Chapter 10

Analysis and Design of Feedback Control
Systems: Objectives and Methods

10.1 INTRODUCTION

The basic concepts, mathematical tools, and properties of feedback control systems have been
presented in the first nine chapters. Attention is now focused on our major goal: analysis and design of
feedback control systems.

The methods presented in the next eight chapters are linear techniques, applicable to linear models.
However, under appropriate circumstances, one or more can also be used for some nonlinear control
system problems, thereby generating approximate designs when the particular method is sufficiently
robust. Techniques for solving control system problems represented by nonlinear models are introduced
in Chapter 19.

This chapter is mainly devoted to making explicit the objectives and to describing briefly the
methodology of analysis and design. It also includes one digital system design approach, in Section 10.8,
that can be considered independently of the several approaches developed in subsequent chapters.

10.2 OBJECTIVES OF ANALYSIS

The three predominant objectives of feedback control systems analysis are the determination of the
following system characteristics:

1. The degree or extent of system stability

2. The steady state performance

3. The transient performance

Knowing whether a system is absolutely stable or not is insufficient information for most purposes.
If a system is stable, we usually want to know how close it is to being unstable. We need to determine
its relative stability.

In Chapter 3 we learned that the complete solution of the equations describing a system may be
split into two parts. The first, the steady state response, is that part of the complete solution which does
not approach zero as time approaches infinity. The second, the transient response, is that part of the
complete solution which approaches zero (or decays) as time approaches infinity. We shall soon see that

there is a strong correlation between relative stability and transient response of feedback control
systems.

10.3 METHODS OF ANALYSIS
The general procedure for analyzing a linear control system is the following:

1. Determine the equations or transfer function for each system component.
2. Choose a scheme for representing the system (block diagram or signal flow graph).

3. Formulate the system model by appropriately connecting the components (blocks, or nodes and
branches).

4. Determine the system response characteristics.

Several methods are available for determining the response characteristics of linear systems. Direct
solution of the system equations may be employed to find the steady state and transient solutions
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(Chapters 3 and 4). This technique can be cumbersome for higher than second-order systems, and
relative stability is difficult to study in the time-domain.

Four primarily graphical methods are available to the control system analyst which are simpler and
more direct than time-domain methods for practical linear models of feedback control systems. They
are:

The Root-Locus Method
Bode-Plot Representations

w N

Nyquist Diagrams
4. Nichols Charts

The latter three are frequency-domain techniques. All four are considered in detail in Chapters 13.
15, 11, and 17, respectively.

104 DESIGN OBJECTIVES

The basic goal of control system design is meeting performance specifications. Performance
specifications are the constraints put on system response characteristics. They may be stated in any
number of ways. Generally they take two forms:

1. Frequency-domain specifications (pertinent quantities expressed as functions of frequency)

2. Time-domain specifications (in terms of time response)

The desired system characteristics may be prescribed in either or both of the above forms. In
general, they specify three important properties of dynamic systems:

1. Speed of response

2. Relative stability

3. System accuracy or allowable error

Frequency-domain specifications for both continuous and discrete-time systems are often stated in

one or more of the following seven ways. To maintain generality, we define a unified open-loop
frequency response function GH(w):

GH( jw) for continuous systems

GH(w)s{ (10.1)

GH(e’*T) for discrete-time systems

1. Gain Margin

Gain margin, a measure of relative stability, is defined as the magnitude of the reciprocal of the
open-loop transfer function, evaluated at the frequency w, at which the phase angle (see chapter 6) is
—180°. That is,

1
gain margin = m (10.2)
where arg GH(w,) = —180° = — = radians and w, is called the phase crossover frequency.

2. Phase Margin ¢p,

Phase margin ¢p),, a measure of relative stability, is defined as 180° plus the phase angle ¢, of the
open-loop transfer function at unity gain. That is,

dpm = [180 + arg GH( w,)] degrees (10.3)
where |GH(w,)] =1 and w, is called the gain crossover frequency.
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EXAMPLE 10.1. The gain and phase margins of a typical continuous-time feedback control system are illustrated
in Fig. 10-1.

|GH(w)| 4

1
1
Gain margin

arg GH(w)

Phase margin
-180°— — — — — — — — —

3. Delay Time T,

Delay time T, interpreted as a frequency-domain specification, is a measure of the speed of
response, and is given by
dy

T (w)= ~ e (10.4)

where y = arg(C/R). The average value of 7,(w) over the frequencies of interest is usually specified.

4. Bandwidth (BW)

Roughly speaking, the bandwidth of a system was defined in Chapter 1 as that range of frequencies
over which the system responds satisfactorily.

Satisfactory performance is determined by the application and the characteristics of the particular
system. For example, audio amplifiers are often compared on the basis of their bandwidth. An ideal
high-fidelity audio amplifier has a flar frequency response from 20 to 20,000 Hz. That is, it has a
passband or bandwidth of 19,980 Hz (usually rounded off to 20,000 Hz). Flat frequency response means
that the magnitude ratio of output to input is essentially constant over the bandwidth. Hence signals in
the audio spectrum are faithfully reproduced by a 20,000-Hz bandwidth amplifier. The magnitude ratio
is the absolute value of the system frequency response function.

The frequency response of a high-fidelity audio amplifier is shown in Fig. 10-2. The magnitude ratio
is 0.707 of, or approximately 3 db below, its maximum at the cutoff frequencies

f.=20Hz f.,=20,000 Hz
Magnitude

ratio
db

Fig. 10-2
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“db” is the abbreviation for decibel, defined by the following equation:

db = 20log,o(magnitude ratio) (10.5)

Often the bandwidth of a system is defined as that range of frequencies over which the magnitude
ratio does not differ by more than —3 db from is value at a specified frequency. But not always. In
general, the precise meaning of bandwidth is made clear by the problem description. In any case,
bandwidth is generally a measure of the speed of response of a system.

The gain crossover frequency w, defined in Equation (/0.3) is often a good approximation for the
bandwidth of a closed-loop system.

The notion of signal sampling, and of uniform sampling time T, were introduced in Chapters 1 and
2 (especially in Section 2.4), for systems containing both discrete-time and continuous-time signals, and
both types of elements, including samplers, hold devices and computers. The value of T is a design
parameter for such systems and its choice is governed by both accuracy and cost considerations. The
sampling theorem [9,10] provides an upper bound on T, by requiring the sampling rate to be lal least

twice that of the highest frequency component f,, of the sampled signal, that is, T< . In

max

practice, we might use the cutoff [reqilency fa (as1 in Fig. 10-2) for f_,,, and a practical rule-of-thumb

might be to choose T in the range —— < T <
loch 6f 2 R
even smaller T values. On the other hand, the largest value of T consistent with the specifications

usually yields the lowest cost for system components.

. Other design requirements, however, may require

5. Cutoff Rate

The cutoff rate is the frequency rate at which the magnitude ratio decreases beyond the cutoff '
frequency w,_. For example, the cutoff rate may be specified as 6 db/octave. An octave is a factor-of-two
change in frequency.

6. Resonance Peak M,

The resonance peak M,, a measure of relative stability, is the maximum value of the magnitude of '
the closed-loop frequency response. That is,

MpE max
w

c

= 10.6
= ‘ (10.6)
7. Resonant Freguency w,

The resonant frequency w, is the frequency at which M, occurs.

EXAMPLE 10.2. The bandwidth BW, cutoff frequency w,, resonance peak M,, and resonant frequency w, for an
underdamped second-order continuous system are illustrated in Fig. 10-3.




234 ANALYSIS AND DESIGN OF FEEDBACK CONTROL SYSTEMS [CHAP. 10

Time-domain specifications are customarily defined in terms of unit step, ramp, and parabolic
responses. Each response has a steady state and a transient component.

Steady state performance, in terms of steady state error, is a measure of system accuracy when a
specific input is applied. Figures of merit for steady state performance are, for example, the error
constants K,, K, and K, defined in Chapter 9.

Transient performance is often described in terms of the unit step function response. Typical
specifications are:

1. Overshoot

The overshoot is the maximum difference between the transient and steady state solutions for a unit
step input. It is a measure of relative stability and is often represented as a percentage of the final value
of the output (steady state solution).

The following four specifications are measures of the speed of response.

2. Delay Time 7,

The delay time T, interpreted as a time-domain specification, is often defined as the time required
for the response to a unit step input to reach 50% of its final value.

3. Rise Time 7,

The rise time 7, is customarily defined as the time required for the response to a unit step input to
rise from 10 to 90 percent of its final value.

4. Settling Time T,

The settling time 7, is most often defined as the time required for the response to a unit step input
to reach and remain within a specified percentage (frequently 2 or 5%) of its final value.

5. Dominant Time Constant

The dominant time constant 7, an alternative measure for settling time, is often defined as the time
constant associated with the term that dominates the transient response.

The dominant time constant is defined in terms of the exponentially decaying character of the
transient response. For example, for first and second-order underdamped continuous systems,
the transient terms have the form Ae~* and Ade”*cos(w,? + ¢), respectively (a > 0). In each case, the
decay is governed by e~ *'. The time constant 7 is defined as the time at which the exponent —at = —1,
that is, when the exponential reaches 37% of its initial value. Hence 7= 1/a.

For continuous feedback control systems of order higher than two, the dominant time constant can
sometimes be estimated from the time constant of an underdamped second-order system which
approximates the higher system. Since

1

e,

T< (10.7)
{ and w, (Chapter 3) are the two most significant figures of merit, defined for second-order but often
useful for higher-order systems. Specifications are often given in terms of { and w,.

This concept is developed more fully for both continuous and discrete-time systems in Chapter 14,
in terms of dominant pole-zero approximations.

EXAMPLE 10.3. The plot of the unit step response of an underdamped continuous second-order system in Fig,
10-4 illustrates time-domain specifications.
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10.5 SYSTEM COMPENSATION

We assume first that G and H are fixed configurations of components over which the designer has
no control. To meet performance specifications for feedback control systems, appropriate compensation
components (sometimes called equalizers) are normally introduced into the system. Compensation
components may consist of either passive or active elements, several of which were discussed in
Chapters 2 and 6. They may be introduced into the forward path (cascade compensation), or the
feedback path ( feedback compensation), as shown in Fig. 10-5:

R T Cascade P c
\1/’ Compensation
H
Bt G g
\—y
Feedback
Compensation H
Fig. 10-5

Feedback compensation may also occur in minor feedback loops (Fig. 10-6).

R+ /™ +./\ e C

- +
T - -

Feedback
Compensation

Fig. 10-6
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Compensators are normally designed so that the overall system (continuous or discrete) has an
acceptable transient response, and hence stability characteristics, and a desired or acceptable steady
state accuracy (Chapter 9). These objectives are often conflicting, because small steady state errors
usually require large open-loop gains, which typically degrade system stability. For this reason, simple
compensator elements are often combined in a single design. They typically consist of combinations of
components that modify the gain K and/or time constants 7, or otherwise add zeros or poles to GH.
Passive compensators include passive physical elements such as resistive-capacitive networks, to modify
K (K < 1), time constants, zeros, or poles; lag, lead, and lag-lead networks are examples (Chapter 6).
The most common active compensator is the amplifier (K> 1). A very general one is the PID
(proportional-integral-derivative) controller discussed in Chapter 2 and 6 (Examples 2.14 and 6.7),
commonly used in the design of both analog (continuous) and discrete-time (digital) systems.

106 DESIGN METHODS

Design by analysis is the design scheme developed in this book, because it is generally a more
practical approach, with the exception that direct design of digital systems, discussed in Section 10.8, is
a true synthesis technique. The previously mentioned analysis methods, reiterated below, are applied to
design in Chapters 12, 14, 16, and 18.

1. Nyquist Plot (Chapter 12)
2. Root-Locus (Chapter 14)
3. Bode Plot (Chapters 16)

4. Nichols Chart (Chapter 18)

Control system analysis and design procedures based on these methods have been automated in
special-purpose computer software packages called Computer-Aided Design (CAD) packages.

Of the four methods listed above, the Nyquist, Bode, and Nichols methods are frequency response
techniques. because in each of them the properties of GH(w), that is, GH( jw) for continuous systems
or GH(e’*T) for discrete-time systems [Equation (/0.1)], are explored graphically as a function of
angular frequency w. More importantly, analysis and design using these methods is performed in
fundamentally the same manner for continuous and discrete-time systems, as illustrated in subsequent
chapters. The only differences (in specific details) stem from the fact that the stability region for
continuous systems is the left half of the s-plane, and that for discrete-time systems is the unit circle in
the z-plane. A transformation of variables, however, called the w-transform, permits analysis and design
of discrete-time systems using specific results developed for continuous systems. We present the major
features and the results for the w-transform in the next section, for use in analysis and design of control
systems in subsequent chapters.

10.7 THE w-TRANSFORM FOR DISCRETE-TIME SYSTEMS ANALYSIS AND DESIGN USING
CONTINUOUS SYSTEM METHODS

The w-transform was defined in Chapter 5 for stability analysis of discrete-time systems. It is a
bilinear transformation between the complex w-plane and the complex z-plane defined by the pair:

z—1 1+w
w= z= (10.8)
z+1 1-w
where z = p + jv. The complex variable w is defined as
w=Rew+/jImw (10.9)
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The following relations among these variables are useful in the analysis and design of discrete-time
control systems:

|
1. Rew=pz—iﬁm (10.10)
2v

2. e g o (10.11)
3. If |z| <1, then Rew <0 (10.12)
4. If |zl =1,then Rew=0 (10.13)
5. If |z} > 1, then Rew >0 (10.14)

6. On the unit circle of the z-plane:
z=e"T=cos wT +jsinwT (10.15)
p?+v?=cos?wT + sin 0T =1 (10.16)
w=jF:1 (10.17)

Thus the region inside the unit circle in the z-plane maps into the left half of the w-plane (LHP); the
region outside the unit circle maps into the right half of the w-plane (RHP); and the unit circle maps
onto the imaginary axis of the w-plane. Also, rational functions of z map into rational functions of w.

For these reasons, absolute and relative stability properties of discrete systems can be determined
using methods developed for continuous systems in the s-plane. Specifically, for frequency response
analysis and design of discrete-time systems in the w-plane, we generally treat the w-plane as if it were
the s-plane. However, we must account for distortions in certain mappings, particularly angular
frequency, when interpreting the results.

From Equation (/0.17), we define an angular frequency w, on the imaginary axis in the w-plane by

v

TR |

n

@ (10.18)
This new angular frequency w,, in the w-plane is related to the true angular frequency w in the z-plane
by
wT 2 -
ww=tan7 or w=?lan W, (10.19)
The following properties of w,, are useful in plotting functions for frequency response analysis in the
w-plane:

1. If w=0, then w, =0 (10.20)
m
2. Ifw—»;,thenwwﬂ + 00 (10.21)
7
3. Ifw—-'—?,thenww—*—co (10.22)
w m
4. The range — F<e<T is mapped into the range — 0 < w, < + 00 (10.23)

Algorithm for Frequency Response Analysis and Design Using the w-Transform
The procedure is summarized as follows:
1. Substitute (1 + w)/(1 ~ w) for z in the open-loop transfer function GH(z):
GH(z),o 1+ wy/a-wy = GH'(W) (10.24)
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2. Generate frequency response curves, that is, Nyquist Plots. Bode Plots, etc., for
GH' ()], <y, = GH'(je,) (10.25)

3. Analyze relative stability properties of the system in the w-plane (as if it were the s-plane). For
example. determine gain and phase margins, crossover frequencies, the closed-loop frequency response,
the bandwidth, or any other desired frequency-response-related characteristics.

4. Transform w-plane critical frequencies (values of w,) determined in Step 3 into angular
frequencies (values of @) in the true frequency domain ( z-plane), using Equation (10.19).

5. If this is a design problem, design appropriate compensators to modify GH'( jw,,) to satisfy
performance specifications.

This algorithm is developed further and applied in Chapters 15 through 18.

EXAMPLE 10.4. The open-loop transfer function

(z+1)°/100
(z=D(z+5)(z+1)
is transformed into the w-domain by substituting z = (1 + w)/(1 — w) in the expression for GH(z), which yields

—6(w—1)/100
w(w+2)(w+3)

GH(z) =

(10.26)

GH'(w) = (10.27)

Relative stability analysis of GH'(w) is postponed until Chapter 15.

10.8 ALGEBRAIC DESIGN OF DIGITAL SYSTEMS, INCLUDING DEADBEAT SYSTEMS

When digital computers or microprocessors are components of a discrete-time system, compen-
sators can be readily implemented in software or firmware, thereby facilitating direct design of the
system by algebraic solution for the transfer function of the compensator that satisfies given design
objectives. For example, suppose we wish to construct a system having a given closed-loop transfer
function C/R, which might be defined by requisite closed-loop characteristics such as bandwidth,
steady state gain, response time, etc. Then, given the plant transfer function G,(z). the required forward
loop compensator G,(z) can be determined from the relation for the closed-loop transfer function of
the canonical system given in Section 7.5:

¢ 016y 10.28
R 1+GG,H (10.28)
Then the required compensator is determined by solving for G,(z):
G /R 10.29
' G,(1 - HC/R) (10.29)

EXAMPLE 10.5. The unity feedback (f/=1) system in Fig. 10-7, with 7 =0.1-sec uniform and synchronous
sampling, is required to have a steady state gain (C/R)(1) =1 and a rise time 7, of 2 sec or less.

Gy(2)

1 C(2)
3 =03

R(z)

O—[ o

Fig. 10-7
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The simplest C/R that satisfies the requirements is (C/R) = 1. However, the required compensator would be
C

R 1 z-05

02(1—;)= _10.5(1-1)— 0

G, =

which has infinite gain, a zero at z=0.5, and no poles, which is unrealizable. For realizability (Section 6.6), G,
must have at least as many poles as zeros. Consequently, even with cancellation of the poles and zeros of G, by
zeros and poles of G,, C/R must contain at least n — m poles, where n is the number of poles and m is the
number of zeros of G,.

The simplest realizable C/R has the form:

C K

R z-a

As shown in Problem 10.10, the rise time for a first-order discrete-time system, like the one given by C/R above, is

TIn}
T <
Ina
Solving for a, we get
1 T./T 1 20
== =|=| =0.8959
‘ [9] [9]
Then

C K K

and, for the steady state gain (C/R)(1) to be 1, K=1 —0.8959 = 0.1041. Therefore the required compensator is

C 0.1041
o R _ 2 —0.8959 _ 0.1041(z - 0.5)
I ol © =T 01041 \ o1

2( R) 270_5( Mz~0.8959)

We see that G, has added a pole to G,G, at z =1, making the system type 1. This is due to the requirement that
the steady state gain equal 1.

Deadbeat systems are a class of discrete-time systems that can be readily designed using the direct
approach described above. By definition, the closed-loop transient response of a deadbeat system has
finite length. that is, it becomes zero, and remains zero, after a finite number of sample times. In
response to a step input, the output of such a system is constant at each sample time after a finite
period. This is termed a deadbeat response.

EXAMPLE 10.6. For a unity feedback system with forward transfer function
K(z+:z
6oy = Kz 2)
(z+p)(z+p)
introduction of a feedforward compensator with

(z+p)(z+p)

G = k) (25 )

results in the closed-loop transfer function:

R 1+GG, :

The impulse response of this system is ¢(0) = K, and ¢(k)=0 for k> 0. The step response is ¢(0)=0 and
c(k)y=K, for k> 0.
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In general, systems can be designed to exhibit a deadbeat response with a transient response n — m
samples long, where m is the number of zeros and n is the number of poles of the plant. However, to
avoid intersample ripple (periodic or aperiodic variations) in mixed continuous/discrete-time systems,
where G,(z) has a continuous input and/or output, the zeros of G,(z) should not be cancelled by the
compensator as in Example 10.5. The transient response in these cases is a minimum of n samples in
length and the closed loop transfer function has n poles at z =0.

EXAMPLE 10.7. For a system with

K(z+05)
G(2) = o0 =09
let
(z-02)(z-04)
R DN
Then
C GG, K(z+0.5)
RT1+GG, (z+a)(z+b)+K(2+05)
K(z+0.5)

T2+ (a+b+K)z+ab+05K

For a deadbeat response, we choose
C K(z+05)
R 22
and therefore

a+b+K=0
ab+05K=0

There are many possible solutions for a, b, and K and one is a=0.3, b= —0.75, and K = 0.45.

If it is required that the closed-loop system be type /, it is necessary that G,(z)G,(z) contain / poles at z=1.
If G,(2) has the required number of poles, they should be retained, that is, not cancelled by zeros of G,(z). If
G,(z) does not have all the required poles at z =1, they can be added in G,(z).

EXAMPLE 10.8. For the system with
G,(z) =
2(2) -1

suppose a type 2 closed-loop system with deadbeat response is desired. This can be achieved with a compensator of
the form:

zZ+a

Gl(z)= 7.1

which adds a pole at z=1. Then
C GG, K(z+a) K(z+a)

R=1+6162=(Z-1)2+K(2+0) =Zz+(K'2)z+1+Ka

If a deadbeat response is desired, we must have

and therefore K—2=0and 1 + Ka=0, giving K=2 and a= —-0.5.
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Solved Problems

10.1. The graph of Fig. 10-8 represents the input-output characteristic of a controller-amplifier for a
feedback control system whose other components are linear. What is the linear range of e(r) for
this system?

m(t) §

molo — o —

e(Q

I
|
I
1
1
L
¢

The amplifier-controller operates linearly over the approximate range —e; < e < e;.

10.2. Determine the gain margin for the system in which GH(jw) =1/(jw + 1)°.
Fag 5

Writing GH( jw) in polar form, we have
1

_— — -1

(it 1)3/2 f 3tan"'w

Then —3tan 'w, = —7, w, = tan(7/3) = 1.732. Hence, by Equation (10.2), gain margin = 1/ |GH( jw,)|
=8.

Mathcad

GH( jw) = arg GH(jw) = —3tan"'w

10.3. Determine the phase margin for the system of Problem 10.2.

£ We have
Mathcad .
|GH( jw)|= 7=

_r
(?+1)

only when w = w, = 0. Therefore

$py = 180° + (—3tan™ ' 0) = 180° = # radians

10.4. Determine the average value of T,(w) over the frequency range 0 < w <10 for C/R =jw/
iz (jw+1). T,(w)is given by Equation (/0.4).

C L4 —dy d 1
Mathcad =arg—( i) = - — tan~" d T [ AU SUNIE B T
ymamo(jo) =5 —un e and  T(w) =t = tan ] =
1 0
Therefore Avg T)(w) =— = 0.147 sec

10/ 1+

10.5. Determine the bandwidth for the system with transfer function (C/R)(s)=1/(s + 1).

i+

“a We have

athcad . C( ) 1
- w

R / Vol +1

A sketch of |(C/R)( jw)| versus w is given in Fig. 10-9.
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10.6.

iy
jnncu

10.7.

=i+

Mathcad

10.8.

I

Mathcad

10.9.

si+

jn\hctd

10.10.

:Ii
athcad
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I%(/w)|'

0.707

w, is determined from 1 /\/wf+ =0.707. Since |(C/R)(jw)| is a strictly decreasing function of
positive frequency, we have BW = w, =1 rad.

How many octaves are between (a) 200 Hz and 800 Hz, (b) 200 Hz and 100 Hz, (c¢) 10,048
rad/sec (rps) and 100 Hz?

(a) Two octaves.
(b) One octave.
(¢) f=w/27=10,048/27 = 1600 Hz. Hence there are four octaves between 10,048 rps and 100 Hz.

Determine the resonance peak M, and the resonant frequency w, for the system whose transfer
function is (C/RXs)=5/(s*+ 25 + ).
5 5

C
IE(J“) |_°’2+2j“+5|_\[w4—6w2+25
Setting the derivative of [(C/R)(jw| equal to zero, we get w, = + V3. Therefore

C C
z @) =|§(1\/§)

5
4

M, = max
«w

The output in response to a unit step function input for a particular continuous control system is
¢(t)=1—e"'. What is the delay time T,?

The output is given as a function of time. Therefore, the time-domain definition of T, presented in
Section 10.4 is applicable. The final value of the output is lim, , _c(¢) =1. Hence 7, (at 50% of the final
value) is the solution of 0.5=1—e 7, and is equal to log,(2), or 0.693.

Find the rise time 7, for c(1)=1-e¢"".

At 10% of the final value, 0.1 =1 — e~ "; hence 1, = 0.104 sec. At 90% of the final value, 0.9=1~¢7";
thus ¢, = 2.302 sec. Then 7, = 2.302 — 0.104 = 2.198 sec.

Determine the rise time of the first-order discrete system
P(z)=(1-a)/(z—a) with ja| <1.

For a step input, the output transform is

v P (1-a)z
() =P()U() = op oy
and the time response is y(k)=1-a* for k=0,1,.... Since y(c0) =1, the rise time 7, is the time

required for this unit step response to go from 0.1 to 0.9. Since the sampled response may not have the
exact values 0.1 and 0.9, we must find the sampled values that bound these values. Thus, for the lower
value, y(k)<0.1, or 1 —a* <0.1 and therefore a* > 0.9. Similarly for y(k + T,/T)=1-a**"/T> 09,
ak*T/T <01,
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Dividing the two expressions, we get

a*T/T

r <3

a 9

1

/T o _

or a <3

Then, by taking logarithms of both sides, we get

< Tln}
"7 Ina

10.11. Verify the six properties of the w-transform in Section 10.7, Equations (10.10) through (10.17).
From w=(z-1)/(z+ 1) and z=p+j»,

p+jr—1 (p=1+p)(p+1—j») ( p+ri-1 ) ( 2v )

YT a1 (il (ptlojp) \ @t R

Thus
L Rew= 1YL

pHrt+2u+1 Y

2y

2. Imw= m =w,
3. |z < 1 means p? + »? < 1, which implies o, < 0
4. |z = 1 means u? + »* = 1, which implies 6, = 0
5. |z} > 1 means p? + »2 > 1, which implies ¢, > 0

The sixth property follows from elementary trigonometric identities.

10.12. Show that the transformed angular frequency w,, is related to the real frequency w by Equation
(10.19).

From Problem 10.11, |z| =1 also implies that w = j[v/(u + 1)] = jw, [Equation (10.17)]. But |z] =1
implies that z = ¢/“7 = cos wT + j sinwT = p + j» [Equation (/0.15)]. Therefore

sinwT
"~ coswT+1

W,

Finally, substituting the following half-angle identities of trigonometry into the last expression:

wT wT
2sin(——)cos( 7) =sinwT

2
T T
cosz(%) —sinz(%)=cosw7'
T w
cos’(%—) +sin2(7) =1
we have
. { T wT (T
- ZSln(T)oos(—z—) B sm(T) B oT
w, = R R wl = wT tan —2—
cos( - ) cos( 2 )
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10.13. For the uniformly and synchronously sampled system given in Fig. 10-10, determine G,(z) so Answers to Supplementary Problems
that the system is type 1 with a deadbeat response.

10.14. =65.5°
Zero-Order Hold M

SR 2 ol ,1"‘-"'."'*.*7
» B

10.15. BW = 3 rad/sec

10.16. Gain margin = 3.4, phase margin = 65°
Fig. 10-10
10.17. ¢py =17°, BW = 5.5 rad/sec

The forward loop z-transform, assuming fictitious sampling of the output c(¢) (see Section 6.8), is
determined from Equation (6.9):

G, () =2 {g ( G(s))

z s

}_ Ki(z+2z)
- B (z=D(z-¢")
where

. 1l-eT-Te 7
= e | d =—
Ki=K(T+e ) an z, TIoTo 1

Let G,(z) have the form G,(z) =(z —e ")/(z + b). Then, if we also assume a fictitious sampler at the
input r(z), we can determine the closed-loop z-domain transfer function:

C GG, K(z+1z)

RT1+6GG, (z-1)(z+b)+K,(z+7)

_ K\(z+2z)
2+(b—1+K)z-b+K,z
For a deadbeat response, b—1+ K, =0(h=1-K|)and —b+ Kz, =0 (—1+ K, + K,z, =0). Then
1

T

K

2

1+2z

and b=1-K, =

Since K, =K(T+e " - 1),
B K, 1 1
T T+e T-1 (1+z)(T+eT-1) T(l-e ")

For this system, with continuous input and output signals, (C/R)(z) determined above gives the closed-loop
input-output relationship at the sampling times only.

Supplementary Problems

10.14. Determine the phase margin for GH = 2(s + 1) /s°.

Lix

10.15. Find the bandwidth for GH = 60/s(s + 2)(s + 6) for the closed-loop system.
Mathcad

10.16. Calculate the gain and phase margin for GH = 432 /s(s* + 135 + 115).

10.17. Calculate the phase margin and bandwidth for GH = 640/s(s + 4)(s + 16) for the closed-loop system.




Chapter 11

Nyquist Analysis

11.1 INTRODUCTION

Nyquist analysis, a frequency response method, is essentially a graphical procedure for determining
absolute and relative stability of closed-loop control systems. Information about stability is available
directly from a graph of the open-loop frequency response function GH(w), once the feedback system
has been put into canonical form.

Nyquist methods are applicable to both continuous and discrete-time control systems, and the
methodological development for Nyquist analysis is presented here for both types of systems, with some
emphasis given to continuous systems, for pedagogical purposes.

There are several reasons why the Nyquist method may be chosen to determine information about
system stability. The methods of Chapter 5 (Routh, Hurwitz, etc.) are often inadequate because, with
few exceptions, they can only be used for determining absolute stability, and are only applicable to
systems whose characteristic equation is a finite polynomial in s or z. For example, when a signal is
delayed by T seconds somewhere in the loop of a continuous system, exponential terms of the form
e T appear in the characteristic equation. The methods of Chapter 5 can be applied to such systems if

e~ T is approximated by a few terms of the power series

T2 T3%?

“Ts_y _
e "=1-Ts+ o 3

but this technique yields only approximate stability information. The Nyquist method handles systems
with time delays without the necessity of approximations, and hence yields exact results about both
absolute and relative stability of the system.

Nyquist techniques are also useful for obtaining information about transfer functions of compo-
nents or systems from experimental frequency response data. The Polar Plot (Section 11.5) may be
directly graphed from sinusoidal steady state measurements on the components making up the
open-loop transfer function. This feature is very useful in the determination of system stability
characteristics when transfer functions of loop components are not available in analytic form, or when
physical systems are to be tested and evaluated experimentally.

In the next several sections we present the mathematical preliminaries and techniques necessary for
generating Polar Plots and Nyquist Stability Plots of feedback control systems, and the mathematical
basis and properties of the Nyquist Stability Criterion. The remaining sections of this chapter deal with
the interpretation and uses of Nyquist analysis for the determination of relarive stability and evaluation
of the closed-loop frequency response.

11.2  PLOTTING COMPLEX FUNCTIONS OF A COMPLEX VARIABLE

A real function of a real variable is easily graphed on a single set of coordinate axes. For example,
the real function f(x), x real, is easily plotted in rectangular coordinates with x as the abscissa and
f(x) as the ordinate. A complex function of a complex variable, such as the transfer function P(s) with
§ = 0 + jw, cannot be plotted on a single set of coordinates.

The complex variable s = ¢ + jw depends on two independent quantities, the real and imaginary
parts of s. Hence s cannot be represented by a line. The complex function P(s) also has real and
imaginary parts. It too cannot be graphed in a single dimension. Similarly, the complex variable
z=p+ v and discrete-time system complex transfer functions P(z) cannot be graphed in one
dimension.
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In general, in order to plot P(s) with s = ¢ + jw, two two-dimensional graphs are required. The first
is a graph of jw versus ¢ called the s-plane, the same set of coordinates as those used for plotting
pole-zero maps in Chapter 4. The second is the imaginary part of P(s) (Im P) versus the real part of
P(s) (Re P) called the P(s)-plane. The corresponding coordinate planes for discrete-time systems are
the z-plane and the P(z)-plane.

The correspondence between points in the two planes is called a mapping or transformation. For
example, points in the s-plane are mapped into points of the P(s)-plane by the function P (Fig. 11-1).

4 jo AImPpP
Mapping
e T T T T~
- P ~~<e
7 P(s,)
[ &
80
- e
s-plane P(s)-plane Re
Fig. 11-1

In general, only a very specific locus of points in the s-plane (or the z-plane) is mapped into the
P(s)-plane [or the P(z)-plane]. For Nyquist Stability Plots this locus is called the Nyquist Path, the
subject of Section 11.7.

For the special case 6 =0, s=jw, the s-plane degenerates into a line, and P(jw) may be
represented in a P(jw)-plane with w as a parameter. Polar Plots are constructed in the P(jw)-plane
from this line (s = jw) in the s-plane.

EXAMPLE 11.1. Consider the complex function P(s)=s? + 1. The point s, =2 + j4 is mapped into the point
P(sg)=P(2+j4) =2 +j4)%+ 1= —11 + 16 (Fig. 11-2).

[ ¥ ImP

L) Plsg) $~ =~~~ 16

'

Q
|
o
)
"o

Fig. 11-2

11.3 DEFINITIONS

The following definitions are required in subsequent sections.

Definition 11.1: If the derivative of P at s defined by

Eum{Pb)—PUﬁ]
fmsy ST s—5,

exists at all points in a region of the s-plane, that is, if the limit is finite and unique,
then P is analytic in that region [same definition for P(z) in the z-plane, with z
replacing s and z, replacing s,).

dp
ds
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Transfer functions of practical physical systems (those considered in this book) are analytic in the
finite s-plane (or finite z-plane) except at the poles of P(s) [or poles of P(z)]. In subsequent
developments, when there is no danger of ambiguity, and when a given statement applies to both P(s)
and P(z), then P(s) or P(z) may be abbreviated as P with no argument.

Definition 11.2: A point at which P [P(s) or P(z)] is not analytic is a singular point or singularity of
P [P(s) or P(z)].

A pole of P [P(s) or P(z)]is a singular point.

Definition 11.3: A closed contour in a complex plane is a continuous curve beginning and ending at
the same point (Fig. 11-3).

Im

Closed
Contour

Fig. 11-3

Definition 11.4:  All points to the right of a contour as it is traversed in a prescribed direction are
said to be enclosed by it (Fig. 11-4).

4 Im f Im
’_\ Enclosed
Enclosed

Re \¥ Re
Enclosed ,_/

Fig, 11-4

Nl

Definition 11.5: A clockwise (CW) traverse around a contour is defined as the positive direction
(Fig. 11-5).

{ Im Im

Positive

Direction Negative
/ “CN Direction
( )" A

Definition 11.6: A closed contour in the P-plane is said to make n positive encirclements of the
origin if a radial line drawn from the origin to a point on the P curve rotates in a
clockwise (CW) direction through 360n degrees in completely traversing the closed

[

Fig. 11-5
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path. If the path is traversed in a counterclockwise (CCW) direction, a negative
encirclement is obtained. The total number of encirclements N, is equal to the CW
minus the CCW encirclements.

EXAMPLE 11.2. The P-plane contour in Fig. 11-6 encircles the origin once. That is, N, = 1. Beginning at point
a, we rotate a radial line from the origin to the contour in a CW direction to point ¢. The angle subtended is
+270°. From ¢ to d the angle increases, then decreases, and the sum total is 0°. From d to e and back to 4 again,
the angle swept out by the radial line is again 0°. d to ¢ is 0° and ¢ to a is clearly +90°. Hence the total angle is
270° + 90° = 360°. Therefore N, = 1.

ImP
a

aviaP

Fig. 11-6

.Y
0
o
®
Ty

11.4 PROPERTIES OF THE MAPPING P(s) or P(z)

All mappings P [P(s) or P(z)] considered in the remainder of this chapter have the following
properties.

1. P is a single-valued function. That is, every point in the s-plane (or the z-plane) maps into one
and only one point in the P-plane.

2. s-plane (z-plane) contours avoid singular points of P.

3. P is analytic except possibly at a finite number of points (singularities) in the s-plane (or the
z-plane).
Every closed contour in the s-plane (or the z-plane) maps into a closed contour in the P-plane.

5. P is a conformal mapping. This means that the direction of and the angle between any two
intersecting curves at their point of intersection in the s-plane (or the z-plane) are preserved by
the mapping of these curves into the P-plane.

6. The mapping P obeys the principle of arguments. That is, the total number of encirclements N, of
the origin made by a closed P contour in the P-plane, mapped from a closed s-plane (or
z-plane) contour, is equal to the number of zeros Z, minus the number of poles Py of P
enclosed by the the s-plane (or z-plane) contour. That is,

Ny=Z,— P, (11.1)

7. If the origin is enclosed by the P contour, then N;> 0. If the origin is not enclosed by the P
contour, then N, < 0. That is,
enclosed = N;> 0
not enclosed = N, <0

The sign of N, is easily determined by shading the region to the right of the contour in the
prescribed direction. If the origin falls in a shaded region, N, > 0; if not, N; <0.

EXAMPLE 11.3. The principle of conformal mapping is illustrated in Fig. 11-7. Curves C, and C, are mapped
into €} and C;. The angle between the tangents to these curves at s, and P(s;) is equal to a, and the curves turn
right at s, and at P(s,), as indicated by the arrows in both graphs.
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A\ Im P

ey

Fig. 11-7

EXAMPLE 11.4. A certain transfer function P(s) is known to have one zero in the right half of the s-plane, and
this zero is enclosed by the s-plane contour mapped into the P(s)-plane in Fig. 11-8. Points s,,s,,s, and
P(s,), P(s,), P(s;) determine the directions of their respective contours. The shaded region to the right of the
P(s)-plane contour indicates that N, < 0, since the origin does not lie in the shaded region. But, clearly, the P(s)
contour encircles the origin once in a CCW direction. Hence N, = —1. Thus the number of poles of P(s) enclosed
by the s-plane contouris Py=Z,—~ Ny=1~-(-1)=2.

L o AImP

P(sy)

Origin

P(sy)

Fig. 11-8

11.5 POLAR PLOTS

A continuous system transfer function P(s) may be represented in the frequency domain as a
sinusoidal transfer function by substituting jw for s in the expression for P(s). The resulting form
P(jw) is a complex function of the single variable w. Therefore it may be plotted in two dimensions,
with w as a parameter, and written in the following equivalent forms:

Polar Form: P(jw)=|P(jw)|/ ¢(w) (11.2)
Euler Form: P(jw)=|P(jw)|(cosp(w) +jsing(w)) (11.3)

{P(jw)| is the magnitude of the complex function P(jw), and ¢(jw) is its phase angle, arg P(jw).
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|P(jw)|cos p(w) is the real part, and |P(jw)|sin(w) is the imaginary part of P(jw). Therefore
P(jw) may also be written as

Rectangular or Complex Form: P(jw)=ReP(jw)+jImP(jw) (11.4)

A Polar Plot of P(jw) is a graph of Im P(jw) versus Re P(jw) in the finite portion of the
P(jw)-plane for — o0 < w < 00. At singular points of P(jw) (poles on the jw-axis), |P(jw)| = 00. A
Polar Plot may also be generated on polar coordinate paper. The magnitude and phase angle of P(jw)
are plotted with w varying from — oo to + co.

The locus of P(jw) is identical on either rectangular or polar coordinates. The choice of coordinate
system may depend on whether P(jw) is available in analytic form or as experimental data. If P(jw) is
expressed analytically, the choice of coordinates depends on whether it is easier to write P(jw) in the
form of Equation (1/.2), in which case polar coordinates are used, or in the form of Equation (//.4) for
rectangular coordinates. Experimental data on P(jw) are usually expressed in terms of magnitude and
phase angle. In this case, polar coordinates are the natural choice.

EXAMPLE 11.5. The Polar Plots in Fig. 11-9 are identical; only the coordinate systems are different.

4 Im P(jw) 4¢=90° CooP:]'“ee
Rectangular :/ma ®

Coordinates -
e

p— - -
Im P(jug) : \?\;’N ¢(ﬂo)
: b

e
Re P(ju, Re P(jw) ¢ =180° ¢=0°

¢ =270°

P(ju) = ReP(jw) + j Im P(ju) P(jw) = |P(jo)| {¢(w)

Fig. 11-9

For discrete-time systems, Polar Plots are defined in the frequency domain in the same manner.
Recall that we can write z = ¢*7 (see Section 4.9). Therefore a discrete transfer function P(z) = P(e°T)
and, if we set s =jw, P(z) becomes P(e/*T). The Polar Plot of P(e/“T) is a graph of Im P(e/*7)
versus Re P(e/“T) in the finite portion of the P(e/“T)-plane, for — o0 < w < oo.

We often discuss Polar Plots, their properties, and many results dependent on these in subsequent
sections in a unified manner for both continuous and discrete-time systems. To do this, we adopt for
our general transfer function P the unified representation for frequency response functions given in
Equation (10.1) for GH, that is, we use the generic representation P(w) defined by

P(jw) for continuous systems

P(eT) for discrete-time systems

(o)~
In these terms, Equations (//.2) through (//.4) become

P(w) =|P(w)IM =|P(w)[(cos ¢ (w) +jsin¢(w)) =ReP(w) +Im P(w)
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We use this unified notation in much of the remainder of this chapter, and in subsequent chapters,
particularly where the results are applicable to both continuous and discrete-time systems.

11.6 PROPERTIES OF POLAR PLOTS
The following are several useful properties of Polar Plots of P(w) [P(jw) or P(e’*T)].
1. The Polar Plot for

P(w)+a

where a is any complex constant, is identical to the plot for P(w) with the origin of coordinates
shifted to the point —a= —(Rea +;Ima).

2. The Polar Plot of the transfer function of a time-invariant, linear system exhibits conjugate
symmetry. That is, the graph for — o0 < w <0 is the mirror image about the horizontal axis of
the graph for 0 < w < c0.

3. The Polar Plot may be constructed directly from a Bode Plot (Chapter 15), if one is available.
Values of magnitude and phase angle at various frequencies w on the Bode Plot represent
points along the locus of the Polar Plot.

4. Constant increments of frequency are not generally separated by equal intervals along the Polar
Plot.

EXAMPLE 11.6. For a=1 and P = GH, the Polar Plot of the function 1 + GH is given by the plot for GH, with
the origin of coordinates shifted to the point — 1 + ;0 in rectangular coordinates (Fig. 11-10).

Im [1+GH]d \Im GH
|
|
I
| Re GH
ReGH = 1| Re GH = 0 Re [1+ GH]
|
!
|
Fig. 11-10

EXAMPLE 11.7. To illustrate plotting of a transfer function, consider the open-loop continuous system transfer
function

1
GH(s) = 71

Letting s = jw and rewriting GH( jw) in the form of Equation (/1.2) (polar form), we have
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For w=0, w=1, and w = o0:
GH(j0)=1/0°
GH(j1) =(1/2)/ -45°
lim GH(jw)=0/ —90°
Jim (jw) =0/

Substitution of several other positive values of w yields a semicircular locus for 0 < w < co. The graph for
— 00 < w < 0 is the mirror image about the diameter of this semicircle. It is shown in Fig. 11-11 by a dashed line.
Note the strikingly unequal increments of frequency between the arcs ab and bc.

¢ =90°
w=-1
///’.-\\\
P ~
y; \
/ \
/ \
\
3 w=0ja
== —_n
e=E B(w) 1 =00
"o
Ze))
b
w=1
|GHGa) = ‘/%
w) = — ¥’H
#=—90° #(w) tan
Fig. 11-11

Polar Plots are not very difficult to sketch for very simple transfer functions, although they are
usually a little more difficult to determine for discrete-time systems, as illustrated in Example 11.11. But
the computations can be very laborious for complicated P(s) or P(z). On the other hand, widely
available computer programs for frequency response analysis, or more generally for plotting complex
functions of a complex variable, typically generate accurate Polar Plots quite conveniently.

11.7 THE NYQUIST PATH

For continuous systems, the Nyquist Path is a closed contour in the s-plane, enclosing the entire
right half of the s-plane (RHP). For discrete-time systems, the corresponding Nyquist Path encloses the
entire z-plane ourside the unit circle.

For continuous systems, in order that the Nyquist Path should not pass through any poles of P(s),
small semicircles along the imaginary axis or at the origin of P(s) are required in the path if P(s) has
poles on the jw-axis or at the origin. The radii p of these small circles are interpreted as approaching
zero in the limit.

To enclose the RHP at infinity, and thus any poles in the interior of the RHP, a large semicircular
path is drawn in the RHP and the radius R of this semicircle is interpreted as being infinite in the limit.
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The generalized Nyquist Path in the s-plane is illustrated by the s-plane contour in Fig. 11-12. It is
apparent that every pole and zero of P(s) in the RHP is enclosed by the Nyquist Path when it is mapped
into the P(s)-plane.

s plane

Possible
Poles
of P(s)

Q

The various portions of the Nyquist Path can be described analytically in the following manner.

Path ab: s=jw 0<w<w (11.5)

Path bc: s= lim (jw, + pe’?) —-90° <8 <90° (11.6)
p—0

Path cd: 5 =jw Wy < w< 00 (11.7)

Path def: s= lim Re” +90° <8< —90° (11.8)
R—

Path fg: s =jw -0 <w< —w, (11.9)

Path gh: s= lim (—jw, + pe’®) —90° < 8 <90° (11.10)
p—0

Path hi: s=jw —wy<w<0 (11.11)

Path ija: s= Err})peﬂ —90° < 8<90° (11.12)
g

The generalized Nyquist Path in the z-plane is given in Fig. 11-13. Every pole and zero of P(z)
outside the unit circle is enclosed by the Nyquist Path when it is mapped into the P(z)-plane. In
traversing the unit circle as a function of increasing angular frequency w, any poles of P(z) on the unit
circle, which may include “integrators” at z =1 (corresponding to z=¢e%7=1 when s=0), are
excluded by infinitesimal circular arcs. For example, one pair of complex conjugate poles on the unit
circle is shown in Fig. 11-13, circumvented by arcs of radius p — 0. The remainder of the z-plane
outside the unit circle is enclosed by the large circle of radius R — oo shown in Fig. 11-13.
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Possible Poles Jv
of P(z)on
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Fig, 11-13

The unit circle in the z-plane has a practical feature not shared by the Nyquist Path in the s-plane,
one that facilitates drawing Polar Plots, as well as having other consequences in designing digital
systems. First, we define the angular sampling frequency w = 27/T (radians per unit time). The
advantage is that the unit circle repeats itself every angular sampling frequency w, as « increases. This
is shown in Fig. 11-14(a), which illustrates that the portion of the jw-axis in the s-plane between

s-Plane z-Plane
Jw Jv
US
el 24
j&
2 w, 1
w=1 7 w=0
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L@,
-i%
~ o,
(a) =7
27 | radians
@ = 7( time ,
JjoT ¢ = 90°
0 ¢ = +180° ¢ =0°
e
b 4 a b f
_ d(wy)
— § radians ~.
a N
e 1/¢(w,)
(b) ¢ = 270° or —90°

Fig. 11-14
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—jw,/2 and +jw,/2 maps into the entire unit circle in the z-plane. This property is useful in drawing
Polar Plots of functions P(z)= P(e’“T), because the same Polar Plot is obtained for
nw, <w<(n+1)w, for any n= 11, +2,.... Also, since the circular arc from w =0 to w,/2 is the
mirror image of that from w= —w,/2 to 0, the function P(e’/“T) need only be evaluated from
w= —w,/2 to 0 to obtain a complete Polar Plot, taking advantage of the symmetry of the mapping
(Property 2, Section 11.6).

It is sometimes also convenient to treat the Polar Plot mapping as a function of T rather than w.
Then the strip —(w,/2)T < wT < 0 is equivalent to — 7 < @T < 0 (in radians), because w /2 = 7/T; this
strip is mapped into the lower half of the unit circle in polar coordinates, from —180° (— = radians) to
0° or radians [Fig. 11-14(5)].

11.8 THE NYQUIST STABILITY PLOT

The Nyquist Stability Plot, an extension of the Polar Plot, is a mapping of the entire Nyquist Path
into the P-plane. It is constructed using the mapping properties of Sections 11.4 and 11.6 and, for
continuous systems, Equations (/7.5) through (/1.8) and Equation (11.12). A carefully drawn sketch is
sufficient for most purposes.

A general construction procedure is outlined for continuous systems in the following steps.

Step 1: Check P(s) for poles on the jw-axis and at the origin.

Step 2: Using Equation (/1.5) through (/1.7), sketch the image of path ad in the P(s)-plane. If
there are no poles on the jw-axis, Equation (//.6) need not be employed. In this case, Step
2 should read: Sketch the Polar Plot of P(jw).

Step 3: Draw the mirror image about the real axis Re P of the sketch resulting from Step 2. This is
the mapping of path fi.

Step 4: Use Equation (/1.8) to plot the image of path def. This path at infinity usually plots into a
point in the P(s)-plane.

Step 5: Employ Equation (/1.12) to plot the image of path ija.

Step 6: Connect all curves drawn in the previous steps. Recall that the image of a closed contour
is closed. The conformal mapping property helps by determining the image in the
P(s)-plane of the corner angles of the semicircles in the Nyquist Path.

The procedure is similar for discrete-time systems, with the Nyquist Path given in Fig. 11-13
instead, as illustrated in Example 11.11 and Problems 11.65 through 11.72.

11.9 NYQUIST STABILITY PLOTS OF PRACTICAL FEEDBACK CONTROL SYSTEMS

For Nyquist stability analysis of linear feedback control systems, P(w) is equal to the open-loop
transfer function GH(w). The most common control systems encountered in practice are those classified
as type 0,1,2,..., [ systems (Chapter 9).

EXAMPLE 11.8. Type 0 continuous system

1
GH(S) = S_+T

By definition, a type 0 system has no poles at the origin. This particular system has no poles on the jw-axis.
The Nyquist Path is given in Fig. 11-15.
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The Polar Plot for this loop transfer function was constructed in Example 11.7, and it is shown in Fig. 11-16.
This plot is the image of the jw-axis, or path fad of the Nyquist Path, in the GH(s)-plane. The semicircular path def
at infinity is mapped into the GH(s)-plane in the following manner. Equation (//.8) implies substitution of
s=Hmg_ Re’ into the expression for GH(s), where 90° < 8 < —90°. Hence

GH(s)|pa,thfE GH(0) = —_ﬁmk_.,,Re'” 1
By the elementary properties of limits,
o) = g [ o]
(o) = lim | g1

But since |a + b| > | |a| —|b| |, then

GH = li _—

1
Snlimm(R~1)=0

and the infinite semicircle plots into a point at the origin. Of course, this computation was unnecessary for this
simple example because the Polar Plot produces a completely closed contour in the GH(s)-plane. In fact, Polar
Plots of all #ype 0 systems exhibit this property. The Nyquist Stability Plot is a replica of the Polar Plot with the
axes relabeled, and is given in Fig. 11-17.

| Im GH
-
Ve ~
Ve N
/ N /GH(0) =1
GH(=) 1 }ﬁ
Re GH
Fig. 11-17
EXAMPLE 11.9. Type I continuous system
GH(s) !
5= s(s+1)

There is one pole at the origin. The Nyquist Path is given in Fig. 11-18.
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Ju
d
e .
J e -
. e
1
p
f
Fig. 11-18
Path ad: s = jw for 0 < w < o0, and
1 1

GH( jw) = -90° —tan"'w

Jo(jw+1) ww? +1

At extreme values of w we have
lim GH( ju) = o/ —9%0° lim GH( jw) = 0{ -180°
w=0 ( / ) W= ( 4 )

As w increases in the interval 0 < w < oo, the magnitude of GH decreases from oo to 0 and the phase angle
decreases steadily from —90° to —180°. Therefore the contour does not cross the negative real axis, but
approaches it from below as shown in Fig. 11-19.

Im GH 1 Im GH
1"r_-~ ~<
LN
@ \\ \
w=® Re GH \ \
Increasin, * GH(=) J‘J,
e d,e.f ﬁze GH
/
/
V
P77 S
a
Fig. 11-19 Fig. 11-20

Path f7i’ is the mirror image about Re GH of path a’'d’. Since points d’ and f* meet at the origin, the origin is
clearly the image of path def. Application of Equation (/1.8) is therefore unnecessary.
Path jja: 5 =lim, _,pe’® for —90° <8 < 90°, and

1 1
i )= tim| ———— =1 — | == -8
pILmOGH(De ) }-%[pe”(pe”+l)] :‘_{‘})[pe,g] w-e °°L

where we have used the fact that (pe’® + 1) = 1 as p — 0. Hence path jja maps into a semicircle of infinite radius.
For point i, GH = o0 /90°; for point j, GH = oo&; and for point a, GH = 0/ —90°. The resulting Nyquist
Stability Plot is given in Fig. 11-20.

Path i’j’a’ could also have been determined in the following manner. The Nyquist Path makes a 90° umn to
the right at point i; hence by conformal mapping, a 90° right turn must be made at i’ in the GH(s)-plane. The
same goes for point a’. Since both i and a’ are points at infinity, and since the Nyquist Stability Plot must be a
closed contour, a CW semicircle of infinite radius must join point i’ to point a’.
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Type I Continuous Systems

The Nyquist Stability Plot of a type / system includes / infinite semicircles in its path. There are
180/ degrees in the connecting arc at infinity of the GH(s)-plane.

EXAMPLE 11.10. The type 3 system with
1
GH(s)=——
(s) s (s+1)
has three infinite semicircles in its Nyquist Stability Plot (Fig. 11-21).

Im GH

Re GH

Discrete-Time Systems

Nyquist Stability Plots of discrete-time systems are drawn in the same manner as above, the only

., difference being that the Nyquist Path is that given in Fig. 11-13, instead of Fig. 11-12.

& EXAMPLE 11.11. Consider the type 1 digital control system with open-loop transfer function

K/4
(z-1)(z-1)
The Polar Plot of GH is determined by first mapping the lower half of the unit circle in the z-plane into the
GH-plane. This is readily accomplished with the aid of the mapping illustrated in Fig. 11-14(b), that is, we evaluate

GH(e’*T) for increasing values of wT, from —180° to 0° (or — to O radians). For given values of K and T, say
K=land T=1,

GH(z) =

K/4 1/4
(*T-)(e=1) T (F-1(er-1)
For hand calculations, a combination of the Polar Form, Euler Form, and Complex Form are useful in evaluating

GH(e’°T) at different values of w, because e/“7 = 1 /wT(rad) = cos(wT) + j sin(wT) = Re(e/“7) + j Im(e’*T). At
w= —arad (—180°), we have

GH(e/*") =

025/ 0°

GH(e”’)=GH(1L‘1ﬂ’)' (1@ -1 0°)(1ﬂ _éﬁ)

0.25 0.25
T (rHjo-n(-1+j0-3) T (—2)(-3)

=0.083/ 0°
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Then, at w = 270°,

0.25/0°

R (/) (VY

0.25 0.25

(<-D(—-1) ~1+4
2(0.25)
= 180° — tan!(3) =0.158/ —108.4°
V10 / an'(3) /

Similarly, we find that GH(e’>") does not exist, but lim, 160:GH(e’*) = lim,, _, (GH(e'*) = w@f.

To complete the sketch of this half of the Polar Plot, we need to evaluate GH(e’“) at a few more values of w.
We readily find GH(e /"/'%) = 159/90.5°, GH(e™/*/'?)=1.8/127°, and GH(e™"/*) =0.779 /159°. The result
is shown as the dashed curve from a’ to &' in Fig. 11-22, the mapping of a to b in Fig. 11-13. The remaining
portion of the Polar Plot, for w =0 to 7, from g’ to &’ in Fig. 11-22, is the mirror image of a’ to b’ about the real
axis, by Property 2 of Section 11.6. This portion, from g’ to a’, is drawn as a solid curve, keeping with the
convention that the Polar Plot is highlighted for positive values of w, 0 < T < (2n—Dm, n=1,2,....

Im GH
b
\ N
\ N,
1 N,
\ \
\ \
\ \
\\ - \\
\ oel \
04+
AN 02] \
N, m &4
+ Te 7t e
- —1 - — _04=0. o e e s e .
12 -1 -08-06 0‘4‘___0.._2 K5.083 7/ Re GH
-04t !
-061 /
Polar Plot | /
for0 <w < (2n — )7 /
n=12.. /
/
,I
/
d”’
pe
Fig. 11-22

The Nyquist Stability Plot is determined by completing the mapping of Fig. 11-13 segments b to ¢, c to d, d
to e, and f to g, to the GH-plane. Using the mapping properties of Section 11.4 and limit calculations, GH(e’*)
makes a right turn at b’, from c0 /90° to o0 /0° at ¢’, then to 0/0° at d" and at ¢’, and o0 /0° at f" to 00/ —90°
at g’, using limit operations for radii p and R in Fig. 11-13. For example, lim, . ,GH(z=1+ pe’®) for

—90° < § < 0°, provides the mapping of the arc from b to ¢ in Fig. 11-13 into the arc from &’ (00/90“) to ¢’ (oc/O“)
in Fig. 11-22. T o

11.10 THE NYQUIST STABILITY CRITERION

A linear closed-loop continuous control system is absolutely stable if the roots of the characteristic
equation have negative real parts (Section 5.2). Equivalently, the poles of the closed-loop transfer
function, or the zeros of the denominator, 1 + GH(s), of the closed-loop transfer function, must lie in
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the left-half plane (LHP). For continuous systems, the Nyquist Stability Criterion establishes the
number of zeros of 1+ GH(s) in the RHP directly from the Nyquist Stability Plot of GH(s). For
discrete-time control systems, the Nyquist Stability Criterion establishes the number of zeros of
1+ GH(z) outside the unit circle of the z-plane, the region of instability for discrete systems.

For either class of systems, continuous or discrete-time, the Nyquist Stability Criterion may be
stated as follows.

Nyquist Stability Criterion

The closed-loop control system whose open-loop transfer function is GH is stable if and only if
N=-P<0 (11.13)
where
_ j number of poles (> 0) of GH in the RHP for continuous systems
o \ number of poles (= 0) of GH outside the unit circle (of the z-plane) for discrete-time systems
N = total number of CW encirclements of the (—1,0) point (i.e., GH = —1) in the
GH-plane (continuous or discrete)

If N >0, the number of zeros Z, of 1+ GH in the RHP for continuous systems, or outside the unit
circle for discrete systems, is determined by

Zy=N+P, (11.14)

If N <0, the (—1,0) point is not enclosed by the Nyquist Stability Plot. Therefore N <0 if the
region to the right of the contour in the prescribed direction does not include the (—1,0) point. Shading
this region helps significantly in determining whether N < 0.

