
Linear Feedback Control
Analysis and Design with MATLAB

Linear Feedback Control
Analysis and Design with MATLAB

Dingyü Xue
Northeastern University
Shenyang, People’s Republic of China

YangQuan Chen
Utah State University
Logan, Utah, USA

Derek P. Atherton
University of Sussex
Brighton, United Kingdom

Contents

Preface xi

1 Introduction to Feedback Control 1
1.1 Introduction . 1
1.2 Historical Background . 3
1.3 Structure of the Book . 4
1.4 A Survival Guide to MATLAB . 6

1.4.1 A Brief Overview of MATLAB . 6
1.4.2 Standard MATLAB Statements and Functions 6
1.4.3 Graphics Facilities in MATLAB 7
1.4.4 On-Line Help Facilities in MATLAB 7
1.4.5 MATLAB Toolboxes . 8

Problems . 9

2 Mathematical Models of Feedback Control Systems 11
2.1 A Physical Modeling Example . 11
2.2 The Laplace Transformation . 12
2.3 Transfer Function Models . 14

2.3.1 Transfer Functions of Control Systems 14
2.3.2 MATLAB Representations of Transfer Functions 14
2.3.3 Transfer Function Matrices for Multivariable Systems 16
2.3.4 Transfer Functions of Discrete-Time Systems 16

2.4 Other Mathematical Model Representations 17
2.4.1 State Space Modeling . 17
2.4.2 Zero-Pole-Gain Description . 19

2.5 Modeling of Interconnected Block Diagrams 20
2.5.1 Series Connection . 20
2.5.2 Parallel Connection . 20
2.5.3 Feedback Connection . 21
2.5.4 More Complicated Connections . 22

2.6 Conversion Between Different Model Objects 24
2.6.1 Conversion to Transfer Functions 25
2.6.2 Conversion to Zero-Pole-Gain Models 26
2.6.3 State Space Realizations . 27

v

vi Contents

2.6.4 Conversion Between Continuous and Discrete-Time Models 34
2.7 An Introduction to System Identification 35

2.7.1 Identification of Discrete-Time Systems 35
2.7.2 Order Selection . 40
2.7.3 Generation of Identification Signals 41
2.7.4 Identification of Multivariable Systems 44

Problems . 45

3 Analysis of Linear Control Systems 51
3.1 Properties of Linear Control Systems . 52

3.1.1 Stability Analysis . 52
3.1.2 Controllability and Observability Analysis 55
3.1.3 Kalman Decomposition of Linear Systems 59
3.1.4 Time Moments and Markov Parameters 62
3.1.5 Norm Measures of Signals and Systems 64

3.2 Time Domain Analysis of Linear Systems 66
3.2.1 Analytical Solutions to Continuous Time Responses 66
3.2.2 Analytical Solutions to Discrete-Time Responses 69

3.3 Numerical Simulation of Linear Systems 70
3.3.1 Step Responses of Linear Systems 70
3.3.2 Impulse Responses of Linear Systems 75
3.3.3 Time Responses to Arbitrary Inputs 76

3.4 Root Locus of Linear Systems . 78
3.5 Frequency Domain Analysis of Linear Systems 84

3.5.1 Frequency Domain Graphs with MATLAB 84
3.5.2 Stability Analysis Using Frequency Domain Methods 87
3.5.3 Gain and Phase Margins of a System 88
3.5.4 Variations of Conventional Nyquist Plots 90

3.6 Introduction to Model Reduction Techniques 92
3.6.1 Padé Approximations and Routh Approximations 92
3.6.2 Padé Approximations to Delay Terms 96
3.6.3 Suboptimal Reduction Techniques for Systems with Delays 98
3.6.4 State Space Model Reduction . 101

Problems . 104

4 Simulation Analysis of Nonlinear Systems 111
4.1 An Introduction to Simulink . 111

4.1.1 Commonly Used Simulink Blocks 112
4.1.2 Simulink Modeling . 115
4.1.3 Simulation Algorithms and Control Parameters 116

4.2 Modeling of Nonlinear Systems by Examples 118
4.3 Nonlinear Elements Modeling . 126

4.3.1 Modeling of Piecewise Linear Nonlinearities 126
4.3.2 Limit Cycles of Nonlinear Systems 129

4.4 Linearization of Nonlinear Models . 131
Problems . 135

Contents vii

5 Model-Based Controller Design 139
5.1 Cascade Lead-Lag Compensator Design 140

5.1.1 Introduction to Lead-Lag Synthesis 140
5.1.2 Lead-Lag Synthesis by Phase Margin Assignment 146

5.2 Linear Quadratic Optimal Control . 151
5.2.1 Linear Quadratic Optimal Control Strategies 151
5.2.2 Linear Quadratic Regulator Problems 152
5.2.3 Linear Quadratic Control for Discrete-Time Systems 155
5.2.4 Selection of Weighting Matrices 156
5.2.5 Observers and Observer Design . 159
5.2.6 State Feedback and Observer-Based Controllers 162

5.3 Pole Placement Design . 165
5.3.1 The Bass–Gura Algorithm . 166
5.3.2 Ackermann’s Algorithm . 166
5.3.3 Numerically Robust Pole Placement Algorithm 167
5.3.4 Observer Design Using the Pole Placement Technique 169
5.3.5 Observer-Based Controller Design Using the Pole Placement

Technique . 169
5.4 Decoupling Control of Multivariable Systems 171

5.4.1 Decoupling Control with State Feedback 171
5.4.2 Pole Placement of Decoupling Systems with State Feedback 172

5.5 SISOTool: An Interactive Controller Design Tool 175
Problems . 177

6 PID Controller Design 181
6.1 Introduction . 182

6.1.1 The PID Actions . 182
6.1.2 PID Control with Derivative in the Feedback Loop 184

6.2 Ziegler–Nichols Tuning Formula . 185
6.2.1 Empirical Ziegler–Nichols Tuning Formula 185
6.2.2 Derivative Action in the Feedback Path 189
6.2.3 Methods for First-Order Plus Dead Time Model Fitting 191
6.2.4 A Modified Ziegler–Nichols Formula 194

6.3 Other PID Controller Tuning Formulae . 197
6.3.1 Chien–Hrones–Reswick PID Tuning Algorithm 197
6.3.2 Cohen–Coon Tuning Algorithm . 198
6.3.3 Refined Ziegler–Nichols Tuning 200
6.3.4 The Wang–Juang–Chan Tuning Formula 203
6.3.5 Optimum PID Controller Design 203

6.4 PID Controller Tuning Algorithms for Other Types of Plants 210
6.4.1 PD and PID Parameter Setting for IPDT Models 210
6.4.2 PD and PID Parameters for FOIPDT Models 211
6.4.3 PID Parameter Settings for Unstable FOPDT Models 213

6.5 PID_Tuner: A PID Controller Design Program for FOPDT Models 213
6.6 Optimal Controller Design . 216

6.6.1 Solutions to Optimization Problems with MATLAB 216

viii Contents

6.6.2 Optimal Controller Design . 218
6.6.3 A MATLAB/Simulink-Based Optimal Controller Designer and Its

Applications . 221
6.7 More Topics on PID Control . 225

6.7.1 Integral Windup and Anti-Windup PID Controllers 225
6.7.2 Automatic Tuning of PID Controllers 227
6.7.3 Control Strategy Selection . 230

Problems . 231

7 Robust Control Systems Design 235
7.1 Linear Quadratic Gaussian Control . 236

7.1.1 LQG Problem . 236
7.1.2 LQG Problem Solutions Using MATLAB 236
7.1.3 LQG Control with Loop Transfer Recovery 241

7.2 General Descriptions of the Robust Control Problems 247
7.2.1 Small Gain Theorem . 247
7.2.2 Unstructured Uncertainties . 248
7.2.3 Robust Control Problems . 249
7.2.4 Model Representation Under MATLAB 250
7.2.5 Dealing with Poles on the Imaginary Axis 251

7.3 H∞ Controller Design . 253
7.3.1 Augmentations of the Model with Weighting Functions 253
7.3.2 Model Augmentation with Weighting Function Under MATLAB . . 255
7.3.3 Weighted Sensitivity Problems: A Simple Case 256
7.3.4 H∞ Controller Design: The General Case 261
7.3.5 Optimal H∞ Controller Design . 267

7.4 Optimal H2 Controller Design . 271
7.5 The Effects of Weighting Functions in H∞ Control 273
Problems . 281

8 Fractional-Order Controller: An Introduction 283
8.1 Fractional-Order Calculus and Its Computations 284

8.1.1 Definitions of Fractional-Order Calculus 285
8.1.2 Properties of Fractional-Order Differentiations 286

8.2 Frequency and Time Domain Analysis of Fractional-Order Linear Systems . 287
8.2.1 Fractional-Order Transfer Function Modeling 287
8.2.2 Interconnections of Fractional-Order Blocks 288
8.2.3 Frequency Domain Analysis of Linear Fractional-Order Systems . . 289
8.2.4 Time Domain Analysis of Fractional-Order Systems 290

8.3 Filter Approximation to Fractional-Order Differentiations 292
8.3.1 Oustaloup’s Recursive Filter . 292
8.3.2 A Refined Oustaloup Filter . 294
8.3.3 Simulink-Based Fractional-Order Nonlinear Differential Equation

Solutions . 296
8.4 Model Reduction Techniques for Fractional-Order Systems 298
8.5 Controller Design Studies for Fractional-Order Systems 300

Contents ix

Problems . 304

Appendix 307
CtrlLAB: A Feedback Control System Analysis and Design Tool 307
A.1 Introduction . 307

A.1.1 What Is CtrlLAB? . 307
A.1.2 Installation and Requirements . 308
A.1.3 Execution of CtrlLAB . 308

A.2 Model Entry and Model Conversion . 309
A.2.1 Transfer Function Entry . 309
A.2.2 Entering Other Model Representations 309
A.2.3 A More Complicated Model Entry 310

A.3 Model Transformation and Reduction . 311
A.3.1 Model Display . 311
A.3.2 State Space Realizations . 314
A.3.3 Model Reduction . 314

A.4 Feedback Control System Analysis . 316
A.4.1 Frequency Domain Analysis . 316
A.4.2 Time Domain Analysis . 318
A.4.3 System Properties Analysis . 321

A.5 Controller Design Examples . 322
A.5.1 Model-Based Controller Designs 322
A.5.2 Design of PID Controllers . 322
A.5.3 Robust Controller Design . 325

A.6 Graphical Interface-Based Tools . 327
A.6.1 A Matrix Processor . 327
A.6.2 A Graphical Curve Processor . 331

Problems . 334

Bibliography 337

Index of MATLAB Functions 345

Index 349

Preface

It is well known that the benefits from the wise use of control engineering are numerous
and include improved product/life quality, minimized waste materials, reduced pollution,
increased safety, reduced energy consumption etc. One can observe that the notions of
feedback and control play important roles in most sociotechnological aspects. The phrase
“control will be the physics of the 21st century”1 implies that all engineering students should
take an introductory course on systems control.

It is widely accepted that control is more “engineering” than “science,” but it does
require a firm theoretical underpinning for it to be successfully applied to ever more chal-
lenging projects. This attention to theory in academia has led to discussions through the
years on the “theory/practice Gap” which culminated in a recent special issue of the IEEE
Control Systems Magazine (Volume 19, Number 6, 1999).

The development of computer software for control has provided many benefits for
teaching, research, and the development of control systems design in industry. MATLAB�

and Simulink� are considered the dominant software platforms for control system analysis
and design, with numerous off-the-shelf toolboxes dedicated to control systems and related
topics. As Confucius said, “The craftsman who wishes to work well has first to sharpen
his implements,”2 and it is clear that MATLAB provides a suitable implement for control
engineering. The major objective of this book is to provide information on how MATLAB
can be used in control system design by covering many methods and presenting additional
software routines. Many students today view control theory as difficult because of the
mathematics involved in evaluating frequency responses, plotting root loci, and doing the
many other calculations which can be easily accomplished in MATLAB, as shown in this
book. It is therefore our opinion that the educational objective today should be to give
students sufficient knowledge of these techniques to understand their relevance and teach
how to use them correctly without the burden of the calculations which MATLAB can
accomplish.

A distinguishing feature of the book is the organization and presentation of the
material. Based on our teaching, research, and industrial experience, we have chosen
to present the course materials in the following sequence: system models, time and fre-
quency domain analysis, introduction to various model reduction techniques, model-based
control design methods, PID techniques and robust control. In addition, a chapter is in-

1Doyle J. C. ‘A new physics?’. plenary talk presented at the 40th IEEE Conference on Decision and Control
Orlando, FL, Dec. 2001.

2http://www.confucius.org/lunyu/ed1509.htm.

xi

xii Preface

cluded on fractional-order control as an alternative for practical robustness trade-offs. MAT-
LAB scripts and plots are extensively used in this textbook to illustrate basic concepts and
examples. A dedicated toolbox called CtrlLAB developed by the authors can be used as
an effective teaching and learning aid. CtrlLAB was developed to support our objective of
enabling control studies to be done in MATLAB by students with no knowledge of MAT-
LAB, thus avoiding the need to replace less mathematics with the requirement of learning
a programming language (although this is not difficult). CtrlLAB is the most downloaded
package in the Control Systems category in the File Exchange of MATLAB Central.3

We hope that readers will enjoy playing with and changing the scripts as they gain
better understanding and accomplish deeper exploration with reduced effort. Additionally,
each chapter comes with a set of problems to strengthen the readers’ understanding of the
chapter contents.

This book can be used as a reference text in the introductory control course for under-
graduates in all engineering schools. The coverage of topics is broad, yet balanced, and
should provide a solid foundation for the subsequent control engineering practice in both
industry and research institutes. For graduates and researchers not majoring in control, this
textbook is useful for knowledge enhancement. The authors also believe that this book will
be a good desktop reference for control engineers.

The writing of this book started in the mid 1990s. In its evolving into the current
form, many researchers, professors, and students have provided useful feedback, comments,
and input. In particular, we thank the following professors: Xinhe Xu, Xingquan Ren,
Yuanwei Jing, Taicheng Yang, Shuzhi Sam Ge, Igor Podlubny, Ivo Petras, István Kollár,
Alain Oustaloup, Jocelyn Sabatier, Blas M. Vinagre, J. A. Tenreiro Machado, and Kevin L.
Moore. Moreover, we are grateful to Elizabeth Greenspan,Acquisitions Editor of the Society
for Industrial and Applied Mathematics (SIAM), for her professional help. The “Book
Program” from The MathWorks Inc. is acknowledged for the latest MATLAB software.

Last, but not least, Dingyü Xue would like to thank his wife JunYang and his daughter
Yang Xue; YangQuan Chen would like to thank his wife Huifang Dou and his sons Duyun,
David, and Daniel, for their patience, understanding and complete support throughout this
work. DerekAtherton wishes to thank his wife Constance for allowing him hours of overtime
with many hardworking graduate students which included, in particular, many discussions
with Dingyü when he was at Sussex and the email exchanges or with Dingyü andYangQuan,
which led to this book.

Dingyü Xue, Northeastern University, Shenyang, China.
YangQuan Chen, Utah State University, Logan, UT, USA.

Derek P. Atherton, The University of Sussex, Brighton, UK.

3http://www.mathworks.com/matlabcentral/index.shtml

Chapter 1

Introduction to
Feedback Control

1.1 Introduction
Feedback and control are almost everywhere. One can virtually link the powerful word
“control” to almost anything, such as “diet control,” “financial control,” “pest control,”
“motor control,” “robot control,” etc. One can also say that “power is nothing without
control,” which is believed to be correct in both social and technological contexts. Feedback
is an intuitive means for control. For example, when you feel cold (sensing), you add one
more layer of cloth (decision and then control action) to keep yourself warm and comfortable
(objective). This is biological feedback due to a change in the environment. In technological
systems, the loop “sensing-feedback-decision-control” is implemented to change the system
behavior into a desirable one. In most cases in this book, we shall focus on the “feedback
control” for a given system described by ordinary differential equations (ODEs) with a single
input–single output (SISO). More specifically, we will mainly concentrate on analytical and
simulation methods for linear feedback control systems and a few aspects of simulation
for nonlinear systems. For multiple input–multiple output (MIMO) linear systems, good
references are [1–7].

Figure 1.1 shows a typical feedback control structure with three blocks, namely, the
plant block, the controller block, and the feedback block. In this typical feedback control
structure, the plant and the controller blocks form the forward path and the feedback path
normally includes the sensor and, possibly, signal conditioning. This system structure is
quite commonly seen in process control and other control applications.

For simplicity, throughout the book only the paths with negative actions will be labeled
in the block diagram, and the ones with positive actions will have the plus sign omitted by
default, as in Figure 1.1.

If all three blocks are linear, the feedback control structure can be redrawn, as shown
in Figure 1.2. This model structure will be extensively used in the book.

In control systems, the concept of “feedback” is very important. If we assume that
there is no feedback path, the system will be driven solely by the input signal, and after
the effect of the control block, the output signal of the system will be generated. This kind
of system structure is usually referred to as an open-loop control structure. Under ideal

1

2 Chapter 1. Introduction to Feedback Control

� �
�

input

-

controller
model

plant
model

feedback
model

� �

�

output

Figure 1.1. Typical feedback structure.

� �
�

input

− Gc(s) G(s)

H(s)

� �

�

output

Figure 1.2. Typical linear feedback structure.

circumstances, an open-loop control strategy will work, but this is based on having an
accurate plant model, which never exists in practice due to modeling errors and system
disturbances. Thus, for accurate control a closed-loop system structure must be used instead.
Closed-loop systems are often referred to as feedback control systems.

The objective of this book is to present methods for the analysis and design of feedback
control systems using the interactive language MATLAB and its Control Systems Toolbox.
Many methods are presented and details of the appropriate MATLAB routines given. For
the routines, emphasis is placed on the effectiveness, relevance, and appropriateness of the
different control design approaches covered. It is hoped that the reader will appreciate
these aspects from the large number of examples included and will also recognize that
practical specifications for a system’s performance may include many factors. A design
to meet these will invariably involve economic as well as technical considerations. This
can result in systems operating in a nonlinear mode, so Simulink is introduced to show the
value of simulation for these situations. Further, the technical specifications may require
solutions which are not obtainable analytically, so Simulink is also used to show how
numerical optimization solutions can be obtained. The appendix gives details of CtrlLAB,
which provides a graphical user interface (GUI) for solving control problems which fit the
structure of Figure 1.2. CtrlLAB is a flexible and powerful tool for self-learning, teaching,
and engineering design and requires a minimum of user effort to obtain results. The features
used in CtrlLAB are described in several of the book’s chapters, but a reader with a basic
control background may wish to read the appendix early on and start to use CtrlLAB for its
ease in obtaining solutions to many control problems.

In practical control system design, the more general feedback control structure shown
in Figure 1.3 is sometimes used with the feedback block simplified to 1. In Figure 1.3(a),
the two submodels, the prefilter and controller, can be adjusted independently in control
system design. This is often referred to as two-degrees-of-freedom control. In this book,
we will focused on one-degree-of-freedom control problems.

1.2. Historical Background 3

�

r y

(b) one-degree-of-freedom control

r

(a) two-degree-of-freedom control

controller plant model� � ��

� prefilter �
�

y

controller plant model� � �

Figure 1.3. Feedback control structures.

1.2 Historical Background
The early development of automatic control devices can be traced back to the ancient water
clock in Alexandria, Egypt, or to the ancient compass vehicle developed about 2,000 years
ago during the Han Dynasty in China.

According to [8], the fly ball governor invented by James Watt in 1788 is regarded as
the first widely used automatic feedback control system. Theoretical research on control
systems was initiated by the study of stability problems involving differential equations
pioneered by the work of Maxwell in 1868, Routh in 1874, and Hurwitz in 1895. Control
strategy design problems were first proposed by Minorsky in 1922 in [9], where the three-
term controller, or the PID (proportional integral derivative) controller, was first formulated.
Practical algorithms for PID controller adjustment presented by Ziegler and Nichols in
1942 [10] still have an influence today in the practice of control engineering.

The framework of frequency domain analysis of linear feedback control systems was
established in 1932 by the work of Nyquist [11], which was extended by Bode in 1945 [12]
and Nichols in 1947 [13]. The root locus analysis proposed by Evans in 1948 [14] was
another milestone in the study of linear feedback systems.

The introduction of the maximum principle proposed by Pontryagin in 1956 [15],
dynamic programming by Bellman in 1957 [16], and state space representation by Kalman
in 1959 [17] opened a new era of systems control which later became known as “modern
control theory.” Some of its significant achievements include the linear quadratic optimal
regulator by Kalman in 1959, optimal state observers by Kalman in 1960, and the linear
quadratic Gaussian (LQG) optimal controller also developed by Kalman [18, 19]. It was
later found by Doyle in 1979 [20] that the LQG controller may reduce the stability margins
of the system, which initiated interest in loop transfer recovery (LTR) design; see, e.g., [21].

Robust control is a very attractive new area in control systems design. Modern robust
control investigations were started by Zames in 1981 in [22], where optimal control problems
were formulated as the minimization of norms in Hardy spaces. The state space solution to
such problems by Doyle et al. in 1989 is a significant computational contribution [23].

As will be demonstrated in this book, most feedback system analysis and design tasks
can be solved easily using a computer. Therefore, suitable computer software is essential for
control system investigations. The first generation of computer-aided analysis and design
software includes the programs developed by Melsa and Jones [24] in 1970, in which a

4 Chapter 1. Introduction to Feedback Control

significant amount of Fortran subroutines were provided. However, this required that the
main program for any specific problem must be prepared by the user, making the solution
procedure tedious and complicated.

The main feature of the second generation of the CACSD (computer-aided control sys-
tem design) software was the provision of a man–machine interactive environment. Good
examples of these software platforms are MATLAB, developed by Moler in 1980 [25],
and INTRAC, developed by Åström in 1985 [26]. Currently, after generations of evo-
lution among various CACSD software packages, MATLAB is the most dominant and
widely used environment in engineering and nonengineering applications. In particular,
for systems control, MATLAB is the most popular tool in research, development, and
education. Furthermore, object-oriented programming techniques have been satisfacto-
rily implemented in both the MATLAB and Simulink environments on which this book is
based.

1.3 Structure of the Book
Broadly speaking, for systems control there are three major steps, i.e., modeling, analyis
and design, also known as the “mad” process. If one is given a system to control, one
probably has to go through this “mad” process or loop to achieve a satisfactory control
performance. The structure of this book follows a similar “mad” process.

For a systematic analysis and design of a control system, mathematical models of the
components are usually required. For linear continuous-time system models, which will
be the central theme of this book, there are usually four kinds of mathematical models,
namely, the transfer function model, the state space model, the zero-pole-gain model, and
more generally, the block diagram model.

The transfer function model is based on the theoretical results of Laplace transforma-
tion, a clever way to map linear system models described by ordinary differential equations
(ODES) into corresponding algebraic equations. Many useful analysis and design tools
based on this type of model are available.

The state space model, on the other hand, describes the internal characteristics of the
system. When performing the analysis and design of control systems described by state
space models, matrix algebra is extensively used.

The other two types of models can be used to either describe some of the characteristics
of the system or describe more complicated systems. All the model types, although different
in appearance, can be converted into each other. The details of models and their conversions
are covered in Chapter 2.

In Chapter 2, we focus more on various model forms and their conversions rather than
on how to build a model from experimental results, which is a large subject area known as
“system identification,” that we will briefly introduce.

Mathematical models of physical processes may be of relatively high order. For con-
trol system design, low-order models are often used, primarily because before the existence
of modern computer software, calculations took a significant amount of time. This meant
that expertise had been gained in both the understanding and designing of controllers for
low-order models. It can therefore be useful to perform some form of model reduction in
various phases of system analysis and controller design. The topic of model reduction is
briefly introduced in the last section of Chapter 3.

1.3. Structure of the Book 5

System analysis methods for linear time-invariant (LTI) feedback systems covered in
this book are briefly listed as follows:

• Parametric analysis: The characteristics of the system can be described by some
parameters. For instance, the robustness can normally be measured by certain
norm parameters of the system.

• Time domain analysis: Typically, the system response to a step input signal is
often of direct interest and its properties may be a system specification. System
responses to other signals are also useful in system analysis tasks. Analytical and
numerical solutions to transient responses of linear control systems are covered.

• Frequency domain analysis: Frequency domain response tools are very useful in
feedback control systems analysis and design. The form of a frequency response
may also be a design specification. Based on the LTI model, the frequency re-
sponses can be easily evaluated with different graphical representations of the
behavior of the system available in MATLAB. The dynamic performance of the
system can be examined based on the graphical interpretations. There are basi-
cally two approaches to control system analysis, namely, time domain analysis
and frequency domain analysis, and both are fully studied in Chapter 3.

• Simulation analysis: Simulation analysis of some nonlinear systems is covered in
Chapter 4.

Most controller design methods utilize a mathematical model. We will refer to these
as model-based design algorithms, and they provide the major content, which is summarized
below, of Chapters 5–7.

• Model-based approaches: Model-based controller design approaches, includ-
ing classical lead/lag cascaded compensators, the linear quadratic optimal con-
troller, the pole placement controller, and decoupling controller, are presented in
Chapter 5.

• PID controllers: PID controllers with different structures and parameter evaluation
algorithms are studied in Chapter 6. Comparisons between various algorithms are
presented. PID controllers are very widely used in industry, and we discuss some of
their aspects such as consideration of integrator windup and relay automatic tuning.
Optimal PID controller design using numerical techniques within Simulink is also
discussed, as this approach allows consideration of multiple practical objectives.

• Robust controllers: Robust controller design techniques, starting from the LQG/
LTR controller, are covered in Chapter 7 with a focus on Hardy space–based
control, such as H2 and H∞ controller design methods.

• Fractional-order controllers: Fractional-order controllers are covered in Chapter 8
for the first time in a textbook. These controllers are receiving increasing attention
because of some of their more powerful properties. Again, MATLAB routines are
given for studying their performance.

The appendix, as already mentioned, gives details of CtrlLAB and includes many
examples of its use in feedback control system analysis and design.

Since this book is tightly coupled with MATLAB, a widely used computational
software platform, we provide the following MATLAB survival guide that will be useful
for beginners.

6 Chapter 1. Introduction to Feedback Control

1.4 A Survival Guide to MATLAB
1.4.1 A Brief Overview of MATLAB

The MATLAB environment, also known as the MATLAB “language,” was pioneered by
Cleve Moler of the University of New Mexico in the early 1980s. A commercial version of
MATLAB was first released in 1984 by The MathWorks Inc. This language is very easy to
use and is a powerful tool for dealing with matrices. The graphical visualization utilities are
impressive and flexible. Compared with other software packages, MATLAB has received
outstanding merits in scientific computation and graphical visualization. MATLAB has now
become the most widely used software in the field of control systems analysis and design,
among other engineering and nonengineering areas. Numerous toolboxes have been written
by well-known professionals. The Control Systems Toolbox and the Simulink program
developed by The MathWorks Inc. will be extensively used in this book. All the examples
used in this book are compatible with MATLAB version 7.5 (Release 18 or 2007b). It
should also be noted that the material presented in the book does not rely too much on
specific versions of MATLAB. Almost all the materials can be executed on earlier versions
such as MATLAB 6.* or even MATLAB 5.*.

CtrlLAB, developed by the authors, is a GUI which can be used to solve typical
problems in feedback control systems modeling, analysis, and design. CtrlLAB can be
used as a companion for this book.

For a detailed description of MATLAB, please refer to [27, 28]. More comprehensive
coverage of Simulink-related topics is presented in the recent textbook [29].

1.4.2 Standard MATLAB Statements and Functions

Unlike many other programming languages, the basic element in MATLAB is a complex-
valued matrix, and powerful facilities have been provided for matrix manipulation and
graphical visualization. To enter a matrix

A =
⎡⎣1 2 3

4 5 6
7 8 0

⎤⎦ ,

one can simply issue the statement

>> A=[1,2,3; 4 5,6; 7,8 0];

where � is the MATLAB prompt automatically given by the MATLAB program, the semi-
colons within the square brackets are used to separate the matrix rows, and a comma or
a space is used to separate the elements in the same row. Vectors and scalars can also be
accepted by MATLAB with even simpler statements.

More data structures, such as multidimensional arrays, structural data, object classes,
and cell structures, are supported in MATLAB which makes the application of MATLAB
easy and convenient.

Compared to other programming languages, MATLAB functions can be called in a
special way. The syntax for a typical function call is

[list_of_return_variables]=func_name(input_list)

1.4. A Survival Guide to MATLAB 7

where the left-hand-side arguments in square brackets are the list of returned variables and
the right-hand-side arguments are the input list used in the function. For instance, the
function bode() can be called with the syntax

[mag,phase]=bode(G,w)

where the function bode() is used to draw the Bode diagram of the system given in variable
G, and the input variable w is used to pass the frequency vector to the function. The [mag,
phase] variables, which are the magnitude and phase vectors of the frequency response
data, are then returned after the function call. One special feature of the MATLAB function
is that different syntax definitions can be used in the same function to perform different
manipulations. For instance, the bode() function can be called in the following formats:

bode(G,w) % draw Bode diagram over frequency range w

bode(G) % draw Bode diagram over default frequency range
bode(G1,G2,G3) % draw Bode diagrams for several systems together

where the state space model and transfer function model can both be used and the MATLAB
function can automatically detect which kind of input is provided. The advantage of using the
G object is that the same function syntax can be used to handle continuous- and discrete-
time systems, state space and transfer function models, single input–single output and
multiple input–multiple output models, and so on. A unified framework of functions can be
established, which greatly simplifies the task of system analysis and design.

1.4.3 Graphics Facilities in MATLAB

Two-dimensional curves can easily be drawn by calling the function plot() with the
syntax

plot(x1,y1,x2,y2,x3,y3,· · ·)
where (x1,y1) is a pair of vectors (or matrices) holding the x- and y-axis data for the plots,
(x2,y2) is another pair, and so on. One may call other functions to enhance the plot, such as

(1) grid to add or remove grids on the plot;

(2) xlabel() and ylabel() to add labels for the axes;

(3) title() to add a title to the plot;

(4) legend, text() and gtext() to add one or more legends to plots.

One can also enhance the graphs in a visual way using the graphics processor in
CtrlLAB, which will be explained in the appendix.

Three-dimensional plots can also be obtained by callingmesh()andsurf()functions.
Once correct variables are provided, the three-dimensional plot will be generated directly.

1.4.4 On-Line Help Facilities in MATLAB

In this book, MATLAB and its Control Systems Toolbox will be extensively used, and
it will not be possible or suitable to have all the functions fully described. This is also

8 Chapter 1. Introduction to Feedback Control

the case in other MATLAB related books such as [28]. Readers are advised to make full
use of the MATLAB on-line help facilities for all the functions relevant to their specific
work. For instance, a user can start the help process by issuing the help command in the
MATLAB environment or by clicking the Help menu in the MATLAB interface, whence
all the contents in the related directories will be displayed. A typical help message provided
by the on-line help system is given below:

>> help lyap

The following message will be displayed:

1 LYAP Lyapunov equation.
2 X = LYAP(A,C) solves the special form of the Lyapunov
3 matrix equation:
4 A*X + X*A’ = -C
5 X = LYAP(A,B,C) solves the general form of the Lyapunov
6 matrix equation:
7 A*X + X*B = -C
8 See also DLYAP.

When the help utility is used, an explanation of its calling syntax will be displayed
for the function lyap. Alternatively, the command doc will display the on-line help
information in HTML format.

In addition, the lookfor command can be used to search for a key word in the
functions. For instance, if one wants to find a function which can be used to perform
’Hankel’ related manipulations, one can try

>> lookfor hankel

and the following information can be obtained:

1 HANKEL Hankel matrix.
2 BESSELH Bessel function of the third kind (Hankel function).
3 HANK2SYS Convert a Hankel matrix to a linear system model.
4 HSVOPTIONS Creates option list for Hankel singular value plot.
5 BHRDEMO Demo of model reduction techniques (Hankel, Balanced, BST).
6 HKSV Hankel singular values and grammians P, Q.
7 OHKAPP Optimal Hankel norm approximation (stable plant).
8 OHKDEMO Demo of optimal Hankel model reduction technique.
9 OHKLMR Optimal Hankel norm approximation (unstable plant).

From the above displayed results, one can decide which function may be suitable for
the intended task.

1.4.5 MATLAB Toolboxes

The Control Systems Toolbox is extensively used in this book to deal with the problems in
the area of feedback control system analysis and design. Most parts of the Control Systems
Toolbox are covered in this textbook together with CtrlLAB (see the appendix).

There are many toolboxes applicable to problems in control. Some of them are listed
(in alphabetical order) below:

• Chemometrics Toolbox, by Richard Kramer;

• Control Systems Toolbox, by Jack Little et al.;

1.4. A Survival Guide to MATLAB 9

• CtrlLAB ToolKit, by Dingyü Xue (see the appendix);

• Frequency Domain Identification Toolbox, by I. Kollár and J. Schoukens;

• Fuzzy Logic Toolbox, by Ned Gulley et al.;

• LMI Control Toolbox, by Pascal Gahinet and Arkadi Nemirovski;

• Model Predictive Control Toolbox, by Manfred Morari and L. Ricker;

• Modified Maximum Likelihood Estimator Toolbox, by Wes Wang;

• μ-Analysis and Synthesis Toolbox, by G. Balas, A. Packard, and J. Doyle;

• Multivariable Frequency Domain Toolbox by Jan Meciejowski et al.;

• Neural Network Based Control Toolkit, by Magnus Nøgaard;

• Neural Network Based Identification Toolkit, by Magnus Nøgaard;

• Neural Network Toolbox, by Howard Demuth and Mark Beale;

• Nonlinear Control Design Blockset, by M. Yeddanapudi and A. Potvin;

• Polynomial Toolbox, by D. Henrion, F. Kraffer and H. Kwakernaak;

• QFT Control Design Toolbox, by Craig Borghesani, Yossi Chait, et al.;

• RIOTS_95, by Adam L. Schwartz, YangQuan Chen and Elya Polak;

• Robotics Toolbox, by Peter Corke;

• Robust Control Toolbox, by Richard Chiang and Michael Sofanov;

• Signal Processing Toolbox, Jack Little and Loren Shure;

• System Identification Toolbox, by Lennart Ljung.

Moreover, there are other toolboxes which may be useful for mathematical solu-
tions to some problems in control systems, such as the Communications Toolbox, the
Genetic Algorithm Optimization Toolbox, the Image Processing Toolbox, the Optimiza-
tion Toolbox, the Partial Differential Equation Toolbox, the NAG Foundation Toolbox,
the Spline Toolbox, the Statistics Toolbox, the Symbolic Toolbox, the Wavelet Toolbox,
etc. Detailed information on the above mentioned MATLAB toolboxes can be found
online; readers can consult the following two Web sites to explore further and find more
information:

http://www.mathworks.com/matlabcentral/index.shtml
http://www.mathtools.net/index.html

CtrlLAB and all the code used in this book can also be downloaded from
www.siam.org/books/dc14

Problems

1. Run the MATLAB demonstration program by typing the demo command under the
MATLAB prompt and see the attractive aspects provided by MATLAB and its tool-
boxes.

2. Find out what MATLAB toolboxes have been installed on the computer system you
are using by typing the help or ver command. Try to install other toolboxes such
as CtrlLAB and modify your own MATLAB search path.

10 Chapter 1. Introduction to Feedback Control

3. Prepare a MATLAB script to rotate the following matrices 90◦ and then compute their
norms, traces, eigenvalues, pseudo-inverses, and characteristic polynomials:

(a) A =

⎡⎢⎢⎢⎢⎣
1 2 3 3
2 3 5 7
1 3 5 7
3 2 3 9
1 8 9 4

⎤⎥⎥⎥⎥⎦ , (b) B =

⎡⎢⎢⎣
1 4 3 6 7 8
2 3 3 5 5 4
2 6 5 3 4 2
1 8 9 5 4 3

⎤⎥⎥⎦ .

4. Solve for the matrix X in the Lyapunov equation AX + XAT = C with

A =
⎡⎣1 2 3

4 5 6
7 8 0

⎤⎦ , C =
⎡⎣1 5 4

5 6 7
4 7 9

⎤⎦ .

5. Draw the function e−t2/2 sin(5t) for t ∈ (0, 2π) using different functions such as
plot(), stairs(), ezplot(), and stem().

6. Call the demonstration function peaks() by the command [x,y,z]=peaks;
use the resulting (x,y,z) to show different three-dimensional graphs through the
functions mesh(), surf(), and waterfall().

Chapter 2

Mathematical Models
of Feedback Control
Systems

Most, but not all, of the existing design procedures for a control system make use of math-
ematical models. It is therefore important to try to obtain accurate mathematical models
for the system components. The system can then be analyzed and designed in a systematic
way and its properties assessed using the mathematical models as approximations of its true
behavior.

If the system model is not known, two methods can be used to build a model of the
system for the analysis and design tasks. The first method is to derive the system model
using existing physical laws or principles. The second method, more often used, is to find an
approximate mathematical model based on the observed response data of the system. The
former method is referred to as the physical modeling and the latter the system identification.
How to obtain a model of the system to be controlled is a large subject area and will not be
fully pursued in this book. Instead, we will focus on how to manipulate the models.

In this chapter, the physical modeling problem is illustrated through an example in
Sec. 2.1. In Sec. 2.2, the concept of the Laplace transformation is given with MATLAB-
based solutions. The transfer function representation of linear systems is described in
Sec. 2.3. Various descriptions of the standard transfer functions within MATLAB are pre-
sented. Other commonly used system descriptions, such as the state space representation
and the zero-pole-gain representation, are presented in Sec. 2.4. The modeling principles
for finding an overall system model from a given complicated interconnected submodel are
presented in Sec. 2.5. In Sec. 2.6, the equivalent conversion among different model types
for a given system is described. For instance, a given transfer function model can be con-
verted into an equivalent state space model, or a given state space model can be converted
into the transfer function form or the zero-pole-gain form. A comprehensive introduction
to the system identification problem will be given briefly in Sec. 2.7, with an emphasis on
discrete-time model identification and identification input signal selections.

2.1 A Physical Modeling Example
Consider the electric circuit shown in Figure 2.1, where a resistor R, an inductor L, and a
capacitor C are connected in series. For this dynamic system, the input signal is u(t) and
the output signal is uc(t).

11

12 Chapter 2. Mathematical Models of Feedback Control Systems

�

�

u(t)

R L

C

�

�
uc(t)�i(t)

Figure 2.1. An RLC series circuit.

The current i(t) satisfies

i(t) = C
duc(t)

dt
(2.1)

and the voltage equation can be written as

u(t) = Ri(t) + L
di(t)

dt
+ uc(t). (2.2)

Substituting (2.1) into (2.2), one has

LC
d2uc(t)

dt2 + RC
duc(t)

dt
+ uc(t) = u(t). (2.3)

The second-order ordinary differential equation (ODE) given in (2.3) is called the
mathematical model of the electric circuit.

In general, the mathematical model of a continuous-time, lumped parameter dynamic
system can be represented by an ODE.

2.2 The Laplace Transformation
From the voltage equation (2.3), the voltage uc(t) across the capacitor C can be represented
by a second-order linear ODE. A method used by engineers to solve linear differential
equations is the Laplace transformation method, which is reviewed, below.

Definition 2.1. The Laplace transformation of a time function f (t) is defined by

L [f (t)] =
∫ ∞

0
f (t)e−stdt = F(s), (2.4)

where L [f (t)] is shorthand notation for the Laplace integral transformation.

The result of the Laplace transformation is a function of s, a complex variable, often
denoted by F(s). It should be noted that s has a unit of second−1.

For a given function f (t), it is usually possible to find its Laplace transformation via
a Laplace transformation table, or by the direct use of the relevant MATLAB functions.

Theorem 2.1. Some of the important properties of the Laplace transformation are listed
below without proofs.

1. Linearity: If a and b are scalars, then

L [af (t) ± bg(t)] = aL [f (t)] ± bL [g(t)].

2.2. The Laplace Transformation 13

2. Translation in time: L [f (t − a)] = e−asF (s).

3. Translation in s: L [e−atf (t)] = F(s + a).

4. Differentiation: L [df (t)/dt] = sF (s) − f (0+). The nth order derivative can be
evaluated from

L

[
dn

dtn
f (t)

]
=snF (s)−sn−1f (0+)−sn−2 df (0+)

dt
−· · ·− dn−1f (0+)

dtn−1 . (2.5)

When all the initial values of f (t) and its derivatives are zero, equation (2.5) can be
further simplified to L [dnf (t)/dtn] = snF (s).

5. Integration: If zero initial conditions are assumed, L [∫ t

0 f (τ)dτ] = F(s)/s. For the
n-th order integration of a given function f (t),

L

[∫ t

0
· · ·
∫ t

0
f (τ)(dτ)n

]
= F(s)

sn
. (2.6)

6. Initial time and final time:

lim
t→0

f (t) = lim
s→∞ sF (s), lim

t→∞ f (t) = lim
s→0

sF (s).

7. Convolution: L [f (t) ∗ g(t)] = L [f (t)]L [g(t)], where the convolution operator ∗
is defined as

f (t) ∗ g(t) =
∫ t

0
f (τ)g(t − τ)dτ =

∫ t

0
f (t − τ)g(τ)dτ. (2.7)

8. Others:

L [tnf (t)] = (−1)n
dnF (s)

dsn
, L

[
f (t)

tn

]
=
∫ ∞

s

· · ·
∫ ∞

s

F (s)dsn. (2.8)

A MATLAB function laplace(), provided in the Symbolic Toolbox, can be used
to evaluate the Laplace transform from a given function f (t). The syntax of the function
is F=laplace(f) . Note that only a limited class of signals f (t) can be used with
laplace(f).

Example 2.1. If one wants to perform the Laplace transformation for the function ebt cos(at+
c), the following MATLAB statements can be used:

>> syms s t a b c; F=laplace(exp(b*t)*cos(a*t+c))

and the Laplace form of the function is

F(s) = cos(c)(s − b)

(s − b)2 + a2 − sin(c)a

(s − b)2 + a2 .

Definition 2.2. The inverse Laplace transformation of a given function F(s) is defined by

f (t) = L −1[F(s)] = 1

2π j

∫ σ+ j∞

σ− j∞
F(s)estds, (2.9)

where σ is greater than the real part of singularities of F(s).

14 Chapter 2. Mathematical Models of Feedback Control Systems

Given F(s), its inverse Laplace transformation can be performed using a table or other
relevant tools. With the use of the Symbolic Toolbox, the inverse Laplace transform can be
evaluated from f=ilaplace(F) . Note again that only a limited class of F(s) can be
used with ilaplace(F).

2.3 Transfer Function Models
2.3.1 Transfer Functions of Control Systems

It is obvious that, applying the differentiation law of Laplace transformation to the voltage
equation, the differential equation (2.3) can be transformed into an “algebraic” equation as
follows:

LCUc(s)s
2 + RCUc(s)s + Uc(s) = U(s), (2.10)

where Uc(s) = L [uc(t)], U(s) = L [u(t)], if zero initial conditions for uc(t) and its
derivatives are assumed. Dividing both sides by Uc(s) and taking the reciprocal yields

Uc(s)

U(s)
= 1

LCs2 + RCs + 1
(2.11)

and Uc(s)/U(s) is referred to as the transfer function from the input signal u(t) to the output
signal uc(t).

The transfer function of a linear continuous system can be generally defined by a
rational function of the variable s in the form

G(s) = b1s
m + b2s

m−1 + · · · + bms + bm+1

sn + a1sn−1 + a2sn−2 + · · · + an−1s + an

. (2.12)

If the coefficients bi, (i = 1, . . . , m + 1) and ai, (i = 1, . . . , n) are constants, the system
is referred to as a linear time invariant (LTI) system. The denominator is referred to as the
characteristic polynomial of the system. The highest order n of the denominator is referred
to as the order of the system. For a physically realizable system, it is often true that m ≤ n.
In this case, the system is called proper. If m < n, the system is called strictly proper. The
value n−m is sometimes called the relative degree/order or pole-zero excess of the system.

2.3.2 MATLAB Representations of Transfer Functions

A transfer function model can be easily entered into the MATLAB environment using the
following MATLAB statements:

num=[b1,b2,. . .,bm,bm+1]; den=[1,a1,a2,. . .,an−1, an];

G=tf(num,den)

i.e., it is required to enter the numerator and denominator polynomial coefficients separately
into two vector variables num and den in the descending order of s. The variable G returned
is the transfer function object.

