer function of a system having the impulse response p(z) =e™ /(1 — sin¢).

A sinusoidal input x=2sin2¢ is applied to a system with the transfer function P(s)=2/s(s+2).
Determine the steady state output y,,.

Find the step response of a system having the transfer function P(s)=4/(s? - 1)(s2+ 1).

Determine which of the following transfer functions represent stable systems and which represent unstable
systems:

(s-1) (s+2)(s-2)
@ POy @ TN GG DG
N (s-1) _ s
(b) P(s)= GidGr9 (d) P(s)= (sP+s+1)(s+1)
5(s +10)
(e) P(s)=

(s+5)(s*—s+10)

Use the Final Value Theorem (Chapter 4) to show that the steady state value of the output of a stable
system in response to a unit step input is equal to the d.c. gain of the system.
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6.51.

6.52.

6.53.

6.54.

6.55.

6.56.

6.44.

6.45.

6.46.

6.47.

6.48.

6.49.

6.51.

6.53.

TRANSFER FUNCTIONS [CHAP. 6

Determine the transfer function of two of the networks shown in Problem 6.44 connected in cascade
(series).

Examine the literature for the transfer functions of two- and three-degree-of-freedom gyros and compare
them with the one-degree-of-freedom gyro of Problem 6.31.

Determine the ramp response of a system having the transfer function P(s)=(s+1)/(s + 2).

Show that if a system described by
d'u
b

n d'y m
Yal-¥

1 i '_l
im0 At o dt

for m < n is at rest prior to application of the input, that is, d*y/dt* =0, k=0,1,...,n~ 1, for t <0, then
(terms due to a// initial values uf, y&)=0.
(Hint: Integrate the differential equation n times from 0™ =1lim, ,, . o¢ t0 1, and then let 1 > 0*)

Determine the frequency response of the ideal zero-order hold (ZOH) device, with transfer function given
in Problem 6.36, and sketch the gain and phase characteristics.

A zero-order hold was defined in Definition 2.13 and Example 2.9. A first-order hold maintains the slope of
the function defined by the last two values of the sampler output, until the next sample time. Determine the
discrete-time transfer function from U*(z) to Y*(z) for the subsystem in Fig. 6-3, with a first-order hold
element.

Answers to Supplementary Problems

5
s+1/RC

=|=

A

ut _ _f"RL
V. (R, +R,)RCs+(p+1)R, +R,+ R,

n

sT4+s+1

Pls)= (s+1)(s2+25+2)

Y = 0.707sin(2r — 135°)
y=—4+e "+e'+2cost
() and (d) represent stable systems; (a), (¢), and (e) represent unstable systems.

v, s?
vV, s'+(3/RC)s+1/R¥C?

—_ — 1]
y=1-de ¥+t
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Tsin( wT/2
6.55. P(jw)=[ si (T«-;z/)]e_,um
1Pyl
T
P
MBI 4n
T T
¥ ¥ w A L w
27 4n
T T
—-180°
Fig, P6-55
6.56. Y*(:z G(s 1G6
() L1yl 92 160)
U*(z) s T s —kT




Chapter 7

Block Diagram Algebra and Transfer Functions
of Systems

7.1 INTRODUCTION

It is pointed out in Chapters 1 and 2 that the block diagram is a shorthand, graphical representation
of a physical system, illustrating the functional relationships among its components. This latter feature
permits evaluation of the contributions of the individual elements to the overall performance of the
system.

In this chapter we first investigate these relationships in more detail, utilizing the frequency domain
and transfer function concepts developed in preceding chapters. Then we develop methods for reducing
complicated block diagrams to manageable forms so that they may be used to predict the overall
performance of a system.

7.2 REVIEW OF FUNDAMENTALS

In general, a block diagram consists of a specific configuration of four types of elements: blocks,
summing points, takeoff' points, and arrows representing unidirectional signal flow:

su}:'i'rl:'g Sl Takeoff
x  t N\ 2F¥ Block z___ Point z
Description
=
v
S S—
Fig. 7-1

The meaning of each element should be clear from Fig. 7-1.
Time-domain quantities are represented by lowercase letters.

EXAMPLE 7.1. r=r(¢) for continuous signals, and r(z,) or r(k), k=1,2,..., for discrete-time signals.

Capital letters in this chapter are used for Laplace transforms, or z-transforms. The argument s or z
is often suppressed, to simplify the notation, if the context is clear, or if the results presented are the
same for both Laplace (continuous-time system) and z-(discrete-time system)transfer function domains.

EXAMPLE 7.2. R=R(s) or R=R(z).

The basic feedback control system configuration presented in Chapter 2 is reproduced in Fig. 7-2,
with all quantities in abbreviated transform notation.
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lN

ER_+\E=r=5[ g U G, C
- Forward Path
B
H
Feedback Path
Fig. 7-2

The quantities G;, G,, and H are the transfer functions of the components in the blocks. They may
be either Laplace or z-transform transfer functions.

EXAMPLE 7.3. G, =U/Eor U=G\E.

It is important to note that these results apply either to Laplace transform or to z-transform
transfer functions, but not necessarily to mixed continuous/discrete block diagrams that include
samplers. Samplers are linear devices, but they are not time-invariant. Therefore they cannot be
characterized by an ordinary s-domain transfer function, as defined in Chapter 6. See Problem 7.38 for
some exceptions, and Section 6.8 for a more extensive discussion of mixed continuous/discrete systems.

7.3 BLOCKS IN CASCADE

Any finite number of blocks in series may be algebraically combined by multiplication of transfer
functions. That is, » components or blocks with transfer functions G,, G,,..., G, connected in cascade
are equivalent to a single element G with a transfer function given by

n
G=6G,-G, G, - G,=T]G, (7.1)
=1

The symbol for multiplication “-” is omitted when no confusion results.

EXAMPLE 7.4.
E G, M G, C - E GG, C
Fig. 7-3
Multiplication of transfer functions is commutative; that is,
GG, = GG, (7.2)
for any i or .
EXAMPLE 7.5.
£ 66 S = L 66, |—C-

Fig. 7-4

Loading effects (interaction of one transfer function upon its neighbor) must be accounted for in
the derivation of the individual transfer functions before blocks can be cascaded. (See Problem 7.4.)
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7.4 CANONICAL FORM OF A FEEDBACK CONTROL SYSTEM

The two blocks in the forward path of the feedback system of Fig. 7-2 may be combined. Letting
G = G,G,, the resulting configuration is called the canonical form of a feedback control system. G and
H are not necessarily unique for a particular system.

The following definitions refer to Fig. 7-5.

H

Fig. 7-5

Definition 7.1: G = direct transfer function = forward transfer function

Definition 7.2: H = feedback transfer function

Definition 7.3: GH = loop transfer function = open-loop transfer function

Definition 7.4: C/R = closed-loop transfer function = control ratio

Definition 7.5: E /R = actuating signal ratio = error ratio

Definition 7.6: B/R = primary feedback ratio

In the following equations, the — sign refers to a positive feedback system, and the + sign refers to
a negative feedback system:

C G (7.3)
R 1+GH :
E 1

— = (7.4)
R 1+GH

B GH (7.5)
R 1+GH :

The denominator of C/R determines the characteristic equation of the system, which is usually
determined from 1+ GH =0 or, equivalently,

Doyt Ney=0 (7.6)

where Dy, is the denominator and N, is the numerator of GH, unless a pole of G cancels a zero of H
(see Problem 7.9). Relations (7.1) through (7.6) are valid for both continuous (s-domain) and discrete
(2-domain) systems.

7.5 BLOCK DIAGRAM TRANSFORMATION THEOREMS

Block diagrams of complicated control systems may be simplified using easily derivable transforma-
tions. The first important transformation, combining blocks in cascade, has already been presented in
Section 7.3. It is repeated for completeness in the chart illustrating the transformation theorems (Fig.
7-6). The letter P is used to represent any transfer function, and W, X, Y, Z denote any transformed
signals.
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T 5 Equivalent Block
Transformation Equation Block Diagram Dingrass
Combining Blocks _ x v x ¥
1 in Cascade ¥ =i : . "| B . PiPs
Combining Blocks
in Parallel; or Y
! = + X +
2|  Eliminatinga | ¥ = DX =X Py - T
Forward Loop =
Removing a Block
3| fromaForward | ¥ = P/X = P,X Py
Path
Eliminating a _ —= x + y Py g
4 Feedback Loop Y = P(X 5 FY) & P, 1= P,P,
Removing a Block T
5| from a Feedback |¥ = P,(X = P,Y) o
Loop
w + + F4
Rearranging _ x E *
ba Summing Points Zi= WL
Xr ——— |
W + - Z
&b Rearranging 7 - WEX+Y X x =
Yy

Summing Points

Moving a Summing

7 | Point Ahead of a Z =PX*Y
Block
P
Moving a Summing
8 Point Beyond a Z = PIXxY]
Block -
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Transformation Equation Block Diagram qull[‘;?lent Block
iagram
X s Y X a1 Y
Moving a Takeoff —
9 | Point Ahead of a Y = PX
Block ¥ y
-— P |
X » Y X 3 Y
Moving a Takeoff
10 Point Beyond a Y = PX
Block X X 1
P
Moving a Takeoff
11| Point Ahead of a Z=X=Y
Summing Point
Moving a Takeoff
12 Point Beyond a Z=X=zY
Summing Point

Fig. 7-6  Continued

7.6 UNITY FEEDBACK SYSTEMS

Definition 7.7: A unity feedback system is one in which the primary feedback b is identically equal
to the controlled output c.

EXAMPLE 7.6. H =1 for a linear, unity feedback system (Fig. 7-7).

R rN\_E G C

-

Fig. 7-7

Any feedback system with only linear time-invariant elements can be put into the form of a unity
feedback system by using Transformation 5.

EXAMPLE 7.7.

Rt G C R

GH

|

b ]

H
+

Fig. 7-8
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The characteristic equation for the unity feedback system, determined from 1+ G=0, is
D +N.=0 (7.7)

where D, is the denominator and N,; the numerator of G.

7.7 SUPERPOSITION OF MULTIPLE INPUTS

Sometimes it is necessary to evaluate system performance when several inputs are simultaneously
applied at different points of the system.

When multiple inputs are present in a linear system, each is treated independently of the others.
The output due to all stimuli acting together is found in the following manner. We assume zero initial
conditions, as we seek the system response only to inputs.

Step 1:  Set all inputs except one equal to zero.

Step 2: Transform the block diagram to canonical form, using the transformations of Section 7.5.

Step 3: Calculate the response due to the chosen input acting alone.

Step 4: Repeat Steps 1 to 3 for each of the remaining inputs.

Step 5:  Algebraically add all of the responses (outputs) determined in Steps 1 to 4. This sum is the

total output of the system with all inputs acting simultaneously.

We reemphasize here that the above superposition process is dependent on the system being linear.

EXAMPLE 7.8. We determine the output C due to inputs U and R for Fig. 7-9.

U
J\*
B+ G, +b/ G, C

Fig. 7-9

Step 1: Put U=0.
Step 2: The system reduces to

C
R + G\Gs R

Step 3: By Equation (7.3), the output Cg due to input R is Cp = [G,G,/(1 + G,G,)]R.
Step 4a:  Put R=0.
Step 4b:  Put —1 into a block, representing the negative feedback effect:

):
+
+ C
G, @, G, -

Rearrange the block diagram:

U +/ G, Cy

+
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Let the —1 block be absorbed into the summing point:

U + {r\ Gy Cy

Step 4c: By Equation (7.3), the output C; due to input U is C, =[G, /(1 + G,G)U.
Step 5: The total output is

C=Ce+C G% e % |y
TR 14 6,6, 1+GG,|

G,

G,
1+ GG,

][GIR+ Ul

7.8 REDUCTION OF COMPLICATED BLOCK DIAGRAMS

The block diagram of a practical feedback control system is often quite complicated. It may include
several feedback or feedforward loops, and multiple inputs. By means of systematic block diagram
reduction, every multiple loop linear feedback system may be reduced to canonical form. The
techniques developed in the preceding paragraphs provide the necessary tools.

The following general steps may be used as a basic approach in the reduction of complicated block
diagrams. Each step refers to specific transformations listed in Fig. 7-6.

Step 1: Combine all cascade blocks using Transformation 1.

Step 2: Combine all parallel blocks using Transformation 2.

Step 3: Eliminate all minor feedback loops using Transformation 4.

Step 4: Shift summing points to the left and takeoff points to the right of the major loop, using
Transformations 7, 10, and 12.

Step 5: Repeat Stepsd to 4 until the canonical form has been achieved for a particular input.
Step 6: Repeat Steps 1 to 5 for each input, as required.

Transformations 3, 5, 6, 8, 9, and 11 are sometimes useful, and experience with the reduction
technique will determine their application.

EXAMPLE 7.9. Let us reduce the block diagram (Fig. 7-10) to canonical form.

Gs
B

rli c
G —)

_...‘G‘

Fig. 7-10
Step 1:

:
E%
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Step 2:

6|
- B. = ——-—-G,+G.

Step 3:
_ GG,y
b 1- G,G,H,
Step 41 Does not apply.
Step 5:
R + GGy G. 4G C R + G1G4(Gy+ Gy) [
1- G,GH, el 1 - G,GH,
L H] i

Step 6: Does not apply.

An occasional requirement of block diagram reduction is the isolation of a particular block in a
feedback or feedforward loop. This may be desirable to more easily examine the effect of a particular
block on the overall system.

Isolation of a block generally may be accomplished by applying the same reduction steps to the
system, but usually in a different order. Also, the block to be isolated cannot be combined with any
others.

Rearranging Summing Points (Transformation 6) and Transformations 8, 9, and 11 are especially
useful for isolating blocks.