If N <0 and P,= 0, then the system is absolutely stable if and only if N = 0; that is, if and only if
the (—1,0) point does not lie in the shaded region.

EXAMPLE 11.12. The Nyquist Stability Plot for GH(s)=1/s(s + 1) was determined in Example 11.9 and is
shown in Fig. 11-23. The region to the right of the contour has been shaded. Clearly, the (—1,0) point is not in the
shaded region; therefore it is not enclosed by the contour and so N <0. The poles of GH(s) are at s=0 and
s = —1, neither of which are in the RHP; hence P, = 0. Thus

N=-P=0
and the system is absolutely stable.
Im GH A Im GH
et - /f
T i .
s ik,
(-1,0) /' Re GH \ (=10 s Re GH
» & /
e f/ ~ -~
Fig. 11-23 Fig. 11-24

EXAMPLE 11.13. The Nyquist Stability Plot for GH(s) =1/s(s — 1) is given in Fig. 11-24. The region to the
right of the contour has been shaded and the (—1,0) point is enclosed; then N > 0. (It is clear that N =1.) The
poles of GH are at s =0 and s = +1, the latter pole being in the RHP. Hence P, =1.
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N # — P, indicates that the system is unstable. From Equation (11.14) we have
Zy=N+P=2
zeros of 1 + GH in the RHP.

Mathcad EXAMPLE 11.14. The Nyquist Stability Plot for the discrete-time open-loop transfer function

K/4
(z-1)(z-0.5)
was determined in Example 11.11 and is repeated in Fig. 11-25 for K= 1. The region to the right of the contour has

been shaded and the (—1,0) point is not enclosed for K'=1. Thus N <0 and from Equation (/7./3) there are no
poles outside the unit circle of the z-plane, that is, Py = 0. Hence N = — P, = 0 and the system is therefore stable.

GH(z) =

Im GH

~12 -1 —0, . /* Re GH

Polar Plot
for0 < w<(2n = 1)7 =
n=12,...

Fig. 11-25

11.11 RELATIVE STABILITY

The results in this section and the next are stated in terms of GH(w), for either continuous
[GH( jw)] or discrete-time [GH(e/“7)] systems.

The relative stability of a feedback control system is readily determined from the Polar or Nyquist
Stability Plot.

The (angular) phase crossover frequency w, is that frequency at which the phase angle of GH(w) is
—180°, that is, the frequency at which the Polar Plot crosses the negative real axis. The gain margin is
given by

1

gain margin = ————
|GH(w,)|

These quantities are illustrated in Fig. 11-26.
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41m GH 4Im GH
/Unit Circle
/

GH(u,) (-1,0)
Re GH Y\ AR Re GH
\
GH(w,)
e |GH(wy)| AN
Fig. 11-26 Fig. 11-27

The (angular) gain crossover frequency w, is that frequency at which |GH(w)| =1. The phase
margin ¢y, is the angle by which the Polar Plot must be rotated to cause it to pass through the (—1,0)
point. It is given by

opy = [180 + arg GH(w, )] degrees

These quantities are illustrated in Fig. 11-27.

11.12 M- AND N-CIRCLES*

The closed-loop frequency response of a unity feedback control system is given by

Im(C/R)(w)
tan”!| ——————— 11.15
/‘m [Re(C/R)(w) (11.15)
The magnitude and phase angle characteristics of the closed-loop frequency response of a unity
feedback control system can be determined directly from the Polar Plot of G(w). This is accomplished

by first drawing lines of constant magnitude, called M-circles, and lines of constant phase angle, called
N-circles, directly onto the G(w)-plane, where

C G(w)
zle)= 1+6(w)

G(w)
1+ G(w)

_|_6(«)

M= _——]+G(w) (11.16)
_ Im(C/R)(w)

N= —Re(C/R)(w) (11.17)

The intersection of the Polar Plot with a particular M-circle yields the value of M at the frequency
w of G(w) at the point of intersection. The intersection of the Polar Plot with a particular N-circle
yields the value of N at the frequency w of G(w) at the intersection point. M versus w and N versus
are easily plotted from these points.

*The letter symbols M, N used in this section for M- and A-circles are not equal to and should not be confused with the
manipulated variable M = M(s) defined in Chapter 2 and with the number of encirclements N of the (—1,0) point of Section
11.10. It is unfortunate that the same symbols have been used to signify more than one quantity. But in the interest of being
consistent with most other control system texts, we have maintained the terminology of the classical literature and have now
pointed this out to the reader.
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Several M-circles are superimposed on a typical Polar Plot in the G(w)-plane in Fig. 11-28.

ImGW

M>1 / M<1

)
%

[O"
oV

N\ -

G(w) \
Fig. 11-28
The radius of an M-circle is given by
dius of M-circl M 11.18
radius of M-circle =| -7 (11.18)
The center of an M-circle always lies on the Re G(w)-axis. The center point is given by
-M?
center of M-circle = (MT-I-,O) (11.19)

The resonance peak M, is given by the largest value of M of the M-circle(s) tangent to the Polar
Plot. (There may be more than one tangency.)
The damping ratio { for a second-order continuous system with 0 < { < 0.707 is related to M, by

1
- (11.20)

M
P -2

Several N-circles are superimposed on the Polar Plot shown in Fig. 11-29. The radius of an N-circle
is given by

1 13?
radius of N-circle = i (EV_) (11.21)
The center of an N-circle always falls on the line Re G(w) = — 1. The center point is given by

1 1
£ N-circle = | — =, — .
center of N-circle ( 2’2N) (11.22)

CHAP. 11) NYQUIST ANALYSIS 265

1\ Im G

+N

Y

Fig. 11-29

Solved Problems

COMPLEX FUNCTIONS OF A COMPLEX VARIABLE
11.1. What are the values of P(s)=1/(s2+1) for 5;, =2, 5, =j4, and s, =2 + j4?
1

1 1 L1
P(S|)=P(2)=m=g +j0 P(s5,) = P(j4) = GO 1 I /0

1
(2+j4)2+1 T —114/16

P(s;) =P(2+)4) =

1/0°
= = —/0°-1246°
J(11) + (16" Jran—'(16/-11) 194

=0.0514/ —124.6° = —0.0514/ 55.4° = —0.0292 — j0.0423

11.2. Map the imaginary axis in the s-plane onto the P(s)-plane, using the mapping function
P(s)=s

We have s = jw, — 00 < w < 00. Therefore P( jw) = (jw)? = —w’. Now when w = — 00, P(jw) = — o0
(or — oo?, if you prefer). When w —» + o0, P(jw) = — o0; and when w =0, P(j0)=0. Thus as jw increases
along the negative imaginary axis from —joo toward j0, P(jw) increases along the negative real axis from
— oo to 0. When jw increases from ;O to +joo, P(jw) decreases back to — co, again along the negative
real axis. The mapping is plotted in the following manner (Fig. 11-30):

Jo A Im P(jo)
Imaginary i®
AxiF
o= o P(—j=) Re P(ju)
70 o Plaj= P(j0)
—je
Fig. 11-30
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The two lines in the P(jw)-plane are actually superimposed, but they are shown here separated for
clarity.

11.3. Map the rectangular region in the s-plane bounded by the lines w =0, ¢ =0, w =1, and 6 =2
onto the P(s)-plane using the transformation P(s)=s+1— 2.
We have
P(o+j1)=(a+1)—j1
P2+jw)=3+j(w—-2)

w=0: P(o)=(o+1)—,2 w=1:

c=0: P(jw)=1+j(w-2) o=2:
Since o varies over all real numbers (— o0 < 0 < o) on the line w =0, sodoes 6 + 1 on P(o) = (0 + 1) — 2.
Therefore w =0 maps onto the line —;2 in the P(s)-plane. Similarly, o = 0 maps onto the line P(s) =1,
w =1 maps onto the line P(s)= —/1, and o =2 onto the line P(s)=3. The resulting transformation is
illustrated in Fig. 11-31.

A jw Im P(s)
i1
1 3 -
2 o : 1 Re P(s)
k2 ,,,,,
s-plane P(s)-plane
Fig. 11-31

This type of mapping is called a translation mapping. Note that the mapping would be exactly the
same if s = 0 + jw were replaced by z = + j» in this example.

11.4. Find the derivative of P(s)=s? at the points 5 =5, and s, = 1.

LORLEL] [__] tim (s +50) = 25

s=5¢ s—»so[ §— 5 §— 8 s—+sg

dP
ds

At s, =1, we have (dP/ds)|, ., = 2. Similarly, if P(z) =22, (dP/dz)|,., = 2.

ANALYTIC FUNCTIONS AND SINGULARITIES
11.5. Is P(s)=s? an analytic function in any region of the s-plane? If so, which region?

From the preceding problem (dP/ds)|,_, = 2s,. Hence s? is analytic wherever 2s, is finite (Definition
11.1). Thus s? is analytic in the entire finite region of the s-plane. Such functions are often called entire
functions. Similarly, z? is analytic in the entire finite region of the z-plane.

11.6. Is P(s)=1/s analytic in any region of the s-plane?

1/s—1/s —(s—35 -1
_M[//q_m[(o)“_
s=5so s—sg

- sso(s—s9) | 82

dpP

ds

=50 §— 8o
This derivative is unique and finite for all sy # 0. Hence 1/s is analytic at all points in the s-plane except
the origin, s =s, = 0. The point s = 0 is a singularity (pole) of 1/s. Singularities other than poles exist, but
not in the transfer functions of ordinary control system components.
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11.7. Is P(s)=|s|* analytic in any region of the s-plane?

11.8.

11.9.

First put s =0 + jw, s, =6 + jwy. Then

dP . lo + jw|” = log + ju|”
ds | (s-s—0| (0 +jw) — (0 +juy)
_ . (6-0)(0+0) +(w—w)(w+uw)
[(0— 00)+ {0 — wg)] =0 (0-a) +j(w—a)

If the limit exists it must be unique and should not depend on how s approaches s, or equivalently how
[(a — 6y) + j(w — )] approaches zero. So first let s — s, along the jw-axis and obtain
ap (- wp)(w+wy)

=-2
ds J(w— wp) %%

= lim [
5=50 “"1__’:’0
0
Now let s — s, along the o-axis; that is,
dpP

” Hm’(o—oo)(oﬂo)]:z%

-0

smsg 90

w=wg
Hence the limit does not exist for arbitrary nonzero values of g, and w,, and therefore |s|? is not analytic
anywhere in the s-plane except possibly at the origin. When s, =0,

ap Isf” —0] (otju)o—ju)] _,

= hm

ds|_, s—0 ) o+ jw

Therefore P(s)=[s|* is analytic only at the origin, s = 0.

s—0

)

If P(s) is analytic at so, prove that it must be continuous at s,. That is, show that lim,_,, P(s)
= P(s,).

Since

P(s) ~ P(s) =~'¥:P¥ (s 5)

for s # s, then

lim [P(s) - P(s0)] = tim | T PCD ] o 0=0
Jim (205~ P(s)] = fim | S -t s -s0)=| ]| o=
because (dP/ds))|,_, exists by hypothesis [i.e., P(s) is analytic]. Therefore

lim [P(s) — P(s0)] =0 or ]i'.m P(s)=P(s,)

Polynomial functions are defined by Q(s)=a,s"+a,_;s" '+ --- +a;s+a,, where a,+#0, n
is a positive integer called the degree of the polynomial, and a, a,,..., a, are constants. Prove
that Q(s) is analytic in every bounded (finite) region of the s-plane.

First consider s”:

d "
—[s"] = = lim (s" 45" g+ - Hssd T4 s ) =nsg !
ds s=5 S0 ST S 550
Thus 5" is analytic in every finite region of the s-plane. Then, by mathematical induction, 5"~ ', s"~2,...,s

are also analytic. Hence, by the elementary theorems on limits of sums and products, we see that Q(s) is
analytic in every finite region of the s-plane.
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11.10. Rational algebraic functions are defined by P(s)= N(s)/D(s), where N(s) and D(s) are
polynomials. Show that P(s) is analytic at every point s where D(s) # 0; that is, prove that the
transfer functions of control system elements that take the form of rational algebraic functions
are analytic except at their poles.

The overwhelming majority of linear control system elements are in this category. The fundamental
theorem of algebra, “a polynomial of degree n has n zeros and can be expressed as a product of »n linear
factors,” helps to put P(s) in a form more recognizable as a control system transfer function; that is, P(s)
can be written in the familiar form

N(s) bs™+b, s" '+ +by b(s+z)(s+z) - (s+2z,)

P(s)= = =
D=50) e ra, 5 vay a5 tp)(ep) (72
where —z,, — z,,..., — z, are zeros, —p,, — p,,..., — p, are poles, and m < n.
From the identity given by
N(s)  N(s) _

1
D(S) - D(SO) = D(S)D(SD) [D(SO)(N(S) - N(SO)) _N(‘YO)( D(S) - D(s(]))]

where D(s) # 0, we get

[ N(s) _ N(s,)
dpP o D(s) D(sy)
E _‘_‘o—slir?u §— 5
‘ 1 N(s) = N(so) D(s) - D(s,)
=sllr?., D(:)D(so)(D(SO) 5— 5 ] _N(S")[ s—5, )]
-t [ s (MO [ M) (200 —D(so))]
s—so| D(s) 5= 5, s—so| D(5) D(sp) 5= 5
- lim 1 ] m N(s) — N(s) _ lim[ N(sy) ] lim D(s) - D(sy)
$=5g D(S) 53y 5 — 95 s=sy D(S)D(So) 55y §— 35
_ 1 dN N(s,) dD
TD(so) dslimsy D(sy) |

where we have used the results of Problems 11.8, 11.9, and Definition 11.1. Therefore the derivative of P(s)
exists ( P(s) is analytic) for all points s where D(s) # 0.

Note that we have determined a formula for the derivative of a rational algebraic function (the last
part of the above equation) in terms of the derivatives of its numerator and denominator, in addition to
solving the required problem.

11.11. Prove that e*7 is analytic in every bounded region of the s-plane.
In complex variable theory e™*7 is defined by the power series
® (—sT)*

—-sT __
il Y

k=0

By the ratio test, as k = oo we have
(-sT)*/k!
(—sT)Y** /(K + 1)

k+1
-sT

— o0

Hence the radius of convergence of this power series is infinite. The sum of a power series is analytic within
its radius of convergence. Thus e *7 is analytic in every bounded region of the s-plane.
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11.12. Prove that e~*7P(s) is analytic wherever P(s) is analytic. Hence systems containing a combina-
tion of rational algebraic transfer functions and time-delay operators (i.e., e *7) are analytic
except at the poles of the system.

By Problem 11.11, ¢ *7 is analytic in every bounded region of the s-plane; and by Problem 11.10,
P(s) is analytic except at its poles. Now

i [e”TP(s) — e %TP(s,) ]

d —sT
g[f P(s)]

s=s S50 s—35
P(s) = P(s,)) e T — el
= lim [e“r(——( )~ Pls) ) +P(s0)(—-—
s—5q 5—5 5= 5
dP d
—ewr | P e

Therefore e *"P(s) is analytic wherever P(s) is analytic.

11.13. Consider the function given by P(s)=e*T(s>+ 25 + 3)/(s? — 25 + 2). Where are the singulari-
ties of this function? Where is P(s) analytic?

The singular points are at the poles of P(s). Since s — 25+ 2= (s — 1 +,1)(s — 1 — /1), the two poles
are given by —p, =1 —j1 and —p, =1 +j1. P(s) is analytic in every bounded region of the s-plane except
at the points s = —p, and s = —p,.

CONTOURS AND ENCIRCLEMENTS
11.14. What points are enclosed by the following contours (Fig. 11-32)?

N D)
\S

F\}'_

A

(@) (b)
Fig. 11-32

By shading the region to the right of each contour as it is traversed in the prescribed direction, we get
Fig. 11-33. All points in the shaded regions are enclosed.

Fig. 11-33
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11.15. What contours of Problem 11.14 are closed?
Clearly, the contour of part (b) is closed. The contour of part (a) may or may not close upon itself at
infinity in the complex plane. This cannot be determined from the given graph.
11.16. What is the direction (positive or negative) of each contour in Problem 11.14(a) and (4)?
Using the origin as a base, each contour is directed in the counterclockwise, negative direction about

the origin.

11.17. Determine the number of encirclements N, of the origin for the contour in Fig. 11-34.

Im

Re
(_1)0)

Fig. 11-34

Beginning at the point a, we rotate a radial line from the origin to the contour in the direction of the
arrows. Three counterclockwise rotations of 360° result in the radial line returning to the point a. Hence
No=-3.

11.18. Determine the number of encirclements N, of the origin for the contour in Fig. 11-35.

]
o
o

Re

Fig. 11-35 Fig. 11-36

Beginning at point a, +180° is swept out by the contour when b is reached for the first time. In going
from & to ¢ and back to b, the net angular gain is zero. Returning to « from b yields +180°. Thus
No=+1
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11.19. Determine the number of encirclements N of the (—1,0) point (i.e., the —1 point on the real
axis) for the contour of Problem 11.17.

Again beginning at point a, we rotate a radial line from the (—1,0) point to the contour in the
direction of the arrows as shown in Fig. 11-36. In going from a to b to c. the radial line sweeps out
somewhat less than —360°. But from ¢ to d and back to b, the angle increases again toward the value
reached in going only from a to b. Then from b to e to @ the resultant angle is —360°. Thus N = — 1.

PROPERTIES OF THE MAPPING P
11.20. Are the following functions single-valued: (a) P(s)=s? (b) P(s)=s'2?

(a) Substitution of any complex number s into P(s) = s? yields a unique value for P(s). Hence P(s)=s>
is a single-valued function.
1/2

(b) In polar form we have s = |s|e’®, where 8 = arg(s). Therefore 5'/% = |5]'%¢ /2. Now if we increase 8

by 27 we return to the same point s. But
P(s) = s)' /022 = |5)'2s8 217 = P(5)e'"
which is another point in the P(s)-plane. Hence P(s)=s'/" has two points in the P(s)-plane for

every point in the s-plane. It is not a single-valued function: it is a multiple-valued function (with two
values).

11.21. Prove that every closed contour containing no singular points of P(s) in the s-plane maps into a
closed contour in the P(s)-plane.

Suppose not. Then at some point 5, where the s-plane contour closes upon itself the P(s)-plane
contour is not closed. This means that one (nonsingular) point s, in the s-plane is mapped into more than
one point in the P(s)-plane (the images of the point s5,). This contradicts the fact that P(s) is a
single-valued function (Property 1, Section 11.4).

11.22. Prove that P is a conformal mapping wherever P is analytic and dP/ds # 0.

Consider two curves: C in the s-plane and C’, the image of C, in the P(s)-plane. Let the curve in the
s-plane be described by a parameter ¢; that is, each ¢ corresponds to a point s =s(¢) along the curve C.
Hence €’ is described by P[s(?)] in the P(s)-plane. The derivatives ds/dr and dP/dt represent tangent
vectors to corresponding points on C and C’. Now

dP[s(t)]
dt

dP(s)
ds

PUs)=P(sy) $=30

ds
T dt

where we have used the fact that P is analytic at some point s, = s(#,). Put dP/dt=re’®, dP/ds = re'",
and ds/dt = r,e’®. Then

n1(50) €700 = ry(s9) - ra((5g) e 00 0)  etoel

Equating angles, we have ¢(s,) = 8(sy) + a(sy) = 8(sy) + arg(dP/ds)|,. . and we see that the tangent to
C at s, is rotated through an angle arg(dP/ds)|,.,, at P(s,) on C’ in the P(s)-plane.

Now consider two curves C; and C, intersecting at s,, with images €/ and C; in the P(s)-plane (Fig.
11-37).

Let 8, be the angle of inclination of the tangent to C;, and 8, for C,. Then the angles of inclination for
C/ and G are 0, + arg(dP/ds)|,.,, and 0, + arg(dP/ds)|,.,,. Therefore the angle (8, — 6,) between C,
and G, is equal in magnitude and sense to the angle between C{ and Cy,

dp dp
6, + arg— —92—2”82; =6, -0,

5250 y=sp

Note that arg(dP/ds)| is indeterminate if (dP/ds)); ., =0.

¥ =1y
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Fig. 11-37

11.23. Show that P(s)=e *7 is conformal in every bounded region of the s-plane.

e 7 is analytic (Problem 11.11). Moreover, (d/ds)(e *")= —Te *” #0 in any bounded (finite)
region of the s-plane. Then by Problem 11.22, P(s)=e °7 is conformal.

11.24. Show that P(s)e *7 is conformal for rational P(s) and dP/ds # 0.
By Problem 11.12, Pe™*7 is analytic except at the poles of P. By Problem 11.12,
d dP dP
Z[Peﬂr] = e”TI — PTe T = eﬂr( Z - TP)

Suppose (d/ds){Pe  *T] = 0. Then since e™*7 # 0 for any finite s, we have dP/ds — TP = 0 whose general
solution is P(s) = ke'’, k constant. But P is rational and e*7 is not. Hence (d/ds){ Pe *"]+ 0.

11.25. Two s-plane contours C, and C, intersect in a 90° angle in Fig. 11-38. The analytic function
P(s) maps these contours into the P(s)-plane and dP/ds # 0 at s,. Sketch the image of contour
C, in a neighborhood of P(s,). The image of C, is also given.

4 jo dImp

—
C, —- RN P(s)

%o o Re P

C,

Fig. 11-38

By Problem 11.22, P is conformal; hence the angle between C} and C; is 90°. Since C, makes a left
turn onto C, at sy, then C/ must also turn left at P(s,) (Fig. 11-39).
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AImP

7 P(8g)

Fig. 11-39

11.26. Prove Equation (/1.1): Ny=Z,- P,.

The bulk of the proof is somewhat more involved than can be handled with the complex-variable
theory presented in this book. So we assume knowledge of a well-known theorem of functions of a complex
variable and continue from there. The theorem states that if C is a closed contour in the s-plane, P(s) an
analytic function on C and within C except for possible poles, and P(s)# 0 on C, then

1, P(s)
/

— ds=Z,~ P,
2mjJe P(s) %k

where Z, is the total number of zeros inside C, P, the total number of poles inside C, and P’ =dP/ds.
Multiple poles and zeros are counted one for one; that is, a double pole at a point is two poles of the total,

a triple zero is three zeros of the total.
Now since d[In P(s))=[P’(s)/P(s)]ds and In P(s) = In|P(s)| + j arg P(s), we have

1 P(s) 1 1 1 ,
Z_’II]'/C[P—(S)—] ¢f=z—w—jfcd['n P(s)] =ﬁj[1n P(s)]‘(=;}_[ln| P(s)|+jarg P(s)]

<

1
=5,,—}[ln|1’(3)|]

1
+5—[Jjarg P(s)]
c 27j c

Now since In|P(s)| returns to its original value when we go once around C, the first term in the last
equation is zero. Hence

1
7~ Py =5 [ag P(s)]

C

Since C is closed, the image of C in the P(s)-plane is closed, and the net change in the angle arg P(s)
around the P(s) contour is 27 times the number of encirclements N, of the origin in the P(s)-plane. Then
Zy,— Py=2Nyn/2m = N,. This result is often called the principle of the argument. Note that this result
would be the same if we replaced s by z in all of the above. Therefore Equation (/1.1) is valid for
discrete-time systems as well.

11.27. Determine the number N, of P-plane contour encirclements for the complex-plane contour
mapped into the P-plane shown in Fig. 11-40.
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Im A jo
% Contour encloses 2j
; 2 poles and 1 zero
|
o > >
i Re =2 3 4
X
| —23

Fig. 11-40
Fig. 11-43

Py,=2, Z,=1. Therefore Ny=1-2= 1.

11.28. Determine the number of zeros Z; enclosed by the complex-plane contour in Fig. 11-41, where
Py=5.

—-

Re P

N
/\-/

Fig. 11-41

N, =1 was computed in Problem 11.18 for the given P-plane contour. Since P, =5, then Z,=
N+ Py=1+5=6.

11.29. Determine the number of poles P, enclosed by the complex-plane contour in Fig. 11-42, where
Z,=0.

/ g
\

A T
<

Fig. 11-42

Clearly, Ny= ~1. Hence Py=2Z; - Ny=0+1=1.

11.30. Determine N, [Equation (/1.1)] for the transfer function (transformation) and s-plane contour
of Fig. 11-43.

The pole-zero map of P(s) is given in Fig. 11-44. Hence three poles (two at s =0 and one at s = —1)
and no zeros are enclosed by the contour. Thus P, =3, Z,=0, and N, = - 3.

Fig. 11-44

11.31. Is the origin enclosed by the contour in Fig. 11-45?

wv W

Re P

Fig, 11-45

The region to the right of the contour has been shaded. The origin falls in a shaded region and is
therefore enclosed by the contour.

11.32. What is the sign of N, in Problem 11.31?7

Since the origin is enclosed by the contour in a clockwise direction, N, > 0.

POLAR PLOTS
11.33. Prove Property 1 of Section 11.6.
Let P(w)= P\(w) +jPy(w) and a = a, + ja,, where P\(w), P,(w), 4, and a, are real. Then

P(w) +a=(P(e) +a) +j(P(w) +a,)
and the image of any point (P,(w), P,(w)) in the P(w)-plane is (P(w)+a;, P,(w)+a,) in the
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(P(w) + u)-plane. Hence the image of a P(w) contour is simply a rranslation (see Problem 11.3). Clearly,
translation of the contour by a units is equivalent to translation of the axes (origin) by —a units.

11.34. Prove Property 2 of Section 11.6.

The transfer function P(s) of a constant-coefficient linear system is, in general, a ratio of polynomials
with constant coefficients. The complex roots of such polynomials occur in conjugate pairs; that is, if a + jb
is a root, then a—jb is also a root. If we let an asterisk (*) represent complex conjugation, then
a+jb=(a~jb)*, and if a=0, then jb=(—;b)*. Therefore P(jw)=P(—jw)* or P(—jw)=P(jw)*
Graphically this means that the plot for P(—jw) is the mirror image about the real axis of the plot for
P(jw) since only the imaginary part of P(jw) changes sign.

11.35. Sketch the Polar Plot of each of the following complex functions:
(a) P(jw)=u? /45°, (b) P(jw)= w?(cos45° + jsin45°), (¢) P(jw)=0.707w? + 0.707jw%
(a) w?/45°isin the form of Equation (/1.2). Hence polar coordinates are used in Fig. 11-46.
(b) P(jw)=w?(cosd5° +j5in45°) = w?(0.707 + 0.707j)
That is, P(jw) is in the form of Equation (//.3) or (1/1.4). Hence rectangular coordinates is the

natural choice as shown in Fig. 11.47.
Note that this graph is identical with that of part (a) except for the coordinates. In fact,

w*(0.707 + 0.707)) = &’ / 45°.

(¢) Clearly, (c) is identical with (4), and therefore with (2). Among other things, this problem has
illustrated how a complex function of frequency w can be written in three different but mathemati-
cally and graphically identical forms: the polar form, Equation (//.2); the trigonometric or Eulfer
form, Equation (11.3); and the equivalent rectangular (complex) form, Equation (/1.4).

Im P(jw)

/a’::m

180°

Re P(ju)

] 0.707u2
Fig. 11-46 Fig. 11-47
11.36. Sketch the Polar Plot of
P(jw)=0.7072(1+)+1
The Polar Plot of 0.707w*(1 + j) was drawn in Problem 11.35(b). By Property 1 of Section 11.6, the

required Polar Plot is given by that of Problem 11.35(5) with its origin shifted to ~a= —1 as shown in
Fig. 11-48.

Fig. 11-48
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11.37. Construct a Polar Plot from the set of graphs of the magnitude and phase angle of P( jw) in Fig.
11-49, representing the frequency response of a linear constant-coefficient system.

|P(j)] 4
’ L
1 2 3 4 5 w
#(w) b
! 2 8 4 5
o
—90°4
—180°+
Fig. 11-49

The graphs shown above differ little from Bode representations, discussed in detail in Chapter 15. The
Polar Plot is constructed by mapping this set of graphs into the P( jw)-plane. It is only necessary to choose
values of w and corresponding values of |P(jw)| and ¢(w) from the graphs and plot these points in the
P( jw)-plane. For example at w=0, |P(jw)| =10 and ¢(w) = 0. The resulting Polar Plot is given in Fig.

11-50.
} o =090°
w=-1
e
o ~
// \\
/
/ \
w=-2.5¢ \
=180° \‘s \ o
£= ~we——e__ lo=zxw 1 P(joy =10 $=0
w=25
Areasing w
w=1
y ¢ = 270°
Fig. 11-50
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The portion of the graph for — oo < w < 0 has been drawn using the property of conjugate symmetry
(Section 11.6).

11.38. Sketch the Polar Plot for

GH(s) = p>0

sYs+p)
Substituting jw for s, and applying Equation (/7.2), we obtain

1
J4*(je +p)

1
=N‘WM

GH( jw) =

For w=0 and w — 00, WE have
GH( j0) =0/ 0° lim GH( jw)=0/ —90°
(./ ) (J ) /

Clearly, as w increases from zero to infinity, the phase angle remains negative and decreases to — 90°, and
the magnitude decreases monotonically to zero. Thus the Polar Plot may be sketched as shown in Fig.
11-51. The dashed line represents the mirror image of the plot for 0 < w < oo (Section 11.6, Property 2).
hence it is the Polar Plot for —o0 <w <0.

b o =90°

¢:130° I:_m \_\\ ¢:0°

W—

y o = —90°
Fig. 11-51
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THE NYQUIST PATH

11.39. Prove that the infinite semicircle, portion d_efof the Nyquist Path, maps into the origin P(s) =0
in the P(s)-plane for all transfer functions of the form:

K
P(S) =
H(S+P;)

where n >0, K is a constant, and —p; is any finite pole.

For n> 0,

| tim P(Re®)|=| P(o0)| = lim | —
R—o0 R—

n (Reje‘*’Pi)

. IX] . (K]
= lim 4—— < lim =0

n =
R— p R—
® TTIRe” +p,| " TTIR=1nll
-

i=1

Since |P(s0)| <0, then clearly | P(s0)| = 0.

11.40. Prove that the infinite semicircle, portion def of the Nyquist Path, maps into the origin P(s) =0
in the P(s)-plane for all transfer functions of the form:

K[1(s+z)
P(s)=—1
IT(s+p)
where m < n, K is a constant, and —p, and —z; are finite poles and zeros, respectively.

For m<n,
m

KTT(Re”+2)
lim P(Re/')‘E|P(w)|= lim |—y=t
R—+ o0 R—-w»

f=

m m
IK1TT [Re” + 2 IKITTIR+ 1z
=Rlim =1 < lim =t =0
- R—
* TTiRe”+pi * THR=n
j=- i=

Since |P(c0)| < 0, then [P(o0)| =0.

NYQUIST STABILITY PLOTS

11.41. Prove that a continuous type / system includes / infinite semicircles in the locus of its Nyquist
Stability Plot. That is, show that portion ija of the Nyquist Path maps into an arc of 180/ degrees
at infinity in the P(s)-plane.

The transfer function of a continuous type ! system has the form:
B(s)
P(s)=—r—
() s'B,y(s)

where B,(0) and B,(0) are finite and nonzero. If we let B;(s)/B,(s) = F(s), then

P(s) = F(s)

S’
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where F(0) is finite and nonzero. Now put s=pe’’, as required by Equation (11.12). Clearly,

lim, _,F(pe’’) = F(0). Then P(pe®)y=F(pe’®)/pe/® and
Iin:]P(pe/”)=oo-e’f”’ -90° <8< +90°
p—

At 8= —90°, the limit is o0 - ¢/, At = +90°, the limit is co - e/°”. Hence the angle subtended in the
P(s)-plane, by mapping the locus of the infinitesimal semicircle of the Nyquist Path in the neighborhood of
the origin in the s-plane, is 90/~ (—90/) = 180/ degrees, which represents / infinite semicircles in the
P(s)-plane.
Sketch the Nyquist Stability Plot for the open-loop transfer function given by

1

(s +p)(s+py)
The Nyquist Path for this type 0 system is shown in Fig. 11-52.

GH(s) P P>0

iy ImGH
d "’--L\
o/ \
B | \
o \ \ Re GH
@ e = GH(j0) = 1/p,P2
f
Fig. 11-52 Fig. 11-53

Since there are no poles on the jw-axis, Step 2 of Section 11.8 indicates that the Polar Plot of GH( jw)
yields the image of path ad (and hence fad) in the GH(s)-plane. Letting s = jw for 0 < w < 00, we get

GH( jw) = — ! , = . ~tan"(i)—tan"(2)
(jw+p)(jw+py) v}(w2+pf)(w2+p5’) I3 P

lim GH( jw) =0/ 180°
Jim GH( jw)

For 0 < w < o0, the Polar Plot passes through the third and fourth quadrants because ¢ = —[tan” '(w/p,)
+tan '(w/p,)) varies from 0° to 180° when w increases.

From Problem 11.39, path def plots into the origin P(s) = 0. Therefore the Nyquist Stability Plot is a
replica of the Polar Plot. This is easily sketched from the above derivations, and is shown in Fig. 11-53.

1
GH(j0y=—/0°
142

1#2

Sketch the Nyquist Stability Plot for GH(s)=1/s.
The Nyquist Path for this simple type 1 system is shown in Fig. 11-54.

ju Im GH
1"
-

) ~N
A A
w= enl \Lj' Re GH
de,f M

| L}

GH(w} * :/O/

a’

Fig. 11-55
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Forpathﬂ,s=jw,0<w<oo,a.nd
1 1
GH(jw) = — =~/ —90° i ) =w/ ~%°
(jw) e 31_1.1:)(7}1(1«)) © 90

Path def maps into the origin (see Problem 11.39).

Path /71" is the mirror r image of a’d’ about the real axis.

The image of path jja is determined from Equation (11.12), by letting s =1lim, _pe’”, where
-90° <6 <90°%

lim GH( jw) =0/ —90°

1
lim GH(pe’®) = lim [—e“"] =w-e¥=0/-0
lim GH(pe”) = lim |~ /-8
For point i, § = —90°; then i maps into i’ at o0 /90°. At point j, # = 0°; then j maps into j at o0 /0°.

Similarly, a maps into a’ at oo/ —90°. Path W could also have been obtained from the conformal
mapping property of the transformation as explained in Example 11.9 plus the statement proved in
Problem 11.41.

The resulting Nyquist Stability Plot is shown in Fig. 11-55.

Sketch the Nyquist Stability Plot for GH(s) = 1/s(s +p,Xs +p,), p1, p>>0.

The Nyquist Path for this type 1 system is the same as that for the preceding problem. For path ad,
s=jw, 0 <w< oo, and

1 1 w w
GH( jo) = —— - -0 - tan (2] < an (2
Jjo(jw+p)(jo+p,) w“(w2+pf)(wz+p§) P P2
lim GH( jw) = —-90° lim jw) = ~270° = +90°
Jim (jw) =0/ —%0 Jtm GH(jw) =0/ -270° =0/ +9%0

Since the phase angle changes sign as w increases, the plot crosses the real axis. At intermediate values of
frequency, the phase angle ¢ is within the range —90° < ¢ < —270°, Hence the plot is in the second and
third quadrants. An asymptote of GH(jw) for w — 0 is found by writing GH(jw) as a real plus an
imaginary part, and then taking the limit as w — 0:

~(pt+p)  mp )
(@ +p?)(?+p3) w(w2+p12)(w2+p§)

Hence the line GH = —(p, + p,)/pi p} is an asymptote of the Polar Plot. .
Path def maps into the origin (see Problem 11.39). Path f*i’ is the mirror image of a’d’ about the real

- +
lim GH( jw) = ————( p; 2p2) — joo
w=0 14V 2]

GH( ju) =

axis. Path i’j’a’ is most easily determined by the conformal mapping property and the fact that a type 1
system has one infinite semicircle in its path (Problem 11.41). The resulting Nyquist Stability Plot is shown
in Fig. 11-56.

Im GH
[
r——1
| N
\ \
) \
\ )
\ ch=) |7
S d,e,f | Re GH
/
GH(jw) /
) Ve
o 1 - -~
L —(p, + Ps)
#ey
Fig. 11-56
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11.45. Sketch the Nyquist Stability Plot for GH(s) =1/s%

The Nyquist Path for this type 2 system is the same as that for the preceding problem, except there are

two poles at the origin instead of one. For ad,

1 1
GH(jw)=ﬁ =F: 180°

lim GH( jw) = 00/ 180°
lim GH(jw) = o

lim GH( jw) =0/ 180°
Jim GH(jw)

The Polar Plot clearly lies along the negative real axis, increasing from — oo to 0 as w increases. Path def

maps into the origin and path ija maps into wo
Nyquist Path makes right turns at i and a, so
locus is shown in Fig. 11-57.

Im GH |

infinite semicircles at infinity (see Problem 11.41). Since the
does the Nyquist Stability Plot at i’ and a’. The resulting

_.r-\\
N
N\
\

GH(=) |\

\ e —"Td e, f I Re GH

Fig.

\_T/

/

s
e

11-57

11.46. Sketch the Nyquist Stability Plot for GH(s)=1/s%(s + p), p>0.

The Nyquist Path for this type 2 system is the same as that for the previous problem. For ad,

GH( jw) =

J?(jw +p)

lim GH( jw) = 0o/ —180°
Jlim GH( jw) =0

1 . @
N —180° — tan (—)
wyw +p P

lim GH(jw) =0/ -270°
Jim GH(jw)

For 0 < w < oo the phase angle varies continuously from —180° to —270°; thus the plot lies in the second
quadrant. The remainder of the Nyquist Path is mapped into the GH-plane as in the preceding problem.
The resulting Nyquist Stability Plot is shown in Fig. 11-58.

Im GH?

/"L\

P
V4
/

a’ l/ GHU"‘)
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11.47. Sketch the Nyquist Stability Plot for GH(s)=1/s%s+p), p> 0.

There are four poles at the origin in the s-plane, and the Nyquist Path is the same as that of the
previous problem. The Polar Plot for this system was determined in Problem 11.38. The remainder of the
Nyquist Path is mapped using the results of Problems 11.39 and 11.41, and the conformal mapping
property. The resulting Nyquist Stability Plot is given in Fig. 11-59.

A ¢ =90°

/'/ \\\
/ / N
/ // \\ \
[ \ \\
— \

7 ~N

7 s=0°

[

I

{ | 'T 0°
\ \\ \/a’ /

\ /

~
N~

[-—

Increasing w //
\
\\ \ /7

N\ // /
\ \\ // /
N ~ - yd
N —— - v
\\\._///
y ¢ = —90°
Fig, 11-59

11.48. Sketch the Nyquist Stability Plot for GH(s)=e~"/(s + p), p> 0.

The e ™ term represents a time delay of 7 seconds in the forward or feedback path. For example, a
signal flow graph of such a system can be represented as in Fig. 11-60.
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The Nyquist Stability Plot for 1/(s + 1) was drawn in Example 11.8. The plot is modified by inclusion
of the ¢ ™ term in the following manner. For path ad,

- T

GH( jw) ! ¢ *1(“’) T GH( j0) lgo"
Jw) =~ = —_— —tan" | —| — Tw =—
Jotp  Ju?+p? 4 / P

The limit of GH(jw) as w - oo does not exist. But lim, , |GH(jw)| =0 and |GH(jw)| decreases
monotonically as w increases. The phase angle term

o(w) = —tan"(s) - Tw

revolves repeatedly about the origin between 0° and —360° as « increases. Therefore the Polar Plot is a
decreasing spiral, beginning at (1/p)/0° and approaching the origin in a CW direction. The points where
the locus crosses the negative real axis are determined by letting ¢ = —180° = —# radians:

wﬂ
—-n= —la.n'l(——) - Tw,
p
or w, = p tan(Tw, ), which is easily solved when p and T are known. The remainder of the Nyquist Path is

mapped using the results of Problems 11.41 and 11.42. The Nyquist Stability Plot is shown in Fig. 11-61.
The image of path fa (s = —jw) has been omitted for clarity.

ImGHA
= [ [ AN
Fig. 11-61

11.49. Sketch the Nyquist Stability Plot for GH(s) =1/(s2 + a?).

The poles of GH(s) are at s = + ja = * jw,. The Nyquist Path for this system is therefore as shown in
Fig. 11-62.
For path ab, w < a and

1
GH( jw) = 5/ 0° GH( jO) = el / 0° ji_r'naGH(jw) =00/ 0°

For path be, let s = ja + pe’®, —90° < 8 < 90°; then

1
. ) 8Y _ 1 —— | = —jwoe P =o0/ 8" -
JT})GH('W+NI)_phm[pel’(Zja+pe19) joo-e =0/ -8"-90°

-0

az—w

CHAP. 11} NYQUIST ANALYSIS 285

o
h P
—jd
g
f
Fig. 11-62 Fig. 11-63

At @ = —90° the limit is o /0°; at § =0° it is c0o /' —90°; at § = 90° it is o0 / —180°.
For path ¢d, w > a and

lim GH( jw) = oo / 180° lim GH( jw) =0/ 180°
w—+g W

Path def maps into the origin by Problem 11.39, and f'g’h’a’ is the mirror image of a’b'c’d’ about the
real axis. The resulting Nyquist Stability Plot is shown in Fig. 11-63.

11.50. Sketch the Nyquist Stability Plot for GH(s) = (s — z,)/s(s + p), z;, p> 0.
The Nyquist Path for this type 1 system is the same as that for Problem 11.43. For path ad.

jw—z Jw? + 2] w(p+2)
GH( jw) = L= l/90"—ta.n'l[— lz

joljo+p)  wfw?+p? pr-w

where we have used

tan”'x + tan~ !y = tan~! )
- 1F xy

lim GH( jw) = o0 +90 GH( /‘/ Z )— f 0 lim H(jw) =0 -90

Thus the locus comes down in the first quadrant, crosses the positive real axis into the fourth quadrant. and
approaches the origin from an angle of —90°.
Path def maps into the origin, and ija maps into one semicircle at infinity. The resulting plot is shown

in Fig, 11-64.
Im GH 4
//"'——- a'
P GH(ju)
/ -
ld
A/ /N o= =Vpz,
9 —
7y def \ Re GH
\ \
\ |
* \
~ \
S ———
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NYQUIST STABILITY CRITERION
11.51. Prove the Nyquist Stability Criterion.

Equation (/1.1) states that the number of CW encirclements N, of the origin made by a closed P
contour in the P-plane, mapped from a closed complex-plane contour, is equal to the number of zeros Z,
minus the number of poles P, of P enclosed by the complex-plane contour: N, = Z, — F,. This has been
proven in Problem 11.26.

Now let P =1+ GH. Then the origin for 1 + GH in the GH-plane is at GH = —1. (See Example 11.6
and Problem 11.33.) Hence let N denote the number of CW encirclements of this —1 + j0 = (—1,0) point,
and let the complex-plane contour be the Nyquist Path defined in Section 11.7. Then N = Z, — P,;, where
Z, and P, are the number of zeros and poles of 1 + GH enclosed by the Nyquist Path. P, is also the
number of poles of GH enclosed, since if GH=N/D, thenl1+ GH=1+ N/D=(D + N)/D. That is, GH
and 1 + GH have the same denominator.

We know from Chapter 5 that a continuous (or discrete) feedback system is absolutely stable if and
only if the zeros of the characteristic polynomial 1+ GH (the roots of the characteristic equation
1+ GH = 0) are in the LHP (or unit circle), that is, Z, = 0. Therefore N = — £, and clearly P, > 0.

11.52. Extend the Nyquist Stability Criterion to a larger class of continuous linear systems than those
already considered in this chapter.

The Nyquist Stability Criterion has been extended by Desoer [5]. The following statement is a
modification of this generalization, found with its proof in the reference.

A Generalized Nyquist Stability Criterion: Consider the linear time-invariant system described by the
block diagram in Fig. 11-65. If g(r) satisfies the conditions given below and the Nyquist Stability Plot of
G(s) does not enclose the (—1,0) point, then the system is szable. If the (—1,0) point is enclosed, the
system is unstable.

rit)  +rN e(t) () c(t)

Fig. 11-65

1. G(s) represents a causal, linear time-invariant system element.

2. The input-output relationship for g(z) is

c(z)=cu(r)+[)'g<z—f)e(v)dv >0

where c,(?), the free response of the system g(r), is bounded for all ¢ > 0 and all initial conditions, and
approaches a finite value dependent upon the initial conditions as t — co.

3. The unit impulse response g(¢) is

g(1) =[k+&(D]1(1)

where & > 0, 1(¢) is the unit step function, g (7) is bounded and integrable for all 1> 0, and g,(r) =0
as 1 — 0.

These conditions are fulfilled very often by physical systems described by ordinary and partial
differential equations, and differential-difference equations. The form of the closed-loop block diagram
given in Fig. 11-65 is not necessarily restrictive. Many systems of interest can be transformed into this
configuration.
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11.53. Suppose the Nyquist Path for GH(s) = 1/s(s + p) were modified so that the pole at the origin is
enclosed as shown in Fig. 11-66. How does this modify application of the Nyquist Stability
Criterion?

1/ (=1L, 0\ | GH(=)

Re GH

ay
y

) =1 GH()

Fig. 11-66 Fig. 11-67

The Polar Plot remains the same, but the image of path ija makes /eft instead of right turns at i’ and
a’, just as in the Nyquist Path. The Nyquist Stability Plot is therefore given by Fig. 11-67. Clearly, N = —1.
But since the pole of GH at the origin is enclosed by the Nyquist Path, then P,=1, and Z, =N+ F, =
—1+ 1 =0. Therefore the system is stable. Application of the Nyquist Stability Criterion does not depend
on the path chosen in the s-plane.

11.54. Is the system of Problem 11.42 stable or unstable?

Shading the region to the right of the contour in the prescribed direction yields Fig. 11-68. It is clear
that N =0. The (—1,0) point is not in the shaded region. Now, since p; >0 and p, >0, then P, =0.
Therefore N= —Py=0, or Zy= N+ P, =0, and the system is stable.

ImGH? Im GH &

R
/
/

A
J.4

[

\

(—1,0)

Re GH

Fig. 11-68 Fig. 11-69

11.55. Is the system of Problem 11.43 stable or unstable?

i+

The region to the right of the contour has been shaded in Fig. 11-69. The (—1,0) point is not enclosed,
MM and N =0. Since Py =0, then Z, = P, + N =0, and the system is stable.
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11.56. Determine the stability of the system of Problem 11.44.

The region to the right of the contour has been shaded in Fig. 11-70. If the (—1,0) point lies to the left
of point k, then N = 0; if it lies to the right, then N = 1. Since P, =0, then Z, = 0 or 1. Hence the system is
stable if and only if the (—1,0) point lies to the left of point k. Point k can be determined by solving for

GH( jw,), where
- W, w,
—or=— —tan | = 7tan‘1(——)
2 )4t P

w, is easily determined from this equation when p, and p, are given.

Im GH }

GHw) 2 ¥
‘,""‘"—-"'—’ — Unstable

| prg '1 e (~1,0) Poin!

Fig. 11-70

11.57. Determine the stability of the system of Problem 11.46.

The region to the right of the contour has been shaded in Fig. 11-71. Clearly, N=1, P, =0, and
Z, =1+ 0= 1. Hence the system is unstable for all p > 0.
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11.58. Determine the stability of the system of Problem 11.47.

The region to the right of the contour has been shaded in Fig. 11-72.
It is clear that N> 0. Since Fy =0 for p > 0, then N # — P,. Hence the system is unstable.

¢ =90°

[ 4 e \
[ ’ A - \ \
s=180° | | L0 =uf i |-
| e JRE e=0°
b e
\ \ ncreasing o / l

9= —90°

Fig. 11-72

RELATIVE STABILITY

11.59. Determine: (a) the phase crossover frequency w,, (b) the gain crossover frequency w,, (c) the
£i+  gain margin, and (d) the phase margin for the system of Problem 11.44 with p, =1 and p,=1.

Mathcas (@) Letting w = w,, we have

— -1 -1 - f e
¢(w,,)=—1r—T-lan w, — tan 2w,,=T—tan 122

or 3w, /(1 - 2w?) = tan(x/2) = 0. Hence w, = /1 =0.707.

(b) From |GH(w,)| =1, we have 1/w;y/(«? +1)(w} +0.25) =1 or w, = 0.82.

(¢) The gain margin 1/|GH(w, )| is easily determined from the graph, as shown in Fig. 11-73. It can also
be calculated analytically: |GH(w,)| = |GH(j0.707)| = 4/3; hence gain margin = 3 /4.
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Im GH ﬁ Im GH L
1'l
Unit ~
Circle 1 ~N
w = 0.82 4 \
wy = 0.707 \
A - ' \ s
2007 (CLOY Re GH Jo=> o -
<S - doef T Re GH
| opm =000 |GHW ]
| w=0y
pb— 4 — -~
al

Fig. 11-73 Fig. 11-74

(d) The phase margin is easily determined from the graph, or calculated analytically:
arg GH( w,) = arg GH(0.82) = —90° — tan"}(0.82) — tan~!(1.64) = — 187.8°

Hence ¢py = 180° + arg GH(w,) = — 7.8°. Negative phase margin means that the system is unstable.

11.60. Determine the gain and phase margins for the system of Problem 11.43 (GH = 1/5s).

The Nyquist Stability Plot of 1/s never crosses the negative real axis as shown in Fig. 11-74; hence the
gain margin is undefined for this system. The phase margin is ¢p), = 90°.

M- AND N-CIRCLES

11.61. Prove Equations (//./8) and (/1.19), which give the radius and center of an M-circle,
respectively.

Let G(w) = x +jy. Then

G(w) x+jy
M= =
1+G(w) 1+ x+jy
Squaring both sides and rearranging yields
M) M\
[x_(l—Mz)] ore(e) e
M\ M\
[ () o= ) e

For M = constant, these are equations of circles with radii |M/(M? - 1)jand centers
at(-M?/(M*-1),0).

11.62. Prove Equation (/1.20).

The transfer function G for the second-order continuous system whose signal flow graph is shown in
Fig. 11-75 is G = w?/s(s + 2{w,). Now
2 4

Wy

(w,z, - wz)z + 482w’

G
1+G

m-|
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Fig. 11-75

To find w

,+ We maximize the above expression:

wj[2( w? —w?)(-2w) + 8§2w3w] B

[(m,f - 02)2 + 4§2w,fw2]2

(M%) -

from which w = w, = +w,f1 — 2{*. Hence for 0 < { <0.707,

4 1.2

w, 1

M, = -
P [t - w2 (1 - 282)]" + 4kt (1 - 28%) w1-¢

11.63. Prove Equations (/1.21) and (71.22), which give the radius and center of an N-circle.
Let G(w) = x +jy. Then

C(w) x2+x+y*+jy Im(C/R)(w)_ y
R(@) - Urafayr M NERACRY (@) " rary

which yields

1\? 132 11 1
o3 ozl 252

For N equal to a constant parameter, this is the equation of a circle with radius {1 + (1/2N )2 and center
at (- L,1/2N).

11.64. Find M, and { for the unity feedback system given by G =1/s(s + 1).

The general open-loop transfer function for the second-order system is G = w?/s(s + 2{w,). Then
w,=1,§{=05and M, =1/0Q2{/1 - {*)=0.866.

MISCELLANEOUS PROBLEMS

11.65. Determine the Polar Plot for
P( :
z)=——
z—1
for a sampling period T'= 1.
The solution requires mapping the strip from —jw, /2 to jw,/2 on the jw-axis of the s-plane or,
equivalently, w= —# to w = radians on the unit circle of the z-plane, into the P(e/“)-plane. We have
P(e*'"y=05/0° and P(e/®)= 001{ +90°. Evaluation of P(e’“) for several values of w between — =

and O results in a straight line parallel to the imaginary axis in the P-plane, as shown in Fig. 11-76, where
the segments a to b and g to a map the corresponding segments of the unit circle in Fig. 11-13.
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Im P
b
!
w=20
gﬂ : ; w = * 7 radians
IS Re P
<
r(_1
w=0
| &
Fig. 11-76

11.66. Determine the Polar Plot of the type 0 discrete-time system open-loop transfer function

iz + 1)(z+ 1)K

HE TG

for K=1and T=1.

In this case, the Polar Plot has been drawn by computer, as illustrated in Fig. 11-77. The computer
program evaluates GH(e/“) for values of wT = w in the range —# to # radians, separates each result into
real and imaginary parts (Complex Form), and then generates the rectangular plot from these coordinates.

Im GH

03
02

0.11,

Re GH
_01 2

-0.21

-031

Fig. 11-77

11.67. Determine the Polar Plot of the type 1 discrete-time system open-loop transfer function

K(z+1)?

OH(2) = o+ )+ )

for K=1and T=1.
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As in Problem 11.66, the Polar Plot given in Fig. 11-78 was generated by computer, exactly in the same
manner as described in the previous problem.

Im GH
b
|
\ 4
\
\\ 24
Ssazl2 '
1% LT Re GH
-2+
- 4 -+
g
Fig. 11-78

11.68. Determine the absolute stability of the system given in Examples 11.11 and 11.14, for K > 2 and

T=1.

The Nyquist Stability Plot for K= 2 is given in Fig. 11-79. The region to the right has been shaded
and the plot goes directly through (—1,0). Thus N >0 and N # — P,, which is zero for this problem.
Therefore the system is marginally stable for K =2. For K> 2, the (—1,0) point is completely enclosed,
N =1, and the closed-loop system is unstable.

Im GH

Re GH

Fig. 11-79
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11.69. Determine the Nyquist Stability Plot of the system given in Problem 11.65.

We note that P(z)=z/(z— 1) has a pole at 1, so we must begin by mapping the segment b to ¢ of the
infinitesimal semicircle near z =1 in Fig. 11-13 into the P-plane. Overall, we have a conformal mapping, so
the plot must turn right at 5. Between b and ¢, z=1+ pe’®, with ¢ increasing from —90° to 0°.
Therefore

1+pe® . 1
P(1+pej¢)= el and :1_1:1:)P(1+pe’¢)=m=oof -¢
o —

Therefore the arc from 5 to ¢ in the z-plane maps into the infinite semicircle 4’ to ¢’, from +90° back to
0°, shown in Fig. 11-80. To obtain the mapping of the line from ¢ to 4 in Fig. 11-13, we note that this is the

mapping of P(z) from z=1/0° to z = co /0° (constant angle ¢), that is,

1+a 1+a
P()=ow/0° to lim (—}=lim( )=1 0°
aswl\l+a—1 a— oo a

where we have replaced z in P(z) by 1 + a, in obtaining the limit. The resulting mapping is shown as the
line from ¢’ to d’ (c0 — 1) in Fig. 11-80.

Im P

Fig. 11-80

The infinite circle from 0° to —360°, from 4 to e in Fig. 11-13, maps into an infinitesimal semicircle
around the point z =1 in the P-plane, because

Re’® e/®

RA=17 1
R

P(Re*) =

and P—1 as R— oo for any ¢, and a few evaluations of arg P(Re’*) at values of ¢ between 0° and
—360° show that the limit is approached from values in the first quadrant of P when 0 < ¢ < —180°, and
the fourth quadrant when —180° <¢ < —360°, with P(Re/*)=1/(1+1/R) <1 for R> 0 at ¢ = 180°.
The resulting arc is shown as 4’ to ¢’ in Fig, 11-80.

Arc e’ to f’ in Fig. 11-80 is obtained in the same manner as that for ¢’ to d’, taking the limits of
(a+1)/a as a = o0 and 0. And the final closure of the Nyquist Stability Plot, arc f’ to g’, is obtained in
the same manner as that from 4’ to ¢/, as shown.
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For GH =P =z/(z— 1) in Problem 11.69, is the closed-loop system stable?

The region to the right of the contour in Fig. 11-80 has been shaded and it does not enclose the (—1,0)
point. Therefore ¥ < 0. The only pole of GH is at z =1, which is not outside the unit circle. Thus P, =0,
N = —P,=0, and the system is absolutely stable.

Determine the stability of the system given in Problem 11.66.

The open-loop transfer function is

iz+1)(z+1)

GH= ——F7—"—"—-""-
z(z+1)

The Polar Plot of GH is given in Fig. 11-77, which is the mapping of arcs a to & and g to a of Fig. 11-13.
There are no poles of GH on the unit circle, so the infinitesimal arcs b to ¢ and f to g in Fig. 11-13 are not
needed. Setting z =1 + a and using the same limiting procedures illustrated in Problem 11.70, the straight
lines to and from infinity, b to d and e to f in Fig. 11-13, map into the lines from b to d and e to f
between Re GH? and 2. Similarly, with z replaced by 1 + Re’® and R — oo, the infinite arc from d to ¢
maps into the infinitesimal semicircle about Re GH = 3, all as shown in Fig. 11-81.

Im GH

Re GH

Fig. 11-81

The (—1,0) point is not enclosed by this contour, as shown, N =0, P, =0, and the closed-loop system
is absolutely stable.

Determine the stability of the system given in Problem 11.67.

The open-loop transfer function is

(z+1)°
(z=1(z+1)(z+1)

The Polar Plot of GH is given in Fig. 11-78. Completion of the closed contour mapping of the exterior of
the unit circle in the z-plane (Fig. 11-13) closely parallels that described in Problem 11.69 and Example
11.11. In this case, the (—1,0) point is enclosed once by the contour, that is, N =1. Since P, =0 and
Z,=N+ P,=1, then one zero of 1 + GH is outside the unit circle of the z-plane and the closed-loop
system is therefore unstable (Fig. 11-82).

GH =
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11.75.
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11.77.

11.78.

11.79.

11.80.
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ImGH
Fig. 11-82
Supplementary Problems
Let T=2 and p =3 in the system of Problem 11.48. Is this system stable?
Is the system of Problem 11.49 stable or unstable?
Is the system of Problem 11.50 stable or unstable?
K(s+z)(s+z,)
Sketch the Polar Plot for GH = ——————, 2z, 2, > 0.
S(s+p)(s+p,)
Sketch the Polar Plot for GH K >0
etch the Polar Plot for = » P> U
(s+p)(s+p)(s+p3)
10(s + 0.5)

Find the closed-loop frequency response of the unity feedback system described by G = m ,

using M- and N-circles.
K(s+1z)
s (s+p)(s+p) (s +p3)
Ke~Ts

s(s+1)°

Sketch the Polar Plot for GH =

, 2y, p; > 0.