2.3. Transfer Function Models 15

Example 2.2. The simple transfer function

G(s) = s + 5

s4 + 2s3 + 3s2 + 4s + 5
can be represented in MATLAB as

>> num=[1,5]; den=[1,2,3,4,5]; G=tf(num,den)

and the system object G can then be used to uniquely describe the given transfer function.

Example 2.3. An even more complicated transfer function model

G(s) = 6(s + 5)

(s2 + 3s + 1)2(s + 6)(s3 + 6s2 + 5s + 3)

can be entered into MATLAB using the statements

>> den=conv(conv(conv([1,3,1],[1,3,1]),[1,6]),[1,6,5,3]);
num=6*[1,5]; G=tf(num,den)

and

G(s) = 6s + 30

s8 + 18s7 + 124s6 + 417s5 + 740s4 + 729s3 + 437s2 + 141s + 18
,

where conv() is a standard MATLAB function used to evaluate the convolution of two
vectors. Note that the multiplication of polynomials can be equivalently performed by
calling conv(). The conv() function can be nested arbitrarily. However, one should
make sure that the brackets are matched properly to avoid any possible error message.

Alternatively, a transfer function given in factorized form can be entered into MATLAB
by declaring, s, the Laplace complex variable, with s=tf(’s’) , and the transfer function
can then be specified in a mathematical way:

>> s=tf(’s’);
G=6*(s+5)/(sˆ2+3*s+1)ˆ2/(s+6)/(sˆ3+6*sˆ2+5*s+3)

Apart from the essential numerator and denominator variables, other fields are also de-
fined in the transfer function object. One can list all the possible fields using the set(tf)
command. The other useful fields in the transfer function object include, for instance,
ioDelay and Ts, which correspond, respectively, to the input-output delay and the sam-
pling interval; the latter is applicable only to discrete-time systems. The field Variable is
defined as the operator symbol used in the transfer function, with s and p for continuous-time
systems, and z, z−1 and q for discrete-time systems, where q is shorthand for z−1.

If one wants to change the operator symbol in the transfer function representation to
p, and assign a transport delay of 0.5 seconds, either of the following two sets of MATLAB
commands can be used:

G.Variable=’p’; G.ioDelay=0.5;

set(G,’Variable’,’p’,’ioDelay’,0.5);

The model G is then displayed as

e−0.5p 6p + 30

p8 + 18p7 + 124p6 + 417p5 + 740p4 + 729p3 + 437p2 + 141p + 18
.

16 Chapter 2. Mathematical Models of Feedback Control Systems

2.3.3 Transfer Function Matrices for Multivariable Systems

Systems with one input and one output are referred to as single input–single output (SISO)
systems, while systems with more than one input and more than one output are referred
to as multiple input–multiple output (MIMO) systems. For an MIMO system, the transfer
function representation is in fact denoted by a matrix of transfer functions which is called
the transfer function matrix.

The transfer function object tf can also be used to represent MIMO transfer function
matrices. Note that, in this book, many MATLAB functions work for both SISO and MIMO
systems. However, our default is SISO if not otherwise stated.

Example 2.4. Assume that the transfer function matrix of an MIMO system is given by

G(s) =

⎡⎢⎢⎣
0.1134e−0.72s

1.78s2 + 4.48s + 1

0.924

2.07s + 1
0.3378e−0.3s

0.361s2 + 1.09s + 1

−0.318e−1.29s

2.93s + 1

⎤⎥⎥⎦ .

This model can be entered into the MATLAB workspace using the following commands:

>> g11=tf(0.1134,[1.78 4.48 1],’ioDelay’,0.72);
g12=tf(0.924,[2.07 1]);
g21=tf(0.3378,[0.361 1.09 1],’ioDelay’,0.3);
g22=tf(-0.318,[2.93 1],’ioDelay’,1.29);
G=[g11, g12; g21, g22];

In the above example, the individual transfer functions of the transfer function matrix
are entered first, and then these elements are grouped together to establish the whole transfer
function matrix object for the MIMO system.

The numerators and denominators of the system can be retrieved with the function call

[num,den]=tfdata(G,’v’)

2.3.4 Transfer Functions of Discrete-Time Systems

The discrete-time transfer function

H(z) = b0z
m + b1z

m−1 + · · · + bm−1z + bm

a1zn + a2zn−1 + · · · + anz + an+1
z−d (2.13)

which is obtained via Z transforms from difference equations, can also be entered into
MATLAB with the similar statements

num=[b0,b1,· · ·,bm−1,bm]; den=[a1,a2,· · ·,an,an+1];

H=tf(num,den,’Ts’,T ,’ioDelay’,d);

2.4. Other Mathematical Model Representations 17

where T is the sampling interval and m is the transport delay. Alternatively, the z vari-
able can be declared with z=tf(’z’,T) before specifying the transfer function in a
mathematical way.

Example 2.5. Assume that a discrete-time system model is given by

H(z) = 6z2 − 0.6z − 0.12

z4 − z3 + 0.25z2 + 0.25z − 0.125
z−5,

where T = 0.1 second, the following statement can be used:

>> num=[6 -0.6 -0.12]; den=[1 -1 0.25 0.25 -0.125];
H=tf(num,den,’Ts’,0.1,’ioDelay’,5)

Alternatively, one may specify the system by

>> z=tf(’z’,0.1);
H=(6*zˆ2-0.6*z-0.12)/(zˆ4-zˆ3+0.25*zˆ2+0.25*z-0.125);
H.ioDelay=5;

2.4 Other Mathematical Model Representations
2.4.1 State Space Modeling

State space representations of control system models have been widely used in control
theory since the 1960s, which was when the well-established, so-called “modern control
theory” was introduced. The state space is another way of describing a dynamic model of
the system, and it can be used to represent not only linear systems but also nonlinear
systems. The state space representation of a system is always referred to as the internal
model description because the internal variables, such as the states, are fully described in
such a model representation. In contrast, the transfer function representation is often called
the external model, or the input-output model, since only the input-output relationship of
the system is described.

Consider again the RLC circuit model given in (2.3). If one assumes that x1 = uc

and x2 = duc/dt , a second-order ODE can be rewritten into the following form:⎧⎪⎪⎨⎪⎪⎩
dx1

dt
= x2,

dx2

dt
= − 1

LC
x1 − R

L
x2 + 1

LC
u.

(2.14)

In control theory, dxi/dt is often denoted by ẋi and the matrix form of the above
equations is written as[

ẋ1
ẋ2

]
=
[

0 1
−1/(LC) −R/L

] [
x1
x2

]
+
[

0
1/(LC)

]
u, (2.15)

where x1 and x2 are referred to as the state variables, u is referred to as the input signal,
and (2.15) is called the state equation of the system. Note that the state variable selection

18 Chapter 2. Mathematical Models of Feedback Control Systems

is not unique. Thus, the state equation is also not unique. For instance, if one selects the
voltage uc and the current i as the state variables, denoted by x1 and x2, respectively, the
state equation can then be written as[

ẋ1
ẋ2

]
=
[

0 1/C

−1/L −R/L

] [
x1
x2

]
+
[

0
1/L

]
u. (2.16)

It is readily seen that there are differences in the above two state equations.
Suppose that there are p inputs ui(t), (i = 1, . . . , p) and q outputs yi(t), (i =

1, . . . , q), and there are n states which make up a state variable vector x = [x1, x2, . . . , xn]T.
The state space expression of the general dynamic system can be written as{

ẋi = fi(x1, x2, . . . , xn, u1, . . . , up), i = 1, . . . , n,

yi = gi(x1, x2, . . . , xn, u1, . . . , up), i = 1, . . . , q,
(2.17)

where fi(·) and gi(·) can be any nonlinear functions. For LTI systems, the state space
expression of the system can be simplified as{

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(2.18)

where u = [u1, . . . , up]T and y = [y1, . . . , yq]T are the input and output vectors, respec-
tively. The matrices A, B, C, and D are compatible matrices. The term “compatible” means
that the related matrices have the correct dimensions. To be more specific, we say that A is
an n × n matrix, B is an n × p matrix, C is a q × n matrix, and D is a q × p matrix. The
dimensions under such conditions are called compatible dimensions.

As a side note, we mention that in robust control theory, the state space expression is
often denoted by

G(s) =
[

A B

C D

]
(2.19)

as shorthand notation.
The representation of a state space expression in MATLAB is simple and straightfor-

ward. One can simply enter the coefficient matrices A, B, C, and D into the MATLAB
environment, and the state space object can be entered as G=ss(A,B,C,D) .

Example 2.6. A two input–two output system in state space form given by

ẋ =

⎡⎢⎢⎣
2.25 −5 −1.25 −0.5
2.25 −4.25 −1.25 −0.25
0.25 −0.5 −1.25 −1
1.25 −1.75 −0.25 −0.75

⎤⎥⎥⎦ x +

⎡⎢⎢⎣
4 6
2 4
2 2
0 2

⎤⎥⎥⎦u, y =
[

0 0 0 1
0 2 0 2

]
x

can be entered into the MATLAB workspace using the following MATLAB statements:

>> A=[2.25, -5, -1.25, -0.5; 2.25, -4.25, -1.25, -0.25;
0.25, -0.5, -1.25,-1; 1.25, -1.75, -0.25, -0.75];

B=[4, 6; 2, 4; 2, 2; 0, 2];
C=[0, 0, 0, 1; 0, 2, 0, 2];
D=zeros(2,2); G=ss(A,B,C,D)

2.4. Other Mathematical Model Representations 19

If the system matrices entered are not compatible, the error messages will be given
automatically by the ss() function.

For discrete-time state space models{
x[(k + 1)T] = Fx(kT) + Gu(kT),

y(kT) = Cx(kT) + Du(kT)
(2.20)

with sampling interval T , the statement G=ss(A,B,C,D,’Ts’,T) can be used
directly.

2.4.2 Zero-Pole-Gain Description

The zero-pole-gain representation is another way to describe the transfer function of an SISO
LTI system. The zero-pole-gain model of a given transfer function is usually represented as

G(s) = K
(s + z1)(s + z2) · · · (s + zm)

(s + p1)(s + p2) · · · (s + pn)
, (2.21)

where K is referred to as the gain of the system. Note that K is not the zero frequency
or DC (direct current) gain G(0). In (2.21), −zi (i = 1, . . . , m) are called the zeros and
−pi (i = 1, . . . , n) the poles of the system. It is noted that for real-coefficient transfer
function models, the poles and zeros are either real or in complex conjugate pairs. The zero-
pole-gain representation is immediately obtainable from the transfer function representation
of a given system.

To enter the zero-pole-gain model representation into the MATLAB workspace, issue
the following MATLAB statements:

z=-[z1; z2; · · ·; zm]; p=-[p1; p2; · · ·; pn];

G=zpk(z,p,K)

Alternatively, the pole-zero-gain model can also be established by declaring first

s=zpk(’s’) .

Example 2.7. The zero-pole-gain model

G(s) = 6
(s + 1.9294)(s + 0.0353 ± 0.9287 i)

(s + 0.9567 ± 1.2272 i)(s − 0.0433 ± 0.6412 i)

can easily be entered into the MATLAB workspace by the following:

>> z=[-1.9294; -0.0353+0.9287j; -0.0353-0.9287j];
p=[-0.9567+1.2272j; -0.9567-1.2272j;

+0.0433+0.6412j; +0.0433-0.6412j];
G=zpk(z,p,6)

and it can be displayed that

G(s) = 6(s + 1.929)(s2 + 0.0706s + 0.8637)

(s2 − 0.0866s + 0.413)(s2 + 1.913s + 2.421)
.

20 Chapter 2. Mathematical Models of Feedback Control Systems

2.5 Modeling of Interconnected Block Diagrams
The model formats described above are usually directly obtainable for single block models.
In practical situations, a system model may be given by interconnected blocks, and the
overall system model for the interconnected system structures can be obtained using the
methods given in this section.

2.5.1 Series Connection

Consider the series connection of the two blocks shown in Figure 2.2(a). It can be seen
that the input signal u(t) travels through the first block G1(s), and the output of G1(s) is
the input to the second block G2(s), which generates the output y(t) of the overall system.
This kind of connection is referred to as a series, or cascade, connection and it is assumed
that, in connecting a block, it does not “load” the previous block.

In the series connection, the overall transfer function of the whole system is given
by G(s) = G2(s)G1(s). For SISO systems, the two blocks G1(s) and G2(s) are inter-
changeable, i.e., G1G2 = G2G1. For MIMO systems, however, the two blocks are generally
not interchangeable.

Assume that the MATLAB description of the model G1(s) is represented in an LTI
object G1, which is either tf, ss, or zpk, and that G2(s) is represented by G2. The
overall system in a series connection can be simply obtained using the MATLAB statement
G=G2*G1 .

If the models G1 and G2 are given by symbolic variables, the above operation is also
valid.

2.5.2 Parallel Connection

A typical parallel connection of two blocks G1(s) and G2(s) is shown in Figure 2.2(b),
where the two blocks are subjected to the same input signal u(t). The outputs of the two
blocks are summed up to form the output y(t) of the overall system. The overall transfer
function of the parallel connection is then G(s) = G1(s) + G2(s).

The LTI representation of the parallel connection can be obtained using the MATLAB
statement G=G1+G2 , where G1 and G2 are LTI objects (tf, ss, or zpk) of G1(s) and
G2(s), respectively. They can also be symbolic variables.

Example 2.8. It should be noted that, if G1(s) and G2(s) contain the same pole, then the
result of the parallel manipulation may be simplified further in this case. Consider the two

G1(s) G2(s)

G1(s)

���

(a) series connection

G2(s)

�

�

�

�

�

(b) parallel connection

u(t) y(t) u(t) y(t)

Figure 2.2. Interconnections of blocks.

2.5. Modeling of Interconnected Block Diagrams 21

G1(s)

G2(s)

�

(b) negative feedback

��

�

�−
G1(s)

G2(s)

�

(a) positive feedback

��

�

�

u(t) y(t) u(t) y(t)

Figure 2.3. Feedback connections.

blocks G1(s) = 1/(s + 1)2 and G2(s) = 1/(s + 1). The result of calling the appropriate
MATLAB functions is given by the following MATLAB statements:

>> G1=zpk([],[-1,-1],1); G2=zpk([],[-1],1); G=G1+G2

As a result, the overall system obtained is G = (s + 2)(s + 1)/(s + 1)3. In fact, the overall
transfer function can be simplified to G(s) = (s + 2)/(s + 1)2, since there is a common
factor (s + 1) in both the denominators of G1(s) and G2(s).

The minimum realization technique can be used to obtain the simplified model, and
details of the technique will be given later in this chapter.

2.5.3 Feedback Connection

The simple feedback connection of two blocksG1(s) andG2(s) is shown in Figures 2.3(a) and
(b), respectively. The two feedback connections in Figure 2.3 are different; the left one is
called a system with positive feedback and the right a system with negative feedback. The
overall transfer function of the positive feedback is G(s) = G1(s)[I −G2(s)G1(s)]−1, and
for negative feedback it is G(s) = G1(s)[I + G2(s)G1(s)]−1.

A MATLAB function feedback() is provided in the Control Systems Toolbox to
get the overall system model from the feedback connection with the syntax

G=feedback(G1,G2,Sign) ,

where Sign is used to identify the positive or negative feedback connection. If Sign=-1,
the negative feedback structure is indicated. The Sign variable can be omitted in the
function call in a negative feedback connection. The LTI objects in the forward path and
feedback path are given by G1 and G2, respectively.

A MATLAB function, feedback(), is also written for the models represented by
symbolic variables:

function H=feedback(G1,G2,key)

if nargin==2; key=-1; end,

H=G1/(sym(1)-key*G1*G2); H=simple(H);

This function should be placed under the @sym directory under MATLAB path. This
function is useful in theoretically deriving the overall model from more complicated sub-
system configuration.

22 Chapter 2. Mathematical Models of Feedback Control Systems

Example 2.9. Consider again the models in Example 2.8. If a negative feedback connection
is assumed, one can find the overall transfer function by using the following MATLAB
statements:

>> G1=tf(1,[1 2 1]); G2=tf(1,[1 1]); G=feedback(G1,G2)

and it can be found that

G(s) = s + 1

s3 + 3s2 + 3s + 2
.

For a positive feedback connection, the overall system model can be obtained from

>> G=feedback(G1,G2,+1)

where

G(s) = s + 1

s3 + 3s2 + 3s
.

2.5.4 More Complicated Connections

In the real world, a system structure can be very complex. In this section, we illustrate how
to handle more complicated interconnections.

Consider the typical feedback control system structure shown in Figure 1.2. The
overall system can be evaluated by assuming first that Gc(s) and G(s) are in series and then
that they are connected to a negative feedback block H(s). The overall closed-loop transfer
function of the typical feedback control system is

Gcl(s) = G(s)Gc(s)

1 + H(s)G(s)Gc(s)
. (2.22)

The overall system object can be obtained using the MATLAB statement

G cl=feedback(G*Gc,H) .

Example 2.10. If the three blocks in the above typical feedback structure are given by

G(s) = s3 + 7s2 + 24s + 24

s4 + 10s3 + 35s2 + 50s + 24
, Gc(s) = 10s + 5

s
, H(s) = 1

0.01s + 1
,

the overall transfer function of the closed-loop system can be obtained by the following
MATLAB statements:

>> G=tf([1 7 24 24],[1,10,35,50,24]); Gc=tf([10,5],[1,0]);
H=tf([1],[0.01,1]); G_cl=feedback(G*Gc,H)

and it can be found that

G cl(s) = 0.1s5 + 10.75s4 + 77.75s3 + 278.6s2 + 361.2s + 120

0.01s6 + 1.1s5 + 20.35s4 + 110.5s3 + 325.2s2 + 384s + 120
.

2.5. Modeling of Interconnected Block Diagrams 23

1

1+0.01s
� � � 130

s

0.212 �

�

0.1

1+0.01s

0.0044

1+0.01s

�

�

�
���� 1+0.17s

0.085s

1

1+0.01s

� 1+0.15s

0.051s

70

1+0.0067s

� � � 0.21

1+0.15s

�

�

g1(s) g2(s) g3(s) g4(s) g5(s) g6(s) g7(s)

g8(s)

g9(s)

g10(s)

Figure 2.4. An example of DC electric drive system.

Unfortunately, the overall system evaluation is not always as simple as in this case,
where one can perform the calculation by hand. For more complicated structures, evalua-
tions by hand is laborious and computer aids are very useful.

Example 2.11. Consider the structure of the DC motor drive system, shown in Figure 2.4.
It can be seen that the overall system model is not easily evaluated. From the block
diagram, it can be seen that the difficulty lies in the interconnections among paths 6, 7,
8, and 9. Rearranging path 9 so that it starts from the output signal, we see that the equiv-
alent transfer function then becomes g91(s) = g9/g7. The overall system can then be
constructed using the following MATLAB statements:

>> g1=tf(1,[0.01,1]); g2=tf([0.17,1],[0.085,0]); g3=g1;
g4=tf([0.15,1],[0.051,0]); g5=tf(70,[0.0067,1]); g7=tf(130,[1,0]);
g6=tf(0.21,[0.15,1]); g8=0.212; g9=tf(0.1,[0.01,1]); g91=g9/g7;
g10=0.0044*g1; gg1=feedback(g7*g6,g8); %paths 6-8
gg2=feedback(gg1*g5*g4,g91); %paths 4-9
G=feedback(gg2*g3*g2,g10)*g1; minreal(zpk(G)), %overall system

where the overall model can be simply obtained as

G(s) = 111852502194.908(s + 6.667)(s + 5.882)

(s + 180.9)(s + 84.1)(s + 48.2)(s2 + 15.2s + 74.3)(s2 + 27.57s + 354)
.

One can also perform symbolic manipulations to the models. When the following are
given, the results follow immediately.

>> syms g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
g91=g9/g7; gg1=feedback(g7*g6,g8); gg2=feedback(gg1*g5*g4,g91);
G=feedback(gg2*g3*g2,g10)*g1

thus the overall model can then be obtained as

G(s) = g2g3g6g7g5g4g1

1 + g7g6g8 + g6g5g4g9 + g4g5g7g6g3g2g10
.

Example 2.12. Consider the motor drive system shown in Figure 2.5, where there are two
inputs r(t), M(t), and one output n(t).

24 Chapter 2. Mathematical Models of Feedback Control Systems

c1 ka kr
1/Ra

T1s + 1
km

1/c

T2s + 1
1

s

���������� �

kb

c2

�

�

�
��

r(t)

M(t)

n(t)

Figure 2.5. Block diagram of a motor control system.

kakr

1/Ra

T1s + 1

1/c

T2s + 1
1

s

��

km kb

c2

n(t)

s� � �

�� �
�

��

��
�

M(t)

Figure 2.6. Equivalent block diagram when M(t) is applied alone.

Let us first consider the modeling problem with set-point input r(t) only. The overall
system model can be obtained easily with the following statements:

>> syms Ka Kr c1 c2 c Ra T1 T2 Km Kb s % symbolic declaration
Ga=feedback(1/Ra/(T1*s+1)*Km*1/c/(T2*s+1),Kb); % inner loop
g1=c1*feedback(Ka*Kr*Ga/s,c2); g1=collect(g1,s)

The transfer function is then derived from

g1(s) = c1kmkakr

RacT1T2s3 + (RacT1 + RacT2)s2 + (kmkb + Rac)s + kakrkmc2
.

If the load disturbance M(t) is used alone, the original structure of the system can
be rearranged as shown in Figure 2.6, and the following statements can be used to find the
overall model

>> g2=feedback(1/c/(T2*s+1)/s, Km/Ra/(T1*s+1)*(Kb*s+c2*Ka*Kr));
g2=collect(simplify(g2),s)

and it can be found that

g2(s) = (T1s + 1)Ra

cRaT2T1s3 + (cRaT1 + cRaT2)s2 + (kbkm + cRa)s + kmc2kakr

.

The transfer function matrix of the system is G(s) = [g1(s), g2(s)].

2.6 Conversion Between Different Model Objects
In the previous sections, three LTI model objects have been discussed. From the numerical
point of view, the state space object is the most suitable one, especially for high-order

2.6. Conversion Between Different Model Objects 25

systems. In fact, each of the model formats can be converted into another, since all of them
are equivalent. In this section, some of the typical model format conversions are discussed.

2.6.1 Conversion to Transfer Functions

Given a state space model (A, B, C, D){
ẋ = Ax + Bu,

y = Cx + Du
(2.23)

with zero initial conditions, one can take the Laplace transform to give{
sIX(s) = AX(s) + BU(s),

Y (s) = CX(s) + DU(s),
(2.24)

where I is the identity matrix, which has the same dimension as matrix A. Thus, from the
first formula of the above equation, one has

X(s) = (sI − A)−1BU(s). (2.25)

The equivalent transfer function model can then be obtained as

G(s) = Y (s)U−1(s) = C(sI − A)−1B + D. (2.26)

In general, for MIMO systems, the transfer function matrix G(s) can also be evaluated
from (2.26).

If the zero-pole-gain model of the system is given, one can expand the numerator and
denominator polynomials expressed in a factorized form and then multiply the numerator
by the gain to obtain the transfer function model.

In the Control Systems Toolbox, if an LTI object is given by G, one can use the
following command to get the equivalent transfer function object G1 by G1=tf(G) .

Example 2.13. Suppose that a system model is described by a state space model

ẋ(t) =

⎡⎢⎢⎣
0 1 0 0
0 0 −1 0
0 0 0 1
0 0 5 0

⎤⎥⎥⎦ x(t) +

⎡⎢⎢⎣
0
1
0

−2

⎤⎥⎥⎦ u(t), y(t) = [1, 0, 0, 0]x(t).

Using the MATLAB statements

>> A=[0,1,0,0; 0,0,-1,0; 0,0,0,1; 0,0,5,0];
B=[0;1;0;-2]; C=[1,0,0,0]; D=0; G=ss(A,B,C,D); G1=tf(G)

the transfer function model can be obtained as

G1(s) = s2 + 1.11 × 10−15s − 3

s4 − 5s2 .

26 Chapter 2. Mathematical Models of Feedback Control Systems

Note that the transfer function (matrix) transformed from a given state space model
is unique.

Example 2.14. For a system given in zero-pole-gain form

G(s) = 6.8
(s + 3)(s + 7)

s(s + 1.8 ± j1.63)(s + 1)2 ,

one can use the following MATLAB statements to get the transfer function model;

>> z=[-3; -7]; p=[0; -1.8+1.63j; -1.8-1.63j; -1; -1];
K=6.8; G=zpk(z,p,K); G1=tf(G)

It follows that

G(s) = 6.8s2 + 68s + 142.8

s5 + 5.6s4 + 14.1s3 + 15.39s2 + 5.897s
,

and one can verify the results by hand.

2.6.2 Conversion to Zero-Pole-Gain Models

Having obtained the transfer function model, it is not a difficult task to get the equivalent
zero-pole-gain model. One can easily solve this problem if one represents the numerator
and denominator by their factorized forms. In the Control Systems Toolbox, one can use
the function G1=zpk(G) to convert an LTI object G into its equivalent zero-pole-gain
object G1.

Example 2.15. The state space model given in Example 2.13 can be converted into a zero-
pole-gain model using the following MATLAB statements:

>> A=[0,1,0,0; 0,0,-1,0; 0,0,0,1; 0,0,5,0];
B=[0;1;0;-2]; C=[1,0,0,0]; D=0; G=ss(A,B,C,D); G1=zpk(G)

where

G(s) = (s − 1.732)(s + 1.732)

s2(s − 2.236)(s + 2.236)
.

Example 2.16. If one has obtained the transfer function model, it is easy to find the equiv-
alent zero-pole-gain model using MATLAB. For instance, the zero-pole-gain model of the
transfer function of Example 2.14 can be found using the following MATLAB statements:

>> Z=[-3; -7]; P=[0; -1.8+1.63j; -1.8-1.63j; -1; -1];
K=6.8; G=zpk(Z,P,K); G1=tf(G); G2=zpk(G1)

where

G2(s) = 6.8(s + 7)(s + 3)

s(s + 1)2(s2 + 3.6s + 5.897)
.

If there are complex poles or zeros, a second-order polynomial will be used to represent the
complex conjugates.

2.6. Conversion Between Different Model Objects 27

For an MIMO state space model, the zeros of the system cannot be easily obtained.
However, one can rely on the MATLAB function z=tzero(G) provided in the Control
Systems Toolbox to find the transmission zeros z of the system G; see [5].

Example 2.17. Consider the state space expression for a two input–two output system
given by

ẋ =

⎡⎢⎢⎣
2.25 −5 −1.25 −0.5
2.25 −4.25 −1.25 −0.25
0.25 −0.5 −1.25 −1
1.25 −1.75 −0.25 −0.75

⎤⎥⎥⎦ x +

⎡⎢⎢⎣
4 6
2 4
2 2
0 2

⎤⎥⎥⎦u, y =
[

0 0 0 1
0 2 0 2

]
x.

The transmission zeros can be easily obtained using

>> A=[2.25, -5, -1.25, -0.5; 2.25, -4.25, -1.25, -0.25;
0.25, -0.5, -1.25,-1; 1.25, -1.75, -0.25, -0.75];

B=[4, 6; 2, 4; 2, 2; 0, 2]; C=[0, 0, 0, 1; 0, 2, 0, 2];
D=zeros(2,2); G=ss(A,B,C,D); Z=tzero(G)

and the transmission zeros are z1,2 = −0.6250 ± j 0.7806.

2.6.3 State Space Realizations

Although, from a given state space model, the unique transfer function (matrix) can be
obtained, the inverse transformation, i.e., finding a state space expression or realization
from the given transfer function, is not unique. It has been shown through the RLC example
in Sec. 2.1 that the state space expression can be different if the state variables are selected
differently. The transformation process from a given transfer function to a state space
expression is referred to as a state space realization of the transfer function. It is equivalent
to saying that a given transfer function model may have an infinite number of different state
space realizations. The commonly used state space realization of an LTI model G can be
obtained from G1 = ss(G) .

Example 2.18. Consider an SISO transfer function

G(s) = s3 + 7s2 + 24s + 24

s4 + 10s3 + 35s2 + 50s + 24
.

Using the MATLAB statements

>> num=[1,7,24,24]; den=[1,10,35,50,24]; G=tf(num,den); G1=ss(G)

the state space model of the system can be obtained:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ(t) =

⎡⎢⎢⎣
−10 −4.375 −3.125 −1.5

8 0 0 0
0 2 0 0
0 0 1 0

⎤⎥⎥⎦ x(t) +

⎡⎢⎢⎣
2
0
0
0

⎤⎥⎥⎦ u(t),

y(t) = [0.5, 0.4375, 0.75, 0.75]x(t).

28 Chapter 2. Mathematical Models of Feedback Control Systems

Example 2.19. An MIMO transfer function matrix can also be converted into a state space
model using the same ss() function. Consider the MIMO transfer function matrix

G(s) =
[

1/(s + 1) 0 (s − 1)/[(s + 1)(s + 2)]
−1/(s − 1) 1/(s + 2) 1/(s + 2)

]
.

Using the MATLAB statements

>> s=tf(’s’); h11=tf(1,[1,1]); h12=0; h13=(s-1)/(s+1)/(s+2);
h21=tf(-1,[1,-1]); h22=tf(1,[1,2]); h23=tf(1,[1,2]);
H=[h11,h12,h13; h21,h22,h23]; G=ss(H)

one can get the state space model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =

⎡⎢⎢⎢⎢⎢⎢⎣
−1 0 0 0 0 0
0 1 0 0 0 0
0 0 −2 0 0 0
0 0 0 −3 −2 0
0 0 0 1 0 0
0 0 0 0 0 −2

⎤⎥⎥⎥⎥⎥⎥⎦ x(t) +

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
1 0 0
0 1 0
0 0 2
0 0 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦u(t),

y(t) =
[

1 0 0 0.5 −0.5 0
0 −1 1 0 0 1

]
x(t).

Similarity transformation of state space models

Since the selection of state variables can be different, the realization of a given transfer
function model can also be different.

Definition 2.3. Suppose that there exists a nonsingular matrix T . Define a new state variable
vector z such that z = T x. The new state space expression in vector z can be written as

{
ż = Atz + Btu,

y = Ctz + Du, z(0) = T x(0),
(2.27)

where At = T AT −1, Bt = T B, Ct = CT −1.

The transformation under matrix T is referred to as a similarity transformation.

The MATLAB function ss2ss() is provided in the Control Systems Toolbox to
perform a similarity transformation of state space models. The syntax of the function is
G1 = ss2ss(G,T) , where G is the original state space object, and T is the similarity

transformation matrix. The transformed state space object under T is returned in G1.

2.6. Conversion Between Different Model Objects 29

Controllable canonical form

Suppose that the transfer function model is given as in (2.12). The controllable canonical
form can then be written as

{
ẋ =Acx+Bcu

y=Ccx+Du
=⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
ẋ=

⎡⎢⎢⎢⎢⎢⎣
0 1 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 1
−a1 −a2 · · · −an

⎤⎥⎥⎥⎥⎥⎦ x+

⎡⎢⎢⎢⎢⎢⎣
0
0
...

0
1

⎤⎥⎥⎥⎥⎥⎦u,

y = [b1, b2, . . . , bn]x.

(2.28)

Observable canonical form

The observable canonical form of (2.12) is

{
ẋ=Aox+Bou

y=Cox+Du
=⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
ẋ=

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0 −a1
1 0 · · · 0 −a2
0 1 · · · 0 −a3
...

...
. . .

...
...

0 0 · · · 1 −an

⎤⎥⎥⎥⎥⎥⎦ x+

⎡⎢⎢⎢⎢⎢⎣
b1
b2
b3
...

bn

⎤⎥⎥⎥⎥⎥⎦u,

y = [0, 0, . . . , 1]x.

(2.29)

It can be seen that the controllable and observable canonical forms are dual. That is,

Ac = AT
o , Bc = CT

o , Cc = BT
o , (2.30)

where (Ac, Bc, Cc, D) denotes the state space model of the controllable canonical realiza-
tion, and (Ao, Bo, Co, D) denotes the realization of the observable canonical form.

Jordanian canonical form

Assume that the eigenvalues of the matrix A are λ1, λ2, . . . , λn and its ith eigenvector
corresponding to the ith eigenvalue λi is denoted by vi such that

Avi = λivi , i = 1, 2, . . . , n. (2.31)

The modal matrix � of A is defined as

� = T −1AT =

⎡⎢⎢⎢⎣
J1

J2
. . .

Jk

⎤⎥⎥⎥⎦ , (2.32)

where the Ji’s are referred to as the Jordanian matrices. Suppose that there exists a transfor-
mation matrix Tc such that the given state space model can be transformed into a controllable
canonical form; then a transformation matrix T can be constructed as T = UTc such that a
modal realization can be obtained, where U = [U1, U2, . . . , Uk]. The following two cases

30 Chapter 2. Mathematical Models of Feedback Control Systems

are considered for a Jordanian canonical form:

1. If λi,i+1 is a complex conjugate pair, such that λi,i+1 = −σi ± jωi , the Jordanian block
takes the form

Ji =
[

σi ωi

−ωi σi

]
, Ui =

⎡⎢⎢⎢⎣
1 0
σi ωi

...
...

Re[λn−1
i] Im[λn−1

i]

⎤⎥⎥⎥⎦ . (2.33)

2. If λi is a real eigenvalue with multiplicity of mi , the Jordanian block Ji is

Ji =

⎡⎢⎢⎢⎣
λi 1 0 · · · 0
0 λi 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · λi

⎤⎥⎥⎥⎦ (2.34)

and the transformation matrix block Ui is

Ui=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
λi 1 0 · · · 0
λ2

i 2λi 1 · · · 0
...

...
...

. . .
...

λn−1
i

d

dλi

(λn−1
i)

1

2!
d2

dλ2
i

(λn−1
i) · · · 1

(mi − 1)!
dmi−1

dλ
mi−1
i

(λn−1
i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.35)

A MATLAB function canon() is provided in the Control Systems Toolbox with
syntax [G1,T]=canon(G,type) , where G is the state space object of the original
system, and G1 is the state space object obtained after conversion. The argument type
can be either ’companion’ (for the companion form of realization) or ’modal’ (for the
modal form, i.e., the Jordanian realization). The transformation matrix is returned in T .

Example 2.20. Consider a system model given by

G(s) = 3s2 + 21s + 36

s4 + 5s3 + 10s2 + 10s + 4
.

Using the MATLAB statements

>> G=tf([3 21 36],[1 5 10 10 4]); G1=canon(G,’modal’)

the Jordanian realization of the system can be obtained:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ(t) =

⎡⎢⎢⎣
−2 0 0 0
0 −1 1 0
0 −1 −1 0
0 0 0 −1

⎤⎥⎥⎦ x(t) +

⎡⎢⎢⎣
−40

0
40.988

46

⎤⎥⎥⎦ u(t),

y(t) = [0.075 0 − 0.366 0.3913]x(t).

2.6. Conversion Between Different Model Objects 31

Example 2.21. Consider the transfer function model given by

G(s) = 6s2 + 30s + 36

s5 + 12s4 + 51s3 + 98s2 + 98s + 40
.

The model can be entered into the MATLAB environment and the required realizations of
the system can also be obtained:

>> G=tf([6,30,36],[1,12,51,98,98,40]); G=ss(G);
[G1,T1]=canon(G,’modal’), [G2,T2]=canon(G,’companion’)

It can be found that the Jordanian form can be written as

A1 =

⎡⎢⎢⎢⎢⎣
−5 0 0 0 0
0 −4 0 0 0
0 0 −1 1 0
0 0 −1 −1 0
0 0 0 0 −1

⎤⎥⎥⎥⎥⎦ , B1 =

⎡⎢⎢⎢⎢⎣
−23.049
−31.062
3.8582
17.362

−15.334

⎤⎥⎥⎥⎥⎦ , CT
1 =

⎡⎢⎢⎢⎢⎣
−0.022969
0.012878
0.036591

−0.073182
−0.065216

⎤⎥⎥⎥⎥⎦
with the conversion matrix T1,

T1 =

⎡⎢⎢⎢⎢⎣
−23.049 −20.168 −11.525 −3.2413 −1.4406
−31.062 −31.062 −18.443 −5.3387 −2.4267
3.8582 7.4754 10.128 5.4106 3.3157
17.362 23.391 19.954 5.7723 2.11

−15.334 −21.084 −19.167 −6.948 −4.7917

⎤⎥⎥⎥⎥⎦ .

The companion canonical form of the system is

A2 =

⎡⎢⎢⎢⎢⎣
0 0 0 0 −40
1 0 0 0 −98
0 1 0 0 −98
0 0 1 0 −51
0 0 0 1 −12

⎤⎥⎥⎥⎥⎦ , B2 =

⎡⎢⎢⎢⎢⎣
1
0
0
0
0

⎤⎥⎥⎥⎥⎦ , CT
2 =

⎡⎢⎢⎢⎢⎣
0
0
6

−42
234

⎤⎥⎥⎥⎥⎦
with the conversion matrix T2,

T2 =

⎡⎢⎢⎢⎢⎣
1 1.5 1.5938 0.76563 0.76563
0 0.125 0.375 0.39844 0.76563
0 0 0.03125 0.09375 0.39844
0 0 0 0.0078125 0.09375
0 0 0 0 0.0078125

⎤⎥⎥⎥⎥⎦ .

Balanced realization

Before discussing the balanced realization problem, we consider the following illustrative
system [30]:[

ẋ1
ẋ2

]
=
[−1 0

0 −2

] [
x1
x2

]
+
[

10−6

106

]
u, y(t) = [106 10−6]

[
x1
x2

]
.

32 Chapter 2. Mathematical Models of Feedback Control Systems

It can be seen that the two elements in the B vector and those of the corresponding values
in the C vector are significantly different. If a new pair of state variables z1 = 106x1 and
z2 = 10−6x2 are selected, the system can be transformed into[

ż1
ż2

]
=
[−1 0

0 −2

] [
z1
z2

]
+
[

1
1

]
u, y(t) = [1 1]

[
z1
z2

]
,

where the elements in the new B and C vectors are of the same numeric order. One can
observe here that the introduced transformation matrix rescales the coordinates of the system
to form a set of new coordinates which look more balanced.

A MATLAB function balreal()is provided in the Control Systems Toolbox and
can be used to perform the balanced realization of a given stable state space model. The
actual algorithm for doing this transformation is given in the next chapter. The function
[G1,g,T] = balreal(G) can be used to find the balanced realized state space

object G1, where the existing state space object is given by G. The transformation matrix is
returned in T and the diagonals of the Gramians, which will be defined in the next chapter,
of the new system will be returned in vector g.

Example 2.22. Consider again the system model given in Example 2.18, using the following
MATLAB statements:

>> num=[1,7,24,24]; den=[1,10,35,50,24]; G=tf(num,den);
[G1,Sig,T]=balreal(ss(G));

the balanced realization of the system can be obtained as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ż(t) =

⎡⎢⎢⎣
−0.81996 −0.31463 0.73015 0.07656
0.31463 −0.44795 3.7879 0.23645
0.73015 −3.7879 −7.109 −1.3934
0.07656 −0.23645 −1.3934 −1.6231

⎤⎥⎥⎦ z(t) +

⎡⎢⎢⎣
0.92156

−0.16627
−0.42015
−0.04307

⎤⎥⎥⎦ u(t),

y(t) = [0.9216, 0.1663, − 0.4201, − 0.0431]z(t).

It can be seen that in the balanced realization of an SISO system, the absolute values
of the corresponding elements in the B and C vectors are the same. But for MIMO cases
the above argument may not be true [5].

Minimum realization

It has been shown in Example 2.8 that the order of the overall model obtained by a parallel
connection of blocks may be higher than the actual order of the system. In the real world,
the state space model established using other methods may also produce models with an
order higher than necessary or higher than the minimum.

This leads to the following question: What is the lowest possible order for a given
system? This is the problem of finding the minimum realization.

For an SISO transfer function or a zero-pole-gain representation, the minimum re-
alization solution is very simple and straightforward. If the poles and zeros at the same

2.6. Conversion Between Different Model Objects 33

locations can be cancelled out (also called a pole-zero cancellation), the minimum realized
model can be obtained immediately.

The situation with the state space expression is not so straightforward. Fortunately,
a MATLAB function minreal() provided in the Control Systems Toolbox can be used
directly for solving the minimum realization problem. The syntax of the function is

G1=minreal(G) ,

where the original LTI object is given by G and the minimum realized one is given in the
object G1.

Example 2.23. Consider a fourth-order state space model given by

ẋ =

⎡⎢⎢⎣
−5 8 0 0
−4 7 0 0
0 0 0 4
0 0 −2 6

⎤⎥⎥⎦ x +

⎡⎢⎢⎣
4

−2
2
1

⎤⎥⎥⎦ u, y = [2 − 2 − 2 2]x.

Using the MATLAB statements

>> A=[-5,8,0,0; -4,7,0,0; 0,0,0,4; 0,0,-2,6]; B=[4; -2; 2; 1];
C=[2,-2,-2,2]; D=0; G=ss(A,B,C,D); Gm=minreal(G)

we are prompted that “2 states removed,” and the minimum realized model can easily be
obtained as⎧⎪⎨⎪⎩ ż(t) =

[−1 −4.4409 × 10−16

5.3291 × 10−15 2

]
z(t) +

[
4.2426
2.2361

]
u(t),

y(t) = [2.8284, −0.89443]z(t).

Note that MATLAB may return very small numbers instead of the actual value of zero after
numerical operations. In fact, the zero-pole-gain model of the given fourth-order state space

model can be obtained with the zpk(G) command as

G(s) = 10(s − 2.6)(s − 3)(s − 4)

(s + 1)(s − 2)(s − 3)(s − 4)
.

It can be seen that there are common pole-zero pairs at s = 3 and s = 4. Canceling out
these two pairs yields a transfer function of

Ĝ(s) = 10(s − 2.6)

(s + 1)(s − 2)
,

which is the minimum realization of the system.

34 Chapter 2. Mathematical Models of Feedback Control Systems

2.6.4 Conversion Between Continuous and Discrete-Time Models

If a model is described with a continuous LTI object G, its discretized version under the
sampling interval T can be easily obtained with the function call Gd=c2d(G,T) . The
default discretization method used is the zero-order-hold (ZOH) method. If one wants to use
Tustin’s method, the function can be called with Gd=c2d(G,T ,’Tustin’) . Of course

one can even use more conversion algorithms and details prompted by the help c2d
command.

If, on the other hand, a discrete-time object Gd is known, the continuous version of it
can be obtained with G=d2c(Gd) , where no sampling interval T is necessary, since the
information is already contained in the object Gd .

Example 2.24. Consider again the multivariable system shown in Example 2.17. If one
chooses the sampling interval of T = 0.1 second, the equivalent discrete-time version of
the system can be found with the statements

>> A=[2.25, -5, -1.25, -0.5; 2.25, -4.25, -1.25, -0.25;
0.25, -0.5, -1.25,-1; 1.25, -1.75, -0.25, -0.75];

B=[4, 6; 2, 4; 2, 2; 0, 2]; C=[0, 0, 0, 1; 0, 2, 0, 2];
D=zeros(2,2); G=ss(A,B,C,D); Gd=c2d(G,0.1)

from which it is found that the matrices in the discrete-time system are

F =

⎡⎢⎢⎣
1.1915 −0.4455 −0.1013 −0.04215
0.2008 0.6124 −0.1058 −0.01884

0.01526 −0.03499 0.8849 −0.09054
0.1147 −0.1622 −0.01973 0.9279

⎤⎥⎥⎦ , G=

⎡⎢⎢⎣
0.383253 0.5527

0.1906 0.3694
0.1879 0.1764

0.004833 0.1927

⎤⎥⎥⎦ .

Example 2.25. If the continuous model is given by

G(s) = 1

(s + 2)3 e−2s ,

and the sampling interval is T = 0.1 second, the following statements can be used to
discretize the system:

>> s=tf(’s’); G=1/(s+2)ˆ3; G.ioDelay=2

If the ZOH and Tustin algorithms are used, one may use the statements

>> G1=c2d(G,0.1) % ZOH method
G2=c2d(G,0.1,’Tustin’) % Tustin algorithm

and it can be found that

GZOH (z) = 0.0001436z2 + 0.0004946z + 0.0001064

z3 − 2.456z2 + 2.011z − 0.5488
z−20,

GT ustin(z) = 9.391 × 10−5z3 + 0.0002817z2 + 0.0002817z + 9.391 × 10−5

z3 − 2.455z2 + 2.008z − 0.5477
z−20.