EXAMPLE 7.10. Let us reduce the block diagram of Example 7.9, isolating block H,.
Steps 1 and 2:

G,G, G, + G

H,

Hy




162 BLOCK DIAGRAM ALGEBRA AND TRANSFER FUNCTIONS OF SYSTEMS [CHAP. 7

We do not apply Step 3 at this time, but go directly to Step 4, moving takeoff point / beyond block G, + G;:

G,G, Gy + G

H,

1
Gy + Gy

We may now rearrange summing points / and 2 and combine the cascade blocks in the forward loop using
Transformation 6, then Transformation 1:

G1G4(Gy + Gyg)

&

Step 3:

R+, G1G4(Gy + Gy c
1+ G,6.H,(0; + Gg)

1
Gy + Gy

H,

Finally, we apply Transformation § to remove 1/(G, + G;) from the feedback loop:

R + GG, c
Gyt Gy T+ G,GHy(G, + Gy)
+
H,

Note that the same result could have been obtained after applying Step 2 by moving takeoff point 2 ahead of
G, + G, instead of takeoff point I beyond G, + G;. Block G, + G; has the same effect on the control ratio C/R
whether it directly follows R or directly precedes C.
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Solved Problems

BLOCKS IN CASCADE
7.1. Prove Equation (7.7) for blocks in cascade.

The block diagram for » transfer functions G,, G, ..., G, in cascade is given in Fig. 7-11.

X, X, X, X, Xpt1

G, G, ———— G,

Fig. 7-11

The output transform for any block is equal to the input transform multiplied by the transfer function

(see Section 6.1). Therefore X, = X,G,, X; = X,G,,..., X,=X,_,G,_, X,., = X,G,. Combining these
equations, we have

X =XG,=X,..,G,.,.G,= - =XG\G, - GG,

Dividing both sides by X, we obtain X, _,/X, = G,G, -+ G,_,G,.

7.2. Prove the commutativity of blocks in cascade, Equation (7.2).

Consider two blocks in cascade (Fig. 7-12):

X Xis1 XHI

G;

Fig. 7-12

From Equation (6./) we have X, =X,G,=G X, and X, =X,.,G, =G, X, Therefore X, , =
(X.G))G; = X,G,G,. Dividing both sides by X, X ,,/X, = G,G,.

Also, X, | = G;(G, X)) = G,G; X,. Dividing again by X,, X,,,/X; = G,G,. Thus G,G; = G;G,.

This result is extended by mathematical induction to any finite number of transfer functions (blocks)

in cascade.

7.3. Find X, /X, for each of the systems in Fig. 7-13.

X, 10 | X 1 X, X, 1 X, | 10 | X
(@) s+1 s—1 (®) s—1 s+1
@ X =10} X 1 | Xl 4] X
s+1 | 8
Fig. 7-13

(a) One way to work this problem is to first write X, in terms of X;:

X, 10 X
PR
Then write X, in terms of X):

e e () ()

Multiplying out and dividing both sides by X;, we have X, /X, =10/(s* — 1).
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A shorter method is as follows. We know from Equation (7.7) that two blocks can be reduced to
one by simply multiplying their transfer functions. Also, the transfer function of a single block is its
output-to-input transform. Hence

X, 1 10 10
X, (s—l)(s+l)_s2—l

(b) This system has the same transfer function determined in part (a) because multiplication of transfer

functions is commutative.
X, -10 1 1.4 ) -14
Xl_(s+1)(s—l)( s | s(s2-1)

(¢) By Equation (7.1), we have
7.4. The transfer function of Fig. 7-14a is wy/(s + «,), where wy,=1/RC. Is the transfer function of
Fig. 7-14b equal to w?/(s + wy)2? Why?

R
o W o
Input == C  Output
[ )
Fig. 7-14a

AANA——
\Ad

AW ’ ’
Input C C Output
o T T °

Fig. 7-14b
No. If two networks are connected in series (Fig. 7-15) the second loads the first by drawing current
from it. Therefore Equation (7./) cannot be directly applied to the combined system. The correct transfer
function for the connected networks is w3 /(s* + 3wys + w}) (see Problem 6.16), and this is nor equal to

(wo/(s + @))%,
R !
vAvAvA "
[ l
}
c | c
|
. & :
Network 1 Connécting Network 2
Points
Fig. 7-15

CANONICAL FEEDBACK CONTROL SYSTEMS
7.5. Prove Equation (7.3), C/R = G /(1 + GH).

The equations describing the canonical feedback system are taken directly from Fig. 7-16. They are
given by E=R ¥ B, B= HC, and C = GE. Substituting one into the other, we have

C=G(RFB)=G(RFHC)
=GR¥ GHC =GR+ (FGHC)
Subtracting (¥ GHC) from both sides, we obtain C + GHC =GR or C/R = G/(1 + GH).
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7.6.

7.7.

7.8.

7.9.

R +™\ E G ¢
B
H
Fig. 7-16

Prove Equation (7.4), E/R=1/(1 + GH).

From the preceding problem, we have E=RF B, B= HC, and C = GE.
Then E=RF+HC=RF¥ HGE, E+ GHE=R, and E/R=1/(1 + GH).

Prove Equation (7.5), B/R=GH/(1 + GH).

From E=R¥ B, B=HC, and C = GE, we obtain B= HGE = HG(R ¥ B)= GHR ¥ GHB.
Then B+ GHB= GHR, B=GHR/(1 + GH), and B/R=GH/(1 + GH).

Prove Equation (7.6), Dg;,; + Ngp=0.
The characteristic equation is usually obtained by setting 1+ GH =0. (See Problem 7.9 for an

exception.) Putting GH = N;,/Dgyy, we obtain Dy + Ngjy =0.

Determine (a) the loop transfer function, (b) the control ratio, (¢) the error ratio, (d) the
primary feedback ratio, (e) the characteristic equation, for the feedback control system in which
K, and K, are constants (Fig. 7-17).

R + E K, C
88+ p)

K,s

Fig. 7-17

(a) The loop transfer function is equal to GH.

K, KK,
Hence GH = K;s=
s(s+p) s+p

(b) The control ratio, or closed-loop transfer function, is given by Equation (7.3) (with a minus sign for
positive feedback):

c G K,

(c¢) The error ratio, or actuating signal ratio, is given by Equation (7.4):
E 1 1 s+p
R 1~-GH 1-KK,/(s+p) s+p-KK,

(d) The primary feedback ratio is given by Equation (7.5):
B GH KK,
R 1-GH s+p-KK,

(e) The characteristic equation is given by the denominator of C/R above, s(s + p — K, K,) =0. In this
case, 1 - GH=s5+p— K, K, =0, which is nor the characteristic equation, because the pole s of G
cancels the zero s of H.
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BLOCK DIAGRAM TRANSFORMATIONS
7.10. Prove the equivalence of the block diagrams for Transformation 2 (Section 7.5).

The equation in the second column, ¥ = P, X + P, X, governs the construction of the block diagram in
the third column, as shown. Rewrite this equation as ¥ = (P, + P,) X. The equivalent block diagram in the
last column is clearly the representation of this form of the equation (Fig. 7-18)

X Y

— Plt,Pz —

Fig. 7-18

7.11. Repeat Problem 7.10 for Transformation 3.

Rewrite Y=P X+ P,X as Y= (P, /P,) P, X + P, X. The block diagram for this form of the equation is
clearly given in Fig. 7-19.

P,
X = P,X P, (E) PX |y
5 i}
P, +
Fig. 7-19

7.12. Repeat Problem 7.10 for Transformation 5.

We have Y= P, [ X F P,Y]= P, P,[(1/P,) X F Y). The block diagram for the latter form is given in Fig.
7-20.

X =10 + ™\ PP, Y

Fig. 7-20

7.13. Repeat Problem 7.10 for Transformation 7.
We have Z=PX + Y= P[X +(1/P)Y], which yields the block diagram given in Fig. 7-21.

X + P z

-+

] L

Fig. 7-21

7.14. Repeat Problem 7.10 for Transformation 8.
We have Z= P(X + Y) = PX+ PY, whose block diagram is clearly given in Fig. 7-22.
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X

UNITY FEEDBACK SYSTEMS

P

Fig. 7-22
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7.15. Reduce the block diagram given in Fig. 7-23 to unity feedback form and find the system

£ia  characteristic equation.

Mathcad R + r\

1 1
&+ 1 8

i

s+2

Fig. 7-23

Combining the blocks in the forward path, we obtain Fig. 7-24.

R_+ M)

1

C

s(s+1)

1

s+ 2

Fig. 7-24

Applying Transformation 5, we have Fig. 7-25.

. s+2 —)

1
s(e+1)(s+2)

Fig. 7-25

By Equation (7.7), the characteristic equation for this system is s(s + 1)}(s +2) + 1 =0 or s> + 3s? +

2s+1=0.

MULTIPLE INPUTS AND OUTPUTS

7.16. Determine the output C due to Uy, U,, and R for Fig. 7-26.

i

U,
Mathcad i
- +
R iy G, O G,
+
H, () H,
-
U,

Fig, 7-26
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Let U, = U, = 0. After combining the cascaded blocks, we obtain Fig. 7-27, where Cy is the output due
to R acting alone. Applying Equation (7.3) to this system, Cg = [G,G,/(1 — G,G, H, H,)]R.

C
VA Y G,G, R
+
HI.HE
Fig. 7-27

Now let R = U, = 0. The block diagram is now given in Fig. 7-28, where C; is the response due to U,
acting alone. Rearranging the blocks, we have Fig. 7-29. From Equation (7.3), we get C, =

[Gz/(l - G\G, H  H,))U,.

O

G, Ci
H\H,
Fig. 7-28
U, +/™ [ G, Cy
1
G\H\H,
Fig. 7-29

Finally, let R = U, = 0. The block diagram is given in Fig, 7-30, where C, is the response due to U
acting alone. Rearranging the blocks, we get Fig. 7-31. Hence C, = [G,G, H, /(1 — G |G, H, H))]U,.

G1G,

Cy

H, V30

-+
Uy

Fig. 7-30

H,

G1G.H,

Cy

Fig. 7-31
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By superposition, the total output is

GG, R+ GU + GG HL,
1- 6,6, A, H,

C=Cr+C+C=

7.17. Figure 7-32 is an example of a multiinput-multioutput system. Determine C; and C, due to R,

and R,.
R, + G, C,
Gy
Gy
G, G
Fig. 7-32

First put the block diagram in the form of Fig. 7-33, ignoring the output C,.

Ry, + G, C,
L G3Gy — Gy
+
Ry
Fig. 7-33

Letting R, = 0 and combining the summing points, we get Fig. 7-34.

R, -+ Gl Cyy

GaG3Gy

Fig. 7-34

Hence C,,, the output at C; due to R, alone, is C, = G, R, /(1 — G,G,G;G,). For R, =0, we have Fig.
7-35.

R I [

Gy

Fig. 7-35

Hence C,; = — G,G,G, R, /(1 — G,G,G,G,) is the output at C; due to R, alone. Thus C; = G, + G5 =
(GR, — G,G;G4R,)/(1 — G,G,G,G,).
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Now we reduce the original block diagram, ignoring output C;. First we obtain Fig. 7-36.

By

Cy

GGy

Gy

i s

Fig. 7-36

Then we obtain the block diagram given in Fig. 7-37. Hence G, = G,R,/(1 — G,G,G,G,). Next,
letting R, =0, we obtain Fig. 7-38. Hence C,, = — G,G,G, R, /(1 — G,G,G,G,). Finally, G, =Gy, + G, =

(G4R; — G1GG4R)/(1 = G1GGGy).

R: +

CZZ

+

4

et

G,G4G;

Fig. 7-37

—G1G,G,

BLOCK DIAGRAM REDUCTION

Gy

Fig. 7-38

7.18. Reduce the block diagram given in Fig. 7-39 to canonical form, and find the output transform C.

K is a constant.

0.1

Fig. 7-39

First we combine the cascade blocks of the forward path and apply Transformation 4 to the innermost

feedback loop to obtain Fig. 7-40.

R )

K

I+Ks+1
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7.19.  Reduce the block diagram of Fig. 7-39 to canonical form, isolating block K in the forward loop.

o+

- By Transformation 9 we can move the takeoff point ahead of the 1/(s + 1) block (Fig. 7-41):
Cal

R+ ™ + K 11 | C_
8
1
T . T +1
1
01 7+ 1
Fig. 7-41

Applying Transformations 1 and 64, we get Fig. 7-42.

R + X 1 C

g+1

0.1
e+1

Fig. 7-42

Now we can apply Transformation 2 to the feedback loops, resulting in the final form given in
Fig. 7-43.

R + M\

el 1 c
[l

s+ 0.1
e+1

Fig. 7-43

7.20. Reduce the block diagram given in Fig. 7-44 to open-loop form.

0.1

Fig. 7-40

Equation (7.3) or the reapplication of Transformation 4 yields C = KR/[(1 + K)s + (1 + 0.1K)].

E— G,

/L .
+ e

O

a B,

Gy

Gy

Fig. 7-44
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First, moving the leftmost summing point beyond G, (Transformation 8), we obtain Fig. 7-45.

E - 6, —=(a)

G,

Fig. 7-45

Next, moving takeoff point a beyond G,, we get Fig. 7-46.

— d e Gs
A

1
G,
Fig. 7-46

Now, using Transformation 65, and then Transformation 2, to combine the two lower feedback loops
(from G, H,) entering d and e, we obtain Fig, 7-47.

G, .
L
[
- G,H,
H,
\ b
o a
+
1
(1 o E) G'Hl

Fig. 7-47

Applying Transformation 4 to this inner loop, the system becomes

H,
R + " + C
al Nt 1= W+ A »% m
. +
Gy
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Again, applying Transformation 4 to the remaining feedback loop yields

B [a. 1 GGy |+ c

|G"| 1=G,GH, + GeH, +

Gy

Finally, Transformation 1 and 2 give the open-loop block diagram:

R 616363 + Gy — G1GyGH, + GaG.H, + G4G4G H, (%
1- G.G;ﬂ, + mg + WI

MISCELLANEOUS PROBLEMS

7.2

7.22.

7.23.

Show that simple block diagram Transformation 1 of Section 7.5 (combining blocks in cascade)
is not valid if the first block is (or includes) a sampler.

The output transform U*(s) of an ideal sampler was determined in Problem 4.39 as
o0
U*(s) =3 e **Tu(kT)
k=0

Taking U*(s) as the input of block P, of Transformation 1 of the table, the output transform Y(s) of block
P, is

¥(s) = Pi(5)UX(s) =P2(s)k§0e”"u(kr)

Clearly, the input transform X(s)= U(s) cannot be factored from the right-hand side of Y(s), that is,
Y(s) # F(s)U(s). The same problem occurs if P, includes other elements, as well as a sampler.