Sketch the Nyquist Stability Plot for GH =
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+z
11.81. Sketch the Polar Plot for GH= ————, 7, p, > 0.
s(s+py)
s+2z,
11.82. Sketch the Polar Plot for GH = ————————, 2z, p,> 0.
s(s+p)(s+p2)
11.83.  sketch the Polar Plot for GH X 0
-83.  Sketch the Polar Plot for GH = - ——————, p,>0.
s (s+p)(s+p2)
s+z
11.84. Sketch the Polar Plot for GH = ————, z, p, > 0.
s*(s+p)
s+2z;

11.85. Sketch the Polar Plot for GH =

-V, 7,7, > 0.
sS(s+p)(s+py)" !

(s+2)(s+2,)

11.86. Sketch the Polar Plot for GH = . 2.p,>0.
o e O o o G+ p) G4 o) (s ) 7
11.87. Sketch the Polar Plot for GH K 0
k.78 etch the Polar Plot for == ~. >0
SGrp)s+p) 7
(s+z)
11.88. Sketch the Polar Plot for GH = —————, 7, p, > 0.
s (s+p)(s+p2)
Sketch the Polar Plot for GH = —— 0
=" > 0.
11'89 etc. € rolar ot Ior s‘(_\'-l—pl),zl‘pl
e T (s+z
11.90. Sketch the Polar Plot for GH=—2u, 2, p > 0.
s (5+P1)
e T (s+z
11.91. Sketch the Polar Plot for GH = ( ) 7,a,b>0

11.92. Sketch the Polar Plot for GH =

11.93. Sketch the Polar Plot for GH =

s2(s*+a)(s?+b)’

(s—2z)

—_—, 2, 0, > 0.
s (s+py) LA

s
——  p,>0.
Gra)s—p) P

11.94. The various portions of the Nyquist Path for continuous systems are illustrated in Fig. 11-12 and the
different segments are defined mathematically by Equations (/1.5) through (71.12). Write the correspond-
ing equations for each segment of the Nyquist Path for the discrete-time systems given in Fig. 11-13. (One
of these was given in Example 11.11. Also see Problems 11.69 and 11.70.)

Answers to Some Supplementary Problems
11.73. Yes
11.74. Unstable

11.75. Unstable
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1 Chapter 12

11.76.

Re GH Nyquist Design

C

12.1 DESIGN PHILOSOPHY

Design by analysis in the frequency domain using Nyquist techniques is performed in the same
general manner as all other design methods in this book: appropriate compensation networks are
introduced in the forward or feedback paths and the behavior of the resulting system is critically
analyzed and reanalyzed. In this manner, the Polar Plot is shaped and reshaped until performance
Re GH specifications are met. The procedure is greatly facilitated when computer programs for generating
- Polar Plots are used.

Since the Polar Plot is a graph of the open-loop frequency response function GH(w), many types of
compensation components can be used in either the forward or feedback path, becoming part of either
G or H. Often, compensation in only one path, or a combination of both cascade and feedback
compensation, can be used to satisfy specifications. Cascade compensation is emphasized in this
chapter.

Im GH

11.79.
1 Im GH 12.2 GAIN FACTOR COMPENSATION

It was pointed out in Chapter 5 that an unstable feedback system can sometimes be stabilized, or a

stable system destabilized, by appropriately adjusting the gain factor K of GH. The root-locus method
of Chapters 13 and 14 vividly illustrates this phenomenon, but it is also evidenced in Nyquist Stability
Re GH Plots.

EXAMPLE 12.1. Figure 12-1 indicates an unstable conzinuous system when the gain factor is K, where

K,

GH(s) = s(s+p)(s+p)

. p K >0 Fy=0 N=2

11.80. ﬂ Im GH

—_——
~
A Y

Re G;I

\
\
i
/
/
P4

K=K, o

—_——

Fig. 12-1
A sufficient decrease in the gain factor to K, (K, < K)) stabilizes the system, as illustrated in Fig. 12-2.
K,
s(s+p1)(s+p2)
Further decrease of K does not alter stability.

GH(s) = 0<K,<K, Py=0 N=0
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AIm GH

(—1.0)’7V' Re Cﬁ

K=K K=K,

Fig, 12-2

EXAMPLE 12.2. The type 1 discrete-time control system with
1

GH = ———F———
Y (e-(z-h)
is unstable, as shown in Fig. 11-79 and Problem 11.68. That is, the open-loop transfer function
K/4
GH=———"r——
(z-1D(z2-1)

was found to be unstable for K > 2. Therefore gain factor compensation can be used to stabilize GH), by
attenuating the gain factor K, =1 of GH, by a factor less than 0.5. For example, if the attenuator is given a value
of 0.25, the resulting GH = GH, would have the Nyquist Stability Plot in Fig. 11-25, shown in Example 11.14 to
represent a stable system.

EXAMPLE 12.3. The stable region for the (—1,0) point in Fig. 12-3 is indicated by the portion of the real axis in
the unshaded area:

K(s+2z)(s+z,)

GH(s) = 2,50 >0 P=0
O = TGt mGrm ? g
A Im GH
] [k N
P
F 4 \\

t\‘%/ \‘ 7 } Re G.F}'
\ Stable Region ,

\ for the (—1,0) 4
Pek
\ 'oint /
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If the (—1,0) point falls in the stable region, an increase or decrease in K can cause enough shift in the GH contour
to the left or the right to destabilize the system. This can happen because a shaded (unstable) region appears both
to the left and the right of the unshaded (stable) region. This phenomenon is called conditional stability.

Although absolute stability can often be altered by adjustment of the gain factor alone, other

performance criteria such as those concerned with relative stability usually require additional compen-
sators.

12.3 GAIN FACTOR COMPENSATION USING M-CIRCLES

The gain factor K of G for a unity feedback system can be determined for a specific resonant peak
M, by the following procedure which entails drawing the Polar Plot once only.

Step 1: Draw the Polar Plot of G(w) for K=1.
Step 2: Calculate ¥,, given by

‘Pp=sin'1(ML) (12.1)

Step 3: Draw a radial line 4B at an angle ¥, below the negative real axis, as shown in Fig. 12-4.

ImG4 ImG4é
4 m Glw) .
. >
Re G -
¥, € bt Re G
|
Clk=1
B B
Fig. 12-4 Fig. 12-5

Step 4: Draw the M, circle tangent to both G(w) and line AB at C. Then draw a line CD
perpendicular to the real axis shown in the example Polar Plot shown in Fig. 12-5.

Step 5: Measure the length of line AD along the real axis. The required gain factor K for the
specified M, is given by

1
Ky=——"—"— 12.2
M length of line AD ( )

If the Polar Plot of G for a gain factor K’ other than K =1 is already available. it is not necessary
to repeat this plot for K = 1. Simply apply Steps 2 through 5 and use the following formula for the gain
factor necessary to achieve the specified M,

K’

M length of line AD ( )
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124 LEAD COMPENSATION
The transfer function for a continuous system lead network, presented in Equation (6.2), is
s+a
s+b
where a < b. The Polar Plot of P4 for 0 < & < oo is shown in Fig. 12-6.

P lead —

Im Pyeaq
(PL“GIO)
mﬂ Pt
) (a/b, 0) 1,0 Re Pyeaq
Fig. 12-6

For some systems in which lead compensation is applicable, appropriate choice of the zero at —a
and the pole at — b permits an increase in the open-loop gain factor K, providing greater accuracy (and
sometimes stability), without adversely affecting transient performance. Conversely, for a given K,
transient performance can be improved. In some cases, both steady state and transient response can be
favorably modified with lead compensation.

The lead network provides compensation by virtue of its phase lead property in the low-to-
medium-frequency range and its negligible attenuation at high frequencies. The low-to-medium-
frequency range is defined as the vicinity of the resonant frequency w,. Several lead networks may be
cascaded if a large phase lead is required.

Lead compensation generally increases the bandwidth of a system.

r&a EXAMPLE 12.4. The Polar Plot for

K
s(s+p)(s+p2)

is given in Fig. 12-7. The system is stable and the phase margin ¢, is greater than 45°. For a given application,
$py is too large, causing a longer than desired delay time 7}, in the system transient response. The steady state
error is also too large. That is, the velocity error constant K, is too small by a factor of A > 1. We shall modify this
system by a combination of gain factor compensation, to meet the steady state specification, and phase lead
compensation, to improve the transient response. Assuming H(s) =1, Equation (9.12) yields

GH(s) = K.p.p>0

K, = li"ll)[-‘GHl(S)] =

14¥2]
4 ImGH,
(-1,0)
¥ -
W Re GH
83 e
Unit ¢ !
Circle
GH ()

Fig. 127
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AK,
and hence AK, =
PP
Putting K, = AK|, the open-loop transfer function becomes
K
GH, = 2

s(s+p)(s+p2)

The system represented by GH, has the desired velocity constant K, =AK,,.
Let us now consider what would happen to K, of GH, if a lead network were introduced. The lead network
acts like an attenuator at low frequencies. That is,

lim [sGH,(s) - PLeag(5)] = <)\K

s—=0

since a/b < 1. Therefore if a lead network is used to modify the transient response, the gain factor K| of GH, must
be increased A(b/a) times in order to meet the steady state requirement. The gain factor part of the total
compensation should therefore be larger than that which would be called for if only the steady state specification
has to be met. Hence we modify GH,, yielding

AK,(b/a)
s(s+p))(s+py)

As is often the case, increasing the gain factor by an amount as large as A(b/a) times destabilizes the system. as
shown in the Polar Plots of GH,, GH,, and GH, in Fig. 12-8.

=

4Im GH

(-1,0

Re GH

GH,

GH,
Fig. 12-8

Now let us insert the lead network and determine its effects. GH; becomes
AK\(b/a)(s +a)
s(s+p)(s+p,)(s+b)

First, lim _ ,[sGH,(s)] =AK,, convinces us that the steady state specification has been met. In fact. in the very
low frequency region we have

GH, =

GH,(jo)] ol

JO )y very small = 7 N X

! ervemal = (o + p) (e + py)
- GH,

Hence the GH, contour is almost coincident with the GH, contour in the very low frequency range.
In the very high frequency region,

AK\(b/a)
jo(je+p)(jo+ps)

Therefore the GH, contour is almost coincident with GH; for very high frequencies.

GH,( joo)| o very targe = = GH,
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In the mid-frequency range, where the phase lead property of the lead network substantially alters the phase
characteristic of GH,, the GH, contour bends away from the GH, and toward the GH, locus as w is increased.
This effect is better understood if we write GH, in the following form:

AK,(b/a) ‘[jw+a]
Je(jw+p)(je+p)| |jw+b
= GH,(jo) - Prog(jo) = GHy(jo) | PLea(Jw) |/ ¢(w)

where [P (jw)|=y(w* +a?) /(&> +b), ¢(w)=tan (w/a)—tan" (w/b), a/b<|P  (jw)|<]1, 0°<
¢(w) < 90°. Therefore the lead network modifies GH, as follows. GH; is shifted downwards beginning at GH;( joo)
in a counterclockwise direction toward GH, due to the positive phase contribution of Py.,4 [0° < ¢(w) < 90°]. In
addition, it is attenuated [0 <|P,4(jw)| < 1]. The resulting Polar Plot for GH, is illustrated in Fig. 12-9.

GH,(jw) =

Im GH

Re GH

Fig. 129

The system represented by GH, is clearly stable, and ¢py is less than 45°, reducing the delay time 7, of the
original system represented by GH,. By a trial-and-error procedure, the zero at —a and the pole at —5 can be
chosen such that a specific M, can be achieved.

A block diagram of the fully compensated system is shown in Fig. 12-10. Unity feedback is shown for
convenience only.

R s+a Ab GH = K, c
a s +b @ YT N [ FErX)
Lead Gain-factor Original Loop
Network Amplifier Transfer Function
Fig. 12-10

125 LAG COMPENSATION

The transfer function for a continuous system lag network, presented in Equation (6.3), is
als+b
b

where a < b. The Polar Plot of Py, for 0 < w < o0 is shown in Fig. 12-11.

Pl.ag =

s+a

!
Y
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AlIm P,
(a/b,0) (1,0)
Pri=) Prag(0) Re P:'
Fig. 12-11

The lag network usually provides compensation by virtue of its attenuation property in the high
frequency portion of the Polar Plot, since Py ,(0)=1 and P, (00)=a/b<1. Several lag networks can
be cascaded to provide even higher attenuation, if required. The phase lag contribution of the lag
network is often restricted by design to the very low frequency range. Several general effects of lag
compensation are:

1. The bandwidth of the system is usually decreased.

2. The dominant time constant 7 of the system is usually increased, producing a more sluggish
system.

3. For a given relative stability, the value of the error constant is increased.
For a given value of error constant, relative stability is improved.

The procedure for using lag compensation to improve system performance is essentially the same as
that for lead compensation.

EXAMPLE 12.5. Let us redesign the system of Example 12.4 using gain factor plus lag compensation. The
original open-loop transfer function is

GH, ul
' s(s+p)(s+po)
The gain factor compensation transfer function is
AK,

GHy= ———
? s(s+p)(s+py)

Since P;,,(0) =1, introduction of the lag network after the steady state criterion has been met by gain factor
compensation does not require an additional increase in gain factor.
Introducing the lag network, we get

AK(a/b)(s+b)
s(s+p)(s+p)(s+a)
Now 11‘_:.% [sGH](s)] =AK,

GH} =

where K,, = K, /p, p,. Therefore the steady state specification is met by GH;.
In the very low frequency region,

AK,
jw(jw+p,)(jo+py)

Hence GH; is almost coincident with GH, at very low frequencies, with the lag property of this network
manifesting itself in this range.
In the very high frequency region,

GH;( jo), very small = = GH,(jw)

A a/b)K,
jo(jw+p)(jo+p,)

Therefore, the GH; contour lies above or below the GH, contour in the range, if A> b/a or A < b/a, respectively.
If A =b/a, the GH; and GH, contours coincide.

GHJ’(jw)lovzry]argn= =A(a/b)GHl(.,w)
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In the mid-frequency range, the attenuation effect of Py, increases as w becomes larger, and there is relatively
small phase lag.

The resulting Polar Plot (with A =5/a) and a block diagram of the fully compensated system are given in
Figs. 12-12 and 12-13.
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It is not easy to generalize about the application of lag-lead compensation or to prescribe a method
for its employment, especially using Nyquist techniques. But, for illustrative purposes, we can describe
how it alters the properties of a simple type 2 system in the following example.

EXAMPLE 12.6. The Nyquist Stability Plot for
H=—— ,K>0
s*(s+p) &

is given in Fig. 12-15. Clearly, the system is unstable, and no amount of gain factor compensation can stabilize it
because the contour for 0 < w < oo always lies above the negative real axis. Lag compensation is also inapplicable
for basically the same reason.

4 Tm GH
Unit
Circle —_—
-~
Ve
/ \\
/*/ T L >
cLon bt/ Re GH
/ !
/ I
4
t |
! [
cH;\ lGH, |GH,
I [
Fig. 12-12
R als+ b = K, C -
i[u—«] ’. S e T ey
Lag Gain-factor Original Loop
Network Amplifier Transfer Function
Fig. 12-13

126 LAG-LEAD COMPENSATION
The transfer function for a continuous system lag-lead network, presented in Equation (6.4), is
(s+a)(s+b,)
L= (s+6)(s+a,)

where a,b,/ba,=1, b /a,=b,/a,>1, a, b;>0. The Polar Plot of P;; for 0 < w < oo is shown in
Fig. 12-14.

Alm Py
Py(0) = P(=)
,0) 4,0 Re Py,
T_bh_ b
TEE

Fig. 12-14

Lag-lead compensation has all of the advantages of both lag compensation and lead compensation,
and only a minimum of their usually undesirable characteristics. Satisfaction of many system specifica-
tions is possible without the burden of excessive bandwidth and small dominant time constants.

AdIm GH Im GH,, Iy
ey
y.é B Effect of Lead
/ \\ Compensation
\
[ | - (=1,0) -
l\ e RN | Re GH \/ Re GHy 04
/
A /
\\ ) &
S [
Fig. 12-15 Fig. 12-16

Lead compensation may succeed in stabilizing the system, as shown in Fig. 12-16. But the desired application
for the compensated system may call for a lower bandwidth than can be achieved with a lead network.
If a lag-lead network is used, the open-loop transfer function becomes
K(s+a)(s+b,)
- s3(s+p)(s+b)(s+ay)

GH{

and the Polar Plot is shown in Fig. 12-17. This system is conditionally stable if the (—1,0) point falls on the real
axis in the unshaded region. By trial and error, the parameters of the lag-lead network can be chosen to yield good
transient and steady state performance for this previously unstable system, and the bandwidth will be smaller than
that of the lead-compensated system. A computer program control system design (CAD) package, or any program
that readily generates Polar Plots, can be used to help accomplish this task quickly and effectively.

A im Gy

Stable Region
for the (~1,0) Lag Network

: Effect A T
; Ny 4 R'.Gﬁu,
/U\\ o S S
osid o &

Lead Network |
Effect |

Fig. 1217
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127 OTHER COMPENSATION SCHEMES AND COMBINATIONS OF COMPENSATORS

Many other types of physical networks can be used to compensate feedback control systems.
Compensation networks can also be implemented in software, as part of the control algorithm in a
computer-controlled system. PID controllers are a popular class of such controllers (see Examples 2.14
and 6.7 and Section 10.5).

Combinations of gain factors and lead or lag networks were used as compensators in Examples 12.4
and 12.5, and a lag-lead compensator alone was used in Example 12.6 Other combinations are also
feasible and effective, particularly where steady state error requirements cannot be met by gain factor
compensation alone. This is often the case when the open-loop transfer function has too few
“integrators,” that is, denominator terms of the form s’ for continuous systems, or (z —1)' for
discrete-time systems as illustrated in the next example.

EXAMPLE 12.7. Our goal is to determine an appropriate compensator G,(z) for the digital system shown in
Fig. 12-18. The resulting closed-loop system must meet the following performance specifications:

1. Steady state error e(x) =1 —c(«) < 0.02, for a unit ramp input.

2. Phase margin ¢py = 30°

3. Gain crossover frequency w, > 10 rad /sec.”

Compensation

Fig. 12-18

The sampling period for this system is 7= 0.1 sec (sampling angular frequency w, =27 /0.1 = 207 rad/sec).
We note first that the plant is a type 0 system, because there is no “integrator” term of the form (z — 1) in
the denominator of G,(z) for />1 (see Section 9.8). To meet the first performance specification, it is
immediately clear that the overall open-loop system type must be increased by a factor of at least 1, that is, the
compensated system must be at least type 1, to achieve a finite steady state error for a unit ramp input. Therefore

we add a single pole at z =1, as G, as a first step in determining appropriate compensation:
) 3(z+1)(z2+3)

GG, = 1
8z(z-1)(z+73)

Now, from the table in Section 9.9, the steady state error for a unit ramp input is e(e0) = T/K ., and the velocity

error constant is K, = 3(2X$)/8(3) = 4. Thercfore e(=) = 0.15, which is larger than the value of 0.02 required by

performance specification 1.
The next obvious question is whether the addition of gain factor compensation would be sufficient to
complete the design. This would require a gain increase by at least a factor of A =0.1/(0.02X3) = %, yielding
15 45(z+1)(z+14
GII,GZ = _GlGZI = (i)(l)
2 162(z—1)(z+1)

To check the remaining performance criteria (2 and 3) the gain crossover frequency w, and phase margin ¢py, can
be evaluated from their defining equations in Section 11.11. We have

Ppp = [180 + arg G{'G,(w, )] degrees
and w, satisfies the equation
IGl”GZ("JI) | =1

Now, w, and ¢py could be determined graphically from a Nyquist Stability Plot of G{’G,, as illustrated in Fig.
11-16. But a less difficult task is to solve for w, and ¢py from their defining equations, preferably using a computer

*See Problem 12.16 for further discussion of this performance specification and its relationship to system bandwidth BW.
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program capable of complex numerical calculations. This can be done by first substituting e/“” for z in G{'G,(z).
using the Polar Form, Euler Form, and/or Complex Form substitutions {Equations (/1.2) through (1/.4)], and
then solving for w, T such that |G{’G,| = 1. Trial-and-error solution for w,T can be helpful in this regard, which we
used to find w, 7" = 2.54 rad after several trials, resulting in G{'G,(w,) = —0.72 + j0.7 and

0.7
¢PM = [180° - lm—](iﬁ)] = —44 4°

Clearly, w, =2.54/0.1 =25.4>10 rad/sec satisfies performance specification 3, but nor the phase margin
requirement 2, because ¢\ = —44.4 3 30°, the negative phase margin also indicating that the closed-loop system
with G{'G, is unstable.

Introduction of a fag compensator might solve the remaining constraint, because it increases the phase margin
without affecting the steady state error. The transfer function of a digital lag compensator was given in Example

6.12, Equation (6.11), as
P it |tk 12.4
Lag,(z) 1—2‘ z-p, ( e )

where z_ < p_. Note that Pl = PLﬂS(e"’) =1, which explains why the lag network does not affect the steady
state response of this type 1 system. The Polar Plot of Py, is shown in Fig. 12-26.

The problem now is to choose appropriate values of z. and p, to render ¢py = 30° and w, > 10 rad /sec.
Again, we accomplished this readily by trial and error, using a computer to evaluate the simultaneous solution for
z, and p. of the two relations |G G,(10)| =1 and

dpm = [180 + arg G, G,(10)] = 30°

where Gy G; = P, (G{’G,). These equations have multiple solutions and, often, good choices for p,_ and z, are
values close to 1, because Py ,, then has minimal effect on the phase of G{’G, at higher frequencies. The pole and
zero of Py, effectively cancel each other at high frequencies when their values are close to 1. After several trials, we
obtained a = 0.86 and »=0.97, and a final compensator:

1.59(z — 0.86)
(z-1)(z-0.97)

The resulting Polar Plot (for 0 < w < ) for the compensated system G,G, is shown with ¢y, > 30° in Fig, 12-19.

G(2)=G/"(2) =

Im G,G,
15+
Unit [N
Circle sla” -
4
/I 0.5 l‘
/ .
!
{
+ 1 rd Re GG,
-5 - “ -05 bpy
\
\" —ost
N\,
\\\
Sl
-1
GG,
-15
Fig. 12-19

Example 12.7 is reworked by root-locus techniques in Example 14.5, and also by Bode methods in
Example 16.6, the latter solution using the w-transform introduced in Section 10.7.
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Solved Problems

GAIN FACTOR COMPENSATION

12.1. Consider the open-loop transfer function GH = —3/(s + 1)(s + 2). Is the system represented by
:‘li GH stable or unstable?

cad Unstable. The characteristic equation is determined from 1 + GH =0 and is given by 52 + 35 — 1 =0.
Since all the coefficients do not have the same sign, the system is unstable (see Problem 5.27).

12.2. Determine the minimum value of gain factor to stabilize the system of the previous problem.

2 Let GH be written as GH = K/(s + 1)(s + 2). Then the characteristic equation is s> +3s+2+ K=0
ee: and the Routh table (see Section 5.3) is
52 1 Q2+K)
5! 3 0
s° 2+ K)

Hence the minimum gain factor for stability is K= —2 + ¢, where ¢ is any small positive number.

12.3. The solution of the previous problem also tells us that the system of Problems 12.1 and 12.2 is

£+ stable for all K> —2. Sketch Polar Plots of this system, superimposed on the same coordinate

ﬁ axes, for K, = —3 and K, = —1. What general comments can you make about the transient
e response of the stable system? Assume it is a unity feedback system.

The required Polar Plots are shown in Fig. 12-20. The M-circle tangent to the plot for K= -1 has
infinite radius; thus M, = 1. This means that the peak overshoot is zero (no overshoot), and the system is
either critically damped or overdamped.

4 Im GH

301 (-1,0) =50 iy Re GH

\ N //\
\ -

-

T

Fig. 12-20

124. Is the system represented by the characteristic equation s+ 352+ 35+ 1+ K =0 ever condi-
tionally stable? Why?

Yes. The gain factor range for stability of this system was determined in Example 5.3 as -1 < K< 8.
Since both limits are finite, an increase in the gain factor above 8 or a decrease below —1 destabilizes the
system.
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12.5. Determine the gain factor X of a unity feedback system whose open-loop transfer function is
given by G = K/(s + 1)}(s + 2) for a resonant peak specified by M, = 2.

From Equation (/2./) we have ¥, = sin"!(3) = 30°. The line AB drawn at an angle of 30° below the
negative real axis is shown in Fig. 12-21, a replica of Fig. 12-20 for K= - 1.

ImGé

Polar Plot
M,=2V for K=—1—7

D .
o 30° AN Re G
\ )
\
\ /}
\“___/”
C
B
Fig. 12-21

The circle denoted by M, = 2 has been drawn tangent to both AB and the Polar Plot of K= — 1. Using
the scale of this Polar Plot, line AD has a length equal to 0.76. Therefore Equation (12.3) yields

Ky=s=————==—=-132
M lengthof 4D 0.76

It is also possible to compute a positive value of gain for M, =2 from a Polar Plot of G(s) for any positive
value of K. The Polar Plot for K =1 is the same as that in Fig. 12-21, but rotated by 180°.

MISCELLANEOUS COMPENSATION
12.6. What kind of compensation is possible for a system whose Polar Plot is given by Fig. 12-22?

Lead, lag-lead, and simple gain factor compensation are capable of stabilizing the system and
improving the relative stability.

Im GH
~\ .
S\ /Lo Re GH
Fig. 12-22

12.7. Consider the unity feedback system whose open-loop transfer function is given by
K,

=— K, >0
s(s+a) @&
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12.8.
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How would the inclusion of a minor feedback loop with a transfer function K,s (K, > 0), as
shown in the block diagram in Fig. 12-23, affect the transient and steady state performance of
the system?

R + + K, C
8(s + a)

Kys

Fig. 12-23

Combining the blocks in the inner loop yields a new unity feedback system with an open-loop transfer
function

K,
6=
s(s+a+KK,)

The Polar Plots for G and G’ are sketched in Fig. 12-24.

Im §

(1,0 Re

Gw) [G'(«)

Fig. 12-24

The phase margin is clearly larger for the two-loop feedback system G’. Hence the peak overshoot is
smaller, or the damping ratio is larger, and the transient response is superior to that of the uncompensated
system. The steady state performance however, is generally slightly worse. For a unit step input the steady
state error is zero, as for any type 1 system. But the steady state error for a unit ramp or velocity input is
larger {see Equations (9.4) and (9.5)]. The compensation scheme illustrated by this problem is called
derivative or tachometric feedback, and the control algorithm is derivative (D) control.

Determine a type of compensator that yields a phase margin of approximately 45° when added
to the fixed system components defined by

4
H:_
s(s?+3.25+ 64)

An additional requirement is that the high-frequency response of the compensated system is to
be approximately the same as that of the uncompensated system.

The Polar Plot for GH is sketched in Fig. 12-25. It is very close to the negative imaginary axis for
almost all values of w.
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Fig. 12-25

The phase margin is almost 90°, and either an increase in gain factor and/or a lag compensator is
capable of satisfying the phase margin requirement. But since the lag network may be designed to provide
attenuation at high frequencies and lag in the low-frequency range, a combination of both would be ideal
and sufficient (see Example 12.5), as shown in Fig. 12-25. Of course a lag-plus-gain factor compensator is
not necessary for meeting the design requirements. There are probably an infinite number of different
networks or transfer functions capable of satisfying these specifications. The lag network and amplifier,
however, are convenient due to their standardization, availability, and ease of synthesis.

Outline the design of a servomechanism capable of following a constant velocity input with zero
steady state error and approximately 25% maximum overshoot in the transient state. The fixed
plant is given by G, = 50/s%(s + 5).

Since the plant is type 2, it is capable of following a constant velocity input with zero steady state error
(see Chapter 9). However, the closed-loop system is unstable for any value of gain factor (see Example
12.6). Since no demands on bandwidth have been made, lead compensation should be sufficient (again see
Example 12.6) to stabilize the system and meet the transient specification. But two lead networks in series
are probably required because the phase margin of the unstable system is negative, and 25% overshoot is
equivalent to about +45° phase margin. Most standard lead networks have a maximum phase lead of
approximately 54° (see Fig. 16-2).

Detailed design would be very tedious using Nyquist analysis, if performed manually, because the
Polar Plot usually must be drawn in some detail several times before converging to a satisfactory solution.
If a computer is not available to facilitate this process, this problem may be solved much more easily using
the design methods introduced in Chapters 14, 16, and 18. Actually, two compensating lead networks, each
with a transfer function of approximately P, .4 = (s + 3)/(s + 20), would satisfy the specifications. If the
maximum steady state acceleration error were also specified, a preamplifier would be required with the lead
networks, For example, if X, = 50, then a preamplifier of gain 5(20,/3)? would be needed. This preamplifier
should be placed between the two lead networks to prevent, or minimize, loading effects (see Section 8.7).

Outline a design for a unity feedback system with a plant given by

G 2000
27 s(s+5)(s+10)

and the performance specifications:

(1) $pu =145
Q) K,=50.
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(3) The bandwidth BW of the compensated system must be approximately equal to or not
much greater than that of the uncompensated system, because high-frequency “noise”
disturbances are present under normal operating conditions.

(4) The compensated system should not respond sluggishly; that is the predominant time
constant 7 of the system must be maintained at a value approximately the same as that of
the uncompensated system.

A simple calculation clearly shows that the uncompensated system is unstable (e.g., try the Routh test).
Therefore compensation is mandatory. But due to the stringent nature of the specifications, a detailed
design for this system using Nyquist techniques requires too much effort, if done manually. The techniques
of the next few chapters provide a much simpler solution. However, analysis of the problem statement
indicates the kind of compensation needed.

For G,, K, =lim_ _, (5G,(s) = 40. Therefore satisfaction of (2) requires a gain compensation of 5/4.
But an increase in gain only makes the system more unstable. Therefore additional compensation is
necessary. Lead compensation is probably inadequate due to (3), and lag compensation is not possible due
to (4). Thus it appears that a lag-lead network and an amplifier would most likely satisfy all criteria. The lag
portion of the lag-lead network would satisfy (3), and the lead portion (4) and (1).

What is the effect on the Polar Plot of the system

m

n (s+2z)
GH=3—0
I_[ (s+p)
i=1
where m<n, 0<z,< o0, 0<p, < oo, when k finite nonzero poles are included in GH, in
addition to the original n poles?
For low frequencies the Polar Plot is modified in magnitude only, since

ﬁ(:+z,) ﬁz, 1

lim GH’ = lim | 233 == | timeH

=0 s n+k n+k

—0
[TG+p)| Te \Ila)’
=1 =1 =1

For high frequencies addition of k poles reduces the phase angle of GH by k /2 radians, since

lim arg GH'(w) w_w[z tan - 1(_) "ik an l(ﬂ)]

w=* 00 ] 1 i=1 i

mr  (n+k)n § GH km
i 2 LT
Therefore the portion of the Polar Plot near the origin is rotated clockwise by k= /2 degrees when k poles
are added.

. Draw the Polar Plot of the digital lag compensator given by Equation (12.4):

1-p\[z—2z,
(2222 e
Let z, = 0.86 and p, = 0.97, to simplify the task.
At w=0, P =P (e/)=P(1)=1 At oT=m,
1-p\| -1-¢ 1-zp—-(p -2
- (2|5 e

At a few intermediate values, Pi, (e/"/*)=0.02—-;0.03 and P (e/?)=02-;0.012. The resulting
Polar Plot, for 0 < wT < # radians is shown in Fig. 12-26. It is instructive to compare this Polar Plot of the
digital lag compensator with its continuous-time equivalent in Fig. 12-11.

=c=02
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Im Py,
0.175
0.15
0.125
0.
0.075
0.05
0.025 w=10 w=n/T
02 041 06 08 RePy,
a/b
Fig, 12-26

12.13. Draw the Polar Plot of the particular digital lead compensator:

1-e z—e ¢
»PLead(z)=( [1_8 Hz—e hT]

1-¢®T\(1-eT\ a
PLead(el ) PLcad(l) ( ) 1—e" aT l_e—bT =Z<1

The remainder of the plot has been drawn by computer, by evaluating Py .4(1/¢) for values of the angle ¢
in the range 0 < ¢ < o radians, for specific values a =1 and b= 2. The result is given in Fig. 12-27, which
should be compared with Fig, 12-6, the Polar Plot of a continuous system lead network.

where a < b.

We have

Im Ppeaq

Re Ppegy
-0.1

-02
—0.3 4

~04 4

—0.5 4

Fig. 12-27

This form of the general digital lead compensator, given in Equation (6.9), has a gain factor
k28 [1*_]
Lead = 3| )y pmaT
This compensator is a direct digital analog of the continuous lead compensator Py ,4 = (s + a)/(s + b), in

which the zeros and poles at —a and — b in the s-plane have been transformed directly into zeros and poles
in z-plane z, = e7“T and p, = e "7, and the steady state gain (at w = 0) has been preserved as a/b.

12.14. The closed-loop continuous system with both gain factor and lead compensation shown in Fig.

12-28 is stable, with a damping ratio {=0.7 and dominant time constant 7=4.5 sec (see
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12.15.
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Lead Gain
Network Attenuator Plant

Fig. 12-28

Sections 4.13 and 10.4). Redesign this system, replacing the controller (including summing
junction) with a digital computer, and any other needed components for analog-digital data
conversion. The new system should have approximately the same dynamic characteristics.

The sampling rate of the digital components must be sufficiently fast to reproduce the signals
accurately. The natural frequency w, is estimated from Equation (10.7) as w, = 1 /87 =1/(0.7)(4.5) = 0.317
rad/sec. For a continuous system with this «,, a safe angular sampling frequency w, = 20w, = 6.35 =27
rad/sec, equivalent to f, =1 Hz, because w, = 2f,. Therefore we choose T=1 sec.

We now replace the continuous lead compensator by the digital lead compensator given in Problem

12.13:
a\[l1—eT\|z—e“T
Preaa(2) ‘_‘(Z) loe || 7ot
0.55 z—0.82
S z-014
where a=02 and b=2 from Fig. 12-28. The factor of 0.55 can be obtained with the gain factor
compensator for the continuous system, K = 0.81, yielding an overall factor of 0.55 (0.81) = 0.45. The

resulting design also needs samplers in the feedback and the input paths, and a zero-order hold in the
forward path, all as shown in Fig. 12-29.

Zero-Order
Hold Plant

Digital Computer

r(ty f rik)

T=1se

Fig, 12-29

The digital transfer function Py 4(z) can be implemented for digital computation as a difference
equation between the input and output of Py .,4, using the methods described in Section 4.9. That is, write
Py ..a(2) as a function of 2! instead of z, and treat z™! as a unit time-shift operator. Combining the gain
factor 0.45 with P4, we obtain

0.48P 045-039z2 " u(k)
B (k) —e(k)

1-014z"
Then, cross-multiplying terms and letting z~'u(k)=u(k — 1), etc., we obtain the desired difference
equation:

u(k) =0.14u(k—1) +0.45[r(k) —c(k)] - 039 r(k - 1) — c(k - 1)}

Digitize the remaining continuous components in Fig. 12-29 and compare the Polar Plot of: (a)
the original continuous plant without compensation, G,(s)=1/s?, (b) the compensated system
of Fig. 12-28, G,G,(s), and (c) the digital system of Fig. 12-30, G,G,(z).
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The combination of the zero-order hold and the plant G,(s)=1/s? can be digitized using Equation

(6.9):
Gi(z) = (i;—l}z{y*‘(s—lz) 1=-kT}

_Ij( z+1 )_0.5(z+1)
2 lE-y) (-

The closed-loop discrete-time equivalent system is shown in Fig. 12-30.

Nyquist Stability Plots (not shown) would indicate that the compensated systems are absolutely stable.
To check relative stability, the Polar Plots of the three systems are shown superimposed in Fig. 12-31, for
w > 0 only. The phase margin of G,G,(s) is ¢ppy = 53°, a substantial improvement over that of G,(s). The
Polar Plots for G,G,(s) and G,G,(z) are quite similar, over a wide range of w, and the phase margin for
G,G,(2) is still quite good, ¢ppy = 37°.

rik) + :'_L'
Fig. 12-30
Im
l /GZ(‘S)=1/SZ B o
-8 -6 -4 -2 Re

-1

GGy 2) 2

\ -3

G,G,(s)
-4
-5
Fig. 12-31

12.16. Determine the closed-loop system bandwidth BW of the compensated system designed in

i

Mathcad

Example 12.7.

Performance specification 3 was given in terms of the gain crossover frequency w,, as w; > 10 rad/sec.
This may appear somewhat unrealistic, or artificial, given that a specific phase margin ¢,y =[180 +
arg GH(w,)] degrees was also given in performance specification 2. Actually, the bandwidth (BW) of the
closed-loop system would be the more likely frequency of interest in control system design. (These design
criteria are discussed in Chapter 10.) However, as noted in Section 10.4, it is often the case that w, is a
good approximation of the closed-loop system bandwidth BW, when it is given its common interpretation
as the range of frequencies over which the magnitude ratio of the system, which in this case means |C/R]|,
does not fall more than 3 db from its steady state value, at @ =0 (z =1). For this problem

159z~ 0.86)
T (-1(z-097)
_ 3(z+1)(z+14)

GG,

c
R 1+GG,
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12.17.

12.18.

12.19.

12.20.

12.21.

12.22.

12.23.

12.17.

12.18.

12.21.

12.22.
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We easily find that

li ( C) Li ¢ 1

m|—|=1lm|—|=

w=0| R 71 ( R)

Now, 3 db down from 1 is 0.707 [see Equation (/0.5)]. Therefore the BW is the frequency wpy, that satisfies
the equation:

c
= (wpw) | =0.707

We quickly obtain the solution wpy, = 10.724 rad/sec by trial and error using a computer to evaluate the
magnitude ratio at a few values of w in the vicinity of w, =10. Thus the approximation w, = wgy, is
confirmed as a good one for the problem solved in Example 12.7.

Supplementary Problems
Determine a positive value of gain factor K when M, =2 for the system of Problem 12.5.
Prove Equation (12.1).
Prove Equations (/2.2) and (12.3).

Design a compensator which yields a phase margin of approximately 45° for the system defined by
GH = 84/s(s + 2)(s + 6).

Design a compensator which yields a phase margin of about 40° and a velocity constant K, = 40 for the
system defined by GH = (4 X 10°)/s(s + 20)(s + 100).

What kind of compensation can be used to yield a maximum overshoot of 20% for the system defined by
GH = (4 X 10*)/5%(s + 100)?

Show that the addition of & finite zeros (z, # 0) to the system of Problem 12.11 rotates the high-frequency
portion of the Polar Plot by k7 /2 radians in the counterclockwise direction.

Answers to Some Supplementary Problems

K=312
s+ 30
Lead = 51120

s+ 20

g = ———, no preamplifier required
tead = 00 p p q

Lag-lead, and possibly lead plus gain factor compensation.

Chapter 13

Root-Locus Analysis

13.1 INTRODUCTION

It was shown in Chapters 4 and 6 that the poles of a transfer function can be displayed graphically
in the s-plane or z-plane by means of a pole-zero map. An analytical method is presented in this chapter
for displaying the location of the poles of the closed-loop transfer function

G
1+ GH

as a function of the gain factor K (see Sections 6.2 and 6.6) of the open-loop transfer function GH. This
method, called root-locus analysis, requires that only the location of the poles and zeros of GH be
known, and does not require factorization of the characteristic polynomial.

Root-locus techniques permit accurate computation of the time-domain response in addition to
yielding readily available frequency response information.

The following discussion of root-locus analysis applies identically to continuous systems in the
s-plane and discrete-time systems in the z-plane.

13.2 VARIATION OF CLOSED-LOOP SYSTEM POLES: THE ROOT-LOCUS

Consider the canonical feedback control system given in Fig. 13-1. The closed-loop transfer
function 1s

R + C

H

Fig. 13-1

Let the open-loop transfer function GH be represented by
KN
GH=—
D

where N and D are finite polynomials in the complex variable s or z and K is the open-loop gain
factor. The closed-loop transfer function then becomes

C G GD
R 1+KN/D D+KN

The closed-loop poles are roots of the characteristic equation
D+KN=0 (13.1)

In general the location of these roots in the s-plane or z-plane changes as the open-loop gain factor X is
varied. A locus of these roots plotted in the s-plane or z-plane as a function of K is called a root-locus.

For K equal to zero, the roots of Equation (/3.1) are the roots of the polynomial D, which are the
same as the poles of the open-loop transfer function GH. If K becomes very large, the roots approach

319
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those of the polynomial N, the open-loop zeros. Thus, as X is increased from zero to infinity, the loci of
the closed-loop poles originate from the open-loop poles and terminate at the open-loop zeros.

EXAMPLE 13.1. Consider the continuous system open-loop transfer function
KN(s) K(s+1) K(s+1)
GH = =— =
D(s) 5P+ 2s s(s+2)
For H =1, the closed-loop transfer function is
C K(s+1)
R s2+2s+K(s+1)

The closed-loop poles of this system are easily determined by factoring the denominator polynomial:

p= 12+ K)+1+1iK?
p= =32+ K) =~ T+1K7

The locus of these roots plotted as a function of X (for K > 0) is shown in the s-plane in Fig. 13-2. As observed in
the figure, this root-locus has two branches: one for a closed-loop pole which moves from the open-loop pole at the
origin to the open-loop zero at —1, and from the open-loop pole at — 2 to the open-loop zero at — oo.

Ju
J
w2 [
~ ° B
1l 1 M I
N X X X
-2 ~1 ) NK=0 o
Fig. 13-2

In the example above, the root-locus is constructed by factoring the denominator polynomial of the
system closed-loop transfer function. In the following sections, techniques are described which permit
construction of root-loci without the need for factorization.

13.3 ANGLE AND MAGNITUDE CRITERIA

In order for a branch of a root-locus to pass through a particular point p, in the complex plane, it
is necessary that p, be a root of the characteristic Equation (/3.1) for some real value of K. That is,

D(p,) +KN(p,)=0 (13.2)
KN
or, equivalently, GH= % =-1 (13.3)
1

Therefore the complex number GH( p,) must have a phase angle of 180° + 360/°, where / is an
arbitrary integer. Thus we have the angle criterion

arg GH( p,) = 180° + 360/° = (2/ + 1) = radians 1=0,+1,+2,... (13.4a)
which can also be written as
N(p,) (214 1)7 radians  for K>0
arg| —— | = 1=0,+1,%2,... 13.4b
g[ D(p,) { 2/7 radians for K<0 ( )
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In order for p, to be a closed-loop pole of the system, on the root-locus, it is necessary that
Equation (73.3) be satisfied with regard to magnitude in addition to phase angle. That is, K must have
the particular value that satisfies the magnitude criterion: |GH( p,)|=1, or

D(py)
N(p))

The angle and magnitude of GH at any point in the complex s- or z-plane can be determined
graphically as described in Sections 4.12 and 6.5. In this way, it is possible to construct the root-locus
manually by a trial-and-error procedure of testing points in the complex plane. That is, the root-locus is
drawn through all points which satisfy the angle criterion, Equation (/3.4b), and the magnitude
criterion is used to determine the values of K at points along the loci. Digital computer programs for
routinely plotting root-loci are widely available. However, manual construction is simplified consider-
ably, using certain shortcuts or construction rules as described in the following sections.

[K|= (13.5)

13.4 NUMBER OF LOCI

The number of loci, that is, the number of branches of the root-locus, is equal to the number of
poles of the open-loop transfer function GH (for n > m).

EXAMPLE 13.2. The open-loop transfer function of the discrete-time system GH(z) = K(z + })/z°(z + 1) has
three poles. Hence there are three loci in the root-locus plot.

13.5 REAL AXIS LOCI

Those sections of the root-locus on the real axis in the complex plane are determined by counting
the total number of finite poles and zeros of GH to the right of the points in question. The following
rule depends on whether the open-loop gain factor K is positive or negative.

Rule for K >0
Points of the root-locus on the real axis lie to the left of an odd number of finite poles and zeros.

Rule for K <0
Points of the root-locus on the real axis lie to the left of an even number of finite poles and zeros.

If no points on the real axis lie to the left of an odd number of finite poles and zeros, then no
portion of the root-locus for X > 0 lies on the real axis. A similar statement is true for K <0.

EXAMPLE 13.3. Consider the pole-zero map of an open-loop transfer function GH shown in Fig. 13-3. Since all
the points on the real axis between 0 and —1 and between —1 and -2 lie to the left of an odd number of finite
poles and zeros, these points are on the root-locus for K > 0. The portion of the real axis between — oo and — 4 lies
to the left of an odd number of finite poles and zeros; hence these points are also on the root-locus for K > 0. All
portions of the root-locus for K > 0 on the real axis are illustrated in Fig. 13-4. All remaining portions of the real
axis, that is, between —2 and — 4 and between 0 and o0, lie on the root-locus for K < 0.

4 Im 4 Im
x ri X J
o > Ot >
-4 -2 Re -4 -2 -1 Re
X -J X -




322 ROOT-LOCUS ANALYSIS [CHAP. 13

13.6 ASYMPTOTES

For large distances from the origin in the complex plane, the branches of a root-locus approach a
set of straight-line asymptotes. These asymptotes emanate from a point in the complex plane on the real
axis called the center of asymptotes o_ given by

n m
Xr- X 2
i=1 i=1
o = e —
A p— (13.6)
where —p, are the poles, —z; are the zeros, n is the number of poles, and m the number of zeros of
GH.

The angles between the asymptotes and the real axis are given by

(2/+1)180
——— degrees for K>0
g={ "~ (13.7)
(21)180 ’
degrees for K<0
n—m

for /=0,1,2,..., n— m~ 1. This results in a number of asymptotes equal to n — m.

EXAMPLE 13.4. The center of asymptotes for GH = K(s + 2)/s2(s + 4) is located at
4-2
6 =-—"=
Since n — m =3 — 1 =2, there are two asymptotes. Their angles with the real axis are 90° and 270°, for K> 0, as
shown in Fig. 13-5.

i jw
i

o -
—4 -2 \.1'\ 0. = -1 o

Fig, 13-5

13.7 BREAKAWAY POINTS

A breakaway point o, is a point on the real axis where two or more branches of the root-locus
depart from or arrive at the real axis. Two branches leaving the real axis are illustrated in the root-locus
plot in Fig. 13-6. Two branches coming onto the real axis are illustrated in Fig. 13-7.

Im Im

I/V i N " \/ . .
l Re \‘ e

Fig. 13-6 Fig. 13-7

The location of the breakaway point can be determined by solving the following equation for o,:
n 1 m 1
)» =X
S (ep+p) [T (0,+2)
where —p, and —z, are the poles and zeros of GH, respectively. The solution of this equation requires

(13.8)
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factorization of an (n + m — 1)-order polynomial in ¢,. Consequently, the breakaway point can only be
easily determined analytically for relatively simple GH. However, an approximate location can often be
determined intuitively; then an iterative process can be used to solve the equation more exactly (see
Problem 13.20). Computer programs for factorization of polynomials could also be applied.

EXAMPLE 13.5. To determine the breakaway points for GH = K/s(s + 1)(s + 2), the following equation must be
solved for o,:
1 1 1

— + + =
6, o6,+1 o,+2

(0,+1)(0,+2) +0,(0,+2) +0,(0,+1)=0

which reduces to 367 + 60, + 2 = 0 whose roots are 6, = —0.423, ~ 1.577.

Applying the real axis rule of Section 13.5 for K > 0 indicates that there are branches of the root-locus between
0 and —1 and between —oo and —2. Therefore the root at —0.423 is a breakaway point, as shown in Fig. 13-8.
The value o, = —1.577 represents a breakaway on the root-locus for negative values of K since the portion of the
real axis between —~1 and —2 is on the root-locus for K < 0.

Jw

-2 -1 l -4

Fig. 13-8

13.8 DEPARTURE AND ARRIVAL ANGLES
The departure angle of the root-locus from a complex pole is given by
0,=180° + arg GH' (13.9)

where arg GH’ is the phase angle of GH computed at the complex pole, but ignoring the contribution of
that particular pole.

EXAMPLE 13.6. Consider the continuous system open-loop transfer function

GH K(s+2) K>0
= - >
(s+1+)(s+1-})
The departure angle of the root-locus from the complex pole at s = —1 + is determined as follows. The angle of

GH for s= —1 +j, ignoring the contribution of the pole at s = —1 +j, is —45°. Therefore the departure angle is
8, =180° — 45° =135°
and is illustrated in Fig. 13-9.

35° Ju
e

A4

-2 -1

al

B
|
|
|
H
|
|
i
*———-j

Fig. 13-9
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The angle of arrival of the root-locus at a complex zero is given by
= 180° — arg GH” (13.10)

where arg GH” is the phase angle of GH at the complex zero, ignoring the effect of that zero.

EXAMPLE 13.7. Consider the discrete-time system open-loop transfer function

K(z+j)(z-J)
BT R

The arrival angle of the root-locus for the complex zero at z=j; is §, = 180° — (—45°) =225° as shown in
Fig. 13-10.

v
225°

A3

i

Fig. 13-10

13.9 CONSTRUCTION OF THE ROOT-LOCUS

A root-locus plot may be easily and accurately sketched using the construction rules of Sections
13.4 through 13.8. An efficient procedure is the following. First, determine the portions of the root-locus
on the real axis. Second, compute the center and angles of the asymptotes and draw the asymptotes on
the plot. Then determine the departure and arrival angles at complex poles and zeros (if any) and
indicate them on the plot. Next, make a rough sketch of the branches of the root-locus so that each
branch of the locus either terminates at a zero or approaches infinity along one of the asymptotes. The
accuracy of this last step should of course improve with experience.

The accuracy of the plot may be improved by applying the angle criterion in the vicinity of the
estimated branch locations. The rule of Section 13.7 can also be applied to determine the exact location
of breakaway points.

The magnitude criterion of Section 13.3 is used to determine the values of K along the branches of
the root-locus.

Since complex poles must occur in complex conjugate pairs (assuming real coefficients for the
numerator and denominator polynomials of GH'), the root-locus is symmetric about the real axis. Thus
it is sufficient to plot only the upper half of the root-locus. However, it must be remembered that, in
doing this, the lower halves of open-loop complex poles and zeros must be included when applying the
magnitude and angle criteria.

Often, for analysis or design purposes, an accurate plot of the root-locus is required only in certain
regions of the complex plane. In this case, the angle and magnitude criteria need only be applied in
those regions of interest after a rough sketch has established the general shape of the plot. Of course, if
a computer and appropriate software are available, plotting of even very complex root-loci can be a
simple matter.

EXAMPLE 13.8. The root-locus for the closed-loop continuous system with open-loop transfer function
K

GH = s(s+2)(s+4)

K>0

is constructed as follows. Applying the real axis rule of Section 13.5, the portions of the real axis between 0 and —2
and between —4 and — oo lie on the root-locus for K > 0. The center of asymptotes is determined from Equation
(13.6) tobe g, = —(2+4)/3 = -2, and there are three asymptotes located at angles of 8= 60°, 180°, and 300°.
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Since two branches of the root-locus for K > 0 come together on the real axis between 0 and — 2, a breakaway
point exists on that portion of the real axis. Hence the root-locus for K > 0 may be sketched by estimating the
location of the breakaway point and continuing the branches of the root-locus to the asymptotes, as shown in Fig.
13-11. To improve the accuracy of this plot, the exact location of the breakaway point is determined from Equation
(13.8):

1 1 1

—+ +——=0
g, 0,+2 o,+4

which simplifies to 367 + 126, + 8 = 0. The appropriate solution of this equation is 6, = —0.845.

|

!
%

a¥

Fig. 13-11
The angle criterion is applied to points in the vicinity of the approximate root-locus to improve the accuracy of

the location of the branches in the complex part of the s-plane; the magnitude criterion is used to determine the
values of K along the root-locus. The resulting root-locus plot for K > 0 is shown in Fig. 13-12.

jul/

K =48
+K=15
Y=

—6 -4 -2

Q

Fig. 13-12

The root-locus for K < 0 is constructed in a similar manner. In this case, however, the portions of the real axis
between 0 and co and between —2 and —4 lie on the root-locus; the breakaway point is located at —3.155; and
the asymptotes have angles of 0°, 120°, and 240°. The root-locus for K < 0 is shown in Fig. 13-13.
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Fig. 13-13

13.10 THE CLOSED-LOOP TRANSFER FUNCTION AND THE TIME-DOMAIN RESPONSE

The closed-loop transfer function C/R is easily determined from the root-locus plot for a specified
value of open-loop gain factor K. From this, the time-domain response c(7) may be determined for a
given Laplace transformable input r(¢) for continuous systems by inversion of C(s). For discrete
systems, c(k) can be similarly determined by inversion of C(z).

Consider the closed-loop transfer function C/R for the canonical unity (negative) feedback system

C G

—_—= 13.11

R 1+G ( )
Open-loop transfer functions which are rational algebraic expressions can be written (for continuous
systems) as

_K_N_K(s+z,)(s+22)~-~(s+zm)
D (stp)(stp) - (s+p,)

G has the same form for discrete-time systems, with z replacing s in Equation (/3./2). In Equation
(13.12), —z; are the zeros, —p, are the poles of G, m < n, and N and D are polynomials whose roots
are —z; and —p,, respectively. Then

(13.12)

C KN

—_—= 13.13
R D+KN ( )

and it is clear that C/R and G have the same zeros but not the same poles (unless K = 0). Hence

C K(s+z)(s+z) - (s+2z,)

R (sta)(stay) - (s+a,)

where —a; denote the n closed-loop poles. The location of these poles is by definition determined
directly from the root-locus plot for a specified value of open-loop gain K.

ot
&a EXAMPLE 13.9. Consider the continuous system whose open-loop transfer function is

c K(s+2)

: K>0
(s+1)

The root-locus plot is given in Fig. 13-14.
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Q

+ -1

Fig. 13-14

Several values of gain factor K are shown at points on the loci denoted by small triangles. These points are the
closed-loop poles corresponding to the specified values of K. For K = 2, the closed-loop poles are —a; = —2 + and
—a, = —2 —j. Therefore

C 2As+2)

R (s+2+j)(s+2-))

When the system is not unity feedback, then

¢ ¢ (13.14)
R 1+GH :
KN
and GH=7 (1315)

The closed-loop poles may be determined directly from the root-locus for a given K, but the
closed-loop zeros are not equal to the open-loop zeros. The open-loop zeros must be computed
separately by clearing fractions in Equation (/3.14).

EXAMPLE 13.10. Consider the continuous system described by
K(s+2) 1

K(s+2)
s+1 s+1

B (s+1)?
C K(s+1)(s+2) _K(Gs+1)(s+2)

and R (s+10+K(s+2) Gra)(s+a)

The root-locus plot for this example is the same as that for Example 13.9. Hence for K=2, & =2+ and

a, =2 - j. Thus
Cc 2(s+1)(s+2)

R (s+2+j)(s+2-))

EXAMPLE 13.11. For the discrete-time system with GH(z) = K/z(z — 1), the root-locus for K > 0 is shown in
Fig. 13-15. For K = 0.25, the roots are at z = 0.5 and the closed-loop transfer function is

C 0.25

R (z-05)

Fig. 13-15
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13.11 GAIN AND PHASE MARGINS FROM THE ROOT-LOCUS

The gain margin is the factor by which the gain factor K can be multiplied before the closed-loop
system becomes unstable. It can be determined from the root-locus using the following formula:

value of K at the stability boundary

gain margin = (13.16)

design value of K
where the stability boundary is the jw-axis in the s-plane, or the unit circle in the z-plane. If the
root-locus does not cross the stability boundary, the gain margin is infinite.

EXAMPLE 13.12. Consider the continuous system in Fig. 13-16. The design value for the gain factor is 8,
producing the closed-loop poles (denoted by small triangles) shown in the root-locus of Fig. 13-17. The gain factor
at the jw-axis crossing is 64; hence the gain margin for this system is 64,/8 = 8.

72
R 1t~ 8 [ )
(8 f 2)3 3 poles 71
= K=38
g o
—jt
L —j2
Fig. 13-16 Fig. 13-17

EXAMPLE 13.13. The root-locus for the discrete-time system of Example 13.11 crosses the stability boundary
(unit circle) for K = 1. For a design value of K= 0.25, the gain margin is 1/0.25 = 4.

The phase margin can also be determined from the root-locus. In this case it is necessary to find the
point w; on the stability boundary for which |GH|=1 for the design value of K; that is,

ID(“’I)/N(“’l)| = Kdesign

It is usually necessary to use a trial-and-error procedure to locate w,. The phase margin is then
computed from arg GH(w,) as

dpm = [180° + arg GH(w, )] degrees (13.17)

EXAMPLE 13.14. For the system of Example 13.12, |GH(w,)| =|8/(jw, + 2)’| =1 when w, = 0; the phase angle
of GH(0) is 0°. The phase margin is therefore 180°.

EXAMPLE 13.15. For the continuous system of Fig. 13-18, the root-locus is shown in Fig. 13-19. The point on
the jw-axis for which |GH{w,)|=[24/jw(jw, + 4)}|=1 is at w; =1.35; the angle of GH(1.35) is —129.6°.
Therefore the phase margin is ¢py = 180° — 129.6° = 50.4°.

- Ees $i- 1| ud s
s(s + 4)2

Fig. 13-18
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Fig. 13-19

13.12  DAMPING RATIO FROM THE ROOT-LOCUS FOR CONTINUOUS SYSTEMS

The gain factor K required to give a specified damping ratio { (or vice versa) for the second-order
continuous system

- K
C(s+p)(s+py)

is easily determined from the root-locus. Simply draw a line from the origin at an angle of plus or minus
8 with the negative real axis, where

K,pi,p,>0

f=cos !¢ (13.18)

(See Section 4.13.) The gain factor at the point of intersection with the root-locus is the required value
of K. This procedure can be applied to any pair of complex conjugate poles, for systems of second or
higher order. For higher-order systems, the damping ratio determined by this procedure for a specific
pair of complex poles does not necessarily determine the damping (predominant time constant) of the
system.