2.7. An Introduction to System Identification 35

If inverse conversions are used, i.e.,

>> G1c=d2c(G1), G2c=d2c(G2)

it can be found that

G1c(s) = 1.736 × 10−17s2 − 5.561 × 10−17s + 1

s3 + 6s2 + 12s + 8
e−2s ,

G2c(s) = 9.391 × 10−5s3 + 0.003096s2 + 0.04542s + 1.01

s3 + 6.02s2 + 12.08s + 8.081
e−2s .

2.7 An Introduction to System Identification
So far, the previous descriptions regarding linear control systems all assume that the system
model has been given. In real applications, not all the plant models can be derived with
existing physical laws. The internal structure of the plant may not even be known at all.
Thus, reconstructing the system model from the measured data, is referred to as system
identification.

System identification is a general term used to describe mathematical tools and algo-
rithms that build dynamical models from measured data. A dynamical model in this context
is a mathematical description of the dynamic behavior of a system or process.

In real applications, many directly measured data are useful in identifying the model
of the system, for instance, frequency response data, and input and output signals. In this
section, we focus on the identification of discrete-time transfer functions from the measured
input and output signals.

2.7.1 Identification of Discrete-Time Systems

A typical discrete-time transfer function is usually given by

G
(
z−1
)

= b1 + b2z
−1 + · · · + bmz−m+1

1 + a1z−1 + a2z−2 + · · · + anz−n
z−d (2.36)

and it corresponds to the difference equation

y(t) + a1y(t − 1) + a2y(t − 2) + · · · + any(t − n)

= b1u(t − d) + b2u(t − d − 1) + · · · + bmu(t − d − m + 1) + ε(t)
(2.37)

where ε(t) can be regarded as the identification residuals. Here the shorthand notation y(t)

is used for the output signal y(kT), and y(t − 1) can then be used to describe the output at
the previous sample, i.e., y[(k − 1)T]. Suppose that a set of input and output signals has
been measured and written as u = [u(1), u(2), . . . , u(M)]T, y = [y(1), y(2), . . . , y(M)]T.
From (2.37), it can be found that

y(1) = −a1y(0) − · · · − any(1−n) + b1u(1−d) + · · · + bmu(2−m−d) + ε(1)

y(2) = −a1y(1) − · · · − any(2−n) + b1u(2−d) + · · · + bmu(3−m−d) + ε(2)
...

...
...

...

y(M) = −a1y(M−1) − · · · − any(M−n) + b1u(M−d)

+ · · · + bmu(M + 1 − m − d) + ε(M)

36 Chapter 2. Mathematical Models of Feedback Control Systems

where y(t) and u(t) are assumed to be zero when t ≤ 0. The matrix form of the above
equations can be written as

y = �θ + ε, (2.38)

where

�=

⎡⎢⎢⎢⎣
y(0) · · · y(1 − n) u(1 − d) · · · u(2 − m − d)

y(1) · · · y(2 − n) u(2 − d) · · · u(3 − m − d)
...

...
...

...

y(M−1) · · · y(M − n) u(M − d) · · · u(M+1−m−d)

⎤⎥⎥⎥⎦ (2.39)

θT = [−a1, −a2, . . . ,−an, b1, . . . , bm], εT = [ε(1), . . . , ε(M)]. (2.40)

To minimize the sum of squared residuals, i.e.,

min
θ

M∑
i=1

ε2(i),

the optimum estimation to the undetermined elements in θ can be written as

θ = [�T�]−1�Ty. (2.41)

Since the sum of squared residuals is minimized, the method is also known as the least
squares algorithm [31]. Note that �T� might be ill-conditioned if the input excitation
signal u(t) is not properly designed for the identification experiments. This input signal
design issue will be discussed and illustrated in Sec. 2.7.3.

A function arx() is provided in the System Identification Toolbox to identify the
discrete-time model from measured input and output data. If the measured input and output
signals are expressed by column vectors u and y, and the orders of the numerator and
denominator are assumed to be m − 1 and n, respectively, and the delay term is d, the
following statement can be used: H=arx([y, u], [n,m,d]) .

The returned variable H is an idpoly object, where H.A and H.B represent the
numerator and denominator polynomials of the identified system, respectively.

Example 2.26. Assume that the measured input and output data are given as in Table 2.1.
One may assume that the order of the numerator and denominator is selected as 4, with a
delay of 1; then the following statements can be used to identify the system model:

>> u=[1.4601,0.8849,1.1854,1.0887,1.413,1.3096,1.0651,0.7148,...
1.3571,1.0557,1.1923,1.3335,1.4374,1.2905,0.841,1.0245,...
1.4483,1.4335,1.0282,1.4149,0.7463,0.9822,1.3505,0.7078,...
0.8111,0.8622,0.8589,1.183,0.9177,0.859,0.7122,1.2974,...
1.056,1.4454,1.0727,1.0349,1.3769,1.1201,0.8621,1.2377,...
1.3704,0.7157,1.245,1.0035,1.3654,1.1022,1.2675,1.0431]’;

2.7. An Introduction to System Identification 37

Table 2.1. Measured input and output data.

t u(t) y(t) t u(t) y(t) t u(t) y(t)

0 1.4601 0 1.6 1.4483 16.411 3.2 1.056 11.871
0.1 0.8849 0 1.7 1.4335 14.336 3.3 1.4454 13.857
0.2 1.1854 8.7606 1.8 1.0282 15.746 3.4 1.0727 14.694
0.3 1.0887 13.194 1.9 1.4149 18.118 3.5 1.0349 17.866
0.4 1.413 17.41 2 0.7463 17.784 3.6 1.3769 17.654
0.5 1.3096 17.636 2.1 0.9822 18.81 3.7 1.1201 16.639
0.6 1.0651 18.763 2.2 1.3505 15.309 3.8 0.8621 17.107
0.7 0.7148 18.53 2.3 0.7078 13.7 3.9 1.2377 16.537
0.8 1.3571 17.041 2.4 0.8111 14.818 4 1.3704 14.643
0.9 1.0557 13.415 2.5 0.8622 13.235 4.1 0.7157 15.086
1 1.1923 14.454 2.6 0.8589 12.299 4.2 1.245 16.806
1.1 1.3335 14.59 2.7 1.183 11.6 4.3 1.0035 14.764
1.2 1.4374 16.11 2.8 0.9177 11.607 4.4 1.3654 15.498
1.3 1.2905 17.685 2.9 0.859 13.766 4.5 1.1022 14.679
1.4 0.841 19.498 3 0.7122 14.195 4.6 1.2675 16.655
1.5 1.0245 19.593 3.1 1.2974 13.763 4.7 1.0431 16.63

y=[0,0,8.7606,13.1939,17.41,17.6361,18.7627,18.5296,17.0414,...
13.4154,14.4539,14.59,16.1104,17.6853,19.4981,19.5935,...
16.4106,14.3359,15.7463,18.1179,17.784,18.8104,15.3086,...
13.7004,14.8178,13.2354,12.2993,11.6001,11.6074,13.7662,...
14.195,13.763,11.8713,13.8566,14.6944,17.8659,17.6543,...
16.6386,17.1071,16.5373,14.643,15.0862,16.8058,14.7641,...
15.4976,14.679,16.6552,16.6301]’;

t1=arx([y,u],[4,4,1])

The following results are obtained and displayed:

1 Discrete-time IDPOLY model: A(q)y(t) = B(q)u(t) + e(t)
2 A(q) = 1 - qˆ-1 + 0.25 qˆ-2 + 0.25 qˆ-3 - 0.125 qˆ-4
3 B(q) = 4.83e-008 qˆ-1 + 6 qˆ-2 - 0.5999 qˆ-3 - 0.1196 qˆ-4
4 Estimated using ARX
5 Loss function 7.09262e-010 and FPE 9.92966e-010
6 Sampling interval: 1

From the displayed information, the identified model can be written as

G
(
z−1
)

= 4.83 × 10−8z−1 + 6z−2 − 0.5999z−3 − 0.1196z−4

1 − z−1 + 0.25z−2 + 0.25z−3 − 0.125z−4 ,

i.e.,

G(z) = 4.83 × 10−8z3 + 6z2 − 0.5999z − 0.1196

z4 − z3 + 0.25z2 + 0.25z − 0.125
.

In fact, the data were generated from the system in Example 2.5. It can be seen that
the model identified is rather close to the original model. Also, the sampling interval can be
found from Table 2.1, where T = 0.1 second. A formal identification method is to establish
the data object U with U=iddata(y,u,T) . Then the following statements can be used
to identify the system model:

>> U=iddata(y,u,0.1); T=arx(U,[4,4,1]); H=tf(T); G=H(1)

38 Chapter 2. Mathematical Models of Feedback Control Systems

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

T
o:

 y
1

Linear Simulation Results

Time (sec)

A
m

pl
itu

de

← output response

↓ input sequence

(a) with m = 4, n = 4, d = 1

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

T
o:

 y
1

Linear Simulation Results

Time (sec)

A
m

pl
itu

de

← output response

↓ input sequence

(b) m = 3, n = 3, d = 1

Figure 2.7. Comparisons of identification results.

It can then be found that

G(z) = 4.83 × 10−8z3 + 6z2 − 0.5999z − 0.1196

z4 − z3 + 0.25z2 + 0.25z − 0.125
.

The transfer function model converted from the tf() function is in fact a double
input transfer function matrix. The first one is the expected transfer function model, and
the second is the transfer function from error signal ε(k) to the output signal. This model is
discarded in the example.

To verify the identified model, the MATLAB functionlsim() can be used to simulate
the system driven by the given u sequence. Details of the function will be given later in
Sec. 3.3.3. The response is shown in Figure 2.7(a), superimposed as open circles by the
measured output sequence y. It can be seen that the identified model is very accurate:

>> t=0:0.1:4.7; lsim(G,u,t); hold on, plot(t,y,’o’,t,u,’o’)

If the orders are improperly selected as m = 3, n = 3, d = 1, the identified model is
then obtained as

G1(z) = 0.04886z2 + 6.017z + 2.806

z3 − 0.4362z2 − 0.214z + 0.2828
,

and the verification shown in Figure 2.7(b) illustrates that the fitting of the model is not so
good. Thus, the selection of the orders is also very crucial in the identification process:

>> T=arx(U,[3,3,1]); H=tf(T); G1=H(1)
lsim(G1,u,t); hold on, plot(t,y,’o’,t,u,’o’)

The identification can be completed from (2.39) and (2.41) without the use of the
arx() function. The following statements can be used to solve the same problem:

>> Phi=[[0;y(1:end-1)] [0;0;y(1:end-2)],...
[0;0;0; y(1:end-3)] [0;0;0;0;y(1:end-4)],...
[0;u(1:end-1)] [0;0;u(1:end-2)],...
[0;0;0; u(1:end-3)] [0;0;0;0;u(1:end-4)]]

T=Phi\y; Gd=tf(ans(5:8),[1,-ans(1:4)],’Ts’,0.1)

2.7. An Introduction to System Identification 39

Figure 2.8. GUI for system identification.

The identified model is

G(z) = −5.824 × 10−7z3 + 6z2 − 0.5999z − 0.1196

z4 − z3 + 0.25z2 + 0.25z − 0.125
.

A GUI ident is provided in the System Identification Toolbox, which can be used
to identify discrete-time models in a visual way. If one typesident command, an interface,
as shown in Figure 2.8, can be displayed.

To identify a system model, one should first provide the relevant data to the interface.
This can be done by clicking the upper left Import Data list box. Select menu item Time-
Domain Data. Then, a dialog box pops up, as shown in Figure 2.9(a), and the input and
output data can be entered into the interface by filling them into the Input and Output
columns, respectively. The sampling interval should also be filled in. Click the Import
button to complete data input.

If one wants to identify the autoregressive exogenous (ARX) model, the Parametric
Models item in the Estimate list box should be selected, and the dialog box shown in
Figure 2.9(b) will be displayed. The expected orders of the system can be specified. Then,
click the Estimate button to initiate the identification process. When the identification
process is completed, the dialog box shown in Figure 2.10(a) will show the identification
results. It can be seen that the identification results obtained in the interface are exactly the
same as the result obtained using arx() function.

The final interface is shown in Figure 2.10(b). The user may further select other tasks
for the analysis of the identified model.

40 Chapter 2. Mathematical Models of Feedback Control Systems

(a) data input dialog box (b) order selection dialog box

Figure 2.9. Dialog boxes for system identification.

(a) identification results (b) identification solutions

Figure 2.10. Dialog boxes for system identification.

2.7.2 Order Selection

The Akaike information criterion (AIC) is a statistical model fit measure defined by [31, 32]

AIC = lg

{
det

[
1

M

M∑
i=1

ε(i, θ)εT(i, θ)

]}
+ k

M
, (2.42)

2.7. An Introduction to System Identification 41

Table 2.2. AIC for different order combinations.

The delay is d = 1
n m = 1 2 3 4 5 6 7
1 1.484 −0.25541 −0.66303 −1.0494 −1.57 −2.6414 −3.4085
2 1.346 −2.1263 −2.3685 −4.9326 −5.2359 −7.4658 −7.6678
3 1.0658 −2.8886 −3.4758 −5.4795 −5.6407 −7.7744 −7.9316
4 1.0329 −7.8839 −10.53 −20.733 −20.973 −20.984 −20.9737
5 1.0043 −10.034 −13.406 −20.971 −21.002 −21.037 −21.0356
6 1.023 −13.694 −18.965 −20.982 −21.037 −21.148 −21.1105
7 0.9909 −16.6423 −20.7387 −21.0160 −21.0324 −21.1105 −21.1115

The delay is d = 2
1 −0.29215 −0.70464 −1.0849 −1.6057 −2.6827 −3.415 −3.5863
2 −2.1672 −2.4101 −4.9737 −5.2763 −7.477 −7.7083 −10.2034
3 −2.929 −3.5109 −5.5163 −5.6663 −7.8124 −7.9722 −10.5894
4 −7.9075 −10.57 −20.775 −21.013 −21.026 −21.015 −20.9850
5 −10.07 −13.438 −21.011 −21.036 −21.079 −21.077 −21.0617
6 −13.71 −18.991 −21.023 −21.078 −21.184 −21.149 −21.1646
7 −16.6792 −20.7794 −21.0574 −21.0736 −21.1488 −21.1444 −21.1393

where M is the number of measurement points, the θ vector contains the identified parame-
ters, and k is the number of parameters to be identified. The function v=aic(H) , where
H is an idpoly object calculated by the arx() function, can be used to evaluate the AIC
value v. If the AIC value is very small, for instance, smaller than −20, which is equivalent
to a loss function of 10−10, the n, m, d values can be used as the orders of the identified
system.

Example 2.27. Consider again the identification problem in Example 2.26. For different
order combinations, the AIC values can be obtained as shown in Table 2.2. It can be seen
that the shaded items are acceptable, and thus the orders of these combinations can be used.
It can also be seen that even though the order can still be increased, it may not make much
of a contribution to the improvement of fitting quality. Thus, the lowest possible orders in
the shaded items, i.e., the (4,4,1) and (3,4,2) combinations in the example, are desirable for
the system:

>> for n=1:7, for m=1:7
T=arx(U,[n,m,1]); TAic1(n,m)=aic(T);
T=arx(U,[n,m,2]); TAic2(n,m)=aic(T);

end, end

2.7.3 Generation of Identification Signals

In the previous example, it can be seen that a 48-point input sequence is generated, and the
original system can be excited by the sequence to generate the output signal. Based on these
signals, the discrete-time model can be identified. However, there may exist some error
in the identification results. This error could be contributed by the inadequately chosen
input signal. In principle, the input signal has to be “rich” enough (in spectrum, or in a
Fourier series expansion sense) to excite the system so that the output signal can reveal the

42 Chapter 2. Mathematical Models of Feedback Control Systems

0 10 20 30 40 50 60

−1

−0.5

0

0.5

1

Figure 2.11. PRBS sequence.

unknown dynamics. A simple example, is when a constant DC signal is used to excite a
system G(s). In the steady state, a constant output signal can be measured. Clearly, only
one point in the Nyquist plot G(0), known as the DC gain, can be identified. Therefore, a
DC signal fails to excite the system dynamics and it cannot be used to excite the system for
system identification purposes. It is desirable to have an input signal that is “persistently
exciting.”

A pseudorandom binary sequence (PRBS) signal is a class of useful, “persistently
exciting” signals suitable for identification purposes. The signals can be generated with the
function u=idinput(k,’prbs’) , where k is the length of the sequence and k = 2n−1
with n an integer.

Example 2.28. To generate a PRBS sequence of length 63, the following statements can
be used:

>> u=idinput(63,’PRBS’); t=[0:.1:6.2]’;
stairs(u), set(gca,’XLim’,[0,63],’YLim’,[-1.1 1.1])

The PRBS generated is shown in Figure 2.11.
With the PRBS signal of length 31, the input and output data can be calculated, from

which the discrete-time transfer function model can be identified as

>> num=[6 -0.6 -0.12]; den=[1 -1 0.25 0.25 -0.125];
G=tf(num,den,’Ts’,0.1);
y=lsim(G,u,t); T1=arx([y,u],[4 4 1])

with the identification results

1 Discrete-time IDPOLY model: A(q)y(t) = B(q)u(t) + e(t)
2 A(q) = 1 - qˆ-1 + 0.25 qˆ-2 + 0.25 qˆ-3 - 0.125 qˆ-4
3 B(q) = -2.141e-015 qˆ-1 + 6 qˆ-2 - 0.6 qˆ-3 - 0.12 qˆ-4
4 Estimated using ARX
5 Loss function 7.46734e-030 and FPE 1.2662e-029

Then the identified model is

G(z) = −2.141 × 10−15z3 + 6z2 − 0.6z − 0.12

z4 − z3 + 0.25z2 + 0.25z − 0.125
.

It can be seen that the model identified is almost the same as the original model. It is
obvious that although much less input-output data are used than used in Example 2.26, the

2.7. An Introduction to System Identification 43

accuracy of the identification is much better. This is why the PRBS signal is a good input
signal to use for identification problems.

There exist many identification algorithms for continuous systems. For instance,
Levy’s method can be used in frequency response fitting to the original model [33]. How-
ever, since the frequency response fitting may not be unique, the identification results may
sometimes not be usable. Indirect identification methods can be used instead. One may
identify the discrete-time transfer function, then convert the results into continuous systems
with the d2c() function.

Example 2.29. Consider the continuous model

G(s)= s3 + 7s2 + 11s + 5

s4+7s3+21s2+37s+30
.

Let the sampling interval be T = 0.1 second. The following statements can be used to
excite the system with PRBS signals, and the input and output data can be generated:

>> G=tf([1,7,11,5],[1,7,21,37,30]);
t=[0:.2:6]’; u=idinput(31,’PRBS’);
y=lsim(G,u,t); U=arx([y u],[4 4 1]);
G1=tf(U); G1=G1(1); G1.Ts=0.2; G2=d2c(G1)

The identified model is then

G(s) = s3 + 7s2 + 11s + 5

s4 + 7s3 + 21s2 + 37s + 30
.

It can be seen that the identified model is very accurate.
If sinusoidal signals with 81 samples are used instead to excite the original system

model, the following statements can be used to identify the system:

>> t=[0:.1:8]’; u=sin(t); y=lsim(G,u,t); u1=iddata(y,u,0.1);
U=arx(u1,[4 4 1]); G1=tf(U); G1=G1(1); G2=d2c(G1)

Thus the identified model is

G(s) = 0.01361s3 − 0.06793s2 + 9.897s − 2.564

s4 + 7s3 + 21s2 + 37s + 30
.

It can be seen that although more data are used, the identified model is not satisfactory. In
fact, the results may be misleading. It should be noted that the frequency spectrum of the
input data is very narrow. Thus it is not surprising that the sinusoidal signal gives erroneous
results. From this example, one can better appreciate the role of “persistent excitation.” In
fact, �T� in (2.41) might be ill-conditioned if the input excitation signal u(t) is not properly
designed for the identification experiments.

44 Chapter 2. Mathematical Models of Feedback Control Systems

2.7.4 Identification of Multivariable Systems

The arx() function can also be used in the identification of multivariable systems. In
the system, suppose that there are p inputs and q outputs. The difference equation for the
multivariable system can be written as

A(z−1)y(t) = B(z−1)u(t − d) + ε(t), (2.43)

where d is the delay matrix, A(z−1) and B(z−1) are both p × q polynomial matrices, and{
A(z−1) = Ip×q + A1z

−1 + · · · + Ana z
−na ,

B(z−1) = Ip×q + B1z
−1 + · · · + Bnb

z−nb .
(2.44)

With the use of the arx() function, the matrices Ai and Bi can be obtained, and the
transfer function matrix can be extracted with the tf() function.

Example 2.30. Assume that the transfer function matrix is given by

G(z) =

⎡⎢⎢⎣
0.5234z − 0.1235

z2 + 0.8864z + 0.4352

3z + 0.69

z2 + 1.084z + 0.3974
1.2z − 0.54

z2 + 1.764z + 0.9804

3.4z − 1.469

z2 + 0.24z + 0.2848

⎤⎥⎥⎦ .

The two input signals can be individually set to PRBS sequences. To cancel out the corre-
lations of the two sets of signals, the two sequences u1 and u2 are arranged in reverse order.
The following statements can be used to identify the system model:
>> u1=idinput(31,’PRBS’); t=0:.1:3; u2=u1(end:-1:1);

g11=tf([0.5234, -0.1235],[1, 0.8864, 0.4352],’Ts’,0.1);
g12=tf([3, 0.69],[1, 1.084, 0.3974],’Ts’,0.1);
g21=tf([1.2, -0.54],[1, 1.764, 0.9804],’Ts’,0.1);
g22=tf([3.4, 1.469],[1, 0.24, 0.2848],’Ts’,0.1);
G=[g11, g12; g21, g22]; y=lsim(G,[u1 u2],t);
na=4*ones(2); nb=na; nc=ones(2);
U=iddata(y,[u1,u2],0.1); T=arx(U,[na nb nc])

The difference equation identified is a multivariable equation, and it can be converted to
the required multivariable transfer function matrix. For instance, taking into consideration
the subtransfer function item, with the first input versus the first output, the subtransfer
function g11(z) can be extracted from

>> H=tf(T); g11=H(1,1)

and one finds that

g11(z)=
0.5234z11+1.493z10+1.847z9+1.235z8+0.5004z7+0.09574z6−0.01551z5

−0.0137z4−1.683×10−16z3−3.582×10−17z2−4×10−18z+5.362×10−19

z12 + 3.974z11 + 7.431z10 + 8.483z9 + 6.585z8 + 3.611z7 + 1.401z6 .

The order of the model is very high, and thus the minimum realization method to the
model should be used, with relatively large error tolerance of ε = 10−4, to find a closer
transfer function to the original one,

2.7. An Introduction to System Identification 45

>> G11=minreal(g11,1e-4)

and the subtransfer function

g11(z) = 0.5234z − 0.1235

z2 + 0.8864z + 0.4352

can be identified. Using similar methods, the other subtransfer functions can be extracted
from the identified model. The transfer function matrix can also be obtained with

>> H=minreal(H(1:2,1:2),1e-3)

Since the state space equations are not unique, sometimes it is not a good choice to
identify the state space model of the system from measured input and output data, since
there are too many redundant parameters to be identified.

Problems

1. Enter the following system models into the MATLAB environment:

(a) G(s) = s3 + 4s2 + 3s + 2

s2(s + 1)[(s + 4)2 + 4] ,

(b) ẋ(t) =
⎡⎣−0.3 0.1 −0.05

1 0.1 0
−1.5 −8.9 −0.05

⎤⎦ x(t) +
⎡⎣2

0
4

⎤⎦ u(t), y = [1, 2, 3]x(t).

2. Suppose that the models in Problem 1 are all open-loop models. Using MATLAB,
evaluate the closed-loop models if unity negative feedback is assumed. Find all the
open-loop and closed-loop poles and zeros of the above models.

3. Assume that the linear ODEs describing a system are given by⎧⎨⎩
ẋ1(t) = −x1(t) + x2(t),

ẋ2(t) = −x2(t) − 3x3(t) + u1(t)

ẋ3(t) = −x1(t) − 5x2(t) − 3x3(t) + u2(t),

and y = −x2(t) + u1(t) − 5u2(t),

where there are two input signals u1(t) and u2(t). Model the two-input single-output
(TISO) system in the MATLAB workspace.

4. An ODE is given by

y(3)(t) + 13ÿ(t) + 6ẏ(t) + 5y(t) = 2u(t).

Select a set of states and represent the equation in the MATLAB workspace.

5. Find the equivalent transfer function for the state space model

ẋ =
⎡⎣1 2 3

4 5 6
7 8 0

⎤⎦ x +
⎡⎣4

3
2

⎤⎦ u, y = [1, 2, 3]x

and also find the poles and zeros of the model.

46 Chapter 2. Mathematical Models of Feedback Control Systems

6. Assume that in the typical feedback control structure, the blocks are given by

(a) G(s) = 211.87s + 317.64

(s + 20)(s + 94.34)(s + 0.1684)
,

Gc(s) = 169.6s + 400

s(s + 4)
, H(s) = 1

0.01s + 1
;

(b) G(s) = 35786.7s + 108444

(s + 4)(s + 20)(s + 74.04)
, Gc(s) = 1

s
, H(s) = 1

0.01s + 1
;

Find state space models and transfer functions of the overall systems. Get the zero-
pole-gain representations of the systems.

7. Suppose that a typical feedback system is given such that

G(s) = KmJ

Js2 + Bs + Kr

, Gc(s) = Lq

Lqs + Rq

, H(s) = sKv.

Find the model.

8. Enter the following plant model into MATLAB:

G(s) = 1

s5 + 8s4 + 19.5s3 + 19s2 + 7.5s + 1
and evaluate the closed-loop model if unity positive or negative feedback is assumed.
Find and make comments on the closed-loop poles and zeros.

9. Find a state space realization of the plant model given by G(s) = 1/(s+1)3. Comment
on what may affect the Jordanian canonical form. Compare the computer results with
those obtained by direct manual calculations.

10. Consider the system models

(a) ẋ =
⎡⎣−9 −26 −24

1 0 0
0 1 0

⎤⎦ x +
⎡⎣1800000

0
1234

⎤⎦ u, y = [0, 1, 1.5 × 10−5]x

(b) G(s) = 1.25 × 108s2 + 50s + 1.33 × 10−4

s4 + 10s3 + 35s2 + 50s + 24
.

Perform balanced realizations for the systems.

11. Assume that the models of the systems are given by

(a) ẋ =

⎡⎢⎢⎣
−9 −26 −24 0
1 0 0 0
0 1 0 0
0 1 1 −1

⎤⎥⎥⎦ x +

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦ u, y = [0, 1, 1, 2]x

(b) G(s) = 2s2 + 18s + 16

s4 + 10s3 + 35s2 + 50s + 24
.

2.7. An Introduction to System Identification 47

Try to check whether these models are minimally realized. If not, find the minimally
realized models and give an explanation from the transfer function point of view.

12. Suppose that an overall system is composed from the series connection of two blocks
G1(s) and G2(s) given, respectively, by

G1(s) = s + 1

s2 + 3s + 4
and G2(s) = s2 + 3s + 5

s4 + 4s3 + 3s2 + 2s + 1
.

If the state space representation for the overall system is required, compare the differ-
ence in the results using the following two approaches in MATLAB:
(a) Perform the series connection of the two transfer functions, and then find the state

space expression for the overall system model.
(b) Find the state space expressions of the two blocks, and then find the overall system

model.

13. Assume that the multivariable plant G(s) and its precontroller Gc(s) are given by

G(s)=

⎡⎢⎢⎢⎣
−0.252

(1+3.3s)3(1+1800s)

0.43

(1+12s)(1+1800s)

−0.0435

(1+25.3s)3(1+360s)

0.097

(1+12s)(1+360s)

⎤⎥⎥⎥⎦ , Gc(s)=
[−10 77.5

0 50

]
.

Evaluate the closed-loop transfer function matrix under unity negative feedback, and
then find the state space realization.

14. Derive the overall system model from r(t) to y(t) as shown in the following block
diagram:

3
1

s + 1
�

s

s2 + 2

4s + 2

(s + 1)2

1

s2

50

s2 + 2

s3 + 14

� � � � � � �

� �
�

�

�

�

r(t) y(t)

−

15. Assume that the plant model is given by

G(s) = 12

s(s + 1)3 e−2s ,

and the controller is

Gc(s) = 2s + 3

s
.

For a unity negative feedback system, check whether it is possible to express the
closed-loop system by the MATLAB tf object. Please give reasons why.

48 Chapter 2. Mathematical Models of Feedback Control Systems

16. Draw the PRBS sequence for 127 points and draw the autocorrelation function of the
sequence with the xcorr() function.

17. If the block diagram of a linear system is shown as below, derive the total system
model from the input r(t) to the output y(t):

G1(s)� G2(s) G3(s) G4(s) G5(s) G6(s)

H4(s)

�

H2(s) H3(s)

H1(s)

� � � � � � � � �

�

�

�
�

�
�

�

�

r(t) y(t)

18. Suppose that the measured input/output data of a discrete-time model is given in the
table below. Identify the transfer function model, based on the suitable order selection
with AIC values:

i ui yi i ui yi i ui yi

1 0.9103 0 9 0.9910 54.5252 17 0.6316 62.1589
2 0.7622 18.4984 10 0.3653 65.9972 18 0.8847 63.0000
3 0.2625 31.4285 11 0.2470 62.9181 19 0.2727 68.6356
4 0.0475 32.3228 12 0.9826 57.5592 20 0.4364 60.8267
5 0.7361 28.5690 13 0.7227 67.6080 21 0.7665 57.1745
6 0.3282 39.1704 14 0.7534 70.7397 22 0.4777 60.5321
7 0.6326 39.8825 15 0.6515 73.7718 23 0.2378 57.3803
8 0.7564 46.4963 16 0.0727 74.0165 24 0.2749 49.6011

19. For a system model

G(s) = 4s2 − 4

s4 + 7s3 + 18s2 + 22s + 12
,

excite the system by different signals, for instance, step signal, sinusoidal signal, and
PRBS signal. Check how many samples are necessary to accurately identify the system
model.

20. Based on the AIC criterion, suitable orders can be found and the discrete-time model
can be identified. In control systems analysis and design, however, sometimes a low-
order approximate model may be needed. This is the topic of model reduction and
will be explored in Chapter 3. Try to find a good low-order approximation for the data
given in Problem 18 and test how good the reduced-order models are.

21. Suppose that the measured step response data of a continuous system are as shown
in the table below. Identify the transfer function model and, with the help of the AIC

2.7. An Introduction to System Identification 49

values, determine a suitable order combination for the system:

t y(t) t y(t) t y(t) t y(t) t y(t) t y(t)

0 0 1.6 0.2822 3.2 0.3024 4.8 0.3145 6.4 0.3218 8 0.3263
0.1 0.08324 1.7 0.2839 3.3 0.3034 4.9 0.315 6.5 0.3222 8.1 0.3265
0.2 0.1404 1.8 0.2855 3.4 0.3043 5 0.3156 6.6 0.3225 8.2 0.3267
0.3 0.1798 1.9 0.287 3.5 0.3051 5.1 0.3161 6.7 0.3228 8.3 0.3269
0.4 0.2072 2 0.2885 3.6 0.306 5.2 0.3166 6.8 0.3231 8.4 0.3271
0.5 0.2265 2.1 0.2899 3.7 0.3068 5.3 0.3172 6.9 0.3235 8.5 0.3273
0.6 0.2402 2.2 0.2912 3.8 0.3076 5.4 0.3176 7 0.3238 8.6 0.3275
0.7 0.2501 2.3 0.2925 3.9 0.3084 5.5 0.3181 7.1 0.324 8.7 0.3277
0.8 0.2574 2.4 0.2937 4 0.3092 5.6 0.3186 7.2 0.3243 8.8 0.3278
0.9 0.2629 2.5 0.2949 4.1 0.3099 5.7 0.319 7.3 0.3246 8.9 0.328
1 0.2673 2.6 0.2961 4.2 0.3106 5.8 0.3195 7.4 0.3249 9 0.3282
1.1 0.2708 2.7 0.2973 4.3 0.3113 5.9 0.3199 7.5 0.3251 9.1 0.3283
1.2 0.2737 2.8 0.2983 4.4 0.312 6 0.3203 7.6 0.3254 9.2 0.3285
1.3 0.2762 2.9 0.2994 4.5 0.3126 6.1 0.3207 7.7 0.3256 9.3 0.3286
1.4 0.2784 3 0.3004 4.6 0.3133 6.2 0.3211 7.8 0.3258 9.4 0.3288
1.5 0.2804 3.1 0.3014 4.7 0.3139 6.3 0.3214 7.9 0.3261 9.5 0.3289

Chapter 3

Analysis of Linear
Control Systems

The most important property of a linear system is the well-known superposition principle.
Assume that the response of a system to a signal u1(t) is y1(t) and the response to a signal
u2(t) is y2(t). Then, the system is linear if for any constants a and b, the response for the
signal au1(t) + bu2(t) can be represented by ay1(t) + by2(t).

The models discussed in the previous chapter, such as the transfer function model, the
zero-pole-gain model, the state space model (2.18), etc., are all linear time-invariant (LTI)
models. Given a mathematical model describing a linear system, we will discuss in this
chapter other properties which can be obtained about the linear system. First, the stability
and direct stability assessment of LTI systems are discussed in Sec. 3.1. The internal stability
property of feedback control systems will also be discussed. Properties of controllability,
observability, Gramians, Kalman decomposition, and norm evaluations of systems are also
covered in Sec. 3.1. The canonical structural forms of linear control systems and the Kalman
decomposition are presented, and the definitions and evaluations of time moments and
Markov parameters of a linear system are also given.

Equipped with the properties in Sec. 3.1, we will present time domain analysis of
linear systems in Sec. 3.2 and numerical simulation in Sec. 3.3. This enables us to obtain
and sketch the step response, impulse response, and time transient response to any input
signal. This is proved to be an effective and straightforward way to describe the behavior of
the systems. In Sec. 3.4, the root locus of the system is studied which illustrates the behavior
of the system that might be expected from its poles in the complex s-plane. In Sec. 3.5, the
frequency domain analysis of a linear system is performed, with different graphical analysis
tools presented, such as the Bode diagrams, Nyquist plots, and Nichols charts. Finally,
Sec. 3.6 is an introduction to various model reduction techniques for linear systems.

51

52 Chapter 3. Analysis of Linear Control Systems

3.1 Properties of Linear Control Systems
3.1.1 Stability Analysis

Direct stability assessment

When feedback is used, a system could be either stable or unstable. That is, an open-
loop stable system could become unstable or destabilized after feedback control, which is
undesirable. Conversely, an open-loop unstable system could be stable or stabilized, which
is desirable. Therefore, stability is a fundamental requirement for any controlled system.

There are many different stability notions. Here, we first focus on the bounded input–
bounded output (BIBO) stability notion. Then, we discuss the internal stability. BIBO
stability of a system ensures that the output of the system remains bounded over any amount
of time if the input signal is bounded. In other words, if a dynamic system is BIBO stable,
the output signal cannot “blow up” if the input remains finite.

The easiest way to check the stability of a linear continuous system is to check the
pole locations in the complex plane. If there is a pole with a positive real part, the system is
said to be unstable and this pole is referred to as an unstable mode of the system. In other
words, if there is one or more poles on the right half plane (RHP), the system is unstable.
The system is stable if all poles have negative real parts, that is, all poles lie in the left half
plane (LHP).

For poles on the imaginary axis, there are two cases. If a specific pole on the imaginary
axis is simple, that is, multiplicity is only one or it is not repeating, this pole is a critically
stable pole. If a specific pole on the imaginary axis has multiplicity more than one, it is an
unstable pole. Note that BIBO is a stronger stability notion. For example, a pure integrator
is stable but not BIBO stable since, given a bounded input such as a unit step signal, the
output is t , which is unbounded.

The poles of a given LTI model G can be obtained directly with eig(G) or

pole(G) . If there is no right-hand-side s-plane pole for a continuous system G, then
it is stable. If G is a discrete model, however, the magnitudes of the poles, which can
be evaluated by abs(eig(G)) or abs(pole(G)) , are all smaller than 1, and the
system G is stable. To keep the magnitudes of the poles smaller than 1 means that all the
poles are located within a unit circle.

The zeros of the system G can be obtained with the function zero(G) , and the

poles and zeros of G can be sketched with the function pzmap(G) .

Example 3.1. Suppose the transfer function model of a system is given by

G(s) = s3 + 7s2 + 24s + 24

s4 + 10s3 + 35s2 + 50s + 24
.

As illustrated below, the poles can be evaluated and sketched with the statements

>> G=tf([1,7,24,24],[1,10,35,50,24]); eig(G), pzmap(G)

and it can be found that the poles are located at −1, −2, −3, −4, all on the left-hand side
of the s-plane, which means that G is stable. This can also be verified by the pole positions
shown in Figure 3.1.

3.1. Properties of Linear Control Systems 53

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

Pole−Zero Map

Real Axis

Im
ag

in
ar

y
A

xi
s

Figure 3.1. Example 3.1.

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

Pole−Zero Map

Real Axis

Im
ag

in
ar

y
A

xi
s

←unit circle

Figure 3.2. Example 3.2.

Example 3.2. Suppose that in a discrete-time unity negative feedback system, the plant
model is given by

H(z) = 6z2 − 0.6z − 0.12

z4 − z3 + 0.25z2 + 0.25z − 0.125
,

with sampling interval T = 0.1, and the controller is

Gc(z) = 0.3
z − 0.6

z + 0.8
.

The stability of the closed-loop system can be assessed with the following statements:

>> num=[6 -0.6 -0.12]; den=[1 -1 0.25 0.25 -0.125];
H=tf(num,den,’Ts’,0.1); % plant model
z=tf(’z’,’Ts’,0.1); Gc=0.3*(z-0.6)/(z+0.8); % controller model
GG=feedback(H*Gc,1); abs(eig(GG)), pzmap(GG)

It can be seen that the magnitudes of the poles are, respectively, 1.1644, 1.1644, 0.5536,
0.3232, 0.3232. Since the magnitudes of the first two poles are greater than 1, which means
that they are outside the unit circle, then the closed-loop system is unstable. The pole-zero
positions in Figure 3.2 also verify the result.

Well-posedness and internal stability

In terms of good control behavior in a feedback control system, the stability criteria given in
the previous sections are not sufficient since only the input-output stability of the system is
considered. In other words, the stability criteria ensures that if an input-output stable system
is driven by a bounded signal, the output is also bounded. However, it does not guarantee
that the other signals inside the system are bounded. If the signals inside the system are not
bounded, the internal physical structures of the system may be damaged.

Consider the general feedback system structure shown in Figure 3.3 which is an
immediate extension of the typical feedback system structure. In Figure 3.3, the signal d is
often called the external disturbance and the signal n the measurement noise.

Before introducing the concept of internal stability, the definition of well-posedness
will be presented first.

54 Chapter 3. Analysis of Linear Control Systems

Gc(s) G(s) �� � � �

H(s) � ��

�-

r �
d

y

nv

ux1 x2

x3

Figure 3.3. Linear feedback control structure with disturbances.

Definition 3.1. The feedback system shown in Figure 3.3 is said to be well-posed if all nine
closed-loop transfer functions from the input signals (r, d, n) to the output signals (u, y, v)

exist.
Well-posedness can be determined by the following theorem.

Theorem 3.1. The system is well-posed if and only if the 3 × 3 matrix⎡⎣ 1 0 H(s)

−Gc(s) 1 0
0 −G(s) 1

⎤⎦ (3.1)

is nonsingular, i.e., the determinant of the matrix 1 + G(s)Gc(s)H(s) does not equal zero.

Definition 3.2. The system shown in Figure 3.3 is said to be internally stable if all nine
closed-loop transfer functions from the inputs (r, d, n) to the internal signals (x1, x2, x3)

are stable.
The nine transfer functions can be described by⎡⎣x1

x2
x3

⎤⎦=
1

1+G(s)Gc(s)H(s)

⎡⎣ 1 −G(s)H(s) −H(s)

Gc(s) 1 −Gc(s)H(s)

G(s)Gc(s) G(s) 1

⎤⎦⎡⎣r

d

n

⎤⎦ . (3.2)

Theorem 3.2. The system is internally stable if and only if the following two conditions
are satisfied:

(1) The transfer function 1 + H(s)G(s)Gc(s) has no zeros on Re[s] ≥ 0.

(2) H(s)G(s)Gc(s) has no pole-zero cancellation on Re[s] ≥ 0.

The first condition is equivalent to saying that the closed-loop system is input-output
stable. So, one can concentrate on the second condition, which is also very easy to check
by using the MATLAB function intstable():

1 function key=intstable(G,Gc,H)
2 GG=minreal(feedback(G*Gc,H)); Go=H*G*Gc; Go1=minreal(Go); p=eig(GG);
3 z0=eig(Go); z1=eig(Go1); zz=setdiff(z0,z1); % find the cancellations
4 if (G.Ts>1), % discrete-time system
5 key=any(abs(p)>1); if key==0, key=2*any(abs(zz)>1); end
6 else, % continuous system
7 key=any(real(p)>0); if key==0, key=2*any(real(zz)>0); end
8 end

3.1. Properties of Linear Control Systems 55

Its syntax is [V ,c]=intstable(G,Gc,H) . In the function call, the returned vari-
ables are defined as follows:

(1) If the system is internally stable, V = 0 is returned and c is empty.

(2) If V = 1, the system is input-output unstable and the unstable closed-loop poles are
returned in the vector c.

(3) If V = 2, the system is input-output stable, but not internally stable, and the internally
canceled unstable poles are returned in c.

Example 3.3. Consider the typical feedback system with

G(s) = 5(s − 1)(s + 2)

s3 + 4s2 + 3s + 4
, Gc(s) = s2 + 3s + 4

(s − 1)(s2 + 3s + 2)
, H(s) = 1.

The stability of the system can be tested by the following MATLAB statements:

>> s=tf(’s’); G=5*(s-1)*(s+2)/(sˆ3+4*sˆ2+3*s+4);
Gc=(sˆ2+3*s+4)/((s-1)*(sˆ2+3*s+2)); H=1;
G_a=minreal(ss(feedback(Gc*G,H))); eig(G_a)

The closed-loop poles of the system, after the two pairs of pole-zero cancellation, are
located at −0.2328 ± j2.0546, −2.2672 ± j0.6879, which are all on the left-hand side of
the s-plane. It can be seen that the closed-loop system is stable. However, by checking the
internal stability from the statement

>> [V,cc]=intstable(G,Gc,H)

we conclude that the system is not internally stable with the canceled pole-zero having
positive real parts zi = pj = 1 returned in cc.

3.1.2 Controllability and Observability Analysis

Controllability of linear systems

Controllability is an important property of a control system and plays a crucial role in many
control problems, such as stabilization of unstable systems by feedback control.

Definition 3.3. The state xi(t) is said to be controllable if there is an input that in finite
time drives it to any specified xi(tf) from initial state xi(0). The system is said to be fully
controllable if all its states are controllable.

Since the full controllability of the system depends only upon the A and B matrices
of the state space model, it is simply said that (A, B) is controllable.

Construct a transformation matrix Tc in the form

Tc = [B, AB, . . . , An−1B], (3.3)

where n is the order of the system or the number of states. The matrix Tc is referred to as
the controllability matrix and it can be generated using the MATLAB function ctrb(),

56 Chapter 3. Analysis of Linear Control Systems

provided in the Control Systems Toolbox, with the syntax Tc=ctrb(A,B) . The rank
of Tc, i.e., rank(Tc), is called the controllability index of the system and equals the number
of controllable states in the system. If rank(Tc) = n, the system is fully controllable.

Under a suitably chosen transformation matrix T̂c, the state space model can be trans-
formed into the following canonical form, through the staircase transformation;

Ac =
[

Âc̄ 0
Â21 Âc

]
, Bc =

[
0
B̂c

]
, Cc = [Ĉc̄, Ĉc]. (3.4)

The above transformed state space representation is known as the controllability staircase
form. The eigenvalues of Âc̄ are called the uncontrollable modes. If the system is control-
lable, the uncontrollable subspace Âc̄ will be empty. The simplified transfer function of the
system can be obtained from the controllable subspace

G(s) = Ĉc(sI − Âc)
−1B̂c + D. (3.5)

A MATLAB function ctrbf(), provided in the Control Systems Toolbox, can be
used to perform the controllable staircase form transformation. The syntax of this function
is [Ac,Bc,Cc,Tc]=ctrbf(A,B,C) , where (A,B,C) is the given state space model
and the returned state space model (Ac,Bc,Cc) has a staircase format which separates the
controllable and uncontrollable subspaces. The returned matrix Tc is the transformation
matrix.