Why is the characteristic equation invariant under block diagram transformation?

Block diagram transformations are determined by rearranging the input-output equations of one or
more of the subsystems that make up the total system. Therefore the final transformed system is governed
by the same equations, probably arranged in a different manner than those for the original system.

Now, the characteristic equation is determined from the denominator of the overall system transfer
function set equal to zero. Factoring or other rearrangement of the numerator and denominator of the
system transfer function clearly does not change it, nor does it alter the denominator set equal to zero.

Prove that the transfer function represented by C/R in Equation (7.3) can be approximated by
+1/H when |G| or |GH| are very large.

1
Dividing the numerator and denominator of G/(1 + GH) by G, we get 1 / ( < + H ) Then
" [ C] . 1 1
1G|— oo R |G|~ o l +H ~H
G
Dividing by GH and taking the limit, we obtain
1

. . H 1
lim |{—|= 1 — =t =
\GHII—'x[R] GH a0 2o T H
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7.24. Assume that the characteristics of G change radically or unpredictably during system operation. From the open-loop diagram, we have C=R/(s+p,). Rearranging, (s+p))C=R and C=
Using the results of the previous problem, show how the system should be designed so that the (1/s)}R = p,C). The closed-loop diagram follows from this equation.
output C can always be predicted reasonably well.
In problem 7.23 we found that 7.27. Prove Fig. 7-52.
i (3] -+
dim | — =+ — +
(GHl=os | R " R s+z C _ R K= Pr) + c
Thus C— +R/H as |GH| = o, or C is independent of G for large |GH|. Hence the system should be 8+ py &+ p

designed so that |GH| > 1.
Fig. 7-52

7.25. Determine the transfer function of the system in Fig. 7-48. Then let H, =1/G, and H,=1/G,. This problem illustrates how a finite zero may be removed from a block.

+ N\ c From the forward-loop diagram, C = R + (z;, — p,)R/(s + p,). Rearranging,

=
i_Gg & — s+p+z - (s+z
# c=[1+2 PL)R:( g P1)R=[ I}R
S+p S+py / s+py
L]

This mathematical equivalence clearly proves the equivalence of the block diagrams.

Hs 7.28. Assume that linear approximations in the form of transfer functions are available for each block
. of the Supply and Demand System of Problem 2.13, and that the system can be represented by
Fig. 7-48 Fig. 7-53.
Reducing the inner loops, we have Fig. 7-49. Supplier
Hg
R + G, Gy C + Pricer Market
1-G,H, 1 — G,H, R + Gp G [
Hy Demande)
Hp
Fig. 7-49
Applying Transformation 4 again, we obtain Fig. 7-50. Fig. 7-53
R 61 c Determine the overall transfer function of the system.

(1=G,H,)(1 - G,Hy) + G\G,H, Block diagram Transformation 4, applied twice to this system, gives Fig. 7-54.

Fig. 7-50
& Hg
Now put H, =1/G, and H,=1/G,. This yields
2
o 6% 1 ) B+ Grlu c
R (1-1(- 1) + GG, H, H, 130
7.26. Show that Fig, 7-51 is valid.
R_+ 1 c @) R GoGu c
= 1F GpGuHp — GrOxlls
E 1 C _ -
s+ a
P Fig. 7-54
Py
. L GpGry
. Hence the transfer function for the linearized Supply and Demand model is: —————————
Fig. 7-51 1+ GGy (Hp — H)
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Supplementary Problems

7.29. Determine C/R for each system in Fig. 7-55.

Gy

O

(b) R +

O

=)

(c) R +.r™

O

[ [ BB R B

E

Fig. 7-55

7.30. Consider the blood pressure regulator described in Problem 2.14. Assume the vasomotor center (VMC) can
be described by a linear transfer function G),(s), and the baroreceptors by the transfer function ks + k,
(see Problem 6.33). Transform the block diagram into its simplest, unity feedback form.

731. Reduce Fig. 7-56 to canonical form.

Hy

2]
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132

7.33.

7.34.

7.35.

7.36.

7.37.

7.38.

Determine C for the system represented by Fig. 7-57.

Fig. 7-57

Give an example of two feedback systems in canonical form having identical control ratios C/R but
different G and H components.

Determine C/R, for the system given in Fig. 7-58.

Hy
Rﬂ
5 = +
L % 6 |-+ G | = [a] c
I_I'H"
H,
2
Fig. 7-58

Determine the complete output C, with both inputs R, and R, acting simultaneously, for the system given
in the preceding problem.

Determine C/R for the system represented by Fig. 7-59.

X G Gy “
y e ) 1
H, H,
Fig, 7-59

Determine the characteristic equation for each of the systems of Problems (a) 7.32, (b) 7.35, (¢) 7.36.

What block diagram transformation rules in the table of Section 7.5 permit the inclusion of a sampler?
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7.29.

7.30.

731

7.32.

7.34.

1.35.

7.36.

7.37.

7.38.
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Answers to Supplementary Problems

See Problem 8.15.

+ Nonlinearity
Reference ks + key (e + k) k(+p Actual
Blood - Blood
Pressure Pressure
R + GGy G C
1+ G\GoH, + G4H, 1
(=]

c G,G,R, + G,R, — G,R, — G,G. H,R,
B 1+ G,H, + GG, H,

C Gy(1+ G, Hy)

R, 14 G H,+ GH, + GGG H,

G,G,G,R, + G;(1 + G, H;) R,
" 1+ Gy H, + Gy Hy + G,G,G, H,

G,G,GG,
(1+ GG, H))(1 + GG, H,) + G,G; H,

C
2=

(@) 1+GH,+GGH =0
() 1+ GyH, + GyH, + G,G,GoH, =0
(¢) A+ GG H)]+GGH,) + G,G3H; =0.

The results of Problem 7.21 indicate that any transformation that involves any product of two or more
transforms is not valid if a sampler is included. But all those that simply involve the sum or difference
of signals are valid, that is, Transformations 6, 11, and 12. Each represents a simple rearrangement of
signals as a linear-sum, and addition is a commutative operation, even for sampled signals, that is
Z=XtY=YzX

Chapter 8

Signal Flow Graphs

8.1 INTRODUCTION

The most extensively used graphical representation of a feedback control system is the block
diagram, presented in Chapters 2 and 7. In this chapter we consider another model, the signal flow
graph.

A signal flow graph is a pictorial representation of the simultaneous equations describing a system.
It graphically displays the transmission of signals through the system, as does the block diagram. But it
is easier to draw and therefore easier to manipulate than the block diagram.

The properties of signal flow graphs are presented in the next few sections. The remainder of the
chapter treats applications.

82 FUNDAMENTALS OF SIGNAL FLOW GRAPHS

Let us first consider the simple equation

X,=4,X (8.1)
The variables X, and X, can be functions of time, complex frequency, or any other quantity. They may
even be constants, which are “ variables” in the mathematical sense.

For signal flow graphs, 4,; is a mathematical operator mapping X, into X, and is called the
transmission function. For example, A4;, may be a constant, in which case X; is a constant times X, in
Equation (8.7); if X, and X, are functions of s or z, A,, may be a transfer function 4, (s) or 4, (z).

The signal flow graph for Equation (8.1) is given in Fig. 8-1. This is the simplest form of a signal
flow graph. Note that the variables X, and X; are represented by a small dot called a node, and the
transmission function 4, ; is represented by a line with an arrow, called a branch.

Node Ay Node
X, Branch A‘"
Fig. 8-1

Every variable in a signal flow graph is designated by a node, and every transmission function by a
branch. Branches are always unidirectional. The arrow denotes the direction of signal flow.

EXAMPLE 8.1. Ohm's law states that E = RI, where E is a voltage, I a current, and R a resistance. The signal
flow graph for this equation is given in Fig. 8-2.

Fig. 8-2

179
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8.3 SIGNAL FLOW GRAPH ALGEBRA

1. The Addition Rule
The value of the variable designated by a node is equal to the sum of all signals entering the node.
In other words, the equation
X = Z 4, /Xj
j=1

is represented by Fig. 8-3.

Fig, 8-3

EXAMPLE 8.2. The signal flow graph for the equation of a line in rectangular coordinates, ¥ = mX + b, is given
in Fig. 8-4. Since b, the Y-axis intercept, is a constant it may represent a node (variable) or a transmission function.

2. The Transmission Rule

The value of the variable designated by a node is transmitted on every branch leaving that node. In
other words, the equation

X, =A, X, i=1,2,...,n, k fixed
is represented by Fig. 8-5.

Fig. 8-5

CHAP. 8] SIGNAL FLOW GRAPHS 181

EXAMPLE 8.3. The signal flow graph of the simultaneous equations Y = 3X, Z = —4.X is given in Fig. 8-6.

3 Y
X
Fig. 8-6

3. The Multiplication Rule

A cascaded (series) connection of »n — 1 branches with transmission functions
Ay Asyy Agss ...y Apn-) can be replaced by a single branch with a new transmission function equal to
the product of the old ones. That is,

X,=Ay Ay-Agy - An(n-l) - X
The signal flow graph equivalence is represented by Fig. 8-7.
Ag Anin—1y AgpAg - App-n
— - — > — ¢ = - > —e
X]. X2 Xn—l Xn Xl Xn
Fig. 8-7

EXAMPLE 8.4. The signal flow graph of the simultaneous equations ¥ = 10X, Z = —20Y is given in Fig. 8-8.

10 ~20 —
@ which reduces to o 2700
X Y zZ X

N

Fig 8-8

84 DEFINITIONS

The following terminology is frequently used in signal flow graph theory. The examples associated
with each definition refer to Fig. 8-9.

AGZ
ABS
Ay Asp Ay
Xl X\_—/X3 X‘
A28
Fig. 8-9
Definition 8.1: A path is a continuous, unidirectional succession of branches along which no node is

passed more than once. For example, X, to X, to X; to X, X, to X; and back to
X,, and X, to X, to X, are paths.

Definition 8.2 An input node or source is a node with only outgoing branches. For example, X is
an input node.
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Definition 8.3: An output node or sink is a node with only incoming branches. For example, X, is
an output node.

Definition 8.4: A forward path is a path from the input node to the output node. For example, X;
to X, to X, to X,, and X; to X, to X, are forward paths.

Definition 8.5: A feedback path or feedback loop is a path which originates and terminates on the
same node. For example, X, to X; and back to X, is a feedback path.

Definition 8.6: A self-loop is a feedback loop consisting of a single branch. For example, A,; is a
self-loop.

Definition 8.7: The gain of a branch is the transmission function of that branch when the
transmission function is a multiplicative operator. For example, A, is the gain of
the self-loop if A, is a constant or transfer function.

Definition 8.8: The path gain is the product of the branch gains encountered in traversing a path.
For example, the path gain of the forward path from X; to X, to X; to X, is
AnApAgy.

Definition 8.9: The loop gain is the product of the branch gains of the loop. For example, the loop
gain of the feedback loop from X, to X, and back to X, is 4;,4.

Very often, a variable in a system is a function of the output variable. The canonical feedback
system is an obvious example. In this case, if the signal flow graph were to be drawn directly from the
equations, the “output node” would require an outgoing branch, contrary to the definition. This
problem may be remedied by adding a branch with a transmission function of unity entering a
“dummy” node. For example, the two graphs in Fig. 8-10 are equivalent, and Y, is an output node.
Note that ¥, = Y,.

Dummy
R ezx . Azg - . Az Aje " 1 Node
Y, Y, 4 Y, Y, Y, 4, Y, Y,
23 3
Fig. 8-10

8.5 CONSTRUCTION OF SIGNAL FLOW GRAPHS

The signal flow graph of a linear feedback control system whose components are specified by
noninteracting transfer functions can be constructed by direct reference to the block diagram of the
system. Each variable of the block diagram becomes a node and each block becomes a branch.

EXAMPLE 8.5. The block diagram of the canonical feedback control system is given in Fig. 8-11.

R + E C

H

Fig. 8-11
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The signal flow graph is easily constructed from Fig. 8-12. Note that the ~ or + sign of the summing point is
associated with H.

|

xF

ne
A
]
{Q
Q
(o1

Fig. 8-12

The signal flow graph of a system described by a set of simultaneous equations can be constructed
in the following general manner.

1. Write the system equations in the form

Xi=An X\ +Ap X, + - 1A, X,

Xp=Aa X\ +A ,X;+ - +A4, X,

An equation for X, is not required if X| is an input node.

2. Arrange the m or n (whichever is larger) nodes from left to right. The nodes may be rearranged
if the required loops later appear too cumbersome.

3. Connect the nodes by the appropriate branches A4,,, 4,,, etc.
If the desired output node has outgoing branches, add a dummy node and a unity gain branch.
5. Rearrange the nodes and/or loops in the graph to achieve maximum pictorial clarity.

EXAMPLE 8.6. Let us construct a signal flow graph for the simple resistance network given in Fig. 8-13. There
are five variables, v,, v,, vy, ), and i,. v, is known. We can write four independent equations from Kirchhoff’s
voltage and current laws. Proceeding from left to right in the schematic, we have

1 1 1 1
il=(Fl)Ul*(R—l)vz vy = R;i; — R;3i, iz:(R_l)UZ_(R_Z)UJ vy = R,i,
R, v, R,
M 0
+
i Ry R, V3

ol

Fig. 8-13

Laying out the five nodes in the same order with v, as an input node, and connecting the nodes with the
appropriate branches, we get Fig. 8-14. If we wish to consider v, as an output node, we must add a unity gain

~U/R, —R, -UR,

1/R, R, 1R, R,

g
vy 1 vy g V3
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branch and another node, yielding Fig. 8-15. No rearrangement of the nodes is necessary. We have one forward
path and three feedback loops clearly in evidence.

VR, ~R, ~1/R,
/R, R, VR, R, 1
v i V2 iy vy V3
Fig. 8-15

Note that signal flow graph representations of equations are not unique. For example, the addition
of a unity gain branch followed by a dummy node changes the graph, but not the equations it
represents.