EXAMPLE 13.16. Consider the third-order system of Example 13.15. The damping ratio { of the complex poles
for K = 24 is easily determined by drawing a line from the origin to the point on the root-locus where K = 24, as
shown in Fig. 13-20. The angle 6 is measured as 60°; hence

{=cosf#=0.5

This value of { is a good approximation for the damping of the third-order system with K =24 because the
complex poles dominate the response.

Jw
K =24 ”2
K =24 o 60 .
6 -1 —1.33\ T o
Fig. 13-20
Solved Problems

VARIATION OF SYSTEM CLOSED-LOOP POLES

13.1. Determine the closed-loop transfer function and the characteristic equation of the unity negative
feedback control system whose open-loop transfer function is G = K(s + 2)/(s + 1)(s + 4).
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The closed-loop transfer function is

C G K(s+2)
R 146 (s+1)(s+4)+K(s+2)

The characteristic equation is obtained by setting the denominator polynomial equal to zero:

(s+1)(s+4)+K(s+2)=0

13.2. How would the closed-loop poles of the system of Problem 13.1 be determined for K = 2 from its
root-locus plot?

The root-locus is a plot of the closed-loop poles of the feedback system as a function of K. Therefore
the closed-loop poles for K =2 are determined by the points on the root-locus which correspond to K =2
(one point on each branch of the locus).

13.3. How can a root-locus be employed to factor the polynomial s2 + 65 + 18?

Since the root-locus is a plot of the roots of the characteristic equation of a system, Equation (/3.1), as
a function of its open-loop gain factor, the roots of the above polynomial can be determined from the
root-locus of any system whose characteristic polynomial is equivalent to it for some value of K. For
example, the root-locus for GH = K/s(s + 6) factors the characteristic polynomial s + 6s + K. For K=18
this polynomial is equivalent to the one we desire to factor. Thus the desired roots are located on this
root-locus at the points corresponding to K = 18.

Note that other forms for GH could be chosen, such as GH = K/(s + 2)(s + 4) whose closed-loop
characteristic polynomial corresponds to the one we wish to factor, but now for K = 10.

ANGLE AND MAGNITUDE CRITERIA

13.4. Show that the point p, = —0.5 satisfies the angle criterion, Equation (/3.4), and the magnitude
iz criterion, Equation (/3.5), when K = 1.5 in the open-loop transfer function of Example 13.1.

athcad

cH K(p +1) 1.5(0.5) 180° \GH | 1.5(0.5)
arg GH( p\) argPl(Pl +2) arg ~0.5(1.5) (p)l= 0515 |
D -0.5(1.5
or (p) =l# =15=K
N(p)) 05
Thus as illustrated on the root-locus plot of Example 13.1, the point p, = —0.5 is on the root-locus and is a

closed-loop pole for K =1.5.

13.5. Determine the angle and magnitude of GH( j2) for GH = K/s(s + 2)%. What value of K satisfies
|GH(j2)|=1?

_180° K| K
arsGH(12)={ 180 for K>0 |GH(,'2)|=_|_1-L|

GH(j2) = 0° for K<0 28) 16

K
J2Aj2+2)°
and for |GH(j2)| =1 it is necessary that |K| = 16.

13.6. Illustrate the graphical composition of arg GH( j2) and |GH( j2)| in Problem 13.5.

Kl _IK]
Aw2) 16

arg GH( j2) = — 90° — 45° — 45° = —180° |GH(j2)| =
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Fig. 13-21

13.7. Show that the point p, = —1+ /3 is on the root-locus for

K
CHG) = TG+ aere K70

and determine K at this point.
arg N(p) -ang 1
D(p) NI +HI)(3+43)

The angle criterion, Equation (/3.4b), is thus satisfied for K> 0 and the point p, = —1 +//3 is on the
root-locus. From Equation (/3.5),

x| +3)(+53)
1

= —90° - 60° — 30° = —180°

=A@z =12

NUMBER OF LOCI
13.8. Why must the number of loci equal the number of open-loop poles for m < n?

Each branch of the root-locus represents the locus of one closed-loop pole. Consequently there must be
as many branches or loci as there are closed-loop poles. Since the number of closed-loop poles is equal to
the number of open-loop poles for m < n, the number of loci must equal the number of open-loop poles.

13.9. How many loci are in the root-locus for

K(z+3)(2+1})
2(z+3+j/2)(2=1-/2)
Since the number of open-loop poles is three, there are three loci in the root-locus plot.

GH(z) =

REAL AXIS LOCI
13.10. Prove the real axis loci rules.

For any point on the real axis, the angle contributed to arg GH by any real axis pole or zero is either
0° or 180°, depending on whether or not the point is to the right or to the left of the pole or zero. The total
angle contributed to arg GH(s) by a pair of complex poles or zeros is zero because

arg(s+ o, +jw,) + arg(s + 0; —jw,) =0
for all real values of s. Thus arg GH(s) for real values of s (s = ¢) may be written as
arg GH( o) = 180n, + arg K

where n, is the total number of finite poles and zeros to the right of ¢. In order to satisfy the angle
criterion, n, must be odd for positive K and even for negative K. Thus for K > 0, points of the root-locus
on the real axis lie to the left of an odd number of finite poles and zeros; and for K <0, points of the
root-locus on the real axis lie to the left of an even number of finite poles and zeros.
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13.11. Determine which parts of the real axis are on the root-locus of
K(s+2)
s+ D (s+34+j)(s+3—))

The points on the real axis which lie to the left of an odd number of finite poles and zeros are only
those points between —1 and —2. Therefore by the rule for K > 0, only the portion of real axis between
—1 and -2 lies on the root-locus.

K>0

GH

13.12. Which parts of the real axis are on the root-locus for
K

H=——"75—«¢

s(s+1D)(s+2)

Points on the real axis between 0 and —1 and between —1 and -2 lie to the left of an odd number of
poles and zeros and therefore are on the root-locus for X > 0.

K>0

ASYMPTOTES
13.13. Prove that the angles of the asymptotes are given by

(2/+1)180

B degrees for K>0

= 13.7
A (27)180 ( )
~———— degrees for K<0
n—m

For points s far from the origin in the s-plane, the angle contributed to arg GH by each of m zeros is
arg(s + Z.)'|:|>|z,\ = arg(s)

Similarly, the angle contributed to arg GH by each of n poles is approximately equal to — arg(s). Therefore

N(s) 5 B B ~
g 5y | =~ (n=m)asls) = ~(n-m)B

where B = arg(s). In order for s to be on the root-locus the angle criterion, Equation (/3.4b), must be
satisfied. Thus

N(s) ( )8 (2U+1)n for K>0
=_—(n- =
il TP m )y for K<0
and, since += radians (+180°) are the same angle in the s-plane, then
(21 +1)180
——— degrees for K>0
B — n—-m
(21)180
e degrees for K<0

n

The proof is similar for the z-plane.

13.14. Show that the center of asymptotes is given by

Z Pi_ ZZI
g = -4zl =L (13.6)
n—m

The points on the root-locus satisfy the characteristic equation D + KN =0, or
R N L K(s"’ S T Lk R +a0) =0
Dividing by the numerator polynomial N(s), this becomes

T 4 (byy Gy s" " 4 o 4K =0
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(same for the z-plane, with z replacing s). When the first coefficient of a polynomial is unity, the second
coefficient is equal to minus the sum of the roots (see Problem 5.26). Thus from D(s)=0, b,_, =L}, p;-
From N(s)=0, a,,_, =X™,z; and —(b,_, —a,,_,) is equal to the sum of n — m roots of the characteris-
tic equation.

Now for large values of K and correspondingly large distances from the origin these n — m roots
approach the straight-line asymptotes and, along the asymptotes, the sum of the n — m roots is equal to
~(b,_1 ~ @,,_y)- Since b,_, —a,,_, is a real number, the asymptotes must intersect at a point on the real
axis. The center of asymptotes is therefore given by the point on the real axis where n — m equal roots add
up to —(b,_; —a,_,) Thus

n m
b _ Z pPi— Z Z;
-1~ %m-1 _  i=1 i=1

g =- =
n—m n—m

For a more detailed proof, see reference [6].
13.15. Find the angles and center of, and sketch the asymptotes for
K(s+2)
T GHADH3+)(s+3-)(s+4)

The center of asymptotes is

K>0

GH

1+34/+3—j+4-2
o = — =
‘ 4-1
There are three asymptotes located at angles of 8 = 60°, 180°, and 300° as shown in Fig. 13-22.

-3

;4o
// 2
x / n
/\605
-4 -3\-2 -1 o

X\ i
\\ i

\

Fig. 13-22

13.16. Sketch the asymptotes for K > 0 and K <0 for
K
H = - -
s(s+2)(s+1+5)(s+1—j)

The center of asymptotesis 6, = —(0+2+1+,+1~-/)/4=—1.
For K > 0, the angles of the asymptotes are B = 45°, 135°, 225°, and 315° as shown in Fig. 13-23.
For K <0, the angles of the asymptotes are 8 = 0°, 90°, 180°, and 270° as shown in Fig. 13-24.

\\ 4 Jw // | dio
N K>0 s K<o0 I
N g i
\\ // |
90°
NS . i _
-2 p —1\\ [ ~2 1-1 o
s N !
// X \::;'1 *
p / N |
s AN |
Fig. 13-23 Fig. 13-24
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BREAKAWAY POINTS
13.17. Show that a breakaway point o, satisfies
" 1 i 1
- (13.8)
,=1(°h+p.) ,=1(°h+z:)
A breakaway point is a point on the real axis where the gain factor K along the real axis portion of the
root-locus is a maximum for poles leaving the real axis, or a minimum for poles coming onto the real axis,
(see Section 13.2). The gain factor along the root-locus is given by
K|=|—= 13.
1= |5 (133)
On the real axis, s =0 (or z=p) and the magnitude signs may be dropped becausc D(o) and N(o) are
both real. Then
D(o)
~ N(o)
To find the value of ¢ for which K is a maximum or minimum, the derivative of K with respect to a is set
equal to zero:
dk d[{o+p)---(a+p,)
do  do (o+z2)---(a+z,)|
By repeated differentiation and factorization, this can be written as
dk 2 1 [D(o)] m 1 D(o)
do T (o+p) | N(o)| [Zi(o+z)|N(o)
Finally, dividing both sides by D(0)/N(a) yields the required result.
13.18. Determine the breakaway point for GH = K/s(s + 3).
The breakaway point satisfies
1 1 1
— e —— 4 =
0, o,+3 o,+3
from which ¢, = — 1.
13.19. Find the breakaway point for

K(s+2)
- (s+1+//3)(s+1-43)

From Equation (/3.8),

1 1 1
+ -
0, +1+i3  a,+1-/3 o,+2
which gives o7 + 40, = 0. This equation has the solution 0, =0 and g, = - 4; a, = — 4 is a breakaway point

for K > 0 and o, = 0 is a breakaway point for K < 0, as shown in Fig. 13-25.

Ju d iy

K>0 ; 1ivs K<o 1vi

q"

t—iV3 T-iV3

Fig. 13-25
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Find the breakaway point between 0 and —1 for
K

GH = s(s+1)(s+3)(s+4)

The breakaway point must satisfy
1 1 1 1

—+ + + =0
o, (0,+1) (0,+3) (0,+4)

If this equation were simplified, a third-order polynomial would be obtained. To avoid solving a third-order
polynomial, the following procedure may be used. As a first guess, assume o, = — 0.5 and use this value in
the two terms for the poles furthest from the breakaway point. Then

1 1 1 1

—+— 4+ —+—=0

6, o,+1 25 35
which simplifies to o7 + 3.920, + 1.46 =0 and has the root g, = —0.43 between 0 and — 1. This value is
used to obtain a better approximation as follows:

1 1 1 1

bt —t——=0 2 13,990, + 1.496 =0
o, o, +1 257 357 % %

o, = —0.424

The second computation did not result in a value much different from the first. A reasonable first guess
can often result in a fairly accurate approximation with only one computation.

DEPARTURE AND ARRIVAL ANGLES

13.21.

13.22.

13.23.

13.24.

i+

Mathcad

Show that the departure angle of the root-locus from a complex pole is given by
8,=180° + arg GH’ (13.9)
Consider a circle of infinitesimally small radius around the complex pole. Clearly, the phase angle
arg GH' of GH, neglecting the contribution of the complex pole, is constant around this circle. If 8,

represents the departure angle, the total phase angle of GH at the point on the circle where the root-locus
crosses it is

arg GH = arg GH' - 6,

since —0@p, is the phase angle contributed to arg GH by the complex pole. In order to satisfy the angle
criterion, arg GH = arg GH’ — 6, = 180° or 8, = 180° + arg GH’ since +180° and —180° are equivalent.

Determine the relationship between the departure angle from a complex pole for K > 0 with that
for K <0.

Since arg GH’ changes by 180° if K changes from a positive number to a negative one, the departure
angle for K < 0 is 180° different from the departure angle for X > 0.

Show that the arrival angle at a complex zero satisfies
6, =180° — arg GH" (13.10)

In the same manner as in the solution to Problem 13.21, the phase angle of GH in the vicinity of the
complex zero is given by arg GH = arg GH” + 8, since 8, is the phase angle contributed to arg GH by the
complex zero. Then applying the angle criterion yields 8, = 180° — arg GH".

Graphically determine arg GH’ and compute the departure angle of the root-locus from the
complex pole at s = —2 + for

K
T+ D)(s+2-/)(s+2+J)

From Fig. 13-26, arg GH' = —135° — 90° = —225°; and 8, = 180° — 225° = —45° as shown in Fig.
13-27.

GH

K>0
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Ju d Jw
1 T/ ‘T 2t
—45°
135>
-2 -1 o 3 B -
90°
> 45 < —it
Fig. 13-26 Fig, 13-27

13.25. Determine the departure angles from the complex poles and the arrival angles at the complex
zeros for the open-loop transfer function

_ K(s+14j)(s+1-))
T s(s+2)(s-2))

K>0
For the complex pole at s =2 j,
arg GH’' = 45° + 71.6° — 90° — 90° = —63.4°  and 0, =180° — 63.4° = 116.6°

Since the root-locus is symmetric about the real axis, the departure angle from the pole at s= ~2; is
—116.6°. For the complex zero s = —1 +,

arg GH” = 90° — 108.4° —135° ~225° = —184°  and 6, =180° — ( —18.4°) = 198.4°

Thus the arrival angle at the complex zero s= —1 -/ is §, = —198.4°.

CONSTRUCTION OF THE ROOT-LOCUS

13.26. Construct the root-locus for

i K
GH = - - K>0
- D+ 2-)(s72+))
The real axis from —1 to — co is on the root-locus. The center of asymptotes is at
-1-2+;-2—j
P Ry

There are three asymptotes (7 — m = 3), located at angles of 60°, 180°, and 300°. The departure angle from
the complex pole at s = —2 + j computed in Problem 13.24 is —45°. A sketch of the resulting root-locus is
shown in Fig. 13-28. An accurate root-locus plot is obtained by checking the angle criterion at points along
the sketched branches, adjusting the location of the branches if necessary, and then applying the magnitude
criterion to determine the values of K at selected points along the branches. The completed root-locus is
shown in Fig. 13-29.

b jv
Ti “
=3 -
4 =
n '
X <
o -5 -4 ks
4 —jl

Fig. 13-28
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13.27. Sketch the branches of the root-locus for the transfer function
K(s+2)
TG+ )(s+34))(s+3-))
The real axis between —1 and —2 is on the root-locus (Problem 13.11). There are two asymptotes with
angles of 90° and 270°. The center of asymptotes is easily computed as g, = —2.5 and the departure angle

from the complex pole at s = —3 + as 72°. By symmetry, the departure angle from the pole at —3 - is
—72°. The branches of the root-locus may therefore be sketched as shown in Fig. 13-30.

GH K>0

Jw

Fig. 13-30

13.28. Construct the root-locus for K > 0 and K < 0 for the transfer function
iz K

GH =
Mathcad s(s+D(s+3)(s+4)

For this transfer function the center of asymptotes is simply ¢, = —2; and n— m = 4. Therefore for
K > 0 the asymptotes have angles of 45°, 135°, 225°, and 315°. The real axis sections between 0 and —1
and between —3 and —4 lie on the root-locus for K> 0 and it was determined in Problem 13.20 that a
breakaway point is located at 0, = —0.424. From the symmetry of the pole locations, another breakaway
point is located at —3.576. This can be verified by substituting this value into the relation for the
breakaway point, Equation (/3.8). The completed root-locus for X > 0 is shown in Fig. 13-31.

For K <0, the asymptotes have angles of 0°, 90°, 180°, and 270°. In this case the real axis portions
between oo and 0, between —1 and — 3, and between —4 and — oo are on the root-locus. There is only one
breakaway point, located at — 2. The completed root-locus for K < 0 is shown in Fig. 13-32.

K=-40

-4 -3 -2 -1 -

LK =-40 + -2

+K=-130 +-j3

Fig. 13-31 Fig. 13-32
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13.29. Construct the root-locus for K > 0 for the discrete system transfer function

This root-locus has two loci and one asymptote. The root-locus lies on the real axis for z < 0.5. The
breakaway points are at z =0 and z = 1. The completed root-locus is shown in Fig. 13-33.

J»

-05 0.5 1 L

Fig. 13-33

13.30. Construct the root-locus for K > 0 for the discrete system transfer function
K
(z+05)(z—1.5)

This root-locus has two branches and two asymptotes. The breakaway point and the center of
asymptotes are at z = 0.5. The root-locus is shown in Fig. 13-34.

GH(z) =

jv
T ~J k=
g de
/ N
/ \
/ \
/ \
i' K=1 | .
-05 1 15 "
\\ /
\ /
\ /
\ V4
\\ /f/
N~ _
~—
Fig. 13-34

13.31. Construct the root-locus for K > 0 for the discrete-time system with H = 1 and forward transfer

ol function
a K(z+1)(z+1)

G(z) = z(z + %)(z -1)
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The system has one more pole than zero, so the root-locus has only one asymptote, along the negative
real axis. The root-locus is on the real axis between 0 and 1, between — ! and — 1, and to the left of ~1.
Breakaway points are located between 0 and 1 and to the left of —1. By trial and error (or computer
solution), breakaway points are found at z =0.383 and z = —2.22.

The root-locus is an ellipse between the breakaway points at z = 0.383 and z = —2.22. The point on
the jv-axis, where arg G(z) = —180° is found by trial and error to be z = j0.85. Similarly, the point on the
line z= —14 jv, where arg G(z) = —180° is z= —1 +,1.26. The root-locus is drawn in Fig. 13-35. The
gain factor along the root-locus is determined graphically from the pole-zero map or analytically by
evaluating G(z).

Jv

Fig. 13-35
THE CLOSED-LOOP TRANSFER FUNCTION AND THE TIME-DOMAIN RESPONSE

13.32. Determine the closed-loop transfer function of the continuous system of Example 13.8 for
K =48, given the following transfer functions for H: (a) H=1, (b) H=4/(s+1), (¢)
H=(s+1)/(s+2).

From the root-locus plot of Example 13.8, the closed-loop poles for K = 48 are located at s= -6,
Jj2.83, and —j2.83. For H=1,

o ® . C_ GH _ a8
s(s+2)(s+4) R 1+GH (s+6)(s—;2.83)(s+,2.83)
For H=4/(s+1),
12(s+1) c 1( GH 12(s+1)
“Gis+a E=E(1+GH)=(s+6)(s-jz.33)(s+jz.83)
For H=(s+1)/(s+2),
48 c 48(s +2)
and

=GN+ 9) R GG+ 6)(s-28)(s 47289

Note that in this last case there are four closed-loop poles, while GH has only three poles. This is due to the
cancellation of a pole of G by a zero of H.

13.33. Determine the unit step response of the system of Example 13.1 with K=1.5.
The closed-loop transfer function of this system is
C 1.5(s+1)
R™(s+05(+3)
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For R=1/s,
1.5(s+1) 1 -06 -04
= =— 4 —_—
s(s+05)(s+3) s s+0.5+s+3

and the unit step response is £ [C(s)]=c(t)=1—0.6e %% —0.4¢™ ¥

Determine the relationship between the closed-loop zeros and the poles and zeros of G and H.
assuming there are no cancellations.

Let G=N,/D, and H=N,/D,, where N, and D, are numerator (zeros) and denominator (poles)
polynomials of G, and N, and D, are the numerator and denominator polynomials of H. Then
c G N, D,
R 1+GH DD, +NN,

Thus the closed-loop zeros are equal to the zeros of G and the poles of H.

GAIN AND PHASE MARGINS

13.35.

oix

13.36.

13.37.

13.38.

Find the gain margin of the system of Example 13.8 for K = 6.

The gain factor at the jw-axis crossover is 48, as shown in Fig. 13-12. Hence the gain margin is
48/6 = 8.

Show how a Routh table (Section 5.3) can be used to determine the frequency and the gain at the
Jw-axis crossover.

In Section 5.3 it was pointed out that a row of zeros in the s' row of the Routh table indicates that the
polynomial has a pair of roots which satisfy the auxiliary equation As®> + B =0, where A and B are the first
and second elements of the s? row. If 4 and B have the same sign, the roots of the auxiliary equation are
imaginary (on the jw-axis). Thus if a Routh table is constructed for the characteristic equation of a system,
the values of K and w corresponding to jw-axis crossovers can be determined. For example, consider the
system with the open-loop transfer function

K
H=————
s(s+2)
The characteristic equation for this system is
3 +4s2+45+K=0
The Routh table for the characteristic polynomial is

s3 1 4
2 4 K
st K16 -K)/4

s° K

The s' row is zero for K = 16. The auxiliary equation then becomes

451 +16=0
Thus for K = 16 the characteristic equation has solutions (closed-loop poles) at s = +;2, and the root-locus
crosses the jw-axis at j2.

Determine the phase margin for the system of Example 13.8 (Figure 13-12) for K = 6.

First, the point on the jw-axis for which |GH( jw)|=1 is found by trial and error to be j0.7. Then
arg GH(j0.7) is computed as —120°. Hence the phase margin is 180° — 120° = 60°.

Is it necessary to construct the entire root-locus in order to determine the gain and phase
margins of a system?
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No. Only one point on the root-locus is required to determine the gain margin. This point, at w,,
where the root-locus crosses the stability boundary, can be determined by trial and error or by the use of a
Routh table as described in Problem 13.36. To determine the phase margin, it is only necessary to
determine the point on the stability boundary where |GH(jw)|=1. Although the entire root-locus plot is
not necessary, it can often be helpful, especially in the case of multiple stability boundary crossings.

DAMPING RATIO FROM THE ROOT-LOCUS FOR CONTINUOUS SYSTEMS

13.39.

13.40.

13.41.
iy’
13.42.

13.43.

13.4.

13.45.

Prove Equation (/3.18).
The roots of s* + 2{w,s + w? are s, , = —{w, +jw,y1 — ¢2. Then

1] =152l = y§%0; + w2(1-87) =,
and args, ;= Fan(y1-§2 /) =180° +

or sy =,/ 180° 1 8. Thus cos 8 = {w,/w, ={.

Determine the positive value of gain which results in a damping ratio of 0.55 for the complex
poles on the root-locus shown in Fig. 13-12.

The angle of the desired poles is 8 = cos™! 0.55 = 56.6°. A line drawn from the origin at an angle of
55.6° with the negative real axis intersects the root-locus of Fig. 13-12 at K=7.

Find the damping ratio of the complex poles of Problem 13.26 for K = 3.5.

A line drawn from the root-locus at K = 3.5 to the origin makes an angle of 53° with the negative real
axis. Hence the damping ratio of the complex poles is { = cos 53° = 0.6.

Supplementary Problems

Determine the angle and magnitude of
16(s+1
o 6+D
s(s+2)(s+4)

at the following points in the s-plane: (a) s=,2, (b) s= —2+,2, (¢) s=—4+,2, (d) s=—6,
(e) s=-3.

Determine the angle and magnitude of
20(s + 10 + j10)(s + 10 — 410)
(s+10)(s+15)(s +25)

at the following points in the s-plane: (a) s =410, (b) 5s=,20, (¢) s= -10+,20, (d) s= —20+ 20,
(e) s= —15+/5.

GH

For each transfer function, find the breakaway points on the root-locus:

(@) GH &) GH K(s+5) GH K(s+1)
a = =, ==
s(:+6)(578) ) Gine+a © (s +9)
Find the departure angle of the root-locus from the pole at s = —10 + ;10 for
K(s+8)
GH K>0

T (s +18)(s + 10 + /10)(s + 10 — /10)
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13.46.

13.47.

13.48.

13.49.

13.50.

13.51.

13.52.

13.42.

13.43.

13.44.

13.45.

13.46.

13.47.

13.52.
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Find the departure angle of the root-locus from the pole at s = —15 + 9 for
K

= )G+ 10)G+ 15491 15-/9)

K>0

Find the arrival angle of the root-locus to the zero at s = —7 + 5 for
K(s+7+4j5)(s+7-j5)
T (s+3)(s+5)(s+10)

K>0

Construct the root-locus for K > 0 for the transfer function of Problem 13.44(a).
Construct the root-locus for K > 0 for the transfer function of Problem 13.44(c).
Construct the root-locus for K > 0 for the transfer function of Problem 13.45.
Construct the root-locus for K > 0 for the transfer function of Problem 13.46.

Determine the gain and phase margins for the system with the open-loop transfer function of Problem
13.46 if the gain factor X is set equal to 20,000.

Answers to Some Supplementary Problems

(a) argGH = —99°, |GH|=1.5; (b) argGH = —153°, |GH|=23; (c) argGH = —232°, |GH|=18;
(d) arg GH = 0°, |GH]=1.7; (e) arg GH = —180°, |GH|=10.7

(a) arg GH = —38°, |GH|=068; (b) arg GH = —40°, |GH|=0.37; (¢) argGH = —41°, |GH|=0.60;
(d) arg GH = —56°, |GH|=0.95; (e) arg GH = +80°, |GH|=6.3

(a) 0,= —225, —=17.07; (b) 6,= —3.27, —6.73; (¢) 6,=0, -3

8, = 124°
6, =193°
g, =28°

Gain margin = 3.7, phase margin = 102°

Chapter 14

Root-Locus Design

14.1 THE DESIGN PROBLEM

The root-locus method can be quite effective in the design of either continuous or discrete-time
feedback control systems, because it graphically illustrates the variation of the system closed-loop poles
as a function of the open-loop gain factor K. In its simplest form, design is accomplished by choosing a
value of K which results in satisfactory closed-loop behavior. This is called gain factor compensation
(also see Section 12.2). Specifications on allowable steady state errors usually take the form of a
minimum value of K, expressed in terms of error constants, for example, K » K,.and K, (Chapter 9).
If it is not possible to meet all system specifications using gain factor compensation alone, other forms
of compensation can be added to the system to alter the root-locus as needed, for example, lag, lead,
lag-lead networks, or PID controllers.

In order to accomplish system design in the s-plane or the z-plane using root-locus techniques, it is
necessary to interpret the system specifications in terms of desired pole-zero configurations.

Digital computer programs for constructing root-loci can be very helpful in system design, as well
as analysis as indicated in Chapter 13.

EXAMPLE 14.1. Consider the design of a continuous unity feedback system with the plant G = K/(s + 1)(s + 3)
and the following specifications: (1) Overshoot less than 20%, (2) K, > 4, (3) 10 to 90% rise time less than 1 sec.
The root-locus for this system is shown in Fig. 14-1. The system closed-loop transfer function may be written

as
C K
R 2+ 2tw,s + w?
djo
K =16
K =13
K=4
14
cos~10.45
i
-3 -2 -1 o
'
Fig. 14-1

where { and w, can be determined from the root-locus for a given value of K. In order to satisfy the first
specification, { must be greater than 0.45 (see Fig. 3-4). Then from the root-locus we see that K must be less than
16 (see Section 13.12). For this system, K, is given by K/3. Thus in order to satisfy the second specification, K
must be greater than 12. The rise time is a function of both { and w,. Suppose a trial value of K =13 is chosen. In
this case, { = 0.5, w, =4, and the rise time is 0.5 sec. Hence all the specifications can be met by setting K = 13.
Note that if the specification on K, was greater than 5.33, or the specification on rise time was less than 0.34 sec,
all the specifications could not be met by simply adjusting the open-loop gain factor.

343



344 ROOT-LOCUS DESIGN [CHAP. 14

14.2 CANCELLATION COMPENSATION

If the pole-zero configuration of the plant is such that the system specifications cannot be met by an
adjustment of the open-loop gain factor, a more complicated cascade compensator, as shown in Fig.
14-2. can be added to the system to cancel some or all of the poles and zeros of the plant. Due to
realizability considerations, the compensator must have no more zeros than poles. Consequently, when
poles of the plant are cancelled by zeros of the compensator, the compensator also adds new poles to
the forward-loop transfer function. The philosophy of this compensation technique is then to replace
undesirable with desirable poles.

+ C
R ) G, G, -
Cascade Plant
Compensator
Fig. 14-2

The difficulty encountered in applying this scheme is that it is not always apparent what open-loop
pole-zero configuration is desirable from the standpoint of meeting specifications on closed-loop system
performance.

Some situations where cancellation compensation can be used to advantage are the following:

1. If the specifications on system rise time or bandwidth cannot be met without compensation,
cancellation of low-frequency poles and replacement with high-frequency poles is helpful.

2. If the specifications on allowable steady state errors cannot be met, a low-frequency pole can be
cancelled and replaced with a lower-frequency pole, yielding a larger forward-loop gain at low
frequencies.

3. If poles with small damping ratios are present in the plant transfer function, they may be
cancelled and replaced with poles which have larger damping ratios.

143 PHASE COMPENSATION: LEAD AND LAG NETWORKS

A cascade compensator can be added to a system to alter the phase characteristics of the open-loop
transfer function in a manner which favorably affects system performance. These effects were illustrated
in the frequency domain for lead, lag, and lag-lead networks using Polar Plots in Chapter 12, Sections
12.4 through 12.7, which summarize the general effects of these networks.

The pole-zero maps of continuous system lead and lag networks are shown in Figs. 14-3 and 14-4.
Note that a lead network makes a positive, and a lag network a negative phase contribution. A lag-lead

arg Proag = 6, — 6, > 0 jw arg Pryg = 6,6, < 0 Ao
JES—— 3 8
l)
o, 0 By
> -
—b —-a o -b —a 4
s+ a - _ +b =
Proa = t5gr 0=a<b PL,,A%(‘:?) 0=a<b
Fig. 14-3 Fig. 14-4
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network may be obtained by appropriately combining a lag and a lead network in series, or from the
implementation described in Problem 6.14.

Since the compensated system root-locus is determined by the points in the complex plane for
which the phase angle of G= G,G, is equal to —180°, the branches of the locus can be moved by
proper selection of the phase angle contributed by the compensator. In general, lead compensation has
the effect of moving the loci to the left.

EXAMPLE 14.2. The phase lead compensator G, = (s + 2) /(s + 8) alters the root-locus of the system with the
plant G, = K/(s + 1)%, as illustrated in Fig. 14-5.

bjo Ajw
Uncompensated Lead Compensated

Fig. 14-5

csa EXAMPLE 14.3. The use of simple lag compensation (one pole at —1, no zero) to alter the breakaway angles

of a root-locus from a pair of complex poles is illustrated in Fig. 14-6.

Jw F $ %)
7] 74
KJ \_) 1
PLog = s+
Uncompensated Simple Lag Compensated /

¥

f-‘,a N b-n

Fig. 14-6

144 MAGNITUDE COMPENSATION AND COMBINATIONS OF COMPENSATORS

Compensation networks may be employed to alter the closed-loop magnitude characteristic
(J(C/R)w)|) of a feedback control system. The low-frequency characteristic can be modified by
addition of a low-frequency pole-zero pair, or dipole, in such a manner that high-frequency behavior is
essentially unaltered.

EXAMPLE 14.4. The continuous system root-locus for GH = K/s(s + 2)? is shown in Fig. 14-7.

Let us assume that this system has a satisfactory transient response with K = 3, but the resulting velocity error
constant, K, =0.75, is too small. We can increase K, to 5 without seriously affecting the transient response by
adding the compensator G, = (s + 0.1)/(s + 0.015) since

0.75(01)

Kl: = KUGI(O) = 0.015
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K=3 7
K,=0.75 k=3 !
K.=5
K=3 K=3
Y -2 —1“‘ o - -3 —?7-1lv o
Fig. 14-7 Fig. 14-8

The resulting root-locus is shown in Fig. 14-8. The high-frequency portion of the root-locus and the transient
response are essentially unaffected because the closed-loop transfer function has a low-frequency pole-zero pair
which approximately cancel each other.

A low-frequency dipole for magnitude compensation of continuous systems can be synthesized with
the pole at the origin using a proportional plus integral (PI) compensator, as shown in Fig. 14-9, with
transfer function

s+ K,
1
Ky/s
+
+
Fig. 14-9

Combinations of various compensation schemes are sometimes needed to satisfy competing
requirements on steady state and transient response performance specifications, as illustrated in the
following example. This example, solved by root-locus methods, is a rework of a design problem solved
by Nyquist methods in Example 12.7, and Bode methods in Example 16.6.

athcad EXAMPLE 14.5. Our goal is to determine an appropriate compensator G,(z) for the discrete-time unity feedback

system with
3(z+ 1)( z+13)
8z(z +0.5)

The resulting closed-loop system must satisfy the following performance specifications:

Gy(z) =

1. Steady state error less than or equal to 0.02 for a unit ramp input
2. Phase margin = ¢p,, > 30°

3. Gain crossover frequency w, > 10 rad/sec, where 7=0.1 sec.

In order to have a finite steady state error with a ramp input, the system must be type 1. The compensation
must therefore provide a pole at z = 1. Consider the compensator

K,
z—1

’

1

The forward-loop transfer function then becomes
K (z+D)(z+3
616,(s) = oz Dt )
8(z—1)z(z+0.5)
From Section 9.9, the velocity error coefficient is
3K (1+1)(1+14)

= = 0.667K,
. 8(1)(1+0.5) !
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Now, in order for the system to have a steady state error of less than 0.02 with a ramp input, we must have
K, =5, 0or K, > 7.5. To investigate the effects of added gain, we consider the root-locus for

K(z+ 1)(z + §)
2(z+0.5)(z-1)
where K = 3K /8. This root-locus was constructed in Problem 13.31 and is repeated in Fig. 14-10.

GiGy(2) =

v

Fig. 14-10

At the point z= —0.18 +0.98 where the root-locus crosses the unit circle, ,7=1.75 rad and K=125
(K, =8K/3 =3.33). Since this is less than the gain K, =7.5 needed to make K, =35, simple gain factor
compensation is insufficient.

The next step is to evaluate the magnitude and phase of G[G,(z) at the required minimum gain crossover
frequency, w, =10, or ,T =1 rad. This is the point z = /7 = ¢/ on the unit circle. At this point, |G{G,(e’)| =
1.66K and arg G{G,(e’) = —142.5°. If the gain K were adjusted so that |G{G,(e/)| =1, that is, K = 0.6, the phase
margin would be (180 — 142.5)° = 37.5° and the 30° requirement would be met. This requires that K, = 8K/3 = 1.6,
and the velocity constant becomes K, = 0.667K; = 1.067.

To complete the design, additional gain must be added to increase the velocity constant to the required value
of 5 at low frequencies, without significantly altering the desired high-frequency characteristics obtained so far. This
requires an additional gain of 5/1.067 = 4.69, which can be supplied by a lag compensator. The lag compensator
should have a gain at z =1 that is 4.69 times as large as the gain at w7 = 1, without adding more than 7.5° phase
lag at wT' =1, to satisfy the requirement for ¢py >30°. If a value of 0.97 is chosen for the pole of the lag
compensator, the zero should be located so that

-z

1-097

Pl = >4.69

or, z; < 0.86. If we set z; = 0.86, then

2-086 ={4.7 for z=1
z2-0.97 0.95 for z=e/

|Pragl = (oT=1)

e’/ —0.86

and arg P, = arg( Py Y

) = —6.25° for z=e’

The compensator then becomes
K,(z-0.86)
YT -0z )
Finally, for «,7=1, we need |G,G,(e’)| =1, so K; =1.60/0.95=1.68, to account for the gain of the lag
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compensator at w7 = 1. The completed compensator is
1.68(z — 0.86)
G=r—
(z-097(z-1)
which is nearly the same design obtained by Nyquist methods in Example 12.7.

145 DOMINANT POLE-ZERO APPROXIMATIONS

The root-locus method offers the advantage of a graphical display of the system closed-loop poles
and zeros. Theoretically, the designer can determine the system response characteristics from the
closed-loop pole-zero map. Practically, however, this task becomes increasingly difficult for systems with
four or more poles and zeros. In some cases the problem can be considerably simplified if the response
is dominated by two or three poles and zeros.

Effects on System Time Responses

The influence of a particular pole (or pair of complex poles) on the response is mainly determined
by two factors: the relative rate of decay of the transient term due to that pole, and the relative
magnitude of the residue at the pole.

For continuous systems, the real part o of the pole p determines the rate at which the transient term
due to that pole decays; the larger o, the faster the rate of decay. The relative magnitude of the residue
determines the percentage of the total response due to that particular pole.

EXAMPLE 14.6. Consider a system with closed-loop transfer function
C S
R (+1)(s+5)
The step response of this system is
c(t)=1-125¢""+0.25¢"*

The term in the response due to the pole at s, = 0, = —5 decays five times as fast as the term due to the pole at
s, = 0, = — 1. Furthermore, the residue at the pole at s, = —5 is only ! that of the one at s, = — 1. Therefore for
most practical purposes the effect of the pole at s, = — 5 can be ignored and the system approximated by

C 1

R s+1
The pole at 5, = — S has been removed from the transfer function and the numerator has been adjusted to maintain
the same steady state gain ((C/R)0) = 1). The response of the approximate system is ¢(1)=1—¢7".

EXAMPLE 14.7. The system with the closed-loop transfer function
C  55(s+0.91)
R (G+1)(s+5)
has the step response
c(t)=1+0.125¢""-1.125¢*
In this case, the presence of a zero close to the pole at —1 significantly reduces the magnitude of the residue at that

pole. Consequently, it is the pole at — S which now dominates the response of the system. The closed-loop pole and
zero effectively cancel each other and (C/R)(0) =1 so that an approximate transfer function is

C 5

R s+5

and the corresponding approximate step response is c=1— ¢~ %,

mn

For discrete-time systems with distinct (nonrepeated) poles p,, p,,..., the transient portion y (k)
of the response due to a pole p has the form y.(k)=p*, k=0,1,2,... (see Table 4.2). Therefore each
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successive time sample is equal to the previous sample multiplied by p, that is,

yr(k+1) =pyr(k)
The magnitude of a distinct pole therefore determines the decay rate of the transient response, with the
decay rate inversely proportional to |p|: the smaller the magnitude, the faster the rate of decay. For
example, poles near the unit circle decay more slowly than poles near the origin, since their magnitudes
are smaller.

For systems with repeated poles, the analysis is more complicated and approximations may not be
appropriate.

EXAMPLE 14.8. The discrete system with closed-loop transfer function
C 0.452
R (z-0.1)(z-05)
has the step response
c(k)=1-1125(0.5)" +0.125(0.1)* k=0,1,2,...
For the term in the response due to the pole at z = 0.1, the sample value at time k is only 10% of the sample value
at time k — 1, and it therefore decays five times faster than the term due to the pole at z = 0.5. The magnitude of
the residue at z=0.1 is 0.125, which is one-ninth as large as the magnitude of the residue 1.125 at z=0.25.
Consequently, for many practical purposes, the pole at z = 0.1 can often be ignored and the system approximated
by
C 0.5
R :z-05
where the numerator has been adjusted to maintain the same steady state gain

C
=) =1

and the zero at z=0 was deleted to maintain one more pole than zeros in the approximate system. This is
necessary to give the same initial delay (one sample time) in the approximate system as in the original system. The
step response of the approximate system is c(k) =1— (0.5)%, k=0,1,2,....

In

Effects on Other System Characteristics

The effect of a closed-loop real axis pole at —p, <0 on the overshoot and rise time 7, of a
continuous system also having complex poles —p_, — p* is illustrated in Figs. 14-11 and 14-12. For

p’

>5 (14.1)
fw,
40 T
pr""% : od
(s + P2+ 20w,s + wd) V7
30 ‘ i
. \
=3 |
=3
G | 1
520 7 —
3 (=05 ] e
10 ,/,/
(=07
0
1 2 3 4 5 6 T
P,/8w0,

Fig. 14-11
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=]

P
(8 + p)(s? 4 2{uw,8 + w)
8 I

0 {

T=0

4
&f:w

1 2 3 4

10 to 909¢ normalized rise time — «,T,

B3
o
-

PrlSw,
Fig. 14-12

the overshoot and rise time approach that of a second-order system containing only complex poles (see
Fig. 3-4). Therefore p, can be neglected in determining overshoot and rise time if { > 0.5 and

p,> 5|Rep| = 5%w, (14.2)
There is no overshoot if
p.<|Rep|={w, (14.3)
and the rise time approaches that of a first-order system containing only the real axis pole.
The effect of a closed-loop real axis zero at —z, <0 on the overshoot and rise time 7, of a
continuous system also having complex poles —p_, —p* is illustrated in Figs. 14-13 and 14-14. These

graphs show that z, can be neglected in determining overshoot and rise time if { > 0.5 and

z,> 5|Rep | = 5%w, (14.4)

100

8+ z,
\ 82 + 2tw,8 + W
80

N

|
NS
\ N

60

% overshoot

1

20
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4
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10 to 90% normalized rise time — v, T,

Fig. 14-14

EXAMPLE 14.9. The closed-loop transfer function of a particular continuous system is represented by the
pole-zero map shown in Fig. 14-15. Given that the steady state gain (C/R)(j0)=1, a dominant pole-zero

approximation is

C 4
R s2+25+4
Iy
Hilo
X
L5
X TiV8
~10 Tos R «
X t-iV3
—i5
x
+-j10
Fig. 14-15
This is a reasonable approximation because the pole and zero near s = —2 effectively cancel each other and all

other poles and zeros satisfy Equations (14.2) and (/4.4) with —p, = —1 +//3 and ¢ =05.
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14.6 POINT DESIGN

If a desired closed-loop pole position p, can be determined from the system specifications, the
system root-locus may be altered to ensure that a branch of the locus will pass through the required
point p,. The specification of a closed-loop pole at a particular point in the complex plane is called
point design. The technique is carried out using phase and magnitude compensation.

EXAMPLE 14.10. Consider the continuous plant
K

G S
: s(s+2)°

The closed-loop response must have a 10 to 90% rise time less than 1 sec, and an overshoot less than 20%. We
observe from Fig. 3-4 that these specifications are met if the closed-loop system has a dominant two-pole
configuration with { = 0.5 and @, =2. Thus p, is chosen at —1 + /3, which is a solution of

pi+ Lo, p+w;=0
for { =05 and w,=2. Clearly, pf=-1-3 is the remaining solution of this quadratic equation. The
orientation of p, with respect to the poles of G, is shown in Fig. 14-16.

A jo

————— v

120°
60°

.y
x o
-2 =1 4

Fig. 14-16

The phase angle of G, is —240° at p,. In order for a branch of the root-locus to pass through p,, the system
must be modified so that the phase angle of the compensated system is —180° at p,. This can be accomplished by
adding a cascade lead network having a phase angle of 240° — 180° = 60° at p,, which is satisfied by

s+1

GI=PL:BG=S+4

as shown in the pole-zero map of the compensated open-loop transfer function G,G, in Fig. 14-17. The closed-loop
pole can now be located at p, by choosing a value for K which satisfies the root-locus magnitude criterion.
Solution of Equation (/3.5) yields K = 16. The root-locus or closed-loop pole-zero map of the compensated system

should be sketched to check the validity of the dominant two-pole assumption. Figure 14-18 illustrates that the
poles at p, and p} dominate the response.

4 jw A)‘-’
Pl
A -t
K =16 ]ﬁ
-0.76
— + -
-525 -4 -2 -1 g
b ——1 -3
Py

Fig. 14-17 Fig. 14-18
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14.7 FEEDBACK COMPENSATION

Addition of compensation elements to a feedback path of a control system can be employed in
root-locus design in a manner similar to that discussed in the preceding sections. The compensation
elements affect the root-locus of the open-loop transfer function in the same manner. But, although the
root-locus is the same when the compensator is in either the forward or feedback path, the closed-loop
transfer function may be significantly different. It was shown in Problem 13.34 that feedback zeros do
not appear in the closed-loop transfer function, while feedback poles become zeros of the closed-loop
transfer function (assuming no cancellations).

EXAMPLE 14.11. Suppose a feedback compensator were added to a continuous system with the forward transfer
function
K
G=———
(s+D(s+4)(s+5)
in an attempt to cancel the pole at —1 and replace it with a pole at —6. Then the compensator would be
H=(s+1)/(s+6), GH would be given by GH = K /(s + 4)(s + 5)(s + 6) and the closed-loop transfer function
would become
C K(s+6)
R (s+D)[(s+4)(s+5(s+6) +K]
Although the pole at —1 is cancelled from GH, it reappears as a closed-loop pole. Furthermore, the feedback pole

at — 6 becomes a closed-loop zero. Consequently, the cancellation technique does not work with a compensator in the
feedback path.

EXAMPLE 14.12. The continuous system block diagram in Fig. 14-19 contains two feedback paths.

K C
a(s + 1)(s + 4)

K,s

Fig. 14-19

R + K c
s(s + 1)(s + 4)

Ks+1 |=

Fig. 14-20

These two paths may be combined, as shown in Fig. 14-20.

In this representation the feedback path contains a zero at s= —1/K,;. This zero appears in GH and
consequently affects the root-locus. However, it does not appear in the closed-loop transfer function, which
contains three poles no matter where the zero is located.

The fact that feedback zeros do not appear in the closed-loop transfer function may be used to
advantage in the following manner. If closed-loop poles are desired at certain locations in the complex
plane, feedback zeros can be placed at these points. Since branches of the root-locus will terminate on
these zeros, the desired closed-loop pole locations can be obtained by setting the open-loop gain factor
sufficiently high.
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EXAMPLE 14.13. The continuous system feedback compensator
st+2s+4
(s+6)°
is added to the system with the forward-loop transfer function
K

G=s(s+2)

in order to guarantee that the dominant closed-loop poles will be near s = —1 + jﬁ . The resulting root-locus is
shown in Fig. 14-21.

b
——1iV3
K =100
= > 'L T
K =100
——1-iV3
Fig. 14-21
If K is set at 100, the closed-loop transfer function is
100( s + 6)°

C
R (52+1.725+2.96)(s% + 12.35 + 135)

and the dominant complex pole pair s, , = 0.86 + j1.5 are sufficiently close to —1 +j¥/3 .

Solved Problems

GAIN FACTOR COMPENSATION

14.1. Determine the value of the gain factor K for which the system with the open-loop transfer

:Ii function
sthead

K

= v 2)G+9)

has closed-loop poles with a damping ratio { = 0.5.

The closed-loop poles will have a damping ratio of 0.5 when they make an angle of 60° with the
negative real axis [Equation (/3.18)]. The desired value of K is determined at the point where the
root-locus crosses the { =0.5 line in the s-plane. A sketch of the root-locus is shown in Fig. 14-22. The
desired value of X is 8.3.
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14.2. Determine a value of K for which the system with the open-loop transfer function
K

C(s+2)(s+3)
satisfies the following specifications: (a) K, > 2, () gain margin > 3.

For this system, K, is equal to K/12. Hence, in order to satisfy the first specification, K must be
greater than 24. The value of K at the jw-axis crossover of the root-locus is equal to 100, as shown in Fig.
14-23. Then, in order to satisfy the second specification, K must be less than 100/3 = 33.3. A value of K
that will satisfy both specifications is 30.

14.3. Determine a gain factor X for which the system in Example 13.11 has a gain margin of 2.

As shown in Fig. 13-15, the gain at the stability boundary is K = 1. Therefore, in order to have a gain
margin of 2, K must be 0.5.

CANCELLATION COMPENSATION

14.4. Can right-half s-plane poles of a plant be effectively cancelled by a compensator with a right-half
s-plane zero?

No. For example, suppose a particular plant has the transfer function

K
s—1

G, = K>0

and a cascade compensator is added with the transfer function G, = (s — 1 + €)/(s + 1). The € term in the
transfer function represents any small error between the desired zero location at +1 and the actual
location. The closed-loop transfer function is then

C K(s—1+¢)
R s*+Ks+Ke—K—-1

By applying the Hurwitz or Routh Stability Criterion (Chapter 5) to the denominator of this transfer
function, it can be seen that the system is unstable for any value of X if ¢ is less than (1 + K)/K, which is
usually the case because ¢ represents the error in the desired zero location.

14.5. For the discrete-time unity feedback system with forward-loop transfer function

z+1
27 (z-1)

determine a compensator G, that provides a deadbeat response for the closed-loop system.
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For a deadbeat response (Section 10.8), we want all closed-loop poles at z = 0. A pole-zero map of the
system is shown in Fig. 14-24(a). If we cancel the pole at z = 0 and the zero at z = —1, the root-locus will
go through z = 0, as shown in Fig. 14-24(b). The resulting compensator is then

F4

z+1

G =

v ¥

(a) (b)
Fig. 14-24

and the closed-loop transfer function is
C GG,

R 1+G,6,

1
z
PHASE COMPENSATION

14.6. It is desired to add to a system a compensator with a zero at s = —1 to produce 60° phase lead
at s = —2 +j3. How can the proper location of the pole be determined?

With reference to Fig. 14-3, we want the phase contribution of the network to be 8, — 8, = 60°. From
Fig. 14-25, 8, = 108°. Hence 8, = 6, — 60° = 48° and the pole should be located at s = —4.7, as shown in
Fig, 14-25.

t

Lis

Fig. 14-25

14.7. Determine a compensator that will change the departure angle of the root-locus from the pole at
s= —0.5+j to —135° for the plant transfer function

G K
27 s(s2+s5+1.25)

The departure angle of the uncompensated system is —27°. To change this to —135° a lag
compensator with 108° phase lag at s = —0.5 + j can be employed. The required amount of phase lag could
be supplied by a simple lag compensator (one pole, no zero) with a pole at s = —0.18, as shown in Fig.
14-26( a), or by two simple lags in cascade with two poles at s = —1.22, as shown in Fig. 14-26(b).
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Fig. 14-26

14.8. Determine a compensator for the discrete-time system with
K
GH(z)= =D
that provides a phase crossover frequency w,, such that «,T =7 /2 rad.

Arg GH at z=¢’"/? = j is determined from the pole-zero map in Fig. 14-27 as —225°. In order for the
root-locus to pass through this point, we need to add 45° of phase lead, so that arg GH = +180°. This can
be provided by the compensator

V4
Prea(2) = —7
Jv

S| argGH = -90° - 135° = —225°

900 S&\lSSO

-1 1 L

Fig. 14-27

The zero at z =0 provides 90° of phase lead and the pole at z = —1 provides 45° of lag, resulting in a net
lead of 45°.

MAGNITUDE COMPENSATION

14.9. In Example 14.4, the velocity error constant K, was increased by a factor of 63 without
increasing the gain factor. How was this accomplished?

It was assumed that the compensator G, had a high-frequency gain of 1 and a low-frequency (d.c.)
gain of 62. This compensator cannot be mechanized passively because a passive lag compensator has a d.c.
gain of 1. Consequently, G, must include an amplifier. An alternative method would be to let G, be the
passive lag compensator

0.015/ s+01
i

0.1 \s+0.015

and then amplify the gain factor by 62. However, when root-locus techniques are employed it is usually
more convenient to assume the compensator just adds a pole and zero, as was done in Example 14.4.
Appropriate adjustments can be made in the final stages of design to achieve the simplest and/or least
expensive compensator mechanization.
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DOMINANT POLE-ZERO APPROXIMATIONS

14.10.

14.11.

14.12.

i)

Mathcad

14.13.

Determine the overshoot and rise time of the system with the transfer function
C 1
R (s+1)(s2+s+1)

For this system, w,=1, { =05, p,=1, and p,/{w, =2. From Fig. 14-11 the percentage overshoot is
about 8%. The rise time from Fig. 14-12 is 2.4 sec. The corresponding numbers for a system with the
complex poles only are 18% and 1.6 sec. Thus the real axis pole reduces the overshoot and slows down the
response.

Determine the overshoot and rise time of the system with the transfer function
C s+1
R - si+s+1
For this system w, =1, {=0.5, z,=1, and z,/{w, = 2. From Fig. 14-13 the percentage overshoot is
31%. From Fig. 14-14 the 10 to 90% rise time is 1.0 sec. The corresponding numbers for a system without

the zero are 18% and 1.6 sec. The real axis zero thus increases the overshoot and decreases the rise time,
that is, speeds up the response.

What is a suitable dominant pole-zero approximation for the following system?
C 2(s+38)

R (s+1)(s2+25+3)(s+6)

The real axis pole at s = —6 and the real axis zero at s = — 8 satisfy Equations (/4.2) and (/4.4),
respectively, with regard to the complex poles ({w, =1 and { > 0.5) and therefore may be neglected. The
real axis pole at s = —1 and the complex poles cannot be neglected. Hence a suitable approximation (with
the same d.c. gain) is

C 8
R 3(s+1)(s2+25+3)
Determine a dominant pole approximation for the discrete-time system with transfer function
C 0.16
R (2-02)(z-08)
The step response is given by

e(k)=1-1330.8)* +033(02)* £=0,1,2,...

The magnitude 0.33 of the residue at z = 0.2 is four times smaller than the magnitude 1.33 of the residue at
z=0.8. Also, the transient response due to the pole at z = 0.2 decays 0.8,/0.2 = 4 times faster than that for
the pole at z = 0.8. Thus the approximate closed-loop system should only have a pole at z = 0.8. However,
to maintain a system response delay of two samples (the original system has two more poles than zeros), it
is necessary to add a pole at z =0 to the approximation. Then

C 02

R z(z-08)

The step response of the approximate system is

R 0 for k=0
c(k) 1-125(08)*  for k>0

Note that the only effect of the pole at z = 0 on the response is to delay it by one sample.
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14.14. Determine K, a, and b so that the system with open-loop transfer function
2 K(s+a)
Mathcad T (s+b)(s+2)(s+4)
has a closed-loop pole at p, = —2+ 3.

The angle contributed to arg GH(s,) by the poles at s = —2 and s = —4 is —237°. To satisfy the angle
criterion, the angle contributions of the zero at s = —a and the pole s = —b must total —180° — (—237°)
= 57°. Since this is a positive angle, the zero must be farther to the right than the pole (b > a). Either a or
b may be chosen arbitrarily as long as the remaining one can be fixed in the finite left-half s-plane to give a
total contribution of 57°. Let a be set equal to 2, resulting in a 90° phase contribution. Then b must be
placed where the contribution of the pole is —33°. A line drawn from p, at 33° intercepts the real axis at
6.6 = b, as shown in Fig. 14-28.

fjw
4
443
7]
oY %
—8.8 -4 -2 T
Fig. 14-28
The necessary value of K required to satisfy the magnitude criterion at p, can now be computed using
the chosen values of @ and b. From the following calculation, the required value of X is
(2 +66) (2 +2)°(pr+4) 0
(p1+2) pr=—2+,3
14.15. Determine the required compensation for a system with the plant transfer function

~ K
G, = (s+8)(s + 14)(s + 20)

to satisfy the following specifications: (a) overshoot < 5%, (#) 10 to 90% rise time 7, <150
msec, (¢) Kp > 6.

The first specification may be satisfied with a closed-loop transfer function whose response is
dominated by two complex poles with { > 0.7, as seen from Fig. 3-4. A wide variety of dominant pole-zero
configurations can satisfy the overshoot specification; but the two-pole configuration is usually the simplest
obtainable form. We also see from Fig. 3-4 that, if { = 0.7, the normalized 10 to 90% rise time is about
w,T, = 2.2. Thus, in order to satisfy the second specification with { = 0.7, we have T, = 2.2 /w, < 0.15 sec or
w, > 14.7 rad/sec.

But let us choose w, = 17 so as to achieve some margin with respect to the rise time specification. Other
closed-loop poles, which may appear in the final design, may slow down the response. Thus, in order to
satisfy the first two specifications, we shall design the system to have a dominant two-pole response with
§{=0.7 and w, =17. An s-plane evaluation of arg G,( p,), where p, = —12 + 12 (corresponding to { = 0.7,
w, =17), yields arg G,( p,) = —245°. Then, to satisfy the angle criterion at p,, we must compensate the
system with phase lead so that the total angle becomes —180°. Hence we add a cascade lead compensator
with 245° — 180° = 65° phase lead at p,. Arbitrarily placing the zero of the lead compensator at s= —8
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results in 8, = 108° (see Fig. 14-3). Then, since we want 6, — 8, = 65°, §, = 108° — 65° = 43°. Drawing a
line from p,; to the real axis at the required 6§, determines the pole location at s = —25. Addition of the
lead compensator with a =8 and b =25 yields an open-loop transfer function

K

(s+14)(s +20)(s + 25)

The value of K necessary to satisfy the magnitude criterion at p; is K= 3100. The resulting positional
error constant for this design is K, = 3100/(14)(20)(25) = 0.444, which is substantially less than the
specified vilue of 6 or more. K » could be increased slightly by trying other design points (higher ,); but
the required K, cannot be achieved without some form of low-frequency magnitude compensation. The
required increase is 6/0.444 = 13.5 and may be obtained with a low-frequency lag compensator with
b/a =13.5. The only other requirement is that g and b for the lag compensator must be small enough so as
not to affect the high-frequency design accomplished with the lead network. That is,

arg Piog(py) =0
Let =1 and a = 0.074. Then the required compensator is
s+1
G =007
To synthesize this compensator using a conventional lag network with the transfer function
0.074(s + 1)
e~ T 10074

an additional amplifier with a gain of 13.5 is required; equivalently, the design value of X chosen above
may be increased by 13.5. With either practical mechanization, the total open-loop transfer function is

3100(s + 1)
(5 +0.075)(s + 14)(s + 20) (s + 25)

The closed-loop poles and zeros are shown in Fig. 14-29. The low-frequency pole and zero effectively
cancel each other. The real axis pole at s = —35 will slightly affect the response of the system because
p,/%w, for this pole is only about 3 [Equation (/4.2)]. However, reference to Figs. 14-11 and 14-12 verify
that the overshoot and rise time are still well within the specifications. If the system had been designed to
barely meet the required rise time specification with the dominant two-pole approximation, the presence of
the additional pole in the closed-loop transfer function may have slowed the response enough to dissatisfy
the specification.
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Fig. 14-29

CHAP. 14] ROOT-LOCUS DESIGN 361
R+ + 1 c
. K, ETIET)

Ko |=

Fig. 14-30

A straightforward way to accomplish this design is to determine a suitable design point in the s-plane
and use the point design technique. If the two feedback paths are combined, the block diagram shown in
Fig. 14-31 is obtained.