Example 3.4. Consider a state space model given by

ẋ =

⎡⎢⎢⎣
0 1 0 0
0 0 −1 0
0 0 0 1
0 0 5 0

⎤⎥⎥⎦ x +

⎡⎢⎢⎣
0
1
0

−2

⎤⎥⎥⎦ u, y = [1, 0, 0, 0]x.

One can use the following statements to check the controllability of the system:

>> A=[0,1,0,0; 0,0,-1,0; 0,0,0,1; 0,0,5,0]; B=[0; 1; 0; -2];
C=[1,0,0,0]; D=0; Tc=[B, A*B, Aˆ2*B, Aˆ3*B]; rank(Tc)

Since the rank of Tc is 4, which equals the order of the system, the system is fully
controllable.

Example 3.5. Let us consider another system model given by

ẋ =

⎡⎢⎢⎣
0 1 0 0
3 0 0 2
0 0 0 1
0 −2 0 0

⎤⎥⎥⎦ x +

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦ u, y = [1, 0, 0, 0]x.

3.1. Properties of Linear Control Systems 57

The controllability can be analyzed using the following MATLAB statements:

>> A=[0,1,0,0; 3,0,0,2; 0,0,0,1; 0,-2,0,0]; B=[0;1;0;0];
C=[1,0,0,0]; Tc=[B, A*B, Aˆ2*B, Aˆ3*B]; rank(Tc)
[Ac,Bc,Cc,T]=ctrbf(A,B,C)

The controllable index of the system is 3 since the rank of Tc is 3. The controllable
staircase form can be written, in partitioned form, as

Ac =
⎡⎢⎣ 0 0 0 0

−0.4472 0 −0.8944 0
0 0 0 −2.236

3.5777 0 0.4472 0

⎤⎥⎦ , Bc =
⎡⎢⎣ 0

0
0

−1

⎤⎥⎦ , Cc =[−0.8944 0 0.4472 0
]

and it can be observed that the uncontrollable mode is at s = 0, which is the eigenvalue of
the Âc̄ matrix.

Observability of linear systems

Observability is a measure of how well internal states of a system can be inferred from
knowledge of its external inputs and outputs. The observability and controllability of a
system are mathematical duals.

Definition 3.4. A state xi(t) is said to be observable if for any tf > 0, the initial state
xi(0) can be determined from the time history of the input u(t) and the output y(t) in the
interval of [0, tf]. The system is said to be fully observable if all the states in the system
are observable.

Since the observability of the system depends only upon the A and C matrices of the
state space model, one can simply say that (A, C) is observable.

Construct a transformation matrix To in the following form:

To =

⎡⎢⎢⎢⎣
C

CA
...

CAn−1

⎤⎥⎥⎥⎦ , (3.6)

where n is the order of the system. To is referred to as the observability matrix, which
can be generated using the MATLAB function obsv(), provided in the Control Systems
Toolbox by To=obsv(A,C) . rank(To) is called the observability index of the system
or the number of observable states. If rank(To) = n, the system is then fully observable.

With a suitable transformation matrix T̂o, the state space model can be transformed
into the following canonical form:

Ao =
[
Âō Â12

0 Âo

]
, Bo =

[
B̂ō

B̂o

]
, Co = [0, Ĉo], (3.7)

58 Chapter 3. Analysis of Linear Control Systems

known as the observability staircase form. The eigenvalues of Âō are called the unobservable
modes. If the system is fully observable, the unobservable subspace Âō will be empty. The
transfer function of the system can be simply expressed by

G(s) = Ĉo(sI − Âo)
−1B̂o + D. (3.8)

By comparing the controllability problem to the observability problem, it is not dif-
ficult to see that these problems are dual. That is, the observability problem of the sys-
tem (AT, CT, BT, DT) is exactly the same as the controllability problem of the system
(A, B, C, D).

A MATLAB function obsvf() in the Control Systems Toolbox can be used to
perform the staircase form transformation. The syntax is

[Ao,Bo,Co,To]=obsvf(A,B,C)

and the arguments are similar to those of the ctrbf() function.

Example 3.6. Consider again the uncontrollable system shown in Example 3.5. The ob-
servability index and the staircase form can be obtained by

>> rank([C; C*A; C*Aˆ2; C*Aˆ3]) % or rank(obsv(A,C))
[Ao,Bo,Co,T,K]=obsvf(A,B,C); Ao,Bo,Co

In the partitioned matrix form, the staircase form can be written as

Ao =
⎡⎢⎣ 0 1 0 0

0 0 −2 0
0 2 0 3
0 0 1 0

⎤⎥⎦ , Bo =
⎡⎢⎣ 0

0
1
0

⎤⎥⎦ , Co = [0 0 0 1
]
.

The unobservable mode is at s = 0. In fact, it is not hard to verify that there are two
eigenvalues at s = 0, with one uncontrollable and the other unobservable.

Controllability and observability Gramians

The controllability and observability Gramians are very important in the balanced realization
of a transfer function model and the related model reduction method [30]. In terms of
controllability and observability, one may ask how controllable and observable the system
is. The controllability and observability Gramians can be used to address this concern.

Definition 3.5. The controllability and observability Gramians of the system (A, B, C, D)

are defined, respectively, as

Wc =
∫ ∞

0
eAtBBTeATtdt, Wo =

∫ ∞

0
eATtCTCeAtdt. (3.9)

From the above definition, Wc and Wo are symmetric positive semidefinite matrices
satisfying, respectively, the Lyapunov equations

AWc + WcA
T = −BBT, ATWo + WoA = −CTC, (3.10)

3.1. Properties of Linear Control Systems 59

where Wc and Wo can be easily solved by calling the corresponding Lyapunov equation
solvers Wc=lyap(A,B*B’) and Wo=lyap(A’,C’*C) .

Moreover, the following properties for the Gramians hold:

(1) Wc is positive definite if and only if (A, B) is controllable.

(2) Wo is positive definite if and only if (A, C) is observable.

The singular values of Wc, which can be obtained by the standard MATLAB built-in
function svd(), characterize the contribution of the input signal to each of the states. The
larger the ith singular value of Wc, the more the input contributes to the ith state. The
singular values of Wo, on the other hand, corresponds to the contribution of each state to
the output of the system.

The realization of a transfer function model in state space form is not unique, as
discussed in the previous chapter. A specific realization may be more controllable but less
observable, or more observable but less controllable. A unique realization Wc = Wo = W ,
known as the balanced realization, is clearly more desirable in some applications.

In the balanced realization, by dropping off the smaller singular values of the common
W , a reduced-order model can be obtained. This idea is exactly the balanced realization
model reduction technique which will be discussed in more details in Sec. 3.6.

The controllability and observability Gramians can also be computed using thegram()
function provided in the Control Systems Toolbox. The syntax of the function is

W=gram(G,type) ,

where G is the state space model object. When the variable type equals ’c’, the con-
trollability Gramian is returned in W . If type is ’o’, the observability Gramian will be
returned.

3.1.3 Kalman Decomposition of Linear Systems

The two properties, controllability and observability, discussed previously imply that there
are four possible modes of a linear system: controllable and observable, uncontrollable and
observable, controllable and unobservable, and uncontrollable and unobservable. Given a
linear system, how to decompose it, via a similarity transformation, into these four modes
is the major topic of this section. This decomposition is called the Kalman decomposition.
It is useful in understanding the inherent inner structure of a linear system.

Kalman decomposition

Kalman pointed out that any state space model can be decomposed into the canonical form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
ż(t) =

⎡⎢⎢⎢⎢⎢⎣
Âc̄,ō Â1,2 0 0

0 Âc̄,o 0 0

Â3,1 Â3,2 Âc,ō Â3,4

0 Â4,2 0 Âc,o

⎤⎥⎥⎥⎥⎥⎦ z(t) +

⎡⎢⎢⎢⎣
0
0

B̂c,ō

B̂c,o

⎤⎥⎥⎥⎦u(t),

y(t) =
[

0 Ĉc̄,o 0 Ĉc,o

]
z(t),

(3.11)

60 Chapter 3. Analysis of Linear Control Systems

controllable
observable

controllable
unobservable

uncontrollable
observable

uncontrollable
unobservable

��

�

��
input output

Figure 3.4. Illustration of Kalman decomposition.

where the subspace (Âc̄,ō, 0, 0) is uncontrollable/unobservable, (Âc̄,o, 0, Ĉc,ō) is control-
lable/unobservable, (Âc,ō, B̂c,ō, 0) is observable/uncontrollable, and (Âc,o, B̂c,o, Ĉc,o) is
controllable/observable. This is the so-called Kalman decomposition form. It can be illus-
trated by the block diagram shown in Figure 3.4.

Theorem 3.3. The properties such as controllability and observability cannot be changed
through any similarity transformation.

A MATLAB function kalmdec() is written which can be used to perform the
Kalman decomposition of a given system:

1 function [Gk,T,K]=kalmdec(G)
2 G=ss(G); A=G.a; B=G.b; C=G.c; [Ac,Bc,Cc,Tc,Kc]=ctrbf(A,B,C);
3 nc=rank(ctrb(A,B),eps*100); n=length(A); ic=n-nc+1:n;
4 [Ao1,Bo1,Co1,To1,Ko1]=obsvf(Ac(ic,ic),Bc(ic),Cc(ic));
5 if nc<n, inc=1:n-nc;
6 [Ao2,Bo2,Co2,To2,Ko2]=obsvf(Ac(inc,inc),Bc(inc),Cc(inc));
7 end
8 [m1,n1]=size(To1); [m2,n2]=size(To2); To=blkdiag(To2,To1);
9 T=To*Tc; e0=eps*100; n1=rank(obsv(Ac(ic,ic),Cc(ic)),e0);

10 n2=rank(obsv(Ac(inc,inc),Cc(inc)),e0);
11 K=[zeros(1,n-nc-n2),ones(1,n2), 2*ones(1,nc-n1), 3*ones(1,n1)];
12 Ak=T*A*inv(T); Bk=T*B; Ck=C*inv(T); Gk=ss(Ak,Bk,Ck,G.d);

The syntax of the function is [Gk,Tk,k]=kalmdec(G) . The returned variable
Gk is the Kalman decomposition of the system G. The variable Tk is the transformation
matrix, while the vector k returns a vector which holds the flags for the modes of each
state. If the flag is zero, the corresponding state is uncontrollable/unobservable. The flag
values of 1, 2, 3 correspond to the uncontrollable/observable, controllable/unobservable,
and controllable/observable modes, respectively.

Example 3.7. Consider a linear system model

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎣
−1 1 0 0 0 0
0 −1 0 0 0 0
0 0 −2 1 0 0
0 0 0 −2 0 0
0 0 0 0 −3 1
0 0 0 0 0 −3

⎤⎥⎥⎥⎥⎥⎥⎦ x +

⎡⎢⎢⎢⎢⎢⎢⎣
1
2
0
0
3
0

⎤⎥⎥⎥⎥⎥⎥⎦ u, y = [4, 5, 0, 0, 0, 6] x.

3.1. Properties of Linear Control Systems 61

Its Kalman decomposition can be performed using the following MATLAB scripts:

>> A=[-1,1,0,0,0,0; 0,-1,0,0,0,0; 0,0,-2,1,0,0;
0,0,0,-2,0,0; 0,0,0,0,-3,1; 0,0,0,0,0,-3];

B=[1; 2; 3; 0; 4; 0]; C=[4,5,0,6,0,0]; G=ss(A,B,C,0);
[Gk,Tk,K]=kalmdec(G),

which yield the following familiar mathematical format:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
ẋ =

⎡⎢⎢⎢⎢⎢⎣
−3 0 0 0 0 0
0 −2 0 0 0 0

−0.0832 −0.9965 −2.007−0.08288 0 0
−0.9965 0.0832 −0.08288 −2.993 0 0

0 0 0 0 −1.488 −0.6098
0 0 0 0 0.3902 −0.5122

⎤⎥⎥⎥⎥⎥⎦ x+

⎡⎢⎢⎢⎢⎢⎣
0
0

−3.3223
−3.7366
0.4685
2.1864

⎤⎥⎥⎥⎥⎥⎦u

y = [0 6 0 0 0 6.4031
]
x.

Contrary to (3.11), the partitioned state vector here is defined asxT = [xT
c̄,ō, x

T
c̄,o,x

T
c,ō, x

T
c,o]T.

Minimum realization problems revisited

If all the initial states are zero, the output signal y(t) of a linear continuous state space model
can be simplified to

y(t) = Ĉc,o

∫ t

0
eÂc,o(t−τ)B̂c,ou(τ)dτ, (3.12)

which is exactly the solution of the controllable/observable subspace. Therefore, in the
Kalman decomposition form, the subspace (Âc,o, B̂c,o, Ĉc,o) is referred to as the minimum
realization of the original system. That is, the minimum realized model is always fully
controllable and observable. For transfer function models, the “minimum realized model”
is the one in which all the pole-zero pairs have the same value canceled out.

The procedures to obtain the minimum realization of a linear system are summarized
in the following:

1. Find a similarity transformation matrix T −1
c to separate the controllable and uncon-

trollable parts:

Ac = T −1
c ATc =

[
Âc̄ 0
Â21 Âc

]
,

Bc = T −1
c B =

[
0
B̂c

]
, Cc = CTc =

[
Ĉc̄ Ĉc

]
;

(3.13)

2. Find a transformation matrix T̂o such that the controllable subsystem (Âc, B̂c, Ĉc) can
be further decomposed to find the observable part:

Âo = T̂ −1
o ÂcT̂o =

[
Âc,ō Âc,12

0 Âc,o

]
,

B̂o = T̂ −1
o B̂c =

[
B̂c,ō

B̂c,o

]
, Ĉo = ĈcT̂o =

[
0 Ĉc,o

]
.

(3.14)

62 Chapter 3. Analysis of Linear Control Systems

3. Construct a matrix

T̃ −1
o =

[
In− rank{Âc} 0

0 T̂ −1
o

]
.

Then, define the similarity transformation matrix T −1 = T̃ −1
o T −1

c to transform the
original system into the minimum realized form (Âc,o, B̂c,o, Ĉc,o). Under the similar-
ity transformation matrix T , the whole system can be transformed into the canonical
form as

ż =
⎡⎣ Âc̄ 0

Â21
Âc,ō Âc,12

0 Âc,o

⎤⎦ z+
⎡⎣ 0

B̂c,ō

B̂c,o

⎤⎦u, y = [Cc̄ 0 Ĉc,o]z+Du. (3.15)

Example 3.8. Revisit the state space model in Example 2.23. The above three steps can be
implemented using the following MATLAB scripts to find the minimum realized model

>> A=[-5,8,0,0; -4,7,0,0; 0,0,0,4; 0,0,-2,6]; B=[4; -2; 2; 1];
C=[2,-2,-2,2]; D=0; [Ac,Bc,Cc,Tc]=ctrbf(A,B,C);
[Ao,Bo,Co,To]=obsvf(Ac,Bc,Cc); A_r=Ao(3:4,3:4); B_r=Bo(3:4);
C_r=Co(3:4); G_r=zpk(ss(A_r,B_r,C_r,D))

The minimum realized model is obtained as Gm(s) = 10(s − 2.6)/[(s − 2)(s + 1)]. It
can be seen from the above that we did not find the canonical form as in (3.15), since the
realized model has already been obtained and is the same as that given in Example 2.23.

3.1.4 Time Moments and Markov Parameters

Assume that the original transfer function G(s) is described by

G(s) = b1s
k + b2s

k−1 + · · · + bks + bk+1

a1sn + a2sn−1 + · · · + ans + an+1
, k ≤ n, (3.16)

where for simplicity, it is assumed that an+1 = 1.
Consider the initial and final value properties of the Laplace transformation. It is seen

that the Taylor series, in particular the expansion around s = 0 and s = ∞, are useful in
describing the steady-state response and initial transient of the system behavior.

Expansion around s = 0: the time moments

The Taylor series expansion of G(s) around s = 0, or the Maclaurin series, can be written as

G(s) =
∞∑
i=0

cis
i = c0 + c1s + c2s

2 + · · · . (3.17)

If e−st is expanded around s = 0 in the Laplace transformation of the impulse response
function g(t), G(s) can be written as

G(s) =
∫ ∞

0
g(t)e−stdt =

∫ ∞

0
g(t)

∞∑
i=0

(−1)i

i! (st)idt =
∞∑
i=0

(−1)i

i! Mis
i, (3.18)

3.1. Properties of Linear Control Systems 63

where Mi = ∫∞
0 t ig(t)dt is referred to as the ith time moment of the impulse response

function g(t). From (3.17),

ci = (−1)i

i! Mi.

Assume that the state space model is given by (A, B, C, D). The transfer function of
the system can be equivalently obtained from

G(s) = C(sI − A)−1B + D. (3.19)

The time moments ci of the system can then be evaluated from

ci = 1

i!
diG(s)

dsi

∣∣∣∣
s=0

= −CA−(i+1)B, i = 0, 1, (3.20)

A MATLAB function timmomt() can be used to compute the time moments of a
given LTI model object G:

1 function c=timmomt(G,k)
2 G=ss(G); C=G.c; B=G.b; iA=inv(G.a); iA1=iA;
3 c=zeros(1,k); for i=1:k, c(i)=-C*iA1*B; iA1=iA*iA1; end

The syntax of the function is c=timmomt(G,k) , where G is the LTI object model
and k is the number of time moments to be evaluated, and the returned variable c is a vector
containing the first k time moments.

Example 3.9. Consider a fourth-order model

G(s) = s3 + 7s2 + 24s + 24

s4 + 10s3 + 35s2 + 50s + 24
.

The first seven time moments of the system can be obtained from the following MATLAB
scripts:

>> G=tf([1,7,24,24],[1,10,35,50,24]);
c=timmomt(G,7); [n,d]=rat(c)

which indicates that G(s) can be approximated by the Taylor series expansion

G(s) = 1 − 13

12
s + 157

144
s2 − 609

571
s3 + 899

863
s4 − 128

125
s5 + 386

381
s6 + o[s7].

Expansion around s = ∞: the Markov parameters

The G(s) given in (3.16) can be expanded as a power series of 1/s, i.e.,

G(s) =
∞∑

i=n−k

δi

(
1

s

)i

, (3.21)

64 Chapter 3. Analysis of Linear Control Systems

where the coefficients δi are referred to as the Markov parameters. Alternatively, it is
equivalent to performing the Taylor series expansion of G(s) around s = ∞. For state
space model (A, B, C, D), the Markov parameters δi can be evaluated from

δ0 = CB + D, and δi = CAiB, i = 1, 2, (3.22)

Recall the properties of the Laplace transformation. It is easily seen that the time
moments determine the steady-state time response of the system, while the Markov param-
eters determine the transient responses. In frequency response terms, the time moments
determine the response over the low- and mid-frequency ranges, while Markov parameters
determine the response over the mid- and high-frequency ranges.

A MATLAB function markovp() can be used to evaluate the Markov parameters
of a given transfer function G(s):

1 function m=markovp(G,k)
2 G=ss(G); A=G.a; B=G.b; C=G.c; D=G.d; m=[C*B+D,zeros(1,k-1)];
3 A1=A; for i=1:k-1, m(i+1)=C*A1*B; A1=A*A1; end

The syntax of the function is m=markovp(G,k) , where G is an LTI object and
k is the number of Markov parameters to be evaluated. The returned variable m is a vector
containing the first k Markov parameters.

Example 3.10. For the system in Example 3.9, the first seven Markov parameters can be
evaluated using the following MATLAB statement:

>> M=markovp(G,7)

such that the Taylor series expansion about s = ∞ can be obtained as

G(s) = 1 − 3

s
+ 19

s2 − 111

s3 + 571

s4 − 2703

s5
+ 12139

s6 + o

[
1

s7

]
.

3.1.5 Norm Measures of Signals and Systems

Robustness of a feedback control system is very important in control engineering practice.
In actual control problems, there are always disturbances due to the environment and un-
certainties due to the imperfect model used in the controller design. Clearly, it is desirable
for the controlled system to have certain robustness against these disturbances and uncer-
tainties. To assess the robustness, first of all, a proper measure is needed. Norm measures
to signals and systems are introduced, which can be regarded as the basis of robust control.

Norm measures of signals

The size of a signal u(t) is usually measured in its Lp-norm defined as

‖u(t)‖p =
(∫ ∞

−∞
|u(t)|pdt

)1/p

, (3.23)

3.1. Properties of Linear Control Systems 65

where p is a positive integer. The following norms are commonly used:

1. The L1-norm: ‖u(t)‖1 = ∫∞
−∞ |u(t)|dt .

2. The L2-norm, the measure of signal power: ‖u(t)‖2 =
√∫∞

−∞ u2(t)dt .

3. The L∞-norm, the least upper bound of |u(t)|: ‖u(t)‖∞ = supt |u(t)|.

Norm measures of systems

The size of a system in a transfer function form is usually measured by its H2- and H∞-
norms.

1. The H2-norm is defined by

‖G(s)‖2 =
√

1

2π j

∫ j∞

−j∞
|G(jω)|2dω. (3.24)

The H2-norm is in fact a measure of the square root of the integral squared value of
the output when the input is an impulse signal. In stochastic system terminology, the
H2-norm is the root mean square value of the output signal when the input is white
noise.

2. The H∞-norm is defined by

‖G(s)‖∞ = sup
u(t) �=0

‖y(t)‖2

‖u(t)‖2
, (3.25)

where u(t) and y(t) are the input and output of the system, respectively. For stable
systems, the H∞-norm of the system can be computed from

‖G(s)‖∞ = sup
ω

|G(jω)|. (3.26)

It is readily seen that the H∞-norm is in fact the peak value of the magnitude of the
frequency response.

The symbols L and H are due to Lebesgue and Hardy, respectively.

Properties of L- and H-norms

Theorem 3.4. The following properties of norms are given without proofs:

1. ‖y(t)‖2 ≤ ‖G(s)‖∞‖u(t)‖2.

2. ‖y(t)‖∞ ≤ ‖G(s)‖2‖u(t)‖∞.

3. ‖G1(s)G2(s)‖∞ ≤ ‖G1(s)‖∞‖G2(s)‖∞.

H2-norm and H∞-norm evaluations

If the system model is given by an LTI object G, the ‖G(s)‖2 and ‖G(s)‖∞ norms of the
system can be evaluated, respectively, from the MATLAB function calls norm(G) and

norm(G,inf) . The norms of discrete-time systems can also be obtained with the same
functions.

66 Chapter 3. Analysis of Linear Control Systems

Example 3.11. Consider the discrete-time system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x[(k + 1)T] =

⎡⎢⎢⎣
−2.2 −0.7 1.5 −1
0.2 −6.3 6 −1.5
0.6 −0.9 −2 −0.5
1.4 −0.1 −1 −3.5

⎤⎥⎥⎦ x(kT) +

⎡⎢⎢⎣
6 9
4 6
4 4
8 4

⎤⎥⎥⎦u(kT),

y(kT) = [1 2 3 4]x(kT).

The H2- and H∞- norms of the discrete-time system can be evaluated directly with the
following statements:

>> A=[-2.2,-0.7,1.5,-1; 0.2,-6.3,6,-1.5;
0.6,-0.9,-2,-0.5; 1.4,-0.1,-1,-3.5];

B=[6,9; 4,6; 4,4; 8,4]; C=[1 2 3 4]; G=ss(A,B,C,[0 0]);
norm(G,2), norm(G,inf)

and it can be found that ||G(z)||2 = 32.8586 and ||G(z)||∞ = 28.4423.

3.2 Time Domain Analysis of Linear Systems
We remark that the time domain analytical solution to a linear system is always possible
given a typical input signal. For general input signals, however, the time domain analysis
has to be performed numerically.

3.2.1 Analytical Solutions to Continuous Time Responses

State space method

Consider an LTI system with its n-dimensional state space model{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
with initial condition x(0) = x0. (3.27)

It has been stated in Chapter 2 that the time domain solution of (3.27) is

x(t) = eAtx0 +
∫ t

0
eA(t−τ)Bu(τ)dτ, (3.28)

where eAt is called the state transition matrix.
It can be seen from (3.28) that the most difficult part in the solution is the evaluation

of the integral. If a certain transformation is introduced to remove the B term, the solution
to the original problem can be significantly simplified.

Assume that the input signal is a unit step signal; then an extra state xn+1(t) = u(t)

can be introduced. Clearly, ẋn+1(t) = 0. Thus, the state space equation can be rewritten as[
ẋ(t)

ẋn+1(t)

]
=
[

A B

0 0

] [
x(t)

xn+1(t)

]
. (3.29)

3.2. Time Domain Analysis of Linear Systems 67

So, the original state space equation can be converted into an autonomous system{ ˙̃x(t) = Ãx̃(t),

ỹ(t) = C̃x̃(t),
(3.30)

where x̃T(t) = [xT(t), xn+1(t)] and x̃T(0) = [xT(0), 1]. The analytical solution can be
easily found as

x̃(t) = eÃt x̃(0). (3.31)

A class of commonly used input signals, which can be converted into an autonomous
system, is defined as

u(t) = u1(t) + u2(t) =
m∑

i=0

ci t
i + ed1t

[
d2 cos(d4t) + d3 sin(d4t)

]
. (3.32)

One may introduce some extra states, called augmented states, such that xn+1 =
ed1t cos(d4t), xn+2 = ed1t sin(d4t), xn+3 = u1(t), . . . , xn+m+3 = u

(m−1)
1 (t). It can be

shown that the augmented state space equations under such an input signal can be written as

Ã=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A d2B d3B B 0 · · · 0

0
d1 −d4
d4 d1

0

0 0

0 1 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x̃(t)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t)

xn+1(t)

xn+2(t)

xn+3(t)

xn+4(t)

...

xn+m+3(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x̃(0)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0)

1
0
c0
c1

...

cmm!

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.33)

whose analytical solution is

x̃(t) = eÃt x̃(0). (3.34)

A MATLAB function ss_augment() is written to establish the augmented state
space model for the typical input signal:

1 function [Ga,Xa]=ss_augment(G,cc,dd,X)
2 G=ss(G); Aa=G.a; Ca=G.c; Xa=X; Ba=G.b; D=G.d;
3 if (length(dd)>0 & sum(abs(dd))>1e-5),
4 if (abs(dd(4))>1e-5),
5 Aa=[Aa dd(2)*Ba, dd(3)*Ba; ...
6 zeros(2,length(Aa)), [dd(1),-dd(4); dd(4),dd(1)]];
7 Ca=[Ca dd(2)*D dd(3)*D]; Xa=[Xa; 1; 0]; Ba=[Ba; 0; 0];
8 else,
9 Aa=[Aa dd(2)*B; zeros(1,length(Aa)) dd(1)];

10 Ca=[Ca dd(2)*D]; Xa=[Xa; 1]; Ba=[B;0];
11 end, end
12 if (length(cc)>0 & sum(abs(cc))>1e-5), M=length(cc);
13 Aa=[Aa Ba zeros(length(Aa),M-1); zeros(M-1,length(Aa)+1) ...
14 eye(M-1); zeros(1,length(Aa)+M)];
15 Ca=[Ca D zeros(1,M-1)]; Xa=[Xa; cc(1)]; ii=1;
16 for i=2:M, ii=ii*i; Xa(length(Aa)+i)=cc(i)*ii;
17 end, end
18 Ga=ss(Aa,zeros(size(Ca’)),Ca,D);

68 Chapter 3. Analysis of Linear Control Systems

The syntax of the function is [Ĝ,x̂0]=ss_augment(G,c,d,x0) , where the
vectors c = [c0, c1, . . . , cm] and d = [d1, d2, d3, d4] are used to describe the input function
u(t) in (3.32). The arguments G and x0 are the model object and initial state vector,
respectively, while the returned variables Ĝ and x̂0 are, respectively, the augmented state-
space model and its initial vector. Once the augmented system is established, the analytical
solutions to the system can be easily obtained using the Symbolic Toolbox.

Example 3.12. Assume that a state space model is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ(t) =

⎡⎢⎢⎣
−19 −16 −16 −19
21 16 17 19
20 17 16 20

−20 −16 −16 −19

⎤⎥⎥⎦ x(t) +

⎡⎢⎢⎣
1
0
1
2

⎤⎥⎥⎦ u(t),

y(t) = [2, 1, 0, 0] x(t)

with initial states xT(0) = [0, 1, 1, 2]. If the input signal is defined as u(t) = 2 +
2e−3t sin(2t), the function ss_augment() can be used to construct the augmented state
space model:

>> cc=[2]; dd=[-3,0,2,2]; x0=[0; 1; 1; 2];
A=[-19,-16,-16,-19; 21,16,17,19; 20,17,16,20;

-20,-16,-16,-19];
B=[1; 0; 1; 2]; C=[2 1 0 0]; D=0; G=ss(A,B,C,D);
[Ga,xx0]=ss_augment(G,cc,dd,x0); Ga.a, xx0’

and the augmented model is

˙̃x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−19 −16 −16 −19 0 2 1
21 16 17 19 0 0 0
20 17 16 20 0 2 1

−20 −16 −16 −19 0 4 2
0 0 0 0 −3 −2 0
0 0 0 0 2 −3 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
x̃(t), x̃(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
2
1
0
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The following statements can be used to find the analytical solution of the system:

>> syms t; y=Ga.c*expm(Ga.a*t)*xx0;

The output signal of the system is obtained as

y(t) = −54+ 127

4
te−t +57e−3t + 119

8
e−t +4t2e−t − 135

8
e−3t cos 2t+ 77

4
e−3t sin 2t.

Laplace transform method

Let us consider the equivalent transfer function model:

G(s) = b1s
m + b2s

m−1 + · · · + bms + bm+1

sn + a1sn−1 + a2sn−2 + · · · + an−1s + an

. (3.35)

3.2. Time Domain Analysis of Linear Systems 69

For any input signal u(t) with U(s) as its Laplace transform, the output signal can be obtained
from Y (s) = G(s)U(s). Thus, in order to find y(t), an inverse Laplace transformation is
needed such that y(t) = L −1[Y (s)]. The Symbolic Toolbox of MATLAB can be used to
evaluate the Laplace transform of given input signals, and the inverse Laplace transform
function can be used to evaluate the analytical solution of the system.

Example 3.13. Assume that

G(s) = s3 + 7s2 + 3s + 4

s4 + 7s3 + 17s2 + 17s + 6

is the transfer function to be analyzed, and the input signal is given by u(t) = 2+2e−3t sin 2t .
The analytical solution to the output signal can be evaluated using the statements

>> syms s t;
G=(sˆ3+7*sˆ2+3*s+4)/(sˆ4+7*sˆ3+17*sˆ2+17*s+6);
u=2+2*exp(-3*t)*sin(2*t); U=laplace(u);
y=ilaplace(G*U)

and the analytical solution can be written as

y(t) = 4

3
− 31

12
e−3t − 23

20
e−3t cos 2t +

(
6 − 21

4
t

)
e−t − 18

5
e−2t − 103

40
e−3t sin 2t.

3.2.2 Analytical Solutions to Discrete-Time Responses

Similar to the s-domain approach to the analytical solution for continuous systems, the Z
transform can be used for discrete systems to evaluate the response to an input signal U(z).
Then, the analytical solution of the system H(z) can be obtained by solving the inverse Z
transform such that y(n) = Z −1[H(z)U(z)].
Example 3.14. Assume that

G(z) = (z − 1/3)

(z − 1/2)(z − 1/4)(z + 1/5)

is a discrete-time transfer function of the system. Also assume that the input signal is a unit
step signal. The analytical solution can be obtained using the statements

>> syms z; u=sym(1); U=ztrans(sym(u));
H=(z-1/3)/(z-1/2)/(z-1/4)/(z+1/5);
y=iztrans(H*U)

and the analytical solution can be written as

y(n) = 40

27
− 80

81

(
1

4

)n

+ 800

567

(
−1

5

)n

− 40

21

(
1

2

)n

.

If the sampling interval T is given, the analytical solution can be rewritten as

y(kT) = 40

27
− 80

81

(
1

4

)kT

+ 800

567

(
−1

5

)kT

− 40

21

(
1

2

)kT

.

70 Chapter 3. Analysis of Linear Control Systems

3.3 Numerical Simulation of Linear Systems
The analytical solutions to linear systems were studied in the previous section. In real
applications, one may prefer to have numerical solutions, and based on the results, the time
domain responses can be plotted. Graphical visualization of system responses is usually
more straightforward and informative for control engineers.

In this section, the numerical solution techniques to linear systems are presented, with
a focus on some common responses such as step responses, impulse responses, and more
generally, the time domain responses to arbitrary input signals.

3.3.1 Step Responses of Linear Systems

Step input signals and their responses are commonly used in control systems analysis and
design. The typical step response of a second-order system is studied and specifications are
given. Then, MATLAB-based evaluation of step responses are given.

Second-order system analysis

In classical control courses, second-order systems are often used as an example, where many
properties of the linear control systems are illustrated.

Theorem 3.5. The closed-loop unit step response of a second order system

G(s) = ω2
n

s2 + 2ζωns + ω2
n

can be obtained easily by considering the following four cases:

1. When ζ = 0, the step response is y(t) = 1 − cos(ωnt).

2. When 0 < ζ < 1, the step response is

y(t) = 1 − e−ζωnt 1√
1 − ζ 2

sin(ωdt + θ),

where θ = tan−1
√

1 − ζ 2/ζ and ωd = ωn

√
1 − ζ 2.

3. When ζ = 1, the step response is y(t) = 1 − (1 + ωnt)e−ωnt .

4. When ζ > 1, the step response is

y(t) = 1 − ωn

2
√

ζ 2 − 1

(
eλ1t

λ1
− eλ2t

λ2

)
,

where λ1 = −ζ −√ζ 2 − 1, λ2 = −ζ +√ζ 2 − 1.

Example 3.15. With the use of the powerful Symbolic Toolbox, the analytical solutions to
a second-order system can be easily derived:

>> syms z s, syms wn positive
y=ilaplace(wnˆ2/(s*(sˆ2+2*z*wn*s+wnˆ2)))

3.3. Numerical Simulation of Linear Systems 71

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
← ζ = 0

← ζ = 0.1

← ζ = 5

←ζ =1

(a) step response
0

5

10

0

2

4

0.5

1

1.5

2

t

ζ

(b) three-dimensional representation

Figure 3.5. Step responses of second-order systems.

and it follows immediately from the results, with obvious simplifications, that

y(t) = 1 − ωne−ζωnt

[
cosh (ωdt)

ωn

+ ζ sinh (ωdt)

ωd

]
, (3.36)

where ωd = √
ζ 2 − 1ωn. It can be seen that the format of the new results is much more

concise than that given in Theorem 3.5 if complex variables are allowed. The only restriction
in (3.36) is that ζ �= 1; otherwise zero may be used in the denominator. One may avoid this
particular case by defining ζ = 1 + ε, where ε is a very small number, and the problem can
be solved successfully.

The step response of the system can be evaluated easily as shown in Figure 3.5(a),
and the three-dimensional version is shown in Figure 3.5(b).

The following MATLAB commands show the step responses:

>> wn=1; yy=[]; t=0:.1:12; zet=[0:0.1:0.9, 1+eps,2,3,5];
for z=zet

wd=sqrt(zˆ2-1)*wn;
y=1-wn*exp(-z*wn*t).*[cosh(wd*t)/wn+z*sinh(wd*t)/wd];
yy=[yy; y];

end
plot(t,yy), figure, surf(t,zet,yy)

It can be seen that when ζ = 0, the output is an undamped oscillation. When ζ is
smaller than 1, there exists a damped oscillation and, with an increase in the value of ζ , the
oscillation tends to be less and the overshoot becomes smaller. When the value of ζ is equal
to or greater than 1, there exists no oscillation in the output signal. With the increment of the
value ζ , it may take longer to approach, but will never exactly reach the desired steady-state
value. The behavior of the output signal versus the changes of value ζ can be better observed
on the three-dimensional surface in Figure 3.5(b).

72 Chapter 3. Analysis of Linear Control Systems

y(∞)→
90%y(∞)

10%y(∞)

y(t)

t
tst1 t2

yM

Figure 3.6. Typical step response specifications.

Quantitative specifications in step responses

From the typical step response curves, several useful quantitative specifications are
defined and shown in Figure 3.6. Details of these commonly used specifications are sum-
marized below:

1. The steady-state value y(∞): The steady-state value of the system under the step
response is the output when t → ∞. For a transfer function model, using the final
value property of the Laplace transformation, the steady-state value of the system can
be easily obtained from

y(∞) = lim
s→0

sG(s)
1

s
= G(0) = bm

an

. (3.37)

If the system is given with state space model (A, B, C, D), the steady-state value of
the system can be obtained from

y(∞) = lim
s→0

sG(s)
1

s
= −CA−1B + D. (3.38)

The steady-state value of the system G can be evaluated using the function

K=dcgain(G)

provided in the Control Systems Toolbox.

2. The rise time tr : The rise time is defined as tr = t2 − t1 with t2 and t1, respectively,
the time when y(t) reaches 90% and 10% of its steady-state value.

3. The settling time ts : When the output signal y(t) enters and is kept within the range
of [y(∞) − �y, y(∞) + �y], the moment y(t) enters the range is referred to as the
settling time. According to different definitions, �y can be defined as either 2% or
5% of the steady-state value y(∞).

4. The overshoot Mp and the peak value yM : Mp is also known as the percent overshoot
which is defined as

Mp = yM − y(∞)

y(∞)
× 100%. (3.39)

3.3. Numerical Simulation of Linear Systems 73

(a) pop up menu

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 System: G
 Peak amplitude: 1.16
 Overshoot (%): 16.3
 At time (sec): 3.64

 System: G
 Settling Time (sec): 8.08 System: G

 Rise Time (sec): 1.64

Step Response

Time (sec)

A
m

pl
itu

de

(b) with specifications

Figure 3.7. Step response with specifications.

In control systems design, one often expects to design a system which has short rise
time and settling time, with a small percentage of overshoot or no overshoot.

Example 3.16. Consider the second-order system with ζ = 0.5 and ωn = 1 rad./sec. The
step() function, which will be described later, provided in the Control Systems Toolbox
can be used directly to draw the step response curve

>> z=0.5; wn=1; G=tf(wnˆ2,[1,2*z*wn,wnˆ2]); step(G).

Right click on the window that appears to see the pop-up menu shown in Figure 3.7(a). One
may select different specifications from the menu, and the corresponding specification will
be superimposed on the step response curve, as shown in Figure 3.7(b).

Step response evaluations with MATLAB

The step response of linear systems can be evaluated and drawn using the function step(),
and the function can be called with a variety of syntaxes:

step(G) % automatic draw of step response curves
[y,t]=step(G) % evaluate the responses, but not drawn
[y,t]=step(G,tf) % final simulation time tf setting
y=step(G,t) % simulation on user defined time vector t

[y,t,x]=step(G) % state x is returned, if G is state space

In the function call, G is an LTI model object, which can be either a transfer function,
state space, or pole-zero-gain model. This function applies to continuous systems and
discrete-time systems. It can also be used for SISO and MIMO systems and systems with or
without time delays. Thus the function provides a unified way of finding the step response
of linear systems. If no argument is returned in the function call, the step response will be
drawn automatically. If the response data are returned as output arguments, there will be
no response drawn. The data can be drawn later with the plot() function. However, the
plain curves drawn by plot() may lose many useful properties, such as the pop-up menu
shown in Figure 3.7(a).

74 Chapter 3. Analysis of Linear Control Systems

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Step Response

Time (sec)

A
m

pl
itu

de

(a) automatically drawn step response

Step Response

Time (sec)

A
m

pl
itu

de

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

System: G
Time (sec): 6.04
Amplitude: 2.49

(b) get the response information

Figure 3.8. Step response of a delayed continuous system.

The step response of more than one system model, for instance, G1, G2, and G3, can
be drawn under the same coordinate if the function is called as follows:

step(G1,’-’,G2,’-.b’,G3,’:r’) ,

where the options are the same as the conventional plot() function options. In the curves,
the step response G1 is shown by the solid line, for G2 by the dashed-dotted blue lines, and
for G3 by the red dotted lines.

Example 3.17. If a continuous model

G(s)= 10s + 20

10s4+23s3+26s2+23s+10
e−s

is a transfer function which contains a time delay, the following statements can be used to
enter the system model and draw the step response as shown in Figure 3.8(a).

>> G=tf([10 20],[10 23 26 23 10],’ioDelay’,1); % model input
step(G,30); % step response with terminate time of 30 sec.

On the step response drawn, if one left clicks a point on the curve, the magnitude and
time will be displayed on the response curve, as shown in Figure 3.8(b). The overshoot,
settling time, and other specifications can be easily displayed on the curve, using the method
shown previously. One may easily investigate the response of the system with these flexible
auxiliary facilities.

Example 3.18. If a system is given by

G(s) = 1

s2 + 0.2s + 1
e−s ,

with the sampling interval of T = 0.01, 0.1, 0.5, 1.2 seconds, respectively, the following
statements can be used to obtain the discrete-time models for different sampling intervals,
and the step responses are obtained as shown in Figure 3.9. It can be seen that the original
system information may be lost if the sampling interval is selected to be too large.

3.3. Numerical Simulation of Linear Systems 75

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Step Response

Time (sec)

A
m

pl
itu

de

Figure 3.9. Step response comparisons of discretized systems.

>> G=tf(1,[1 0.2 1],’ioDelay’,1); G1=c2d(G,0.01,’zoh’);
G2=c2d(G,0.1); G3=c2d(G,0.5); G4=c2d(G,1.2);
step(G,’-’,G2,’--’,G3,’:’,G4,’-.’,10)

The discrete-time models thus obtained are, respectively,

G1(z) = 4.997×10−5z+4.993×10−5

z2 − 1.998z + 0.998
z−100, G2(z) = 0.004963z+0.00493

z2 − 1.97z + 0.9802
z−10

G3(z) = 0.1185z + 0.1145

z2 − 1.672z + 0.9048
z−2, G4(z) = 0.01967z2 + 0.7277z + 0.3865

z3 − 0.6527z2 + 0.7866z
.

It should be noted that the step response curve of the discrete-time system is automat-
ically drawn in the stairs format. One can still read the response data and specifications by
clicking the points on the curves.

Example 3.19. Consider the system given in Example 2.4, which has two inputs and two
outputs. The following statements can be used and the step response of the multivariable
system obtained as shown in Figure 3.10.

>> g11=tf(0.1134,[1.78 4.48 1],’ioDelay’,0.72);
g12=tf(0.924,[2.07 1]);
g21=tf(0.3378,[0.361 1.09 1],’ioDelay’,0.3);
g22=tf(-0.318,[2.93 1],’ioDelay’,1.29);
G=[g11, g12; g21, g22]; step(G)

The first column of the curves contain the outputs of the system when the first channel
of inputs acts alone. The curves in the second column are the step response of the system,
if the second channel of input acts alone. From the step response curves, the interactions
between the input output pairs can easily be found.

3.3.2 Impulse Responses of Linear Systems

The impulse responses of the system can be drawn easily with the impulse() function
provided in the Control Systems Toolbox, and the syntaxes of the function are exactly the
same as the step() function given earlier.

76 Chapter 3. Analysis of Linear Control Systems

0

0.5

1

T
o:

 O
ut

(1
)

From: In(1)

0 5 10 15
−0.4

−0.2

0

0.2

0.4

T
o:

 O
ut

(2
)

From: In(2)

0 5 10 15

Step Response

Time (sec)

A
m

pl
itu

de

Figure 3.10. Step response of a multivariable system.

0 5 10 15 20 25 30
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Impulse Response

Time (sec)

A
m

pl
itu

de

Figure 3.11. Impulse response of the system.

Example 3.20. Consider again the system model studied in Example 3.17. The impulse
response of the system can be obtained as shown in Figure 3.11:

>> G=tf([10 20],[10 23 26 23 10],’ioDelay’,1); impulse(G, 30);

3.3.3 Time Responses to Arbitrary Inputs

In the previous discussion, two types of input signals were studied. Here, two other types
of signals will be studied.

If the Laplace transform R(s) of the input signal can be written as a rational function,
the output of the system can be expressed as Y (s) = G(s)R(s), which is also rational. Thus,
the time response under R(s) can be equivalently evaluated with the impulse() function
if Y (s) is assumed to be the transfer function of a system.

3.3. Numerical Simulation of Linear Systems 77

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

Step Response

Time (sec)

A
m

pl
itu

de

Figure 3.12. Ramp response of the system in Example 3.21.

Example 3.21. Consider again

G(s) = 10s + 20

10s4 + 23s3 + 26s2 + 23s + 10
e−s .

The ramp response of the system can be obtained with the help of the impulse() function.
It is known that the Laplace transform of a ramp function is 1/s2; then the ramp

response of the system can be evaluated as either the step response of system G(s)/s or
the impulse response of the system G(s)/s2. The following statements can then be used to
evaluate the ramp response of the system, as shown in Figure 3.12.