8.6 THE GENERAL INPUT-OUTPUT GAIN FORMULA

We found in Chapter 7 that we can reduce complicated block diagrams to canonical form, from
which the control ratio is easily written as
C G

R 1+GH

It is possible to simplify signal flow graphs in a manner similar to that of block diagram reduction.
But it is also possible, and much less time-consuming, to write down the input-output relationship by
inspection from the original signal flow graph. This can be accomplished using the formula presented
below. This formula can also be applied directly to block diagrams, but the signal flow graph
representation is easier to read—especially when the block diagram is very complicated.

Let us denote the ratio of the input variable to the output variable by 7. For linear feedback control
systems, T= C/R. For the general signal flow graph presented in preceding paragraphs T= X, /X,
where X, is the output and X, is the input.

The general formula for any signal flow graph is

T ):iPiAl
T A

(8.2)

where P, = the ith forward path gain

P, = jth possible product of k nontouching loop gains

A=1-(-D*'L¥P,
k

=1_ZP,1+ZP,1‘ZP,'3+
J J J
= 1 - (sum of all loop gains) + (sum of all gain products of two nontouching loops)
— (sum of all gain products of three nontouching loops) + - - -

A, = A evaluated with all loops touching P; eliminated

Two loops, paths, or a loop and a path are said to be nontouching if they have no nodes in common.

A is called the signal flow graph determinant or characteristic function, since A =0 is the system
characteristic equation.

The application of Equation (8.2) is considerably more straightforward than it appears. The
following examples illustrate this point.

EXAMPLE 8.7. Let us first apply Equation (8.2) to the signal flow graph of the canonical feedback system (Fig.
8-16).
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=H
Fig. 8-16
There is only one forward path; hence
P =G
Py=Pym - =0

There is only one (feedback) loop. Hence

P,=FGH
P,=0 j#*1 k+#1
Then
A=1-P,=1+GH and A=1-0=1
Finally,

r C PA G
R A 1+GH

EXAMPLE 8.8. The signal flow graph of the resistance network of Example 8.6 is shown in Fig. 8-17. Let us
apply Equation (8.2) to this graph and determine the voltage gain T = v; /v, of the resistance network.

~1/R, -R, ~1/R,

1/R, Ry 1/R, R, 1 ~

vy iy Yy iy vs v3
Fig. 8-17

There is one forward path (Fig. 8-18). Hence the forward path gain is

R,R
P = 3y
R\R,
1/R, Ry 1/R, R, 1
”vl : V2 ip ’”vs “Ta
Fig. 8-18

There are three feedback loops (Fig. 8-19). Hence the loop gains are

R] R'.! RA
Pn‘"?] n"R_z Pu=_R_2
-1/R, —R; —1/R,
4 v v i 1, V3
Loop 1 Loop 2 Loop 3
Fig. 8-19
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There are two nontouching loops, loops 1 and 3. Hence
R;R,
R,R,

P, = gain product of the only two nontouching loops = P,, - P;, =

There are no three loops that do not touch. Therefore

Ry, Ry R, R,R,
A=1—-(P; +Py+Py))+Po=14+—+—+—+

R, R, R, RR,

R\Ry+ R Ry + R R,+ RyRy+ R3R,

RiR,

Since all loops touch the forward path, A, = 1. Finally,
vy PA RyR,

v, B  RR,+RRy+RR,+R,R, +R;R,

8.7 TRANSFER FUNCTION COMPUTATION OF CASCADED COMPONENTS

Loading effects of interacting components require little special attention using signal flow graphs.
Simply combine the graphs of the components at their normal joining points (output node of one to the
input node of another), account for loading by adding new loops at the joined nodes, and compute the
overall gain using Equation (&8.2). This procedure is best illustrated by example.

EXAMPLE 8.9. Assume that two identical resistance networks are to be cascaded and used as the control
elements in the forward loop of a control system. The networks are simple voltage dividers of the form given in Fig.
8-20.

R,
o——WWW\— o
+ +
vy /1'\‘ Ry v,
° - —o

Fig. 8-20

Two independent equations for this network are

1 1
il=(a)vl-(7{:)vz and vy = Ryi)

The signal flow graph is easily drawn (Fig. 8-21). The gain of this network is, by inspection, equal to

o R
v, R +R,
~1/R,
1R, R,
v 1 vy
Fig. 8-21

If we were to ignore loading, the overall gain of two cascaded networks would simply be determined by multiplying
the individual gains:

(2 kB
v, R} + R} +2R\R,
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This answer is incorrect. We prove this in the following manner. When the two identical networks are cascaded, we
note that the result is equivalent to the network of Example 8.6, with R, = R, and R, = R; (Fig. 8-22).

R, 2 R,
+°——'\N WW~ MWW _’;_
v, R, R, vy
o— >y

Fig. 8-22

The signal flow graph of this network was also determined in Example 8.6 (Fig. 8-23).

~UR, —Ry ~UR,
VR, R, R, R, 1
vy N L4 iy v3 vy
Fig. 8-23

We observe that the feedback branch — R, in Fig. 8-23 does not appear in the signal flow graph of the
cascaded signal flow graphs of the individual networks connected from node v, to vj (Fig. 8-24). This means that,
as a result of connecting the two networks, the second one loads the first, changing the equation for v, from

vy = R3i, to v, = R3i, — Rsi,
—~1/R, —1/R,

/R, Ry /R, R, 1

. . . ’
L7 % vy = v V=1 vy = v3 V3

This result could also have been obtained by directly writing the equations for the combined networks. In this case,
only the equation for v, would have changed form.
The gain of the combined networks was determined in Example 8.8 as

2
Uy R;

0, RE+RI+3RR,
when R, is set equal to R, and R, is set equal to R;. We observe that

(2):1‘%%*2
v R}+R3+2RRy, v

It is good general practice to calculate the gain of cascaded networks directly from the combined
signal flow graph. Most practical control system components load each other when connected in series.

88 BLOCK DIAGRAM REDUCTION USING SIGNAL FLOW GRAPHS
AND THE GENERAL INPUT-OUTPUT GAIN FORMULA

Often, the easiest way to determine the control ratio of a complicated block diagram is to translate
the block diagram into a signal flow graph and apply Equation (8.2). Takeoff points and summing
points must be separated by a unity gain branch in the signal flow graph when using Equation (8.2).
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If the elements G and H of a canonical feedback representation are desired, Equation (8.2) also
provides this information. The direct transfer function is

G=YPA, (8.3)

The loop transfer function is
GH=A-1 (8.4)

Equations (8.3) and (8.4) are solved simultaneously for G and H, and the canonical feedback control
system is drawn from the result.

EXAMPLE 8.10. Let us determine the control ratio C/R and the canonical block diagram of the feedback
control system of Example 7.9 (Fig. 8-25).

G |
R + + + + c
G, Gy = Gy e
- +
H,
H,
Fig. 8-25
The signal flow graph is given in Fig. 8-26. There are two forward paths:
P =G,GG, P, =G,G,Gy
Gy
R 1 GG, m 1 1 c
Hl
_.}12
Fig. 8-26
There are three feedback loops:
P, =G,GH Py = -GGG, H, Py = -GGG, H,
There are no nontouching loops, and all loops touch both forward paths; then
A =1 ,=1
Therefore the control ratio is
r C PA +PA, G,G,G, + GGG,
"R A " 1-G,G,H, + G,G,G,H, + G,G,G, H,

GG,(G, + Gy)
1~ G,G,H, + G,G,GH, + G,G;G, H,
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From Equations (8.3) and (8.4), we have
G=G,G(G,+G;) and GH=G,G(G,H,+ G,H,— H,)
GH G, + Gy)H, - H,
Therefore H=—= (—Z—L——l
G G, + G,

The canonical block diagram is therefore given in Fig. 8-27.

+ c
E () G,G4(G3 + Gs) -

(Gy+ Gy)Hy — H,
Gy + Gy

Fig, 8-27

The negative summing point sign for the feedback loop is a result of using a positive sign in the GH formula
above. If this is not obvious, refer to Equation (7.3) and its explanation in Section 7.4.

The block diagram above may be put into the final form of Examples 7.9 or 7.10 by using the transformation
theorems of Section 7.5.

Solved Problems

SIGNAL FLOW GRAPH ALGEBRA AND DEFINITIONS
8.1. Simplify the signal flow graphs given in Fig. 8-28.

A A B
_ O
X, X, X, X, X, X,
(@) (b) ()
Fig. 8-28

(a) Clearly, X, = AX; + BX, = (4 + B) X,. Therefore we have

(b) We have X, = BX, and X; = AX,. Hence X, = BAX,, or X, = ABX|, yielding

X, X,

or

(¢) If A and B are multiplicative operators (e.g., constants or transfer functions), we have X, =AX; +
BX, =(A4/(1 — B)) X,. Hence the signal flow graph becomes

A
1-8B

X, X,
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8.2. Draw signal flow graphs for the block diagrams in Problem 7.3 and reduce them by the
multiplication rule (Fig. 8-29).

10 1 10
(a) 8+ 1 g —1 82 ~1
. - . = e ——
X, X, X, X, X,
1 10 10
g~ 1 8+ 1 82 -1
(b) *~— - - = —n——e
X, X, X, X1 Xy
—10 1 14 14
g+ 1 5—1 5 8(s2—1)
(¢) —o—0 —o»  —06—» @ =
X, X, X3 X X, Xn
Fig. 8-29

8.3. Consider the signal flow graph in Fig. 8-30.

Ags
- Ay m Ay
X, X, X3 X,
Fig. 8-30

(a) Draw the signal flow graph for the system equivalent to that graphed in Fig. 8-30, but in

which X; becomes kX; (k constant) and X, X,, and X, remain the same.

(b) Repeat part (a) for the case in which X, and X, become k, X, and k,X;, and X, and X,

remain the same (k, and k, are constants).

This problem illustrates the fundamentals of a technique that can be used for scaling

variables.

(a) For the system to remain the same when a node variable is multiplied by a constant, all signals
entering the node must be multiplied by the same constant, and all signals leaving the node divided by

that constant. Since X, X,,and X, must remain the same, the branches are modified (Fig. 8-31).

Ay/k
Ay, kA g Aqgolk _
X, X, kX, X,
Fig. 8-31

(b) Substitute k, X, for X, and k,; X; for X, (Fig. 8-32)

kX3 X,
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It is clear from the graph that A, becomes k,A,, A;, becomes (k;/k;)A;;, A»; becomes
(ky/k) Ay, and A, becomes (1/ky) Ay, (Fig. 8-33).

koA p3/ks
kaA gy (k3/ky)A 50 Aalky _
X, T kX koX X
Fig, 8-33

8.4. Consider the signal flow graph given in Fig. 8-34.

Fig. 8-34

Identify the (a) input node, (b) output node, (¢) forward paths, (d) feedback paths,
(e) self-loop. Determine the ( f) loop gains of the feedback loops, (g) path gains of the forward
paths.

(a) X
(b) X
(¢) X, to X; to X; to X, to X; to X, to X; to X
X, to X; to X; to X,
X; to X, to X, to X5 to X, to X; to X
(d) X, to X;toX;; XytoX, 10Xy Xy toXstoX; X, toX,tolX;toAX;

X, to X; to X, to X, to X; to X;; X to Xy to Xs; X, to X; to X;

X; to X, to X; to Xs; X; to Xi5 X, to X, to X to X; to X, to X; to X,
(e) X;toX,

(f) Andy; Apdsss AsaAssi AgsAses ArgAer AssArsAsy, At ApAyiAyy;

A72A57A45A34A23; A72A67A56A45A34A23
(8) Az AsAsqAgs gy Any A AsaAgsAsg

SIGNAL FLOW GRAPH CONSTRUCTION

8.5. Consider the following equations in which x;, x,,..., x,, are variables and a,, a,,..., a, are
coefficients or mathematical operators:
n—-1
(a) xy=ax +ax, 5 (b) x,= Y ax,+5
k=1

What are the minimum number of nodes and the minimum number of branches required to
construct the signal flow graphs of these equations? Draw the graphs.

(a) There are four variables in this equation: x, x,, x,, and + 5. Therefore a minimum of four nodes are
required. There are three coefficients or transmission functions on the right-hand side of the equation:
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a,, a;, and ¥1. Hence a minimum of three branches are required. A minimal signal flow graph is
shown in Fig. 8-35(a).

xy a,
T2 & 2. z3
x1
+5
(@) (b)
Fig. 8-35
(b) There are n+ 1 variables: x,, x,,..., x,,, and 5; and there are n coefficients: a,, a,,...,a,_,, and 1.

Therefore a minimal signal flow graph is shown in Fig. 8-35(b).

8.6. Draw signal flow graphs for

dx, dx, dx,
(a) 12=al(7) (%) =Tt () X4=fxsdf

(a) The operations called for in this equation are a, and d/dr. Let the equation be written as
x5 =ay ' (d/dt)(x,). Since there are two operations, we may define a new variable dx, /dt and use it
as an intermediate node. The signal flow graph is given in Fig. 8-36.

4
_ dt a4y
zy dxg (2]
ro
Fig. 8-36

(b) Similarly, x, = (d?/dt*}(x,) + (d/dt)(x,) — x,. Therefore we obtain Fig. 8-37

d2
Zy e xg 1 Z3

3

Fig. 8-37

(¢) The operation is integration. Let the operator be denoted by | dt. The signal flow graph is given in Fig,
8-38.

S

x3 4
Fig. 8-38
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8.7. Construct the signal flow graph for the following set of simultaneous equations:
Xy =Ayx; + Aypx, Xy = Agyx, + Agpyxy + Ag3xy Xy =Aynx, + Ayx,

There are four variables: xy,..., x,. Hence four nodes are required. Arranging them from left to right
and connecting them with the appropriate branches, we obtain Fig. 8-39.

Ay
Az
_ Ay Aj g Ay
£ z2 Q "'4
Ay
Fig. 8-39

A neater way to arrange this graph is shown in Fig. 8-40.

Fig. 8-40

88. Draw a signal flow graph for the resistance network shown in Fig. 8-41 in which v,(0) = v,(0) = 0.

rfi v, is the voltage across C,.
Mathcad

2
AWM -~
+
kg -—C, _C, V3

Fig. 8-41

The five variables are v;, v,, 13, iy, and iy; and v, is the input. The four independent equations derived
from Kirchhoff’s voltage and current laws are

) 1 1 1 . 1 .
i = E vy — E vy uz=a Olldt—aj;lzd!