R i 1 c
8(s + 2)(s + 4)

K, K,
E(‘ b x—,)

Fig. 14-31

For this configuration
_ K (s + K /K;)
s(s+2)(s+4)

The zero location at s = — K, /K, appears in the feedback path and the gain factor is X,. Thus for a fixed
zero location (ratio of K, /K,), a root-locus for the system may be constructed as a function of K,. The
closed-loop transfer function will then contain three poles, but no zeros. Rough sketches of the root-locus
(Fig. 14-32) reveal that if the ratio K,/K, is set anywhere between 0 and 4, the closed-loop transfer
function will probably contain two complex poles (if K, is large enough) and a real axis pole near the value
of — K, /K,.

b ju 4w
[

T2 72
> > - -
-+ _K -2 4 -4 L -2 K 4

K2 Kz
(a) (b)
Fig. 14-32

A three-pole dominant configuration may then be appropriate for the design. A value of { = 0.5 for the

FEEDBACK COMPENSATION

14.16. A positional control system with a tachometer feedback path has the block diagram shown in

: 0 . . 4 ! ! greater than 2, the rise time will be faster, and vice versa. In order to have a little margin in case p,/{w, is
L Fig. 14-30. Determine values of K, and X, which result in a system design which yields a 10 to smaller than 2, let us choose w,=2.6. The design point in the s-plane is therefore p; = —1.3 +,2.3,
- 90% rise time of less than 1 sec and an overshoot of less than 20%. corresponding to { = 0.5 and w, = 2.6.

complex poles will satisfy the overshoot requirement. For {=0.5 and p,/{w, =2, Fig. 14-12 shows a
normalized rise time w,7, =2.3. Thus 7, =2.3/w, <1 sec or w, > 2.3 rad/sec. If p,/{w, turns out to be
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From Fig. 14-33, the contribution of the poles at s=0, —2, and —4 to arg GH(p,) is —233°. The
contribution of the zero must therefore be —180° — (—233°) = 53° at p, to satisfy the angle criterion at
1. The zero location is determined at s= —3 by drawing a line from p; to the real axis at 53°. With
K,/K, =3, the gain factor at p, for GH is 7.5. Thus the design values are K, =7.5 and K; = 22.5. The
closed-loop real axis pole is to the left of, but near the zero located at s = — 3. Therefore p,/{w, for this
design is at least 3/1.3 =23,

1\ jw

+i2.3
'58°

oV

Fig. 14-33

14.17. For the discrete-time system with forward-loop transfer function

- ) X
"“‘!"’ 27 (z-1)

determine a feedback compensator that yields a closed-loop system with a deadbeat response.

For a deadbeat response (Section 10.8), the closed-loop transfer function must have all its poles at
z = 0. Since poles cancelled by feedback zeros appear in the closed-loop transfer function, let H have a zero
at z=0. This eliminates the pole at z =0 from the root-locus but it remains in the closed-loop transfer
function.

For realizability, H must also have at least one pole. If we place the pole of H at z = —1, the resulting
root-locus goes through z = 0, as shown in Fig. 14-34. Then, by setting K = 1, all the closed-loop poles are
located at z = 0 and the system has a deadbeat response.

Jv

Fig. 14-34

Supplementary Problems

14.18. For the system with the open-loop transfer function GH = K(s + a)/(s* — 1)(s + 5) determine K and a
such that the closed-loop system has dominant poles with {=0.5 and w,=2. What is the percentage
overshoot of the closed-loop system with these values of K and a?
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14.19. Determine a suitable compensator for the system with the plant transfer function
1
Gy=—"T7——
2 s(s+1)(s+4)

to satisfy the following specifications: (1) overshoot < 20%, (2) 10 to 90% rise time <1 sec, (3) gain
margin > 5.

14.20. Determine suitable compensation for the system with the plant transfer function G, = 1/s(s + 4)? to satisfy
the following specifications: (1) overshoot < 20%, (2) velocity error constant K, > 10.

14.21. For the system shown in the block diagram of Fig. 14-35, determine K, and K, such that the system has
closed-loop poles at s = —2 + ;2.

R - + 8 c
"\ i e OT_ ” s(s + 4)(s + 5)
Kos

Fig. 14-35

14.22. Determine a value of K for the system with the open-loop transfer function GH = K/s(s* + 65 + 25) such
that the velocity error constant K, > 1, the closed-loop step response has no overshoot, and the gain
margin > 5.

14.23. Design a compensator for the system with the plant transfer function G, = 63 /s(s + 7)(s + 9) such that the
velocity error constant K, > 30, the overshoot is less than 20%, and the 10 to 90% rise time is less than 0.5
sec.

Answers to Supplementary Problems
14.18. K= 11.25, a= 1.6, overshoot = 38%; note that the system has a closed-loop zero at s= —a= —1.6.
14.19. G, =24(s + 1) /(s + 4)
14.20. G, =24(s+02)/(s +0.03)
1421. K,=1, K, =5
14.22. K=28

14.23. G, = 3(s +0.5)/(s + 0.05)



Chapter 15

Bode Analysis

15.1 INTRODUCTION

The analysis of feedback control systems using the Bode method is equivalent to Nyquist analysis
in that both techniques employ graphical representations of the open-loop frequency response function
GH(w), where GH(w) refers to either a discrete-time or a continuous-time system. However, Bode plots
consist of two graphs: the magnitude of GH(w), and the phase angle of GH(w), both plotted as a
function of frequency w. Logarithmic scales are usually used for the frequency axes and for |GH(w)).

Bode plots clearly illustrate the relative stability of a system. In fact, gain and phase margins are
often defined in terms of Bode plots (see Example 10.1). These measures of relative stability can be
determined for a particular system with a minimum of computational effort using Bode plots, especially
for those cases where experimental frequency response data are available.

15.2 LOGARITHMIC SCALES AND BODE PLOTS

Logarithmic scales are used for Bode plots because they considerably simplify their construction,
manipulation, and interpretation.

A logarithmic scale is used for the w-axes (abscissas) because the magnitude and phase angle may
be graphed over a greater range of frequencies than with linear frequency axes, all frequencies being
equally emphasized, and such graphs for continuous-time systems often result in straight lines (Section

15.4).
The magnitude |P(w)| of any frequency response function P(w) for any value of w is plotted on a

logarithmic scale in decibel (db) units, where
db = 20log,| P(w)| (15.1)

[Also see Equation (10.4).]
EXAMPLE 15.1. If |P(2)| = |GH(2)| = 10, the magnitude is 201og,10 = 20 db.

Since the decibel is a logarithmic unit, the db magnitude of a frequency response function composed
of a product of terms is equal to the sum of the db magnitudes of the individual terms. Thus, when the
logarithmic scale is employed, the magnitude plot of a frequency response function expressible as a
product of more than one term can be obtained by adding the individual db magnitude plots for each
product term.

The db magnitude versus log w plot is called the Bode magnitude plot, and the phase angle versus
log w plot is the Bode phase angle plot. The Bode magnitude plot is sometimes called the log-modulus
plot in the literature.

EXAMPLE 15.2. The Bode magnitude plot for the continuous-time frequency response function

100[1 +,(w/10)]

P(je) = 1+ jw

may be obtained by adding the Bode magnitude plots for: 100, 1 + j(w/10), and 1/(1 + jw).
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153 THE BODE FORM AND THE BODE GAIN FOR CONTINUOUS-TIME SYSTEMS

It is convenient to use the so-called Bode form of a continuous-time frequency response function
when using Bode plots for analysis and design because of the asymptotic approximations in Section
15.4.

The Bode form for the function

K(jw+z)(jo+zy) - (Jjo+z,)
(Jo) (jo+p)jo+p,) - (jw+p,)

where / is a nonnegative integer, is obtained by factoring out all z; and p; and rearranging it in the
form

[KUIZ‘ ]:Ilp.- (1 +je/2) (1 +jo/z,) - - (1 +jw/z,)

(J)' (1 +jo/p )1 +jw/py) -+ (1+jw/p,)
The Bode gain K is defined as the coefficient of the numerator in Equation (15.2):

K .

_ k1=
Kp=— (15-3)

HP.-

i=1

(15.2)

!, 154 BODE PLOTS OF SIMPLE CONTINUOUS-TIME FREQUENCY RESPONSE FUNCTIONS
AND THEIR ASYMPTOTIC APPROXIMATIONS

The constant X, has a magnitude |Kg|, a phase angle of 0° if K is positive, and —180° if K is
negative. Therefore the Bode plots for K are simply horizontal straight lines as shown in Figs. 15-1 and
15-2.

4
L
°
2
E 20 log,y 1K 4l
gc Bio 18y
£
£~
<
+ log g
Fig. 15-1
[
2 o Ky>0
gﬂ 0 > log,ow
)
#
]
=
[
Kg<o0
—180°
4
Fig. 15-2

The frequency response function (or sinusoidal transfer function) for a pole of order ! at the origin is
1

(juw)'
The bode plots for this function are straight lines, as shown in Figs. 15-3 and 15-4.

(15.4)
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For a zero of order | at the origin,
Y
(jw)' (15.5)

the Bode plots are the reflections about the 0-db and 0° lines of Figs. 15-3 and 15-4, as shown in Figs.

15-5 and 15-6.
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Consider the single-pole transfer function p/(s+p), p>0. The Bode plots for its frequency
response function

1
1+jw/p
are given in Figs. 15-7 and 15-8. Note that the logarithmic frequency scale is normalized in terms of p.

(15.6)
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To determine the asymptotic approximations for these Bode plots, we see that for w/p < 1, or w < p,

and for w/p> 1, 0or w>p,

201ogo

201log,, =20log,,1 =0db

1
1+ jw/p

201 (w)
= — og —
10 p

1
—— | =201l0 _
1+/w/p} Bio J‘A’/P‘
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Therefore the Bode magnitude plot asymptotically approaches a horizontal straight line at 0 db as w/p
approaches zero and -20log,,(w/p) as w/p approaches infinity (Fig. 15-7). Note that this high-
frequency asymptote is a straight line with a slope of —20 db/decade, or —6 db/octave when plotted
on a logarithmic frequency scale as shown in Fig. 15-7. The two asymptotes intersect at the corner
frequency w = p rad/sec. To determine the phase angle asymptote, we see that for w/p < 1, or w < p,

1 _ i@
sl iy =3

and for w/p > 1, or 0> p,

=(°

wEp

arg = —-90°

1 w
ol
1+jw/p p
Thus the Bode phase angle plot asymptotically approaches 0° as w/p approaches zero, and —90° as
w/p approaches infinity, as shown in Fig. 15-8. A negative-slope straight-line asymptote can be used to
join the 0° asymptote and the —90° asymptote by drawing a line from the 0° asymptote at w =p/5 to
the —90° asymptote at w = 5p. Note that it is tangent to the exact curves at w = p.

The errors introduced by these asymptotic approximations are shown in Table 15-1 for the
single-pole transfer function at various frequencies.

w>p

Table 15-1. Asymptotic Errors for

1+jw/p
@ p/5 p/2 b4 2p 5p
Magnitude error (db) -0.17 -0.96 -3 —0.96 -0.17
Phase angle error -11.3° -0.8° 0° +0.8° +11.3°

The Bode plots and their asymptotic approximations for the single-zero frequency response
function

1472 (15.7)

21

are shown in Figs. 15-9 and 15-10.

20 logyoll + jw/z|

|
F
.

db magnitude

Asymptotic curve |

}

"
w
H
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Fig. 15-9
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The Bode plots and their asymptotic approximations for the second-order frequency response
function with complex poles,

1
1+j2%w/6,~ (e/u,)"
are shown in Figs. 15-11 and 15-12. Note that the damping ratio { is a parameter on these graphs.

The magnitude asymptote shown in Fig. 15-11 has a corner frequency at w = w,, and a high-frequency
slope twice that of the asymptote for the single-pole case of Fig. 15-7. The phase angle asymptote is
similar to that of Fig. 15-8 except that the high-frequency portion is at —180° instead of —90° and the
point of tangency, or inflection, is at —90°.

The Bode plots for a pair of complex zeros are the reflections about the 0 db and 0° lines of those
for the complex poles.

0<¢<1 (15.8)

15.5 CONSTRUCTION OF BODE PLOTS FOR CONTINUOUS-TIME SYSTEMS

Bode plots of continuous-time frequency response functions can be constructed by summing the
magnitude and phase angle contributions of each pole and zero (or pairs of complex poles and zeros).
The asymptotic approximations of these plots are often sufficient. If more accurate plots are desired,
many software packages are available for rapidly accomplishing this task.

For the general open-loop frequency response function

Kp(1+je/z))(1 +jw/zy) -+ (1 +jw/z,,)

GH(jw) = ———— . : (15.9)
(Je) (1 +je/p)(1 +jw/py) - - (1 +jw/p,)
where / is a positive integer or zero, the magnitude and phase angle are given by
Jjo [, Jw
201log,|GH (jw)| = 20log,s | K5+ 2010g o1 + — |+ - -+ +20log,|1 + —
Z1 Il
1 1
+20log, g7 + 20log,, -+ +20log,,———— (15.10)

—— .
[t +je/pi 11+ jw/p,l

|(jw)'|
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and
Jo
+ - targ|l+ —
z

m

w
argGH{ jw) =arg K, + arg(] L2
4

1 1
+ arg + arg

(15.11)

L I B [
(jw) 1+ jw/py 1+ jw/p,

The Bode plots for each of the terms in Equations (/5.10) and (15.11) were given in Figs. 15-1 to 15-12.
If GH( jw) has complex poles or zeros, terms having a form similar to Equation (15.8) are simply added
to Equations (/5.10) and (15.11). The construction procedure is best illustrated by an example.

EXAMPLE 15.3. The asymptotic Bode plots for the frequency response function
10(1 + jw)

(o)1 +jeo/a— (w/a)?]

20 log (10) — /
20 T T
w," 11+ jul

-20

GH(jw) =

40

R G R 4 i
20 1ogy0 | 75707 = t..?-ul’

db magnitude

20 1ogo

—-40
~ 80
0.1 0.2 0.4 1 2 4 10 20 40
Frequency o, rad/sec
Fig. 15-13
100°
500 | - ! E
! arg (1 -+ jw)
l =
0°
e |
)
=
@ _goe
'
0
]
=
s 1
-100° ]
|
-160° |

Frequency w, rad/sec
Fig. 15-14
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are constructed using Equations (/5./0) and (15.11):
1

1+ jw/4 - (w/4)

1
20log,| GH( jw)| = 2010g410 + 20log,[1 + jw] + 20l0g,, ( +20log;o
Jw

B

1
arg GH( jw) = arg(1 + jw) + arg(1/( jw)’) + ar ——————)
(jo) =arg(1 +jo) + arg(1/(jw)’) + arg Tt ierA— (oA
The graphs for each of the terms in these equations are obtained from Figs. 15-1 to 15-12 and are shown in Figs.
15-13 and 15-14. The asymptotic Bode plots for GH( jw) are obtained by adding these curves, as shown in Figs.
15-15 and 15-16, where computer-generated Bode plots for the frequency response function are also given for
comparison with the asymptotic approximations.

T T T e

i’ | e 10(1+}h)."l"'_ a0
| | TG o/t~ ] |

db magnitude

1 Il
T LI B B B 1) T T T T rrrm

T
21 0.5 1 5 10 50 100
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Fig. 15-15
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Fig. 15-16

15.6 BODE PLOTS OF DISCRETE-TIME FREQUENCY RESPONSE FUNCTIONS
The factored form for the general open-loop discrete-time frequency response function is
K(e®T+z2)(eT+2,) - (eT+2,)

(77 ) (e +55) (77 p,) (12

GH(e*") =
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Simple asymptotic approximations, similar to those in Section 15.4, do not exist for the individual terms
in Equation (/5.12). Thus there is no particular advantage to a Bode form of the type in Equation
(15.2) for discrete-time systems. In general, computers provide the most convenient way to generate
Bode plots for discrete-time systems and several software packages exist to accomplish this task.

For the general open-loop frequency response function Equation (15.12), the magnitude and phase
angle are given by

20log;o| GH (e/*T) | =201og,| K|

+20log,ole’T + z,|+ - - - +20logole’“T + z,,|

+ 20log;, + -+ +20log,, (15.13)

_ L
"+ pil e+ p,|

and

arg GH(e/*T) =arg K + arg(e/“T+ 2,) + - -

1
+arg(e/T+z,) +arg (

L
— - targ| ———— 15.14
gyt g | s

It is important to note that both the magnitude and phase angle of discrete-time frequency response
functions are periodic in the real angular frequency variable «. This is true since
eij — eJ(m+2kﬂ/T)T = e]mTe/ka'

thus e/*7 is periodic in the frequency domain with period 27/T. Every term in both the magnitude and
phase angle is thus periodic. It is therefore only necessary to generate Bode plots over the angular range
—7 < wT <« radians; and the magnitude and phase angle are typically plotted as a function of the
angle w7 rather than angular frequency w.

Another useful property of a discrete-time frequency response function is that the magnitude is an
even function of the frequency  (and w7) and the phase angle is an odd function of « (and «T).

EXAMPLE 15.4. The Bode plots for the discrete-time frequency response function

(e + 1)’
(= D(e T 1) (e +1)

GH(e™™) =

are shown in Figs. 15-17 and 15-18.
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Fig. 15-17
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Fig. 15-18

15.7 RELATIVE STABILITY

The relative stability indicators “gain margin” and “phase margin” for both discrete-time and
continuous-time systems are defined in terms of the system open-loop frequency response in Section
10.4. Consequently these parameters are easily determined from the Bode plots of GH(w) as illustrated
in Example 10.1, and in Example 15.4 above. Since 0 db corresponds to a magnitude of 1, the gain
margin is the number of decibels that |GH(w)| is below 0 db at the phase crossover frequency w,
(arg GH(w,) = —180°). The phase margin is the number of degrees arg GH(w) is above —180° at the
gain crossover frequency w; (|GH(w;)|=1). Computer-generated Bode plots should be used to
accurately determine w,, w, and the gain and phase margins.

In most cases positive gain and phase margins, as defined above, will ensure stability of the
closed-loop system. However, a Nyquist Stability Plot (Chapter 11) may be sketched, or one of the
methods of Chapter 5 can be used to verify the absolute stability of the system.

EXAMPLE 15.5. The continuous-time system whose Bode plots are shown in Fig. 15-19 has a gain margin of
8 db and a phase margin of 40°.

+ =507
8 db = Gain margin

{—100°

—a0| -150°

Phase margin = 40°

db magnitude
Phase angle

—200°

—250°

0.2 0.4 1 s we 10 20

Frequency w, rad/sec

Fig. 15-19
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EXAMPLE 15.6. For the system in Example 15.4, the gain margin is 39 db, the angle at the phase crossover
frequency w, is w,T =157 rad, the phase margin is 90°, and the angle at the gain crossover frequency w, is
w, T = 0.02 rad, all as illustrated in Figures 15-17 and 15-18.

158 CLOSED-LOOP FREQUENCY RESPONSE

Although there is no straightforward method for plotting the closed-loop frequency response
(C/R) w) from Bode plots of GH(w), it may be approximated in the following manner, for both
continuous and discrete-time control systems. The closed-loop frequency response is given by

C G(w)
)= T eHe)
If [GH(w)|> 1,
c _ G(w) 1
E(w) |GH(¢.:)|>>1= GH(‘*’) N H(“’)
If |GH(w)| <1,
C —~
R(w).amw).«l:G(w)

The open-loop frequency response of most systems is characterized by high gain for low frequencies and
decreasing gain for higher frequencies, due to the usual excess of poles over zeros. Thus the closed-loop
frequency response for a unity feedback system (H = 1) is approximated by a magnitude of 1 (0 db) and
phase angle of 0° for frequencies below the gain crossover frequency w,. For frequencies above w,, the
closed-loop frequency response may be approximated by the magnitude and phase angle of G(w). An
approximate closed-loop bandwidth for many systems is the gain crossover frequency w; (See Example
12.7)

EXAMPLE 15.7. The open-loop Bode magnitude plot and approximate closed-loop Bode magnitude plot for the
continuous-time unity feedback system represented by G( jw) = 10/jw(l + jw) are shown in Fig, 15-20.

;f
20 §
i
!. -

NGEEE B
Fieital o .
pproximate 20 log,, |5 (ju) —\ e
= 1

-10}
i

db magnitude
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Frequency w, rad/sec

Fig. 15-20
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15.9 BODE ANALYSIS OF DISCRETE-TIME SYSTEMS USING THE w-TRANSFORM

The w-transform discussed in Section 10.7 can be used in the Bode analysis of discrete-time
systems. The algorithm for Bode analysis using the w-transform is:

1. Substitute (1 + w)/(1 — w) for z in the open-loop transfer function GH(z):

GH(z)|,_ L*» = GH'(w)

=
2. Let w=jw, and generate Bode plots for GH'( jw,,), using the methods of Sections 15.3 through

15.5.

3. Analyze the relative stability of the system in the w-plane by determining the gain and phase
margins, the gain and phase crossover frequencies, the closed-loop frequency response, the
bandwidth, and/or any other frequency-related characteristics of interest.

4. Transform the critical frequencies determined in step 3 to the frequency domain of the z-plane
using the transformation w7 = 2tan " 'w,.
EXAMPLE 156.8. The open-loop transfer function

Bs(z+1)°

(z=D(z+3)(z+1)

GH(z) =

is transformed into the w-domain by letting

which yields
—i(w—-1)

CH'(w) = w(w+2)(w+3)

Note, in particular, that the minus sign contributes —180° of phase angle, and the zero at +1 contributes +90° at
w, = 0°. The Bode plots of GH'( jw, ) are shown in Figs. 15-21 and 15-22.
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Fig. 15-21
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EXAMPLE 15.9. From the Bode plots of Example 15.8, the gain margin in the w-domain is 39 db and the phase
crossover frequency is w,, =1 rad/sec. Transforming back to the z-domain, the phase crossover frequency w, is
obtained from

w,T=2tan o, =157 rad

Compare these results with those of Example 15.6, which are the same.

EXAMPLE 15.10. From the Bode plots of Example 15.8, the phase margin is 90° and the gain crossover
frequency is w,; = 0.01 rad/sec. Transforming to the z-domain, the gain crossover frequency w, is obtained from
@, T=2tan"'o,, =0.02 rad

Compare these results with those of Example 15.6, which are the same.

With the wide availability of software for control systems analysis, use of the w-transform for Bode
analysis of discrete-time systems is usually unnecessary. However, for design by analysis, as discussed in
Chapter 16 where insight gained from continuous-time system design techniques is transferred to
discrete-time system design, the w-transform can be a very useful tool.

Solved Problems

LOGARITHMIC SCALES
15.1. Express the following quantities in decibel (db) units: (@) 2, (b) 4, (¢) 8, (d) 20, (e) 25, (f) 140.
From Equation (15.1),
db, = 201og,¢2 = 20(0.301) = 6.02 db, = 201og,(20 = 20(1.301) = 26.02

db, = 201og, 4 = 20(0.602) = 12.04 db, = 201og,¢25 = 20(1.398) = 27.96
db, = 201og,¢8 = 20(0.903) = 18.06 db, = 2010g,,140 = 20(2.146) = 42.92
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Note that since 4 = 2 X 2, then for part (b) we have

201og, o4 = 20l0g;y2 + 20log,,2 = 12.04

and since 8 = 2 X 4, then for part (c¢) we have

20108 = 20log,o2 + 20log,o4 = 6.02 + 12.04 = 18.06

THE BODE FORM AND THE BODE GAIN FOR CONTINUOUS-TIME SYSTEMS
15.2. Determine the Bode form and the Bode gain for the transfer function
<l
ﬁ K(s+2)
athcad GH= 55—+
s¥(s+4)(s+6)

Factoring 2 from the numerator, 4 and 6 from the denominator and putting s = jw results in the Bode
form

(K/12)(1 + jw/2)
(Jo) (1 +jw/8)(1 + jw/6)

GH( jw) =

The Bode gain is Ky = K/12.

15.3. When is the Bode gain equal to the d.c. gain (zero frequency magnitude) of a transfer function?

The Bode gain is equal to the d.c. gain of any transfer function with no poles or zeros at the origin
[/ =0 in Equation (15.2)].

BODE PLOTS OF SIMPLE FREQUENCY RESPONSE FUNCTIONS
15.4. Prove that the Bode Magnitude plot for ( jw)’ is a straight line.
The Bode magnitude plot for (jw)' is a plot of 20log,qw’ versus log,qw. Thus
d(20log,ow')  20/d(log,ow)
d(log,qw) d(log,w)

Since the slope is constant for any /, the Bode magnitude plot is a straight line.

slope = =20/

15.5. Determine: (1) the conditions under which the Bode magnitude plot for a pair of complex poles
s has a peak at a nonzero, finite value of w; and (2) the frequency at which the peak occurs.

Mathcad The Bode magnitude is given by

1
1+ 2%w/w,— (w/n-,v,,)2

201og,,

Since the logarithm is a monotonically increasing function, the magnitude in decibels has a peak
(maximum) if and only if the magnitude itself is maximum. The magnitude squared, which is maximum

when the magnitude is maximum, is

1
[1 = (w/w)]’ + 4(tw/w,)
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Taking the derivative of this function and setting it equal to zero yields
(4@/0),2,)[1 — (w/w,,)z] — 8w/l
2]2 N
{1 (o/e)] + ature,)’)

w2
or 1—(—) -2tr=0
W,

n

and the frequency at the peak is @ = w,/1 — 2{*. Since « must be real, by definition, the magnitude has a
peak at a nonzero value w only if 1 —2¢%>0 or { < 1/y2 =0.707. For { > 0.707, the Bode magnitude is
monotonically decreasing.

CONSTRUCTION OF BODE PLOTS FOR CONTINUOUS-TIME SYSTEMS
15.6. Construct the asymptotic Bode plots for the frequency response function
1+j0/2 = (w/2)°
Jo(1 +jw/0.5)(1 + jw/4)

GH(jw) =

The asymptotic Bode plots are determined by summing the graphs of the asymptotic representations
for each of the terms of GH(jw), as in equations (15./0) and (15.11). The asymptotes for each of these
terms are shown in Figs. 15-23 and 15-24 and the asymptotic Bode plots for GH( jw) in Figs. 15-25 and
15-26. The exact Bode plots generated by computer are shown for comparison.
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15.7. Construct Bode plots for the frequency response function
o+ 2
GH( jw) = -
Mathcad (o) Je(1+4jw/2)(1 + jw/5)
The asymptotic Bode plots are constructed by summing the asymptotic plots for each term of GH( jw),
as in Equation (/5./0) and (I5.11), and are shown in Figs. 15-27 and 15-28. More accurate curves
determined numerically by computer are also plotted for comparison.
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15.8.

ix

Mathcad

Construct the Bode plots for the open-loop transfer function GH = 2(s + 2)/(s? — 1).

With s = jw, the Bode form for this transfer function is

—4(1 + jw/2)

w)=—— 77
HO) = 5 ja) (1)
This function has a right-half plane pole [due to the term 1/(1 — jw)] which is not one of the standard
functions introduced in Section 15.4. However, this function has the same magnitude as 1/(1 + jw) and the
same phase angle as 1+ jw. Thus for a function of the form 1/(1 —jw/p), the magnitude can be
determined from Fig. 15-7 and the phase angle from Fig. 15-10. For this problem the phase angle
contributions from the terms 1/(1 + jw) and 1/(1 — jw) cancel each other. The asymptotes for the Bode
magnitude plot are shown in Fig. 15-29 along with a more accurate Bode magnitude plot. The Bode phase
angle is determined solely from arg Kz = arg(—~4) — 180° and the zero at w = 2, as shown in Fig. 15-30.
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RELATIVE STABILITY

15.9.

15.10.

Fagis

Mathcad

15.11.

pgs

Mathcad

For the system with the open-loop transfer function of Problem 15.6, find w;, w,, the gain
margin, and the phase margin.

Using the exact magnitude curve shown in Fig. 15-25, the gain crossover frequency is w, = 0.62. The
phase crossover frequency w, is indeterminate because arg GH( jw) never crosses — 180°. (See Fig. 15-26.)
Arg GH( jw,) = arg GH(j0.62) is —129°. Hence the phase margin is —129° + 180° = 51°. Since w, is
indeterminate, the gain margin is also indeterminate.

Determine the gain and phase margins for the systems with the open-loop frequency response
function of Problem 15.7.

From Fig. 15-27, w; = 1.5; and from Fig. 15-28, arg GH( jw,) = —144°. Therefore the phase margin is
180° —144° = 36°. From Fig. 15-28, w,=3.2; and the gain margin is read from Fig. 15-27 as
—20log,|GH( jw,)| =11 db.

Determine the gain and phase margins for the system with the open-loop transfer function of
Problem 15.8.

From Fig. 15-29, w, = 2.3 rad/sec. From Fig. 15-30, arg GH( jw,) = —127°. Hence the phase margin
is 180° — 127° = 53°. As shown in Fig. 15-30, arg GH(jw) approaches —180° as w decreases. Since
arg GH( jw) = —180° only at w = 0, then w, = 0. Therefore the gain margin is —20log,(|GH( jw,)|= —12
db using the normal procedure. Although a negative gain margin indicates instability for most systems, this
system is stable, as verified by the Nyquist Stability Plot shown in Fig. 15-31. Remember that the system
has an open-loop right-half plane pole; but the zero of GH at —2 acts to stabilize the system for K= 2.

 Im GH

Re GH

Fig. 15-31

CLOSED-LOOP FREQUENCY RESPONSE

15.12. For the system of Example 15.7 with H =1, determine the closed-loop frequency response

function and compare the actual closed-loop Bode magnitude plot with the approximate one of
Example 15.7.

For this system, GH = 10/s(s + 1). Then

c 10
E - s2+s5+10
c 1
and 2V = o= w10

Therefore the closed-loop Bode magnitude plot corresponds to Fig. 15-11, with {=0.18 and w,=3.16.
From this plot the actual 3-db bandwidth is w/w,=1.5 in normalized form; hence, since w, =316,
BW = 1.5(3.16) = 4.74 rad /sec. The approximate 3-db bandwidth determined from Fig. 15-20 of Example
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15.13.

i+

Mathcad
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15.7 is 3.7 rad/sec. Note that w,=3.16 rad/sec for the closed-loop system corresponds very well with
w, = 3.1 rad/sec from Fig. 15-20. Thus the gain crossover frequency of the open-loop system corresponds
very well with w, of the closed-loop system, although the approximate 3-db bandwidth determined above is
not very accurate. The reason for this is that the approximate Bode magnitude plot of Fig. 15-20 does not
show the peaking that occurs in the exact curve.

For the discrete-time system with open-loop frequency response function
(z+1)(z+1)
8z(z~-1)(z+1)

find the gain margin, phase margin, phase crossover angle, and gain crossover angle.

GH(z) = H=1

The Bode plots for- this system are given in Figs. 15-32 and 15-33. The phase crossover angle w7 is
determined from Fig. 15-33 as 1.74 rad. The corresponding gain margin is found on Fig. 15-32 as 11 db.
The gain crossover angle «, T is determined from Fig. 15-32 as 0.63 rad. The corresponding phase margin is
found on Fig. 15-33 as 57°.
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15.14.

15.15.

15.16.

15.17.

15.18.
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Supplementary Problems

Construct the Bode plots for the open-loop frequency response function
41 +jw/2)
(j@)*(1 +ju/8)(1 + ju/10)

GH( jw) =

Construct the Bode plots and determine the gain and phase margins for the system with the open-loop
frequency response function

4
GH( jw)= ————
(o) = oyt 5 jar3)
Solve Problems 13.35 and 13.37 by constructing the Bode plots.
Work Problem 13.52 using Bode plots.

Work Problem 11.59 using Bode plots.

Chapter 16

Bode Design

16.1 DESIGN PHILOSOPHY

Design of a feedback control system using Bode techniques entails shaping and reshaping the Bode
magnitude and phase angle plots until the system specifications are satisfied. These specifications are
most conveniently expressed in terms of frequency-domain figures of merit such as gain and phase
margin for the transient performance and the error constants (Chapter 9) for the steady state
time-domain response.

Shaping the asymptotic Bode plots of continuous-time systems by adding cascade or feedback
compensation is a relatively simple procedure. Bode plots for several common continuous-time
compensation networks are presented in Sections 16.3, 16.4, and 16.5. With these graphs, the magnitude
and phase angle contributions of a particular compensator can be added directly to the uncompensated
system Bode plots. It is usually necessary to correct the asymptotic Bode plots in the final stages of
design to accurately verify satisfaction of the performance specifications.

Since simple asymptotic Bode plots do not exist for discrete-time systems, the shaping and
reshaping of Bode plots for discrete-time systems is usually not as simple and intuitive as for
continuous-time systems. However, by transforming the discrete-time transfer function into the w-plane,
design of discrete-time systems can be accomplished by continuous-time techniques.

16.2 GAIN FACTOR COMPENSATION

It is possible in some cases to satisfy all system specifications by simply adjusting the open-loop
gain factor K. Adjustment of the gain factor K does not affect the phase angle plot. It only shifts the
magnitude plot up or down to correspond to the increase or decrease in K. The simplest procedure is to
alter the db scale of the magnitude plot in accordance with the change in K instead of replotting the
curve. For example, if K is doubled, the db scale should be shifted down by 20log,,2 = 6.02 db.

When working with continuous-time Bode plots, it is more convenient to use the Bode gain:

i=1

where —p, and —z; are the finite poles and zeros of GH.

EXAMPLE 16.1. The Bode plots for

Ky

HCI) = T+ af2)
are shown in Fig. 16-1 for Ky =1.

The maximum amount K, may be increased to improve the system steady state performance without
decreasing the phase margin below 45° is determined as follows. In Fig. 16-1, the phase margin is 45° if the gain
crossover frequency w, is 2 rad/sec and the magnitude plot can be raised by as much as 9 db before w, becomes 2
rad/sec. Thus K can be increased by 9 db without decreasing the phase margin below 45°.

387



oI+

388 BODE DESIGN [CHAP. 16
20 T T
i o e it e
| | i | ‘““'"lj.m-m 1[ o
@ i Aaesd w451 H14H i i Raa ¥ B 4§ 43t 1 ) ] e Al Ll S a5
3 ° a [ 43 T
= ! il I | {
E ..... i L 12 1 - L.
a fit | | {
E | I
] s satat ek i Ht T
i E ! ‘
0.1 0.2 04 1 2 4 10

Frequency «, rad/sec

-100°

Phase angle

—150°

0.1 0.2 0.4 1

Frequency w, rad/sec

Fig, 16-1

N%d 16.3 LEAD COMPENSATION FOR CONTINUOUS-TIME SYSTEMS

The lead compensator, presented in Sections 6.3 and 12.4, has the following Bode form frequency
response function:

(a/b)(1 +jw/a)

1+ jw/b (16.1)

PLead(jw) =

The Bode plots for this compensator, for various lead ratios a/b, are shown in Fig. 16-2. These graphs
illustrate that addition of a cascade lead compensator to a system lowers the overall magnitude curve in
the low-frequency region and raises the overall phase angle curve in the low-to-mid-frequency region.
Other properties of the lead compensator are discussed in Section 12.4.

The amount of low-frequency attenuation and phase lead produced by the lead compensator
depends on the lead ratio a/b. Maximum phase lead occurs at the frequency w,, = Vab and is equal to

Gmax = (90 — 2tan ! \fa/b ) degrees (16.2)
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db magnitude

-20

0.2

Normalized frequency, w/a

Phase angle

Normalized frequency, w/a
Fig. 16-2

Lead compensation is normally used to increase the gain and/or phase margins of a system or
increase its bandwidth. An additional modification of the Bode gain K is usually required with lead
networks, as described in Section 12.4.

EXAMPLE 16.2. An uncompensated continuous-time system whose open-loop transfer function is
H 24 H=1
T s(s+2)(s+6) B

is to be designed to meet the following performance specifications:
1. when the input is a ramp with slope (velocity) 27 rad/sec, the steady state position error must be less than
or equal to /10 radians.
2. ¢ppy =45° £ 5°.
3. gain crossover frequency w; > 1 rad/sec.*

Lead compensation is appropriate, as previously outlined in detail in Example 12.4. Transforming GH( jw)

into Bode form,
2

Jo(1+jw/2)(1+ju/6)

we note that the Bode gain K is equal to the velocity error constant K,, = 2. The Bode plots for this system are
shown in Fig. 16-3.

GH( jw) =

*When using Bode techniques, closed-loop system bandwidth specifications are often interpreted in terms of the gain crossover
frequency w,, which is casily determined from the Bode magnitude plot. The bandwidth and w; are not generally equivalent; but,
when one increases or decreases, the other usually follows. As noted in Sections 10.4, and 15.8 and Problem 12.16, w, is often a
reasonable approximation for the bandwidth.
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The steady state error e(cc) is given by Equation (9.13) as 1/K,, for a unit ramp function input. Therefore, if
e(o0) < /10 radians and the ramp has a slope of 27 instead of 1, then the required velocity error constant is

2w 4
KUZ > m =20 sec

Thus a cascade amplifier with a gain of A =10, or 20 db, will satisfy the steady state specification. But this gain
must be further increased after the lead network parameters are chosen, as described in Example 12.4. When the
Bode gain is increased by 20 db, the gain margin is — 8 db and the phase margin —28°, as read directly from the
plots of Fig. 16-3. Therefore the lead compensator must be chosen to bring the phase margin to 45°. This requires a
large amount of phase lead. Furthermore, since addition of the lead compensator must be accompanied by an
increase in gain of b/a, the net effect is to increase the gain at mid and high frequencies, thus raising the gain
crossover frequency. Hence a phase margin of 45° has to be established at a higher frequency, requiring even more
phase lead. For these reasons we add two cascaded lead networks (with the necessary isolation to reduce loading
effects, if required).

To determine the parameters of the lead compensator, assume that the Bode gain has been increased by 20 db
so that the 0-db line is effectively lowered by 20 db. If we choose b/a = 10, then the lead compensator plus an
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additional Bode gain increase of (b/a)? for the two networks has the following combined form:

(1+jw/a)’
(1 +jw/10a2)’

Now we must choose an appropriate value for a. A useful method for improving system stability is to try to cross
the 0-db line at a slope of —6 db/octave. Crossing at a slope of —12 db/octave usually results in too low a value
for the phase margin. If 4 is set equal to 2, a sketch of the asymptotes reveals that the 0-db line is crossed at —12
db/octave. If a =4, the 0-db line is crossed at a slope of —6 db/octave. The Bode magnitude and phase angle
plots for the system with a = 4 rad/sec are shown in Fig. 16-4. The gain margin is 14 db and the phase margin is
50°. Thus the second specification is satisfied. The gain crossover frequency w, = 14 rad/sec is substantially higher
than the value specified, indicating that the system will respond a good deal faster than required by the third
specification. The compensated system block diagram is shown in Fig. 16-5. A properly designed amplifier may
additionally serve the purpose of load-effect isolation if it is placed between the two lead networks.
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sz%a 164 LAG COMPENSATION FOR CONTINUOUS-TIME SYSTEMS

The lag compensator, presented in Sections 6.3 and 12.5, has the following Bode form frequency
response function:
1+jw/b

1+ jw/a (16.3)

PLag(jw) =

The Bode plots for the lag compensator, for several lag ratios b/a, are shown in Figure 16-6. The
properties of this compensator are discussed in Section 12.5.

120 log)o |PLaglia)|

db magnitude

0.02 0.04 0.1 0.2 04 1 2 4

Normalized frequency, /b

A/,:E

Phase angle

0.02 0.04 0.1 0.2 04 1 2 4

Normalized frequency, w/b
Fig. 16-6

EXAMPLE 16.3. Let us redesign the system of Example 16.2 using gain factor plus lag compensation, as
previously outlined in detail in Example 12.5. The uncompensated system is, again, represented by

2
Jjo(1+jw/2)(1 +ju/6)

GH( jo) =

and the specifications are

1. K,>20sec™!

2. ppy=45°+5°

3. w, >1rad/sec

As before, a Bode gain increase by a factor of 10, or 20 db, is required to satisfy the first (steady state)
specification. Hence the Bode plots of Fig. 16-3 should again be considered with the 0-db line effectively lowered by

20 db. Addition of significant phase-lag at frequencies less than 0.1 rad/sec will lower the curve or effectively raise
the 0-db line by an amount corresponding to b/a. Thus the ratio b/a must be chosen so that the resulting phase

CHAP. 16] BODE DESIGN 393

margin is 45°. From the Bode phase angle plot (Fig. 16-3) we see that a 45° phase margin is obtained if the gain
crossover frequency is w, = 1.3 rad /sec. From the Bode magnitude plot, this requires that the magnitude curve be
lowered by 2 + 20 = 22 db. Thus a gain decrease of 22 db, or a factor of 14, is needed. This can be obtained using a
lag compensator with b/a = 14. The actual location of the compensator is arbitrary as long as the phase shift
produced at w, is negligible. Values of @ = 0.01 and b = 0.14 rad/sec are adequate. The compensated system block
diagram is shown in Fig. 16-7.

R(jw) + 1+ 4 C(jw)
Jul0.14 2
1+ ju/0.01 T ™ Fall F jal2)1 F jal®)
Lag compensator Gain of & Uncompensated plant

Fig. 16-7

16.5 LAG-LEAD COMPENSATION FOR CONTINUOUS-TIME SYSTEMS

It is sometimes desirable, as discussed in Section 12.6, to simultaneously employ both lead and lag
compensation. Although one each of these two networks can be connected in series to achieve the
desired effect, it is usually more convenient to mechanize the combined lag-lead compensator described
in Example 6.6. This compensator can be constructed with a single R-C network, as shown in Problem
6.14.

The Bode form of the frequency response function for the lag-lead compensator is

(1 +jw/a)(1 +jw/b,)
(1 +je/b)(1 +jw/ay)
with b, > a,, b, > a, and a,b, = b,a,. A typical Bode magnitude plot in which a, > b, is shown in Fig.
16-8. The Bode plots for a specific lag-lead compensator can be determined by combining the Bode

plots for the lag portion from Fig. 16-6 with those for the lead portion from Fig. 16-2. Additional
properties of the lag-lead compensator are discussed in Section 12.6.

PLL(j“’) =

db magnitude

e | D BERST HESEL bl S0 56 ik SRS IR 4 N1 £ Kb i RRSED PR |
0.2 0.4 1 2 4 10 20 40
Frequency w, rad/sec

Fig. 16-8

EXAMPLE 16.4. Let us redesign the system of Fxample 16.2 using lag-lead compensation. Suppose, for example,
that we want the gain crossover frequency w, (approximate closed-loop bandwidth) to be greater than 2 rad/sec
but less than 5 rad/sec, with all the other specifications the same as Example 16.2. For this application, we shall see
that the lag-lead compensator has advantages over either lag or lead compensation. The uncompensated system is,
again, represented by

2
Jo(1+juo/2)(1 +jw/6)

GH( ju) =
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The Bode plots are shown in Fig. 16-3. As in Example 16.2, a Bode gain increase of 20 db is required to satisfy the
specification on steady state performance. Once again referring to Fig. 16-3 with the 0-db line shifted down by 20
db to correspond to the Bode gain increase, the parameters of the lag-lead compensator must be chosen to result in
a gain crossover frequency between 2 and 5 rad/sec, with a phase margin of about 45°. The phase angle plot of
Fig. 16-3 shows about —188° phase angle at approximately 4 rad/sec. Thus we need about 53° phase lead to
establish a 45° phase margin in that frequency range. Let us choose a lead ratio of a,/b, = 0.1 to make sure we
have enough phase lead. To place it in about the right frequency range, let a; = 0.8 and 5, = 8 rad/sec. The lag
portion must have the same ratio a,/b, = 0.1; but the lag portion must be sufficiently lower than a, so as not to
significantly reduce the phase lead obtained from the lead portion; b, = 0.2 and a, = 0.02 are adequate. The Bode
plots for the compensated system are shown in Fig. 16-9; and the block diagram is shown in Fig. 16-10.

We note that the lag-lead compensator produces no magnitude attenuation at either high or low frequencies.
Therefore a smaller gain factor adjustment (as obtained with lag compensation in Example 16.3) and a smaller
bandwidth and gain crossover frequency (as that resulting from lead compensation in Example 16.2) are obtained
using lag-lead compensation.
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16.6 BODE DESIGN OF DISCRETE-TIME SYSTEMS

Bode design of discrete-time systems is based on the same philosophy as Bode design of
continuous-time systems in that it entails shaping and reshaping the Bode magnitude and phase angle
plots until the system specifications are met. But the effort involved can be substantially greater.

It is sometimes possible to satisfy specifications by simply adjusting the open-loop gain factor K, as
described in Section 16.2 for continuous-time systems.

EXAMPLE 16.5. Consider the discrete-time system of Example 15.4, with open-loop frequency response function
(e +1)°
(eT—1)(eT + %)( e/l 4+ %)

and H =1. Figures 16-11 and 16-12 are the Bode plots of GH, drawn by computer, which illustrate the gain and

GH(e™T) =
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phase margins and the gain and phase crossover frequencies. We now show that gain factor compensation alone
can be used to satisfy the following system specifications:

1 ¢ppy = 30°
2. 10 db < gain margin < 15 db.

From Fig, 16-12 we see if w, T can be increased to 1.11 rad, then ¢py, = 30°. To accomplish this, the gain must
be increased by 35 db, as shown in Fig. 16-11, resulting in a gain margin of 39 — 35 = 4 db, which is too small. If
we increase the gain by only 25 db (increase X by a factor of 18), then w,7 = 0.35 rad and the phase margin is 70°.
Note that changing K does not change w,T.

For discrete-time system design specifications which cannot be satisfied by gain factor compensa-
tion alone, Bode design in the z-domain is not as straightforward as in the s-domain. Continuous-time
system design methods can, however, be transferred to the design of discrete-time systems using the
w-transform. Based on developments in Sections 10.7 and 15.9, the design algorithm is as follows:

1. Substitute (1 + w)/(1 — w) for z in the open-loop transfer function GH(z):
GH(z)|,-q w1 -w) = GH'(w)

2. Set w=jw,. and then transform critical frequencies in the performance specifications from the
z- to the w-domain, using:

wT
w, =tan——
" 2
3. Develop continuous-time compensation (as in Sections 16.3 through 16.5) such that the system
in the w-domain satisfies the given specifications at the frequencies obtained in Step 2 (as if the
w-domain were the s-domain).

4. Transform the compensation elements obtained in Step 3 back to the z-domain to complete the
design, using w=(z—1)/(z + 1).

EXAMPLE 16.6. The unity feedback discrete-time system with open-loop transfer function

3(z+1)(z+}
G(z)=GH(z)=E%

and sampling period T = 0.1 sec is to be compensated so that it meets the following specifications:

1. The steady state crror must be less than or equal to 0.02 for a unit ramp input.
2. ¢py = 30°.
3. The gain crossover frequency w, must satisfy w,7> 1 rad.

This is a type O system and the steady state error for a unit ramp input is infinite (Section 9.9). Therefore the
compensation must contain a pole at z=1 and the new transfer function including this pole becomes
I (z+1)(z+}
GH'(z) = AL IChs)
8z(z-1){z+14)
From the table in Section 9.9 the steady state error for the unit ramp is e() = T/K, ., where K .= GH(1)=
lim, , (z - DGH(z) = 1. Thus, with e(=) = 0.15, the gain factor must be increased by a factor of 15,/2 (17.5 db).
The Bode plots for GH' are shown in Figs. 16-13 and 16-14. From Fig. 16-13, the angle at the gain crossover
frequency is w,T = 0.68 rad and the phase margin is 56°. Increasing the gain by 17.5 db would move the angle at
the gain crossover frequency to w,T = 2.56 rad, but the phase margin would then become —41°, destabilizing the
system. Gain factor compensation alone is apparently inadequate for this design problem.
To complete the design, we transform GH(z) into the w-domain, setting z = (1 + w)/(1 — w) and forming
1 (1-w)(l+w/2)

GH' (W) = 3 ST w) (LT w/3)

The Bode plots for GH” are shown in Figs. 16-15 and 16-16.
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Following Step 2 above, the gain crossover frequency specification w, 7 > 1 rad is transformed into the w-plane
using
T

1
G,y = tan—— > tan_ = 0.55 rad /scc

From Fig. 16-15 {or from w,, = tan(0.68/2)] the gain crossover frequency is 0.35 rad/sec and the phase margin is
56° (as it was in the z-domain).

To satisfy the steady state error specification, the gain factor must be increased by at least 17.5 db (as noted
earlier), and to satisfy the remaining specifications, the gain crossover frequency should be increased to at least 0.55
rad/sec (Fig. 16-16), and the phase angle at w, = 0.55 should be held to at least —150°. This last requirement
implies that no more than 6.5° of lag can be introduced at w, = 0.55 rad/sec. Note that this requires about 4.3-db
gain increase at w, = 0.55 rad/sec so that this frequency can become the gain crossover frequency.

Lag compensation can satisfy these specifications (Step 3). From Fig. 16-6, a lag ratio of b/a = 5 provides 14
db of attenuation at higher frequencies. To increase the gain crossover frequency, the gain factor is increased by
18.3 db, so that at «,_ = 0.55 there is a net increase of 4.3 db. This is clearly adequate to also satisfy the steady state
error specification (17.5 db is needed).

Now the parameter a in the lag ratio can be chosen to satisfy the phase margin requirement. As noted above,
we must keep the phase lag of the compensator below 6.5° at w, = 0.55 rad/sec. We note that the phase lag of the
lag compensator is

wT | wT

'— —tan™!—

¢Lag =tan"

Thus, setting ¢;,, = ~6.5% w=w, =0.55 rad/sec and b= 5a (as above), this equation is easily solved for a.

Choosing the smaller of the solutions generates a dipole (a pole-zero pair) very near the origin of the w-plane, for

a =0.0157. We choose a = 0.015 which gives only 6.2° of phase lag. Thus b = 0.075 and the lag compensator in the
w-plane is given by

» 0.015\( w+ 0.075

)= s (w015 )

Py, is now transformed back to the z-domain (Step 4) by substituting w = (z — 1)/(z + 1). The result is

2 — 0.86046
PLg(z) = 0‘21182( )

z —0.97044

Combining this with the pole at z =1 and the gain factor increase of 18.3 db (a gain factor ratio increase of 8.22),
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the complete compensation element G,(z) is

z — 0.86046

Gi(2) =1.7417 (z-1)(z - 0.97044)

The compensated control system is shown in Fig. 16-17. Note that this design is quite similar to those developed for
this same system and specifications in Examples 12.7 and 14.5.

Fig. 16-17

Solved Problems

GAIN FACTOR COMPENSATION

16.1. Determine the maximum value for the Bode gain K which will result in a gain margin of 6 db
or more and a phase margin of 45° or more for the system with the open-loop frequency
response function

Ky

GH(jw)=—"—"—

o) vy

The Bode plots for this system with Kz = 1 are shown in Fig. 16-18.

The gain margin, measured at w, = 5 rad/sec, is 20 db. Thus the Bode gain can be raised by as much
as 20— 6 =14 db and still satisfy the gain margin requirement. However, the Bode phase angle plot
indicates that, for ¢py > 45°, the gain crossover frequency w, must be less than about 2 rad/sec. The
magnitude curve can be raised by as much as 7.5 db before w, exceeds 2 rad/sec. Thus the maximum value
of K satisfying both specifications is 7.5 db, or 2.37.

16.2. Design the system of Problem 15.7, to have a phase margin of 55°,

i+

K The Bode phase angle plot in Fig. 15-28 indicates that the gain crossover frequency w, must be 0.9

Mathcaas rad /sec for 55° phase margin. From the Bode magnitude of Fig. 15-27, K must be reduced by 6 db, or a
factor of 2, to achieve w; = 0.9 rad/sec and hence ¢py = 55°.

LEAD COMPENSATION

16.3. Show that the maximum phase lead of the lead compensator [Equation (/6.1 )] occurs at w,, = yab
and prove Equation (/6.2).

The phase angle of the lead compensator is ¢ = arg P, .4(jw) =tan ' w/a — tan" ! w/b. Then
de 1 1
dw a[1+(u/a)2] b[l+(m/b)21

Setting d$/dw equal to zero yields «? = ab. Thus the maximum phase lead occurs at w, = Vab . Hence

Gmax = tan"'y/b/a — tan"' \Ja/b. But since tan 'Yb/a=mn/2 —tan ' yJa/b, we have ¢, =
(90— 2tan 'y/a/b) degrees.
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16.5.

i+

Mathcad
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What attenuation (magnitude) is produced by a lead compensator at the frequency of maximum

phase lead wm=\/¢E ?
_a 1+b/a _\/7
bV 1+am Vo

The attenuation factor is given by

“DLeed(j\/a_b) | = (a/b)(l +J\M)

(1+jya/b)

Design compensation for the system
8

(1 +jw)(1 +jw/3)?

which will yield an overall phase margin of 45° and the same gain crossover frequency w, as the
uncompensated system. The latter is essentially the same as designing for the same bandwidth, as

discussed in Section 15.8.

GH(jw) =
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The Bode plots for the uncompensated system are shown in Fig. 16-19.
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Fig. 16-19

The gain crossover frequency w, is 3.4 rad /sec and the phase margin is 10°. The specifications can be
met with a cascade lead compensator and gain factor amplifier. Choosing a and b for the lead compensator
is somewhat arbitrary, as long as the phase lead at w, = 3.4 is sufficient to raise the phase margin from 10°
to 45°. However, it is often desirable, for economic reasons, to minimize the low-frequency attenuation
obtained from the lead network by choosing the largest lead ratio a/b <1 that will supply the required
amount of phase lead. Assuming this is the case, the maximum lead ratio that will yield 45° — 10° = 35°
phase lead is about 0.3 from Fig. 16-2. Solution of Equation (/6.2) yields a value of a/b=0.27. But we
shall use a/b = 0.3 because we have the curves available for this value in Fig. 16-2. We want to choose a
and b such that the maximum phase lead, which occurs at w,, = yab , is obtained at w, = 3.4 rad/sec. Thus
Vab = 3.4. Substituting a = 0.3b into this equation and solving for b, we find » = 6.2 and a = 1.86. But this
compensator produces 201og,,,/6.2/1.86 = 5.2 db attenuation at w, = 3.4 rad/sec (see Problem 16.4). Thus
an amplifier with a gain of 5.2 db, or 1.82, is required, in addition to the lead compensator, to maintain w,
at 3.4 rad /sec. The Bode plots for the compensated system are shown in Fig. 16-20 and the block diagram
in Fig. 16-21.
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R{jw) + 0.3(1 + ju/1.86) 8 Clie)
1+ ju/b2 1222 ™ ariatase -
Lead compensator Amplifier Uncompensated system
Fig. 16-21

LAG COMPENSATION
16.6. What is the maximum phase lag produced by the lag compensator [Equation (16.3)]?

The phase angle of the lag compensator is

-1

w w
arg Py, ( jw) =tan'1; ~tanto = —arg Ppq( jw)

Thus the maximum phase lag (negative phase angle) of the lag compensator is the same as the maximum
phase lead of the lead compensator with the same values of a and 5. Hence the maximum also occurs at
@, = Vab and, from Equation (76.2), we get

a
Brnax = (%—Ztm’lﬁ) degrees
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Expressed in terms of the lag ratio b/a, this equation becomes

b
Gax = (Ztauf1 V - - 90) degrees
a

16.7. Design compensation for the system of Problem 16.1 to satisfy the same specifications and, in
addition, to have a gain crossover frequency w, less than or equal to 1 rad/sec and a velocity
error constant K, > 5.

The Bode plots for this system, shown in Fig. 16-18, indicate that «, = 1 rad /sec for Kz =1.
Hence K, = Kz=1 for w, = 1. The gain and phase margin requirements are easily met with any
Ky <2.37; but the steady state specification requires K, = K> 3. Therefore a low-frequency
cascade lag compensator with b/a =35 can be used to increase K, to 5, while maintaining the
crossover frequency and the gain and phase margins at their previous values. A lag compensator
with b= 0.5 and a = 0.1 satisfies this requirements, as shown in Fig. 16-22.
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Fig. 16-22

5(1 + jw/0.5)
jo(1+jw/0.1)(1 +jw/S)

The compensated open-loop frequency response function is

16.8. Design a discrete-time unity feedback system, with the fixed plant

24 G 27 (z+ 1)}
e =Gy

satisfying the specifications: (1) K, > 4, (2) gain margin > 12 db, (3) phase margin > 45°.
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The specification on the position error constant K, requires a gain factor increase of 4. This transfer
function is transformed into the w-plane by letting z = (1 + w)/(1 — w) thus forming

G(w)=—"
i) (1+w/3)°
The Bode plots for this system, with the gain factor increased by 20log,,4 = 12 db, are shown in Fig.
16-23.
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Fig. 16-23

The gain margin is 6 db and the phase margin is 30°. These margins can be increased by adding a lag
compensator. To increase the gain margin by 12 db, the high-frequency magnitude must be reduced by 6
db. To raise the phase margin to 45°, w,,; must be lowered to 3.0 rad/sec or less. This requires a magnitude
attenuation of 3 db at that frequency. Therefore let us choose a lag ratio b/a = 2 to yield a high-frequency
attenuation of 20log,;2 =6 db. For a = 0.1 and b =0.2 the phase margin is 65° and the gain margin is 12
db, as shown in the compensated Bode plots of Fig, 16-23.