>> G=tf([10 20],[10 23 26 23 10],’ioDelay’,1);
s=tf(’s’); step(G/s); % or use impulse(G/sˆ2)

If the input signal cannot be expressed by mathematical equations, or the Laplace transform
cannot be a rational function, the above methods cannot be used. In this case, the function
lsim() can be used to evaluate the time domain response of the system. The syntax of
the function lsim() is similar to the step() function, and the difference is that the input
vector u should be used such that lsim(G,u,t) .

Example 3.22. Consider the multivariable system given in Example 2.4, where the two
inputs are defined as u1(t) = 1 − e−t sin(3t + 1) and u2(t) = sin(t) cos(t + 2). The system
response can then be evaluated with the following statements, and the system responses are
shown in Figure 3.13, where the dotted curves represent the two input signals.

>> g11=tf(0.1134,[1.78 4.48 1],’ioDelay’,0.72);
g12=tf(0.924,[2.07 1]);
g21=tf(0.3378,[0.361 1.09 1],’ioDelay’,0.3);
g22=tf(-0.318,[2.93 1],’ioDelay’,1.29);
G=[g11, g12; g21, g22]; t=[0:.1:15]’;
u=[1-exp(-t).*sin(3*t+1),sin(t).*cos(t+2)]; lsim(G,u,t);

78 Chapter 3. Analysis of Linear Control Systems

0 5 10 15
−1

−0.5

0

0.5

1

1.5
T

o:
 O

ut
(2

)

−1

−0.5

0

0.5

1

1.5

T
o:

 O
ut

(1
)

Linear Simulation Results

Time (sec)

A
m

pl
itu

de

u1(t)

u1(t)

u2(t)

u2(t)

y2(t)

y1(t)

Figure 3.13. Time domain response of a multivariable system.

3.4 Root Locus of Linear Systems
Assume that the feedback control system is established by a unity negative feedback system
whose forward path is defined as a static gain K , followed by an open-loop model G(s).
For each value of K , a set of closed-loop poles can be found by solving the characteristic
equation 1 +KG(s) = 0. With continuous change in the gain K , the trajectories of closed-
loop pole positions can be constructed. The trajectories of the poles of the closed-loop
system can be obtained and are referred to as a root locus of the system. It should be noted
that the open-loop model G(s) should be used to draw the root locus, and the root locus can
be used to describe the pole positions of the closed-loop system.

A MATLAB function rlocus() is provided in the Control Systems Toolbox to draw
the root locus of a given system. The function can be called in one of the following ways:

rlocus(G) % automatic draw of the root locus
rlocus(G,[kmin,kmax]) % root locus over the gain range
rlocus(G,K) % root locus for a given gain vector K

[R,K]=rlocus(G) % evaluate the closed-loop pole positions R

rlocus(G1,’-’,G2,’-.b’,G3,’:r’) % root locus for several models

It should be noted that this function applies to both continuous- and discrete-time systems.
Only SISO LTI models can be processed in the function. It can also be used in drawing the
root locus for discrete-time transfer functions with pure time delays.

On the root locus of the system, one may left click any point on the locus to show the
gain, pole position, damping ratio, and overshoot of the system at the same gain K . One can
easily find the values of the open-loop gain K for which the closed-loop system is stable.
The command grid can be used to superimpose the isodamping and isofrequency lines of
the system. These lines may provide useful information in control systems design.

Example 3.23. Let

G(s)= s2 + 4s + 8

s5+18s4+120.3s3+357.5s2+478.5s+306

3.4. Root Locus of Linear Systems 79

−7 −6 −5 −4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

4

6

8

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

(a) root locus

−7 −6 −5 −4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

4

6

8
 System: G
 Gain: 772

 Pole: −0.0213 + 7.5i
 Damping: 0.00284

 Overshoot (%): 99.1
 Frequency (rad/sec): 7.5

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

(b) find the critical point

Figure 3.14. Root locus analysis of the system and its inverse.

be an open-loop model of the system under investigation. Using the following MATLAB
scripts, the root locus of the system can be easily and accurately drawn, as shown in Fig-
ure 3.14(a).

>> num=[1 4 8]; den=[1,18,120.3,357.5,478.5,306];
G=tf(num,den); rlocus(G)

If one left clicks at the point on the intersection with the imaginary axis, the information
about the critical point is shown as in Figure 3.14(b), from which it is immediately seen that
the critical gain is 772. It can be concluded that when the gain K > 772, the closed-loop
system is unstable.

Example 3.24. If a discrete-time open-loop model is given by

G(z)= 0.52(z − 0.49)(z2 + 1.28z + 0.4385)

(z−0.78)(z+0.29)(z2+0.7z+0.1586)

with a sampling interval of T = 0.1 seconds, the following statements can be used to
input the open-loop system model and draw the root locus of the system, as shown in
Figure 3.15(a). It can be seen by clicking the relevant points that the critical gain is K = 2.83.

>> z=tf(’z’,’Ts’,0.1);
G=0.52*(z-0.49)*(zˆ2+1.28*z+0.4385)/(z+0.29)/(zˆ2+0.7*z+0.1586);
rlocus(G), grid

If there exists a pure delay term z−6 in the original system, the root locus of the delayed
system can be redrawn, as shown in Figure 3.15(b):

>> G.ioDelay=6; rlocus(G), grid

It can be found that the critical gain is reduced to 1.16. It can be seen from the example that
the delay term in the discrete-time model reduces the critical gain of the system.

80 Chapter 3. Analysis of Linear Control Systems

−1.5 −1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.8 π/T

0.7 π/T

0.6 π/T 0.4 π/T

0.1 π/T

0.2 π/T

0.9

0.4 π/T

0.3 π/T

0.2 π/T

0.1 π/T

0.9 π/T

π/T
π/T

0.8 π/T

0.7 π/T

0.6 π/T

0.7
0.8

0.9 π/T

0.2
0.1

0.6

0.3
0.4
0.5

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

(a) root locus

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
0.4 π/T

0.2 π/T

0.1 π/T
0.9

π/T

0.9 π/T

0.8 π/T

0.7 π/T
0.6 π/T

0.4 π/T

0.2 π/T

0.1 π/T

0.7
0.8

0.3 π/T
0.6 π/T

0.5

0.7 π/T

0.3
0.4

0.1
0.2

0.6

π/T

0.8 π/T

0.9 π/T

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

(b) root locus of the delayed system

Figure 3.15. Root locus of a discrete-time system.

−5 −4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

 System: untitled1
 Gain: 13.6
 Pole: 0.0142
 Damping: −1
 Overshoot (%): 0
 Frequency (rad/sec): 0.0142

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

Figure 3.16. Root locus for positive feedback systems.

Example 3.25. If

G(s) = s2 + 5s + 6

s5 + 13s4 + 65s3 + 157s2 + 184s + 80

is an open-loop model, the following statements can be used to draw the root locus for the
system with unity positive feedback, as shown in Figure 3.16. It can be seen that when
0 ≤ K ≤ 13.6, the closed-loop system is stable.

>> G=tf([1 5 6],[1 13 65 157 184 80]); rlocus(-G)

Example 3.26. For the open-loop model

G(s) = 0.3(s + 2)(s2 + 2.1s + 2.23)

s2(s2 + 3s + 4.32)(s + a)
,

if one wants to draw the root locus according to variable a, the characteristic equation
1 + G(s) = 0 can be rewritten as

a(s4 + 3s3 + 4.32s2) + (s5 + 3s4 + 4.62s3 + 1.23s2 + 1.929s + 1.338) = 0

3.4. Root Locus of Linear Systems 81

−2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

(a) root locus

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
0.070.15.24

0.34

0.46

0.6
0.76
0.92

0.070.15.24

0.34

0.46

0.6
0.76
0.92

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

(b) zoomed root locus

Figure 3.17. Root locus according to variable a.

from which it can be seen that

1 + a
s4 + 3s3 + 4.32s2

s5 + 3s4 + 4.62s3 + 1.23s2 + 1.929s + 1.338
= 0.

Let

Ĝ(s) = s4 + 3s3 + 4.32s2

s5 + 3s4 + 4.62s3 + 1.23s2 + 1.929s + 1.338
.

The characteristic equation can be written as 1 + aĜ(s) = 0. The root locus according to
variable a can be drawn for the Ĝ(s) model. The following statements can be given, and the
root locus obtained is shown in Figure 3.17(a), and Figure 3.17(b) is the zoomed version:

>> G1=tf([1,3,4.32,0,0],[1,3,4.62,1.23,1.929,1.338]); rlocus(G1)

The root locus can be used in controller design to select an appropriate value for the
gain K . If there exists a pair of dominant complex poles on the root locus, which have a
relatively low damping ratio for a specific value of K , then selecting this value of K may
be appropriate. It is assumed that if the complex poles are dominant and the effects of any
zeros can be ignored, then the resulting closed-loop response will approximate that of a
second-order system with these complex poles.

Example 3.27. Consider the open-loop model

G(s) = 10

s(s + 3)(s2 + 2s + 4)
.

The following statements can be entered into MATLAB, and the root locus of the system
can be drawn as shown in Figure 3.18(a). The isodamping lines are also superimposed on
the curves.

82 Chapter 3. Analysis of Linear Control Systems

−5 −4 −3 −2 −1 0
−3

−2

−1

0

1

2

3
0.84 0.74 0.6 0.46 0.32 0.16

0.6 0.16

0.98

0.93

4

0.46 0.320.84

2

0.74

3

0.93

0.98

1

 System: G
 Gain: 0.526

 Pole: −0.663 + 0.67i
 Damping: 0.704

 Overshoot (%): 4.46
 Frequency (rad/sec): 0.943

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

(a) root locus

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de
(b) closed-loop step response

Figure 3.18. Root locus and step response of the system in Example 3.27.

>> s=tf(’s’); G=10/(s*(s+3)*(sˆ2+3*s+4));
rlocus(G), grid

From the isodamping lines, it is easily found by clicking the pole position located
at the ζ = 0.707 line that the gain is about K = 1.68, as shown in Figure 3.18(a). It
is also seen that this pair of poles is dominant, so selecting the gain K = 1.68 gives the
closed-loop step response shown in Figure 3.18(b). This, as expected, is very similar to that
of the second-order system with these poles.

>> K=1.68; step(feedback(G*K,1))

Example 3.28. Consider a simple plant model G(s) = 1/(s + 1)3. The root locus of the
system can immediately be drawn as shown in Figure 3.19(a) with the following statements:

>> s=tf(’s’); G=1/(s+1)ˆ3; rlocus(G)

However, the root locus drawn with default settings is not complete, since the intersection
of the root locus with the imaginary axis is not shown, due to the improper selection of
the gain range, by default. One should then enlarge the gain range, for instance, select a
range of (0, 20), to modify the root locus drawn. The modified root locus can be obtained
as shown in Figure 3.19(b).

>> rlocus(G,[0,20])

Example 3.29. Assume that

G(s) = (s + 5)(s2 + 2s + 8)

s(s + 1)(s + 2)(s + 3)(s2 + 6s + 12)

is an open-loop model. The root locus of the system is immediately obtained, as shown in
Figure 3.20(a).

3.4. Root Locus of Linear Systems 83

−2 −1.5 −1 −0.5 0
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

(a) default root locus

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

(b) modified root locus

Figure 3.19. Problems in automatic root locus drawing.

−8 −6 −4 −2 0 2
−6

−4

−2

0

2

4

6

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

(a) root locus

−8 −6 −4 −2 0 2
−6

−4

−2

0

2

4

6

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

(b) root locus of inverse system

Figure 3.20. Root locus of a system and its inverse system.

>> s=tf(’s’);
G=(s+5)*(sˆ2+2*s+8)/s/(s+1)/(s+2)/(s+3)/(sˆ2+6*s+12)

It is interesting to note that the root locus of its inverse system 1/G(s) has exactly the
same shape as the original G(s) if it is drawn with the command rlocus(1/G), shown
in Figure 3.20(b). In the inverse system, it is not surprising to note that the poles and zeros
are interchanged, and thus the directions of the root loci are all reversed.

Besides, if one reads the gain at a certain point on Figure 3.20(a), one will get the
reciprocal of the gain by clicking the same point on Figure 3.20(b).

84 Chapter 3. Analysis of Linear Control Systems

3.5 Frequency Domain Analysis of Linear Systems
Frequency domain analysis methods make up a class of very important methods in control
systems analysis and design. In 1932, Nyquist presented a graphical method which can be
used to assess the stability of a control system. Within a few years a frequency domain
analysis and design framework had been set up. It was found to be a very useful approach
because component models were often available as frequency response data.

3.5.1 Frequency Domain Graphs with MATLAB

For a linear transfer function G(s), if the frequency domain variable jω is used to substitute
for the complex variable s, then G(jω) can be regarded as the “complex gain” of the system,
which is complex and a function of the frequency ω. There are many different ways of
describing the complex quantity G(jω). Based on these descriptions, different frequency
domain methods can be established as follows.

1. Real and imaginary part representation: The complex gain can be represented as the
real part and imaginary part, such that

G(jω) = P(ω) + jQ(ω), (3.40)

and it can be seen that P(ω) and Q(ω) are functions of frequency ω. If the horizontal
axis is used to represent the real part and the vertical axis the imaginary part, the
trajectory of the complex gain G(jω) is referred to as a Nyquist plot. A drawback of
the traditional Nyquist plot is that the frequency dependence of the locus can only be
found if a limited number of points on the locus have their frequency marked.

A MATLAB function nyquist() provided in the Control Systems Toolbox can
be used to draw the Nyquist plot of LTI model G. The syntaxes of the function are

nyquist(G) % automatic drawing of Nyquist plot
nyquist(G,{ωm, ωM}) % draw Nyquist plot over range (ωm, ωM)
nyquist(G, ω) % draw Nyquist plot over frequency vector ω

[R, I, ω]=nyquist(G) % Nyquist response data evaluation
nyquist(G1,’-’,G2,’-.b’,G3,’:r’) % several systems

If one left clicks a point on the Nyquist plot drawn, the frequency information can
be displayed, together with the values of the complex gain. This facility provides an
extremely useful tool in the analysis and design of linear systems. The overloaded
command grid can be used to superimpose iso-M circles on top of the Nyquist
curve.

2. Magnitude and phase representation: A complex quantity G(jω) can be expressed in
magnitude and phase form, that is,

G(jω) = A(ω)e−jφ(ω). (3.41)

Thus, the frequency ω can be used as a horizontal axis, and the magnitude A(ω) and
phase φ(ω) can be used separately as vertical axes. A new set of diagrams can be
constructed. If frequency is plotted on a logarithmic scale, the magnitude M plotted in

3.5. Frequency Domain Analysis of Linear Systems 85

decibels (dB), that is, M(ω) = 20 lg[A(ω)], and the phase is in degrees, the diagram
is referred to as a Bode diagram.

The function bode() is provided in the Control Systems Toolbox, and it can used
for drawing the Bode diagram of the linear system G. The syntaxes of the function are

bode(G) % automatic draw of the Bode diagram
bode(G,{ωm, ωM}) % draw Bode diagram over range (ωm, ωM)
bode(G,ω) % draw Bode diagram over frequency vector ω

[A,φ,ω]=bode(G) % Bode diagram data evaluation
bode(G1,’-’,G2,’-.b’,G3,’:r’) % several systems

3. Magnitude and phase representation in a single plot: The magnitude and phase rep-
resentation to the complex gains is again used. Selecting magnitude and phase as
vertical and horizontal axes, respectively, we will get the well-known Nichols chart.

The function nichols() provided in the Control Systems Toolbox can be used
to draw the Nichols chart for the given system G, and the grid command can be used
to superimpose the constant M and N contours on the chart.

For discrete-time systems H(z), one may substitute z = ejωT into the transfer function
model such that the relationship between the complex magnitude Ĥ (jω) and the frequency
can be established. The above-mentioned nyquist(), bode(), and nichols() can
be used in discrete-time models directly.

Example 3.30. Consider the continuous model

G(s)= s + 8

s(s2+0.2s+4)(s+1)(s+3)
.

The Nyquist plot can be easily drawn with the following statements, with superimposed
contours:

>> s=tf(’s’); G=(s+8)/(s*(sˆ2+0.2*s+4)*(s+1)*(s+3));
nyquist(G), grid, set(gca,’Ylim’,[-1.5 1.5])

Since one of the open-loop poles is located at s = 0, the magnitude may be very
large at low frequencies ω, and thus sometimes manual selection of the magnified range of
the plots should be used. For instance, the Nyquist plot of the above system under manual
zooming is shown in Figure 3.21(a).

With the Nyquist plot drawn by MATLAB, one may left click a point on the Nyquist
plot and the frequency information is displayed, together with accurate values of the axis
coordinates, as shown in Figure 3.21(b). This new facility is very useful in the analysis and
design of control systems.

If one wants to have the Bode diagram and Nichols chart, the following statements can
be used, and the Bode diagram and Nichols chart can be displayed as shown in Figure 3.22.

>> bode(G); figure; nichols(G), grid

One may right click on the curves to get further facilities to analyze the curves. For
instance, if one right clicks the curves on the Bode diagram, a shortcut menu will appear,
and the Characteristics item is displayed as shown in Figure 3.23(a). One may further

86 Chapter 3. Analysis of Linear Control Systems

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−1.5

−1

−0.5

0

0.5

1

1.5
0 dB

−20 dB

−10 dB

6 dB

4 dB

2 dB

−6 dB

−4 dB

−2 dB

20 dB

10 dB

Nyquist Diagram

Real Axis

Im
ag

in
ar

y
A

xi
s

(a) Nyquist plot

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−1.5

−1

−0.5

0

0.5

1

1.5
0 dB

−20 dB

4 dB

−10 dB

−6 dB

−4 dB

−2 dB

20 dB

10 dB

6 dB

2 dB

 System: G
 Real: −0.571
 Imag: 0.449
 Frequency (rad/sec): −0.832

 System: G
 Real: −0.414
 Imag: −1.22
 Frequency (rad/sec): −1.98

Nyquist Diagram

Real Axis

Im
ag

in
ar

y
A

xi
s

(b) Extra data from Nyquist plot

Figure 3.21. Nyquist plot analysis of the system in Example 3.30.

−200

−100

0

100

M
ag

ni
tu

de
 (

dB
)

10
−2

10
−1

10
0

10
1

10
2

−450

−360

−270

−180

−90

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

(a) Bode diagram

−315 −270 −225 −180 −135 −90 −45 0

−10

−5

0

5

10

15

20

25

30

35

 0.5 dB

 −12 dB

 6 dB

 3 dB

 1 dB

 −6 dB

 0.25 dB

 0 dB

 −1 dB

 −3 dB

 System: G
 Gain (dB): 5.09
 Phase (deg): −115
 Frequency (rad/sec): 0.359

Nichols Chart

Open−Loop Phase (deg)

O
pe

n−
L

oo
p

G
ai

n
(d

B
)

(b) Nichols chart

Figure 3.22. Frequency domain analysis of the system in Example 3.30.

(a) Shortcut menu

−200

−100

0

100

M
ag

ni
tu

de
 (

dB
)

10
−2

10
−1

10
0

10
1

10
2

−450

−360

−270

−180

−90

Ph
as

e
(d

eg
)

Bode Diagram

(b) Bode diagram with key points

Figure 3.23. Frequency domain analysis results for Example 3.30.

select the Stability (All Crossings) item from it. The Bode diagram with all the stability
key points is shown in Figure 3.23(b). The Characteristics shortcut menus are supported
for all the frequency domain curves.

Example 3.31. Consider the continuous system studied in the previous example. One may
select the sampling interval of T = 0.1 second to find the discrete-time model. The Bode
diagram of the discrete-time model can be obtained as shown in Figure 3.24(a).

3.5. Frequency Domain Analysis of Linear Systems 87

−150

−100

−50

0

50

100

M
ag

ni
tu

de
 (

dB
)

10
−2

10
−1

10
0

10
1

10
2

−540

−360

−180

0

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

(a) Bode diagram of discrete-time model

−200

−100

0

100

M
ag

ni
tu

de
 (

dB
)

10
−2

10
−1

10
0

10
1

10
2

−450

−360

−270

−180

−90

0

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

C

C

T =0.1

T =0.1T =0.9

T =0.9

(b) Bode diagrams for different T ’s

Figure 3.24. Bode diagrams of the discrete-time models in Example 3.31.

>> s=tf(’s’); G=(s+8)/(s*(sˆ2+0.2*s+4)*(s+1)*(s+3));
G1=c2d(G,0.1); bode(G1)

Selecting different sampling intervals, we see that the Bode diagrams are obtained as
shown in Figure 3.24(b), together with that of the original continuous model. It can be seen
that, if the sampling interval is large, the high-frequency part may not be satisfactory.

>> bode(G), hold on; for T=[0.1:0.2:1], bode(c2d(G,T)); end

3.5.2 Stability Analysis Using Frequency Domain Methods

The Nyquist plot, often drawn for the open-loop models, can be used to infer the closed-
loop behavior in terms of stability and even the time domain response. The stability can be
concluded using the well-known Nyquist Theorem.

Theorem 3.6. For the closed-loop system with an open-loop transfer function G(s) to
be stable, the Nyquist plot of G(s) must encircle in a counterclockwise direction the point
(−1, j0) as many times as the number of poles of G(s) located in the right half of the s-plane.

The Nyquist Theorem can further be interpreted for the following two cases:

1. For a stable open-loop model G(s), the closed-loop system (with unity negative feed-
back) is stable if and only if the Nyquist plot of G(s) does not encircle the point
(−1, j0). If the full Nyquist plot encircles the point (−1, j0) p times in a clockwise
direction, then there will be p unstable closed-loop poles.

2. For an unstable open-loop model of G(s) with p unstable modes, the closed-loop
system is stable if and only if the Nyquist plot of G(s) encircles the point (−1, j0) p

times in a counterclockwise direction. If there are q counterclockwise encirclements
of the point (−1, j0), then there will be q − p unstable closed-loop poles.

Example 3.32. Consider the open-loop model

G(s)= 2.7778(s2+0.192s+1.92)

s(s+1)2(s2+0.384s+2.56)
.

88 Chapter 3. Analysis of Linear Control Systems

−2.5 −2 −1.5 −1 −0.5 0
−1.5

−1

−0.5

0

0.5

1

1.5

6 dB

4 dB

2 dB

−4 dB

−2 dB

20 dB

10 dB −10 dB

−20 dB

−6 dB

0 dB

Nyquist Diagram

Real Axis

Im
ag

in
ar

y
A

xi
s

(a) Nyquist plot

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Step Response

Time (sec)

A
m

pl
itu

de

(b) step response of closed-loop system

Figure 3.25. Analysis of the system in Example 3.32.

The model can be easily entered into MATLAB with the following statements, and the
Nyquist plot of the system can be drawn as shown in Figure 3.25(a):

>> s=tf(’s’);
G=2.7778*(sˆ2+0.192*s+1.92)/(s*(s+1)ˆ2*(sˆ2+0.384*s+2.56));
nyquist(G); axis([-2.5,0,-1.5,1.5]); grid
figure; step(feedback(G,1))

It can be seen that although the trajectory is rather complicated, there is no encirclement
around the (−1, j0) point. Since there are no unstable poles in the open-loop model, it can be
shown by the use of the Nyquist Theorem that the closed-loop system under unity negative
feedback is stable. The step response of the closed-loop system is obtained as shown in
Figure 3.25(b).

Although the closed-loop system is stable, the step response has a strong oscillation,
so the system performance will probably not be satisfactory. In this case, a controller will
need to be designed to improve its performance.

3.5.3 Gain and Phase Margins of a System

It can be seen from the previous examples that, although the stability of the systems is
extremely important, it is not the only important factor in describing the behavior of the
systems. Frequency response margins are effective indicators in addressing relative stability
and performance problems.

In Figures 3.26(a) and (b), the sketches of gain and phase margins are illustrated,
respectively, on the Nyquist plot and Nichols chart. The gain and phase margins can also
be illustrated on the Bode diagram.

If for a system with a stable open-loop transfer function the Nyquist plot intersects
the negative real axis at frequency ωcg , the gain margin is defined as the reciprocal of the
gain, i.e., Gm = 1/A(ωcg), and is often expressed in dBs. If the Nyquist plot intersects the
unit circle at frequency ωcp, the phase margin is defined as γ = φ(ωcp) − 180◦.

It can be seen that, normally, the larger the value of gain margin Gm, the faster the
closed-loop step response. If Gm < 1, the closed-loop system is unstable. Similarly, if

3.5. Frequency Domain Analysis of Linear Systems 89

Im

	γ

��A(ωcg)

Re�

�

(a) Nyquist curve

−225 −180 −135 −90

−50

−40

−30

−20

−10

0

10

20

30

Nichols Chart

Open−Loop Phase (deg)

O
pe

n−
L

oo
p

G
ai

n
(d

B
)

phase margin

gain margin

(b) Nichols chart

Figure 3.26. Graphical representations of gain and phase margins.

the open-loop frequency response is relatively smooth in the gain/phase margin region, the
larger the phase margin, the less the overshoot in the closed-loop step response. However,
if γ < 0, the closed-loop system is unstable. The following special cases should also be
considered.

1. If there is no intersection between the Nyquist plot and the negative real axis, the gain
margin is infinite.

2. If the Nyquist plot intersects many times the negative real axis between (−1, j0) and
(0, j0), the one nearest to the point (−1, j0) can be regarded as the gain margin point.

3. If there is no intersection between the Nyquist plot with the unit circle, the phase
margin is infinite.

4. If the Nyquist plot intersects many times the unit circle in the third quadrant, the one
which is nearest to the negative real axis can be regarded as the phase margin point.

A function margin() is provided in the Control Systems Toolbox to evaluate the
gain and phase margins. The syntax of the function is

[Gm,γ,ωcg,ωcp]=margin(G);

As a result, if a margin is infinite, the returned value will be Inf, while the corre-
sponding frequency will be NaN.

Example 3.33. Consider again the open-loop model in Example 3.32. The following state-
ments can be used to analyze the gain and phase margins of the system:

>> s=tf(’s’);
G=2.7778*(sˆ2+0.192*s+1.92)/(s*(s+1)ˆ2*(sˆ2+0.384*s+2.56));
[gm,pm,wg,wp]=margin(G)

The gain margin is 1.105 at frequency 0.9621 rad/sec, and the phase margin is 2.0985◦,
at frequency 0.9261 rad/sec. Since they are both very small, the closed-loop system will
exhibit very strong oscillation, although it is stable.

90 Chapter 3. Analysis of Linear Control Systems

3.5.4 Variations of Conventional Nyquist Plots

It can be seen from the examples in the previous section that if the frequency range is not
selected properly, or if the gain of the system is too high, one cannot obtain any adequate
information about the actual and detailed behavior around the point (−1, j0), which is
crucial in assessing the stability of the closed-loop system. In this case, two nonlinear
transformation techniques can be applied to provide more information from the Nyquist plot
of the system, namely the arc tangent (atan) Nyquist plot and the logarithmic Nyquist plot.

Arc tangent transformations

From the ordinary Nyquist plots, if the phase angles are kept unchanged, one can perform
an arc tangent transformation on the magnitude such that

|Gnew(jω)| = 2

π
atan|G(jω)|. (3.42)

Clearly, the nonlinearly transformed Nyquist plot is kept within a unit circle for all ω. In
this case, the readability of the new Nyquist plot improves significantly. With the above
nonlinear transformation, the critical point in the Nyquist stability criterion is changed from
(−1, j0) to (−1/2, j0), and it is also very easy to check.

A MATLAB function atannyq() is prepared in the following to draw the trans-
formed Nyquist plot of the system:

1 function atannyq(G,w)
2 if nargin==1, [x,y,w]=nyquist(G);
3 elseif nargin==2, [x,y]=nyquist(G,w); end
4 pp=atan2(y,x); H=2/pi*atan(x.ˆ2+y.ˆ2).*exp(sqrt(-1)*pp);
5 nyquist(frd(H,w))

The syntax of the function is atannyq(G,w) , where G is the open-loop model and w

is the specified frequency vector, which is optional.

Example 3.34. Consider again the system in Examples 3.32. The ordinary Nyquist plot and
the atan Nyquist plot are obtained as shown, respectively, in Figures 3.27(a) and (b). It is
obvious that information around the (−1, j0) point in the ordinary Nyquist plot is not well
provided. However, the information around the (−0.5, j0) point is clearly given.

>> s=tf(’s’);
G=2.7778*(sˆ2+0.192*s+1.92)/(s*(s+1)ˆ2*(sˆ2+0.384*s+2.56));
nyquist(G), figure, atannyq(G)

Logarithmic Nyquist plots

If the ordinary Nyquist plot can be regarded as the polar plot, where the complex gain
G(jω) can be represented as A(ω)ejφ(ω), the logarithmic Nyquist plot can be drawn as
the new representation 20lg[A(ω)]ejφ(ω). The improved Nyquist plot is referred to as the
logarithmic-amplitude polar diagram [34]. The function nyqlog() can be freely down-
loaded from http://www.mathworks.com/matlabcentral/files/7444/nyqlog.zip.

3.5. Frequency Domain Analysis of Linear Systems 91

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−60

−40

−20

0

20

40

60
Nyquist Diagram

Real Axis

Im
ag

in
ar

y
A

xi
s

(a) Ordinary Nyquist plot

−0.8 −0.6 −0.4 −0.2 0
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real axis

Im
ag

in
ar

y
ax

is

ATAN Nyquist Plot

(b) Atan Nyquist plot

Figure 3.27. Transformed Nyquist plots (arc tangent).

−12000 −10000 −8000 −6000 −4000 −2000 0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

5 Nyquist Diagram

Real Axis

Im
ag

in
ar

y
A

xi
s

(a) Ordinary Nyquist plot

−120

−60

0 dB

+60

(b) Logarithmic Nyquist plot

Figure 3.28. Logarithmic transformed Nyquist plots.

Example 3.35. Consider a more challenging open-loop model

G(s) = 200(1 + 3s)(1 + 2s)

s(1 + 50s)(1 + 10s)(1 + 0.5s)(1 + 0.1s)
,

where, with the following statements, the ordinary Nyquist plot and the logarithmic Nyquist
plot are both obtained, as shown in Figures 3.28(a) and (b), respectively.

92 Chapter 3. Analysis of Linear Control Systems

>> s=tf(’s’);
G=200*(1+3*s)*(1+2*s)/(s*(1+50*s)*(1+10*s)*(1+0.5*s)*(1+0.1*s));
nyquist(G), figure, nyqlog(G)

It can be seen that the ordinary Nyquist plot does not provide any information around the
critical point. Even if the original Nyquist plot is magnified, it may still lead to misleading
conclusions [34]. In this case, the new transformed Nyquist plot is more informative around
the critical point.

3.6 Introduction to Model Reduction Techniques
A model reduction technique was first introduced by Davison in 1966 [35]. The method
introduced was to reduce the dimension of the coefficient matrix of the system while pre-
serving some of the dominant eigenvalues or more influential states of the original system.
Transfer function model reduction techniques are sometimes referred to as “model simplifi-
cation” [36]. Here, the term “model reduction” will be used throughout the book since this
terminology appears more often in the literature; see, e.g., [37, 38]. In this section, model
reduction techniques for both the transfer function models and the state space models will
be introduced.

In what follows, the reduced-order model is denoted by

Gr/k(s) = β1s
r + β2s

r−1 + · · · + βr+1

α1sk + α2sk−1 + · · · + αks + αk+1
, (3.43)

where k < n with n the order of the original system. Again, for simplicity, it is assumed
that αk+1 = 1.

3.6.1 Padé Approximations and Routh Approximations

Suppose that the Taylor series of the original model G(s) can be written as

G(s) = c0 + c1s + c2s
2 + · · · , (3.44)

where the time moments ci can be computed from (3.20). A low-order transfer function can
be constructed to approximate the original model. If one wants to retain the first r + m + 1
time moments ci (i = 0, . . . , r + k) of the original model, the following formulae can be
established: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βr+1 = c0,

βr = c1 + αkc0,

...

β1 = cr + αkcr−1 + · · · + αk−r+1c0,

0 = cr+1 + αkcr + · · · + αk−rc0,

0 = cr+2 + αkcr+1 + · · · + αk−r−1c0,

...

0 = ck+r + αkck+r−1 + · · · + α2cr+1 + α1cr .

(3.45)

3.6. Introduction to Model Reduction Techniques 93

From the last m formulae in (3.45), the following algebraic equations can be obtained:⎡⎢⎢⎢⎣
cr cr−1 · · · .

cr+1 cr · · · .
...

...
. . .

...

ck+r−1 ck+r−2 · · · cr

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

αk

αk−1
...

α1

⎤⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎣
cr+1
cr+2

...

ck+r

⎤⎥⎥⎥⎦ (3.46)

from which the coefficients αi of the denominator can be evaluated easily by solving the
linear algebraic equations. From the first r + 1 formulae of (3.45), the coefficients βi of the
numerator can be evaluated. The matrix form is given by⎡⎢⎢⎢⎣

βr+1
βr

...

β1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
c0 0 · · · 0
c1 c0 · · · 0
...

...
. . .

...

cr cr−1 · · · c0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
αk

...

αk−r+1

⎤⎥⎥⎥⎦ . (3.47)

The above algorithm is referred to as the Padé approximation technique. A MATLAB
function pademod() is written based on this model reduction technique:

1 function G_red=pademod(G_Sys,r,k)
2 c=timmomt(G_Sys,r+k+1); G_red=pade_app(c,r,k);

The function also calls a low-level function pade_app(), where

1 function Gr=pade_app(c,r,k)
2 w=-c(r+2:r+k+1)’; vv=[c(r+1:-1:1)’; zeros(k-1-r,1)];
3 W=rot90(hankel(c(r+k:-1:r+1),vv)); V=rot90(hankel(c(r:-1:1)));
4 x=[1 (W\w)’]; dred=x(k+1:-1:1)/x(k+1);
5 y=[c(1) x(2:r+1)*V’+c(2:r+1)]; nred=y(r+1:-1:1)/x(k+1);
6 Gr=tf(nred,dred);

The syntax of the pademod() function is Gr=pademod(G,r,k) , where G is the
transfer function object of the original plant model, and r and k are the desired orders of the
numerator and denominator, respectively. The returned variables Gr is the reduced-order
model.

Example 3.36. Consider a fourth-order transfer function given by

G(s) = s3 + 7s2 + 24s + 24

s4 + 10s3 + 35s2 + 50s + 24
.

The time moments ci and the second-order reduced model can be obtained using the
following MATLAB commands:

>> G=tf([1 7 24 24],[1 10 35 50 24]); Gr=pademod(G,1,2)
bode(G,Gr), figure, step(G,Gr)

and the second-order approximate model is

Gr(s) = 0.8544s + 0.6957

s2 + 1.091s + 4.174
.

94 Chapter 3. Analysis of Linear Control Systems

−50

−40

−30

−20

−10

0
M

ag
ni

tu
de

 (
dB

)

10
−2

10
−1

10
0

10
1

10
2

−90

−45

0

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

original
model

original
model

(a) Bode diagrams

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Step Response

Time (sec)

A
m

pl
itu

de

(b) Step responses

Figure 3.29. Bode diagram and step response comparisons.

The Bode diagram and step response comparisons are obtained as shown in Figures 3.29(a)
and (b), respectively. It can be seen that the reduced model may satisfactorily approximate
the original fourth-order system.

Example 3.37. Assume that the original model is given by

G(s) = 0.067s5 + 0.6s4 + 1.5s3 + 2.016s2 + 1.55s + 0.6

0.067s6 + 0.7s5 + 3s4 + 6.67s3 + 7.93s2 + 4.63s + 1
.

The poles of G(s) are found as follows:

>> num=[0.067,0.6,1.5,2.016,1.66,0.6];
den=[0.067 0.7 3 6.67 7.93 4.63 1]; G=tf(num,den); zpk(G)

The zero-pole-gain format of the original model is

G(s) = (s + 5.92)(s + 1.221)(s + 0.897)(s2 + 0.9171s + 1.381)

(s + 2.805)(s + 1.856)(s + 1.025)(s + 0.501)(s2 + 4.261s + 5.582)
.

It can be seen that the original model is stable. The third-order Padé approximation
of the original model can be obtained by

>> Gr=zpk(pademod(G,1,3))

The reduced model obtained is

Gr(s) = −0.6328(s + 0.7695)

(s − 2.598)(s2 + 1.108s + 0.3123)
,

and it is obvious that the reduced-order model is unstable. This means that the Padé ap-
proximation method may not preserve the stability of the original system.

Since the Padé approach may fail to preserve the stability of the original system, Routh
approximation techniques are sometimes used. The Routh approximation method proposed
by Hutton [39] was to find a stable reduced-order model for the original asymptotically
stable model.

3.6. Introduction to Model Reduction Techniques 95

A MATLAB function routhmod() is written according to the Routh approximation
algorithm [39]:

1 function Gr=routhmod(G,nr)
2 num=G.num{1}; den=G.den{1}; n0=length(den); n1=length(num);
3 a1=den(end:-1:1); b1=[num(end:-1:1) zeros(1,n0-n1-1)];
4 for k=1:n0-1,
5 k1=k+2; alpha(k)=a1(k)/a1(k+1); beta(k)=b1(k)/a1(k+1);
6 for i=k1:2:n0-1,
7 a1(i)=a1(i)-alpha(k)*a1(i+1); b1(i)=b1(i)-beta(k)*a1(i+1);
8 end, end
9 nn=[]; dd=[1]; nn1=beta(1); dd1=[alpha(1),1]; nred=nn1; dred=dd1;

10 for i=2:nr,
11 nred=[alpha(i)*nn1, beta(i)]; dred=[alpha(i)*dd1, 0];
12 n0=length(dd); n1=length(dred); nred=nred+[zeros(1,n1-n0),nn];
13 dred=dred+[zeros(1,n1-n0),dd]; nn=nn1; dd=dd1; nn1=nred; dd1=dred;
14 end
15 Gr=tf(nred(nr:-1:1),dred(end:-1:1));

and it can be used to find the Routh approximant of a given plant model. The syntax of
this function is Gr=routhmod(G,k) , where G and Gr are the original and reduced
models, respectively, and k is the expected order of the Routh approximation. Note that in
the reduced-order model, the order of the numerator is one less than that of the denominator.

Example 3.38. Consider the model in Example 3.37. The third-order stable Routh approx-
imation can be obtained using the following MATLAB statements:

>> num=[0.067,0.6,1.5,2.016,1.66,0.6];
den=[0.067 0.7 3 6.67 7.93 4.63 1]; G=tf(num,den);
Gr=routhmod(G,3); zpk(Gr)
bode(G,Gr), figure, step(G,Gr)

where the reduced-order model is

Gr(s) = 0.37792(s2 + 0.9472s + 0.3423)

(s + 0.4658)(s2 + 1.15s + 0.463)
,

and it can be seen that the model is stable. The Bode diagrams and step responses are
compared in Figure 3.30. Although the stability in the reduced-order system is retained, the
fitting results are not satisfactory.

However, it is usually claimed that although the Routh approximation method may
preserve the stability of the original system, the dynamic fitting of time domain and fre-
quency domain responses to those of the original systems may not be satisfactory. Thus,
other approaches, such as the dominant mode methods [40], impulse energy approximation
method and its variations [41], the stability equation–based methods [42], the multifrequency
fitting Padé approximation method [43, 44], and the optimal model reduction methods [45],
can be used to get a better fitting while preserving the stability of the original system. A rel-
atively complete summary on frequency domain model reduction techniques can be found
in [46].

96 Chapter 3. Analysis of Linear Control Systems

−50

−40

−30

−20

−10

0
M

ag
ni

tu
de

 (
dB

)

10
−2

10
−1

10
0

10
1

10
2

−90

−45

0

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

original
model

original
model

(a) Bode diagrams

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Step Response

Time (sec)

A
m

pl
itu

de

(b) Step responses

Figure 3.30. Bode diagram and step response comparisons.

3.6.2 Padé Approximations to Delay Terms

Similar to the case of Padé approximation to transfer function models, the Padé technique
can also be used in the approximation of pure delay terms. An nth-order Padé approximation
to the delay term e−τs can be written as

Pn,τ (s) = 1 − τs/2 + p2(τ s)2 − p3(τ s)3 + · · · + (−1)n+1pn(τs)n

1 + τs/2 + p2(τ s)2 + p3(τ s)3 + · · · + pn(τs)n
. (3.48)

A MATLAB function pade() is provided in the Control Systems Toolbox with the
syntax [nP,dP]= pade(τ,n) , where n is the order of Padé approximation. The
numerator and denominator of the rational Padé approximation are returned in (nP , dP) for
Pn,τ (s).

Now assume that the order of the numerator can be chosen arbitrarily. The Maclaurin
series expansion for the pure delay term can be written as

e−τs = 1 − 1

1!τs + 1

2!τ
2s2 − 1

3!τ
3s3 + · · · (3.49)

which is similar to the time moment expansion of (3.44). Therefore, the same algorithm can
be used to find a Padé approximation of the delay term. A MATLAB function paderm()
is written

1 function [n,d]=paderm(tau,r,k)
2 c(1)=1; for i=2:r+k+1, c(i)=-c(i-1)*tau/(i-1); end
3 Gr=pade_app(c,r,k); n=Gr.num{1}(k-r+1:end); d=Gr.den{1};

which can be used to find a Padé approximation of a delay term. The syntax of this function
is [n,d]= paderm(τ,r,k) , where r and k are the orders of the numerator and
denominator, respectively. The numerator and denominator coefficients are returned in the
vectors (n,d).

3.6. Introduction to Model Reduction Techniques 97

0 0.5 1 1.5 2 2.5 3

−0.2

0

0.2

0.4

0.6

0.8

1

Step Response

Time (sec)

A
m

pl
itu

de

← e−s

← G1(s)

← G2(s)

G5(s)→

Figure 3.31. Example 3.39.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

← G(s)

← Gr (s)

Figure 3.32. Example 3.40.

Example 3.39. Consider a pure delay term G(s) = e−s . The following MATLAB state-
ments can be used to find its Padé approximation:

>> tau=1; [n1,d1]=pade(tau,3); G1=tf(n1,d1)
[n2,d2]=paderm(tau,1,3); G2=tf(n2,d2)
[n3,d3]=paderm(tau,2,5); G3=tf(n3,d3);
[n4,d4]=paderm(tau,3,7); G4=tf(n4,d4);
[n5,d5]=paderm(tau,4,9); G5=tf(n5,d5);
step(G1,G2,G3,G4,G5), line([0 1 1+eps 3],[0,0,1 1])

The approximate models using the two functions are, respectively,

G1(s) = −s3 + 12s2 − 60s + 120

s3 + 12s2 + 60s + 120
, G2(s) = −6s + 24

s3 + 6s2 + 18s + 24

and the step response comparisons are shown in Figure 3.31. It can be seen that the fitting
to the pure delay term can be well approximated by rational terms if the order selected is
suitable.

Example 3.40. Consider a transfer function with a delay

G(s) = 3s + 1

(s + 1)3 e−2s .

The Maclaurin series expansion of the pure delay term can be evaluated as

>> cd=[1]; tau=2; for i=1:5, cd(i+1)=-tau*cd(i)/i; end

One can then obtain the time moments of the whole system by multiplying the two series to
find a Padé approximation model of the original system, which is illustrated in the following:

>> G=tf([3,1],[1,3,3,1],’ioDelay’,2); c=timmomt(G,5);
c_hat=conv(c,cd); Gr=pade_app(c_hat,1,3), step(G,Gr)

98 Chapter 3. Analysis of Linear Control Systems

and it can be found that

Gr(s) = 0.2012s + 0.009146

s3 + 0.4482s2 + 0.2195s + 0.009146
.

The step response fitting is shown in Figure 3.32, from which it can be seen that the approx-
imation is not satisfactory.

3.6.3 Suboptimal Reduction Techniques for Systems with Delays

Fitness measures on reduced-order models

There could be many measures on the quality of reduced-order models. Here, a simple and
commonly used measure is introduced. Consider the block diagram shown in Figure 3.33,
where the two blocks, namely the original model and the reduced model, are subject to the
same input signal r(t), and the error between the output of the original model and that of
the reduced-order model is denoted by e(t).

Based on the error signal, many measures can be used, such as

IISE=
∫ ∞

0
e2(t)dt, I ITAE=

∫ ∞

0
t |e(t)|dt, I ISTE=

∫ ∞

0
t2e2(t)dt. (3.50)

where ISE stands for integral of squared error, ITAE for integral of time-multiplied absolute
value of error, and ISTE for integral of time-multiplied squared error. The commonly used
ISE criterion will be used in the following discussions.