) 1 1 1 .
ip= ?2 v, — Fz vy v,=af0t2dt

The signal flow graph can be drawn directly from these equations (Fig, 8-42).
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t
~1/R, (-1/Cy f dt —1/R,
t t
VR, (1/0,)J; at VR, (1/0,)fo dt 1
v, i vy i 7 v3
Fig. 8-42

In Laplace transform notation, the signal flow graph is given in Fig. 8-43.

-1/R, —1/5C, ~1/R,
1/R, 1/sC, 1R, 1/5C, 1
v, I, v, JA Vs v,
Fig. 8-43

THE GENERAL INPUT-OUTPUT GAIN FORMULA
8.9. The transformed equations for the mechanical system given in Fig. 8-44 are

@) FthX,=(Ms*+fis+k )X,

(i) kX, =(Mys?+ fos + by +ky) X,
2
X, X,-—'
- ;
OO M, O~ M, |e——F
Z fa i
Z
Fig. 8-44

where F is force, M is mass, & is spring constant, f is friction, and X is displacement.
Determine X, /F using Equation (8.2).

There are three variables: X, X, and F. Therefore we need three nodes. In order to draw the signal
flow graph, divide Equation (i) by A4 and Equation (ii) by B, where 4 = M;s? + f;5 + k;, and B = M,s*> +

s+ k, +ky:

@ (iJe()ee

. ky

(i) (3)x-x

Therefore the signal flow graph is given in Fig. 8-45.
ki /A
1/A ki/B
F X, X,

Fig. 8-45

The forward path gain is P, =k, /AB. The feedback loop gain is P;; = k?/AB. then A=1- P, =
(AB—k?)/AB and A, = 1. Finally,
X, P4 k Ky

F & AB—kl  (Mys?+fis+ k) (Mys?+ fos + ke, + hy) — k1
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8.10.

8.11.

Fads

Mathcad

8.12.

Determine the transfer function for the block diagram in Problem 7.20 by signal flow graph
techniques.

The signal flow graph, Fig. 8-46, is drawn directly from Fig. 7-44. There are two forward paths. The
path gains are P, = G,G,G; and P, = G,. The three feedback loop gains are P,, = — G, H,, P,, = G\G, H,,
and P, = —G,G; H,. No loops are nontouching. Hence A =1 — (P, + P,, + P;)). Also, A, = 1; and since
no loops touch the nodes of P,, A, = A. Thus

ro BB+ Py GGGy + Go+ GGy — GiGGu by + GiGiGo Hy

A 1+ G, H, - G,G, H, + G,G, H,

Fig,. 8-46

Determine the transfer function V,/V, from the signal flow graph of Problem 8.8.

The single forward path gain is 1/(s2R,R,C,C,). The loop gains of the three feedback loops are
Py = —1/(sR\C,), Py = —1/(sR,C,), and P;; = —1/(sR,C,). The gain product of the only two non-
touching loops is P, = P, - Py, = 1/(s*R,R,C,C,). Hence

s2R RICIC, + s( RIC,C, + R R,CIC, + R R,CE) + R,Gy
s2R, RACEC,

A=1-(P+Py+Py)+P,=

Since all loops touch the forward path, A, = 1. Finally,
V, PA, 1
4 A SPRIRCIG + s(RG + RIG + RIG) +11

Solve Problem 7.16 with signal flow graph techniques.
The signal flow graph is drawn directly from Fig, 7-26, as shown in Fig, 8-47:

U,
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With U, = U, = 0, we have Fig. 8-48. Then P, = G,G, and P, = G\G,H|H,. Hence A=1- P,; =1 -

G,G,H,H,, A, =1, and
PAR G,G,R

Ce=TR
R A 1- GG, H H,

1 GG, _ 1

U . ER
H\H,
Fig. 8-48

?cqr

Now put U, = R = 0 (Fig. 8-49).

U, Cy

G\H,H,
Fig. 8-49

Then P, =G,, P, = GGH\H,, A=1-G,G,HH,, A =1, and

¢, =TU, Gl
! ‘" 1-G,G,HH,
Now put R = U, = 0 (Fig. 8-50).
o 1 G\G,H, 1
” \‘/ ;
H,
Fig. 8-50

Then P, = G,G,H,, P,, = G,G,H,Hy, A=1—G,G,H H,, A =1, and

PAL, GG, HU.
CstlJz= 1 lZ= 1M2 58 %2
A 1- GG, H,H,

Finally, we have
GG, R+ GU, + GG, il
1- GG, H, H,

C=Cr+C +Cy=

TRANSFER FUNCTION COMPUTATION OF CASCADED COMPONENTS

8.13. Determine the transfer function for two of the networks in cascade shown in Fig. 8-51.

——o}

d
L

+0

/.\\

Yy

L]

V2

Fig, 8-51
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In Laplace transform notation the network becomes Fig. 8-52.

1/sC
— i :
+ +
~
v, L R v,
° . o
Fig. 8-52

By Kirchhoff’s laws, we have /, = sCV, — sCV, and V, = RI,. The signal flow graph is given in Fig. 8.53.

—sC

>

v, I, A
Fig. 8-53

For two networks in cascade (Fig. 8-54) the ¥, equation is also dependent on I,: V; = RI, — RI,. Hence
two networks are joined at node 2 (Fig. 8-55) and a feedback loop (— RI,) is added between 7, and V, (Fig.

8-56).
c 2 c
o IL - it —_
¥ L 11 +
1N TN
| R R Vs
o r
Fig. 8-54
—sC —8C
N A
Vy 1, Vv V. Iy Vs
Fig. 8-55
—sC -R —8C
_ sC R 8C R
v, 1, v, I Vv,
Fig. 8-56

Then P, =s?R¥C? P, =Py=-5RC, P,=P,-Py=5R¥C?, A=1—(P,+P, +P)+P,=
1+ 3sRC +s*R%C?, A, =1, and

P4, 52

T " 2T G/RO)+ 1/(RC)?




198 SIGNAL FLOW GRAPHS [CHAP. 8 CHAP. 8] SIGNAL FLOW GRAPHS 199

8.14. Two resistance networks in the form of that in Example 8.6 are to be used for control elements There is one gain product of four nontouching loops: Py = Py Py Py Py = (RyR4/RiRy)™.

cix  in the forward path of a control system. They are to be cascaded and shall have identical Therefore the determinant is

.ﬁ respective component values as shown in Fig. 8-57. Find v,/v, using Equation (8.2). U 13 10

sthead A=1_ZP/1+ZP/2_ZPJ‘3+P14
J=1 j=1 =1

i—MSN—TIZF—Wﬁ:A'A 3 A,A,ffA:A,A WT__X . RRRRGRR G RR S GRR G IR RS RR G RE RE+ R4 RSR
RN EEAY! Rk A R
v, §E Ry %E R, §E R, Eé R, vy Since all loops touch the forward path, A, =1 and
- > > 3 3 ) . na, (R’
Fig, .57 — & (RR,)’+R}RyRy+RyR,+ RyRy+ RE+ R3) + R3(R3+ R{Ry + RiR, + RyR,)

+2R,R,R}+ R R,R:+6R,R,R,R,

There are nine variables: v, v,, v3, Uy, Us, &y, iy, i3, and i,. Eight independent equations are

. 1 1 1 BLOCK DIAGRAM REDUCTION

h= (E) Y (E) U2 i3= (z) U3~ (E) Vs 8.15. Determine C/R for each system shown in Fig. 8-59 using Equation (8.2).

v, = Ryi; — Ryiy vy = Ryi; — Ryi,

_ 1 1 _ 1 1 i

= R—Z Uy — E Uy W= R—z Uy — R_Z Ug 2

vy = Ryiy — Ryiy Us = Ryiy A~ + +
Only the equation for v, is different from those of the single network of Example 8.6; it has an extra term, (a) R G (i
(— R4i3). Therefore the signal flow diagram for each network alone (Example 8.6) may be joined at node +
vy, and an extra branch of gain — R, drawn from i; to v;. The resulting signal flow graph for the double
network is given in Fig. 8-58. H,

~1/R, -Ry -VYR, -R, -1R, -R, —1R,
VR [ B Yur, Y R Y ur Y R Y ur, Y R 1, 2
vy i vz i vy iy vy iy vs s +
Fig. 8-58 5 - G -
8. (4 7 A 5 N~ ¢

The voltage gain T=u,/v, is calculated from Equation (8.2) as follows. One forward path yields
P, = (R,R,/R,R;)?. The gains of the seven feedback loops are P,, = — R, /R, = P, P,y = —R;/R, = F;, H,
Py=—-R,/Ry=P;,and P,y = —R,/R,.

There are 15 gain products of two nontouching loops. From left to right, we have

R;R, R: R} R;R, R;R,
Po=gr, T wmE, ™ Rr, PeTwE, PeTRg, o
) 112 152 152 152
+
R,R RyR R,\’ RyR R} + +
P22=_32_4 P = - Py = = uz-—]T“ Pyy= - (¢) () G,
R; R|R, R, R R\R, R + C
R,\’ R,R, R,R, R,\? R;R,
PJ2=(E) Pez‘Rle Py = R 12,2 R_z Py, = R/R, H, =
There are 10 gain products of three nontouching loops. From left to right, we have Fig, 8-59

_ R3R, RyR} RR, _RyR] RyR?

137 RIR ]3=_RR2 P63=_R2R Py = R.R2 P53=—R2R
12 1 1z 172 172 (a) The signal flow graph is given in Fig. 8-60. The two forward path gains are P, = G,, P, = G,. The two
RIR, RR, RIR, RiR, R;R? feedback loop gains are P,, = G, H,, P,; = G, H,. Then
Py =~ 7 Po=-73 Ppy= - 2 Py = - 2 Poy=~7+7 A= -1 H
R R; RiR, RR; R\ R; R\R; =1-(Py+Py)=1-GH -GH
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G,

o\
R C
H,

Fig. 8-60

Now, A, =1 and A, =1 because both paths touch the feedback loops at both interior nodes. Hence
C PA+PRA, G, +G,

R A 1- G, H, - G,H,

(b) The signal flow graph is given in Fig. 8-61. Again, we have P, = G, and P, = G,. But now there is
only one feedback loop, and P, = G,H,; then A =1 — G, H,. The forward path through G, clearly
touches the feedback loop at nodes a and b; thus A, = 1. The forward path through G, touches the
feedback loop at node a; then A, = 1. Hence

C PA+PA, G +G,

R A T 1-GH
G
1, G, b 1 1
R W c
Fig. 8-61

(c¢) The signal flow graph is given in Fig. 8-62. Again, we have P, =G,, P,=G,, P, =G H,, A=1-
G,H,, and A, = 1. But the feedback path does not touch the forward path through G, at any node.
Therefore A, =4 =1 - G, H, and

C PA+PA, G +G,(1-GH)
R A 1-G,H,

e

Fig. 8-62

This problem illustrates the importance of separating summing points and takeofl points with a
branch of unity gain when applying Equation (8.2).

8.16. Find the transfer function C/R for the system shown in Fig. 8-63 in which X is a constant.
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+
s :— a () ;1' K =3
R - c
+ G
0.1
Fig, 8-63

The signal flow graph is given in Fig. 8-64. The only forward path gain is

a-(5) G o

Fig. 8-64

The two feedback loop gains are P,, = (1/s)-(—s?)= —s and P,; = ~0.1K/s. There are no nontouching
loops. Hence
s2+5-01K

A=l (Py+Py) = —— A =1

P, K
A (s+a)(s*+s5+01K)

x| 6

8.17. Solve Problem 7.18 using signal flow graph techniques.
The signal flow graph is given in Fig. 8-65.

R c
Fig. 8-65
Applying the multiplication and addition rules, we obtain Fig. 8-66. Now
K » K(s+01) Acls+ K(s+0.1) -
Pl_s+l n-- s+1 B s+1 e
- 1 1
R c
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and
PAR KR
A (1+K)s+1+01K

8.18. Find C/R for the contro! system given in Fig. 8-67.

G, Gy

H,

Fig. 8-67

The signal flow graph is given in Fig. 8.68. The two forward path gains arc P, = G,G,G; and
P, = G,G,. The five feedback loop gains are Py, = G\G, Hy, Py = G,GiHy, Py = —G\GyGs, Py = G Hy,
and P; = - G,G,. Hence

A=1-(Py+Py+ Py + Py + Py) =1+ GGG~ GG H — GG H, ~ G H, + GGy

1 1 1
R c
HZ
-1
Fig. 8-68

and A, = A, = 1. Finally,

C  PA+PA, G,G,G; + G,G,

R A T 14 6,6,6, - GG, H, — G,G3 H, - G H, + G\G,

8.19. Determine C/R for the system given in Fig. 8-69. Then put G, = G\G,H,.

Gy | H,

Fig. 8-69
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The signal flow graph is given in Fig. 8-70. We have P, = G\G,, P,=G,G;, P, = -G, H,, A=1+
G,H,, A, =4,=1,and

C PA+PA, GG +Gy)
R A "~ 1+G,H,
1 _ G, G, 1
Gs ~H,
Fig. 8-70

Putting G, = G,G, H,, we obtain C/R = G,G, and the system transfer function becomes open-loop.

8.20. Determine the elements for a canonical feedback system for the system of Problem 8.10.

From Problem 8.10, P, = G,G,G;, P,=G,, A=1+ G,H, — G\G,H, + G,G,H,, A =1, and A, =A.
From Equation (8.3) we have

2
G= Y. PA, = G,G,G, + G, + GGy H, — G,G,G, H, + G,G:G, H,
i=1

and from Equation (8.4) we obtain

A-1 G,H, — GG, H, + G,G, H,

H= —=
G GGG, + G + GG, H, — G,G,G, H, + G,G,G, H,

Supplementary Problems

8.21. Find C/R for Fig. 8-71, using Equation (8.2).

Gy

+

G, G,

H,

H,

Fig. 8-71

822. Determine a set of canonical feedback system transfer functions for the preceding problem, using
Equations (8.3) and (8.4).
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8.23. Scale the signal flow graph in Fig. 8-72 so that X; becomes X;/2 (see Problem 8.3).

X

Fig. 8-72

8.24. Draw a signal flow graph for several nodes of the lateral inhibition system described in Problem
3.4 by the equation

n
k=T ™ Z g i€,
i=1
8.25. Draw a signal flow graph for the system presented in Problem 7.31.
8.26. Draw a signal flow graph for the system presented in Problem 7.32.