The compensated open-loop frequency response function is

41+ jow,/0.2)
(1+/w,/0.1)(1 +jw,)’

The compensation element

4(1+w/0.2)

Gilw) = 700

is transformed back to the z-domain by letting w = (z — 1) /(z + 1) thus forming

4(2—)

Gl(z):_(T_)

e[ wr

2
1 ,
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LAG-LEAD COMPENSATION

16.9.

Determine compensation for the system of Problem 16.5 that will result in a position error
constant K, > 10, ¢py > 45° and the same gain crossover frequency w, as the uncompensated
system.

The compensation determined in Problem 16.5 satisfies all the specifications except that K, is only 4.4
The lead compensator chosen in that problem has a low-frequency attenuation of 10.4 db, or a factor of
3.33. Let us replace the lead network with a lag-lead compensator, choosing a, = 1.86, b, =6.2, and
a,/b, = 0.3. The low-frequency magnitude becomes a,6,/b,a, =1, or 0 db, and the attenuation produced
by the lead network is erased, effectively raising K, for the system by a factor of 3.33 to 14.5. The lag
portion of the compensator should be placed at frequencies sufficiently low so that the phase margin is not
reduced below the specified value of 45°. This can be accomplished with a, =0.09 and b, =0.3. The
compensated system block diagram is shown in Fig. 16-24. Note that an amplifier with a gain of 1.82 is
included, as in Problem 16.5, to maintain w, = 3.4.

R(jw) + (1+ ju/0.8)(1 + ju/1.88) 153 8 Clw)
(1 + 7u/0.08)(1 + ju/B.2) i (1 4+ Jul(1 + ju/3)*
Lag-lead compensator Amplifier Uncompensated system
Fig. 16-24

The compensated Bode plots are shown in Fig. 16-25.
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Design cascade compensation for a unity feedback control system, with the plant
1

Jw(1+jw/8)(1 + jw/20)

G,(jw) =

to meet the following specifications:
(1) K,>100
(2) w;>10rad/sec

To satisfy the first specification, a Bode gain increase by a factor of 100 is required since the
uncompensated K, = 1. The Bode plots for this system, with the gain increased to 100, are shown in Fig.

16-26.

(3) gain margin > 10 db
(4) phase margin ¢py, > 45°

20

db magnitude
i

1 2 4 10 20 1 10 100

Frequency w, rad/sec

—100°

=200°

Phase angle

—300°
1 2 4 10 20 4 40 100

Frequency o, rad/sec

Fig. 16-26

The gain crossover frequency w, = 23 rad/sec, the phase margin is —30°, and the gain margin is —12
db. Lag compensation could be used to increase the gain and phase margins by reducing «,. However, w;
would have to be lowered to less than 8 rad/sec to achieve a 45° phase margin and to less than 6 rad/sec
for a 10-db gain margin. Consequently, we would not satisfy the second specification. With lead
compensation, an additional Bode gain increase by a factor of b/a would be required and w, would be
increased, thus requiring substantially more than the 75° phase lead for w, = 23 rad/sec. These disadvan-
tages can be overcome using lag-lead compensation. The lead portion produces attenuation and phase lead.
The frequencies at which these effects occur must be positioned near w, so that «, is slightly reduced and
the phase margin is increased. Note that, although pure lead compensation increases w,, the lead portion of
lag-lead compensator decreases w, because the gain factor increase of b/a is unnecessary, thereby lowering
the magnitude characteristic. The lead portion can be determined independently using the curves of Fig.
16-2; but it must be kept in mind that, when the lag portion is included, the attenuation and phase lead
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may be somewhat reduced. Let us try a lead ratio of a,/b; = 0.1, with 4, = 5 and b, = 50. The maximum
phase lead then occurs at 15.8 rad/sec. This enables the magnitude asymptote to cross the 0-db line with a
slope of —6 db/octave (see Example 16.2). The compensated Bode plots are shown in Fig. 16-27 with a,
and b, chosen as 0.1 and 1.0 rad/sec, respectively. The resulting parameters are w, =12 rad/sec, gain
margin = 14 db, and ¢y, = 52°, as shown on the graphs. The compensated open-loop frequency response
function is

100(1 + jw){(1 + jw/5)

Jo(L +jw/0.1)(1 + jo/8)(1 + jo/20)(1 + jw,/50)

10
U
B 20
5 |
=
=
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; 1]
©
20
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o —200
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o
=
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@y PO
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Fig. 16-27

MISCELLANEOUS PROBLEM

16.11. The nominal frequency response function of a certain plant is

1
T oL+ jw/8)( +jw,/20)

A feedback control system must be designed to control the output of this plant for a certain
application and it must satisfy the following frequency domain specifications:

Gz(]“’)

(1) gain margin > 6 db
(2) phase margin (¢py) > 30°

In addition, it is known that the “fixed” parameters of the plant may vary slightly during
operation of the system. The effects of this variation on the system response must be minimized
over the frequency range of interest, which is 0 < w < 8 rad /sec, and the actual requirement can
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be interpreted as a specification on the sensitivity of (C/R)( jw) with respect to |G,( jw)], that is,

(3) 20|log,, S|(<;C;/(fh),()f“)| <-10db  for 0<w<8rad/sec

It is also known that the plant will be subjected to an uncontrollable, additive disturbance input,
represented in the frequency domain by U( jw). For this application, the system response to this
disturbance input must be suppressed in the frequency range 0 < w < 8 rad/sec. Therefore the
design problem includes the additional constraint on the magnitude ratio of the output to the
disturbance input given by

(4) 20log,, < —20db for 0<w=<8rad/sec

C .
E(Jw)

Design a system which satisfies these four specifications.

The general system configuration, which includes the possibility of either or both cascade and feedback
compensators, is shown in Fig. 16-28.

Ulja)
+
& + b 1
2 Gie) = ST FerBd + Fr20) o
Cascade Plant
compensator
H(ju) |
Feedback
compensator
Fig. 16-28
From Fig. 16-28, we see that
C( . ) Gz(j“’) and C( ) Gle(jw)
“(jw)= —— T — [ . A
v T 1Y 6,6,H(jw) R T 1566, H(jw)
In a manner similar to that of Example 9.7, it is easily shown that
S((‘/Rl(/w) = !
Gl 1+ GGy H jw)

If we assume that |G,G, H(jw)| > 1 in the frequency range 0 < w < 8 rad/sec (this inequality must be
checked upon completion of the design and, if it is not satisfied, the compensation may have to be
recomputed), then specification (3) may be approximated by

1
2010, .| SIC/RU | = 201 - -
0810 O1G ¢ jeo)| | 0810 G,G,H( jw)
= ~20log,o| G,G, H( jw)| < —10db
or 20log,,| G,G, H( jw)| = 10 db
Similarly, specification (4) can be approximated by

|G, (jew)|

201 =201 —_——
Ooko oo |G1G2 H( jw) |

C .
U(Jw)

Gy (jw)| —2010g,| G\G, H( jw)} < =20 db

=20log,,
or 2010g,p| G,G, H( jw) | = [20 + 201og,0| G, ( jw)|] db
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Specifications (3) and (4) can therefore be translated into the following combined form. We require that
the open-loop frequency response, G,G, H( jw), lie in a region on a Bode magnitude plot which simultane-
ously satisfies the two inequalities:

201log,y| G,G, H( jw)| =10 db
2010g,| GG, H( jw) | = [20 + 2010g,0| G, (jw)|] db

This region lies above the broken line shown in the Bode magnitude plot in Fig. 16-29, which also includes
Bode plots of G,( jw). The design may be completed by determining compensation which satisfies the gain
and phase margin requirements, (/) and (2), subject to this magnitude constraint.

A 32-db increase in Bode gain, which is necessary at w =8 rad/sec, would satisfy specifications (3)
and (4), but not (/) and (2). Therefore a more complicated compensation is required. For a second trial,
we find that the lag-lead compensation:

100(1 + je/2.5)(1 + jw/0.25)

(1 +jw/25)(1 + jw/0.025)
results in a system with a gain margin of 6 db and épy = 26°, as shown in Fig. 16-29. We see from the
figure that 10° to 15° more phase lead is necessary near w = 25 rad/sec and |G, H'(jw)| must be increased
by at least 2 db in the neighborhood of w = 8 rad/sec to satisfy the magnitude constraint. If we introduce
an additional lead network and increase the Bode gain to compensate for the low-frequency attenuation of
the lead network, the compensation becomes
1+4jw/10\[ (1 +jw/2.5)(1 +jw/0.25)
1+jw/30 | (1 +jw/25)(1 +w/0.025)

G H'(jw) =

G H"(jw) = 300(

This results in a gain margin of 7 db, ¢py = 30°, and satisfaction of specifications (3) and (4), as shown in
Fig. 16-29. The assumption that |G,G, H(jw)|> 1 for 0 < w < 8 rad/sec is easily shown to be justified by

50 L0 20 logy |Gatia)|
O 20 logy |Gy H(j) * Galfe)]
40 & 20 logyy |GiH (o)~ Goliul] |
=2
2
&
E
=
=
o1 0.2 0.4 1 2 4 10 20 10
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6 i
!
I
P |
% —-100°
@
W s
E —apo°| @ Arg Gylju)
~ | O Arg G H'(ju) * Gylju)
_ & Arg GH"(je) * Gati)
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Fig. 16-29
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calculating the actual values of the db magnitudes of

C
sl ma |G

The compensator G, H”( jw) can be divided between the forward and feedback paths, or put all in one
path, depending on the form desired for (C/R)( jw) if such a form is specified by the application.

Supplementary Problems

Design a compensator for the system with the open-loop frequency response function
20

jo(1 + jw/10)(1 + jw/25)(1 + jw/40)
to result in a closed-loop system with a gain margin of at least 10 db and a phase margin of at least 45°.

GH( jw) =

Determine a compensator for the system of Problem 16.1 which will result in the same gain and phase
margins but with a crossover frequency w, of at least 4 rad/sec.

Design a compensator for the system with the open-loop frequency response function
2

(1 +j)[1 4+ jw/10 - (0/4)?]

which will result in a closed-loop system with a gain margin of at least 6 db and a phase margin of at least
40°.

GH( jw) =

Work Problem 12.9 using Bode plots. Assume a maximum of 25% overshoot will be ensured if the system
has a phase margin of at least 45°.

Work Problem 12.10 using Bode plots.

Work Problem 12.20 using Bode plots.

Work Problem 12.21 using Bode plots.

Chapter 17

Nichols Chart Analysis

17.1 INTRODUCTION

Nichols chart analysis, a frequency response method, is a modification of the Nyquist and Bode
methods. The Nichols chart is essentially a transformation of the M- and N-circles on the Polar Plot
(Section 11.12) into noncircular M and N contours on a db magnitude versus phase angle plot in
rectangular coordinates. If GH(w) represents the open-loop frequency response function of either a
continuous-time or discrete-time system, then GH(w) plotted on a Nichols chart is called a Nichols
chart plot of GH(w). The relative stability of the closed-loop system is easily obtained from this graph.
The determination of absolute stability, however, is generally impractical with this method and either
the techniques of Chapter S or the Nyquist Stability Criterion (Section 11.10) are preferred.

The reasons for using Nichols chart analysis are the same as those for the other frequency response
methods, the Nyquist and Bode techniques, and are discussed in Chapters 11 and 15. The Nichols chart
plot has at least two advantages over the Polar Plot: (1) a much wider range of magnitudes can be
graphed because |GH(w)| is plotted on a logarithmic scale; and (2) the graph of GH(w) is obtained by
algebraic summation of the individual magnitude and phase angle contributions of its poles and zeros.
While both of these properties are also shared by Bode plots, |GH(w)| and arg GH(w) are included on a
single Nichols chart plot rather than on two Bode plots.

Nichols chart techniques are useful for directly plotting (C/R)(w) and are especially applicable in
system design, as shown in the next chapter.

17.2 db MAGNITUDE-PHASE ANGLE PLOTS

The polar form of both continuous-time and discrete-time open-loop frequency response functions

GH(w) =|GH(w)|/ arg GH(w) (17.1)

Definition 17.1: The db magnitude-phase angle plot of GH(w) is a graph of |GH(w)|. in decibels,
versus arg GH(w), in degrees, on rectangular coordinates with w as a parameter.

EXAMPLE 17.1. The db magnitude-phase angle plot of the continuous-time open-loop frequency response

function
GH(ju)=1+jo=V1+& /tan 'w

is shown in Fig. 17-1.

17.3 CONSTRUCTION OF db MAGNITUDE-PHASE ANGLE PLOTS

The db magnitude-phase angle plot for either a continuous-time or discrete-time system can be
constructed directly by evaluating 20log,(|GH(w)| and arg GH(w) in degrees, for a sufficient number of
values of w (or wT) and plotting the results in rectangular coordinates with the log magnitude as the
ordinate and the phase angle as the abscissa. Available software makes this a relatively simple process.

EXAMPLE 17.2. The db magnitude-phase angle plot of the open-loop frequency response function
(e +1)°
(e’ ~ l)(e’“’T+ %)(e’“r+ Y

GH(e™T) =
is shown in Fig. 17-2. Note that wT is the parameter along the curve.
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20.0

a1 GHGw) = 1+ ju 15.0

20

16

db magnitude

20 40 60° 80° 100°
Phase angle
Fig. 17-1

r
~400°

A graphical approach to construction of db magnitude-phase angle plots is illustrated by

examining the technique for continuous-time systems.
First write GH( jw) in the Bode form (Section 15.3):

GH(jw) =

Kp(1 +jw/z,) - (1 +jw/z,,)

r 20
0.03
on [0
el o
b - 40
20
F—60
I~ 80
F—100
F-120
- 140
T — T T T T - 160
—350° -300° ~250° -200° - 150° -100° —-50°
Phase angle
Fig. 17-2

(o) (1 +jw/p,) - (1 +jw/p,

)

db magnitude

[CHAP. 17
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where ! is a nonnegative integer. For K, > 0 [if K5 <0, add —180° to arg GH( jw)].

Je Jw
20l0g,,|GH( jw)|=20log,, K+ 20logo(1 + - + -+ +20log,|1 + —
1 m
1
+ 2010g,o| —— | + 20log,, e + -+ +20log, e (17.2)
(jw) 1+— 1+=—
P Pn
(jw) (1 jw) (l+jw)+ [ ! ]
argGH( jw)=arg|1+ — |+ --- +arg — | tag|——
g J 8 2 . (o)
1 1
PP 173
+ arg o + +arg Jo ( )
1+ — 1+—
P1 P

Using Equations (/7.2) and (/7.3), the db magnitude-phase angle plot of GH(jw) is generated by
summing the db magnitudes and phase angles of the poles and zeros, or pairs of poles and zeros when
they are complex conjugates.

The db magnitude-phase angle plot of K is a straight line parallel to the phase angle axis. The
ordinate of the straight line is 20log,, K 5.

The db magnitude-phase angle plot for a pole of order | at the origin.

1
(jo)'

is a straight line parallel to the db magnitude axis with an abscissa —90/° as shown in Fig. 17-3. Note

that the parameter along the curve is «'.

(17.4)
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Fig. 17-3
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The plot for a zero of order | at the origin,

(jw)' (17.5)
is a straight line parallel to the db magnitude axis with an abscissa of 90/°. The plot for (jw)’ is the
diagonal mirror image about the origin of the plot for 1/( jw)’ That is, for fixed w the db magnitude
and phase angle of 1/( jw)’ are the negatives of those for ( jw)".

The db magnitude-phase angle plot for a real pole,
1
1+jw/p
is shown in Fig. 17-4. The shape of the graph is independent of p because the frequency parameter
along the curve is normalized to w/p.

p>0 (17.6)

Phase angle

~100

L
-1
2
g
&
]
£
£
©

Fig. 17-4

The plot for a real zero,
Jw
1+ — z>0 (17.7)
z

is the diagonal mirror image about the origin of Fig. 17-4.
A set of db magnitude-phase angle plots of several pairs of complex conjugate poles.

1
1= (w/w,)* +/2(w/w,)
are shown in Fig. 17-5. For fixed {, the graphs are independent of «, because the frequency parameter

1s normalized to w/w,.
The plots for complex conjugate zeros,

1_(i) +j2§(i) 0<t<l1 (17.9)
W "

n

0<¢<l1 (17.8)

n

are diagonal mirror images about the origin of Fig. 17-5.
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Phase angle

db magnitude

F-12

F—16

-—20

24

Fig. 17-§

EXAMPLE 17.3. The db magnitude-phase angle plot of
10(1 +jw/2)
(1 +jo)[1 - (0/2) +ju/2)

is constructed by adding the db magnitudes and phase angles of the individual factors:

GH( jw) =

Jw 1 1
2 1+jw 1-(w/2) +jw/2

10 1+

Tabulation of these factors is helpful, as in Table 17.1. The first row contains the db magnitude and phase

Table 17.1
Frequency
@ 0 04 08 1.2 1.6 2 28 4 6 8
Term
10 20db 20 20 20 20 20 20 20 20 20
00 00 00 00 00 00 00 00 OQ 00
14+7¢ 0db 02 06 1.3 22 3.0 4.7 7 10 123
2 0° 11° 21° 31° 390 45° 54° 63° 71° 76°
L 0db -06 -22 -38 -54 -70 -94 -123 -157 -181
1+ jw 0°  —21° —39° —50° -57° —63° —70° —76° —81° —83°
1 0db 03 0.6 0.9 1.0 0 -48  -12  -195 245
1—(w/2) +juy2 | 00 —12° —26° -—46° -—68° -9%0° -—126° -—148° ~—-160° —166°
. 20db 199 190 184  17.8 16 10.5 2.7 -52  -103
=GH
Sum=GH() | oo “jp0 “ase —65° 86> —108° -142° —161° -170° -173°
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angle of the Bode gain K, =10 for several frequency values. The db magnitude is 20 db and the phase angle is 0°
for all w. The second row contains the db magnitude and phase angle of the term (1 + jw/2) for the same values of
w. These were obtained from Fig. 17-4 by letting p = 2 and taking the negatives of the values on the curve for the
frequencies in the table. The third row corresponds to the term 1/(1 + jw) and was also obtained from Fig, 17-4.
The fourth row was taken from the { = 0.5 curve of Fig. 17-5 by letting w, = 2. The sum of the db magnitudes and
phase angles of the individual terms for the frequencies in the table is given in the last row. These values are plotted
in Fig. 17-6, the db magnitude-phase angle plot of GH( jw).

1011 + jw/2)

GH(jw) =

{1+ Jo)|1 — (w/2)? + jul2]

db magnitude

B Ceege et O
—120° -60

| Phase angle

Fig. 17-6

17.4 RELATIVE STABILITY

The gain and phase margins for both continuous-time and discrete-time systems are readily
determined from the db magnitude-phase angle plot of GH(w).

The phase crossover frequency w, is the frequency at which the graph of GH(w) intersects the
—180° line on the db magnitude-phase angle plot. The gain margin in db is given by

gain margin = —20log,o|GH(w,)| db (17.10)

and is read directly from the db magnitude-phase angle plot.
The gain crossover frequency w, is the frequency at which the graph of GH(w) intersects the 0-db
line on the db magnitude-phase angle plot. The phase margin is given by

phase margin = [180 + arg GH(w,)] degrees

and can be read directly from the db magnitude-phase angle plot.

In most cases, positive gain and phase margins will ensure stability of the closed-loop system;
however, absolute stability should be established by some other means (for example, see Chapters 5 and
11) to guarantee that this is true.

EXAMPLE 17.4. For a stable system, the db magnitude-phase angle plot of GH(w) is shown in Fig. 17-7. The
gain margin is 15 db and the phase margin is 35°, as indicated.
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17.5 THE NICHOLS CHART

The remaining discussion is restricted to either continuous-time or discrete-time unity feedback
systems. The results are easily generalized to nonunity feedback systems, as illustrated in Example 17.9.
The closed-loop frequency response function of a unity feedback system may be written in polar

form as
C G G f .
arg—(w) = () __lo(o)l/ 2 (17.11)
R 1+G(w) 1+|G(w)|£¢c
where ¢, = arg G(w).

The locus of points on a db magnitude-phase angle plot for which

C C
)= |z

C
‘—(w) = M = constant
R
is defined by the equation
,  2M? M?
IG(w)| +’A42—_1—|G(w)|COS¢G+m=O (17.12)

For a fixed value of M, this locus can be plotted in three steps: (1) choose numerical values for |G(w)|;
(2) solve the resultant equations for ¢, excluding values of |G(w)| for which |cos ¢;|> 1; and (3) plot
the points obtained on a db magnitude-phase angle plot. Note that for fixed values of M and |G(w)l, ¢¢
is multiple-valued because it appears in the equation as cos ¢;.

EXAMPLE 17.5. The locus of points for which

|F)|-v2
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or, equivalently,

=3db

C
201og,, R (w)

is graphed in Fig. 17-8. A similar curve appears at all odd multiples of 180° along the arg G(w) axis.

i
-180
-240 -210° ¢ -150/ <120 -90 -Go-

o
db magnitude

Phase angle

v

H
Y :
L 20 togy| € (w) = 3 ab
g1
‘ —12

Fig. 17-8

The locus of points on a db magnitude-phase angle plot for which arg(C/R)(w) is constant or,
equivalently,

C
tan[arg;(w)] = N = constant
is defined by the equation
1
|G(w)|+cos¢c—ﬁsin¢c=0 (17.13)

For a fixed value of N, this locus of points can be plotted in three steps: (1) choose values for ¢; (2)
solve the resultant equations for G(w); and (3) plot the points obtained on a db magnitude-phase angle
plot.

EXAMPLE 17.6. The locus of points for which arg(C/R)(w) = —60° or, equivalently,
C
tan[m;(w)] =-V3

is graphed in Fig. 17-9. A similar curve appears at all multiples of 180° along the arg G(w) axis.

Phase angle
! ' v
- 60 -30

F-12

db magnitude

|
’ arg %(w) = 60°

Fig. 17-9
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Definition 17.2: A Nichols chart is a db magnitude-phase angle plot of the loci of constant db
magnitude and phase angle of (C/R ) w), graphed as |G(w)| versus arg G(w).

EXAMPLE 17.7. A Nichols chart is shown in Fig. 17-10. The range of arg G(w) on this chart is well suited to
control system analysis,

0.25 db

28

20

db magnitude

=24

-28

—-260°
200
=180
140
100
B0
60
10
0
0

Phase angle
Fig. 17-10

Definition 17.3: A Nichols chart plot is a db magnitude-phase angle plot of a frequency response
function P(w) superimposed on a Nichols chart.

17.6 CLOSED-LOOP FREQUENCY RESPONSE FUNCTIONS

The frequency response function (C/R ) w) of a unity feedback system can be determined from the
Nichols chart plot of G(w). Values of |[(C/R)w)|in db and arg(C/R) «) are determined directly from
the plot as the points where the graph of G(w) intersects the graphs of loci of constant |(C/R)(w)| and
arg(C/R)(w).
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EXAMPLE 17.8. The Nichols chart plot of GH(w) for the continuous-time systern of Example 17.3 is shown in
Fig. 17-11. Assuming that it is a unity feedback system (H = 1), values for {(C/R) w)| and arg(C/R)(w) are
obtained from this graph and plotted as a db magnitude-phase angle plot of (C/R)(w) in Fig. 17-12.

0.25 db
2
0.5 db o
-
= 24
[
1db e
T o8 04 20
16, 12
2
sg 1 16
2 db > N =2
d‘D
12
3 db 28 \(oa ,‘Lé‘"
4 db
s 8
d 'sab
2 =
2 _a o 4 )
12 db 4 o
~pdo 2
—gdb 0 )
]
=4 =
6 —9 db =
| -8
~12 db
=12
=18 db =16
e =20
9 ol
2 7
| —24 db
-24
( l l } ‘ ‘ I .
s 3 & & &8 8 & & 3 &8 8 &8 3§ °
] | ] 1 I I

Phase angle

Fig, 17-11

EXAMPLE 17.9. Assume that the system in Example 17.3 is not a unity feedback system and that

10 w
H(w)=1+j;

Glw) = (1 +j)[1 - (©/2)* +ju/2)
C 1 GH(w) 1 G'(w)
Then E(“’)=H(w)[1+cﬂ(w)]=H(w)[1+G'(w)]

where G’ = GH. The db magnitude-phase angle plot of G'(w)/(1 + G'(w)) was derived in Example 17.8 and is
shown in Fig. 17-12. The db magnitude-phase angle plot of (C/R)(w) can be obtained by point-by-point addition
of the magnitude and phase angle of the pole 1/(1 + jw/2) to this graph. The magnitude and phase angle of
1/(1 + jw/2) can be obtained from Fig. 17-4 for p = 2. The result is shown in Fig. 17-13.
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Solved Problems

db MAGNITUDE-PHASE ANGLE PLOTS

17.1. Show that the db magnitude-phase angle plot for a pole of order [ at the origin of the s-plane,
1/(jw)', is a straight line parallel to the db magnitude axis with an abscissa of —90/° for w > 0.

In polar form, jw=w/90° w > 0. Therefore
1 1
=/ - >0
(o) W 3

1
201log,, =20 10810; = —20log, '

(jo)'

and arg1/( jw) = —90/°. We see that arg1/( jw)' is independent of w; hence the abscissa of the plot is a
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Mathcad
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constant —90/°. In addition, for the region 0 < w < + oo, the db magnitude ranges from + o0 to — 00. Thus
the abscissa is fixed and the ordinate takes on all values. The result is a straight line as shown in Fig. 17-3.

Construct the db magnitude-phase angle plot for the continuous-time open-loop transfer
function
2
CH= a0 +s3)
The db magnitude of GH( jw) is

2
[l +jw| [l +jw/3]

wz
=20log,y2 - 20103,[,[(.,‘/1 + w? ]/ 1+ 5 ]

wz
=6.02 — 10log,, | w?(1 +w2)(l + ?)]

20log,y| GH( jw)| = 201og,,

The phase angle of GH( jw) is

arg[ GH( jw)] = ~arg[ jo] — arg[1 + jw] — arg

jw
1+ =
3]

w

= —90° — tan ‘w—!an"(g)

The db magnitude-phase angle plot is shown in Fig. 17-14.

Using the plots in Fig. 17-3 and Fig. 17-4, show how the plot in Fig. 17-14 can be approximated.
We rewrite GH( jw) as

1 1 ) 1
o =053 ) o | 7557
The db magnitude of GH( jw) is

20log,,| GH( jw)| = 201log,,2 + 2010g,,| - + 201log,,
jo

+ 2010310{

1+ jw l+jw/3[

The phase angle is

o 1 1 1
angH(jw) —arg(2) +arg(j—(;) +arg(m) +Mg(m)

We now construct Table 17.2.

The first row contains the db magnitude and phase angle of the Bode gain K, = 2. The second row
contains the db magnitude and phase angle of the term 1/jw for several values of w. These are obtained
from Fig. 17-3 by letting /=1 and taking values from the curve for the frequencies given. The third row
corresponds to the term 1 /(1 + jw) and is obtained from Fig. 17-4 for p = 1. The fourth row corresponds to
the term 1/(1 + jw/3) and is obtained from Fig. 17-4 for p = 3. Each pair of entries in the final row is
obtained by summing the db magnitudes and phase angles in each column and corresponds to the db
magnitude and phase angle of GH( jw) for the given value of w. The values in the last row of this table are
then plotted (with the exception of the first) and these points are joined graphically to generate an
approximation of Fig. 17-14.
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db magnitude

GH(jw) =

2
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Table 17.2
Frequency
w 0 0.1 0.2 0.5 1.0 1.5 20 3.0
Term
, 6 db 6 6 6 6 6 6 6
00 00 00 00 00 00 00 00
1 0 20 14 6 0 -36 -6 -95
j@ -90°  -90° -90° —-90° -90° -90° -90° -90°
1 0 -01 -03 -10 -3.0 -52  -70 -10
1+ jw 0°  —55° —11° —26°  —45°  —57°  —63°  —72°
1 0 0 -01  -02 -05 -10 -16 -30
1+jw/3 0° -2° —4° ~9°  -175° —26° -33°  —45°
, ) 25.9 19.6 10.8 25 -38 —86 165
=GH °
Sum=GH(jo) | _gpe  _g750 _10s° —125° -1525° —173° —186° —201°

423
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17.4. Construct the db magnitude-phase angle plot for the open-loop transfer function
4 4(s +0.5)
GH= 55—+
Mathcad s2(s2+ 25+ 4)
The frequency response function is

4( jw +0.5)
(_jt.:)z((jw)2 +2jw+ 4)

GH( jw) =

A computer-generated db magnitude-phase angle plot of GH( jw) is shown in Fig. 17-15.

a4
02

20

0.6

o
2 E
5 3
am—
\—s
db magnitude

iy o 05(14 jw/0.5)
GHUWD = G — (w2 + T2
12
= -16
- -20
-24
28
T T ‘ T T T T i
280 -260- 5.0 -240 ~220" =200 —180° - 1607 -150*
Phase angle
Fig. 17-15

17.5. Construct the db magnitude-phase angle plot for the discrete-time open-loop transfer function

zix

Mathcad GH(Z)=%(Z+1)(Z+%)

(z-1(z+1})
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The open-loop frequency response function is
3 (T +1)( e +4
GH(e"T) == (x4 Dler” +3) — I e i)
8 (e”T—1)(e T+ 2)

A computer-generated db magnitude-phase angle plot of GH is shown in Fig,. 17-16.

r20
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o
L
°
2
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<
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F—30
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Phase angle

Fig. 17-16

GAIN AND PHASE MARGINS

17.6. Determine the gain and phase margins for the system of Problem 17.2.

4 The db magnitude-phase angle plot for the open-loop transfer function of this system is given in Fig.

Mathcas 17-14 (Problem 17.2). We see that the curve crosses the 0-db line at a phase angle of —162°. Therefore the
phase margin is ¢, = 180° — 162° = 18°.
(The gain crossover frequency w,; is determined by interpolating along the curve between w = 1.0 and
w=1.5 which bound w; below and above, respectively. w, is approximately 1.2 rad /sec.)
The curve crosses the —180° line at a db magnitude of —6 db. Hence gain margin = —(—6) =6 db.
(The phase crossover frequency w, is determined by interpolating along the curve between w=1.5 and
w = 2.0 which bound w, below and above. w, is approximately 1.75 rad/sec.)

17.7. Determine the gain and phase margins for the system of Problem 17.4.

i+

The db magnitude-phase angle plot for the open-loop transfer function of this system is given in Fig.
mathcad 17-15 (Problem 17.4). We see that the curve crosses the 0-db line at a phase angle of —159°. Therefore the
phase margin is ¢p\ = 180° — 159° = 21°,

(The gain crossover frequency w, is found by interpolating along the curve between w =1.0 and
w = 1.5 which bound w, below and above, respectively. w, is approximately 1.2 rad/sec.)

The curve crosses the —180° line at a db magnitude of —3.1 db. Hence gain margin = 3.1 db.

(The phase crossover frequency w, is determined by interpolating between w = 1.5 and w = 2.0 which
bound w, below and above, respectively. «, is approximately 1.7 rad/sec.)

17.8. Determine the gain and phase margins for the system defined by the open-loop frequency
response function

_ 1+ jw/0.5
e[l - (w/2) +ju/2

GH(jw)



426 NICHOLS CHART ANALYSIS [CHAP. 17
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The db magnitude-phase angle plot of GH( jw) is given in Fig. 17-17. We see that the curve crosses the
0-db line at a phase angle of —140°. Hence the phase margin is ¢p = 180° — 140° = 40°.
The curve does not cross the —180° line for the range of db magnitudes in Fig. 17-17. However, as

@ — 0,
Jjw/0.5 8

GH(jw) » ————— =— / —180°

G ey~ @ »

The curve approaches the —180° line asymptotically but does not cross it. Therefore the gain margin is
indeterminate. This implies that the gain factor can be increased by any amount without producing
instability.

17.9. Determine the gain and phase margins for the discrete-time system of Problem 17.5.

=i

The db magnitude-phase angle plot for the open-loop transfer function of this system is given in Fig.
Ml 17-16 (Problem 17.5). We see that the curve crosses the 0-db line at a phase angle of —87°. Therefore the
phase margin ¢py, = 180° — 87° = 93°,

The gain crossover angle w,T can be determined by interpolating along the curve between wT = 0.5
and w7 = 1.0 which bound w,T below and above, respectively. w,T = 0.6 rad.

The curve never crosses the —180° line, so the gain margin is indeterminate as is the phase crossover

angle.

NICHOLS CHART

17.10. Show that the locus of points on a db magnitude-phase angle plot for which the magnitude of
the closed-loop frequency response (C/R) w) of either a continuous-time or discrete-time unity
feedback system equals a constant M is defined by Equation (/7.12).
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Using Equation (17.11), (C/R)(w)| can be written as

‘C( )‘ [G(w)|/ ¢
()= — =

K 1+16(0) 1 /90
Since |G(w)|/$.=|G(w)lcos ¢, + j|G(w)|sing,, this can be rewritten as

[G(w)cos ¢; +j1G(w) |sin g
1 +]|G(w) |cos ¢ + ]G (w) |sin b

z(©)

C
R

| 16()[cos’ 9 +1G(0) P sivPe, | 16(w)f
| [1+16() lcos o) +1G(w) Fsint ¢ || 1+ 2/G(w) |eos +|G(w)

If we set the last expression equal to M, square both sides, and clear the fraction, we obtain
M2[|G(m) I>+2|G(w) |cos ¢, + 1] =|G6(w)|
which can be written as
(M2 =D|G(w) [} +2M?|G(w) |cosé; + M =0
Dividing by (M’ — 1), we obtain Equation (17.12), as required.

17.11. Show that the locus of points on a db magnitude-phase angle plot for which the tangent of the
argument of the closed-loop frequency response function (C/R) w) of a unity feedback system
equals a constant N is defined by Equation (/7.13).

Using Equation (/7.11), arg(C/R)(w) can be written as

1G(w)| /3,

1+]G(w)|/ 8
Since |G(w)|/ ¢, =|G(w)fcos ¢, + j|G(w)|sin ¢,

ar [E(w)] —ar |G("’)lcos¢u+j|c(‘*’)|Sin¢(;
& B T+1G(w) [cos ¢ +/1G(w)Isind,

c
arg[;(w)] =arg

Multiplying numerator and denominator of the term in brackets by the complex conjugate of the
denominator yields

[C ] (1G(w)|cos ; +1G(w) |sine; }(1 +|G(w) |cos ¢, — j|G(w) |sing,)
arg[ —(w)| =arg - .
R (1+]G(w)lcosd )’ +]G(w) | sin’ &;

Since the denominator of the term in the last brackets is real, arg[(C/R)(w)] is determined by the
numerator only. That is,

arg[%(“’)] = arg[(lG(w) 4COS¢G +j|G(‘*’) |5in¢(,)(1 + |G(°’) |C°5¢(; “flG(“’) |Sin¢(,)]

= arg|G(w) leos ¢ +1G(w) [ +/1G(w) sing,
using cos” ¢; + sin’ ¢; = 1. Therefore
9 |G(«)sind,
tan|arg—(w)| = 3
R |G(w)|cos ¢ +[G(w)]
Equating this to N, cancelling the common |G(w){ term and clearing the fraction, we obtain

N[cosé; +|G(w)]|] =sing,

which can be rewritten in the form of Equation (77.13), as required.

17.12. Construct the db magnitude-phase angle plot of the locus defined by Equation (/7.7/2) for db
magnitude of (C/R)(w) equal to 6 db.
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20log),(C/R)w)|=6 db implies that [(C/R)(w)|=2. Therefore we let M =2 in Equation (/7.12)
and obtain

) 8 4
[G(w)|" + E\G(w)|c05¢(‘.+ 3 -0

as the equation defining the locus. Since |cos ¢;| < 1, |G(w)| may take on only those values for which this
constraint is satisfied. To determine bounds of |G(w)}, we let cos ¢; take on its two extreme values of plus
and minus unity. For cos ¢; = 1, the locus equation becomes

. 8 ‘
|G(w)] +§|G(‘d)|+§—

with solutions |G(w){= —2 and |[GH(w){= — 2. Since an absolute value cannot be negative, these solutions
are discarded. This implies that the locus does not exist on the 0° line (in general, any line which is a
multiple of 360°), which corresponds to cos¢; =1.

For cos ¢, = — 1, the locus equation becomes

, 8 4
|G(@)|" - §|G(w)\ +3=0

with solutions |G(w)| =2 and |G(w)}= 2. These are valid solutions for |G(w)| and are the extreme values
which |G (w)| can assume.
Solving the locus equation for cos ¢;, we obtain

-4 +16(w)/]
16(w)]

The curves obtained from this relationship are periodic with period 360°. The plot is restricted to a single
cycle in the vicinity of the ~180° line and is obtained by solving for ¢, at several values of |G(w)| between
the bounds 2 and 3. The results are given in Table 17.3

Note that there are two values of ¢, whenever |cos ¢;| < 1. The resulting plot is shown in Fig. 17-18.

cos ¢; =

Table 17.3
[G(w)] 201o0g,y|G(w)] €os §g -9
20 6 db -1 —-180° —
1.59 4 -0.910 -204.5° ~155.5°
1.26 2 -0.867 —209.9° -150.1°
1.0 0 —0.873 -209.2° -150.8°
0.79 -2 -0.928 -201.9° —158.1°
0.67 ~35 -1 —180° —

db magnitude

N

T T T T T
240 -220 - 200 -180 - 160° -140° -120
Phase angle
Fig. 17-18
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{
Construct the db magnitude-phase angle plot of the locus defined by Equation (/7./3) for
tan[arg(C/R)(w)]| =N = — o0,

tan[arg(C/R)w)] = —oo implies that arg(C/R)w)= —90 + k360°, k=0,+1,+2,..., or
arg(C/R)w) = —270° + k360°, k=0,+1,+2,.... We will plot only the cycle between —360° and 0°,
which corresponds to k = 0. Setting N = — oo in Equation (17.13), we obtain the locus equation

cos¢; = —|G(w)|
Since |cos ¢,| < 1, the locus exists only for 0 <{G(w)| <1 or, equivalently,
-0 < 20log,|G(w)| <0

|G(w)| +cos¢p;=0  or

To obtain the plot, we use the locus equation to calculate values of db magnitude of G(w)
corresponding to several values of ¢;. The results of these calculations are given in Table 17.4. The desired
plot is shown in Fig. 17-19.

Table 17.4
b6 €os ¢ [G(w)| 20log,o|G(w)|
—~ 180° — -1 1 0db
—~153° -207° -0.893 0.893 -1.0
—135° —2225° -0.707 0.707 -3
—-120° —240° -0.5 0.5 -6
-110.7° —249.3° -0.354 0.354 -9
~104.5° —255.5° -0.25 0.25 -12
-100.3° -259.8° -0.178 0.178 -15
o
+ o
Lo 3
3
E
F-s o
£
o
bz o
F -6
—r T T T . . — -20
-280 -260* —240° —220° -200° —180° - 160 ~140* -120° =100

Phase angle
Fig. 17-19

CLOSED-LOOP FREQUENCY RESPONSE FUNCTIONS

17.14. Construct the db magnitude-phase angle plot of the closed-loop frequency response function

i

Mathcad

(C/R) jw) of the unity feedback system whose open-loop transfer function is

2
= A+ +3)
G( jw) 6 6

c _ _
E(Jw)_lirc(jw) (jw) +4(je) +3jw+6  (6—40’) + (30— o)
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Therefore XTI 32
2Wlogy0] < (o) | = 10108,0| < (i )2 101 3 X 2
0gjof p LJw) | = 10I0g, L jw) i = 10log)
R R (6—4(.;2)2+(3w—w’)2 0.5.db 019 o
N 24
C l3L-)—w3 s Qfﬁ\’
and il i("w) TR el 1 db 0.2 1 20
A computer-generated db magnitude-phase angle plot of (C/R)(jw) is shown by the solid line in Fig. .
17-20. Sk L7 NP
3 db 0.5 a i 1
4 db 4
% db i i :
) 1 =
12db {0 e d é
_.g db 0 g
7 :
- db o =
¥
=1 -8
.‘.?2 2.0 —12 db
& .
£ :
2 :
§ 3.0 \ -18 dbj 16
\ \ e 20
% i —24 db
r -24
T T . o = = = < g e @ = ) 2 e e °
-320° -280° ~240° -200 - 160 -120% -80° —40° 0° & :E 'e‘li 9. = = = = = * S T Ly
Phase angle Phase angle
Fig. 17-20 Fig. 17-21
. : : : : . The db magnitude-phase angle plot of (C/R)(jw), graphed using the values in the table, is illustrated
17.15. Solve Problem 17.14 y th d d 17.6. Lo . . : .
ia ve Problem again, using the technique discussed in Section 17.6 by the broken line in Fig. 17-20. The differences between the two curves is due to the interpolation
F. The Nichols chart plot of G( jw) is shown in Fig. 17-21. We determine values for the db magnitude of necessary to obtain values of db magnitude and phase angle.
matheaa  (C/R)( jw)| and arg[(C/R)( jw)] by interpolating values of db magnitude and phase angle on the Nichols
chart plot for w =0,0.2,0.5,1.0,1.25,1.5,2.0,3.0. These values are given in Table 17.5.
Table 17.5 Supplementary Problems
201 € iy
“ 810 R (@) 4Bl R (o) 17.16. Construct the db magnitude-phase angle plot for the open-loop transfer function
0 0db 0°
02 02 -6 I Ch 0
0.5 1.2 -15° s(s+3)(s+3)
1.0 6.0 —42°
1.25 10.0 -90° : ;
L5 6.0 1550 17.17. Construct the db magnitude-phase angle plot for the open-loop transfer function
20 -4.0 —194° 10
3.0 -15.0 -212° He
s(1+s/5)(1 +s/50)
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17.18.

17.19.

17.20.

17.21.

17.22.

17.23.

17.19.

17.20.

17.21.

17.22.
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Construct the db magnitude-phase angle plot for the open-loop transfer function
1+s5/2

CH = )T +s/8)(1 + 5/20)

Determine gain and phase margins for the system of Problem 17.17.

Determine the resonance peak M, and resonant frequency w, for the system whose open-loop transfer
function is

1
T s(1+s5)(1+s/4)

GH
Determine the gain and phase crossover frequencies for the system of Problem 17.17.

Determine the resonance peak M, and the resonant frequency w, of the system in Problem 17.17.

Let the system of Problem 17.17 be a unity feedback system and construct the db magnitude-phase angle
plot of (C/R)(jw).

Answers to Some Supplementary Problems
Gain margin = 9.5 db, ¢py =25°
M,=13 db, w,=0.9 rad/sec
w, =7 rad/sec, w, = 14.5 rad/sec

M, =8db, v, =72 rad/sec

Chapter 18

Nichols Chart Design

18.1 DESIGN PHILOSOPHY

Design by analysis in the frequency domain using Nichols chart techniques is performed in the
same general manner as the design methods described in previous chapters: appropriate compensation
networks are introduced in the forward and/or feedback paths and the behavior of the resulting system
is critically analyzed. In this manner, the Nichols chart plot is shaped and reshaped until the
performance specifications are met. These specifications are most conveniently expressed in terms of
frequency-domain figures of merit such as gain and phase margin for transient performance and the
error constants (Chapter 9) for the steady state time-domain response.

The Nichols chart plot is a graph of the open-loop frequency response function GH(w). for a
continuous-time or discrete-time system, and compensation can be introduced in the forward and/or
feedback paths, thus changing G(w), H(w), or both. We emphasize that no single compensation scheme
is universally applicable.

18.2 GAIN FACTOR COMPENSATION

We have seen in several previous chapters (5, 12, 13, 16) that an unstable feedback system can
sometimes be stabilized, or a stable system destabilized, by adjustment of the gain factor K of GH.
Nichols chart plots are particularly well suited for determining gain factor adjustments. However, when
using Nichols techniques for continuous-time systems, it is more convenient to use the Bode gain K,
(Section 15.3), expressed in decibels (db), than the gain factor K. Changes in K, and K. when given in
decibels, are equal.

EXAMPLE 18.1. The db magnitude-phase angle plot for an unstable continuous-time system, represented by
GH( jw) with the Bode gain Kz =5, is shown in Fig. 18-1. The instability of this system can be verified by a sketch
of the Nyquist plot, or application of the Routh criterion. The Nyquist plot in Example 12.1 chapter 12, illustrates
the general shape for all Nyquist plots of systems with one pole at the origin and two real poles in the left-half
plane. This graph indicates that positive phase and gain margins guarantee stability and negative phase and gain
margins guarantee instability for such a system, which implies that a sufficient decrease in the Bode gain stabilizes
the system. If the Bode gain is decreased from 20log,;5db to 20log,,2db, the system is stabilized. The db
magnitude-phase angle plot for the compensated system is shown in Fig. 18-2. Further decrease in gain does not
alter stability.

Note that the curves for K; = 5 and K, = 2 have identical shapes, the only difference being that the ordinates
on the K, =5 curve exceed those on the K = 2 curve by 20log,, (5/2) db. Therefore changing the gain on a db
magnitude-phase angle plot is accomplished by simply shifting the locus of GH( jw) up or down by an appropriate
number of decibels.

Even though absolute stability can often be altered by gain factor adjustment, this form of
compensation is inadequate for most designs because other performance criteria such as those
concerned with relative stability cannot usually be met without the inclusion of other types of
compensators.
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183 GAIN FACTOR COMPENSATION USING CONSTANT AMPLITUDE CURVES

The Nichols chart may be used to determine the gain factor K (for a unity feedback system) for a
specified resonant peak M, (in decibels). The following procedure requires drawing the db magnitude-
phase angle plot only once.

Step 1: Draw the db magnitude-phase angle plot of G(w) for K =1 on tracing paper. The scale of
the graph must be the same as that on the Nichols chart.

Step 2: Overlay this plot on the Nichols chart so that the magnitude and phase angle scales of
each sheet are aligned.

Step 3: Fix the Nichols chart and slide the plot up or down until it is just tangent to the constant
amplitude curve of M, db. The amount of shift in decibels is the required value of K.

EXAMPLE 18.2. In Fig. 18-3(a), the db magnitude-phase angle plot of the open-loop frequency response
function of a particular unity feedback system with K =1 is shown superimposed on a Nichols chart. The desired
M, is 4 db. We see in Fig. 18-3(b) that, if the overlay is shifted upward by 4 db, then the resonant peak A, of the
system is 4 db. Thus the desired K is 4 db.

CHAP. 18] NICHOLS CHART DESIGN 435

_____ Loy

-1

_{v Overlay

r———-" 1

/:,Nichols chart {L,Nichols chart

r .
I | 1 |
- } i !
| 1. )
| 16 1 } 16 :
I | I :
| |
| M, =4db A| | M, =4 db g |
| I I I
l ! £ | | | €
| . Il 2 | o | 2
| | & I A
| \_/ o= | \_‘ |z
| | = | [ =
| -8] | | -8 l
| L/ It ’ |
l / |
|
: / —16] | ! ~16 I
| / ; r / |
| —180° ~100 | 1800 ~100°
| / i Phase angle ! ! 1 / o Phase angle 2 !
: | v —
_J' 4 db
(a) (b)
Fig. 18-3
oI+
wmﬁim 184 LEAD COMPENSATION FOR CONTINUOUS-TIME SYSTEMS
The Bode form of the transfer function for a lead network is
s
PLead = K (181 )
1+—
b

where a/b < 1. The db magnitude-phase angle plots of P, ., for several values of b/a and with the
normalized frequency w/a as the parameter are shown in Fig. 18-4.

For some systems in which lead compensation in the forward loop is applicable, appropriate choice
of a and b permits an increase in K 5, providing greater accuracy and less sensitivity, without adversely
affecting transient performance. Conversely, for a given K, the transient performance can be
improved. It is also possible to improve both the steady state and transient responses with lead
compensation.

The important properties of a lead network compensator are its phase lead contribution in the
low-to-medium-frequency range (the vicinity of the resonant frequency w,) and its negligible attenua-
tion at high frequencies. If a very large phase lead is required, several lead networks may be cascaded.

Lead compensation generally increases the bandwidth of a system.
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EXAMPLE 18.3. The uncompensated continuous-time unity feedback system whose open-loop transfer function
is
2

GH = s(1+s)(1+s/3)

is to be designed to meet the following performance specifications:

1. When the input is a unit ramp function, the steady state position error must be less than 0.25.
2. oy = 40°.
3. Resonance peak =4 db.

Note that the Bode gain is equal to the velocity error constant K. Therefore the steady state error for the
uncompensated system is e(«) = 1/K = 3 [Equation (9.13)]. From the db magnitude-phase angle plot of GH in
Fig. 18-5, we see that ¢py = 18° and M, =11 db.

The steady state error is too large by a factor of 2; therefore the Bode gain must be increased by a factor of 2
(6 db). If we increase the Bode gain by 6 db, we obtain the plot labeled GH, in Fig. 18-5. The phase margin of GH,
is about zero and the resonant peak is near infinity. Therefore the system is on the verge of instability.
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Phase lead compensation can be used to improve the relative stability of the system. The compensated
open-loop transfer function is
Kg(a/b)(1 +5s/a) 4(1 +s/a)
T s(U+5)(1+s/3)(1+s/b)  s(1+s)(1 +5s/3)(1 +5/b)

where K, = 4(b/a) to satisfy the steady state error.

One way of satisfying the requirements on ¢py and M, is to add 40° to 50° of phase lead to the GH, curve in
the region 1 < w < 2.5 without substantially changing the db magnitude. We have already chosen Kz =4(b/a) to
compensate for a/b in the lead network. Therefore we need concern ourselves only with the effect that the factor
(1 +s/a)/(1 + s/b) has on the GH, curve. Referring to Fig. 18-4, we see that in order to provide the necessary
phase lead we will require b/a > 10. We note that the curves of Fig. 18-4 include the effect of a/b of the lead
network. Since we have already compensated for this, we must add 20 log,,(b/a) to the db magnitudes on the
curve. In order to keep the db magnitude contribution of the lead network small in the region 1 <w < 2.5, we let
b/a =15 and choose a so that only the lower portion of the curve (w/a < 3.0) contributes in the region of interest
1 < w < 2.5. In particular, we let a = 1.333. Then the compensated open-loop transfer function is

_ 4(1 +5/1.333)
T s(1+5)(1 + 5/3)(1 +5/20)

GH,

GH,
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The db magnitude-phase angle plot of GH, is shown in Fig. 18-5. We see that ¢y = 40.5° and M, = 4 db. Thus where a <b. The db magnitude-phase angle plots of Py, for several values of b/a and with the
the specifications are all met. We note, however, that the resonant frequency w,, of the compensated system is normalized frequency w/a as the parameter are shown in Fig. 18-7.
about 2.?_.? rad/sec. For the uncompensated system defined by GH it is about 1.2 rad/scc. Thus the bandwidth The lag network provides compensation by attenuating the high-frequency portion of the db
has been increased. . o magnitude-phase angle plot. Higher attenuation is provided by cascading several lag networks.
A block diagram of the fully compensated system is shown in Fig. 18-6. . .
Several general effects of lag compensation are:
1. The bandwidth of the system is usually decreased.
R T as s + 1.333 9 c 2. The dominant time constant 7 of the system is usually increased, producing a more sluggish |
A s + 20 *[i.00 31+ 8)(1 +8/3) system.
i e Ovlaiial Lidiy 3. For a given relative stability, the value of the error constant is increased.
Network Amplifier Transfer Function 4. For a given error constant, relative stability is improved.
- The procedure for using lag compensation is essentially the same as that for lead compensation.
Fig. 18-6 .
o) . . . .
é Mathcaa EXAMPLE 18.4. Let us redesign the system of Example 18.3 using gain factor plus lag compensation. The steady
maneae 18.5 LAG COMPENSATION FOR CONTINUOUS-TIME SYSTEMS state specification is again satisfied by GH,. The db magnitude-phase angle plot of GH, is repeated in Fig. 18-8.
. ) Since Py ,,(/0) =1, introduction of the lag network after the steady state specification has been met by gain factor
The Bode form transfer function for a lag network is compensation does not require an additional increase in gain factor.
1+s/b Incorporating the lag network, we get the open-loop transfer function
e~ T3 5/a +/a (18.2) o 4(1 +s/b)
47 51 +5)(1 +5/3)(1 +s/a)
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One way of satisfying the requirements on ¢p,, and M, is to choose a and b such that the GH, curve is attenuated
by about 12 db in the region 0.7 < @ < 2.0 without substantial change in the phase angle. Since the lag network
introduces some phase lag, it is necessary to attenuate the curve more than 12 db. Referring to Fig. 18-7, we see
that if we choose b/a=6, a maximum of 15.5-db attenuation is possible. If we choose a=0.015, then at a
frequency w = 0.5 (w/a = 33.33) 15.4 db of attenuation is obtained from the lag network, with a phase lag of —9°.

GH, can now be written as
4(1+5/0.09)

GH, =
7 s(1+5)(1 +5/3)(1 +5/0.015)
where b = 6a = 0.09. The db magnitude-phase angle plot of GH, is given in Fig. 18-8. We see that ¢ py = 41° and

M, = 4, which satisfy the specifications. We note that the resonant frequency w, of the compensated system is
about 0.5 rad/sec. For the uncompensated system defined by GH, w, is about 1.2 rad /sec. A block diagram of

the fully compensated system is shown in Fig. 18-9.

R+ 1+ 8/0.09 2 2 C
1 + 8/0.015 i s(1+8)(1+3/3)
Lag Gain-factor Original Open-loop
Network Amplifier Transfer Function
Fig, 189

18.6 LAG-LEAD COMPENSATION

The Bode form transfer function for a lag-lead network is
_ (1 +s/a)(1+s/by) (18.3)
M (M +s/b)(1+s/a,) ’

where b,/a, =b,/a,>1. The db magnitude-phase angle plots of Py, for a few values of b,/a;
(=b,/a,), when a;/a,=6,10,100, and with the normalized frequency w/a, are shown in Fig

18-10(a), (5), and (c)

Phase angle

Increasing w/a,

(Ll + Gelby)
Pl = W)+ jojay
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byla, = bylay = 3

db magnituae

Fig. 18-10(a)
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Additional plots of P for other values of b,/a, and a,/a, can be obtained by combining plots of
lag networks (Fig. 18-7) and lead networks (Fig. 18-4).

Lag-lead compensation has all of the advantages of both lag and lead compensation and a
minimum of their usually undesirable characteristics. For example, system specifications can be satisfied
without excessive bandwidth or sluggish time response caused by phase lead or lag, respectively.

EXAMPLE 18.5. Let us redesign the system of Example 18.3 using gain factor plus lag-lead compensation. We
add the additional specification that the resonant frequency w, of the compensated system must be approximately
the same as that of the uncompensated system. The steady state specification is again satisfied by

4
T30 +s)(1+3/3)

as shown in Example 18.3. Since Py, (/0) = 1, introduction of the lag-lead network does not require an additional
increase in gain factor.
Inserting the lag-lead network, we get the open-loop transfer function

4(1+s/a,)(1 +5/b,)
s(L+s)(1+s/3)1 +5/b)(1 +5/a3)
From Fig. 18-5, we see that for the uncompensated system GH, w, = 1.2 rad/sec. From the db magnitude-phase
angle plot of GH, (Fig. 18-11) we see that, if GH(j1.2) is attenuated by 6.5 db and has its phase increased by 20°,
the resonant frequency w, = 1.2 is shifted to M, =4 db. Referring to Fig. 18-10(a), we see that the desired
attenuation and phase lead are obtained with b,/a, =b,/a, =3, a;/a, =10, and w/a, = 12. The constants a,,

GH,

GH,

o1¢ 32
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Fig. 18-11
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a,, b, and b, are determined by noting that
ay=—L =" =01 a,=10a,=1 b,=3a,=03 and b =3a,=3
GH; then becomes
41 +s)(1 +5/0.3) 4(1 +5/0.3)
T s(1+5)(1+5/3)(1 +5/3)(1 +5/0.1) s(1 +5/3)%(1 +5/0.1)

The complete db magnitude-phase angle plot of GH; is shown in Fig. 18-11. We see that ¢ py = 40.5°, M, =4 db,
and the resonant frequency w, = 1.15. Thus all specifications have been satisfied.

GH

8.7 NICHOLS CHART DESIGN OF DISCRETE-TIME SYSTEMS

As with Bode methods (Section 16.6), design of discrete-time systems using Nichols charts is not as
straightforward as the design of continuous-time systems using either of these approaches. But, again,
the w-transform can facilitate the process as it did for Bode design of discrete-time systems. The
method is the same as that developed in Section 16.6.

EXAMPLE 18.6. The uncompensated discrete-time unity feedback system with plant transfer function

9 (z+1)°
EEE;

is to be designed to yield an overall phase margin of 40° and the same gain crossover frequency w, as the
uncompensated system. Since both of these specifications are in the frequency domain, we transform the problem
directly into the w-domain by substituting z = (1 + w)/(1 — w), thus forming

7
(w+1)(w+3)

The db magnitude-phase angle plot for this system is shown in Fig. 18-12. The gain crossover frequency obtained
from this plot is w,, = 3.4 rad/sec and the phase margin is 10°. A lead compensator with somewhat arbitrary a
and b can be chosen as long as the phase lead at w,, = 3.4 rad/sec is sufficient to raise the phase margin from 10°
to 40°. The minimum b/a ratio that yields 30° of phase lead is about 3.3 from Fig. 18-4. We choose a and b so
that the maximum phase lead occurs at w,, = 3.4 rad/sec. From Section 16.3, this occurs when w,, = 3.4 =Vab.
Since b=3.3a, we find b=6.27 and a=1.90. This compensator produces about 20log,,/6.27/1.90 =5 db of
attenuation at w,, = 3.4 rad/sec. Thus an amplifier with gain of 5.2 db, or gain factor 1.82, is required in addition

Gi(w) =

T
|
&
db magnitude

100.0 380
r T T T T T - 100
—-300° -250° -200° —-180°-150° -100° -50° 0°
Phase angle
Fig. 18-12
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to the lead compensator to maintain w,, at 3.4 rad/sec. The w-domain transfer function for the compensator is

therefore given by
1.82(w + 1.90)

w+6.27
This is transformed back to the z-domain by letting w = (z — 1) /(z + 1), thus forming
0.7229( z + 0.3007)

G(w) =

Gi(z) =

z+0.7222
The compensated control system is shown in Fig. 18-13.
R * c
Fig,. 18-13
Solved Problems

GAIN FACTOR COMPENSATION
18.1. The db magnitude-phase angle plot of the open-loop continuous-time frequency response
£ix  function [ ( 22 2]
Kpll —(w +jw
Mathcad GH(_[U) = B / )2 J /
Jo(l +jw/0.5)(1 +jw/4)

is shown in Fig. 18-14 for K= 1. The closed-loop system defined by GH( jw) is stable for
Ky =1. Determine a value of K for which the phase margin is 45°.

|

- 20

= —10

o) = oL (0f20 4 ju/2
GHUS = 575 0i0 51T + o) L 20

db magnitude
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Phase angle
Fig. 18-14
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dppg = 180° + arg GH(jw,), where w, is the gain crossover frequency. For ¢py =45°, w; must be
chosen so that arg GH( jw,) = —135°. If we draw a vertical line with abscissa of —135°, it intersects the
GH( jw) curve at a point ] = 0.25 rad/sec, where arg GH( jw}) = —135°. The ordinate of this point of
intersection is 10.5 db. If we decrease K by 10.5 db, the gain crossover frequency becomes w}, and
¢pm =45°. A decrease of 10.5 db implies that 201log Ky = —10.5, or K, =10"'25/2=03. Further
decrease in K, increases ¢p), beyond 45°.