Suppose the original model is given by

G(s)e−T s = b1s
n−1 + · · · + bn−1s + bn

sn + a1sn−1 + · · · + an−1s + an

e−T s (3.51)

and the reduced-order model is given by

Gr/k(s)e
−τs = β1s

r + · · · + βrs + βr+1

sk + α1sk−1 + · · · + αk−1s + αk

e−τs . (3.52)

The Laplace transform of the error signal can be written as

E(s) =
[
G(s)e−T s − Gr/k(s)e

−τs
]
R(s), (3.53)

where R(s) is the Laplace transform of the input signal r(t). Therefore, if one considers
the input signal as an impulse function, IISE equals the squared H2-norm of the difference
transfer function in the above equation. Some MATLAB functions from Sec. 3.1.5 can be
used to compute the H2-norm.

G(s)e−T s

Gr/k(s)e−τs

�

�
�

�

�

r(t) e(t)

−

Figure 3.33. Error for model reduction.

3.6. Introduction to Model Reduction Techniques 99

Introduction to suboptimal order reduction

The idea of optimization-based model reduction algorithms is straightforward. It is sim-
ply to transform the model reduction problem into a parameter optimization problem by
minimizing e(t) via the ISE criterion.

It has been shown that the integral squared value of the signal h(t) = w(t)e(t) (w(t) is
the weighting function) is in fact the square of the H2-norm of H(s), the Laplace transform
of signal h(t), i.e.,

σ 2
h =

∫ ∞

0
h2(t)dt =

∫ ∞

0
w2(t)e2(t)dt = ‖H(s)‖2

2. (3.54)

If H(s) is a rational function of s with no pole having any nonnegative real part, the integral
squared value σ 2

h can also be obtained from norm(H) . However, in our case, due to
the delay term, the above method cannot be used directly. Padé approximation for the time
delay can be used to make H(s) rational. In this sense, the optimization-based method
should be referred to as the suboptimal model reduction technique since the time delay term
is replaced by its Padé approximation.

Define a parameter vector θ as

θ = [α1, . . . , αk, β1, . . . , βr+1, τ]T. (3.55)

The model approximate error can be written explicitly as ê(t, θ) for a given original model
and the input signal. An objective function for suboptimal model reduction can be defined
as

J = min
θ

[∫ ∞

0
w2(t)̂e2(t, θ)dt

]
. (3.56)

A MATLAB function opt_app() is written based on the numerical optimization
algorithms for the suboptimal model reduction:

1 function G_r=opt_app(G_Sys,r,k,key,G0)
2 GS=tf(G_Sys); num=GS.num{1}; den=GS.den{1};
3 Td=totaldelay(GS); GS.ioDelay=0; GS.InputDelay=0;GS.OutputDelay=0;
4 if nargin<5,
5 n0=[1,1]; for i=1:k-2, n0=conv(n0,[1,1]); end
6 G0=tf(n0,conv([1,1],n0));
7 end
8 beta=G0.num{1}(k+1-r:k+1); alph=G0.den{1}; Tau=1.5*Td;
9 x=[beta(1:r),alph(2:k+1)]; if abs(Tau)<1e-5, Tau=0.5; end

10 dc=dcgain(GS); if key==1, x=[x,Tau]; end
11 y=opt_fun(x,GS,key,r,k,dc); x=fminsearch(’opt_fun’,x,[],GS,key,r,k,dc);
12 alph=[1,x(r+1:r+k)]; beta=x(1:r+1); if key==0, Td=0; end
13 beta(r+1)=alph(end)*dc; if key==1, Tau=x(end)+Td; else, Tau=0; end
14 G_r=tf(beta,alph,’ioDelay’,Tau);

A subfunction opt_fun(), which is used to evaluate the objective function in the
model reduction process, is also written as

1 function y=opt_fun(x,G,key,r,k,dc)
2 ff0=1e10; a=[1,x(r+1:r+k)]; b=x(1:r+1); b(end)=a(end)*dc; g=tf(b,a);
3 if key==1,
4 tau=x(end); if tau<=0, tau=eps; end, [n,d]=pade(tau,3); gP=tf(n,d);

100 Chapter 3. Analysis of Linear Control Systems

5 else, gP=1; end
6 G_e=G-g*gP; G_e.num{1}=[0,G_e.num{1}(1:end-1)];
7 [y,ierr]=geth2(G_e); if ierr==1, y=10*ff0; else, ff0=y; end
8 function [v,ierr]=geth2(G)
9 G=tf(G); num=G.num{1}; den=G.den{1}; ierr=0; v=0; n=length(den);

10 if abs(num(1))>eps
11 disp(’System not strictly proper’);
12 ierr=1; return
13 else, a1=den; b1=num(2:length(num)); end
14 for k=1:n-1
15 if (a1(k+1)<=eps), ierr=1; return
16 else,
17 aa=a1(k)/a1(k+1); bb=b1(k)/a1(k+1); v=v+bb*bb/aa; k1=k+2;
18 for i=k1:2:n-1
19 a1(i)=a1(i)-aa*a1(i+1); b1(i)=b1(i)-bb*a1(i+1);
20 end, end, end
21 v=sqrt(0.5*v);

The syntax of the function is Gr=opt_app(G,nr,nd,key,G0) , where G and Gr are
the original and the reduced-order model objects; nr , nd are the expected orders of the
numerator and denominator, respectively. The argument key indicates whether a delay
term is expected in the reduced model. G0 is the optional initial reduced-order model. This
function considers only the case of the ISE criterion with a step input, which is a simplified
version of [47].

Example 3.41. Consider the following transfer function studied in [43]:

G(s) = 1 + 8.8818s + 29.9339s2 + 67.087s3 + 80.3787s4 + 68.6131s5

1 + 7.6194s + 21.7611s2 + 28.4472s3 + 16.5609s4 + 3.5338s5 + 0.0462s6
.

Using the following MATLAB statements

>> num=[68.6131,80.3787,67.087,29.9339,8.8818,1];
den=[0.0462,3.5338,16.5609,28.4472,21.7611,7.6194,1];
G=tf(num,den); Gr=zpk(opt_app(G,2,3,0)), step(G,Gr,8)

the optimal reduced model is obtained as

Gr(s) = 1523.6536(s2 + 0.3492s + 0.2482)

(s + 74.85)(s2 + 3.871s + 5.052)
.

The step response comparisons are shown in Figure 3.34, and it can be seen that the fitting
results are satisfactory.

Example 3.42. Consider the plant model given by [48],

G(s) = 432

(5s + 1)(2s + 1)(0.7s + 1)(s + 1)(0.4s + 1)
.

A suboptimal reduced model with a delay can be obtained using the following MAT-
LAB statements:

>> s=tf(’s’); G=432/((5*s+1)*(2*s+1)*(0.7*s+1)*(s+1)*(0.4*s+1));
Gr=zpk(opt_app(G,0,2,1)), step(G,Gr)

3.6. Introduction to Model Reduction Techniques 101

0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8

10

12

14

16

18

Step Response

Time (sec)

A
m

pl
itu

de

Figure 3.34. Example 3.41.

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

Step Response

Time (sec)

A
m

pl
itu

de

Figure 3.35. Example 3.42.

and the reduced model is

Gr(s) = 31.4907

(s + 0.3283)(s + 0.222)
e−1.5s .

The step response comparisons are shown in Figure 3.35, and it can be seen that the original
high-order system can satisfactorily be approximated by the low-order one with a delay.

3.6.4 State Space Model Reduction

Balanced realization method

Suppose that the balanced realization of the original model can be partitioned as[
ẋ1
ẋ2

]
=
[
A11 A12
A21 A22

] [
x1
x2

]
+
[
B1
B2

]
u, y = [C1 C2]

[
x1
x2

]
+ Du (3.57)

and assume that the states in subvector x2 are to be chopped off. Then, the reduced model
is written as the following:

ẋ1 = [A11 − A12A
−1
22 A21]x1 + [B1 − A12A

−1
22 B2]u,

y = [C1 − C2A
−1
22 A21]x1 + [D − C2A

−1
22 B2]u.

(3.58)

A function modred() implementing the above algorithm is provided in the Control
Systems Toolbox with syntax Gr=modred(G,elim) , where G is the balanced realized
state space object and elim contains the states to be dropped off. The reduced model Gr

is then returned.

Example 3.43. Consider again the system model in Example 2.22. To get a second-order
reduced model, the following MATLAB statements can be used to obtain the Gramian of
the balanced realized system model:

>> G=tf([1,7,24,24],[1,10,35,50,24]); [Gb,g]=balreal(ss(G))

where the Gramians g = [0.5179, 0.0309, 0.0124, 0.0006]T. Clearly, the contribution
to the input-output relationship from the third and fourth states is not very important.
Thus, it is safe to eliminate them to get a second-order reduced model using the following

102 Chapter 3. Analysis of Linear Control Systems

−60

−50

−40

−30

−20

−10

0
M

ag
ni

tu
de

 (
dB

)

10
−2

10
−1

10
0

10
1

10
2

10
3

−90

−45

0

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

Gr (s)

G(s)

G(s)

Gr (s)

(a) Bode diagrams

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Step Response

Time (sec)

A
m

pl
itu

de

(b) Step responses

Figure 3.36. Bode diagram and step response comparisons.

MATLAB statements:

>> Gr=modred(Gb,[3,4]); zpk(Gr), bode(G,Gr), figure, step(G,Gr)

The reduced model is then

Gr(s) = 0.025974(s + 4.307)(s + 22.36)

(s + 1.078)(s + 2.319)
.

The Bode diagram and step response comparisons are shown in Figure 3.36 and it can be
seen that the fitting is satisfactory. It should also be noted that the reduced-order system is
not strictly proper, and hence we have the small initial jump in the step response.

Schur’s balanced realization truncation method

Schur’s balanced realization truncation function schmr() provided in the Robust Control
Toolbox can perform a model reduction task similar to modred(). The difference between
the two techniques is that an unstable system can be handled in schmr(). The syntax of
schmr() is Gr=schmr(G,1,nr) , where G is the original model object in state space
format, nr is the expected order of the reduced model, and Gr returns the reduced-order
model object also in the state space form.

Example 3.44. Consider again the plant model in Example 3.41. To apply the Schur model
reduction algorithm, the state space model of the system should be obtained first. This can
be done using the following MATLAB statements:

>> num=[68.6131,80.3787,67.087,29.9339,8.8818,1];
den=[0.0462,3.5338,16.5609,28.4472,21.7611,7.6194,1];
G=ss(tf(num,den)); Gr=zpk(schmr(G,1,3))

It is indicated that three states are removed, and the third-order reduced model using Schur’s
method can be written as

Gr(s) = 1485.3076(s2 + 0.1789s + 0.2601)

(s + 71.64)(s2 + 3.881s + 4.188)
.

3.6. Introduction to Model Reduction Techniques 103

−20

−10

0

10

20

30

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

10
3

10
4

−90

−45

0

45

90

135

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

← Gh(s)

← Gh(s)
← Gr (s)

G(s) and Go(s)

G(s)
and

Go(s)

(a) Bode diagrams

0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8

10

12

14

16

18

Step Response

Time (sec)

A
m

pl
itu

de

(b) Step responses

Figure 3.37. Bode diagram and step response comparisons.

Optimal Hankel norm approximation

Glover presented an algorithm to find the optimal Hankel approximation to a given state
space model [49]. The reduced-order model using the Hankel norm approximation algorithm
can be obtained with the MATLAB function ohklmr() provided in the Robust Control
Toolbox. The syntax of the function is Gr=ohklmr(G,1,k) , where G is the original
model object in state space format, k is the expected order of the reduced-order model, and
Gr returns the reduced-order model object in state space.

Example 3.45. Consider again the plant model in Example 3.41. The third-order reduced
model using the optimal Hankel norm approximation method can be obtained as follows:

>> num=[68.6131,80.3787,67.087,29.9339,8.8818,1];
den=[0.0462,3.5338,16.5609,28.4472,21.7611,7.6194,1];
G=ss(tf(num,den)); Gh=zpk(ohklmr(G,1,3))

and it is indicated that three states are removed, and a reduced-order model is then returned
as

Gh(s) = 1527.8048(s2 + 0.2764s + 0.2892)

(s + 73.93)(s2 + 3.855s + 4.585)
.

For the same original model, the optimal approximation can also be obtained by

>> Go=zpk(opt_app(G,2,3,0)),
bode(G,Go,Gr,Gh,{0.1,10000}), figure, step(G,Go,Gr,Gh,8)

where the reduced-order model is

Go(s) = 1523.6536(s2 + 0.3492s + 0.2482)

(s + 74.85)(s2 + 3.871s + 5.052)
.

The Bode diagram and step response comparisons are shown in Figure 3.37. It can be seen
that they all fit satisfactorily into the original model. Among all three models, the optimal
reduced-order model is significantly better than the other two reduced models.

104 Chapter 3. Analysis of Linear Control Systems

Problems

1. Check the stability for the following systems:

(a) G(s) = 1

s3 + 2s2 + s + 2
,

(b) G(s) = 1

6s4 + 3s3 + 2s2 + s + 1
,

(c) G(s) = 1

s4 + s3 − 3s2 − s + 2
,

(d) G(s) = 3s + 1

s2(300s2 + 600s + 50) + 3s + 1
,

(e) G(s) = 0.2(s + 2)

s(s + 0.5)(s + 0.8)(s + 3) + 0.2(s + 2)
,

(f) H(z) = −3z + 2

z3 − 0.2z2 − 0.25z + 0.05
,

(g) H(z) = 3z2 − 0.39z − 0.09

z4 − 1.7z3 + 1.04z2 + 0.268z + 0.024
,

(h) H(z) = z2 + 3z − 0.13

z5 + 1.352z4 + 0.4481z3 + 0.0153z2 − 0.01109z − 0.001043
,

(i) H(z−1) = 2.12z−2 + 11.76z−1 + 15.91

z−5 − 7.368z−4 − 20.15z−3 + 102.4z−2 + 80.39z−1 − 340
,

(j)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ẋ(t) =

⎡⎢⎢⎢⎢⎣
−0.2 0.5 0 0 0

0 −0.5 1.6 0 0
0 0 −14.3 85.8 0
0 0 0 −33.3 100
0 0 0 0 −10

⎤⎥⎥⎥⎥⎦ x(t) +

⎡⎢⎢⎢⎢⎣
0
0
0
0

30

⎤⎥⎥⎥⎥⎦ u(t),

y = [1, 0, 0, 0, 0]x,

(k)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ẋ =

⎡⎢⎢⎢⎢⎣
17 24.54 1 8 15

23.54 5 7 14 16
4 6 13.75 20 22.5889

10.8689 1.2900 19.099 21.896 3
11 18.089799 25 2.356 9

⎤⎥⎥⎥⎥⎦ x +

⎡⎢⎢⎢⎢⎣
1
2
3
4
5

⎤⎥⎥⎥⎥⎦ u,

y = [5, 4, 3, 2, 1]x.

2. Find the poles and zeros of the multivariable system and check the stability of the
system. If unity negative feedback is assumed, check the stability of the closed-loop

3.6. Introduction to Model Reduction Techniques 105

system ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ẋ(t) =

⎡⎢⎢⎣
−3 1 2 1
0 −4 −2 −1
1 2 −1 1

−1 −1 1 −2

⎤⎥⎥⎦ x(t) +

⎡⎢⎢⎣
1 0
0 2
0 3
1 1

⎤⎥⎥⎦u(t),

y(t) =
[

1 2 2 −1
2 1 −1 2

]
x(t).

3. Find the controllability index and observability index of the state space models in the
previous problem. Obtain the controllable and observable staircase forms.

4. Find the controllable and observable decompositions of the systems given by

(a) ẋ =

⎡⎢⎢⎣
1 −3 3 3

−5 −1 −5 5
−2 0 −4 0
−2 0 −2 4

⎤⎥⎥⎦ x +

⎡⎢⎢⎣
0
0

−1
−1

⎤⎥⎥⎦ u, y = [1, 2, 1, −2]x,

(b) ẋ =
⎡⎣ 1 −2 −1

1 −2 −2
−1 1 2

⎤⎦ x +
⎡⎣1

0
1

⎤⎦ u, y = [1, −1, 0]x.

5. Perform the Kalman decomposition of the system model given by

ẋ =

⎡⎢⎢⎣
−1 0 0 0
0 −2 0 0
0 0 −3 0
0 −2 0 −4

⎤⎥⎥⎦ x +

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦ u, y = [0, 1, 1, 1]x

and write down the transformation matrix. From the Kalman decomposition of the
system, obtain the minimum realization in the state space model. Give an explanation
of the minimum realization from the transfer function point of view.

6. Compute the first three time moments and Markov parameters for the models given in
Problems 1 and 2.

7. Determine the H2- and H∞-norms of the following systems:

(a) G1(s) = 3s + 5

(s + 1)(s + 2)(s + 3)(s + 4)
,

(b) G2(s) = 3s3 + 4s2 − 3s + 5

(s + 1)(s2 + 3s + 8)(s + 3)2(s + 4)
,

(c) ẋ =

⎡⎢⎢⎣
−3 −4 −2/3 −1
1 0 0 0
1 1 −4/3 −2/3
0 0 1 0

⎤⎥⎥⎦ x +

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦ u, y = [0, 0, 2/3, 1]x.

106 Chapter 3. Analysis of Linear Control Systems

8. Find the analytical solution to the autonomous system

ẋ(t) =

⎡⎢⎢⎣
−5 2 0 0
0 −4 0 0

−3 2 −4 −1
−3 2 0 −4

⎤⎥⎥⎦ x(t), x(0) =

⎡⎢⎢⎣
1
2
0
1

⎤⎥⎥⎦ .

Compare the results with numerical results.

9. An eighth-order model G(s) is given by

18s7+514s6+5982s5+36380s4+122664s3+222088s2+185760s+40320

s8+36s7+546s6+4536s5+22449s4+67284s3+118124s2+109584s+40320
.

Assume that the system has zero initial conditions. Find the analytical and numerical
solutions of the system under step and impulse inputs. Also assume that the input
signal is sinusoidal u(t) = sin(3t + 5). Assume again the system has zero initial
conditions. Find the analytical solutions to the system response and verify the results
by graphical comparison.

10. Draw the step response of the system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ ẋ(t) =

⎡⎢⎢⎢⎢⎣
−0.2 0.5 0 0 0

0 −0.5 1.6 0 0
0 0 −14.3 85.8 0
0 0 0 −33.3 100
0 0 0 0 −10

⎤⎥⎥⎥⎥⎦ x(t) +

⎡⎢⎢⎢⎢⎣
0
0
0
0

30

⎤⎥⎥⎥⎥⎦ u(t),

and y(t) = [1, 0, 0, 0, 0]x(t). Draw also the step response of all the states. For dif-
ferent sampling intervals of T , find the equivalent discrete-time system and compare
the overshoot and settling time.

11. Draw the root locus diagrams of the following systems and determine the range of K

which stabilizes the open-loop system with unity negative feedback:

(a) G(s) = K(s + 6)(s − 6)

s(s + 3)(s+4−4j)(s+4−4j)
,

(b) G(s) = K
s2 + 2s + 2

s4 + s3 + 14s2 + 8s
,

(c) G(s) = K

s(s2/2600 + s/26 + 1)
,

(d) G(s) = 800K(s + 1)

s2(s + 10)(s2 + 10s + 50)
,

3.6. Introduction to Model Reduction Techniques 107

(e)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ(t) =

⎡⎢⎢⎣
−1.5 −13.5 −13 0

10 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎦ x(t) + K

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦ u(t),

y(t) = [0, 0, 0, 1]x(t).

(f) H(z) = K
1

(z + 0.8)(z − 0.8)(z − 0.99)(z − 0.368)
,

(g) Ĥ (z) = H(z)z−8.

12. Assume the plant model

G(s) = K(s − 1)e−2s

(s + 1)5
.

Find the approximate range of K which stabilizes the closed-loop system with unity
negative feedback.

13. The open-loop transfer function is given by

G(s) = K

(s+2)(s+4)(s2+6s+25)
.

Find the range of K to make the closed-loop system with unity negative feedback
stable. Also find the value of K which gives the closed-loop system a dominant
damping ratio of 0.707.

14. Draw the Bode diagrams, Nyquist plots, and Nichols charts for the following systems,
and check the stability of the systems under unity negative feedback control from the
plots obtained. Mark the gain and phase margins on the plots obtained. Verify the
results through closed-loop step responses.

(a) G(s) = 8(s + 1)

s2(s + 15)(s2 + 6s + 10)
,

(b) G(s) = 4(s/3 + 1)

s(0.02s + 1)(0.05s + 1)(0.1s + 1)
,

(c)

⎧⎪⎪⎨⎪⎪⎩
ẋ(t) =

⎡⎣ 0 2 1
−3 −2 0
1 3 4

⎤⎦ x(t) +
⎡⎣4

3
2

⎤⎦ u(t),

y(t) = [1, 2, 3]x(t)

(d) H(z) = 0.45
(z + 1.31)(z + 0.054)(z − 0.957)

z(z − 1)(z − 0.368)(z − 0.99)
,

(e) G(s) = 6(−s + 4)

s2(0.5s+1)(0.1s+1)
,

108 Chapter 3. Analysis of Linear Control Systems

(f) G(s) = 10s3 − 60s2 + 110s + 60

s4+17s3+82s2+130s+100
.

15. Draw nonlinearly transformed Nyquist plots for the systems containing integrators in
the previous problems and see whether the same conclusion can be obtained.

16. Assume that a plant model is given by G(s) = 1/s2, and an optimal controller can be
expressed as

Gc(s) = 5620.82s3 + 199320.76s2 + 76856.97s + 7253.94

s4 + 77.40s3 + 2887.90s2 + 28463.88s + 2817.59
.

Also assume unity negative feedback. Draw the Nyquist and Nichols plots and super-
impose the M and N circles on the diagrams. Plot the closed-loop frequency response
of the system and confirm that the magnitude of the peak and its corresponding phase
are in agreement with the deductions from the Nyquist and Nichols plots.

17. Assume that the plant model is

G(s) = 100(1 + s/2.5)

s(1 + s/0.5)(1 + s/50)
,

and a cascade controller is given by

Gc(s) = 1000(s + 1)(s + 2.5)

(s + 0.5)(s + 50)
.

Assess the closed-loop behavior of the system under unity negative feedback control.
Verify the assessment by time domain analysis.

18. For the feedback system structures with

(a) G(s) = 3.5(s + 6)

s(s + 1)(s + 3)(s + 8)
, Gc(s) = (5s + 4)/s, H(s) = 0.01s + 6

2s + 4
,

(b) G(s) = 3.5(s + 6)2

(s + 1)(s + 3)(s + 8)(s2 + 3s + 6)
, Gc(s) = 5s + 4

6s + 2
, H(s) = 1.

By definition, the sensitivity of the feedback system can be defined as S(s) = 1/[1 +
H(s)G(s)Gc(s)], and the complimentary sensitivity can be defined asT (s) = 1−S(s).
Find the sensitivity and complementary sensitivity transfer functions.

19. Find reduced-order models for the following original models using different algorithms
presented in this chapter:

(a) G(s) = 10 + 3s + 13s2 + 3s2

1 + s + 2s2 + 1.5s3 + 0.5s4 ,

(b) G(s) = 500 + 9984.3234s + 50664.9675s2 + 8169.1337s3

500 + 10105s + 52101s2 + 10520s3 + 100s4 ,

3.6. Introduction to Model Reduction Techniques 109

(c) G(s) = 1 + 0.4s

1 + 2.283s + 1.875s2 + 0.7803s3 + 0.125s4 + 0.0083s5
,

(d) G(z) = 24.1467z3 − 67.7944z2 + 63.4768z − 19.8209

z4 − 3.6193z3 + 4.9124z2 − 2.9633z + 0.6703
.

20. Consider a high-order model given by

G(s) = (1 + 2.0587s)(1 + 2.5529s + 5.4342s2)(1 + 3.2648s + 2.1476s2)

(1+3.0092s+.7970s2)(1+6.8538s+0.6965s2)(1+.1394s+0.6861s2)
.

The (2/3)-order FF-Padé reduced model given in [43] is

GFF
2/3(s) = 1 − 1.4257s + 4.3109s2

1 + 0.7003s + 0.8613s2 + 0.0837s3 .

Meanwhile, a correspondence to the paper given by Stahl and Hippe [50] suggested

a (3/4)-order model

G3/4(s) = 62.85(s + 2.64)(s + 0.192 + 0.608j)(s + 0.192 − 0.608j)

(s + 8.09)(s + 5.75)(s + 0.1 + j1.2)(s + 0.1 − j1.2)
.

Using the optimum reduced-order model given in the chapter, compare the reduced-
order model with the above existing reduced-order models.

Chapter 4

Simulation Analysis of
Nonlinear Systems

In the previous chapters we have addressed modeling and analysis methods for linear sys-
tems. In the real world, however, control systems always contain nonlinear effects, which
may be inherent and unavoidable such as friction, or may be introduced intentionally to
provide better performance either technically or economically. A good example is the use
of a relay for on-off temperature control. Indeed one could argue that a control system
which does not operate under actuator saturation at some time is a bad design from an eco-
nomic perspective. MATLAB includes the simulation language Simulink, and although the
analysis of nonlinear systems is more difficult than that of linear systems, their simulation is
straightforward. It is not the intent of this book to present theoretical methods for studying
nonlinear systems, but in introducing Simulink it was felt appropriate to show some of its
facilities for simulating nonlinear feedback systems and to give the reader a small appreci-
ation of the effects of nonlinearity on system behavior. This is done through the discussion
of a few examples. Further, since initial designs for many nonlinear systems involve con-
sideration of linearized models, this important topic is also covered. A reader who wishes
to know more about nonlinear systems or indeed clearly understand all the unique effects
that might occur in these systems is referred to appropriate reference [51].

In Sec. 4.1, a brief overview of Simulink, and in particular, the model library of
Simulink, are presented. The procedures for Simulink-based modeling and simulation are
also given. Nonlinear system modeling problems are presented through examples in Sec. 4.2,
where Simulink modeling of nonlinear differential equations, multivariable systems, com-
puter control systems, and time varying systems is illustrated. In Sec. 4.3, a systematic
way of modeling piecewise linear single-valued and double-valued nonlinearities is given,
and limit cycle problems are explored through simulation approaches. In Sec. 4.4, the
linearization of nonlinear systems is presented.

4.1 An Introduction to Simulink
Simulink was developed by the MathWorks in 1990. Its original name was SimuLAB, and
the name was changed to the current name in 1992. Two meanings are implied in its name,
“simu” and “link.” The word “link” means that the system block diagram can be established

111

112 Chapter 4. Simulation Analysis of Nonlinear Systems

with building blocks and links between the blocks. The word “simu” means its simulation
facilities. With the use of the powerful facilities provided in the Simulink program, different
systems can be simulated easily and straightforwardly.

4.1.1 Commonly Used Simulink Blocks

The modeling algorithms given in Chapters 2 and 3 cannot be directly applied for nonlinear
systems. In this case, the sophisticated Simulink environment can be used to represent such
nonlinear system models. Details of Simulink modeling are not given in this book but the
interested reader may refer to [28, 29, 52].

To model a nonlinear system, the block library of Simulink should be opened first. It
can be opened in one of the following two ways. We shall use the first way throughout the
book.

1. Type the open_system(’simulink’) command under the MATLAB prompt.
Then, the main window of Simulink will be shown (or brought to the front, when it is
already started) as shown in Figure 4.1.

2. Initiate a block library by clicking the Simulink icon in the toolbar in the MATLAB
window, as shown in Figure 4.2.

It can be seen that a large number of model blocks are provided in Simulink. Here,
the commonly used blocks in control systems are summarized:

1. Linear system blocks: The continuous transfer function model, state space model, and
zero-pole-gain model are provided in the Continuous group as shown in Figure 4.3.
The integrator, differentiator, and time delay blocks are also provided in the group.
Moreover, in the Discrete group, the discrete versions of the Continuous block set
are provided.

2. Nonlinear blocks: The commonly used nonlinearities are provided in the Discontinu-
ity group as shown in Figure 4.4, where nonlinearities such as saturation, dead-zone,
and others can be used directly.

Figure 4.1. Simulink block library.

4.1. An Introduction to Simulink 113

Figure 4.2. Simulink block library browser.

Continuous−Time Linear Systems
Continuous−Time Delays

(s−1)

s(s+1)
Zero−Pole

Ti
Variable

Transport Delay

To
Variable

Time Delay
Transport

Delay1

s+1
Transfer Fcn

x’ = Ax+Bu
 y = Cx+Du

State−Space

1
s

Integrator

du/dt

Derivative

Figure 4.3. Linear continuous blocks.

Discontinuities

Wrap To Zero

up
u
lo

y

Saturation
Dynamic

Saturation Relay

up
u
lo

Rate Limiter
Dynamic

Rate Limiter Quantizer

Hit
Crossing

up
u
lo

y

Dead Zone
Dynamic

Dead Zone

Coulomb &
Viscous Friction

Backlash

Figure 4.4. Nonlinear blocks.

3. Input and output blocks: The input signals can be modeled using the blocks in the
Sources group, shown in Figure 4.5. The step input, pulse input, and other input
signals can be represented by the blocks in the group. In particular, the Inport block
can be used to model the input port of the system.

The output of the system can be displayed with the blocks in the Sinks group, shown
in Figure 4.6. One may use the Scope block to show the curves of the selected signals
during simulation. The outport block in the group may be used to indicate the output
port of the system.

114 Chapter 4. Simulation Analysis of Nonlinear Systems

Model & Subsystem Inputs

Signal Generators

Uniform Random
Number

StepSine Wave

Signal 1

Signal BuilderSignal
Generator

Repeating
Sequence

Stair

Repeating
Sequence

Interpolated

Repeating
Sequence

Random
Number

Ramp

Pulse
Generator

Ground

untitled.mat

From File

simin

From
Workspace

12:34

Digital Clock

lim

Counter
Limited

Counter
Free−Running

1

Constant
ClockChirp Signal Band−Limited

White Noise

1
In1

Figure 4.5. Input (source) blocks.

Model & Subsystem Outputs

Simulation Control

Data Viewers

1
Out1

XY Graph

simout

To Workspace

untitled.mat

To FileTerminator

STOP

Stop Simulation

Scope Floating
Scope

0

Display

Figure 4.6. Output (sink) blocks.

Vector/Matrix
Operations

Math Operations Complex Vector
Conversions

u+Ts

Weighted
Sample Time

Math

Vector
Concatenate

−u

Unary Minus

sin

Trigonometric
Function

Sum of
Elements

Sum Subtract

1

Slider
Gain

t

Sine Wave
Function

Sign

floor

Rounding
Function

U(:)

Reshape

Re
Im

Real−Imag to
Complex

Product of
Elements

Product

P(u)
O(P) = 5

Polynomial

u

R
ymin(u,y)

MinMax
Running

Resettable

min

MinMax

Matrix
Concatenate

eu

Math
Function

|.|

Magnitude−Angle
to Complex

1

Gain Dot ProductDivide

Re(u)
Im(u)

Complex to
Real−Imag

|u|
u

Complex to
Magnitude−Angle

u+0.0

Bias
U1 −> Y
U2 −> Y(E)Y

Assignment

f(z) zSolve
f(z) = 0

Algebraic Constraint

Add

|u|

Abs

Figure 4.7. Math blocks.

4. Easy mathematical blocks: The signals in the system should be computed using +, −,
×, ÷, and other mathematical computations. The blocks in the Math group shown in
Figure 4.7 can be used to model these operations.

To easily build up a simulation model for a dynamic system, the user should be
familiar with the blocks provided in the Simulink environment. In the following
sections, the use of Simulink modeling will be illustrated through examples.

4.1. An Introduction to Simulink 115

4.1.2 Simulink Modeling

Here we give brief, step-by-step guidelines to Simulink modeling as follows:

1. Startup and initial preparation: To enter a model in Simulink format, one should first
start up the Simulink environment. One should also open a blank window for the new
system model by clicking the File | New menu item.

2. Draw blocks of the system: Open the relevant model block library group so that the
components of the system can be copied from them. For instance, the icon labeled
Continuous in Figure 4.1 contains the blocks shown in Figure 4.3, while the Discon-
tinuities icon contains those shown in Figure 4.4. One can select the blocks in these
groups and then drag them into the new system model window.

3. Specify parameters: It should be noted that the libraries as shown in Figure 4.3 contain
only default models of certain types. For instance, the linear transfer function icon
is contained in Figure 4.3, but only with a default 1/(s + 1) model. To specify the
parameters of such a model, one should double click it to get the dialog box, as shown
in Figure 4.8, and then fill in the dialog box with the required parameters. It should
be noted that the numerators and denominators requested in the dialog box are with
the coefficients in the descending order of s.

4. Draw links: Once all the blocks needed are copied into the model window, one can
draw the links between the blocks to make the system complete. The links between
the blocks can be drawn by first clicking the output port of the starting block, and then
dragging the mouse to the input port of the ending block. A linkage between the two
blocks will then be internally established by Simulink.

5. Input and output specifications: One should use the Inport icon in the Sources group
to get an input signal for the system and use the Outport icon in the Sinks group to
connect to the output of the system.

Figure 4.8. Transfer function parameters dialog box.

116 Chapter 4. Simulation Analysis of Nonlinear Systems

Example 4.1. Consider the nonlinear system model shown in Figure 4.9. It can be seen
that there are two nonlinear elements in the system. Using the Simulink program, one can
easily draw the block diagram of the nonlinear system, as shown in Figure 4.10.

Using the sophisticated Simulink program, the user can, in theory, draw the block
diagram of a control system of any complexity. The Simulink program also allows the
user to perform simulation analysis by its menu items or by relevant function calls. The
simulation results can be shown on the scopes provided within Simulink, or returned to the
MATLAB workspace so that they can be shown by the relevant MATLAB plotting facilities.

4.1.3 Simulation Algorithms and Control Parameters

When the Simulation menu in the Simulink model window is selected, it appears as in
Figure 4.11, where the Configuration Parameters menu item can be selected to further

1

s

s + 1

s2+4s+3
��

�
� �

��v = u + u3

6

0.707 �

�

�

�
��

0.4

0.4
���

�
+

-

+

-

-+

v u

Figure 4.9. An example of a nonlinear system.

1

Out1

s+1

s +4s+32

Transfer FcnSaturation

1
s

Integrator

0.707

Gain

u+u^3/6

Fcn

1

In1

Figure 4.10. The Simulink model (file: c4mnl.mdl).

Figure 4.11. Simulation menu.

4.1. An Introduction to Simulink 117

specify the simulation algorithms and control parameters. The dialog box is shown in
Figure 4.12. The following parameters can be set from the dialog box.

1. Start time and Stop time edit boxes can specify the start and stop times of the simulation
process.

2. TheType list box in the Solver options column has two options, where “variable step”
and “fixed step” algorithms can be selected. In order to keep high simulation accuracy,
it is suggested to select variable step algorithms. Often the ode45 (Dormand–Prince)
and the ode15s (stiff/NDF) algorithms are suitable for simulating control problems.

3. The accuracy of the simulation results can be controlled by the Relative Tolerance
option and the AbsoluteTolerance option. The default error tolerance is 1e-3, which
means that the relative error may reach to one thousandth. The default value is usually
too large and it is suggested to reduce it to 1e-6 or 1e-7. It should be noted that,
although the relative error tolerance is reduced significantly, the computation effort
required will not increase much, due to the use of the variable step algorithms.

4. The minimum and maximum allowed computation step sizes can be set by filling in
the Min step size and Max step size edit boxes. If the actual step size goes beyond
the specified step size range in variable step simulation, an error message box will be
displayed.

5. The warning and error messages can be set by the Diagnostics column.

After completing the specification of the control parameters, the item Simulation/
Start can be selected to initiate the simulation process. A variable tout will be returned
automatically, and the matrix yout can also be generated when the output port is used in the
Simulink model. The function plot(tout,yout) can be used to show the simulation
results.

The sim() function can also be used to initiate the simulation process. The syntax
of the function is

[t,x,y]=sim(model_name, tf , options)

Figure 4.12. Dialog box of control parameters.

118 Chapter 4. Simulation Analysis of Nonlinear Systems

where, the “model_name” is the file name of the Simulink model, with the suffix .mdl
omitted. The argument tf is the stopping time of simulation. The returned arguments t , x,
and y are, respectively, the time vector, state matrix, and output matrix of the system.

The control parametersoptions can be specified by thesimset() function, whose
syntax is

options=simset(property, parameter 1, property 2, parameter 2, · · ·)
where the “property” is the name of the parameter, while the “parameter” is the value asso-
ciated with it. The relevant properties can be listed with the command help simset .
For instance, one may change the relative error tolerance by setting its RelTol prop-
erty to 10−7 by the statement options=simset(’RelTol’,1e-7) or simply by

options.RelTol=1e-7 .
When the options variable is modified, it can be used in the simulation process by

filling it to the sim() function.

4.2 Modeling of Nonlinear Systems by Examples
A series of examples related to control systems will be used to illustrate the use of the
Simulink program. A nonlinear ordinary differential equation, (ODE) example is used first,
followed by a multivariable system, a computer controlled system, and a time varying
system. It will be appreciated from these examples that systems with significant complexity
can be simulated using Simulink.

Example 4.2 (block diagram solution of nonlinear differential equations). Consider the
well-known Rössler chaotic equation, whose mathematical form is⎧⎨⎩

ẋ(t) = −y(t) − z(t),

ẏ(t) = x(t) + ay(t),

ż(t) = b + [x(t) − c]z(t).
Selecting a = b = 0.2, c = 5.7, and x(0) = y(0) = z(0) = 0, the Simulink model can be
constructed and simulation analysis can be applied to the given system.

A simple trick for simulating ODEs is by assigning each integrator to a state variable to
represent the output as the state xi(t); then the input to the integrator is ẋi (t). The Simulink
model in Figure 4.13 can be easily established. The control parameters for simulation
can then be set accordingly. If one starts the simulation process, two variables tout
and yout will be returned. The time response of the three states are obtained with the
plot(tout,yout) command as shown in Figure 4.14(a).

If the states x1(t), x2(t), and x3(t) are used as the three axes, the phase space trajec-
tories can be drawn as shown in Figure 4.14(b). The function comet3() can further be
used to draw dynamically the trajectories of the phase space curve:

>> plot3(yout(:,1),yout(:,2),yout(:,3)) % or further using comet3
comet3(yout(:,1),yout(:,2),yout(:,3))

Many blocks in Simulink support vector operations, i.e., the block can easily process
the case when several inputs are placed into a vector signal by using the Mux block. If such

4.2. Modeling of Nonlinear Systems by Examples 119

3
Out3

2
Out2

1
Out1

1/s

Integrator2

1/s1/s

Integrator

a

Gain

b

Constant1

c

Constant

ẋ x ẏ y ż z

Figure 4.13. Simulink model of Rössler equations (file: c4mrossler.mdl).

0 20 40 60 80 100
−15

−10

−5

0

5

10

15

20

25

(a) time response of states

−10
−5

0
5

−10
−5

0
5

0

5

10

15

20

(b) phase space curves

Figure 4.14. Simulation results of the Rössler equations.

1
Out1

1
s

Integrator

b+(u[1]−c)*u[3]

u[1]+a*u[2]

−u[2]−u[3]

(a) improved (file: c4mross1a.mdl)

1
Out1

1
s

Integrator

b+(u[1]−c)*u[3]

u[1]+a*u[2]

−u[2]−u[3]

(b) thickened vectors (file: c4mross1b.mdl)

Figure 4.15. Another simulink description of the Rössler equations.

a signal is put through an integrator block, the output signal is also a vector, whose channels
are the integrals of the input channels. Thus, the blocks in Figure 4.15(a) can be used to
rewrite the blocks in the Simulink model.

In the model, the block Fcn is used to define the mathematical operation on the input
signals. The input to the block is the state of the system, and the input to the Fcn block is

120 Chapter 4. Simulation Analysis of Nonlinear Systems

1
Out1

1
s

Integrator

b+(u[1]−c)*u[3]

u[1]+a*u[2]

−u[2]−u[3]

3

3

3

3

3

3

(a) dimensions (c4mross2a.mdl)

1
Out1

1
s

Integrator

b+(u[1]−c)*u[3]

u[1]+a*u[2]

−u[2]−u[3]

double (3)

3

3

3

3

double (3)

double

double

double

(b) data types (c4mross2b.mdl)

Figure 4.16. Enhancements of vector signal blocks.

denoted by u. If u is a vector, u[i] can be used to denote the components of its ith channel.
Thus the model constructed is much easier than the one established in Figure 4.13, and it is
more easily maintained.

The vector signals can be visually enhanced in Simulink. For instance, the For-
mat/Wide nonscalar lines menu in the model window allows the thickened line expression
for vector signals, as shown in Figure 4.15(b). If the user selects the Format/Signal dimen-
sions menu item, the dimensions of the signal will be displayed over the vector signals.
For instance, since the state variable is three-dimensional a “3” is displayed, as shown in
Figure 4.16(a). The Format menu further provides the item Format/Port data types, which
allows the display of data types in the signals, as shown in Figure 4.16(b). These facilities
make the physical meanings more informative.

Example 4.3 (simulation of multivariable delayed systems). Consider the multivariable
system in Example 3.19. Since there exists time delays in the transfer function matrix
of the open-loop system, the closed-loop function matrix cannot be expressed with the
feedback() function. In Example 3.19, Padé approximations are used to approximate
the delay terms. There was no other way to verify the accuracy of the simulation results.
With the use of Simulink, the accurate model can be established as shown in Figure 4.17.
In the simulation model, the two input signals are assigned as the variables u1 and u2.

Recalling the Padé approximation used in Example 3.19, we can use the step()
function to find the approximate simulation results for the multivariable system above when
each input acts individually:

>> g11=tf(0.1134,[1.78 4.48 1],’ioDelay’,0.72);
g21=tf(0.3378,[0.361 1.09 1],’ioDelay’,0.3);
g12=tf(0.924,[2.07 1]); g22=tf(-0.318,[2.93 1],’ioDelay’,1.29);
G=[g11, g12; g21, g22];
[n1,d1]=paderm(0.72,0,2); g11.ioDelay=0; g11=tf(n1,d1)*g11;
[n1,d1]=paderm(0.30,0,2); g21.ioDelay=0; g21=tf(n1,d1)*g21;
[n1,d1]=paderm(1.29,0,2); g22.ioDelay=0; g22=tf(n1,d1)*g22;
G1=[g11, g12; g21, g22];
Kp=[0.1134,0.924; 0.3378,-0.318]; G2=ss(G1*Kp);
[y1,x1,t1]=step(G2.a,G2.b,G2.c,G2.d,1,15);
[y2,x2,t2]=step(G2.a,G2.b,G2.c,G2.d,2,15);

4.2. Modeling of Nonlinear Systems by Examples 121

1
Out1

u2

u1
Kp* u

Matrix
Gain

−0.318

2.93s+1

G22(s)

0.361s +1.09s+12
0.3378

G21(s)

2.07s+1

0.924

G12(s)

1.78s +4.48s+12
0.1134

G11(s)

Delay 22

Delay 21

Delay 11

Figure 4.17. Simulink model of the multivariable system (c4mmimo.mdl).

−0.2

0

0.2

0.4

T
o:

 O
ut

(1
)

From: In(1)

0 5 10 15

0

0.2

0.4

T
o:

 O
ut

(2
)

From: In(2)

0 5 10 15

Step Response

Time (sec)

A
m

pl
itu

de

Figure 4.18. Comparisons of the multivariable system simulation results.

By simulating the system with Simulink, we can obtain the step response of the system
driven by the two signals individually. They can be drawn together with the approximation
results, as shown in Figure 4.18:

>> u1=1; u2=0; [tt1,x1,yy1]=sim(’c4mmimo’,15);
u1=0; u2=1; [tt2,x2,yy2]=sim(’c4mmimo’,15);
subplot(221), plot(t1,y1(:,1),’:’,tt1,yy1(:,1))
subplot(222), plot(t1,y1(:,2),’:’,tt1,yy1(:,2))
subplot(223), plot(t2,y2(:,1),’:’,tt2,yy2(:,1))
subplot(224), plot(t2,y2(:,2),’:’,tt2,yy2(:,2))

It can be seen from Figure 4.18 that the approximate simulation results are quite close
to the exact results.

Example 4.4 (computer control system simulation). Consider the classical computer con-
trolled system [53] shown in Figure 4.19, where the controller is a discrete controller, with
sampling interval of T seconds. The ZOH is the zero-order-hold, and the plant is given by

122 Chapter 4. Simulation Analysis of Nonlinear Systems

ZOH D(z) ZOH�� G(s)� � ��

�

R

T T T

Y (z)

Figure 4.19. Block diagram of a computer controlled system.