8.27. Determine C/R, from Equation (8.2) for the signal flow graph drawn in Problem 8.26.

8.28. Draw a signal flow graph for the electrical network in Fig. 8-73.

Rl
MWW
Input + Ry > +
\goluge vy m Ry m %R, vy Output
ource

P

a = constant
Fig. 8-73

8.29. Determine V;/V, from Equation (8.2) for the network of Problem 8.28.

830. Determine the elements for a canonical feedback system for the network of Problem 8.28, using Equations
(8.3) and (8.4).

831. Draw the signal flow graph for the analog computer circuit in Fig 8-74.
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z . d2y _dy
4 dt? dt v
3
2

dy 1|
dt
—ED— = integrator and —D— = inverter k = constant
inverter multiplier
Fig, 8-74

8.32. Scale the analog computer circuit of Problem 8.31 so that y becomes 10y, dy/dt becomes 20(dy/dt), and
d?y/dt* becomes 5(dy/dt?).

Answers to Supplementary Problems

821. P, =G,GG,; P,=G,GG,, P,=GGH, P,=-GGGH, P,=-GGGH, A=1-GGH+
G\G,G,H, + GGG, H,, and A, = A, =1. Therefore

C  PA+PRA, G\G,(G, + Gy)
R B A - 1‘6164[}11 _Hz(G:+Gz)]
Gs
SR o e\ 1 1
H,
—H2
Fig. 8-75
822. G=PA +PA,=GGi(G,+G) a2ty H
22, G= + = + - =1,
11 252 1Y4 2 3 G 2 Gz+G3
8.23.
4
{1 1 m e Ed
X, 31X,
2

Fig. 8-76
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8.24. 8.28.
Tk—-1 Tk Tr+y —1/Ry -R, -1/R,
1
VR, 1/R, R, 1 o
! 1 1 vy 1y vy o iy - vy V3
—ay —ap —ay
a
Fig. 8-80
v, R,R,+aR,R,
829. 5 T RR,+RR,+RR,+R,R, + R,R, — aR,R,
830. G=R,(R,+aR,)
. R/(R,+R;+R,) + RyR, + R,R;(1 - a)
a R,(R, +aR,)
831.
2
J b ! /—*\ - -
Ck—1 ¢ Ck+i — 1 —l/l 1/8 1/s
Fig. 8-77 X
8.25. .
~H, Fig. 8-81
-— . S ™\ R . 832. 2
R c
N 35 m —4/8 ~1/2s
b'¢
Fig. 8-78
8.26.
R, R,
1 1 _
R c
Fig. 8-79
c -GG, H,
827 R T+ G, H, + G,G, H,




Chapter 9

System Sensitivity Measures and Classification
of Feedback Systems

9.1 INTRODUCTION

In earlier chapters the concepts of feedback and feedback systems have been emphasized. Since a
system with a given transfer function can be synthesized in either an open-loop or a closed-loop
configuration, a closed-loop (feedback) configuration must have some desirable properties which an
open-loop configuration does not have.

In this chapter some of the properties of feedback and feedback systems are further discussed, and
quantitative measures of the effectiveness of feedback are developed in terms of the concepts of
sensitivity and error constants.

9.2 SENSITIVITY OF TRANSFER FUNCTIONS AND FREQUENCY RESPONSE FUNCTIONS
TO SYSTEM PARAMETERS

An early step in the analysis or design of a control system is the generation of models for the
various elements in the system. If the system is linear and time-invariant, two useful mathematical
models for these elements are the transfer function and the frequency response function (see Chapter 6).

The transfer function is fixed when its parameters are specified, and the values given to these
parameters are called nominal values. They are rarely, if ever, known exactly, so nominal values are
actually approximations to true parameter values. The corresponding transfer function is called the
nominal transfer function. The accuracy of the model then depends in part, on how closely these
nominal parameter values approximate the real system parameters they represent, and also how much
these parameters deviate from nominal values during the course of system operation. The sensitivity of a
system to its parameters is a measure of how much the system transfer function differs from its nominal
when each of its parameters differs from its nominal value.

System sensitivity can also be defined and analyzed in terms of the frequency response function.
The frequency response function of a continuous system can be determined directly from the transfer
function of the system, if it is known, by replacing the complex variable s in the transfer function by
Jjw. For discrete-time systems, the frequency response function is obtained by replacing z by ¢/*7. Thus
the frequency response function is defined by the same parameters as those of the transfer function, and
its accuracy is determined by the accuracy of these parameters. The frequency response function can
alternatively be defined by graphs of its magnitude and phase- angle, both plotted as a function of the
real frequency w. These graphs are often determined experimentally, and in many cases cannot be
defined by a finite number of parameters. Hence an infinite number of values of amplitude and phase
angle (values for all frequencies) define the frequency response function. The sensitivity of the system is
in this case a measure of the amount by which its frequency response function differs from its nominal
when the frequency response function of an element of the system differs from its nominal value.

Consider the mathematical model T(k) (transfer function or frequency response function) of a
linear time-invariant system, written in polar form as

T(k) =|T(k)le’*r (9.1)

where & is a parameter upon which T(k) depends. Usually both |T(k)|and ¢, depend on &, and k is a
real or complex parameter of the system.
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Definition 9.1: For the mathematical model T(k), with k regarded as the only parameter, the
sensitivity of 7(k) with respect to the parameter k is defined by

dinT(k) dT(k)/T(k) dT(k) k
dink  dk/k | dk T(k)

S[(")E (9.2)

In some treatments of this subject, ST is called the relative sensitivity, or normalized sensitivity,
because it represents the variation d7T relative to the nominal 7, for a variation dk relative to the
nominal k. ST is also sometimes called the Bode sensitivity.

Definition 9.2: The sensitivity of the magnitude of 7(k) with respect to the parameter k is defined
by

ST = din|T(k)| _dT(k)I/IT(K)| _ dT(k)| & (9.3)
* dlnk dk/k dik  |T(k)|

Definition 9.3: The sensitivity of the phase angle ¢, of T(k) with respect to the parameter k is
defined by
_ ding, dor/¢r dor k

7= - 9.4
KT dnk  dk/k dk ¢r (2:4)

The sensitivities of T(k) = |T(k)|e’*r, the magnitude |T(k)|, and the phase angle ¢, with respect
to the parameter k are related by the expression

ST = SIT0N + g Spr (9.5)

Note that, in general, S| and S¢7 are complex numbers. In the special but very important case
where k is real, then both [T and SPr are real. When S/ =0, T(k) is insensitive to .

EXAMPLE 98.1. Consider the frequency response function
T(p)=e

where u = k. The magnitude of T(p) is |T(p)| =1, and the phase angle of T(p) is ¢7= —wp.
The sensitivity of T(p) with respect to the parameter p. is

d(e’™*) p

P

S“T(»\ = = —jwp

B

The sensitivity of the magnitude of T(p) with respect to the parameter p is

dT(p)|

STl = — e =

The sensitivity of the phase angle of T(i) with respect to the parameter p is
_der e k

St -—w-——=1

* dp ér —wp

Note that
s“mull +j¢TS;.¢'r = —jop= S“T(M

The following development is in terms of transfer functions. However, everything is applicable to
frequency response functions (for continuous systems) by simply replacing s in all equations by jw, or
z=¢’*T for discrete systems.

A special but very important class of system transfer functions has the form:

A, + kA,

- 2 9.6
A+ kA, (5:6)
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Mathcad
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where k is a parameter and 4,, A,, 4, and A, are polynomials in s (or z). This type of dependence
between a parameter k and a transfer function T is general enough to include many of the systems
considered in this book.
For a transfer function with the form of Equation (9.6), the sensitivity of T with respect to the
parameter k is given by
o 4Tk k(dads— A 5.7)

In general, S7 is a function of the complex variable s (or z).

EXAMPLE 9.2. The transfer function of the discrete-time system given in Fig. 9-1 is
K

T_c
"R

=z3+(a+b)zz+abz+K

Fig. 9-1

If X is the parameter of interest (k = K'), we group terms in T as follows:

K
T=
[+ (a+b)2+abz] + K

Comparing T with Equation (9.6), we see that
A, =0 A, =1 Ay =22+ (a+b)z* +abz A,=1

If a is the parameter of interest (k= a), T can be rewritten as

X
T=
[2* + 82> + K] + a[ 2% + bz]

Comparing this expression with Equation (9.6) we see that

A=K A, =0 A=+ b2+ K Ag=22+bz

If b is the parameter of interest (k = b), T can be rewritten as

K
T=
[2* +az?+ K} + b[ 2> + az]

Again comparing this expression with Equation (9.6), we see that

A4, =K A,=0 A= +a’ +K A=z +az

EXAMPLE 9.3. For the lead network shown in Fig. 9-2 the transfer function is

E, 1+RCs

T —_—
E, 2+RCs
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MWW

+ R +
E R E

[ J I []

11
_ c -
o
Fig. 9-2

If C (capacitance) is the parameter of interest, we write T = (1 + C(Rs)]/[2 + C(Rs)}]. Comparing this expression
with Equation (9.6), we see that 4, =1, 4, =Rs, A, =2, A, =Rs.

Al
¥y

mathcas EXAMPLE 9.4. For the system of Example 9.2 the sensitivity of T with respect to K is
K[z +(a+b)z2 +abz) 1
_K[z3+(a+b)zz+abz+K]_1+ K
22+ (a+b)z*+abz

S¢

The sensitivity of T with respect to the parameter a is
§To —aK (22 +bz) _ -1
“ T K[+ b2+ K+a(22 +b2)] 2+b?+ K
a(z? + bz)

The sensitivity of T with respect to the parameter b is
s —bK(z*+ az) -1
b K[2 +azz+K+b(22+az)] a

2 +az’+K
b(z%+ az)

EXAMPLE 9.5. For the lead network of Fig, 9-2 the sensitivity of T with respect to the capacitance C is
C(2Rs — Rs) RCs 1
C T (2+RCs)(1+RCs) (2+RCs)(1+RCs) (1 +2/RCs)(1+1/RCs)

<is

Mathcas EXAMPLE 9.6. The open-loop and closed-loop systems given in Fig. 9-3 have the same plant and the same
overall system transfer function for K= 2.

Plant
c\ _ K K(s+1)(s+8) 1
R/, ~ s +4s+5 R e+ 4s+5 (e +1)s+8) c
Plant
c) _ K b 5 1
R/,  &+48+3+K R (s+1)(s+3) c
Fig. 9-3

Although these systems are precisely equivalent for K = 2, their properties differ significantly for small (and
large) deviations of K from K = 2. The transfer function of the first system is

C K
h=\2 1= =i71:s
R s+4s5+5

Comparing this expression with Equation (9.6) gives 4; =0, A, =1, A; =s?+ 45+ 5, 4, =0. Substituting these



fathcad

212 SYSTEM SENSITIVITY OF FEEDBACK SYSTEMS [CHAP.9

values into Equation (9.7), we obtain
K(s*+45+5)

SI‘ =l =
(s*+4s+5)K
for all K.
The transfer function of the second system is
C K
e[ e
R), s°+4s5+3+K

Comparing this expression with Equation (9.6) yields 4, =0, A, =1, A; =5+ 4s + 3, A, = 1. Substituting these
values into Equation (9.7), we obtain

s K(s2+4s+3) 1
2= =
K (5% +4s+3+K)K) 1+K/(s*+4s+3)

For K=2, 8§ =1/11 + 2/(s* + 5 + 3)).

Note that the sensitivity of the open-loop system 7 is fixed at 1 for all values of gain K. On the other hand,
the closed-loop sensitivity is a function of K and the complex variable s. Thus S7* may be adjusted in a design
problem by varying K or maintaining the frequencies of the input function within an appropriate range.

For w <3 rad/sec, the sensitivity of the closed-loop system is

3

Ty~ =—-=06
S« 1+% 5

Thus the feedback system is 40% less sensitive than the open-loop system for low frequencies. For high frequencies,
the sensitivity of the closed-loop system approaches 1, the same as that of the open-loop system.

EXAMPLE 9.7. Suppose G is a frequency response function, either G(jw) for a continuous system, or G (e/*7)
for a discrete-time system. The frequency response function for the unity feedback system (continuous or
discrete-time) given in Fig. 9-4 is related to the forward-loop frequency response function G by

C c| G |Gle’*e
— ||t —— =
R 14+G  1+|Gle*e
. G
R 7 C
Fig. 9-4

where ¢, is the phase angle of C/R and ¢, is the phase angle of G. The sensitivity of C/R with respect to |G| is
given by

con_d(C/R) IGI et |G
“ diGl  C/R (1+|Glefs)’  |Gles*s
1+ [Gle/*s
1 1

T14(Gle* 146 (9:8)

Note that for large |G| the sensitivity of C/R to |G| is relatively small.

EXAMPLE 9.8. Suppose the ‘;Zstem of Example 9.7 is continuous, that w=1, and for some given G(jw),
G(j1)=1+j. Then |G(jw)| =V2, ¢; =7/4 rad, (C/R) jw) = } +j, (C/R)(jw)| = V10 /5, and ¢c/r=0.3215
rad.

Using the result of the previous example, the sensitivity of (C/R)(jw) with respect to |G(jw)| is

1 2 1
S(C/R)( Joy — o *j*
1G(jw)] 2 +j 5 5
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Then from Equation (9.5) we have

1
b _ bc/n __
beSEGn= =5 SO ™ " o) = 062
These real values of sensitivity mean that a 10% change in |G(jw)| will produce a 4% change in [(C/R)(jw)| and a

—6.22% change in ¢ 5.

: 2
S = 5 =08

A qualitative attribute of a system related to its sensitivity is its robustness. A system is said to be
robust when its operation is insensitive to parameter variations. Robustness may be characterized in
terms of the sensitivity of its transfer or frequency response function, or of a set of performance indices
to system parameters.