18.2. For the system in Problem 18.1, determine the value of K for which the system is stable and the
gain margin is 10 db.

Gain margin = —20log,,|GH( jw,)| db, where w, is the phase crossover frequency. Referring to Fig.
18-14, we see that there are two phase crossover frequencies: «! = 0.62 rad/sec and !’ = 1.95 rad/sec. For
w, = 0.62, we have 20 log,,|[GH( jw,)|= — 3 db. Therefore the gain margin is 3 db. It can be increased to 10
db by shifting the GH( jw) curve downward by 7 db. The phase crossover frequency w}, is the same in the
new position, but 20 log,,|GH( jw,)| = —10 db. A gain decrease of 7 db implies that Ky =10""/2 =0.447,
Since the system is stable for Kz =1, it remains stable when the GH( jw) curve is shifted downward.
Absolute stability is not affected unless the GH( jw) curve is shifted upward and across the point defined by
0 db and —180°, as would be necessary if —20log,, GH( jw! ) =10 db.

18.3. For the system of Problem 18.1, determine a value for K, such that: gain margin > 10 db,
Dpy = 45°.
In Problem 18.1, it was shown that ¢p,, > 45° if Kz <0.3; in Problem 18.2, gain margin > 10 db if
K < 0.447. Therefore both requirements can be satisfied by setting K < 0.3. Note that if we had specified
gain margin = 10 db and ¢;,, = 45°, then the specifications could not be met by gain factor compensation
alone.

18.4. Assume that the system of Problem 18.1 is a unity feedback system and determine a value for
K such that the resonant peak M, is 5 db.

ois

Mathcad

M,=5db

- -10

Ks[1 ~ (w/2)" + juy2]
jo(l + jw/0.5)2(1 + jw/4)
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The db magnitude-phase angle plot of GH( jw) for Kz =1 is shown in Fig. 18-15 along with the locus
of points for which |(C/R)(jw)} =2 db (M, =2 db). We see that if K, is decreased by 8 db, the resulting
GH( jw) curve is just tangent to the M, =2 db curve. A decrease of 8 db implies that K, = 10 */2* = 0.40.

18.5. The db magnitude-phase angle plot of the open-loop frequency response function
Kp(1+jw/0.5)
(o)1 = (0/2)* + ju/2)]

is given in Fig. 18-16 for Kz =0.5. The closed-loop system defined by GH( jw) is stable for
K =0.5. Determine the value of K which maximizes the phase margin.

GH(jw) =

0.2

arg GH(juy) = —147

0.5(1 + J/0.5)

GH(ju} = ——
(70?1 — (w/2)? + ju/2)

|
db magnitude

3.0

6.0 n 28
&
—-280° —260% —240 -220° -200° —180° -160" —140"

-130°

Phase angle
Fig. 18-16

dpay = 180° + arg GH( jw,), where w, is the gain crossover frequency. Referring to Fig. 18-16, we see
that arg GH( jw) is always negative. Therefore if we maximize arg GH(jw,), $pp Will be maximized. Fig.
18-16 indicates that arg GH( jw) is maximum when w = w] = 0.8 rad/sec and arg GH( jw}) = —147°. The
ordinate of the point GH(jw}) is 4.6 db. Therefore if K, is decreased by 4.6 db, the phase crossover
frequency becomes w{; and ¢py, takes on its maximum value: ¢py = 180° + arg GH(jw() =33°. A
decrease of 4.6 db in K, implies that 20log,o( K/0.5) = — 4.6 db or K,/0.5 =10 "*%/?° Then K= 0.295.

18.6. For the system in Problem 18.5, determine a value of K for which the system is stable and the
gain margin is 8 db.
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Gain margin = —20log,;,| GH( jw,)| db. Referring to Fig. 18-16, we see that the gain margin is 3.1 db.
This can be increased to 8 db by shifting the curve down by 4.9 db; w, remains the same, as it is
independent of K. A decrease of 4.9 db in K implies that 20log,,( K5/0.5) = —4.9 or Kz =0.254.

PHASE COMPENSATION

18.7. The db magnitude-phase angle plot of the open-loop transfer function G(je) for a particular

i+ unity feedback system has been determined experimentally as shown in Fig. 18-17. In addition,
the steady state error e(w) for a unit ramp function input was measured and found to be

thead o(w) = 0.2. The open-loop transfer function is known to have a pole at the origin. Determine a
combination of phase lead plus gain compensation such that: M, =3.5 db, ¢py = 40°, and the
steady state error for a unit ramp input is e(ec) = 0.1.

0.1 L
28
0.2 — 24
01
~ 20
05 021 16
0.2
=12
M, =35db
1.0 0.5 L
10 8
M, =5 db L. 3
15 1.0 1.5 2
20 &
— 0 )
€
20 £
£l
-4
30 ,1.57 30
20 - -8
[dpm = 335
O G(jw) Uncompensated - -12
O G (jw) Gain compensated
® G,(jw) Phase and gain comp [~ —16
@ G(jw) Phase and gain comp
T T T T T T T -2

—240° -220° -200° ~180° —160° -140° -120° -100° §
Phase angle !
Fig. 18-17

Since e(o0)=1/K,=1/Ky, the steady state requirement can be satisfied by doubling K. The
compensation has the form

K'(a/b)(1 +
K'PLead(jw) = (a/l i(s/b S/a)

Hence K, is doubled by letting K'(a/b) =2, or K’ = 2(b/a).
The db magnitude-phase angle plot for the gain compensated open-loop frequency response function
Gi(jw) =2G(jw)
is shown in Fig. 18-17. G,(jw) satisfies the steady state specification. To satisfy the specifications on M,
and ¢p)y, the G,(jw) curve must be shifted to the right by about 30° to 40° in the region 1.2 < w <25



448

NICHOLS CHART DESIGN [CHAP. 18

without substantially changing the db magnitude. This is done by proper choice of a and b. Referring to
Fig. 18-4, we see that, for b/a = 10, 30° phase lead is obtained for w/a > 0.65. Since the lead ratio a/b of
the lead network is taken into account by designing for the gain factor K’ = 2(b/a) = 20, we must add
20log(b/a) = 20log,;(10 = 20 db to all db magnitudes taken from Fig. 18-4.

To obtain 30° or more phase lead in the frequency range of interest, we let a = 2. For this choice we
have w =(2)(0.65)=1.3 and obtain 30° phase lead. Since b/a=10, then b=20. The compensated
open-loop frequency response function is

21 + jw/2)

Ga(jw) = 1+ ,j@/20

G(jw)

The db magnitude-phase angle plot of G,(jw) is shown in Fig. 18-17. We see that M, =4.0 db and
¢ pm = 36° therefore the specifications are not satisfied by this compensation. We need to shift G,(jw) 5°
to 10° further to the right; hence additional phase lead is needed. Referring once more to Fig. 18-4, we
see that letting b/a = 15 increases the phase lead. Again, we let a = 2; then b = 30. The db magnitude-
phase angle plot of

2(1 +jw/2)

Gyjw)= 22127
sU@) = 730

G(jw)
is shown in Fig. 18-17. We see that ¢py = 41° and M, = 3.5 db and hence the specifications are met by
the compensation

2(1+s/2)

0Pica= 17730

18.8. Solve Problem 18.7 using /ag plus gain compensation.

db magnitude

® G (jw) Gain comp
0 G 4(jw) Phase and gain comp F -12
O G5(jw) Phase and gain comp

T T T T T T 6
—220° —200° —180° —160° -140° -120° -100°&
I
Phase angle
Fig. 18-18
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In Problem 18.7 we found that the Bode gain K must be increased by a factor of 2 to satisfy the
steady state specification. But the Bode gain of a lag network is

]  l+s/b
sh—x-%PL“ sh—?:) 1+s/a

Therefore the compensation required in this problem has the form 2(1 + s/a)/(1 + s/b) where the twofold
gain factor increase is supplied by an amplifier and @ and b for the lag network must be chosen to satisfy
the requirements on M, and ¢py. The gain-compensated function is shown as G,(jw) = 2G(jw) in Fig.
18-18; G,(jw) must be shifted downward by 7 to 10 db in the region 0.7 < w < 2.0, with no substantial
increase in phase lag, to meet the transient specifications.

Referring to Fig. 18-7, we see that, for b/a = 3, we can obtain a maximum attenuation of 9.5 db. For
a=0.1, the phase lag is —15° at w =0.7 (w/a=T7) and —6° at w = 2.0 (w/a = 20), that is, the phase lag is
relatively small in the frequency region of interest. The db magnitude-phase angle plot for

A1 +jw/03)

Gy jw) = T+ jw/01 G(jw)

is also shown in Fig. 18-18, with M, =35 db and ¢py =32 hence this system does not meet the
specifications. To decrease the phase lag introduced in the frequency region 0.7 < w < 2.0, we change a to
0.05 and b to 0.15. The phase lag is now 9° at w = 0.7 (w /a = 14). The db magnitude-phase angle plot for

2(1 + jw/0.15)

Gs(jw) = =3 + jw/0.05

G(jw)

is shown in Fig. 18-18. We see that M, = 3.5 db and ¢py = 41°. Thus the specifications are satisfied. The
desired compcnsation is given by
2(1 +5/0.15)
L™ 1 45/0.05

Solve Problem 18.7 using /ag-lead plus gain compensation. In addition to the previous specifica-
tions, we require that the resonant frequency w, of the compensated system be approximately the
same as that for the uncompensated system.

In Problems 18.7 and 18.8 we found that the Bode gain K, must be increased by a factor of 2 to
satisfy the steady state specification. The frequency response function of the lag-lead plus gain compensa-
tion is therefore given by

21 +jw/a))(1 + jw/by)
(1 +jw/b)(1 +jw/ay)

2P (jw) =

We must now choose a,, b), b,, and a, to satisfy the requirements on M,,, ¢py and w,. Referring to Fig,
18-17, we see that the resonant frequency for the uncompensated system is about 1.1 rad/sec. The db
magnitude-phase angle plot of G,(jw)=2G( jw) shown in Fig. 18-19 indicates that, if the G,(jw) curve is
attenuated by 6.5 db and 10° of phase lead is added at a frequency of w = 1.0 rad/sec, then the resulting
curve will be tangent to the M, =2 db curve at about 1 rad/sec. Referring to Fig. 18-10, if we let
b /a, =by/a,=3, a; = 6a,, and w/a, = 6.0 for w =1, we obtain the desired attenuation and phase lead.
Solving for the remaining parameters, we get a, =1/6 =0.167, b, =3a, =0.50, a, = 6a, = 1.0, b, = 3q,
= 3.0. The db magnitude-phase angle plot for the resulting open-loop frequency response function

2(1 +jw)(1 + jw/0.5)
(1 +jw/3)(1 +jw/0.167)

G (jw) = G(Jjw)

is shown in Fig. 18-19, where M, = 3.5 db, ¢py = 44°, and w, = 1.0 rad /sec. These values approximately
satisfy the specifications.
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18.10. Design compensation for the discrete-time system with open-loop transfer function

K(z+1)

GH(z)= ———————
(2) (2—1)(z+§)2

such that the following performance specifications are satisfied:
gain margin > 6 db

phase margin ¢py, > 45°

gain crossover frequency w, such that w,T' < 1.6 rad

Rl il

velocity constant K, > 10

The Nichols chart plot of GH shown in Fig. 18-20 indicates that w,T=1.6 rad for K= —3 db. The
gain and phase margins are met if K < 4.7 db; but the steady state specification requires that K > 10.8 db
(gain factor of 3.47). Substituting z = (1 + w)/(1 — w), we transform the open-loop transfer function from
the z-domain to the w-domain, thus forming

) 6 K
*) T35 (1 + wy5)
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In the w-domain the gain crossover frequency specification becomes

w, T
W, = lan(T) =1.02 rad/sec

A low-frequency cascade lag compensator with b/a=3.5 can be used to increase K, to 10, while
maintaining the gain crossover frequency w; and the gain and phase margins at their previous values. A lag
compensator with b= 0.35 and a = 0.1 satisfies the requirements.
The lag compensator in the w-plane is
3.5(1 +w/0.35)
G(w) = ——F—7—
1+w/0.1
This is transformed back into the z-domain by substituting w = (z — 1)/z + 1), thus forming
z—0.4815
z—0.8182 )

The db magnitude-phase angle plot for the compensated discrete-time system is shown in Fig. 18-21.

Gy(2) = 1.2273(
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Fig. 18-21
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Supplementary Problems

Find a value of K, for which the system whose open-loop transfer function is
KH
s(1+5/200)(1 + 5/250)
has a resonant peak M, of 1.4 db. Ans. Kg=119.4.

GH =

For the system of Problem 18.11, find gain plus lag compensation such that M, < 1.7, ¢py > 35°, and
K, = 50.

For the system of Problem 18.11, find gain plus lead compensation such that M, <1.7, ¢py > 50°, and
K, = 50.

For the system of Problem 18.11, find gain plus lag-lead compensation such that M, < 1.5, ¢y, > 40°, and
K, >100.

Find gain plus lag compensation for the system whose open-loop transfer function is
Ky

GH= ———

s(1 +5/10)(1 +5/5)

such that K, =30 and ¢py > 40°.

For the system of Problem 18.15, find gain plus lead compensation such that K, > 30 and ¢,y > 45°. Hint.
Cadcade two lead compensation networks.

Find gain plus lead compensation for the system whose open-loop transfer function is
K

GH= ———r

s(1+5/2)

such that K, =20 and ¢,y = 45°.

Chapter 19

Introduction to Nonlinear Control Systems

19.1 INTRODUCTION

We have thus far confined the discussion to systems describable by linear time-invariant ordinary
differential or difference equation models or their transfer functions, excited by Laplace or z-transform-
able input functions. The techniques developed for studying these systems are relatively straightforward
and usually lead to practical control system designs. While it is probably true that no physical system is
exactly linear and time-invariant, such models are often adequate approximations and, as a result, the
linear system methods developed in this book have broad application. There are many situations,
however, for which linear representations are inappropriate and nonlinear models are required.

Theories and methods for analysis and design of nonlinear control systems constitute a large body
of knowledge, some of it quite complex. The purpose of this chapter is to introduce some of the
prevailing classical techniques, utilizing mathematics at about the same level as in earlier chapters.

Linear systems are defined in Definition 3.21. Any system that does not satisfy this definition is
nonlinear. The major difficulty with nonlinear systems, especially those described by nonlinear ordinary
differential or difference equations, is that analytical or closed-form solutions are available only for very
few special cases, and these are typically not of practical interest in control system analysis or design.
Furthermore, unlike linear systems, for which free and forced responses can be determined separately
and the results superimposed to obtain the total response, free and forced responses of nonlinear
systems normally interact and cannot be studied separately, and superposition does not generally hold
for inputs or initial conditions.

In general, the characteristic responses and stability of nonlinear systems depend qualitatively as
well as quantitatively on initial condition values, and the magnitude, shape, and form of system inputs.
On the other hand, time-domain solutions to nonlinear system equations usually can be obtained, for
specified inputs, parameters, and initial conditions, by computer simulation techniques. Algorithms and
software for simulation, a special topic outside the scope of this book, are widely available and therefore
are not developed further here. Instead, we focus on several analytical methods for studying nonlinear
control systems.

Nonlinear control system problems arise when the structure or fixed elements of the system are
inherently nonlinear, and /or nonlinear compensation is introduced into the system for the purpose of
improving its behavior. In either case, stability properties are a central issue.

EXAMPLE 19.1. Fig. 19-1(2) is a block diagram of a nonlinear feedback system containing two blocks. The
linear block is represented by the transfer function G, =1/D(D + 1), where D = d/dt is the differential operator.
D is used instead of s in this linear transfer function because the Laplace transform and its inverse are generally
not strictly applicable for nonlinear analysis of systems with both linear and nonlinear elements. Alternatively,
when using the describing function method (Section 19.5), an approximate frequency response technique, we

)
r + e f 1 P fte

N DD+ 1) oA

- I

Nonlinear Linear ﬂl’ |

elements elements | 1 e
|
-— 1
(a) (b)
Fig. 19-1
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usually write
1
ju(ju+1)
The nonlinear block N has the transfer characteristic f(e) defined in Figure 19-1(b). Such nonlincarities are called
(piecewise-linear) saturation functions, described further in the next section.

G (jw) =

EXAMPLE 19.2. If the earth is assumed spherical and all external forces other than gravity are negligible, then
the motion of an earth satellite lies in a plane called the orbit plane. This motion is defined by the following set of
nonlinear differential equations (see Problem 3.3):

d*¢  dr de o
DA Rl
drr T odt
d*r dg\? k? ) .
= "z = ;5 (radial force equation)

The satellite, together with any controller designed to modify its motion, constitutes a nonlinear control system.

r (transverse force equation)

Several popular methods for nonlinear analysis are summarized below.

19.2 LINEARIZED AND PIECEWISE-LINEARIZED APPROXIMATIONS
OF NONLINEAR SYSTEMS

Nonlinear terms in differential or difference equations can sometimes be approximated by linear
terms or zero-order (constant) terms, over limited ranges of the system response or system forcing
function. In either case, one or more linear differential or difference equations can be obtained as
approximations of the nonlinear system, valid over the same limited operating ranges.

EXAMPLE 19.3. Consider the spring-mass system of Fig. 19-2, where the spring force f,(x) is a nonlinear
function of the displacement x measured from the rest position, as shown in Fig, 19-3.

The equation of motion of the mass is M(d”x/dt?) + f,(x) = 0. However, if the absolute magnitude of the
displacement does not exceed X, then f (x) = kx, where k is a constant. In this case, the equation of motion is a
constant-coefficient linear equation given by M(d%x/dr?) + kx =0, valid for |x| < x,.

-
Z fs(x)
/: kxO — _'
i1: = |
Z %y \[
Z Spring ; o x
“ A A
Z WWY M ]
” )
A o A ~——~ ~kx,
Fig. 19-2
& Fig. 19-3

EXAMPLE 19.4. We again consider the system of Example 19.3, but now the displacement x exceeds x,. To treat
this problem, let the spring force curve be approximated by three straight lines as shown in Fig. 19-4, a
piecewise-linear approximation of f,(x).

The system is then approximated by a piecewise-linear system; that is, the system is described by the linear
equation M(d”x/dt?) + kx =0 when |x| < x,, and by the equations M(d?x/dt>) + F, =0 when |x|> x,. The +
sign is used if x > x, and the — sign if x < —x,.

Nonlinear terms in a system equation are sometimes known in a form that can be easily expanded
in a series, for example, a Taylor or a Maclaurin series. In this manner, a nonlinear term can be
approximated by the first few terms of the series, excluding terms higher than first degree.
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EXAMPLE 19.5. Consider the nonlinear equation describing the motion of a pendulum (see Fig. 19-5):

8 g

— +~-sinf=0

et |
where / is the length of the pendulum bob and g is the acceleration of gravity. If small motions of the pendulum
about the “operating point” § =0 are of interest, then the equation of motion can be linearized about this
operating point. This is done by forming a Taylor series expansion of the nonlinear term (g//)sin8 about the point
6 = 0 and retaining only the first degree terms. The nonlinear equation is

a0 g a6 g = 6*[ d*

Y e By T (sne
R ] bt I
4% g A

=_dr2+7[0——3!+--- =0

The linear equation is %8 /dr* + (g/1)8 = 0, valid for small variations in 6.

It is instructive to express the linearization process more formally for Taylor series applications, to
better establish its applicability and limitations.

Taylor Series

The infinite series expansion of a general nonlinear function f(x) can be quite useful in nonlinear
systems analysis. The function f(x) can be written as the following infinite series, expanded about the
point x:

1 d¥

(x-F)+ ==
x x=-

)+ Y
fx)=1(x)+— e

X=

x—x)* dif

=
= 19.1
,E:O ktooaxk| ( )

where (d*f/dx*)|,_; is the value of the kth derivative of f with respect to x evaluated at the point
x = Xx. Clearly, this expansion exists (is feasible) only if all the required derivatives exist.

If the sum of the terms of Equation (/9./) second-degree and higher-degree in (x — X) are
negligible compared with the sum of the first two terms, then we can write

1) =1(2) +

(x-%) (19.2)

x=

This approximation usually works if x is “close enough” to X, or, equivalently, if x — X is “small
enough,” in which case higher-degree terms are relatively small.
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Equation (/9.2) can be rewritten as

10 -1E=2| (x-5) (19.9)

Then if we define

Ax=x-Xx (19.4)
Af=f(x)-f(3) (19.5)
Equation (/9.3) becomes
4
Af= ™ x-;Ax (19.6)

If x=x(t) is a function of time ¢, or any other independent variable, then in most applications ¢
can be treated as a fixed parameter when performing the linearization computations above, and
Ax = Ax(t) = x(1) - x(2), etc.

EXAMPLE 19.6. Suppose y(r) = f[u(¢)] represents a nonlinear system with input u(r) and output y(¢), where
t > 1, for some ¢, and df/du exists for all u. If the normal operating conditions for this system are defined by the
input u=u and output y =3y, then small changes A y() =y(r) — y(¢) in output operation in response to small
changes in the input Au(?) = u(t) — u(r) can be expressed by the approximate linear relation

dj
Ay(l);h—i Au(t) (19.7)

u=u(t)

for t > ¢,.

Taylor Series for Vector Processes

Equations (/9.1) through (/9.7) are readily generalized for nonlinear m-vector functions of
n-vector arguments, f(x), where

h X
X
f= {2 x=|"?
f x,
and m and n are arbitrary. In this case, Ax = x — X, Af ={(x) — f(X), and Equation (/9.6) becomes
df
AMf=—] A (19.8)
dx x=X
where df /dx is a matrix defined as
O dh
a |
= : : . : (19.9)
dx - . . .
fn 9t fm
dx, dx, o dx,

EXAMPLE 19.7. For m=1 and n =2, Equation (/9.9) reduces to

4 [9r of
ax 8xl dx,
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and Equation (/9.8) is

af Ax, aof
=|— = ——A —A 19.10
8f ax, Ix, ] [sz ax, nt ax, X2 ( )

Equation (79.10) represents the common case where a nonlinear scalar function f of two variables, say x; = x and
x, =y, are linearized about a point {X, y} in the plane.

Linearization of Nonlinear Differential Equations
We follow the same procedure to linearize differential equations as we did above in linearizing
functions f(x). Consider a nonlinear differential system written in state variable form:

dx
E=f[x(1),u(1)] (19.11)

where the vector of n state variables x(7) and the r-input vector u(z) are defined as in Chapter 3,
Equations (3.24) and (3.25), and t > ¢,. In Equation (/9.11), f is an n-vector of nonlinear functions of
x(¢) and u(r).
Similarly, nonlinear output equations may be written in vector form:
¥(1) = g[x(r)] (19.12)

where y(t) is an m-vector of outputs and g is an m-vector of nonlinear functions of x(t).

EXAMPLE 19.8. One example of a nonlinear SISO differential system of the form of Equations (/9.1/) and

(19.12) 1s
dx, s
& =fi(x, u) = cyux; — ]
dx, c3%,

T —fz( )

eyt x;
y=8(x) =csxi

The linearized versions of Equations (19.11) and (/9.12) are given by

d(Ax) ot af
= X =X(t X = Xi (1913)
dt ax u_‘_.:'; u-ﬁ:::
19.14
s0=g0| (19.14)

where the partial derivative matrices in these equations are defined as in Equations (/9.9) and (/9.10),
each evaluated at the “point” {X,u}. The pair X = X(7) and u = u(¢) are actually functions of time, but
they are treated like “points” in the indicated computations.

Linearized equations (/9./3) and (/9.14) are usually interpreted as follows. If the input is
perturbed or deviates from an “operating point” ui(¢) by a small enough amount Au(r), generating small
enough perturbations Ax(¢) in the state and small enough perturbations in the output Ay(r) about their
operating points, then the linear equations (19.13) and (/9.14) are reasonable approximation equations
for the perturbed states Ax(¢) and perturbed outputs Ay(z).

Linearized equations (/9.13) and (19.14) are often called the (small) perturbation equations for the
nonlinear differential system. They are linear in Ax and (Au), because the coefficient matrices:

af af dg

X=%(1) x=%(1) Ix
ax —%r) du —m ax

x=%(1)

having been evaluated at x(¢) and /or w(¢), are not functions of Ax(r) [or Au(?)].
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Linearized equations (/9.13) and (19.14) are also time-invariant if (1) = @ = constant and X(r) = X
= constant. In this case, all of the methods developed in this book for time-invariant ordinary
differential systems can be applied. Nevertheless, the results must be interpreted judiciously because,
again, the linearized model is an approximation, valid only for “small enough” perturbations about an
operating point and, generally speaking, *“small enough” perturbations are not always easy to ascertain.

EXAMPLE 19.9. The linearized (perturbation) equations for the system given in Example 19.8 are determined as
follows from Equations (19.13) and (19.14). For convenience, we first define

af af

o lx=F O = 37
Ix{i s, 9x

etc., to simplify the notation. Then
ﬂAXI) _ afl 3jl af;l

7 —b—x—lel+a—x2Ax2+EAu= —20,% Ax + qulx, + X, Au

Similarly,
d(Ax,) 3f2 af:z a.iz

= — +—Ax,+—A
dr ax, VT G, T gy O

€4¢, e Ax
= -——li—z Ax, +0+0= —‘3—4%
(ca+ %) (ca+%)
and the output perturbation equation is
ag oz -
Ay= a—x[ Ax, + 3_x2 Ax, =2csx Ax,

Linearization of Nonlinear Discrete-Time Equations

The Taylor series linearization procedure can be applied to many discrete-time system problems,
but sufficient care must be taken to justify the existence of the series. The application is often justified if
the discrete-time equations represent reasonably well-behaved nonlinear processes, such as discrete-time
representations of continuous systems with state variables expressed only at discrete-time instants.

EXAMPLE 19.10. The time-invariant discrete-time system represented by the nonlinear difference equation
x(k + 1) =ax?(k), with a <0 and x(0) # 0, is easily linearized, because the nonlinear term ax?(k) is a smooth
function of x. We have

x(k+1)=ax*(k) =f(x)

Af=f(x) - /(%)

d
3_1 . =2ax

x(k) =x(k)+Ax(k)
%(k+1) =ax*(k)
Substitution of these equations into Equation (/9.6) and rearranging terms yields
Ax(k+1) =2ax(k) Ax(k)

which is linear in Ax, but time-varying in general.

19.3 PHASE PLANE METHODS

In Sections 3.15 and 4.6, the state variable form of linear differential equations was introduced and
shown to be a useful tool for analysis of linear systems. In Section 19.2, this representation was applied
to nonlinear systems via the concept of linearization. In this section, phase plane methods are developed
for analyzing nonlinear differential equations in state variable form, without the need for linearization.
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A second-order differential equation of the form:

dx dx

F:f(x,z) (19.15)
can be rewritten as a pair of first-order differential equations, as in Section 3.15, by making the change
of variables x = x, and dx/dt = x,, yielding

dx,
- =% (19.16)
dx,
== fx 52) (19.17)

The two-tuple, or pair of state variables (x,, x,), may be considered as a point in the plane. Since
x, and x, are functions of time, then as ¢ increases, (x,;(t),(x,()) describes a path or trajectory in the
plane. This plane is called the phase plane, and the trajectory is a parametric plot of x, versus x,,
parametrized by 7.
If we eliminate time as the independent variable in Equations (/9.16) and (/9.17), we obtain the
first-order differential equation
i 2 (19.18)
dx;  f(x),x;) '
Solution of Equation (/9.18) for x, as a function of x, (or vice versa) defines a trajectory in the phase
plane. By solving this equation for various initial conditions on x; and x, and examining the resulting
phase plane trajectories, we can determine the behavior of the second-order system.

EXAMPLE 19.11. The differential equation

d*x dx\?
(5]

dr? dr
with the initial conditions x(0) = 0 and (dx/dt)|,.q = 1, can be replaced by the two first-order equations
dx,
R x(0)=0
dx,
o - x(0) =1
where x = x| and dx/dt = x,. Eliminating time as the independent variable, we obtain
dx, X, 1 dx,
——=-=5=-_— or  dx;=-—-
dx; X3 X, Xy

Integration of this equation for the given initial conditions yields
Xy X3 dxé
f dx}=x, = - —=-Inx, or x,=e ™
x(0)=0 x3(0)=1 X3

The phase plane trajectory defined by this equation is plotted in Fig. 19-6. Its direction in the phase plane is

~2
1.0
0.5
0 T T T T T
0 05 1.0 15 20 25 X

Fig. 19-6
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determined by noting that dx,/dt = —x3 <0 for all x,# 0. Therefore x, always decreases and we obtain the
trajectory shown.

On-Off Control Systems

A particularly useful application of phase plane methods is designing on-off controllers (Definition
2.25), for the special class of feedback control systems with linear continuous-time second-order plants,
as in Fig. 19-7 and Equation (/9.19).

d* dc

—_— + _—

ar
The initial conditions ¢(0) and (dc/dt)|,., for Equation (/9.19) are arbitrary. The on-off controller
with input e = r — ¢ generates the control signal u which attains only two values, u= t1.

=u a0 (19.19)

r € On Off u Plant C
Controller

Fig. 19-7

On-Off Controller Design Specifications

If the reference input r is a unit step function applied at time zero, typical design specifications for
the system of Fig. 19-7 are the following. The control input u to the plant must drive the plant output
c(r) to c(t’)=1, and its derivative dc/dt to (dc/dt)|,.., =0, simultaneously, and in the minimum
possible time ¢'. The steady state error becomes zero at ¢’ and remains zero if the control signal is
turned off (u =0).

Since ¢’ is required to be minimum, this is an optimal control problem (see Section 20.5). It can be
shown that ¢’ is minimized only if the control signal u switches values, from +1 to —1 or from —1 to
+ 1, at most once during the time interval 0 <r < ¢”.

On-Off Controller Design

In solving this design problem, it is convenient to use the error e =r — ¢, where r = 1(1), as the
variable of interest, rather than the controlled output ¢, because e =0 and de/dr = 0 when ¢ =1 and
dc/dt = 0. Therefore requiring that the error ¢ and its derivative go to zero in minimum time is
equivalent to our original problem.

To solve the problem, we first generate a differential equation for e:

de d( dc

adi €)= d

de d de de

W aE TG T g (19.20)

with initial conditions e(0) =1 —¢(0) and (de/dt)|,.o= —(dc/dt)|,.,- Then we replace Equation
(19.20) with two first-order differential equations, by letting e = x, and de/dr = x;:
dx,
dr
dx,

7=—ax2—u (19‘22)

=x, (19.21)
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with initial conditions x,(0) = e(0)=1—-¢(0) and x,(0) = (de/d!)|,.q= —(dc/dt)|,., Eliminating
time as the independent variable, we obtain
dx, ax,+u X, dx,

= - or dx, = —
dx, Xy ax,+u

(19.23)

This equation plus the initial conditions on x,(0) and x,(0) define a trajectory in the phase plane.

Since the control signal « switches (+1 to —1 or —1 to +1) no more than once, we can separate
the trajectory into two parts, the first prior to the switching time and the second after switching. We
consider the second part first, as it terminates at the origin of the phase plane, x; = x, =0. We set
u= %1 in Equation (/9.23) and then integrate between a general set of initial conditions x,(¢) and
x,(¢) and the terminal conditions x, = x,=0. To perform the integration, we consider four different
sets of initial conditions, each corresponding to one of the quadrants of the phase plane.

In the first quadrant, x, > 0 and x, > 0. Note that dx,/dt = x, > 0. Thus x, increases when x, is
in the first quadrant, and when x, goes to zero, x, cannot be zero. Therefore trajectories which start in
the first quadrant cannot terminate at the origin of the phase plane if » does not switch.

An identical argument holds when the initial conditions are in the third quadrant, that is. if x, <0
and x, <0, the trajectory cannot terminate at the origin if ¥ does not switch.

In the second quadrant, x, <0 and x,> 0. Since dx,/dt = x,>0, x; will increase as long as
x,>0. Since a> 0, then —ax, <0 and thus dx,/dr <0 for u= +1 whenever x, > 0. Integration of
Equation (/9.23) with = +1, initial conditions in the second quadrant, and terminal conditions
x; = x, =0, yields

fO dx, = —x(1) = _fo X2

1) x(nax; +1

0 x,(1)

a

1
or xl(()=p[ax2+l—ln(ax2+l)] +%ln[ax2(t)+1] (19.24)

x2(1)
where x,(t) <0, x,(r) 2= 0. This equation defines a curve in the second quadrant of the phase plane
such that, for any point on this curve, the trajectory terminates at the origin if u = +1. That is. the
control signal u = +1 drives x, and x, to zero simultaneously.

By an identical argument, there exists a curve in the fourth quadrant defined by

x5 (1 1
x(t)=— Z‘E ) - —In[—ax,(1) +1] (19.25)
a
where x,(#) > 0, x,(¢) <0 such that for any (x,(¢), x,(7)) on this curve the control signal u= —1

drives x, and x, to zero simultaneously.

The curves defined by Equations (/9.24) and (79.25) join at x; = x, = 0 and together define the
switching curve for the on-off controller. The switching curve divides the entire phase plane into two
regions, as indicated in Fig. 19-8. The part of any trajectory after switching always starts on this curve,
moves along the curve, and terminates at x, = x, = 0.

X,

Fig. 19-8
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Now we consider the part of the trajectory prior to switching. First, we explore a monotone
property of the switching curve. In the second quadrant, where u= +1. x,> 0, and the slope of the
curve is negative:

dx, 1 )
—=—la+—}<0
dx, X,

In the fourth quadrant, where u= -1, x, <0, and
dx, ( 1 )
—=-la-—|<0
dx, X,

Therefore the slope of the entire switching curve is negative for all (x, x,) on the curve, that is, the
switching curve is monotone decreasing. Thus, corresponding to any specific value of x,, there is one and
only one corresponding value of x,. Because of the monotone property of the switching curve, the
region above the switching curve is the same as the region to the right of the switching curve, that is, it
consists of the set of points (x,, x,) such that

x, 1
X, > —:+?ln(ax2+l) (19.26)
when x, >0 and
x, 1
x1>—7—?ln(—ax2+1) (19.27)

when x, <0.

We consider the part of the trajectory prior to switching, when the conditions (x,(0), x,(0)) lie
above the switching curve. For this case, u = +1 and the first part of the trajectory is obtained by
integration of Equation (/9.23) with u#= +1 between the initial conditions (x,(0), x,(0)) and an
arbitrary pair of points (x,(¢), x,(¢)) which satisfy the inequalities (/9.26) and (/9.27). We obtain the
trajectory by integrating Equation (/9.23), which yields

f\l(l)d (l) (0) j—xl(n X, dxz 1 [ i | ( . ])] ()
X, =X - X = - — = 5|ax —inl ax
x(0) ! ! ! X0 ax3 + 1 a’ : ? (™
x,(0) 1 x(¢) 1
or x,(1) = x,(0) + za —?ln{axz(o)ﬂ]— 2 + —Infax,(1) +1] (19.28)
a

Note that this part of the trajectory has the same shape as that in Equation (/9.24), but that it is shifted
to the right. So, when x,(¢)=0, x,(¢) = x,(0) + (1/a)[x,(0) — (1/a)In(ax,(0) + 1)], which is greater
than 0 because of inequality (/9.26).

Thus, when (x,(0), x,(0)) lies above the switching curve, the on-off controller develops a control
signal ¥ = +1 and the resultant trajectory (x,(r), x,(¢)) is defined by Equation (/9.28). When this
trajectory intersects the switching curve, that is, when (x (1), x,(¢)) satisfies Equations (/9.25) and
(19.28) simultaneously, the on-off controller switches the control signal to u= —1 and the trajectory
continues along the switching curve to the origin of the phase plane.

By identical reasoning, if the initial conditions lie below the switching curve, that is,

0 1
x,(0) < ~ xzi ) + Fln[axz(()) +1]
when x,(0) = 0. or
0 1
x,(0) < - xzi ) - ?ln[—axz(()) +1]

when x,(0) <0, then the on-off controller develops a control signal u= —1 and the trajectory
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(x,(1), x,(1)) satisfies

x,(7)

a

x,(0) 1 1
x, (1) = x,(0) + . +;5ln[—ax2(0)+1]— —Fln[—axz(()*}-l] (19.29)
When this trajectory intersects the switching curve, that is, when (x(7), x,()) satisfies Equations
(19.24) and (19.29) simultaneously, the on-ofl’ controller switches the control signal to u = +1 and the
trajectory moves along the switching curve in the second quadrant and terminates at the origin of the
phase plane.

Recalling that x, = e and x, = ¢, the switching logic of the on-off controller is as follows:
é 1
(a) When é>0and e+ — — —In(aé +1)> 0, then u= +1
a
(b) Whené<0and e+

1
+ Fln(—aé+ 1)>0, then u= +1

1
(¢c) Whené>0and e+ — — —In(aé+1) <0, then u= -1
a

Y I VR <N I WO Y IO, W <Y

1
(d) Whené<0and e+ — + —In(—aé+1)<0, then u= —1
a

EXAMPLE 19.12. For the feedback control system depicted in Fig. 19-7 and plant defined by Equation (79.19)
with parameter a = 1, the switching curve is defined by

e=—é+In(é+1) for é>0
e=—é—In(—-é+1) for é<0

and the switching logic for the on-off controller is given in Table 19.1.

Table 19.1
é>0 fi(e)=e+é—In(é+1)>0 filey=e+é+In(—é+1)>0 u
No No No -1
No No Yes +1
No Yes No -1
No Yes Yes +1
Yes No No -1
Yes No Yes -1
Yes Yes No +1
Yes Yes Yes +1

Generalization

Phase plane methods apply to second-order systems. The approach has been generalized to third-
and higher-order systems, but the analysis is typically much more complex. For example, to design
on-off controllers in this way for third-order systems, switching curves are replaced by switching
surfaces and the switching logic becomes far more extensive than that given in Table 19.1 for
second-order systems.

194 LYAPUNOV’S STABILITY CRITERION

The stability criteria presented in Chapter 5 cannot be applied to nonlinear systems in general,
although they may be applicable if the system is linearized, as in Section 19.2, if the perturbations Ax
are small enough, and if u(¢) and X() are constant, that is, if the linearized equations are time-
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invariant. A more general method is provided by the Lyapunov theory, for exploring the stability of
system states x(¢) and outputs y(#) in the time domain, for any size perturbations Ax(¢). It can be used
for both linear and nonlinear systems described by sets of simultaneous first-order ordinary differential
or difference equations, which we write concisely here in state variable form:

x=1(x,u) (19.30)
or x(k+1) =f[x(k),u(k)] (19.31)

The following stability definitions are for unforced systems, that is, for u = 0, and for simplicity we
write x = f(x) or x(k + 1) ={f[x(k)].

A point x for which f(x,) = 0 is called a singular point. A singular point x is said to be stable if,
for any hyperspherical region Sy (e.g., a circle in two dimensions) of radius R centered at x,, there
exists a hyperspherical region S, of radius » < R also centered at x, in which any motion x(r) of the
system beginning in S, remains in Sy ever after.

A singular point x is asymptotically stable if it is stable and all trajectories (motions) x() tend
toward x, as time goes to infinity.

The Lyapunov stability criterion states that, if the origin is a singular point, then it is stable if a
Lyapunov function V(x) can be found with the following properties:

(a) V(x)> 0 for all values of x # 0 (19.32)
(b) dV/dt <0 for all x, for continuous systems, or AV[x(k)] = V[x(k + 1)] - V[x(k)] <0,
for all x, for discrete-time systems (19.33)

Furthermore, if dV/dr (or AV') is never zero except at the origin, the origin is asymptotically stable.

EXAMPLE 19.13. A nonlinear continuous system represented by
3

d*x  dx dx
— t+t—+ (—) +x=0
dt dt dt
or, equivalently, the pair of equations
dx, dx, 3
u TR g T TR

where x, = x, has a singular point at x, = x, = 0. The function ¥ = x{ + x3 is positive for all x, and x,, except
x; = x, =0 where ¥ =0. The derivative
dv dx, dx,
— =2x,— +2x,—— =2x0, + 2x,( —x; —x3 —x) = —2x3-2x}
dt 1 dt 2 dt 142 2( 2 2 l) 2 2

is never positive. Therefore the origin is stable.

EXAMPLE 19.14. The nonlinear system shown in Fig. 19-9 is represented by the differential equations {with
x (1) = —c(N]:

X =—x tx

%= —f(x +71)

Jf(x}) 1 -X3 1 X, =
5 I+1
Fig. 19-9
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Also, f(0)=0 for this particular nonlinear element. If r is constant, we can make the changes of variables
x{ =x, +r, xj=x,+r, and the state equations become

X =—x{+x3

x3=—f(x)
The origin x{ = x; =0 is a singular point since x{ = %} =0 at the origin. The Lyapunov function is defined by
V=2[yf(e)de+ x4? >0 for all x{, x; #0,if x{ f(x{)> 0 for all x{ # 0. Differentiating V.

V=2f(x{)a{ + 2x3%5 =20 () (= x{ + x3) = 2x3 f(x{) = = 2x{f(x{)

Thus, if we restrict x{f(x;)>0, to maintain V>0, V <0 for x| # 0. Therefore the system is stable for any
nonlinear element satisfying the conditions

f(0)=0
x{f(x{)>0 for x{#0

Note that this result is very general in that only the conditions above are required to assure stability.
If r is not constant, the solution for x,(1) and x,(1) corresponding to r(1) is in general not constant. But, if
the solution were known, the stability of the solution could be analyzed in a similar way.

EXAMPLE 19.15. For the discrete-time system
x(k+1)=x,(k)
x(k+1) = —f[x (k)]

"where f(x,) is the saturation nonlinearity in Fig. 19-1(b), the origin is a singular point because x;(k) = x,(k) =0

implies x,(k + 1) = x,(k + 1) = 0. Let V= x{ + xZ, which is greater than zero for all x,, x, # 0. Then
AV=xl(k+1) +x3(k+1) - x}(k) - x3(k)
=x3(k) +/7[x (k)] - xi(k) - x3(k)
= —xf(k) +/*[x (k)]

Since f2(x,) < x2 for all x,, AV <0 for all x,, x, and therefore the origin is stable.

Choosing Lyapunov Functions

For many problems, a convenient choice for the Lyapunov function ¥(x) is the scalar quadratic
form function V(x) = xTPx, where x7T is the transpose of the column vector x and P is a real symmetric
matrix. To render V > 0, the matrix P must be positive definite. By Sylvester's theorem [7], P is positive
definite if and only if all its discriminants are positive, that is,

Py>0
Py P, >0
Py Py
I STRR R
: : S >0 (19.34)
Pnl T Pnn

For continuous systems % = f(x), the derivative of ¥(x) = x'Px is given by
V(x) = x™Px + xTPx = £ T(x) Px + x"Pf(x)
For discrete systems, x(k + 1) = f{x(k)] and
AV(k)Y=V(k+1)—V(k)=xT(k+1)Px(k+1)—xT(k)Px(k)
=1T[x(k)] Pi[x(k)] ~ xT(k) Px(k)



466 INTRODUCTION TO NONLINEAR CONTROL SYSTEMS [CHAP. 19

EXAMPLE 19.16. For the system represented by x = Ax with A = [ _‘2" _;] let ¥V =xTPx with P = [[1) [1)]
Then

V=xT[ATP+PA]x=xT[[ _f _2] + [ _g _;]]x

V=xT[ _; _2]x= -xTQx

where Q=[_; 76]

Since P is positive definite, V> 0 for all x # 0. The discriminants of Q are 4 and (24 - 9) = 15. Therefore Q is
positive definite and — Q is negative definite, which guarantees that V' <0 for all x # 0. The origin is therefore
asymptotically stable for this system.

19.5 FREQUENCY RESPONSE METHODS

Describing Functions

Describing functions are approximate frequency response functions for the nonlinear elements of a
system, which can be used to analyze the overall system using frequency response techniques developed
in earlier chapters.

A describing function is developed for a nonlinear element by analyzing its response to a sinusoidal
input A sinwt, which can be written as a Fourier series:

Y B, sin(nwt+¢,) (19.35)

n=1

The describing function is the ratio of the complex Fourier coefficient Be/* of the fundamental
frequency of this output, to the amplitude A of the input. That is, the describing function is the complex
function of w, (B,/A)e’®, a frequency response function of an approximation of the nonlinear
element. Thus the describing function represents the effective gain of the nonlinear element at the
frequency of the input sinusoid.

In general, B, and ¢, are functions of both the input frequency w = 27 /T and the input amplitude
A. Therefore we may write B, = B{(A4, w), ¢, = ¢,( A4, w) and the describing function as

Ble/'% B Bl(Av w)e/"“"“’)

N(4,w)= 1

(19.36)

To apply the method, we replace system nonlinearities by describing functions and then apply the
frequency domain techniques of Chapters 11, 12, and 15 through 18, with some modifications to
account for the dependence of B, and ¢, on A.

EXAMPLE 19.17. The output of the nonlinear function f(e) = e* in response to an input e = A sinwt is
A4
fle) =A’sind wt = 7(3 sinwz — sin® wt)

From Equation (/9.36), the describing function for f(e) is

Note that this nonlinearity produces no phase shift, so that ¢,(4,«)=0.
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Hysteresis

A common type of nonlinearity called hysteresis or backlash is shown in Fig. 19-10. In electrical
systems, it may occur due to nonlinear electromagnetic properties and, in mechanical systems, it may
result from backlash in gear trains or mechanical linkages. For another example, see Problem 2.16.

0.9 4 - —90°
Output 087 80"
0.7+ , F—70°
I¥| o
0.64 - —60
IN(4)] 0.5 )

d =
Slope = K 0.44 L 400

K
7d / N L o
Input 03 (A) 30
/d 0.2 L —20°
0.14 - —10°

Fig. 19-10 Fig. 19-11

The describing function characteristic for hysteresis, normalized to dead zone parameter d =1 and
slope K =1, is shown in Fig. 19-11. The phase lag ¢,(4) of this describing function is a function of the
input amplitude A4, but is independent of the input frequency w.

The describing function technique is particularly well suited for analysis of continuous or discrete-
time systems containing a single nonlinear element, as illustrated in Fig. 19-12, with open-loop transfer
function GH = N(A, w)G(w). Frequency response analysis of such systems typically entails first
determining whether there exist values of 4 and « that satisfy the characteristic equation, 1+
N(A4, w)G(w) =0, or

1

G(e)= - Naa)

Fig. 19-12

that is, values of 4 and « permitting oscillations. Nyquist, Bode, or Nichols chart plots of G and
—1/N separately can be used to resolve this problem, because the plots must intersect if such 4 and w
exist. Relative stability can also be evaluated from such plots, by determining the additional gain (gain
margin) and /or phase shift (phase margin) required to have the curves intersect.

It must be kept in mind that the describing function is only an approximation for the nonlinearity.
The accuracy of describing function methods, using frequency response analysis based on linear system
methods, depends upon the effective filtering by the plant G(w) of the (neglected) higher than
first-order harmonics produced by the nonlinearity. Since most plants have more poles than zeros, it is
often a reasonable approximation.

EXAMPLE 19.18. Consider the system of Fig. 19-12 with G(w) = 8 /jw(jw + 2)? and the saturation nonlinearity
of Problem 19.17. Polar plots of G(w) and —1/N(A4) are shown in Fig. 19-13.
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Im
.
N(A) A=2 0sA4x1
e Re
-2 -1 w=2
Glw)
Fig. 19-13

There are no values of 4 and w for which the two plots intersect, indicating that the system is stable and
sustained oscillations of constant amplitude are not possible. However, if the forward-loop gain were increased by a
factor of 2, from § to 16, the plots would intersect at (—1,0) for w=2 and 0 < 4 < 1, and sustained oscillations
would be possible. Thus an approximate gain margin for this system is 2 (6 db).

Popov’s Stability Criterion

This criterion was developed for nonlinear feedback systems with a single nonlinear element in the
loop, for example, as shown in Fig. 19-12. Such systems are stable if the linear element G is stable,
Re G(w) > —1/K, and the nonlinear element f(e) satisfies the conditions: f(0)=0and 0 < f(e)/e <K
for e # 0. Note that this criterion does not involve any approximations. Nyquist analysis is particularly
well suited for its application.

EXAMPLE 19.19. For the system of Fig. 19-12, with G = 1/( jw + 1)*, the Polar Plot is shown in Fig. 19-14. For
all w, Re G = - 1/4. Therefore the nonlinear system is stable if K <4, f(0)=0,and 0 <f(e)/e < K for e #0.

ImG
+ /0.5
-1.0 -0.75-0.5 -0.25 025 05 075 1.0
) ReG
w=1
T Jjo.s
Fig. 19-14

EXAMPLE 19.20. For the nonlinear system in Fig. 19-12, with a stable discrete-time plant G=1/z,
G(eT)y =e T = cos T~ jsinwT

The circular Polar Plot of G is shown in Fig. 19-15, and
ReG(e"“T)>‘71 for K<1

Thus the system is stable if f(0)=0 and 0 <f(e)/e< K <1 for e+ 0.
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LN
N

=J

Fig. 19-15

Solved Problems

NONLINEAR CONTROL SYSTEMS

19.1. Several types of control laws or control algorithms were presented in Definitions 2.25 through
2.29. Which of these are nonlinear and which are linear, from the viewpoint of their input-output
characteristics?

The on-off (binary) controller of Definition 2.25 is clearly nonlinear, its output being a discontinuous
function of its input. The remaining controllers, that is, the proportional ( P), derivative ( D), integral (/)
and PD, PI, DI, and PID controllers given in Definitions 2.26 through 2.29, are all linear. Each of their
outputs are defined by linear operations, or linear combinations of linear operations, on each of their
inputs.

19.2. Why is the thermostatically controlled heating system described in Problem 2.16 nonlinear?

The thermostat controller in this system is a nonlinear binary device, with a hysteresis input-output
characteristic, as described in Problem 2.16. This controller regulates the room temperature output of this
control system in an oscillatory manner between upper and lower limits bracketing the desired temperature
setting. This type of behavior is characteristic of many nonlinear control systems.

LINEARIZED AND PIECEWISE-LINEAR SYSTEM APPROXIMATIONS

19.3. The differential equation of a certain physical system is given by

d¥ dYy

—S 44—+ =0

ar’ dr? ()
The function f(y) is nonlinear, but it can be approximated by the piecewise-linear graph
illustrated in Fig. 19-16. Determine a piecewise-linear approximation for the nonlinear system
differential equation.

o — — —

Fig. 19-16
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19.4.

i

Mathcad

19.5.
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The nonlinear system can be approximated by the following set of five linear equations over the
indicated ranges of y:

d’y  d%
F 4?’1=0 y<—2
dJy Zy
@ g im0 T2yl
dy d¥y
F+4—dﬁ+y=0 -l<y<li
d3y 2
;’T+4-d71—*y+2=0 1<y<2
d3 2
I{+4-d—,z):+l=0 2<y
A solution of the nonlinear differential equation
dYy
~d—l—2+ycosy=u

with input u =0, is y = 0. Linearize the differential equation about this input and output using a
Taylor series expansion of the function d?y/dt? + ycos y — u about the point u =y =0.

The Taylor series expansion of cos y about y =0 is

Ll 1
cosy= 3, —|—(cosy) =1-—yr+ .-
k_ok![dy" . 2
Theref it QN P
—_— 4 -—U=— + —— e —
erefore g2 tyeosymu=—g ty 0 u

Keeping only first-degree terms, the linearized equation is d%y/dt? + y = u. This equation is valid only for
small deviations (perturbations) about the operating point u =y =0.

Write the perturbation equations determined in Example 19.9 in vector-matrix form. Why are
they linear? Under what conditions would they be time-invariant?

d(Ax,) P i
d(AX) _ a E ij;:l(l) 1u(f) ot (‘lfz([)]Au
dr d(Ax,) m 0
dt

Ay =[2¢5%,(r) 0] Ax

These equations are linear because the matrices premultiplying Ax and Au are independent of Ax and
Au. They would be time-invariant if the parameters ¢, c, ..., ¢ were constant and the “operating point” of
the system, for ¥ = u(t) and x = X(t), were also constant. This would be the case if u = constant.
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19.6. Derive the linearized Equations (19.13) and (19./4) for the nonlinear differential system given

19.7.

by (19.11) and (19.12).
We consider changes Ax in x as a result of changes Au in u, each about operating points X and 1,
respectively, that is,
x(1) =x(r) + Ax(1)

u(t) =u(r) + du(r)

In these equations, ¢ is considered a parameter, held constant in the derivation. We therefore suppress ¢, for
convenience. Substitution of X + Ax for x and U + Au for uin (/9.11) gives

e di+d(Ax) f(X +Ax,u+ Au
di i g AT A

Now we expand this equation in a Taylor series about {X,u}, retaining only first-order terms:

dr db) o L
T Ta SEwE

x=X(1)
=)

x=X(r)
u=a(r)

Then, since dX/dt = f(X,u), Equation (/9./1) follows immediately after subtracting these corresponding
terms from both sides of the equation above. Similarly, for

y=g(x)

Ax

X=X

- - . 98 _ . 98
y=y+Ay=g(X+AX)Eg(X)+a—' Ax=§+——
X | oy ax

Subtracting ¥ from both sides finally gives

a4
Ay;—g

ax Ax

X=x

The equations describing the motion of an earth satellite in the orbit plane are
d 2a’r do 0 d*r (a'9 2 k2
— + _——— = —_— N = — —
Tar dr dt a? \a ) pr?
(See Problem 3.3 and Example 19.2 for more details.) A satellite is in a nearly circular orbit

determined by r and d6/dr = w. An exactly circular orbit is defined by

r = ry, = constant w = wy = constant

Since dr,/dr =0 and dw,/dr =0, the first differential equation is eliminated for a circular orbit.
The second equation reduces to rywj = k%/pr. Find a set of linear equations which approxi-
mately describes the differences
dr=r—r, Sw=w—w,
In the equations of motion we make the substitutions
r=ry+8r w=w,+ 8w
and obtain the equations

d(wy + 8w) d(r,+8r)
+2

(ro+8r) 7 y (wy+8w) =0

d*(ry+8r k

L) (b 87+ By = - ——
dt p(r+8r)
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We note that
d(r,+8r) d(8r) d*(r,+8r) d*(ér) d(w, +8w) d(8w)
a > ar & dr

since both r, and w, are constant. The first differential equation then becomes

d(j:)) +(8r)d(8w) +2 d(:tr) +2d(:‘r)8w=0

0]
Since the differences 8r, 8w and their derivatives are small, the second-order terms (8r)(d(8w)/dt) and
2(d(8r)/dt) 8w can be assumed negligible and eliminated. The resulting linear equation is

d(8w) d(8r)
s +2w07—=0

which is one of the two desired equations. The second differential equation can be rewritten as

dz(sr) 2 2 2 2
e — Ry — 2rwpdw — ry(§w)” — wgdr — 2uwp(87)(8w) — (Sw)“8r
k  2kér .
= — —; — —5— + higher-order terms in 8r and 8w
120) o

where the right-hand side is the Taylor series expansion of —k/pr? about r,. All terms of order 2 and
greater in 8r and 8w may again be assumed negligible and eliminated leaving the linear equation

d*(8r) ) 5 R k  2kér

ar o = 2rywedw — wjdw — wydr = —m - W

In the problem statement we saw that rywg = k/pr?. Hence the final equation is

d*(8r) s 2kér
w 2rywpde — wybr= - —
140

which is the second of the two desired linearized equations.

PHASE PLANE METHODS

19.8. Show the equation d%x/dt? = f(x, dx/dt) can be equivalently described by a pair of first-order
differential equations.

We define a set of new variables: x, = x and x, = dx, /dt = dx/dt.

dx  d’x,  dx, dx) dx, ) )
ar A&t At (x‘ dt —/(x" a ) =/ Gx
The two desired equations are therefore
dx, dx,
s o )

19.9. Show that the phase plane trajectory of the solution of the differential equation
s d2x
x=0

— +
Mathcad dr?

with initial conditions x(0) =0 and (dx/dt)|,.,=1 is a circle of unit radius centered at the
origin.
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Letting x = x; and x, = dx, /d1, we obtain the pair of equations

dx;
7 x(0)=0

dx,
m =X x,(0) =1

We eliminate time as the independent variable by writing
—_——= - or x dx; + x5dx, =0
Integrating this equation for the given initial conditions, we obtain
f(:lxl’dxl’+j;xzx§dx§=§x12+%x§—§=0 or xl+xi=1

which is the equation of a circle of unit radius centered at the origin.

Determine the equation of the phase plane trajectory of the equation
d*x dx
JR— + JE—
e dt

with the initial conditions x(0) = 0 and (dx/dt)|,_o=1.