2
Out2

1
Out1

a

s(s+a)

Zero−Pole Zero−Order
Hold2

Zero−Order
Hold1

Zero−Order
Hold

Step

K(z−z1)

(z−p1)

Discrete
Zero−Pole

Figure 4.20. Simulink model for a computer controlled system (c4mcompc.mdl).

a continuous model. Assume that the plant and controller are given, respectively, as

G(s) = a

s(s + 1)
, D(z) = 1 − e−T

1 − e−0.1T

z − e−0.1T

z − e−T
,

where a = 0.1. It is not possible to write out the corresponding differential equation for
this system, since both continuous and discrete elements exist in the system.

Simulink has the advantage that it can solve this type of hybrid problem. From the
given block diagram of the system, the Simulink model can be easily established, as shown
in Figure 4.20. In the system model, a few variables a, T , z1, p1, K are used, where the
former two should be specified by the user, while the latter three should be calculated. In the
first ZOH block, the sampling interval is set to T , and for simplicity, the rest of the blocks
are assigned to −1, indicating that they inherit the sampling intervals of their input signals.
It is not necessary to put the value of T in each discrete block.

If a = 0.1, and the sampling interval is given by T = 0.2 seconds, the step response
of the closed-loop system can be obtained as shown in Figure 4.21(a):

>> T=0.2; a=0.1; z1=exp(-0.1*T); p1=exp(-T); K=(1-p1)/(1-z1);
[t,x,y]=sim(’c4mcompc’,20);
plot(t,y(:,2)); hold on; stairs(t,y(:,1))

If the sampling interval is further increased to T = 1 second, the step response of the
closed-loop system can be obtained as shown in Figure 4.21(b). It can be seen that when
the sampling interval increases, the difference between the continuous and discrete signals
increases:

>> T=1; z1=exp(-0.1*T); p1=exp(-T); K=(1-p1)/(1-z1);
[t,x,y]=sim(’c4mcompc’,20);
plot(t,y(:,2)); hold on; stairs(t,y(:,1))

In fact, with the conversion algorithm given in Chapter 2, the discrete version of
the plant model can be found under sampling interval T . Thus the closed-loop discrete

4.2. Modeling of Nonlinear Systems by Examples 123

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) T = 0.2 seconds

0 5 10 15 20
0

0.5

1

1.5

(b) T = 1 second

Figure 4.21. Step responses for different sampling intervals.

1
Out1

Zero−Order
Hold

Step

a

s(s+a)

G(s)

K(z−z1)

(z−p1)

D(z)

Figure 4.22. Simplified computer control system (file: c4mcomc1.mdl).

system can be obtained. The step response of the system can be obtained with the following
statements:

>> T=0.2; z1=exp(-0.1*T); p1=exp(-T); K=(1-p1)/(1-z1);
Dz=zpk(z1,p1,K,’Ts’,T); G=zpk([],[0;-a],a); Gz=c2d(G,T);
GG=zpk(feedback(Gz*Dz,1)), step(GG)

The controller can be obtained as

Gc(z) = 0.018187(z + 0.9934)(z − 0.9802)

(z − 0.9802)(z2 − 1.801z + 0.8368)
.

The statements can be used to get the same results with the Simulink model, and they are
much simpler. However, this method has its own limitations.

Further investigation of the Simulink model shows that the ZOH after the controller
D(z) is redundant, since the output of D(z) is already a discrete signal and remains the same
within a sampling interval. Thus it can be removed. The ZOH on the output signal can also
be removed. The simulation model can finally be reduced to the one shown in Figure 4.22,
without causing any problems.

Of course, the system can be further simplified in the Simulink model, since all the
ZOHs can be removed, as shown in Figure 4.23. Although this is not an official method
from a theoretical aspect, the approximation is correct under Simulink.

Example 4.5 (simulation of time varying systems). Assume that the plant model is given
by ÿ(t) + e−0.2t ẏ(t) + e−5t sin(2t + 6)y(t) = u(t). Now consider a PI control system,
shown in Figure 4.24, where Kp = 200 and Ki = 10. The width of the saturation element
is δ = 2.

It can be seen that, apart from the time varying block, the modeling of the rest of
system is very straightforward. In the time varying part, assume that the first-order explicit

124 Chapter 4. Simulation Analysis of Nonlinear Systems

1
Out1

Step

a

s(s+a)

G(s)

K(z−z1)

(z−p1)

D(z)

Figure 4.23. Further simplified Simulink model (file: c4mcomc2.mdl).

plant��� u(t) �Kp+ Ki
s

��

�

�r(t) y(t)
....
δ

Figure 4.24. Block diagram of the time varying system.

1
Out1

Kp.s+Ki

s
Transfer FcnStep Saturation

Product1

Product

1
s

Integrator1

1
s

Integrator

exp(−5*u)*sin(2*u+6)

Fcn1

exp(−0.2*u)

Fcn
Clock

x1x2

e−0.2t

u
y(t)

t

Figure 4.25. Simulink model (file: c4mtimv.mdl).

differential equations x1(t) = y(t), x2(t) = ẏ(t) can be established as{
ẋ1(t) = x2(t),

ẋ2(t) = −e−0.2t x2(t) − e−5t sin(2t + 6)x1(t) + u(t).

Similar to the method in Example 4.2, an integrator should be assigned to each state
variable. The Simulink model in Figure 4.25 can be established, where the time varying
function can be set up with Simulink blocks.

Once the simulation model is established, the following MATLAB statements can be
issued to simulate the system. The step response of the time varying system can be obtained
as shown in Figure 4.26.

>> opt=simset(’RelTol’,1e-8); Kp=200; Ki=10;
[t,x,y]=sim(’c4mtimv’,10,opt); plot(t,y)

4.2. Modeling of Nonlinear Systems by Examples 125

0 2 4 6 8 10
0

0.5

1

1.5

Figure 4.26. Step response of the time varying system.

1
Out1

Kp.s+Ki

s
Transfer FcnStep Saturation

Product

1/s 1/s

exp(−5*u)*sin(2*u+6)

Fcn1

exp(−0.2*u)

Fcn Clock

x2(t) x1(t)

te−0.2t

u
y(t)

Figure 4.27. Impulse response of a time varying system (c4mtimva.mdl).

Example 4.6 (impulse response). Consider again the time varying model of Example 4.5.
Assume that the input signal is a unit impulse signal. Here Simulink is used to find the
impulse response of the time varying system.

Since there is no unit impulse block provided in Simulink, the step input block can
be used instead to approximate it. If the step time is a, where a is an extremely small value,
the initial value of the step block can be set to 1/a, and the final time can be set to 0. The
simulation model in Figure 4.27 can be used to model the whole system.

Theoretically, when a → 0, the impulse signal can be approximated. In real sim-
ulation, a can be set to relatively large values, for instance, a = 0.001. The impulse
response of the system can be obtained with the following MATLAB statements, as shown
in Figure 4.28:

>> opt=simset(’RelTol’,1e-8); Kp=200; Ki=10; a=0.001;
[t,x,y]=sim(’c4mtimva’,10,opt); plot(t,y)

In fact, even though a is selected as a large value, for instance a = 0.1, a very good
approximation to the results can still be obtained.

In real applications, the inputs with arbitrary periodic signals can be established as
well with the use of the Repeating Sequence block. Even more complicated signals or
system behaviors can be modeled with the use of the S-functions.

126 Chapter 4. Simulation Analysis of Nonlinear Systems

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

Figure 4.28. Impulse response of the time varying system.

4.3 Nonlinear Elements Modeling
A well-known technique for trying to predict limit cycles in nonlinear systems is the de-
scribing function method [51]. Since this is an approximate method, it is very useful for
comparative purposes when determining solutions by simulation. In this section nonlinear-
ity modeling is discussed in more detail and then a simple system possessing a limit cycle
is simulated.

4.3.1 Modeling of Piecewise Linear Nonlinearities

Static nonlinearities of any complexity can be constructed using existing Simulink blocks.
In this section, Simulink modeling of single-valued and double-valued nonlinearities is
presented.

The single-valued static nonlinearity can be easily established with the one-dimensional
look-up table block. For instance, consider the piecewise nonlinearity shown in Fig-
ure 4.29(a), for known turning points (x1, y1), (x2, y2), . . ., (xN−1, yN−1), (xN , yN). One
may select a point x0 such that x0 < x1. The value y0 can be easily computed from the
nonlinear behavior. Also for another point xN+1 such that xN+1 > xN , the value of yN+1
can be obtained. Thus the two vectors x and y can be established such that

x=[x0, x1, x2, . . . , xN , xN+1]; y=[y0, y1, y2, . . . , yN , yN+1];

Double click the one-dimensional Look-Up Table block, to display the dialog box
as shown in Figure 4.29(b). One should specify in the Vector of input values and Vector
of output values edit boxes, respectively, the vectors x and y, and then a single-valued
nonlinearity can be set up successfully.

The construction of a general doubled-valued nonlinearity is not as simple as con-
structing the single-valued case. For specific input signals it is possible to define these
nonlinearities in terms of the input and its derivative, since one path around the nonlinear
element will be taken when the input is increasing and another when it is decreasing. Thus,
the approach will be valid for a sinusoidal input but not for a random input, or indeed for an
input whose derivative changes within the double-valued region. An approach which can
be use for these restricted situations is given below.

4.3. Nonlinear Elements Modeling 127

�

�

..

..

..

..

..

..

. .
.
..
..
..
..

........

................

................... x

y

x1 x2

.

..

..
x3

y1

y2

y3
xN−1 xN

xN−1

yN

(a) single-valued nonlinearity (b) Dialog box of parameters

Figure 4.29. Construction of single-valued nonlinearities.

�

�

(2, 0)

(2, 1)

(1, 0)

�

��

�
��

�
� �

�

(a) relay loop

�

�

�

�

�
�

�

��
�

�

(2, 0)

(3, 1)(2, 1)

(1, 0)

(b) saturated relay loop

Figure 4.30. Loop function expression.

Example 4.7. When there exist loops in the nonlinearity, apart from a few existing blocks in
the Simulink block library, a general nonlinearity cannot be easily established. The Switch
block can be used to tackle the problem.

Now consider the two double-valued loop nonlinearities shown in Figures 4.30(a) and
(b). First, consider the loop nonlinearity shown in Figure 4.30(a). It can be seen that the
loop function may be expressed by a single-valued nonlinearity when the input signal is
increasing and by another single-valued nonlinearity when decreasing. This means that the
single-valued nonlinearity is conditional. For instance, the two single-valued nonlinearities
in Figure 4.31 can be used to express the loop nonlinearity in Figure 4.29(a).

The Simulink block Memory can be used to extract the input signal at the previous
time instance. Thus, the Simulink model shown in Figure 4.32 can be used to express
the double-valued loop nonlinearity. A comparative block is used to check whether the
input signal is increasing or not, i.e., by checking whether the current value is greater than
its previous value or not. A switch block can be used to control the single-valued block
selection, with the Threshold set to 0.5. If it is increasing, the switch block is set to the
increasing block single-valued nonlinearity; otherwise the decreasing one is chosen. In this
way, the double-valued loop nonlinearity can be established.

The two single-valued nonlinearities can be expressed individually by two table-look-
up blocks given by

x1 = [−3, −1, −1 + ε, 2, 2 + ε, 3], y1 = [−1, −1, 0, 0, 1, 1],
x2 = [−3, −2, −2 + ε, 1, 1 + ε, 3], y2 = [−1, −1, 0, 0, 1, 1],

128 Chapter 4. Simulation Analysis of Nonlinear Systems

�

�

�

�

(2, 0)

(1, 1)

(−2, 0)

(−2, −1)

(2, 1)

(2, 0)

(−1, 0)

(−1, −1)

(a) when the input increases (b) when the input decreases

Figure 4.31. Loop function can be expressed as single-valued functions.

1
Out1

Switch

>=

Relational
Operator

Memory

1
In1

u(t) increases

u(t) decreases

Figure 4.32. Double-valued relay nonlinearity (file: c4mloop.mdl).

where ε can be set to a very small number. For instance, it can be set to the MATLAB
reserved constant eps.

Consider now the nonlinearity shown in Figure 4.30(b). The previously established
Simulink model can still be used to model the nonlinearity. The new sets of data should be
used to modify the table-look-up blocks

x1 = [−3, −2, −1, 2, 3, 4], y1 = [−1, −1, 0, 0, 1, 1],
x2 = [−3, −2, −1, 1, 2, 3], y2 = [−1, −1, 0, 0, 1, 1].

The Simulink model for the new loop nonlinearity can be expressed as shown in
Figure 4.33.

It can be seen therefore that single-valued or double-valued static nonlinearities of
any complexity can easily be modeled by Simulink blocks using similar methods. The
nonlinearity can be used directly in simulation.

Example 4.8. Consider the double-valued nonlinearity shown in Figure 4.30(b). One may
observe the distortion in the sinusoidal signals through it. To observe this distortion, the
Simulink model can be established as shown in Figure 4.34.

If the magnitude A of the sinusoidal signal is set to 2, 4, and 8, the output of the
nonlinearity can be obtained as shown in Figure 4.35.

4.3. Nonlinear Elements Modeling 129

1
Out1

Switch

>=

Relational
OperatorMemory

1
In1

u(t) increases

u(t) decreases

Figure 4.33. Double-valued nonlinearity (file: c4mloopa.mdl).

u increasing

u decreasing

Switch
Sine Wave

Scope

>=

Relational
OperatorMemory

Figure 4.34. Simulink model for sinusoidal distortions (file: c4msin.mdl).

0 2 4 6 8 10

−1

−0.5

0

0.5

1

← A = 2

← A = 4

← A = 8

Figure 4.35. Nonlinear distortion of sinusoidal inputs.

4.3.2 Limit Cycles of Nonlinear Systems

Nonlinear systems can have behaviors which are not present in linear systems. One such
situation is the existence of a limit cycle, or self-oscillation, which can be attained when the
system is released from different initial conditions.

130 Chapter 4. Simulation Analysis of Nonlinear Systems

double-valued
nonlinearity

10

s + 1
� � �x2(t)

�

x1(t)�1

s

Figure 4.36. Block diagram of a nonlinear feedback system in Example 4.9.

2
Out2

1
Out1

u increasing

u decreasing

s+1

10

Transfer FcnSwitch

>=

Relational
Operator

Memory

1/s

Integrator

−K−

Figure 4.37. Simulink model for Example 4.9 (file:c4mlimcy.mdl).

0 5 10 15 20 25 30 35 40
−3

−2

−1

0

1

2

3

4

5

(a) time domain simulation

−3 −2 −1 0 1 2 3 4 5
−0.5

0

0.5

1

(b) phase plane trajectory

Figure 4.38. Simulation result of nonlinear feedback system.

Example 4.9. Consider the typical nonlinear feedback system shown in Figure 4.36, with
the nonlinear element shown in Figure 4.30(a), whose Simulink model is established in
Figure 4.32. For such a feedback system, the Simulink model can be built up as shown in
Figure 4.37. In the simulation model, the initial value of the integrator is set to one.

Let the simulation terminate time be 40 seconds, and to keep a high accuracy set the
relative error tolerance (Relative tolerance) to 10−8, or to an even smaller value. With the
following MATLAB code, the time response of the system, when there is no external input
signal, can be obtained as shown in Figure 4.38(a).

>> [t,x,y]=sim(’c4mlimcy’,40); plot(t,y)

It can be seen that the signals x1(t) and x2(t) reach steady-state oscillations after the
initial transients have died away. With the graphics functions plot(y(:,1),y(:,2))

4.4. Linearization of Nonlinear Models 131

provided in MATLAB, the phase plane trajectory appears as in Figure 4.38(b). It can be
seen that the phase plane trajectory settles down at a closed curve, which is referred to as a
limit cycle. A limit cycle is an interesting feature that may occur in a nonlinear system.

4.4 Linearization of Nonlinear Models
Linear systems are far easier to analyze and design than nonlinear ones. Unfortunately,
system models which must be dealt with in practice are rarely linear. In this case a linear
approximation of the system is often required to simplify the analysis and design procedures.
One procedure for doing this is the linearization process.

System linearization extracts an approximate linear model, i.e., a linear model in a
neighborhood of the operating point.

Consider the nonlinear dynamic system model

ẋi (t) = fi(x1, x2, . . . , xn, u, t), i = 1, 2, . . . , n. (4.1)

An operating point is defined as the values of the state and input variables when the derivatives
of the state variables approach zero. It can be obtained by solving the nonlinear equations
defined in (4.1) such that

fi(x1, x2, . . . , xn, u, t) = 0, i = 1, 2, . . . , n, (4.2)

which can be solved numerically. Denote by x0 the operating point with an input signal u0.
The nonlinear system can be approximated by

�ẋi =
n∑

j=1

∂fi(x, u)

∂xj

∣∣∣∣
x0,u0

�xj +
p∑

j=1

∂fi(x, u)

∂uj

∣∣∣∣
x0,u0

�uj . (4.3)

Using the new state variables z(t) = �x(t) for the system model, the linearized model
can be obtained as follows:

ż(t) = Al |x0,u0 z(t) + Bl |x0,u0 v(t), (4.4)

where v(t) = �u(t), and

Al =
⎡⎢⎣ ∂f1/∂x1 · · · ∂f1/∂xn

...
. . .

...

∂fn/∂x1 · · · ∂fn/∂xn

⎤⎥⎦ , Bl =
⎡⎢⎣ ∂f1/∂u1 · · · ∂f1/∂up

...
. . .

...

∂fn/∂u1 · · · ∂fn/∂up

⎤⎥⎦ . (4.5)

Useful functions for performing the linearization of nonlinear systems are provided
in Simulink. The user can use the trim() function to find the operating point. The syntax
of the trim() function is

[x,u,y,z]=trim(model_name,x0,u0)

where model_name is the Simulink model name. The variables x0, u0 are the initial guess
for the states and input at the operating point. A constrained optimization technique is used

132 Chapter 4. Simulation Analysis of Nonlinear Systems

to obtain the operating point. For systems without nonlinear elements, the initial guess of
x0, u0 can be omitted. The actual operating point is returned in x, u, y, and the values of the
derivatives of the state variables are returned in z. Theoretically speaking, the derivatives
of the state variables at the operating point should be equal to 0.

Example 4.10. Assume that the Simulink model of the nonlinear system is as given in
Figure 4.10 and the name of the Simulink model file is c4mnl.mdl. Using the MATLAB
statements

>> [x0,u0,y,dx]=trim(’c4mnl’,[],1)

the operating point of the system can be obtained as x0 = [0.1281, 0, 0.0905]T, u0 = 1.
Having obtained the operating point, we can obtain the linearized state space model of
the nonlinear system by the corresponding MATLAB function provided in Simulink. The
syntaxes of these function are

[A,B,C,D]=linmod2(model_name,x0,u0)

[A,B,C,D]=linmod(model_name,x0,u0), % delayed systems
[A,B,C,D]=dlinmod(model_name,x0,u0), % discrete-time systems

where x0, u0 denote the operating point. The linearized state space expression is returned
in (A,B,C,D). If one omits the x0, u0 variables (operating point), the default linearized
model can be obtained. It should be noted that different types of systems can be linearized
with the different functions listed above.

Consider again the nonlinear system model analyzed above. Under the above operat-
ing point and, with the MATLAB statements

>> [x0,u0,y,dx]=trim(’c4mnl’,[],1);
[A,B,C,D]=linmod2(’c4mnl’,x0,u0); G1=ss(A,B,C,D),

the state space expression of the linearized model of the original nonlinear system can be
obtained as

ẋ(t) =
⎡⎣−0.707 1 1

−2 −4 −3
0 1 0

⎤⎦ x(t) +
⎡⎣0

1
0

⎤⎦ u(t), y(t) = [1, 0, 0]x(t).

Example 4.11. Consider again the linear DC (direct current) motor problem given in
Example 2.11. The Simulink description is shown in Figure 4.39, and by using the MATLAB
commands

>> [a,b,c,d]=linmod2(’c4dcmot’);
G=ss(a,b,c,d); minreal(zpk(G))

the pole-zero-gain model can easily be obtained as

G(s)= 1118525021.9491(s + 5.882)(s + 6.667)

(s + 179.6)(s + 98.9)(s + 8.3)(s2 + 0.89s + 5.8)(s2 + 68.26s + 2248)

which is the same as the one obtained earlier in Example 2.11.

4.4. Linearization of Nonlinear Models 133

1

Out1

0.01s+1

0.0044

Transfer Fcn8

0.01s+1

0.1

Transfer Fcn7

0.17s+1

0.085s

Transfer Fcn6

0.01s+1

0.1

Transfer Fcn5

0.01s+1

0.1

Transfer Fcn4

0.15s+1

0.051s

Transfer Fcn3

0.0067s+1

70

Transfer Fcn2

0.21

0.15s+1

Transfer Fcn1

130

s

Transfer FcnStep

0.212

Gain

1

In1

Figure 4.39. Simulink model for the DC motor system (file: c4dcmot.mdl).

1
Out1

K*u

Matrix
Gain

−0.318

2.93s+1
G22(s)

den(s)

0.3378

G21(s)

2.07s+1

0.924

G12(s)

den(s)

0.1134

G11(s)

Delay 22

Delay 21

Delay 11
1

In1

Figure 4.40. MIMO Simulink model (file: c4mmdly1.mdl).

Example 4.12. Consider the multivariable system in Example 4.3. If a linearized model is
expected, the Padé approximation should be used in linearizing the delay terms. One may
set the edit box of Pade order (for linearization) to 2 in the delay blocks, where second-
order Padé approximation can be used. The Simulink model for the multivariable system
can then be constructed as shown in Figure 4.40.

When the Simulink model is established, the following statements can be used in the
linearization process, and one can obtain the linear state space model. The exact simulation
results are obtained, together with the linearized model, as shown in Figure 4.41. It can be
seen that the simulation results of the linearized model are very accurate.

>> Kp=[0.1134,0.924; 0.3378,-0.318];
[A,B,C,D]=linmod(’c4mmdly1’), step(ss(A,B,C,D))

The state space model can be extracted from the Simulink system

A=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−8.33 −23.15 0 0 0 0 0 0 0.0637 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 −0.4831 0 0 0 0 0 0 0 0 0
0 0 0 −20 −133.33 0 0 0 0 0 0.9357 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 −4.6512 −7.2111 0 0 0 0 −0.1085
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −2.5169 −0.5618 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 −3.0194 −2.7701 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 −0.3413

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

134 Chapter 4. Simulation Analysis of Nonlinear Systems

−0.2

0

0.2

From: In(1)

T
o:

 O
ut

(1
)

0 5 10 15

0

0.1

0.2

0.3

0.4

T
o:

 O
ut

(2
)

From: In(2)

0 5 10 15

Step Response

Time (sec)

A
m

pl
itu

de

Figure 4.41. Comparisons of exact and approximate results.

1
Out1

a

s(s+a)

Zero−Pole Zero−Order
Hold2

Zero−Order
Hold1

Zero−Order
Hold

Step

K(z−z1)

(z−p1)

Discrete
Zero−Pole

1
In1

Figure 4.42. Another Simulink model (file: c4mcomp2.mdl).

BT =
[

0 0 0.3378 0 0 0 0 0.1134 0 0.1134 0 0.3378
0 0 −0.318 0 0 0 0 0.924 0 0.924 0 −0.318

]
,

C =
[−16.667 0 0.44638 0 0 0 0 0 0.063708 0 0 0

0 0 0 −40 0 −9.3023 0 0 0 0 0.93573 −0.10853

]
.

It should be noted that the linmod2() function cannot be used in the linearization
process, since the delay term cannot be handled correctly.

Example 4.13. Consider the computer controlled system studied in Example 4.4. For sim-
ulation analysis and linearization, the Simulink model can be constructed with the inport
and outport used in the system model. The final Simulink model is shown in Figure 4.42.

The following statements can be used in the linearization problem, where the discrete-
time transfer function can finally be obtained:

>> T=0.2; a=0.1; z1=exp(-0.1*T); p1=exp(-T); K=(1-p1)/(1-z1);
[A,B,C,D]=dlinmod(’c4mcomp2’); zpk(ss(A,B,C,D,’Ts’,0.2))

The linearized model can be written as

G(z)= 0.018187(z+0.9934)(z−0.9802)

(z−0.9802)(z2−1.801z+0.8368)
.

It can be seen that the results are exactly the same as those of Example 4.4. It should be
noted that dlinmod() should be used rather than linmod2().

4.4. Linearization of Nonlinear Models 135

Problems

1. Become familiar with the Simulink library groups and observe the use of the commonly
used blocks so that you can easily use them in solving simulation problems. A handy
new group which contains the frequently used blocks can be set up for later use.

2. Consider the linear differential equation

y(4) + 5y(3) + 63ÿ + 4ẏ + 2y = e−3t + e−5t sin(4t + π/3).

If the initial conditions are given by y(0) = 1, ẏ(0) = ÿ(0) = 1/2, y(3)(0) = 0.2,
establish the Simulink model and plot the simulation results. The analytical solutions
to linear differential equations can be evaluated with the dsolve() function. Try to
find the analytical results with this function.

3. For the time varying differential equation

y(4) + 5ty(3) + 6t2ÿ + 4ẏ + 2e−2t y = e−3t + e−5t sin(4t + π/3),

assume that y(0) = 1, ẏ(0) = ÿ(0) = 1/2, y(3)(0) = 0.2. Draw the Simulink model
to study the time varying system.

4. The Apollo trajectory (x, y) can be described by the equations

ẍ = 2ẏ + x − μ∗(x + μ)

r3
1

− μ(x − μ∗)
r3

2

, ÿ = −2ẋ + y − μ∗y
r3

1

− μy

r3
2

,

where μ = 1/82.45, μ∗ = 1 − μ, r1 = √(x + μ)2 + y2, r2 = √(x − μ∗)2 + y2.
Assume that x(0) = 1.2, ẋ(0) = 0, y(0) = 0, ẏ(0) = −1.04935751. Try to
establish a Simulink model and draw the trajectory of Apollo.

5. For the well-knownVan der Pol nonlinear differential equation described by ÿ+μ(y2−
1)ẏ + y = 0, draw the phase plane trajectory and study its limit cycles for different
initial conditions.

6. For the famous chaotic Lorenz system⎧⎨⎩
ẋ1(t) = −βx1(t) + x2(t)x3(t),

ẋ2(t) = −ρx2(t) + ρx3(t),

ẋ3(t) = −x1(t)x2(t) + σx2(t) − x3(t)

with β = 18/3, σ = ρ = 10 and x1(0) = x2(0) = 0, x3(0) = 10−10, try to establish
a Simulink model and draw the three-dimensional phase space trajectory of the results.

7. Consider the two input–two output system described by

ẋ =

⎡⎢⎢⎣
2.25 −5 −1.25 −0.5
2.25 −4.25 −1.25 −0.25
0.25 −0.5 −1.25 −1
1.25 −1.75 −0.25 −0.75

⎤⎥⎥⎦ x +

⎡⎢⎢⎣
4 6
2 4
2 2
0 2

⎤⎥⎥⎦u, y =
[

0 0 0 1
0 2 0 2

]
x.

136 Chapter 4. Simulation Analysis of Nonlinear Systems

If the inputs are given by sin t and cos t , construct the Simulink model and draw the
simulation results.

8. For a 4 × 4 multivariable system given by

G(s) =

⎡⎢⎢⎢⎣
1/(1 + 4s) 0.7/(1 + 5s) 0.3/(1 + 5s) 0.2/(1 + 5s)

0.6/(1 + 5s) 1/(1 + 4s) 0.4/(1 + 5s) 0.35/(1 + 5s)

0.35/(1 + 5s) 0.4/(1 + 5s) 1/(1 + 4s) 0.6/(1 + 5s)

0.2/(1 + 5s) 0.3/(1 + 5s) 0.7/(1 + 5s) 1/(1 + 4s)

⎤⎥⎥⎥⎦ ,

construct its Simulink model and draw the simulation results when a unit step input
signal is applied to each input channel individually. Compare the results with the one
obtained with the step() function.

9. For a given implicit differential equation⎧⎨⎩ sin x1ẋ1 + cos x2ẋ2 + x1 = 1,

− cos x2ẋ1 + sin x1ẋ2 + x2 = 0,

if x1(0) = x2(0) = 0, numerically solve the differential equation using simulation
method.

10. Establish a Simulink model for the block diagram of a nonlinear system shown in
Figure 4.43. Observe the output signal for the unit step input.

��−0.5

−2.5
0.5

2.5

e−0.4s
30

0.8s + 1

1

s

30

s2 + 6.5s + 1

� � � �� �

�

�

Figure 4.43. Block diagram in Problem 10.

11. Construct a Simulink model for the nonlinear block diagram shown in Figure 4.44. If
the amplitude of the input step signal is 1.1, observe the output signal.

10

s(s + 1)2
� � � � �

�

�

�
�

��

��

0
1

2

1

2

1

1

r(t) y(t)

Figure 4.44. Nonlinear system block diagram in Problem 11.

4.4. Linearization of Nonlinear Models 137

12. If the Simulink model of a nonlinear system is given in Figure 4.45, write down the
mathematical expression of the system from the Simulink model.

x1 x2

x3 x4

Product

1/s

Integrator3

1/s

Integrator2

1/s

Integrator1

1/s

Integrator

sin(u(1)*exp(2.3*(−u(2))))

Fcn

Clock

Figure 4.45. Simulink model for Problem 12.

13. Find the overall system model using MATLAB for the feedback systems shown in
Figure 4.46. Try to use Simulink to get the closed-loop system model. Is there any
problem in using Simulink, and if so, why? Obtain the overall system model by
hand calculation or by direct call of MATLAB functions such as series() and
feedback().

s4 + 4s3 + 5s2 + 10s + 8

s4 + 10s3 + 35s2 + 50s + 24

s2 + 5s + 4

(s + 3)(s + 8)

�� �

�

�

(b)

s + 2

s + 1
�� �
�

(a)

Figure 4.46. The block diagrams for Problem 13.

14. For a delayed differential equation

dy(t)/dt = 0.2y(t − 30)

1 + y10(t − 30)
− 0.1y(t),

if y(0) = 0.1, model the equations with Simulink, and simulate the system to draw
the y(t) curve.

15. For the neutral-type delayed differential equation

ẋ(t) = A1x(t − τ1) + A2ẋ(t − τ2) + Bu(t),

where τ1 = 0.15, τ2 = 0.5 and

A1 =
⎡⎣−13 3 −3

106 −116 62
207 −207 113

⎤⎦ , A2 =
⎡⎣0.02 0 0

0 0.03 0
0 0 0.04

⎤⎦ , B =
⎡⎣0

1
2

⎤⎦ ,

try to establish a Simulink model to find the solutions of the system.

138 Chapter 4. Simulation Analysis of Nonlinear Systems

16. Represent the block diagram shown in Figure 4.47 in Simulink and then perform a
linearization to find the closed-loop transfer function and a state space model.

s + 0.5

s + 0.1

20

s(s+2)(s+10)
�� � � �

5

5
� �

�

r y

Figure 4.47. The block diagram for Problem 16.

17. Consider the well-known benchmark problem for testing a computer aided design en-
vironment (the F-14 airplane problem [54]). The linear model is shown in Figure 4.48.
The parameters in the diagram are given by

τa = 0.05, σwG = 3.0, a = 2.5348, b = 64.13,

Vτ0 = 690.4, σα = 5.236 × 10−3, Zb = −63.9979, Mb = −6.8847,

U0 = 689.4, Zw = −0.6385, Mq = −0.6571, Mw = −5.92 × 10−3,

ω1 = 2.971, ω2 = 4.144, τs = 0.10, τα = 0.3959,

KQ = 0.8156, Kα = 0.6770, Kf = −3.864, KF = −1.745.

Select the input and output as u = n(t) and y(t) = NZp(t) with

NZp(t) = 1

32.2
[−ẇ(t) + U0q(t) + 22.8q̇(t)].

Try to show the state space expression and find all the poles and zeros of the system.

� 1

τas + 1

�n(t)
σwG√

a3

√
3as + 1(

s + 1

a

)2 �wG(t)

�
π

4b

s

s + πVτ0
4b

�
qG(t)

Mq � �

Mw

�

Zw
�- � 1

s − Zw

w(t)

U0
�

�

Mw

- �� 1

s − Mq

�

�

q(t)

�
Zb

δ(t)�

�
Mb

�
�s + ω1

s + ω2
�KQ

�1

U0
�α(t)1

ταs + 1
�Kα

�� ��
-

�

1

τs s + 1
�αc(t)

�Kf

s
�

�KF

�

Figure 4.48. The F-14 benchmark problem.

Chapter 5

Model-Based
Controller Design

For systems control, broadly speaking, there are three major steps, i.e., modeling, analyis
and design, also known as the “mad” process. If you are given a system to control, you
probably have to go through this “mad” process, or loop, to achieve a satisfactory control
performance.

For modeling, in Chapter 2 we discussed mathematical models of linear feedback
control systems, where we focused more on various model forms and their conversions
rather than on how to build a model from experimental results, which is a large subject area
known as “system identification” only very lightly covered in Sec. 2.7.

For analysis, the available methods may typically be classified into time domain or
frequency domain analysis. Equipped with the techniques from Chapter 3, given models
of the plant and a controller, we can find in detail the time domain and frequency domain
properties.

Now, we are ready to discuss the design of controllers. Given a plant model, how
does one design or synthesize a controller so that the resulting system meets certain desired
specifications? Since the controller design is dependent on the given model, we call the
controller design “model-based.”

In this chapter, frequency domain model-based controller design methods will be
introduced for the cascade lead-lag compensator design (Sec. 5.1), followed by three time
domain model-based controller design methods. They are the popular linear quadratic (LQ)
optimal control method (Sec. 5.2), pole placement techniques (Sec. 5.3) and decoupling
methods (Sec. 5.4). We will also discuss state observers and observer-based control. In
Sec. 5.5, the SISOTool, an interactive controller design tool in the Control Systems Toolbox
used mainly for single input–and single output (SISO) systems, is briefly demonstrated.

It should be noted that the “mad” process, in practice, may be iterative; that is, achiev-
ing a successful control system design may need several rounds of modeling, analysis, and
design.

139

140 Chapter 5. Model-Based Controller Design

5.1 Cascade Lead-Lag Compensator Design
5.1.1 Introduction to Lead-Lag Synthesis

In the early days of control system design, controllers were usually implemented in analog
form. Due to its simplicity, the phase lead-lag compensator was a popular form of controller
since it can be easily implemented using a passive RC (resistor and capacitor) network or
an RC network with an operational amplifier.

Basically, there are three commonly used compensators, namely, the phase lead com-
pensator, phase lag compensator, and phase lead-lag compensator. Note that the compen-
sator, or the controller, Gc(s), is usually applied in cascade (series) connection to the plant
model G(s).

Phase lead compensator

The equivalent RC network to realize a phase lead compensator is shown in Figure 5.1(a).
We denote the impedances by Z1 = R1/(1 + R1Cs) and Z2 = R2. The transfer function
of the phase lead network can be written as

Gc(s) = Uo(s)

Ui(s)
= Z2

Z1 + Z2
= 1

α

1 + αT s

1 + T s
, (5.1)

where

T = R1R2

R1 + R2
C, α = R1 + R2

R2
. (5.2)

Obviously, α > 1. In general, the phase lead compensator can be written as

Gc(s) = Kc

1 + αT s

1 + T s
. (5.3)

The pole-zero location of the compensator is sketched in Figure 5.1(b). Since α > 1,
the pole is always located on the left-hand side of the zero. For some different α’s, the Bode
and Nyquist diagrams of the lead compensator with T = 1 are shown in Figures 5.2(a)
and (b), respectively, through the following MATLAB statements:

R1

CZ1

Z2

�

ui

�

uo
R2

(a) lead network

�

�Im

Re
− 1

αT
− 1

T

(b) pole-zero positions

Figure 5.1. Lead compensator.

5.1. Cascade Lead-Lag Compensator Design 141

>> f1=figure; f2=figure; T=1;
for alpha0=1.5:0.5:5

G1=tf([alpha0*T,1]/alpha0,[T,1]);
figure(f1), nyquist(G1);hold on;figure(f2), bode(G1); hold on

end

It can be observed that when α is large, the gain compensation is small but the phase
compensation is large.

Example 5.1. Consider a plant model given by

G(s) = 100

s(0.04s + 1)
.

The behavior of a feedback system with a lead compensator for the above plant model is
illustrated in the frequency domain through this example.

The gain and phase margins of the system with the plant alone in the loop are obtained
using the following MATLAB statements:

>> G=tf(100,[0.04,1,0]); [Gm,Pm,Wcg,Wcp]=margin(G), bode(G)

It is found that the phase margin is 28.0243◦ at a frequency of 46.9701 rad/sec, with an
infinite gain margin. The Bode diagram of the open-loop model is shown in Figure 5.3(a),
where the phase margin is marked.

The phase margin can be increased by introducing a phase lead compensator given by
Gc(s) = (0.0262s + 1)/(0.0106s + 1). The Bode diagram of the compensator is shown in
Figure 5.3(b). In this case, the gain and phase margins of the compensated system can be
obtained using the following MATLAB statements:

>> Gc1=tf([0.0262 1],[0.0106,1]); bode(Gc1)
[Gm,Pm,Wcg,Wcp]=margin(G*Gc1)

It is found that the phase margin of the compensated system is 47.6◦ at a frequency of 60.3
rad/sec, again with an infinite gain margin. The magnitude and phase crossover frequencies

−15

−10

−5

0

M
ag

ni
tu

de
 (

dB
)

10
−2

10
−1

10
0

10
1

10
2

0

10

20

30

40

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

← α = 5

← α=5

α = 0.5

α = 5

(a) Bode diagrams

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Nyquist Diagram

Real Axis

Im
ag

in
ar

y
A

xi
s

α = 0.5

α = 5 →

(b) Nyquist plots

Figure 5.2. Frequency domain representation of a lead compensator.

142 Chapter 5. Model-Based Controller Design

−60

−40

−20

0

20

40

60
M

ag
ni

tu
de

 (
dB

)
Bode Diagram

Frequency (rad/sec)
10

0
10

1
10

2
10

3
−180

−135

−90
System: G
Phase Margin (deg): 28
Delay Margin (sec): 0.0104
At frequency (rad/sec): 47
Closed Loop Stable? Yes

Ph
as

e
(d

eg
)

(a) Plant Bode diagrams

0

2

4

6

8

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

10
3

10
4

0

10

20

30

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

(b) Compensator Bode diagrams

Figure 5.3. Bode diagrams of the plant and the lead compensator.

−100

−50

0

50

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

Frequency (rad/sec)
10

0
10

1
10

2
10

3
10

4
−180

−135

−90
System: G_o
Phase Margin (deg): 47.6
Delay Margin (sec): 0.0138
At frequency (rad/sec): 60.3
Closed Loop Stable? Yes

Ph
as

e
(d

eg
)

← compensated
system

uncompensated system→

← compensated
system

(a) Bode diagrams comparison

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.5

1

1.5

Step Response

Time (sec)

A
m

pl
itu

de

← original system

← compensated system

(b) step response comparison

Figure 5.4. Comparison of system responses.

in the compensated system, as expected, are both increased. The open-loop Bode diagrams
of the compensated system and the original system are compared in Figure 5.4(a) using the
following MATLAB statements:

>> G_o=Gc1*G; bode(G,G_o); figure
G_c1=feedback(G,1); G_c2=feedback(G_o,1); step(G_c1,G_c2)

The closed-loop step responses of the systems before and after phase lead compen-
sation are compared in Figure 5.4(b). The step response of the compensated system is
significantly improved, since the overshoot is reduced due to the increased phase margin,
and the speed of response is also increased, due to the increased crossover frequency.

Phase lag compensator

The equivalent RC network for a phase lag compensator is shown in Figure 5.5(a), with the
pole-zero positions sketched in Figure 5.5(b). Let Z1 = R1 and Z2 = R2 + 1/(Cs). The

5.1. Cascade Lead-Lag Compensator Design 143

R1Z1

�

ui

�

uo

(a) lag network

�

�Im

Re
− 1

T
− 1

αT

(b) pole-zero positions

C

R2

Z2

Figure 5.5. Lag compensator.

0

5

10

15

20

M
ag

ni
tu

de
 (

dB
)

10
−2

10
−1

10
0

10
1

10
2

10
3

−60

−30

0

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

← α=0.1

← α=0.1

(a) Bode diagrams

−2 0 2 4 6 8 10 12
−5

−4

−3

−2

−1

0

1

2

3

4

5

Nyquist Diagram

Real Axis

Im
ag

in
ar

y
A

xi
s

← α=0.2

α=0.1 →

(b) Nyquist plots

Figure 5.6. Frequency responses of lag compensators.

transfer function of the phase lag network can be written as

Gc(s) = Uo(s)

Ui(s)
= Z2

Z1 + Z2
= 1 + αT s

1 + T s
, (5.4)

where R2C = αT , α = R2/(R1 + R2) < 1. In a more general form, the phase lag
compensator can be written as

Gc(s) = Kc

1 + αT s

1 + T s
. (5.5)

The Bode diagrams and the Nyquist plots for Kc = 1 and T = 1 are shown in
Figures 5.6(a) and (b), respectively, for different values of α. These diagrams are obtained
using the following MATLAB statements:

>> f1=figure; f2=figure; T=1;
for alpha0=0.9:-0.1:0.1

G1=tf([alpha0*T,1]/alpha0,[T,1]);
figure(f1), nyquist(G1), hold on;figure(f2), bode(G1), hold on

end

144 Chapter 5. Model-Based Controller Design

−100

−50

0

50

100
M

ag
ni

tu
de

 (
dB

)
Bode Diagram

Frequency (rad/sec)
10

−2
10

−1
10

0
10

1
10

2
10

3
−180

−135

−90 System: G_o
Phase Margin (deg): 50.8
Delay Margin (sec): 0.0529
At frequency (rad/sec): 16.7
Closed Loop Stable? Yes

Ph
as

e
(d

eg
)

← original system

compensated →

original
system

→

(a) Bode diagrams comparison

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

Step Response

Time (sec)

A
m

pl
itu

de

← uncompensated system

← with lag
compensator

← with lead compensator

(b) step response comparison

Figure 5.7. Comparison of system responses.

Example 5.2. Consider again the plant model in Example 5.1. If a phase lag compensator
Gc(s) = (0.5s +1)/ (2.5s +1) is now used, the gain and phase margins of the compensated
system can be obtained using the following MATLAB statements:

>> Gc2=tf([0.5 1],[2.5,1]); G=tf(100,[0.04,1,0]); G_o=Gc2*G;
[Gm,Pm,Wcg,Wcp]=margin(G_o); bode(G_o,G)
figure;step(feedback(G,1),feedback(G_o,1),feedback(Gc1*G,1),0.5)

The phase margin is 50.7572◦ at a frequency of 16.7339 rad/sec, with an infinite gain margin.
The Bode diagram of the compensated system can be obtained as shown in Figure 5.7(a).

The basic idea of a lag compensator is to decrease the crossover frequency so as to
increase the phase margin of the system. However, since this technique reduces the open-
loop bandwidth, it also reduces the response speed of the system. However, it does have
the advantage, unlike lead compensation, that a solution can always normally be found.

The step responses of the phase lag compensated system, the original system, and
the phase lead compensated system, are all shown in Figure 5.7(b). As with the lead
compensator, the increased phase margin given by the lag compensator has reduced the
overshoot in the step response.

Now, let us fix α = 0.2 and change T , i.e., the lag compensator is Gc(s) = (1 +
0.2T s)/(1 + T s). Let us see how T affects the performance of the compensated system.
Using the MATLAB statements

>> G=tf(100,[0.04,1,0]); f1=figure; f2=figure;
for T=[0.5,1,2.5,5,10,20]

Gc2=tf([0.2*T 1],[T,1]); G_o=G*Gc2; G_c=feedback(G_o,1);
figure(f1),bode(G_o), hold on;figure(f2),step(G_c,1), hold on

end

the superimposed Bode diagrams and step response are shown in Figures 5.8(a) and (b),
respectively. Among the phase lag compensators, it can be seen that the larger the value of
T , the better the performance of the compensated system.

5.1. Cascade Lead-Lag Compensator Design 145

−100

−50

0

50

100

150

M
ag

ni
tu

de
 (

dB
)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−180

−135

−90

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

← T = 0.5
T = 20 →

← T = 20

T = 0.5 →

(a) Bode diagrams comparison

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Step Response

Time (sec)

A
m

pl
itu

de

← T = 0.5

↑
T =20

(b) step response comparison

Figure 5.8. The effect of changing T .