9.3 OUTPUT SENSITIVITY TO PARAMETERS FOR DIFFERENTIAL AND DIFFERENCE
EQUATION MODELS

The concept of sensitivity is also applicable to system models expressed in the time domain. The
sensitivity of the model output p to any parameter p is given by
SN =8 = M=M= d_y£
77 d(mp) dp/p dpy
Since the model is defined in the time domain, the sensitivity is usually found by solving for the output
y(t) in the time domain. The derivative dy/dp is sometimes called the output sensitivity coefficient,
which is generally a function of time, as is the sensitivity S

EXAMPLE 9.9. We determine the sensitivity of the output y(t) = x(1) to the parameter a for the differential
system x = ax + u. The sensitivity is

To determine S, consider the time derivative of dx/da, and interchange the order of differentiation, that is,
d { dx d (dx d )
—_— = — — | = — +
a\da) "\ @) " wm T
Now define a new variable v = dx/da. Then
) o 1 +
= —— + =g ex =
o da(ax u) ada+ x=av+x
The sensitivity function S can then be found by first solving the system differential equation for x(t), because x(¢)
is the forcing function in the differential equation for v(¢) above. The required solutions were developed in Section

3.15 as

x(1) =e“x(0) + L’e”“"’u(‘r) dr

and v(t) =f’e"“'”x('r) dr
)

because v(0) = 0. The time-varying output sensitivity is computed from these two functions as
dx a av(t)
“ dax x(1)

EXAMPLE 9.10. For the discrete system defined by
x(k+1) =ax(k) +u(k)
y(k) = cx(k)
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we determine the sensitivity of the output y to the parameter a as follows. Let

ax
v(k) E%
Then
Ix(k+1) ]
o(k+1)= 2. - E[ax(k) +u(k)]
=x(k) +aaX(ak) =av(k) +x(k)
a dex Ix
, 0t 0,

Thus, to determine S, we first solve the two discrete equations:

x(k+1) =ax(k) + u(k)
v(k+1) =av(k) + x(k)
(e.g., see Section 3.17). Then
(k) a av(k)

v . -

“ da y(k)  x(k)

9.4 CLASSIFICATION OF CONTINUOUS FEEDBACK SYSTEMS BY TYPE

Consider the class of canonical feedback systems defined by Fig. 9-5. For continuous systems, the
open-loop transfer function may be written as

K[1(s+z)
GH=',,=1—

I—[(5+Pi)

i=1

H Bl

Fig. 9-5

where K is a constant, m <n, and —z, and —p, are the finite zeros and poles, respectively, of GH. If
there are a zeros and b poles at the origin, then

m-—a

Kse T] (s+2)

i=1

GH = n—b
s TT(s+p)
i=1

In the remainder of this chapter, only systems for which b > a are considered, and /= b — a.
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Definition 9.4: A canonical feedback system whose open-loop transfer function can be written in
the form:

K’L—[1 (s+7z) ) KB,(5)

n—a—1 =\IB
ST sepy B0
i=1

where />0 and -z, and —p, are the nonzero finite zeros and poles of GH,
respectively, is called a type ! system.

GH = (9.9)

EXAMPLE 9.11. The system defined by Fig. 9-6 is a type 2 system.

TN\E 3(s+1)
R s%s +2) C

Fig. 9-6

EXAMPLE 9.12. The system defined by Fig. 9-7 is a type I system.

-+ E 3
R 82+ 28+ 2

QY

1
8

Fig. 9-7

EXAMPLE 9.13. The system defined by Fig. 9-8 is a type 0 system.

L _E 10
R (8 + 2)(s2 + 28 + 3) c

Fig. 9-8

9.5 POSITION ERROR CONSTANTS FOR CONTINUOUS UNITY FEEDBACK SYSTEMS

One criterion of the effectiveness of feedback in a stable type | unity feedback system is the position
(step) error constant. It is a measure of the steady state error between the input and output when the
input is a unit step function, that is, the difference between the input and output when the system is in
steady state and the input is a step.
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Definition 9.5: The position error constant K, of a type / unity feedback system is defined as

KB,(0)
, __ KBy(s) S fori=0
K= im0 = I ) T RO (0.10)

[ for/>0

The steady state error of a stable type / unity feedback system when the input is a unit step
function [e(o0) = 1 — ¢(o0)] is related to the position error constant by

e(w)=llirt:°e(t)= (9.11)

1+K

14

EXAMPLE 9.14. The position error constant for a type 0 system is finite. That is,
KB,(0)
B(0)

1K, =

The steady state error for a type 0 system is nonzero and finite.

EXAMPLE 9.15. The position error constant for a type 1 system is
KB,(0)
*= B0 °

Therefore the steady state error is e(c0) =1/(1+ K,)=0.

EXAMPLE 9.16. The position error constant for a type 2 system is
KB,(s)
=]lm-—-—=
P50 2By (s) ®

Therefore the steady state error is e(00) =1/(1+ K,)=0.

9.6 VELOCITY ERROR CONSTANTS FOR CONTINUOUS UNITY FEEDBACK SYSTEMS

Another criterion of the effectiveness of feedback in a stable type | unity feedback system is the
velocity (ramp) error constant. It is a measure of the steady state error between the input and output of
the system when the input is a unit ramp function.

Definition 9.6: The velocity error constant K, of a stable type / unity feedback system is defined as
0 for /=0

K, = limsG(s) = li KB\(s) KB,(0)
o= limsGls) = lim =25 =\ Ba0)
o0 for />1

for =1 (9.12)

The steady state error of a stable type / unity feedback system when the input is a unit ramp
function is related to the velocity error constant by

e(oo)=’l_i’rzlae(t)=KL (9.13)

v

EXAMPLE 9.17. The velocity error constant for a type 0 system is K, = 0. Hence the steady state error is infinite.

EXAMPLE 9.18. The velocity error constant for a type 1 system, K, = KB;(0)/B,(0), is finite. Therefore the
steady state error is nonzero and finite.

CHAP. 9] SYSTEM SENSITIVITY OF FEEDBACK SYSTEMS 217

EXAMPLE 9.19. The velocity error constant for a type 2 system is infinite. Therefore the steady state error is
zero.

9.7 ACCELERATION ERROR CONSTANTS FOR CONTINUOUS UNITY
FEEDBACK SYSTEMS

A third criterion of the effectiveness of feedback in a stable type ! unity feedback system is the
acceleration ( parabolic) error constant. It is a measure of the steady state error of the system when the
input is a unit parabolic function; that is, r = t2/2 and R=1/s>

Definition 9.7: The acceleration error constant K, of a stable type / unity feedback system is

defined as
0 for /=0,1
KB,(s) KB,(0)
K,=lims®G(s) = li A for 1=2 9.14
o= lims’ols)=lim T 5 "\ B (9.14)
o0 for 1>2

The steady state error of a stable type / unity feedback system when the input is a unit parabolic
function is related to the acceleration error constant by

e(oo)=’lim e(t)=Ki (9.15)

a

EXAMPLE 9.20. The acceleration error constant for a type 0 system is K, = 0. Hence the steady state error is
infinite.

EXAMPLE 9.21. The acceleration error constant for a type 1 system is K, = 0. Hence the steady state error is
infinite.

EXAMPLE 9.22. The acceleration error constant for a type 2 system, K, = KB,(0)/B,(0), is finite. Hence the
steady state error is nonzero and finite.

9.8 ERROR CONSTANTS FOR DISCRETE UNITY FEEDBACK SYSTEMS
The open-loop transfer function for a type ! discrete system can be written as
_ K(z+z)---(2+2,) KB\(z)
(2_1)1(2+P1)"’(Z+Pn) (z——l)’Bz(z)

GH

where /> 0 and —z; and —p, are the nonunity zeros and poles of GH in the z-plane.
All the results developed for continuous unity feedback systems in Sections 9.5 through 9.7 are the
same for discrete systems with this open-loop transfer function.

9.9 SUMMARY TABLE FOR CONTINUOUS AND DISCRETE-TIME UNITY
FEEDBACK SYSTEMS

In Table 9.1 the error constants are given in terms of a, where a = 0 for continuous systems, and
a =1 for discrete-time systems. For continuous systems T =1 in the steady state error.
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TABLE 9.1
Input Unit Step Unit Ramp Unit Parabola
Steady Steady Steady
System State State State
Type K, Error K. Error K, Error
KB (a) 1
Type 0 0 @ 0 S
B,(a) 1+K,
Tvpe 1 0 KB \(a) T 0
o . 0
e By(a) 3
Type 2 0 0 KBy(«) T
0 o0 —
v B.(a) ,

9.10 ERROR CONSTANTS FOR MORE GENERAL SYSTEMS

The results of Sections 9.5 through 9.9 are only applicable to stable unity feedback linear systems.
They can be readily extended, however, to more general stable linear systems. In Fig. 9-9, T,, represents
the transfer function of a desired (ideal) system, and C/R represents the transfer function of the actual
system (an approximation of 7). R is the input to both systems, and E is the difference (the error)
between the desired output and the actual output. For this more general system, three error constants
are defined below and are related to the steady state error.

Ideal System

C,

T, -
Actual System
+
c =
R R o\ E
Fig. 9-9
Definition 9.8: The step error constant X is defined for continuous systems as
1
K=—F— (9.16)

. C
lim (T,— —
s=0 R

The steady state error for the general system when the input is a unit step function is related to X

by 1
e(c0)= lime(t) = — (9.17)
100 K,
Definition 9.9: The ramp error constant X, is defined for continuous systems as
1
K=—77"F7 (9.18)
m —|T,— —
520§ R

The steady state error for the general system when the input is a unit ramp function is related to X
by

r

e(c) = l]il’{.lce(t)=% (9.19)

r
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Definition 9.10: The parabolic error constant K, is defined for continuous systems as
1

K= —TT7T €7
lim — |7, - —

(9.20)

s—0S R

The steady state error for the general system when the input is a unit parabolic function is related
to K,, by
1
e(o0) = lime(t)=— (9.21)
o K,,
EXAMPLE 9.23. The nonunity feedback system given in Fig. 9-10 has the transfer function C/R =2/(s* + 2s +
4). If the desired transfer function which C/R approximates is T, = 1, then
C s(s+2)

T —— e —_—
R 2AsP 25+ 4)
B 2
R a2+2 c
a+1
Fig. 9-10
Therefore
1 1
k= . s(s+2) = k.= i ! s(s +2) =4
0| 2(s2 + 25+ 4) 05| 2(s 125+ 4)
1
Kpa= 1 s(s+2) =0
5=0 52| 2(s?+ 25+ 4)

EXAMPLE 9.24. For the system of Example 9.23 the steady state errors due to a unit step input, a unit ramp
input, and a unit parabolic input can be found using the results of that example. For a unit step input,
e(co) =1/K, = 0. For a unit ramp input, e(o0) = 1/K, = 1. For a unit parabolic input, e(c0) = 1/K,, = co.

To establish relationships between the general error constants K, K,, and K,, and the error
constants K ,, K, and K, for unity feedback systems, we let the actual system be a continuous unity
feedback system and let the desired system have a unity transfer function. That is, we let

T,=1 d ¢ G
=01 M RTI36
Therefore
1
:=r—1—=l+sli_{r:)G(s)=l+Kp (9.22)
sol1+6
1
K,=—-1—1—-—= limsG(s) =K, (9.23)
lim | — ) -
s—=0] S 1+G
] H 2
Kpa=—.——-#=sh_’n})s G(s)=K, (9.24)
lim ST T~
s=0}| 5 1+G
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Solved Problems

SYSTEM CONFIGURATIONS

9.1. A given plant has the transfer function G,. A system is desired which includes G, as the output
element and has a transfer function C/R. Show that, if no constraints (such as stability) are
placed on the compensating elements, then such a system can be synthesized as either an
open-loop or a unity feedback system.

If the system can be synthesized as an open-loop system, then it will have the configuration given in
Fig. 9-11, where G, is an unknown compensating element. The system transfer function is C/R = G{G,,
from which G; = (C/R)/G,. This value for G{ permits synthesis of C/R as an open-loop system.

— o —-
Fig. 9-11
If the system can be synthesized as a unity feedback system, then it will have the configuration given in
Fig. 9-12.
TN
R / Gl GQ _E
Fig. 9-12

The system transfer function is C/R = G,G,/(1 + G,G,) from which
1 C/R
6o L[ /R
G, \1-C/R
This value for G, permits synthesis of C/R as a unity feedback system.

9.2. Using the results of Problem 9.1, show how the system transfer function C/R =2/(5% + s + 2)
which includes as its output element the plant G, =1/s(s+ 1) can be synthesized as (@) an
open-loop system, (b) a unity feedback system.

(a) For the open-loop system,
C/R  2s(s+1)

G, s2Hs+2

and the system block diagram is given in Fig. 9-13.

2s(s+1) — 3
R 824842 s(s + 1) C

Fig. 9-13

(b) For the unity feedback system,

1/ C/R /(57 +5+2)
_(I*C/R)=s(s+1)[(52+s+2—2)/(32+s+2) =2

G, =
1 Gz

and the system block diagram is given in Fig. 9-14.
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+
2 1
R £ s(e+1) C
Fig, 9-14

TRANSFER FUNCTION SENSITIVITY

9.3. The two systems given in Fig. 9-15 have the same transfer function when K, = K, = 100.

% r=(< KK,y 100
Matead VAR I’:;'_'ﬁ " 1+0.0099K,K,
(€ K, K, 100
2_<R)22:$_ 1+0.09K, || 1+0.09K,]
+ - +
= K, K, > O 5 - & .
0.0099 0.09 0.09
Fig. 9-15

Compare the sensitivities of these two systems with respect to parameter K, for nominal values
K,=K,=100.
For the first system, 7, = K, K, /[1 + K,(0.0099K,)]. Comparing this expression with Equation (9.6)
yields 4, =0, 4, =K,, A;=1, A,=0.0099K,. Substituting these values into Equation (9.7), we obtain
K!. KZ
Sk = (170009, K,)(K,K,) 14 0009K.K,

001 for K,=K,=100

For the second system,

Kl KZ KIKZ
h= ( 1+ 0.09K,; )( 1+ 0.091(2) T1+ 0.09K, + 0.09K, + 0.0081K, K,
Comparing this expression with Equation (9.6) yields 4, =0, 4,=K,, A;=1+0.09K,, 4,=0.09+
0.0081K,. Substituting these values into Equation (9.7), we have
§h o K K,(1+0.09K,) _ 1 _
K (1 +0.09K,)(1 +0.09K,)( K, K,)  1+0.09K,

01 for K,=K,=100

A 10% variation in K| will approximately produce a 0.1% variation in 7; and a 1% variation in T;.
Thus the second system 7, is 10 times more sensitive to variations in K, than is the first system 7.