=0

With x, = x and x, = dx, /dr we obtain the pair of first-order equations

dx,
Z % x(0)=0
dx,
oS x(0) =1

E=vx-2=-l or dx, +dx, =0

Then

fXIdxl’+/xzdx5=xl+xz—-1=O or x +x;=1

() 1
which is the equation of a straight line, as shown in Fig. 19-17. The direction of the motion in the phase
plane is indicated by the arrow and is determined by noting that, initially, x,(0) = 1; therefore dx, /dt > 0

and x, is increasing, and dx,/dt < 0 and x, is decreasing. The trajectory ends at the point (x;, x,) = (1,0),
where dx, /dt = dx,/dt =0 and thus motion terminates.

2o

Fig. 19-17
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19.11. Design an on-off controller for the system given by Equation (19.1/9) and Fig. 19-7, with a = 0.
For a = 0 in Equation (19./9), Equation (/9.23) becomes

x,ydx
dx, = 22772
u
The switching curve is generated by integrating this equation in the second quadrant with u= +1 and
terminating at the origin, yielding

2 52
x3(0) é
)= -—-— =-—
x(t) 3 or 3
and integrating in the fourth quadrant with ¥ = —1 and terminating at the origin, yielding
(1) &
x(1) = 3 or e=-
The switching curve is sketched in Fig. 19-18. The switching logic of this on-off controller is given in Table
19.2.
x,=é
x =e
Fig. 19-18
Table 19.2
>0 e+é2/2>0 e—¢2/2>0 u
No No No -1
No No Yes +1
No Yes No -1
No Yes Yes +1
Yes No No -1
Yes No Yes -1
Yes Yes No +1
Yes Yes Yes +1

LYAPUNOV’S STABILITY CRITERION

19.12. Find the singular points of the pair of equations

dx, . dx,
— =sinx — =x;+x
dt : a P77
Singular points are found by setting sinx, =0 and x; + x, =0. The first equation is satisfied by
x,=+nm, n=0,1,2,.... The second is satisfied by x, = —x,. Hence the singular points are defined by

x,=%nm, x,=tnm n=0,1,2,...

19.13. The origin is a singular point for the pair of equations

2
— =cx, +dx,

1
— =ax, + bx, Z

dt
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Using Lyapunov theory, find sufficient conditions on a, b, ¢, and 4 such that the origin is
asymptotically stable.

We choose a function
V=x?+x}
which is positive for all x, x, except x; = x; = 0. The time derivative of V is

dv dx, dx; 2 3
Z =2x, I + 2x2—d-l— =2ax{ + 2bx;x, + 2cxyx, + 2dx3

To make dV/dr negative for all x,, x,, we might choose 2 <0, d <0, and b= —c. In this case,
dav 5 ,
i 2ax{ +2dx; <0

except when x, = x, = 0. Hence one set of sufficient conditions for asymptotic stability are a <0, d<0,
and b= —c. There are other possible solutions to this problem.

19.14. Determine sufficient conditions for the stability of the origin of the nonlinear discrete-time
system described by ’

x(k+1)= x,(k) "f[xl(k)]
Let V[x(k)] =[x (k)]*, which is greater than O for all x # 0. Then
AV = xi(k+1) = x}(k) = (x,(k) = f[x(K)])" = %} (k)

- Axl(k)f[xl(k)](z—”x;A(}k)])

Therefore sufficient conditions for AV < 0 and thus stability of the system are

xf(x) 20
f(x) forall x,
— <2

X

19.15. Determine sufficient conditions for the stability of the system
. _|-2 -1 -1
Xx=Ax+bf(x,) where A4 [ 0 _2],b [2]

Let V=x"Px and P=[Z f],Then

V=x"(PA +ATP)x + x"Pbf(x,) + f( x,)b'Px

=xT[ he ek a(a+ 20 x f(x) + 2 e+ 2)xy /(x)

To eliminate the cross-product term x, f(x,), set ¢ = —2. Then
V=-x"0x +2(a-4)xf(x)

4a 068]. For Q >0, a = 8. The resulting V is

where QE[U”S

/= —32x2 +8x,f(x,) = —8x3<4—f(xi))
1

Then ¥ <0 and the system is stable if f(x,)/x, <4 for all x, # 0.
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19.16. Determine sufficient conditions for stability of the nonlinear discrete-time system
x(k+1) = Ax(k) + bf [x,(k)]
1

-1
Let V¥ =x"Px, where P = [? i] Then

-1
where A = [0

and b= [ _?]

AV =Vx(k+1)] - V[x(k)] =x(k + 1)"Px(k +1) — x(k)"Px(k)
= [ [0 (k)I0 + x(k)TAT] P{ Ax(k) + bf [ x,(k)]] = x(k)"Px(k)
=xT(ATPA — P)x + f(x )b'Pbf(x;) + f(x;)b"PAxX + x"ATPbf( x,)
where

ATPA—P=[a_Ozc Z:%i] and  bPA=[-¢ 1-(]

Now, in order for ATPA — P <0, we set a = 2c and, to eliminate the cross-product term x, f(x,), we set
¢=1. Then A"P4 — P=0 and

f(x)
Av= [f(xl)]2 = 2x f(x) = _xxf(xl)(z T
*1
Sufficient conditions for AV < 0 and stability of the origin are then
X
xf(x) 20 and f(x—‘) <2 forall x,.
1

FREQUENCY RESPONSE METHODS

19.17. Show that the describing function for the piecewise-linear saturation element in Example 19.1 is
given by
2 1 1 1

1 . -
—e/® = ~|sin"!'— + —cossin "' —
T A A A

We see from Fig. 19-1(b) that, when the magnitude of the input is less than 1.0, the output equals the
input. When the input exceeds 1.0, then the output equals 1.0. Using the notation of Example 19.1, if
e(t) =Asinwt A>1

then f(¢) is as shown in Fig. 19-19 and can be written as

O<r<y
Asinwt H<t<ty
f(1) = <t<2n/w
1 L<t<t,
-1 <<,
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AL ___ A sin wf
;"\/‘/
Jl \\
1.0 41—
: ! ftn
i A 27
A N
t ty | : t
! )
| i
.
"\ 4
N ./
-
Fig. 19-19

The time 7, is obtained by noting that

. 1 1
Asinwty=1 or ¢ =—sin'—
w A
Similarly,
7 1 1 7z 1 1 27 1 1
h=———sn — ty=—+—sn " — ty=———%s -
e w1 A e wl A e wm A

The magnitude B, and phase angle ¢, of the describing function are determined from the expression for
the first Fourier coefficient:

w n/w
31=‘f2 / J(t)sinwrdr
7 J0

Since f(¢) is an odd function, the phase angle ¢, is zero. The integral defining B, can be rewritten as

@orn, o, W orn .
B, = —f Asin‘wtdt + —f sinwtdt
o Ty

W ey . W oy, W r2nfw
+ —f *Asindwtde — —f‘smwtd/ + —f Asinfwidt
m s

v Tty
L 2m/w g 1 oL
But f Asln~mtdr=f Asin‘wrdr = »f A sin‘wt dt
0 A 2 i
G . fy . 2w .
and flsmwtdl= —f‘sm wtdt= Zf"/ “sin wrdr
n

0 13
We can thus write B, as
4w 4w 2 2 A
B =— f"A sinwz dt + —f"/ “sin wrdt = —lAwt, — —sin2 wt, + 2cos wiy
7 Jo 4 T 2

h
Substituting #, = (1 /w)sin ' !(1/4) and simplifying, we obtain
2

B = A"‘1+ ot
bl L cossin y

Finally, the describing function is

19.18. Determine the amplitude 4 and frequency w for which oscillations could be maintained in the
system of Example 19.18 with the forward-loop gain increased to 32 from 8.
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The Polar Plots of

6(w) 32
W)= —"
jo(jo+2)°
and —1/N(A) are shown in Fig. 19-20. The two loci intersect at 4 =2.5 and w = 2, the conditions for
oscillation.
Im
- A=25
N(A4) -
Re
A=1
w=2
G(w)
Fig. 19-20

19.19. Determine the amplitude and frequency of possible oscillations for the system of Fig. 19-12 with
i+ f(e)=e? and

1
Mathcad G(w) = m
From Example 19.17, the describing function for this nonlinearity is
— 347 1 4
N( A) = T and - ﬁ == E/TZ'

From the Polar Plots shown in Fig. 19-21, G(w) and —1/N intersect for w=1.732 and A4 =3.27, the
conditions for oscillation.

+ S -+ + + =+ R
1 ~05 w = 1732 €

w = 0577

Fig. 1921

19.20. Determine the amplitude and frequency of possible oscillations for the system of Fig. 19-12, with
the hysteresis nonlinearity shown in Fig. 19-22, and G(w) = 2/jw( jw + 1).

The system block diagram can be manipulated as shown in Fig. 19-23, so that the hysteresis element is
normalized, with a dead zone of 1 and a slope of 1. Figure 19-11 can then be used to construct the Polar
Plot of —1/N, shown in Fig. 19-24 with the Polar Plot of 2G(w), rather than G(w), because the loop
transfer function excluding the nonlinearity is 4G (w)/2 = 2G(w).
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Qutput
8
-2
2 Input
-8
Fig. 19-22
fle) £
4 G(w)
Im
-1
¢ Re
o1
N(A) w=2
A=17
w=12
w=1
2G(w)
Fig. 19-24

The two curves intersect for w = 1.2 rad /sec and A = 1.7, the conditions for oscillation of the system.
Note that A is the amplitude of the input to the normalized nonlinearity. Therefore the amplitude for
oscillations is 3.4, in terms of e.

Supplementary Problems

19.21. Determine the phase plane trajectory of the solution of the differential equation

d’x Ix
— +2— +4x=0
dt® dr

19.22. Using Lyapunov theory, find sufficient conditions on @, and g, which guarantee that the point x =0,
dx/dr =0 is stable for the equation
d’x dx

F+a1; +agx=0



Chapter 20

Introduction to Advanced Topics in Control
Systems Analysis and Design

20.1 INTRODUCTION

This final chapter is an introduction to advanced topics in control systems science. Each subject is
discussed only briefly here to familiarize the reader with some of the terminology and mathematical
level of advanced methodologies. It should also provide some of the motivation for advanced study.
Time-domain state variable techniques, introduced in Chapters 3 and 4 and used extensively in Chapter
19, predominate in advanced methodological developments, mainly because they provide the basis for
solving broader classes of control system problems, including far more complex problems than are
amenable to frequency-domain methods.

20.2 CONTROLLABILITY AND OBSERVABILITY

Much of modern control theory is developed in the time domain, rather than the frequency domain,
and the basic linear and time-invariant plant (controlled process) model is typically given a state
variable description (Chapter 3), Equation (3.25b): dx(t)/dt = Ax(t) + Bu(t) for continuous system
plants, or Equation (3.36): x(k + 1) = Ax(k) + Bu(k) for discrete-time system plants. For either type
of model, the output equation may be written as y = Cx, where 'y = y(¢) or y(k), x = x(¢) or x(k), and
C is a matrix of compatible dimension. We mention in passing that this basic model form is often used
to represent time-varying linear systems, with matrices 4, B, or C having time-varying elements, and
(less often) nonlinear systems, with A, B, or C having elements that are functions of the state vector x.

The concept of controllability addresses the question of whether it is possible to control or steer the
state (vector) x from the input u. Specifically, does there exist a physically realizable input u that can be
applied to the plant over a finite period of time that will steer the entire state vector x (every one of the
n components of x) from any point x, in state space to any other point x;? If yes, the plant is
controllable; if no, it is uncontrollable.

The concept of observability is complementary to that of controllability. It addresses the question of
whether it is possible to determine all of the n components of the state vector x by measurement of the
output y over a finite period of time. If yes, the system is observable; if no, it is unobservable. Obviously,
if y = x, that is, if all state variables are measured, the system is observable. However, if y # x and C is
not a square matrix, the plant may still be observable.

The controllability and observability properties of the plant have important practical consequences
in analysis and, more importantly, design of modern feedback control systems. Intuitively, uncontrol-
lable plants cannot be steered arbitrarily; and it is impossible to know all of the state variables of
unobservable plants. These problems are clearly related, because together this means that unobservable
states (or state variables) cannot be individually controlled if the control variable u is required to be a
function of x, that is. if feedback control is needed.

Linear, time-invariant plant models in state variable form [Equations (3.25b) or (3.36)] are
controllable if and only if the following controllability matrix has rank » (n linearly independent
columns), where n 1s the number of state variables in the state vector x:

[B 4B 4B ... 4" 'B] (20.1)

Similarly, the plant model is observable if and only if the following observability matrix has
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rank n (# linearly independent rows):

C
CA

CA? (20.2)
CAn—l

x
EXAMPLE 20.1. Consider the following single-input single-output (SISO) plant model, with x = [Xl] and

ay,, a,,, a,, each nonzero:

I= 0 ap

To test if this model is controllable, we first evaluate the matrix given by Equation (20./):

(B AB]=[1 a“]

dx a, a
[ . 12]x+[(1)lu y=Cx=[1 0]x

0 0

] and [“(1)1] would be linearly independent if the only constants a and 8

1 an|_f|o

o]+ ]-[3]
where a = 8= 0. This is clearly nor the case, because a =1 and B = —1/a,, satisfies this equation. Therefore the
two columns of {B AB] are linearly dependent, the rank of [B AB]=1#2=n, and this plant is therefore

uncontrollable.
Similarly, from Equation (20.2),

By Definition 3.11, the two columns [(l)
for which

£)-14.
CA a4, 4ap

For this matrix, the only a and B for which a[l 0]+ B[a,, a),]=[0 0] are a=8=0, because a,,#0.

Therefore the rank of [é; is n =2 and this plant is observable.

20.3 TIME-DOMAIN DESIGN OF FEEDBACK SYSTEMS (STATE FEEDBACK)

Design of many feedback control systems may be accomplished using time-domain representations
and the concepts of controllability and observability discussed above. As noted in earlier chapters,
particularly Chapter 14, Root-Locus Design, linear control system design is often performed by
manipulating the locations of the poles of the closed-loop transfer function (the roots of the characteris-
tic equation), using appropriate compensators in the feedforward or feedback path to meet performance
specifications. This approach is satisfactory in many circumstances, but it has certain limitations that
can be overcome using a different design philosophy, called state feedback design, that permits arbitrary
pole placement, thereby providing substantially more flexibility in design.

The basic idea underlying state feedback control system design is as follows for single-input
continuous plants dx/dt = Ax + Bu. The procedure is the same for discrete-time systems.

With reference to Fig. 2-1, we seck a state feedback control:

=-~Gx+r (20.3)
where G is a 1 X n feedback matrix of constant gains (to be designed) and r is the reference input.
Combining these equations, the closed-loop system is given by

dx
—;—=(A—BG)x+Br (20.4)
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If the plant is controllable, the matrix G exists that can yield any (arbitrary) set of desired roots for
the characteristic equation of this closed-loop system, represented by A — 4 + BG|= 0, where the A
solutions of this determinant equation are the roots. This is the basic result.

EXAMPLE 20.2. A block diagram of the state feedback system given by Equations (20.3) and (20.4) is shown in
Fig. 20-1.

Plant

T

Constant Gain
Feedback Matrix

FZT
it |

Fig. 20-1

To implement a state feedback design, the entire state vector x must somehow be made available,
either as x exactly, or as an adequate approximation, denoted %. If the output is y = x, as in Fig. 20-1,
there obviously 1s no problem. But, if all states are not available as outputs, which is more common,
then observability of the plant model differential and output equations (¢x/dt = Ax + Bu and y = CXx)
is required to obtain the needed state estimate or observer . The equations for a typical state observer
system are given by

a

dx

E=(A—-LC))’K+Ly+Bu (20.5)
where A, B, and C are matrices of the plant and output measurement systems and L is an observer
design matrix to be determined in a particular problem.

EXAMPLE 20.3. A detailed block diagram of the state observer system given by Equation (20.5) is shown in Fig.
20-2, along with the plant and measurement system block diagram (upper portion) for generating the needed input
signals for the observer system (lower portion).

Plant

Y

Observer

EXAMPLE 20.4. Under suitable conditions, which include controllability and observability of the plant to be
controlled, a separation principle applies and the state feedback portion (matrix G) and observer portion (matrix

L) of a state feedback control system (with y +# x) can be designed independently. A block diagram of the
combined systems is shown in Fig. 20-3.
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Fig. 20-3

We have omitted many details in this introductory material, and state feedback control systems are
often more complex than described above.

204 CONTROL SYSTEMS WITH RANDOM INPUTS

System stimuli often include random or otherwise “unknown” components. This means that input
functions may sometimes be more appropriately described probabilistically than deterministically. Such
excitations are called random processes. System disturbances n (Definition 2.21), illustrated in several
previous chapters, are sometimes represented by random process models in modern control theory and
practice.

A random process can be viewed as a function of two variables, ¢ and 7, where ¢ represents time
and 75 a random event. The value of 7 is determined by chance.

EXAMPLE 20.5. A particular random process is denoted by x(z, ). The random event 7 is the result of tossing
an unbiased coin; heads or tails appears with equal probability. We define

a unit step function if 1 = heads
a unit ramp function if % = tails

x(im) =

Thus x(r,7m) consists of two simple functions but is a random process because chance dictates which function
occurs.

In practice, random processes consist of an infinity of possible time functions, called realizations,
and we usually cannot describe them as explicitly as the one in Example 20.5. Instead, they must be
described, in a statistical sense, by averages over all possible functions of time. The performance criteria
discussed previously have all been related to specific inputs (e.g., K, is defined for a unit step input, M,
and ¢py for sine waves). But satisfaction of performance specifications defined for one input signal
does not necessarily guarantee satisfaction for others. Therefore, for a random input, we cannot design
for a particular signal, such as step function, but must design for the statistical average of random input
signals.

EXAMPLE 20.6. The unit feedback system in Fig. 20-4 is excited by a random process input # having an infinity
of possibilities. We want to determine compensation so that the error e is not excessive. There are an infinity of
possibilities for r and, therefore, for e. Hence we cannot ask that each possible error satisfy given performance
criteria but only that average errors be small. For instance, we might ask that G, be chosen from the set of all
causal systems such that, as time goes to infinity, the statistical average of e(t) does not exceed some constant, or
is minimized.




484 ADVANCED TOPICS IN CONTROL SYSTEMS ANALYSIS AND DESIGN [CHAP. 20

The study of random processes in control systems, often called stochastic control theory, is an
advanced level subject in applied mathematics.

20.5 OPTIMAL CONTROL SYSTEMS

The design problems discussed in earlier chapters are, in an elementary sense, optimal control
problems. The classical measures of system performance such as steady state error, gain margin, and
phase margin are essentially criteria of optimality, and control system compensators are designed to
meet these requirements. In more general optimal control problems, the system measure of perfor-
mance, or performance index, is not fixed beforechand. Instead, compensation is chosen so that the
performance index is maximized or minimized. The value of the performance index is unknown until
the completion of the optimization process.

In many problems, the performance index is a measure or function of the error e(¢) between the
actual and ideal responses. It is formulated in terms of the design parameters chosen, to optimize the
performance index, subject to existing physical constraints.

EXAMPLE 20.7. For the system illustrated in Fig. 20-5 we want to find a K > 0 such that the integral of the
square of the error e is minimized when the input is a unit step function. Since e = e(¢) is not constant, but a
function of time, we can formulate this problem as follows: Choose K 2 0 such that f°e?(¢) d¢ is minimized, where

s+2

K
e(t)——‘.?‘l[ Y +K]=V IR 1e"sin(\/K711+tan"’\/K71)
51+ 2s -

Fig. 20-5

The solution may be obtained for K> 1 using conventional minimization techniques of integral calculus, as
follows:

j:oez(l)dt= _/(‘)m[e_'sin(\/K—lt+tan"\/K—1)]ldt

K-1

Integration yields

j(’)wez(r)dt=(i)(f;_n)[_l_cos(2y/K~1l+2tan’ly/K7 —tanl(\/Kl))]x

K-1 VK .
LS cos(2tan"'YK -1 — tan"}( VK - 1))
“ax-n|'" K
But
cos(2tan 'VK—1 —tan }(-VK-1)) = ~cos3YK—1 =3cosyK— 1 —dcos’YK— 1
3K-4
KK
Therefore
o K 3K-4 K (K-1)(K+4) K+4
f eX(1) di = +— = S =
0 4K-1) K 4(K-1) K 4K

CHAP. 20] ADVANCED TOPICS IN CONTROL SYSTEMS ANALYSIS AND DESIGN 485

The first derivative of [Fe’(z) dt with respect to K is given by
d (K+4 1
ﬁ( _41?) Tk

Apparently, [Fe?(1) dt decreases monotonically as K increases. Therefore the optimal value of K is K = oo, which
is of course unrealizable. For this value of K,

I N L S AT
1) dt= =—

Jm [0 arm tim | ) =g

Note also that the natural frequency w, of the optimal system is w, = VK = oo and the damping ratio { = 1/w, =0,

making it marginally stable. Therefore only a suboptimal (less than optimal) system can be practically realized and

its design depends on the specific application.

Typical optimal control problems, however, are much more complex than this simple example and
they require more sophisticated mathematical techniques for their solution. We do little more here than
mention their existence.

20.6 ADAPTIVE CONTROL SYSTEMS

In some control systems, certain parameters are either not constant, or they vary in an unknown
manner. In Chapter 9 we illustrated one way of minimizing the effects of such contingencies by
designing for minimum sensitivity. If, however, parameter variations are large or very rapid, it may be
desirable to design for the capability of continuously measuring them and changing the compensation
so that system performance criteria are always satisfied. This is called adaprive control design.

EXAMPLE 20.8. Figure 20-6 depicts an example block diagram of an adaptive control system. The parameters A
and B of the plant are known to vary with time. The block labeled “Identification and Parameter Adjustment”
continuously measures the input «(z) and output ¢(¢) of the plant to identify (quantify) the parameters 4 and B.
In this manner, a and b of the lead compensator are modified by the output of this element to satisfy system
specifications. The design of the Identification and Parameter Adjustment block is the major problem of adaptive
control, another subject requiring advanced knowledge of applied mathematics.

Compensation

Fig. 20-6
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Appendix A

3 Some Laplace Transform Pairs Useful

for Control Systems Analysis

F(s) f(n >0
1 8(1) unit impulse
e I 8(t~T) delayed impulse
1 at
— e
s+a
! ! Leru 1,2,3
—a " “ =123,...
(s+a)" (n—1)! ¢ "
1 1
—_— at _ L, Mb
(s+a)(s+b) b—a(e e

§

(s+a)(s+b)

(ae—m _ be—h/)

a-»b

s+
(s+a)(s+b)

1
El(zx —a)e ' — (zy — b)eib’]

1

(s+a)(s+b)(s+¢)

e ur e bt e ¢

(b-a)(c—a)  (c—b)(a-b) ' (a-c)(b-0)

s+2z

(s+a)(s+b)(s+c)

(z;—a)e ™ (z;—b)e ™ (z;—c)e

(b-a)c—a)  (c=b)a=b)  (a-o)b-0)

_ sin wt
57+ W@’
K
_ cos wt
s2+ ol
s+ 2z it wt o
- 3 sin(w? + ¢) ¢=tan (w/z))
s+ w W

ssin¢ + wcos ¢

T sin(wt + ¢)
1 1
e — —e “sinwt
2 2
(s+a) +w w

4R64
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F(s)

f >0

B
52

1

+ 28w,s + W}

1 : 2
— et sinay,r wy=wyl-¢
Wy

sta

(s+a) +o

e “' cos wt

s+ 2z

(s+a) +u

(z,-a)’ + o

wz

e “sin(wr+¢)  ¢=tan '( e )
o —a

— 1() unit step
5
1
—e 1(t-T) delayed step
s
1
~1-e ™ (- 1t—T) rectangular pulse
5
1 1 —at
s(s+a) a( e
1

s(s+a)(s+b)

1 be ¢ ge
~1- +
ab b—a b-a,

s+2

s(s+a)(s+b)

ab b-—a b-a

1( b(zl—a)e"”Jra(hlfb)e h’)
7 -

1 1 .
VI BT — (1 — coswt
s(s?+a?) w‘( @)
s+2z Z; zf"er2 1
—_ — — Y —— cos(wt+¢) ¢=tan  (w/z))
s(s*+w?) w w
1 1
1 — = e 8 sin(wyt + ¢)
—_— W, @y
.r(s'+2§w,,s+w,‘,) —_—
w=w)yl - e=cos ¢
# — (1 —e % ~ate” )
s(s+a)” a?
s+2z 1 -
—_— —lz—ze " +a(a—z)e ')
s(s+a) a
1 )
— t unit ramp
o
1 1 ,
2 ) l_ + o
s?(s+a) az(a <
1 tn-l
— n=1,23,. =1
" (n—1)!
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- Some z-Transform Pairs Useful

for Control Systems Analysis

F(z) k th term of time sequence f(k), k=0,1,2,...
2t 1at k, O elsewhere
(Kronecker delta sequence)
z
. o akT
Te ul'z
_ kTe‘-ukT
(z=e Ty
Tl “"z(z+e “7
( . ) (KT )2e~ T
(z—¢ “T)
2" (k+l)(k+2)--~(k+n71)AA
(z-A)" (n—1)!
(A is any complex number)
- : N 1 (unit step sequence)
Tz
—_— kT (unit ramp sequence)
(z-1)
Tz(z+1
(v‘) (kT)l
(z-1)
z" (k+1)(k+2)---(k+n-1)
(z-1)" (n-1)!
zsinwT .
—_— sinwkT
z-—2zcoswT +1
z(z - coswT)
cos wkT

22— 2zcoswT +1

ze “TsinwT

-ul

- 24T

2 =2ze “TcoswT+e

e *TsinwkT

al

2(z-e “"coswT)

22 —2z¢ “TcoswT +e 247

e “*T cos wkT

1 0for k=0
(z-a)(z-b) a_b(a"“—b"") for k>0
_—5_— k _ pk
G-a)z-0) @ T

z2(1-a) .
(z-D(z-a) e

4R8R

11.
12.

13.
14.
15.

16.
17.

18.
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Appendix C

SAMPLE Screens From
The Companion Interactive Outline

As described on the back cover, this book has a companion Interactive Schaum’s Outline using
Mathcad® which is designed to help you learn the subject matter more quickly and effectively. The
Interactive Outline uses the LIVE-MATH environment of Mathcad technical calculation software to give you
on-screen access to approximately 100 representative solved problems from this book, along with summaries
of key theoretical points and electronic cross-referencing and hyperlinking. The following pages reproduce a
representative sample of screens from the Interactive Outline and will help you understand the powerful
capabilities of this electronic learning tool. Compare these screens with the associated solved problems from
this book (the corresponding page numbers are listed at the start of each problem) to see how one

complements the other.

In the Interactive Schaum's Outline, you'll find all related text, diagrams, and equations for a particular
solved problem together on your computer screen. As you can see on the following pages, all the math
appears in familiar notation, including units. The format differences you may notice between the printed
Schaum’s Outline and the Interactive Outline are designed to encourage your interaction with the material or

show you alternate ways to solve challenging problems.

As you view the following pages, keep in mind that every number, formula, and graph shown is
completely interactive when viewed on the computer screen. You can change the starting parameters of a
problem and watch as new output graphs are calculated before your eyes; you can change any equation and
immediately see the effect of the numerical calculations on the solution. Every equation, graph, and number
you see is available for experimentation. Each adapted solved problem becomes a worksheet you can modify
to solve dozens of related problems. The companion Interactive Outline thus will help you to learn and retain
the material taught in this book more effectively and can also serve as a working problem-solving tool.

The Mathcad icon shown on the right is printed throughout this Schaum’s Outline, indicating % 4

which problems are included in the Interactive Qutline. Mathcad

For more information about system requirements and the availability of titles in Schaum's Interactive

Outline Series, please see the back cover.

Mathcad is a registered trademark of MathSoft, Inc.
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I “I III I_ The roots of the equation are

Stability of Discrete-Time Systems

(Schaum's Feedback and Control Systems, 2nd ed., Solved Problem 5.22, pp. 124 - 125) 0.043 + 0.641i
z -0.043 - 0.641i
T1-0.957 + 1.227i
Statement Is the system with the following characteristic equation stable? 1-0.957 - 1.227i
2243270241020 In order to graph these solutions, index them with a range variable:
i =0.length(Z) - 1
System In this problem, a numerical root-finding method is used which is justified
Parameters in detail in Appendix D. For now, you may want to just follow along, and Since this is a discrete-time system, the stability requirement is that
concentrate on the stability question. Create a vector of the polynomial the roots lie inside the unit circle. This will be graphed parametrically
coefficients, up to the n - 1 power in the equation, starting with the using sines and cosines, so define the range for 6.
zeroth-order term.
0 -0,0.1'n..2:n
1.0 1.0 . . .
The z-plane diagram for this system is
z
coeff o
. ; 22 3
L2 .
Coefficient of the nth power term: A =1 x
ah
Solution Find the number of coefficients in the vector, and create a subdiagonal 0
matrix of ones. X
X

n =0.. length(coeff) - 2 Cn+l . =1
000 ) 0 3
1 00 This is the subdiagonal matrix. For more X roots

C= 01 0 information on the range variables and matrix — Real axis

| functions used here, see A Mathcad Tutorial.
1!

(=]
o

Because not all the roots are inside the unit circle, the system is unstable.
You should take time to carefully examine the numerical root-finding
technique shown here; it will be used throughout this Electronic Book.

Solve for the eigenvalues of the matrix constructed from C and the
coefficient vector. These are the roots of the equation.

Z -eigenvals (augment(C,- ﬂ)) Also, try changing the numbers in the vector of coefficients, coeff. See

what sorts of discrete-time systems are stable. Can you find one? Can
you find one that's marginally stable? What happens when you change the
coefficient of the nth term, A?
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Lag Compensator
(Schaum's Feedback and Control Systems, 2nd ed., Solved Problems 6.13 and 6.16,

pp- 138 and 139)

Statement

System
Parameters

Solution

(@

(a) Derive the transfer function of the R-C network implementation of the lag
compensator shown in the figure below. (b) Derive the transfer function of two
simple lag networks connected in cascade.

+ I + Q:=ohm

Yo .
R. uF=10 "-farad

In order to graph the results, we use the following specific circuit element
values, which are defined globally with the graphs below.

R | =200:Q R, =50'Q C =25yF
Kirchhoff's voltage law and constitutive relationships (Ohm's law) for the loop

yield the equation

t
i-R +—1—- idt+ iR »=v .
1 2=V
Clo

assuming zero initial conditions. Taking the Laplace transform of these two
equations results in the equation

Ry+Ry+ »—l—)-l(s)=V i(s)
Cs

Notice that this is the same expression which would have resulted if we
used the expression 1/(C+8) for the impedance of the capacitor in

Kirchhoff's voltage law. Since the transfer function is the ratio of the output
to the input, find P pog(8) = Vo(s)V|(s):

1
V =Ry+ —)I(s)
[§) ( 2 C-s>
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This gives
1
Ry +—
2
Pragt - b
R 1 +R 27

1
a=— b= 1

(Ry+Ry)C R,-C
where -a is the pole of the system. To graph the frequency response, define

a suitable range for o.

o 1.7 5 rd g rad

sec sec sec

By changing the values of circuit elements below, examine their effect on the
characteristics of the frequency response curves shown in the figures.

R | =200 R 5:50-Q C=25-F

Magnitude Phase

| 77 N s R

‘ ' P
[PLal @) o5 E(P_L:f} o))

l“4

| 10 100 100C l'l(i'l 1 10 100 1001%10

(0] (0]

Notice that these graphs are in semilog scale. We can see that this is a lag
compensator from the graph of the phase: the response lags the input for all
frequencies. It is possible to examine the simple lag network by setting Rg
equal to zero.
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(b) Suppose we examine the situation in which two simple lag
networks are connected in cascade.

R, Ry
- T T

Using a voltage divider and the Laplace transform expression for the

+

impedances,
1 1 ]!
v l +
1 1
R 2#‘
Cys Cys
\"4 2=
1 1 !
R 1 + +
‘L 2'& l'S
simplifies to
Vi(RpCops+1)
v 2=

2
SR "CRyCo+ (RC +RyCyt R Ch)s+l

Using a second voltage divider, we obtain

1

C2'S- V2

1 -(RZ-C2-5+I)
C2'S

Va

Vo=

R2+

which, after expansion, becomes

Vi
V0=

2

1 - 0 |__., = -
\ I
" Y I
[P -w)| 0.5 ‘ug(l-)-('} ) ~1001— '
. deg I
0 . - d
100(
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The expression for V results in the transfer function

P(s) = - ! ——

2 N g
s"R |'C "R 5:Cy (RI-C1+R2~C2+R]'C2>~5+1

Experiment with the two capacitor values to see their effect on the lag
compensator output.

C | =25pF C 5= 20-uF

Magnitude Phase

T

110t 1 10 100 lD(]I'Il]‘s

Compare the single-stage and two-stage simple lag compensators:

Psingle(s) ;_(liwliés : 1)

P ) = !
double(s) ~ 2 — —
SSRCpRyCot (R)Cp+RyCh iR Co)ss

The second-order pole on the two-stage compensator greatly increases the
amount of lag achieved in phase. Think about how you would use this
information to best implement a compensator. Is the two-stage system
stable? What would you do if you wished to add lag to a circuit operating at

higher frequencies (notice that the response is almost zero at 1000
rad/sec)?
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Frequency vs. Time-Domain Specifications
(Schaum's Feedback and Control Systems, 2nd ed., Example Problems 10.2 and 10.3,

pp- 233 - 235)

Statement Using the second order system shown first in Chapter 3, compare the
frequency and time-domain specifications and plots.

System rad

o, =100"— =0.2 dB =1

Parameters n sec ¢
(These parameters are defined globally next to the graphs at the end of the
problem, so you may experiment with them and watch the change in the
graphs simultaneously.)

Solution Beginning with the frequency-domain, examine the resonant peak, the cutoff

frequency, and the bandwidth. The equation for the magnitude of the impulse
response of the canonical second-order system is

2
@q
Y(s) -—mM8M8Mm™m————

2 2
s+20w s+,

The magnitude of the response, in dB, is

MAG(®) =20-og(|Y(j -w)|)

To find the peak value, take the derivative, as was done in Chapter 10.
d . ) ®n
D(w) =S |Y(j o) Guess: o =iff [¢|>5 —.0
do 2

Find the frequency at which the derivative is zero.

o, = [root(D(w), w)| 0, =95915-24
P P sec

Check: D(m )=s.93zs-10”‘S *sec

p

This is very close to zero, so op is a good approximation of the resonant
frequency.
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The magnitude of the resonance peak is given by

Mp::|Y(j -(op)l M, =2.552

The magnitude of the peak could be used to calculate the bandwidth, but
since this is a lowpass system, it's probably best to base the bandwidth
calculation on the value of the transfer function at dc.

In this case,
ly(o-’i")’ =1 or, in decibels, MAG(OE’) =0-dB
sec sec
ez "
®, = oot |Y(j -w)| - /e © =150.958°

c «/; e
Check: MAG((o C) =-3.01

which corresponds, as we expect, to a 3 decibel drop. The bandwidth is equal
to the cutoff frequency, in this case, since the first cutoff frequency is zero.

The time-domain output of the system is

-Gw
. W e
0q =0 Al-§ envelope(t) o
©4
04
y(t) := 1 - envelope(t)-sin| @ jt+ atan| ——
Loy,

In the time-domain, examine the overshoot and the dominant time constant.
The dominant time constant is given by inspection of the solution, from which
you can see that the transient response is the decaying exponential. The
time constant is the multiplier in this exponential, described as the function
envelope(t) above.

T =0.05°sec
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The overshoot, as defined in Chapter 10, is the maximum difference between
the transient and steady state solutions for a unit step input. We can find this
value using derivatives and the root function, as above:

D(l)‘=:—Y(t) Guess: t -
t

Find the time at which the derivative is zero.

IOS :TOOI(D(I).[) los =0.032-sec
The value at this point is
value ‘= y(t OS) value =1.527

The steady-state value is approximately the value after 5 time constants:
F =y(5-1) F =0.995

So the overshoot is
overshoot = F - value

Now plot both the time and the frequency response, and display the various
specifications on the graphs with markers.

Create a time scale: t . =0-sec,.1'1..4-1

To evenly space points on a logarithmic scale, use the following definitions to
create the frequency range.

number of points: N =100 i =0.N-1
. ) 0l-0, 1
step size: r:=log —
20 N

range variable: o 20, 10"
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10
P/
MAG ;) o 1+ RIS
_ @B ||
A 13.dB
Change -1
these: 1 10 100 1000
rad K
® ,=100—
sec
=2

1+ envelope(t) - A. -------------------------- valugy
= —

¥

fope(1) 1 1=~ i

Experiment with the values of the natural frequency and the damping ratio
defined next to the graphs. As always, the accuracy of the answers you get
will depend somewhat on the guess value you choose for the root-finding
routines. An effort has been made to build a guess which works for most
values, but be careful to check that answers make physical sense. You may
need to adjust the guess in some extreme cases.

What happens to the various specifications as the damping ratio changes?
What about the natural frequency? What does this tell you in terms of
system design?
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Nyquist Analysis of Time-Delayed Systems
(Schaum's Feedback and Control Systems, 2nd ed., Supplementary Problem 11.80, p. 296)

Statement Plot the Nyquist diagram for the following for time delayed GH(s) shown below
efs
System GH(s) - —
Parameters s(s+ 1)
Solution Parametrize the path in the s-plane in four pieces:
Number of points per segment: n =500 m =0..n
Small deviation around pole: p =2

Radius of semicircle in the s-plane: R =100

Draw a semicircle around the pole on the jw-axis.

J .(n.m n}
- n 2
S, ~Pe

Draw a line on the jw-axis from small radius p to large radius R.

"(R-p)
n

[ |
T L

Draw a semicircle of radius R.

. -im =N
) '<—-—+;)
s zRe ‘"

2n4+m

Draw a line on the jw-axis from large radius R to small radius p.

s E
Inym J n

_ ..R,w;g}

Close the path and index it: S, =S, k:=0.4-n
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Here is the Nyquist diagram for this system. Each part of the path above is
mapped with a different line type (solid, dashed, etc.).

Imaginary GH(s) T

-2 1 4

Real GH(s)

Here's an expanded view of the central structure:

&

Im(GH(5)) é

Rc(GH(sk))

The time delay introduces a diminishing spiral to the Nyquist plot of the
open-loop transfer function, which spirals in with increasing frequency along
the Nyquist path, and back out as the Nyquist path frequency returns to
zero. This spiral is superimposed upon the familiar structure you've seen
before for a type 1 system in Chapter 11.
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Gain Factor Compensation Using the Root Locus Method
(Schaum's Feedback and Control Systems, 2nd ed., Solved Problem 14.1, p. 354)

Statement

System
Parameters

Solution

Determine the value of the gain factor K for which the system with the
open-loop transfer function GH(s) below has closed loop poles with a
damping ratio of {.

K

GH(s,K) =——
s (s+4)(s+2)

{req =05

The closed loop poles will have a damping ratio of { when they make an angle
of @ degrees with the negative real axis, where 6 is defined below.

0 L= acos(C req)
0 (= 60°deg

We need the value of K at which the root-locus crosses the C line in the
s-plane. Do this graphically and analytically in order to verify the answer.
Refer to Chapter 13 to review how to plot root-loci in Mathcad.

K
E= GH(s) C_ s(s+4)(s+2)
R 1+ GH(s) R 14 K
s(s+4)(s+2)

Load the Symbolic Processor from the Symbolic menu. Then, select the
expanded equation for C/R above, and choose Simplify from the Symbolic
menu. This produces the expression for the system characteristic equation

(Chapter 6) in the denominator:

C K

R (53 + 657+ 85+ K)

3 2 - -
s+ 68 + 8-s+Ki-O num oo =3
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Solving for the roots of this equation, as shown in Appendix D,

j:=0..num
coeff(K) =
i'=0..500

r()ots‘2 CH—l,j::
-K
-8 k :0..nummots#1
-6
K. :..1—
P10

RS> = eigenvals(augmenl(C . coeff(!(l)»

The graph of the { line is simply a graph of a line with a slope of 6 degrees,
where the angle was found above. Plot that line by defining x and y(x) and

including them on the root-locus plot.
X =-2.5,-24.0 ¥(x) .=tan<»6c)-x
p = 75 Kp =75

Change p to see the direction in which the root locus moves with change in
gain. This moves the boxes on the trace.

‘l':"(Rk,i) 2

':(Rkvp)

yo o

-8 —6 -4 -2 0 2
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If you change the value of p so that one of the boxes moves onto the
intersection point of the loci and the damping line, you'll find an approximate
value for the desired gain factor, K- You can graphically read the value of s
at which the intersection occurs. Use these values as starting guesses for

a Solve Block:

s =054+ 0.8j

K:=75

Use the three constraints on the values of 8 and K:

Given

arg(s)=n - OQ

arg(GH(s,K))=-1-n

|GH(s,K)|=1

(S ) = Find(s, K)
K

Check the solution:

arg(s) =120+deg

arg(GH(s,K)) =-1-n

|GH(s,K)| =1

damping ratio constraint
angle constraint (Chapter 13)
magnitude constraint (Chapter 13)

s) ~0.667 + 1.155i )
K 8.296

n-0 ¢= 120°deg

You should try changing the required vaiue of the damping ratio to see
the way the required gain compensation changes. If you do this,
remember that you may have to change the guess values for s and K to
get a correct answer from the Solve Block above. See A Mathcad
Tutorial for more information on Solve Blocks.

Index

acceleration error constant, 217
accelerometer, 144
accuracy, 4
actuating signal, 18, 156
A/D converter. 19, 38
adaptive control systems, 485
addition rule, 180
airplane control, 3
algebraic design (synthesis) of digital systems, 238
analog

computer, 204

control system. 5
analog signal, 4
analog-to-digital (A /D) converter. 19
analysis methods

Bode, 364

Nichols, 411

Nyquist, 246

root-locus, 319

time-domain, 39-73, 453-466
angle criterion, 320, 330
arrival angles, 324, 335
asymptotes (root-locus), 322, 332
asymptotic

approximations, 368, 380

errors, 369
asymptotically stable, 464
autopilot, 3, 28
auxiliary equation, 116
automobile driving control system, 3, 27
automobile power steering apparatus, 22

backlash, 467
bandwidth, 4. 232, 241, 302, 305, 306, 314, 317, 376, 439
baroreceptors, 146
bilinear
equation, 41
transformation, 119, 236, 377, 395
binary signal, §

biological control systems, 2, 3, 7, 10, 13, 27, 28, 32, 33, 35,

37,59, 146, 176
block, 15
block diagram, 15, 23, 154
reduction, 160, 164, 170, 187, 199
transformations, 156, 166
blood pressure control system, 32
Bode
analysis, 364
analysis and design of discrete-time systems, 377, 395
design, 387
form, 365, 379
gain, 365, 379, 387
magnitude plot, 364
phase angle plot, 364
plots, 364, 379, 387
sensitivity, 209
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branch, 179
breakaway points, 322, 334

calibrate. 3
cancellation compensation, 344
canonical (form) feedback system, 156, 164
cascade compensation, 235
Cauchy’s integral law, 134
causal system, 45, 57, 73, 148
causality, 57, 73
cause-and-effect, 4
center of asymptotes, 322
characteristic equation, 42, 52, 62, 156, 184, 319
distinet roots, 43
repeated roots, 43
characteristic polynomial, 42, 62, 80, 81, 128, 132
classification of control systems, 214, 224
closed contour, 248
closed-loop, 3, 9
frequency response, 376, 384, 419, 429
poles, 327, 329
transfer function, 155, 156, 326, 339
cofactor, 53
coffeemaker control system, 12
command, 1, 21
compensation
active, 236
cancellation, 344, 355
cascade, 235
feedback. 235, 353. 360. 408
gain factor, 299, 301, 310, 343, 354, 387, 399, 433, 434,
444
lag, 304, 345, 392, 402, 438
lag-lead, 306, 311, 393, 405, 440
lead, 302, 311. 345, 388, 399, 435
magnitude, 345, 357
passive, 236
phase, 344, 356, 447
tachometric, 312
compensators, analog and digital
derivative (D), 312
integral (7), 22
lag, 130, 133, 138, 139, 314, 392, 438
lag-lead, 130, 138, 393, 440
lead, 129, 132, 137, 210, 388, 435
PID, 22, 130, 308
proportional (P), 22
complex
convolution, 76. 102
form, 250
function, 246
plane, 95
translation, 76
component, 15
compound interest, 12, 39
computer-aided-design (CAD), 236
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computer controlled system, 20, 35
conditional stability, 301
conformal mapping, 249, 272
conjugate symmetry, 252
continued fraction stability criterion, 117, 123
continuous-time (-data)

control system, 5

signal, 4
contour integral, 75, 87
control, 1

action, 3, 9

algorithms (laws), 22, 469

ratio, 158

signal, 17

subsystem, 2

system, 1

system engineering problem, 6

system models, 6
controllability, 480

matrix, 480
controllable, 480
controlled

output, 17

system, 17

variable, 4
controllers, 22 (see also compensators, compensation)
convolution

integral, 45, 56, 72, 76

sum, 53, 70, 87
corner frequency, 369
cutoff

frequency, 232

rate, 233

D/A converter, 20, 38
damped natural frequency, 48, 98
damping

coefficient, 48

ratio, 48, 98, 264, 329, 341
data hold, 19
db magnitude, 364
db magnitude-phase angle plots, 411, 421
de.

gain, 130, 132

input, 130

motor, 143
deadbeat

response, 239, 355, 362

system, 239, 362
dead zone, 467
decibel, 233
degree of a polynomial, 267
delay time, 232, 234
departure angles, 323, 335
derivative controller, 22
Descartes’ rule of signs, 93, 107
describing functions, 466, 476
design

by analysis, 6, 236

Bode, 387, 395

methods, 236

Nichols, 433, 443

Nyquist, 299

objectives, 231

point, 352, 359
root-locus, 343
by synthesis, 6, 236
determinant, 53
difference equations, 39, 51, 54, 69
differential equations, 39
linear, 41, 57, 62
nonlinear, 41, 62, 457
ordinary, 40
solutions, 44, 51, 65, 91, 104
time-invariant, 40, 61, 458
time-variable (time-varying), 40, 61
differential operator, 42
diffusion equation, 39
digital
data, 4
filter, 20
lag compensator, 133, 314, 347
lead compensator, 132, 315, 316
signal (data), 4, 18
digital control system, 5
digital-to-analog converter, 20, 38
dipole, 345
discrete-time (digital) data
signal, 4
control system, 5
discrete-time (digital) system “integrators,” 254
discretization of differential equations, 55
disturbance, 21, 483
dominant pole-zero approximations, 348, 354, 358
dominant time constant, 234, 305, 306, 439

economic control systems, 10, 12, 13, 175
element, 15
emitter follower, 35
enclosed, 248, 274
entire functions, 266
equalizers, 235
error
detector, 21
ratio, 158
signal, 18, 484
error constants, 218, 225
acceleration, 217, 227
parabolic, 219, 227
position, 216, 227
ramp, 216, 218, 227
step, 218, 227
velocity, 216, 227
Euler form, 250
experimental frequency response data, 246, 251, 277
exponential order, 86
external disturbances, 2, 4

Faraday's law, 57

feedback, 3, 4, 9, 481
characteristics, 4
compensation, 235, 353, 481
loop, 182
path, 17, 182
potentiometer, 29
transfer function, 156

feedforward, 17

fictitious sampler, 134, 244

Final Value Theorem, 76, 88, 132
first-order hold, 152
forced response, 45, 66, 70, 80, 81, 91
forward

path, 17, 182

transfer function, 156
free response, 44, 66, 70, 80, 81, 91
frequency

corner, 369

cutoff, 232

damped natural, 48, 98

gain crossover, 231, 263, 416

phase crossover, 231, 262, 416

scaling, 76, 77

undamped natural, 48, 98
frequency-domain specifications, 231

methods for nonlinear systems, 466, 476
frequency response, 130, 133

continuous time, 130, 141

discrete-time, 133, 142

methods for nonlinear systems, 466, 476
fundamental set, 43, 52, 63, 73
fundamental theorem of algebra, 42, 83
furnace, 2

gain, 131, 133, 182
crossover frequency, 231, 263, 416
margin, 231, 241, 262, 328, 340, 375, 384, 386, 416, 425
gain factor, 129
compensation, 299, 310, 343, 387, 399, 433, 434, 444
general input-output gain formula, 184, 194
generalized Nyquist paths, 254
generator (electrical), 7
generic transfer function, 251
graphical evaluation of residues, 96
gyroscope, 145

heading, 3

heater control, 2, 5

hold, 19, 60, 134

homogeneous differential equation, 42, 43, 44
hormone control systems, 33, 35

Horner’s method, 93, 107

Hurwitz stability criterion, 116, 122

hybrid control systems, 5

hysteresis, 34, 467, 478

I-controller, 22
impulse train, 60
independent variable, 4
initial
conditions, 44
value problem, 44, 51
initial value theorem, 76, 88
input, 2
node, 181
input-output gain formula, 184
insensitive, 209
instability, 4
integral controller, 22
intersample ripple, 240
inverse
Laplace transform, 75, 100, 107
z-transform, 87

INDEX

Jury
array, 118, 125
test, 118, 125

Kepler's Laws, 58
Kirchhoff’s Laws, 58, 111, 183
Kronecker delta
response, 53, 91, 132, 142
sequence, 53, 89

lag
compensation, 304, 345
compensator, 130, 133, 392, 438
continuous, 130
digital, 133, 314
lag-lead compensator, 130, 306, 393, 440
Laplace transform, 74, 99, 486
properties, 75, 100
tables, 78, 486
lateral inhibition, 59
law of supply and demand, 10, 175
lead compensation, 302, 345
lead compensator, 129, 132, 345, 388, 435
continuous, 129
digital, 132, 315
left-half-plane, 96
liftbridge control system, 13
lighting control system, 11, 31
Lin-Bairstow method, 94, 108
linear
differential equations, 41, 57, 62
equation, 41
systern, 56
system solutions, 65, 79
term, 41
transformation, 56, 75, 87
linearity, 56, 71
linearization
of nonlinear digital systems, 458
of nonlinear equations, 457, 469
linearly dependent, 42, 481
linearly independent, 42, 63, 481
loading effects, 29, 155, 164, 187, 198
logarithmic scales, 364
loop gain, 182
Lyapunov function, 464
Lyapunov's stability criterion, 463, 474, 479

magnitude, 250

compensation, 345

criterion, 321
manipulated variable, 17
mapping, 247, 249, 266
marginally stable, 114
matrix exponential function, 51, 69
M-circles, 263, 290, 301
microprocessor, 18
MIMO, 21

system, S0, 55, 167
minimum phase, 129
mirror, 1
mixed continuous/discrete systems, 134, 155
modulated signal, 60
multiinput-multioutput, 21, 50, 55, 171
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multiple inputs, 159, 167
multiple-valued function, 271
multiplication rule, 181
multivariable system, 21

N-circles, 263, 290
negative encirclement, 249
negative feedback, 18, 156
system, 156
Newton’s method, 94, 108
Newton’s second law, 39
Nichols chart, 417, 419, 426
design, 433
design of discrete-time systems, 443
plot, 419
node, 179
noise input, 2, 21
nominal transfer function, 208
nonlinear
control systems, 453
differential system (of equations), 457
equation, 41
output equations, 457
nth-order differential operator, 42
number of loci, 321

Nyquist
analysis, 246
design, 299

Path, 253, 279, 287, 297
Stability Criterion, 260, 286
Stability Plots for continuous systems, 256, 279

Stability Plots for discrete-time (digital) systems, 259

observability, 480
matrix, 480
observable, 480
observer design matrix, 482
Ohm’s law, 39
on-off controller, 22, 34, 460
open-loop, 3, 9
frequency response function, 231, 232, 251
transfer function, 156, 231
optimal control systems, 460, 484
order, 44
ordinary differential equation, 40
oscillation, 4
output, 2
node, 182
sensitivity, 213
oven temperature control, 12, 35
overshoot, 49, 69, 234

parabolic error constant, 219
partial
differential equation, 40
fraction expansion, 83, 85, 90, 105
path, 181
gain, 182
P-controller, 22
PD controller, 22
pendulum equations, 455
performance index, 484

performance specifications, 231, 484

frequency-domain, 231

steady state, 234

time-domain, 234

transient, 234, 484
perspiration control system, 2
perturbation equations, 457, 470
phase

angle, 250

compensation, 344

crossover frequency, 231, 262, 416

margin, 231, 241, 263, 328, 340, 375, 384, 386, 416, 425

plane, 458, 459, 572
photocell detector, 11
physically realizable, 57
PI controller, 22
PID controller, 22, 130, 308
piecewise-continuous, 19
piecewise-linearization, 454, 469
pilot, 3
plant, 17
point design, 352, 359
pointing (directional) control system, 2
polar form, 250
Polar Plot, 250, 276, 291

properties, 252, 276
poles, 95
pole-zero map. 95, 109
polynomial

factoring, 93, 330

functions, 93, 267, 330
Popov’s Stability Criterion, 468
position

error constant, 215, 227

servomechanism, 22, 29
positive

definite matrix, 465

direction, 248

encirclement, 248

feedback, 18, 156

feedback system, 156
power steering, 22
prediction, 73
primary

feedback ratio, 156

feedback signal, 18, 156
principle

of arguments, 249, 273

of superposition, 56, 72
process, 17
proportional controller, 22
P(s)-plane, 247
P(z)-plane, 247
pulse transfer function, 147

radar controlled systems, 13
radius of convergence, 86
ramp error constant, 218
random
event, 483
inputs, 483
processes, 483
rational (algebraic) functions, 81, 83, 89, 95, 96, 268

real
function, 246
variable, 246
realizations, 483
rectangular form, 251
reference input, 17
refrigeration control, 12
regulate, 1
regulating system, 23, 36
regulator, 23
relative stability, 114, 262, 289, 375, 384, 416
residues, 84
graphical evaluation of, 96, 109, 140
resonance peak, 233, 264
right-half-plane, 96
rise time, 234, 242
R-L-C networks, 36
robust, 213
robustness, 213
root-locus
analysis, 319
construction, 324
design, 343
roots, 42
distinct, 43
of polynomials, 93
repeated, 43
Routh Stability Criterion, 115, 121
Routh table, 121
rudder position control system, 13

sampled-data control systems, 5, 36
sampled-data signal, 4, 19, 149
samplers, 18, 60, 112, 147, 155, 173, 177
samplers in control systems, 112, 147, 155, 173, 177
sampling theorem, 233
satellite equations, 58, 454, 471
saturation function, 454
screening property, 47
second-order systems, 48, 68, 98, 110
self-loop, 182
sensitivity, 208

closed-loop, 211, 407

coefficient, 213

frequency response, 208, 221, 407

normalized, 209

open-loop, 211

output, 213

relative, 209

time-domain, 213, 223

transfer function, 208, 221
separation principle, 482
servoamplifier, 29
servomechanisms, 22, 29, 3§
servomotor, 29
setpoint, 2, 6, 23
settling time, 234
shift operator, 52
shift theorem, 88, 112
signal flow graphs, 179, 189
simple hold, 19
singular point, 248, 464
singularity, 248

INDEX

singularity functions, 47, 67
sink, 182

sinusoidal transfer function, 246, 251

SISO, 16

source, 181

speed control system, 30
s-plane, 247

spring-mass system equations, 454

stability, 114, 464
asymptotic, 464

continued fraction, 117, 123

criteria, 114, 463

Hurwitz, 116, 122

Jury test, 118, 125

Lyapunov, 463, 479

marginal, 114

Popov, 468

relative, 114

Routh, 115, 121, 126
state

estimator, 482

feedback control design, 481

observer, 482
space, 480
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variable representations (models), 50, 54, S5, 69, 457,

464, 480

vector, 50, 55

vector solutions, 51, 55
steady state

errors, 225, 229

response, 46, 54
step error constant, 218
stimulus, 21

stochastic control theory, 484
stock market investment control system, 12

suboptimal, 485
subsystem, 2

summing point, 15, 27
superposition, 56, 71, 159
switch (electric), 2, 26
switching curve, 461
Sylvester’s theorem, 465
system, 1

tachometer
feedback, 165
transfer function, 144
takeoff point, 16

Taylor series approximations, 455, 470
temperature control system, 5, 27, 34

term, 40
test input, 21
thermostat, 2, 5, 27, 34

thermostatically controlled system, §

time
constant, 48

delay, 73, 76, 126, 246, 284

response, 21, 130, 139
scaling, 76, 102

time domain
design, 481

response, 51, 55, 91, 104, 326, 339

specifications, 234
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time-invariant equations, 40, 458
time-variable (time-varying) equations, 40
toaster, 3, 35
toilet tank control system (WC), 11, 28
total response, 46, 54, 65, 67
traffic control system, 10, 31
trajectory, 459
transducers, 21, 35
transfer functions, 128
continuous-time, 128, 135, 136
derivative of, 247
discrete-time, 132
feedback, 156
forward, 156
loop, 156
open-loop, 156
transform
inverse Laplace, 75
inverse z-, 87
Laplace, 74
z-, 86
transformation, 247
transient response, 46, 54
transition
matrix, 51
property, 51
translation mapping, 266
transmission
function, 179
rule, 180
type / system, 215

undamped natural frequency, 48, 98
unified open-loop frequency response function, 231, 251
uniform sampling, 233
unit circle, 117, 255, 339
unit impulse
function, 47, 67
response, 48, 67, 85

INDEX

unit ramp
function, 47, 68
response, 48, 68
unit step
function, 47, 68
response, 48, 68
unity
feedback systems, 158, 167, 301, 434
operator, 52
unobservable, 480
unstable, 114

valve control system, 29, 36
variation of parameters method, 70
vector-matrix notation, 50, 69, 82
velocity
error constant, 216
servomechanism, 30
voltage divider, 9

-4
weighting
function, 45, 56, 57
sequence, 53, 57, 70
Wronskian, 63
w-transform, 119, 236, 243, 377, 443, 450
design. 236, 377, 443, 450

control sy s, 7.8

zero-order hold, 19, 60, 134, 147, 150, 151
zeros, 95
z-plane, 247
z-transform, 86
inverse, 87, 92
properties of, 87
tables, 89, 488