9.4. The closed-loop system given in Fig. 9-16 is defined in terms of the frequency response function
of the feedforward element G(jw).

+
C,.. _ G —-(R = F——= G{a) :
plie) = 1+ Gla) (jw) s Cjw)

Fig. 9-16
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Suppose that G(jw)=1/(jw+ 1). In Chapter 15 it is shown that the frequency response
functions 1/( jw + 1) can be approximated by the straight line graphs of magnitude and phase of
G(jw) given in Fig. 9-17.

T 20 log,, [G(jw)| Phase angle ¢
“ o =10 ©=0.1 w=1 w=10

0 T : :

" |

| —nl4

‘ I
-20 —z/2 L

Fig. 9-17

At w =1 the true values of 20log,)|G(jw)| and ¢ are —3 and —m /4, respectively. For
w =1, find:
(a) The sensitivity of |(C/R) jw)| with respect to |G( jw)|.
(b) Using the result of part (a), determine an approximate value for the error in |(C/R) jw)|
caused by using the straight-line approximations for 1/( jw + 1).
(a) Using Equation (9.8) the sensitivity of (C/R)( jw) with respect to |G( jw)| is given by

SIC/RY ) = ! L _2je
Gl 14 G(jw)  2+4je 4+a?

Since |G ( jw)| is real,
2
4+

(C/RK JooM = (C/RX jw) —
SiG ol Re SiG

For w =1, Si/K»1=04.

(b) For w =1, the exact value of |G(jw)| is |G(jw)| =1/vY2 = 0.707. The approximate value taken from
the graph is |G(jw)| = 1. Then the percentage error in the approximation is 100(1 — 0.707)/0.707 =
41.4%. The approximate percentage error in [(C/R)(jw)| is 41.4 SI{{/ BN = 16.6%.

9.5. Show that the sensitivities of T(k) = |T(k)|e’®, the magnitude |T(k)|, and the phase angle ¢,
with respect to parameter k are related by
S0 = g7l 4 jg.- Spr [Equation (9.5)]
Using Equation (9.2),
dinT(k) dhn[|T(k)ler]  d[n|T(k)|+ o]

T — = -

* dink dink dink

din|T(k)|  dér d|T(k)|  dlné,
T T dmk Jamk T dmk T amk
Note that if k is real, then S]"* and S¢r are both real, and

S‘[T(A)J = Re S[(k) ¢TSI?1 = Im SAT(“

= SO jo Sp7

9.6. Show that the sensitivity of the transfer function T = (4, + kA4,)/(A; + kA,) with respect to the
parameter k is given by ST =k(A,A; — A Ay)/(A; + kAN A, + kA,).
By definition, the sensitivity of T with respect to the parameter & is
dInT dT k

S=mk & T
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Now
dT Ay ( A5+ kAy) —As( A + kA)) A, A, — A A,

dk (A +kd,)? (A4 kA,)

Thus
T=A2A3~A,A4.k(A3+kA4) _ k(AyA; — A, 4,)
YA+ kA,) A+ kA, (As + kA ) (A, + kA,)

9.7. Consider the system of Example 9.6 with the addition of a load disturbance and a noise input as
shown in Fig. 9-18. Show that the feedback controller improves the output sensitivity to the
noise input and the load disturbance.

Noise Input Plant Load Disturbance
Nis) Lis)

L . L

p—y
For the open-loop system, the output due to the noise input and load disturbance is

Fig. 9-18

C(s)=L(s)+ N(s)

1
(s+1){(s+3)
independent of the action of open-loop controller. For the closed-loop system,

(s+1)(s+3)
L + N
() s24+4s5+5 (s)

s2+4s5+5
For low frequencies the closed-loop system attenuates both the load disturbance and the noise input,
compared to the open-loop system. In particular, the closed-loop system has steady state or d.c. gain:

C(s)=

3 1
C(O) = 'S'L(O) + 'S'N(O)
while the open-loop system has
1
Cc(0)=L(0) + EN(O)

At high frequencies these gains are approximately equal.

SYSTEM OUTPUT SENSITIVITY IN THE TIME DOMAIN
9.8. For the system defined by
% =A(p)x + B(p)u
y=C(p)x
show that the matrix of output sensitivities

8y,
{ p,
is determined by solution of the differential equations
X=Ax+u (9.25)
. dA 0B
V=AV+ a—px+ 3_])“ (926)
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A ay, aC
with Zl=cV+—x (9.27)
ap ap
, v _dx | dx,
where =[v,]= - i,

that is, V is the matrix of sensitivity functions. The derivative of the sensitivity function v, ; is

given by
. d [ dx;
KA P,

Assuming the state variables have continuous derivatives, we can interchange the order of total
and partial differentiation, so that
. d {dx;
b= | —
Yooap\ ae

In matrix form,

ax d dA dx dB
V=a—p=a—p[Ax+Bu]=a—px+Aa—p+5;u
Since V= dx/dp, we have
. dA B
V=AV+9_px+5;“
Then
dy dCx dC ax ac
7" ap =a—px+ca—p=cv+7‘;x

Note that, in the above equations, the partial derivative of a matrix with respect to the vector
p is understood to generate a series of matrices, each one of which, when multiplied by x,
generates a column in the resulting matrix. That is, (dA4/dp)x is a matrix with jth column
(8A/3p;)x. This is easily verified by writing out all the scalar equations explicitly and
differentiating term by term.

SYSTEMS CLASSIFICATION BY TYPE
9.9. The canonical feedback system is represented by Fig. 9-19.

+
M\ G
R v\lj_ c
H =
Fig. 9-19

Classify this system according to type if
1
(a) G=— H=1
S

» G 5 H s+1
® ~ o s(s+3) S os+2
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G 2 H 5
— = +
t) STH25+5 s
N G 24 4
@) = i@+ BTETS))
G ! H !
(e) G= s(s+3) T s
1
(a) GH= ;; type 1
by GH s+ 1) 1
® _s(s+2)(s+3)”ype
cH 2s+95) 0
() s +25+5° pe
4 GH= 96 1
@) OH = G DG+ D@+ 1) s+ (st )(s+1) 7Pe!
(e) GH= m; type 2
9.10. Classify the system given in Fig. 9-20 by type.

+ 82 s+1
R (s + 8)2 (s +2) C
2+s+1
sla+2)
Fig. 9-20

The open-loop transfer function of this system is
sHs+1)(s2+s+1)  (s+D)(s2+s+1)
s*(s+2)%(s+3)° sHs+2)%(s+3)°

Therefore it is a type 2 system.

ERROR CONSTANTS AND STEADY STATE ERRORS

9.11.

Show that the steady state error e(o0) of a stable type / unity feedback system when the input is
a unit step function is related to the position error constant by

e(o0) = lime(z)=
(o) (=00 ( ) 1+ Kp
The error ratio (Definition 7.5) for a unity negative feedback system is given by Equation (7.4) with
H=1, thatis, E/R=1/(1 + G). For R=1/s, E=(1/5)1/(1 + G)). From the Final Value Theorem, we
obtain

- limsE - / K _ 1 1
e(o0) = limsE(s) = H“E(s[uc(s)] ) T T+tim, G(s) 1+K,

where we have used the definition K, = lim, _, (G(s).
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Show that the steady state error e(co) of a stable type / unity feedback system with a unit ramp
function input is related to the velocity error constant by e(o0) = lim, _ .e(?) =1/K,.

We have E/R=1/(1 + G), and E=(1/s?)(1/(1 + G)) for R=1/52. Since G = KB,(s)/s'B,(s) by
Definition 9.4,

1 s'By(s)
E=2 [S’Bz(s) T KB,(5) ]

By(s)
sBy(s) + KBy(s)/s'!

where /— 1 > 0. Now we can use the Final Value Theorem, as was done in the previous problem, because
the condition for the application of this theorem is satisfied. That is, for /> 0 we have

For [> 0, we have

sE(s) =

0 for />1
= i ={ By(0
o= BO

B,(0) and B,(0) are nonzero and finite by Definition 9.4; hence the limit exists (i.e., it is finite).
We cannot evoke the Final Value Theorem for the case /= 0 because

SE(8))oo= [ Bi(s) ]
=0 B,(s) + KBy(s)
and the limit as s — 0 of the quantity on the right does not exist. However, we may use the following
argument for /= 0. Since the system is stable, B,(s)+ KB,(s) =0 has roots only in the left half-plane.
Therefore E can be written with its denominator in the general factored form:
- By(s)
j'211:(-!(3 + p‘)":

where Re( p,) > 0 and I]_,n, = n — a (see Definition 9.4), that is, some roots may be repeated. Expanding
E into partial fractions [Equation (4./0a)], we obtain

]

Cik

0 %
is1im (s+p)

E=3+
1‘2

where b, in Equation (4.10a) is zero because the degree of the denominator is greater than that of the
numerator (m < n). Inverting E(s) (Section 4.8), we get

1) =cyt + ¢+ th-le-pe
e(t) =cpt+cyp E:l k):l (k _ 1), €
Since Re( p,) > 0 and c,, and ¢, are finite nonzero constants ( E is a rational algebraic expression), then

e(o0) = ‘1_{1:‘09(') = 'E[{.‘o("zo') tep=

Collecting results, we have

00 for I=0
B,(0)
= f I=1
e(00) XB,(0) or
0 for I>1
Equivalently,
0 for /=0
1 KB, (0
—_—= W0 for I=1
e(o0) B,(0)
00 for I>1
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These three values for 1/e(c0) define K,; thus

1
L’(OO) = ?

9.13. For Fig. 9-21 find the position, velocity, and acceleration error constants.

9.14.

9.15.

i) a2 4
R e+4 s(s +1) c

Fig. 9-21
Position error constant:
lim G li Ws+2)
T o0 (s)= 0 s(s+1)(s+4) =

Velocity error constant:

h_m 4(s+2) —
Ko= limsGlse) = Im i G +9)
Acceleration error constant:
4s(s+2)
K, = hmszG()~hm_=0

s—0 (s+1)(s+4)

For the system in Problem 9.13, find the steady state error for (a) a unit step input, (b) a unit
ramp input, (¢) a unit parabolic input.

(a) The steady state error for a unit step input is given by e(o0)=1/(1+ K,). Using the result of
Problem 9.13 yields e(oc) =1/(1 + c0) =0.

(b) The steady state error for a unit ramp input is given by e(o0) =1/K,. Again using the result of
Problem 9.13, we get e(o0) =

(¢) The steady state error for a unit parabolic input is given by e(c0) =1/K,. Then e(c0) =1/0= co.

Figure 9-22 approximately represents a differentiator. Its transfer function is C/R=
Ks/[s(7s + 1) + K. Note that im, _, ; _, .,C/R =, that is, C/R is a pure differentiator in the
limit. Find the step, ramp, and parabolic error constants for this system, where the ideal system
T, is assumed to be a differentiator.

T K

Fig. 9-22
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Using the notation of Section 9.10, T,=s and T,~ C/R=s%(rs+1)/[s(7s + 1)+ K]. Applying
Definitions 9.8, 9.9, and 9.10 yields

1 1
- hm[ﬂ—g] Um[Wsz(”-’—l) ] )
s=0 R s—0) s(rs+1)+ K
1 1
T P ]
50 § R s—ofs(rs+1)+K
1 1
Kpu= o1 cl] ™ . s+ 1 =K
}’E:)?[Tf"i] Jﬂ[ﬁ:’i{:}

9.16. Find the steady state value of the difference (error) between the outputs of a pure differentiator
and the approximate differentiator of the previous problem for (a) a unit step input, (#) a unit
ramp input, (¢) a unit parabolic input.

From Problem 9.15, K, = o0, K, =0, and K, = K.
(a) The steady state error for a unit step input is e(c0)=1/K,=0.
(b) The steady state error for a unit ramp input is e(o0) =1/K, =0.
(¢) The steady state error for a unit parabolic input is e(c0) =1/K,, =1/K.

9.17. Given the stable type 2 unity feedback system shown in Fig. 9-23, find (a) the po3sition1, velocity,
1

and acceleration error constants, (&) the steady state error when the inputis R= — - — + PR
s s s
4 4(s+1)
R \1,/7 #3(s + 2) c
Fig. 9-23

(a) Using the last row of Table 9.1 (sype 2 systems), the error constants are K,=o0, K. =0,
K,=@41)/2=2.

(b) The steady state errors for unit step, unit ramp, and unit parabolic inputs are obtained from the same
row of the table and are given by: e,(c0) =0 for a unit step; e,(c0) =0 for a unit ramp; e;(cc) = ;
for a unit parabola.

%incc ihe system is linear, the errors can be superimposed. Thus the steady state error when the input is

R= T + 53 is given by e(c0) = 3e,(00) — €,(0) + $e5(0) = §.
s

Supplementary Problems
9.18. Prove the validity of Equation (9.17). (Hint: See Problems 9.11 and 9.12.)
9.19. Prove the validity of Equation (9./9). (Hint: See Problems 9.11 and 9.12))

9.20. Prove the validity of Equation (9.21). (Hint: See Problems 9.11 and 9.12))
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9.21.

9.22.

9.23.

9.24.

9.21.

9.22.

Determine the sensitivity of the system in Problem 7.9, to variations in each of the parameters X, K, and
p individually.

Generate an expression, in terms of the sensitivities determined in Problem 9.21, which relates the total
variation in the transfer function of the system in Problem 7.9 to variations in K;, K, and p.

Show that the steady state error e(c0) of a stable type / unity feedback system with a unit parabolic input is
related to the acceleration error constant by e(co) =lim, _ .e(¢) =1/K,. (Hint: See Problem 9.12.)

Verify Equations (9.26) and (9.27) by performing all differentiations on the full set of scalar simultaneous
differential equations making up Equation (9.25).

Answers to Some Supplementary Problems

s+p

/R KiK; C/R
s+p- KK,

C/R = = [ —
S« %2 T s+p-KK, 4 s+p- KK,

AC ~ (s+p)AK + (K K,)AK, - pAp

R s+p- KK,