R1

�

ui

�

uo

(a) lead-lag network

�

�Im

Re
− 1

T1

− 1

αT1

(b) pole-zero positions

C2

R2

Z2

C1Z1

− 1

T2

− 1

βT2

Figure 5.9. Lead-lag compensator.

Phase lead-lag compensator

For a phase lead-lag compensator, its equivalent RC network is shown in Figure 5.9(a),
and its pole-zero map is shown in Figure 5.9(b). Denote Z1 = R1/(1 + R1C1s) and
Z2 = R2 + 1/(C2s). The transfer function of the phase lead-lag compensator can be
written as

Gc(s) = Uo(s)

Ui(s)
= Z2

Z1 + Z2
= (1 + αT1s)(1 + βT2s)

(1 + T1s)(1 + T2s)
, (5.6)

where αT1 = R1C1, βT2 = R2C2, αβ = 1, and clearly, R1C1 + R2C2 + R1C2 = T1 + T2,
T1T2 = R1C1R2C2. When α > 1 and β < 1, the first term in (5.6) exhibits the phase lead
property, while the second term has the phase lag characteristics.

As shown in Figure 5.10, with T1 = 0.5, T2 = 0.005, and α = 3, β = 1/3, and
T2 = 0.5, T1 = 0.005, the Bode diagrams of the lead-lag compensator and the lag-lead
compensators are obtained using the following MATLAB statements, respectively:

>> T1=0.5; T2=0.005; alpha=3; beta=1/3; s=zpk(’s’);
G1=(alpha*T1*s+1)*(beta*T2*s+1)/(T1*s+1)/(T2*s+1);
T2=0.5; T1=0.005; alpha=3; beta=1/3;
G2=(alpha*T1*s+1)*(beta*T2*s+1)/(T1*s+1)/(T2*s+1); bode(G1,G2)

146 Chapter 5. Model-Based Controller Design

−10

−5

0

5

10

M
ag

ni
tu

de
 (

dB
)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−30

0

30
Ph

as
e

(d
eg

)

Bode Diagram

Frequency (rad/sec)

← lead-lag

← lag-lead

← lag-lead

← lead-lag

Figure 5.10. The Bode diagrams of the lead-lag and lag-lead compensators.

It can be observed that in the phase lead-lag compensator, the phase is positive (lead)
before it becomes negative (lag). However, the phase lag action is taken first, followed by
the lead action for lag-lead compensator.

In practical applications, the lead-lag compensator is usually used. In what follows,
we will show a method for designing a phase lead-lag compensator.

5.1.2 Lead-Lag Synthesis by Phase Margin Assignment

The transfer function of a lead-lag compensator can be written as

Gc(s) = Kc(s + zc1)(s + zc2)

(s + pc1)(s + pc2)
, (zc1 ≤ pc1 , zc2 ≥ pc2). (5.7)

Denote by Kp the desired static position error constant which is defined as

Kp = lim
s→0

Gc(s)G(s)

with G(s) the plant model.
If the phase angle of the plant model is φ1(ωc) at the expected crossover frequency

ω = ωc, the phase angle of the compensator at ωc should be φc(ωc) = γ − 180◦ − φ1(ωc),
where γ is the expected phase margin of the compensated system. The magnitude of the
plant model at ωc is denoted by A(ωc). The following synthesis procedure can be used.

Case 1. When φc(ωc) > 0, a lead compensation is required which can be designed as

α = zc1

pc1

= 1 − sin φc

1 + sin φc

(5.8)

and

zc1 = √
αωc, pc1 = zc1

pc1

= ωc√
α

, Kc =
√

ω2
c + p2

c1√
ω2

c + z2
c1

A(ωc)
. (5.9)

5.1. Cascade Lead-Lag Compensator Design 147

The static position error constant of the system can be obtained as

K1 = lim
s→0

svGo(s) = bm

an−v

Kczc1

pc1

, (5.10)

where v is the multiplicity of the pole s = 0 of the plant model G(s) with

G(s) = b0s
m + b1s

m−1 + · · · + bm−1s + bm

sv(a0sn−v + a1sn−v−1 + · · · + an−v+1s + an−v)
,

and Go(s) is the open-loop transfer function with the compensator, i.e., Go(s) =
Gc(s)G(s).

If K1 ≥ Kp, the designed phase lead compensator is adequate according to the
phase margin assignment. Otherwise, a phase lead-lag compensation is required.

Case 2. For phase lead-lag compensation, it is required to further specify

zc2 = ωc

10
, pc2 = K1zc2

Kp

. (5.11)

Case 3. If φc(ωc) < 0, the phase lag compensation is expected, and

Kc = 1

A(ωc)
, zc2 = ωc/10, pc2 = K1zc2/Kp, (5.12)

where K1 = bmKc/an−v .

A MATLAB function leadlagc() has been written to implement the three
cases in the above algorithm:

1 function Gc=leadlagc(G,Wc,Gam_c,Kv,key)
2 G=tf(G); [Gai,Pha]=bode(G,Wc);
3 Phi_c=sin((Gam_c-Pha-180)*pi/180);
4 den=G.den{1}; a=den(length(den):-1:1);
5 ii=find(abs(a)<=0); num=G.num{1}; G_n=num(end);
6 if length(ii)>0, a=a(ii(1)+1); else, a=a(1); end;
7 alpha=sqrt((1-Phi_c)/(1+Phi_c)); Zc=alpha*Wc; Pc=Wc/alpha;
8 Kc=sqrt((Wc*Wc+Pc*Pc)/(Wc*Wc+Zc*Zc))/Gai; K1=G_n*Kc*alpha/a;
9 if nargin==4, key=1;

10 if Phi_c<0, key=2; else, if K1<Kv, key=3; end, end
11 end
12 switch key
13 case 1, Gc=tf([1 Zc]*Kc,[1 Pc]);
14 case 2, Kc=1/Gai; K1=G_n*Kc/a; Gc=tf([1 0.1*Wc],[1 0.1*K1*Wc/Kv]);
15 case 3
16 Zc2=Wc*0.1; Pc2=K1*Zc2/Kv; Gcn=Kc*conv([1 Zc],[1,Zc2]);
17 Gcd=conv([1 Pc],[1,Pc2]); Gc=tf(Gcn,Gcd);
18 end

The syntax of the function is Gc=leadlagc(G,ωc,γ,Kp,key) , where G is the

LTI (linear time-invariant) object of the plant model, ωc is the expected crossover frequency,
γ is the expected phase margin of the compensated system, and Kp is the static position
error constant. If key is provided, the controller will be designed according to the type
specified in key with key = 1, 3, 2 for Cases 1, 2, 3, respectively, discussed in the above.
If key is not provided, the controller structure will be selected automatically. The returned
Gc is the transfer function object of the compensator.

148 Chapter 5. Model-Based Controller Design

Example 5.3. Consider the plant model in Example 5.1. Different phase margins are as-
signed with the crossover frequency at ωc = 100 rad/sec. The corresponding compensators
can be designed using the following MATLAB statements:

>> G=tf(100,[0.04,1,0]); wc=100; f1=figure; f2=figure;
for gamma=[30,40,50,60,70,80,90]

Gc=leadlagc(G,wc,gamma,10); G_o=Gc*G; G_c=feedback(G_o,1);
figure(f1), bode(G_o), hold on;
figure(f2), step(G_c,0.1), hold on

end

The Bode diagrams of the systems under some different γ ’s can be obtained as shown
in Figure 5.11(a), and it can be seen that the phase margins of the compensated systems are
consistent with the predefined values. The closed-loop step responses of the systems are
shown in Figure 5.11(b), where it can be seen that when the specified phase margin increases,
the step response is improved in terms of a smaller overshoot. However, for this example,
if the phase margin is specified too large, for instance, 80◦ ∼ 90◦, the system responses
are not satisfactory. Because the integrator gives a 90◦ phase lag, the bandwidth has to be
reduced considerably to obtain the high phase margin, and the result is a slow response.
This illustrates that the program needs to be used with a good physical understanding and
will not give results for poor assumptions. In this example, a good compensator can be
designed, when setting γ = 70◦, as

Gc(s) = 13.4708
s + 30.61

s + 326.7
.

Now, let us fix the specified phase margin to γ = 70◦ and change the values of
the crossover frequencies ωc. The Bode diagrams and closed-loop step responses of the
compensated systems are compared in Figures 5.12(a) and (b), respectively, by using the
following MATLAB statements:

>> G=tf(100,[0.04,1,0]); gamma=70; f1=figure; f2=figure;
for wc=[50,100,200,300,500]

Gc=leadlagc(G,wc,gamma,10); G_o=Gc*G; G_c=feedback(G_o,1);
figure(f1), bode(G_o), hold on;
figure(f2), step(G_c,0.1), hold on

end

Clearly, the overshoots under different ωc’s are almost the same. However, when ωc in-
creases, the step response becomes faster.

Example 5.4. Consider the transfer function of the plant model given by

G(s) = 100

s(s + 1)(0.0125s + 1)
.

Set the crossover frequency atωc = 50 rad/sec and assign the expected phase margin of
the compensated system to γ = 50◦. The compensator Gc can be designed by calling in the
leadlagc() function. The Nichols charts of the systems before and after compensation

5.1. Cascade Lead-Lag Compensator Design 149

−150

−100

−50

0

50

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

10
3

10
4

10
5

−180

−135

−90

−45

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

← γ = 90◦

γ = 30◦ →

← γ = 90◦

γ = 30◦ →

(a) Bode diagrams comparison

0 0.02 0.04 0.06 0.08 0.1
0

0.5

1

1.5

Step Response

Time (sec)

A
m

pl
itu

de

← γ = 30◦

← γ = 90◦

(b) step response comparison

Figure 5.11. The effect of the desired phase margin γ .

−150

−100

−50

0

50

100

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

10
3

10
4

10
5

−180

−135

−90

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

← ωc = 500

ωc = 50 →

ωc = 50 →

← ωc = 500

(a) Bode diagrams comparison

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

← ωc = 50

↓
ωc = 500

(b) step response comparison

Figure 5.12. The effect of the desired crossover frequency ωc.

are compared in Figure 5.13(a) using the following MATLAB statements:

>> s=zpk(’s’); G=100/(s*(s+1)*(0.0125*s+1));
Gc=leadlagc(G,50,50,100); zpk(Gc), G1=Gc*G;
nichols(G,G1); grid; axis([-360,0,-40,40])

The controller designed is

Gc(s) = 368.8908(s + 3.997)

s + 625.5
.

From the Nichols chart, the closed-loop uncompensated system is unstable. By introducing
the lead compensator, at high frequencies, the Nichols chart is kept away from the M = 1dB
contour, which not only makes the closed-loop compensated system stable, but also ensures
a rather good time domain response of the compensated system.

To get an even larger phase margin by using the lead compensator, for instance,
γ = 60◦ at ωc = 80 rad/sec, a new design result can be obtained by using the following

150 Chapter 5. Model-Based Controller Design

−360 −315 −270 −225 −180 −135 −90 −45 0
−40

−30

−20

−10

0

10

20

30

40

 6 dB
 3 dB

 1 dB

 0.5 dB
 0.25 dB

 0 dB

 −1 dB

 −3 dB

 −6 dB

 −12 dB

 −20 dB

 −40 dB

Nichols Chart

Open−Loop Phase (deg)

O
pe

n−
L

oo
p

G
ai

n
(d

B
)

← (ωc =50, γ =50◦)

compensator
original
system →

(a) expected ωc = 50, γ = 50◦
−360 −315 −270 −225 −180 −135 −90 −45 0

−40

−30

−20

−10

0

10

20

30

40

 6 dB
 3 dB

 1 dB

 0.5 dB
 0.25 dB

 0 dB

 −1 dB

 −3 dB

 −6 dB

 −12 dB

 −20 dB

 −40 dB

Nichols Chart

Open−Loop Phase (deg)

O
pe

n−
L

oo
p

G
ai

n
(d

B
)

← (ωc =80, γ =60◦)

compensatororiginal
system →

(b) expected ωc = 50, γ = 100◦

Figure 5.13. Nichols charts for different controllers.

MATLAB statements:

>> Gc=leadlagc(G,80,60,100); zpk(Gc)
G2=G*Gc; nichols(G,G2), grid; axis([-360,0,-40,40])
[G1,P1,w1,w2]=margin(G2); [G1,P1,w1,w2]

The controller is now

Gc(s) = 722.4022(s + 10.02)

s + 638.5
.

It is found that the gain and phase margins are 5.5430, 31.4323◦ at frequencies 211.1766,
and 80 rad/sec, respectively. The Nichols charts of the systems are shown in Figure 5.13(b).
The actual phase margin under this newly designed controller is γ = 28.28◦, which is,
surprisingly, well below the expected γ = 90◦. It can be seen that although the system
is stabilized, the closed-loop behavior of the compensated system may not be very good,
due to the poor Nichols charts. Therefore, the prespecified phase margin of 90◦ cannot
be met and the requirements are too demanding for the implementation under a lead-lag
compensation.

Similarly, if one wishes to achieve a phase margin of γ = 50◦ and, at the same time,
to have a crossover frequency at ωc = 100 rad/sec, the following MATLAB statements can
be used:

>> Gc=leadlagc(G,100,50,100); zpk(Gc)
G3=G*Gc; nichols(G,G3), grid; axis([-360,0,-40,40])
[G1,P1,w1,w2]=margin(G3); [G1,P1,w1,w2]

The controller is designed as

DGc(s) = 1698.7153(s + 9.424)

s + 1061
,

and the actual gain and phase margins are 6.3204, 28.4655◦ at frequencies 274.3693 and 100
rad/sec, respectively. The Nichols charts are shown in Figure 5.14(a). Once more, it can be
seen that the prespecified properties of the desired system cannot be achieved. Therefore, the

5.2. Linear Quadratic Optimal Control 151

−360 −315 −270 −225 −180 −135 −90 −45 0
−40

−30

−20

−10

0

10

20

30

40

 6 dB
 3 dB

 1 dB

 0.5 dB
 0.25 dB

 0 dB

 −1 dB

 −3 dB

 −6 dB

 −12 dB

 −20 dB

 −40 dB

Nichols Chart

Open−Loop Phase (deg)

O
pe

n−
L

oo
p

G
ai

n
(d

B
)

← (ωc =100, γ =50◦)

compensator

original
system →

(a) expected ωc = 100, γ = 50◦
0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step Response

Time (sec)

A
m

pl
itu

de

← (ωc = 100, γ = 50◦)

← (ωc = 50, γ = 90◦)

← (ωc = 50, γ = 50◦)

(b) step response comparison

Figure 5.14. System responses comparisons.

controller design objective is overspecified. The closed-loop step responses of the systems
under the three compensators designed in the above are compared in Figure 5.14(b), with
the following MATLAB statements:

>> step(feedback(G1,1),feedback(G2,1),feedback(G3,1),0.3);

It can be seen that the closed-loop response comparison agrees with the analysis performed
earlier from the Nichols charts.

In fact, even if the expected crossover frequency ωc and the phase margin γ are both
assigned, the compensator designed using the approach given above may not guarantee a
compensated system satisfying all the specifications. Moreover, the closed-loop system
may not be even stable with the designed compensator. The closed-loop behavior of the
system should be examined before the controller can be used in practice.

Other lead-lag compensator design approaches, such as the root locus method, will
not be discussed in this book.

5.2 Linear Quadratic Optimal Control
5.2.1 Linear Quadratic Optimal Control Strategies

Consider an LTI system given by its state space model⎧⎨⎩ ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t).
(5.13)

Introduce the following performance index for the optimal controller design:

J = 1

2
xT(tf)Sx(tf) + 1

2

∫ tf

t0

[
xT(t)Q(t)x(t) + uT(t)R(t)u(t)

]
dt, (5.14)

where Q and R are weighting matrices for the state variables and the input variables,
respectively, and tf is the terminal time for control action, which means that the control

152 Chapter 5. Model-Based Controller Design

action is in a finite time interval. S ≥ 0 is the weighting matrix for the terminal states. This
optimal control problem is referred to as the linear quadratic (LQ) optimal control problem.

To solve this LQ optimal control problem, let us first construct a Hamiltonian function

H = −1

2

[
xT(t)Qx(t) + uT(t)Ru(t)

]
+ λT(t)

[
Ax(t) + Bu(t)

]
. (5.15)

When there is no constraint on the input signal, the optimal (in this case, the minimum)
value can be solved by taking the derivative of H with respect to u and then solving the
following equation:

∂H

∂u
= −Ru(t) + BTλ(t) = 0. (5.16)

Denote by u∗(t) the optimal control signal u(t). Then, u∗(t) can be explicitly written in
the following form:

u∗(t) = R−1BTλ(t). (5.17)

On the other hand, it can be shown that the Lagrangian multiplier λ(t) can be written
as λ(t) = −P (t)x(t), where P (t) is the symmetrical solution matrix of the well-known
differential Riccati equation (DRE)

Ṗ (t) = −P (t)A − ATP (t) + P (t)BR−1BTP (t) − Q (5.18)

with its final value P (tf) = S. So, the optimal control signal can also be written as

u∗(t) = −R−1BTP (t)x(t). (5.19)

It is interesting to note that the solution of the finite time LQ optimal control problem
turns out to be a linear state feedback with a time varying gain matrix, which is equal to
−R−1BTP (t).

5.2.2 Linear Quadratic Regulator Problems

When tf is finite, solving the LQ optimal control problem amounts to solving the DRE (5.18),
which is very difficult to solve. In many applications, one is more concerned with the
regulation performance, which implies that tf → ∞, as in many process control systems.
If we consider this steady-state performance, the LQ optimal control problem is referred to
as an LQR (linear quadratic regulator) problem.

In the LQR problem, tf = ∞ and the closed-loop system will be asymptotically
stabilized. The solution matrix P (t) to the DRE will tend to a constant matrix, i.e., Ṗ (t) = 0.
In this case, the DRE reduces to the so-called algebraic Riccati equation (ARE) as follows:

PA + ATP − PBR−1BTP + Q = 0. (5.20)

The above ARE can be easily solved by the MATLAB function are() in the Control
Systems Toolbox, where P=are(A’,B*inv(R)*B’,Q) . Then, the LQR problem
can be solved using a linear state feedback with a constant gain matrix, i.e.,

u(t) = −Kx(t), K = −R−1BTP .

Clearly, the closed-loop system is simply [(A − BK), B, C, D].

5.2. Linear Quadratic Optimal Control 153

A MATLAB function lqr() provided in the Control Systems Toolbox can be used
to design an LQR for a given system with given weighting matrices. The syntax of the
function is [K,P]=lqr(A,B,Q,R) , where (A,B) is the given state space model,
and Q and R are the weighting matrices. K is the state feedback gain matrix, and P is the
solution matrix for the ARE.

Example 5.5. Consider the following plant in state space form:

ẋ(t) =

⎡⎢⎢⎢⎢⎣
−0.2 0.5 0 0 0

0 −0.5 1.6 0 0
0 0 −14.3 85.8 0
0 0 0 −33.3 100
0 0 0 0 −10

⎤⎥⎥⎥⎥⎦ x(t) +

⎡⎢⎢⎢⎢⎣
0
0
0
0

30

⎤⎥⎥⎥⎥⎦ u(t), y = [1, 0, 0, 0, 0]x.

Select the weighting matrices as Q = diag{ρ, 0, 0, 0, 0} and R = 1. When ρ = 1,
the LQR problem can be easily solved using the following MATLAB statements:

>> A=[-0.2,0.5,0,0,0;0,-0.5,1.6,0,0;0,0,-14.3,85.8,0;
0,0,0,-33.3,100;0,0,0,0,-10];

B=[0; 0; 0; 0; 30]; Q=diag([1,0,0,0,0]); R=1;
C=[1,0,0,0,0]; D=0; [K,P]=lqr(A,B,Q,R)

and it can be found that

KT =

⎡⎢⎢⎢⎢⎣
0.926

0.1678
0.0157
0.0371
0.2653

⎤⎥⎥⎥⎥⎦ , P =

⎡⎢⎢⎢⎢⎣
0.3563 0.0326 0.0026 0.0056 0.0309
0.0326 0.0044 0.00039 0.00088 0.0056

0.00259 0.00039 3.5×10−5 7.95×10−5 0.00052
0.0056 0.00088 7.95×10−5 0.00018 0.0012
0.0309 0.0056 0.00052 0.0012 0.0088

⎤⎥⎥⎥⎥⎦ .

The closed-loop state matrix Ac under the LQR can be obtained with the following MATLAB
statements:

>> Ac=A-B*K; step(ss(Ac,B,C,D))

The step response of the closed-loop system is shown in Figure 5.15(a).
For different values of ρ, for example, ρ = 5, 10, 50, 100, the step responses of

closed-loop systems under the optimal LQR can be obtained using the following MATLAB
statements:

>> for rho=[1,5,10,50,100]
Q(1,1)=rho;[K,P]=lqr(A,B,Q,R); step(ss(A-B*K,B,C,D)); hold on

end

The results are compared in Figure 5.15(b). Clearly, when ρ increases, the magnitude
of y(t) = x1(t) becomes smaller since the penalty on x1(t) is heavier.

To see the step responses of the other states under the LQR, let us fix ρ = 100. The
step response of x2(t) to x5(t), obtained using the MATLAB statements

>> Q(1,1)=100; [K,P]=lqr(A,B,Q,R); Ac=A-B*K;
[y,t,x]=step(ss(Ac,B,C,D)); plot(t,x(:,2:5))

154 Chapter 5. Model-Based Controller Design

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

(a) LQR design with ρ = 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

ρ = 1

ρ = 5

(b) LQR with different ρ

Figure 5.15. Step responses of closed-loop systems.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−5

−4

−3

−2

−1

0

1

2

3

4

5

6

← x2(t)

← x1(t)

↑
x4(t)

← x3(t)

Figure 5.16. Step responses of the states of closed-loop systems.

are shown in Figure 5.16, where it can be observed that since there is no penalty on other
state variables due to the special structure of the Q matrix, all the other state variables except
x1 may become very large.

Now, let us put some penalties on the other states by redefining the weighting matrix
Q such that Q = diag(10, 2, 6, 2, 1). By the following MATLAB statements:

>> Q=diag([10,2,6,2,1]); [K,P]=lqr(A,B,Q,R); Ac=A-B*K;
step(ss(Ac,B,C,D)), figure, [y,t,x]=step(ss(Ac,B,C,D));
plot(t,x(:,2:5))

the step response of the system under the newly designed LQR is obtained as shown in
Figure 5.17(a), where it can be seen that the output response speed is significantly reduced.
However, from the step responses of the other states, obtained using the MATLAB statements

>> [y,t,x]=step(ss(Ac,B,C,D)); plot(t,x(:,2:5))

as shown in Figure 5.17(b), the amplitudes of all the other states except x1 are significantly
reduced due to the new weighting matrix Q.

5.2. Linear Quadratic Optimal Control 155

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Step Response

Time (sec)

A
m

pl
itu

de

(a) with a new Q

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

← x1(t)

← x2(t)

← x3(t)

(b) other states

Figure 5.17. Step responses of closed-loop systems.

Example 5.6. Consider a multivariable state space equation given by

ẋ(t) =

⎡⎢⎢⎣
−8 −6 0 −2
−6 −14 −1 −6
0 −1 −26 −2

−2 −6 −2 −20

⎤⎥⎥⎦ x(t) +

⎡⎢⎢⎣
1 −1
0 1

−1 1
0 0

⎤⎥⎥⎦u(t).

Selecting a diagonal matrix Q = diag(10, 8, 2, 0) and an identity matrix R = I , we can
obtain the state feedback matrix with the following statements

>> A=[-8,-6,0,-2; -6,-14,-1,-6; 0,-1,-26,-2; -2,-6,-2,-20];
B=[1,-1; 0,1; -1,1; 0,0]; C=[1 0 0 0; 0 0 1 0];
Q=diag([10,8,2,0]); R=eye(2); [K,P]=lqr(A,B,Q,R), eig(A-B*K)

The state feedback matrix K and the Riccati equation solution P can be obtained with the
previous statements

KT =

⎡⎢⎢⎣
0.7208 −0.9919

−0.2609 0.6705
−0.0287 0.0185
0.0140 −0.0735

⎤⎥⎥⎦ , P =

⎡⎢⎢⎣
0.7309 −0.2711 0.0101 0.0138

−0.2711 0.4096 −0.0102 −0.0595
0.0101 −0.0102 0.0388 −0.00017
0.0138 −0.0595 −0.00017 0.0163

⎤⎥⎥⎦ ,

and the closed-loop poles are −6.3396, −12.7427, −23.5384, −27.8096.

5.2.3 Linear Quadratic Control for Discrete-Time Systems

For discrete-time systems, the performance index in the quadratic form can be written as

J = 1

2

N∑
k=0

[
xT(k)Qx(k) + uT(k)Ru(k)

]
(5.21)

and its dynamic Riccati equation can be written as [53]

S(k) = FT
[
S(k + 1) − S(k + 1)GR−1GTS(k + 1)

]
F + Q , (5.22)

156 Chapter 5. Model-Based Controller Design

where S(N) = Q, N is the termination instance, and (F , G) is the state space model of
a discrete-time system. For the quadratic regulation problem, S is a constant matrix. The
corresponding discrete-time ARE can be written as

S = FT
[
S − SGR−1GTS

]
F + Q , (5.23)

and the state feedback matrix is

K =
[
R + GTSG

]−1
BTSF . (5.24)

The discrete-time ARE can be solved by the dare() function, and the state feedback
matrix K can be evaluated by the function dlqr(), with the syntax [K,S]=dlqr

(F,G,Q,R) .

Example 5.7. Consider a discrete-time state space equation

x(k + 1) =

⎡⎢⎢⎣
0.4725 0.2376 0.0589 0.1971
0.1451 0.5669 0.2311 0.0439
0.0932 0.119 0.5752 0.2319
0.2628 0.0757 0.1406 0.4465

⎤⎥⎥⎦ x(k) +

⎡⎢⎢⎣
0.5711

−0.3999
0.6899
0.8156

⎤⎥⎥⎦ u(k).

Selecting the weighting matrices Q = diag([0.5, 0.8, 2, 4]) and R = 1, we can design the
optimal controller with the following statements:

>> A=[0.4725,0.2376,0.0589,0.1971; 0.1451,0.5669,0.2311,0.0439;
0.0932,0.119,0.5752,0.2319; 0.2628,0.0757,0.1406,0.4465];

B=[0.5711; -0.3999; 0.6899; 0.8156]; Q=diag([0.5 0.8 2 4]); R=1;
[K,P]=dlqr(A,B,Q,R), eig(A-B*K)

The state feedback vector K and the discrete-time ARE solution P are obtained as

KT =

⎡⎢⎢⎣
0.2582

0.13
0.3017
0.3932

⎤⎥⎥⎦ , P =

⎡⎢⎢⎣
0.8206 0.3661 0.1423 0.2302
0.3661 1.5025 0.4916 0.233
0.1423 0.4916 2.7702 0.1581
0.2302 0.233 0.1581 4.2852

⎤⎥⎥⎦ ,

and with the state feedback vector K , the closed-loop poles of the system are 0.7157, 0.4603,

0.1304 ± j 0.0483.

5.2.4 Selection of Weighting Matrices

It can be seen from the previous subsection that the performance of the LQR system is
heavily dependent upon the selection of the weighting matrices. So, more precisely, we
should say that the LQR is optimal with respect to the chosen Q and R weighting matrices.
Thus an LQR solution which is optimal with one choice of Q and R will not normally be
optimal for other choices of the Q and R matrices. The problem is that the specification
for the performance of a practical control system will not be in terms of Q and R, so the

5.2. Linear Quadratic Optimal Control 157

designer is faced with the problem of trying to find values of Q and R which will meet the
specifications.

In SISO cases, since the matrix R is a nonzero scalar, one can fix it to unity and adjust
only the matrix Q. In this case, the original optimal control performance index in (5.14)
can be equivalently represented as

J

R
= 1

2
xT(tf)

S

R
x(tf) + 1

2

∫ tf

t0

[
xT(t)

Q

R
x(t) + uT(t)u(t)

]
dt

= 1

2
xT(tf)S1x(tf) + 1

2

∫ tf

t0

[
xT(t)Q1x(t) + u2(t)

]
dt,

(5.25)

where S1 = SR−1 and Q1 = QR−1. In what follows, for simplicity we will replace Q1
and S1 with Q and S, respectively. Several commonly used strategies for weighting matrix
selection are summarized [55] below.

Cheap control

The term “cheap control” here means that control effort is inexpensive and one can use any
large control signals to ensure the dynamic behavior of the system. In this case, the weight
on u(t) can be made very small, i.e., R is very small. Equivalently, under R = 1, the weight
on x(t), i.e., Q, should be very large. Usually, we use a single tuning knob ρ such that
Q̂ = ρQ. The effect of a cheap control LQR design is demonstrated through an example
below.

Example 5.8. Consider the plant model in Example 5.5. Let Q = ρ diag(10, 20, 6, 2, 5).
For different values of ρ, the LQ optimal controllers can be designed using the following
MATLAB statements:

>> A=[-0.2,0.5,0,0,0;0,-0.5,1.6,0,0;0,0,-14.3,85.8,0;
0,0,0,-33.3,100;0,0,0,0,-10]; B=[0; 0; 0; 0; 30];

Q=diag([10,20,6,2,5]); R=1; C=[1,0,0,0,0]; D=0;
for rho=[1,10,100,100,10000]

[K,P]=lqr(A,B,rho*Q,R); Ac=A-B*K; step(ss(Ac,B,C,D)); hold on
end

The closed-loop step responses are shown in Figure 5.18.
It can be seen that when ρ increases, which means that the penalty on the states is

increased, the magnitudes of the state responses are significantly reduced, which in turn
make the output signal smaller.

Expensive control

In contrast to the cheap control strategy, with an expensive control strategy, the control cost
is assumed to be quite large. Therefore, the control signal u(t) should be made as small as
possible. In this case, a large R should be used. With R = 1, equivalently, Q should be
very small. Similarly, Q should be replaced by ρQ with ρ very small.

158 Chapter 5. Model-Based Controller Design

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Step Response

Time (sec)

A
m

pl
itu

de

ρ = 1

ρ = 10

large value of ρ

Figure 5.18. Step responses of closed-loop systems.

Terminal control

“Terminal control” means that in the dynamic optimal control problem, the weighting matrix
S tends to infinity, which forces the terminal states to zero. A simple solution is to replace
S by ρS and send ρ to ∞ or a very large number. In this case, one can set Q = 0 to reduce
the DRE to the following form:

−Ṗ = ATP + PA − PBR−1BTP , where P (tf) = ρS. (5.26)

Degree-of-stability design

If in the controller design all the closed-loop poles are located on the left-hand side of s = −α

on the s-plane, where α > 0, this is commonly referred to as the “degree-of-stability of
−α.” To achieve this, a new performance index for LQR problems can be defined as

J =
∫ ∞

0
e2αt (xTQx + u2)dt, (5.27)

where Q is a constant matrix. By introducing a new state variable vector ξ(t) such that
ξ(t) = eαtx(t), and a new control v(t) = eαtu(t), the original state space equation can be
written as ξ̇ = (A + αI)ξ + Bv. Then, (5.27) becomes

J =
∫ ∞

0
[ξT(t)Qξ(t) + v2(t)]dt. (5.28)

The modified ARE becomes

(A + αI)TP + P (A + αI) + Q − PBBTP = 0 (5.29)

with the optimal control law u∗(t) = −BTPx(t).

Example 5.9. Consider again the plant model in Example 5.5. SetQ = diag (10, 20, 6, 2, 5).
The closed-loop poles achieved under the normal LQR control strategy can be obtained
using the following MATLAB statements:

5.2. Linear Quadratic Optimal Control 159

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Step Response

Time (sec)

A
m

pl
itu

de ← normal LQR

degree-of-stability LQR

Figure 5.19. Step responses of the closed-loop systems.

>> A=[-0.2,0.5,0,0,0;0,-0.5,1.6,0,0;0,0,-14.3,85.8,0;
0,0,0,-33.3,100;0,0,0,0,-10];

B=[0; 0; 0; 0; 30]; Q=diag([10,20,6,2,5]); R=1;
C=[1,0,0,0,0]; D=0; [K,P]=lqr(A,B,Q,R); eig(A-B*K)

where the closed-loop poles are −92.5275, −52.5576 ± j63.9570, −2.9264, −0.4046. It
can be seen that there is one pole at s = −0.4 which is quite close to the imaginary axis.
If one wants all the closed-loop poles of the system to be on the left-hand side of the line
s = −1, the following MATLAB commands can be used to achieve this:

>> [K2,P2]=lqr(A+eye(size(A)),B,Q,R); eig(A-B*K2)

The closed-loop poles of the system are then −93.3510, −53.4023 ± j64.1404, −3.9272,

−1.8793. Clearly, by the “degree-of-stability design” of the LQR, all the closed-loop poles
have been moved to the left-hand side of s = −1. To show this benefit, the step responses of
the closed-loop system before and after using the degree-of-stability design are compared
in Figure 5.19 by the following MATLAB statements:

>> step(ss(A-B*K,B,C,D),ss(A-B*K2,B,C,D));

5.2.5 Observer and Observer Design

In LQR design, we have explicitly assumed that

1. the plant model is perfectly known, and

2. all the states are directly measurable.

If assumption 1 is not true, that is, the model may contain uncertainty, we shall use
the robust control design framework, which is the subject of Chapter 7. In this section, we
focus on the case when assumption 2 is not true. Actually, in practice, the state variables are
usually not all measurable. If only the output signals rather than the states are measurable,
which is often the case in many applications, can we still use an LQR? The answer is “yes”
if we can design an observer to observe the states from the input and output information.
Of course, the system has to be observable.

160 Chapter 5. Model-Based Controller Design

state estimate x̂(t)

B

� �D

∫
C� ��

A � �

H

plant model G(s) ��

�

�
�

�

�

�

�

u(t) y(t)

Figure 5.20. A typical structure of state observers.

One obvious method is to create an extra copy of the state space model of the original
plant model (A, B, C, D). When these two plants are subjected to the same input signal, the
state variables can be created or “observed” from the input signal alone. These states should
be exactly the same as the states of the original model. This intuitively simple “open-loop”
method for state observation is feasible only when the model is exact. However, when there
exist some disturbances or the parameters of the original model are not exactly known,
the created or “copied” system will fail to give a correct state observation for the original
system. Therefore, in practical applications, the output signal should also be used, together
with the input signal. This then allows a feedback loop to be implemented to correct any
errors.

The typical control structure of a state observer is shown in Figure 5.20. If (A, C) is
fully observable, the mathematical description of the state observer can be expressed by the
following state space model:

˙̂x = Ax̂ + Bu − H (Cx̂ + Du − y) = (A − HC)x̂ + (B − HD)u + Hy, (5.30)

where x̂(t) is the observation or estimation of the true state vector x(t), and H is a matrix
called the observer gain matrix, which is selected to make (A − HC) stable. From (5.30),
it can be further derived that

˙̂x − ẋ = (A − HC)x̂ + Bu + Hy − Ax − Bu = (A − HC)(x̂ − x), (5.31)

which has an analytical solution

x̂(t) − x(t) = e(A−HC)(t−t0)[x̂(t0) − x(t0)]. (5.32)

Since (A − HC) is stable, limt→∞[x̂(t) − x(t)] = 0, which means that the observed state
x̂(t) asymptotically converges to the true state x(t).

A MATLAB function simobsv() is written
1 function [xh,x,t]=simobsv(G,L)
2 [y,t,x]=step(G); G=ss(G); A=G.a; B=G.b; C=G.c; D=G.d;
3 [y1,xh1]=step((A-L*C),(B-L*D),C,D,1,t);
4 [y2,xh2]=lsim((A-L*C),L,C,D,y,t); xh=xh1+xh2;

which can be used to obtain the observed states of the system. The syntax of the function

is [x̂,x,t]=simobsv(G,H) , where G is an LTI object of the system model, and

5.2. Linear Quadratic Optimal Control 161

0 1 2 3 4 5 6
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

x1(t) and x̂1(t)

x2(t) and x̂2(t)

x3(t) and x̂3(t)

(a) with gain H1

0 1 2 3 4 5 6
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

x1(t) and x̂1(t)

x2(t)
← x̂2(t)

x3(t) and x̂3(t)

(b) with gain H2

Figure 5.21. Step responses of state observers.

H is the observer gain vector. The step responses of the observed or reconstructed states
are returned in matrix x̂, and the original state vector is returned in x. The time vector is
returned in t , which is automatically determined by the function.

Example 5.10. Consider the following state space model:

ẋ =
⎡⎣−3.6994 0.6627 −2.3879

0.6627 −1.4220 0.4994
−2.3879 0.4994 −3.2736

⎤⎦ x +
⎡⎣ 0

0
−0.0449

⎤⎦ u,

y = [−0.7989, −0.7652, 0.8617] x.

Design an observer with the observer gain HT
1 = [−12.6270, −1.0468, −4.0212].

The eigenvalues of the observer are obtained using the following MATLAB statements:

>> A=[-3.6994,0.6627,-2.3879;0.6627,-1.4220,0.4994;
-2.3879,0.4994,-3.2736];

B=[0; 0; -0.0449]; C=[-0.7989,-0.7652,0.8617]; D=0;
H1=[-29.9482; 7.2402; -27.2489]; eig(A-H1*C)
[xh,x,t]=simobsv(ss(A,B,C,D),H1); plot(t,x,’-’,t,xh,’:’)

The closed-loop poles are −0.9819, −1.1305, −1.1877, and the step responses of the
true states and their observations are compared in Figure 5.21(a). If the observer gain is
changed to HT

2 = [−650.74, 2173.52, 1355.35], a different set of observer poles are shown
as follows:

>> H2=[-650.74; 2173.52; 1355.35]; eig(A-H2*C)
[xh,x,t]=simobsv(ss(A,B,C,D),H2); plot(t,x,’-’,t,xh,’:’)

The closed-loop poles are −11.9613, −11.0561, −9.9814. The corresponding step re-
sponses are compared in Figure 5.21(b).

Clearly, a different choice of the observer gain will lead to a different transient behavior
of the observer dynamics. It is generally true that the further away the closed-loop poles
are from the imaginary axis, the quicker the transient responses vanish with time.

162 Chapter 5. Model-Based Controller Design

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

x3(t)

x2(t)

x1(t)

(a) states and reconstructed states
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−6

(b) state errors with observers

Figure 5.22. State observers of unstable models.

Example 5.11. Consider an unstable state space model

ẋ =
⎡⎣1 2 3

4 5 6
7 8 0

⎤⎦ x +
⎡⎣0

0
1

⎤⎦ u, y = [1, 2, 3]x.

An observer with the gain matrix HT = [1.2222; 2.4786; 1.9402], which makes
A − HC stable, can be designed by the following MATLAB scripts:

>> A=[1,2,3; 4,5,6; 7,8,0]; B=[0; 0; 1]; C=[1,2,3]; D=0;
H=[1.2222; 2.4786; 1.9402]; [xh,x,t]=simobsv(ss(A,B,C,D),H);
plot(t,x,’-’,t,xh,’:’); figure; plot(t,x-xh)
plot(t,e(:,1),’-’,t,e(:,2),’--’,t,e(:,3),’:’)

The step responses of the true states and the observed ones are compared in Fig-
ure 5.22(a), with the observer error signals shown in Figure 5.22(b).

It is concluded that even if the original model is unstable, the designed state observer
can still reconstruct the states of the system satisfactorily, provided that a suitable observer
gain vector is designed. Of course, the original system, although unstable, has to be fully
observable.

5.2.6 State Feedback and Observer-Based Controllers

Having designed a suitable state observer, the state feedback control strategy with observers
can be implemented as shown in Figure 5.23.

Consider the feedback structure shown in Figure 5.20(a). The feedback signal Kx̂(t)

can be rewritten, using (5.30), as two subsystems G1(s) and G2(s), driven only by u(t) and
y(t), respectively. Therefore, G1(s) can be described by

˙̂x1(t) = (A − HC)x̂1(t) + (B − HD)u(t), y1 = Kx̂1(t), (5.33)

and G2(s) by
˙̂x2(t) = (A − HC)x̂2(t) + Hy(t), y2 = Kx̂2(t). (5.34)

5.2. Linear Quadratic Optimal Control 163

G(s)
y(t)u(t)r(t) +

−
�

x̂û(t) �
�

�
�

state
feedback K

state
observer

�

�

Figure 5.23. Feedback control with a state observer.

G1(s)

G(s)

G2(s)

G(s)Gc(s)

H (s)

�

�

�

�

�

�r u y

(a)

�r � � �

�

�

(b)

y

Figure 5.24. Observer-based state feedback control.

The block diagram for the closed-loop system is represented in Figure 5.24(a), where with
some block manipulations, the closed-loop system can be equivalently expressed as shown
in Figure 5.24(b) with Gc(s) = [I + G1(s)]−1 and H (s) = G2(s), which is identical to
the typical feedback control system structure. The controller Gc(s) can be further derived
in the following form:

Gc(s) = I − K(sI − A + BK + HC)−1B (5.35)

with its state space realization

Gc(s) =
[

A − BK − HC B

−K I

]
. (5.36)

If the reference input r(t) = 0, Gc(s) can be further simplified into the following
state space representation:

Gc(s) =
[

A − BK − HC + HDK H

K 0

]
. (5.37)

The above simplified form, with r(t) = 0 and a unity negative feedback, will be used
throughout the book unless otherwise stated. The lumped controller Gc(s) in (5.37) is often
referred to as the observer-based controller, since the structural information of the observer
is implicitly reflected within the controller.

The observer-based controller can also be obtained using the MATLAB function
reg() provided in the Control Systems Toolbox with the following syntax:

[Ac,Bc,Cc,Dc]=reg(A,B,C,D,K,H)

Gc=−reg(G,K,H)

where the state space model of the plant, (A,B,C,D), the state feedback gain vector K , and
the observer gain vector H are then returned, respectively. The returned (Ac,Bc,Cc,Dc) is

164 Chapter 5. Model-Based Controller Design

the state space model of the observer-based controller Gc(s). In the second statement of syn-
tax above, LTI models can be used directly. In fact, reg() is an immediate implementation
of (5.37).

Example 5.12. Consider the LQ optimal control problem in Example 5.5. If the weighting
matrix Q is selected as Q = diag([1, 0, 0, 0, 0]) with R = 1, and if an observer gain vector
is selected as H = [−8.3, 979.24, −19367.61, 4293.85, 0]T, with the following MATLAB
statements:

>> A=[-0.2,0.5,0,0,0;0,-0.5,1.6,0,0;0,0,-14.3,85.8,0;
0,0,0,-33.3,100;0,0,0,0,-10];

B=[0; 0; 0; 0; 30]; Q=diag([1,0,0,0,0]); R=1;
C=[1,0,0,0,0]; D=0; G=ss(A,B,C,D); [K,P]=lqr(A,B,Q,R);
H=[-8.3, 979.24, -19367.61, 4293.85, 0]’;
Gc=-reg(ss(A,B,C,D),K,H); zpk(Gc)

then the resulting controller model can be obtained as

Gc(s) = 11.4839(s + 33.34)(s + 14.3)(s + 10)(s + 1.792)

(s + 20.92)(s2 + 30.19s + 328.1)(s2 + 6.845s + 120)
.

The controller Gc(s) can be designed and it is a stable minimum phase model. To check the
time domain performance of the observer-based control, the following MATLAB statements
can be used:

>> GG1=feedback(G*Gc,1); GG=ss(A-B*K,B,C,D);
G1=ss(A-B*K-H*C,B,-K,1); G2=ss(A-H*C,H,K,0);
GG2=feedback(G*G1,G2); step(GG,GG1,GG2,2)

to get the closed-loop step response of the system under the above designed controller
as shown in Figure 5.25(a), where for comparison, the step response under the full state
feedback, i.e., all states are measurable, is also plotted. It can be observed that the response
under the observer-based controller is not exactly the same as the one under the direct full

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step Response

Time (sec)

A
m

pl
itu

de

← full state feedback
observer based controller

← observer based
regulator

(a) LQ controller comparison

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

←full state feedback

←observer based regulator

(b) with another H

Figure 5.25. Step responses of LQ optimal control.

5.3. Pole Placement Design 165

state feedback control. It is worth mentioning that it is not fair to compare it with the direct
full state feedback, since in deriving the regulator, it has been assumed that the external
input signal r(t) = 0.

Let us continue the example with an adjusted observer gain vector

H = [441.7, 146689.24, 6670765.515, 2866690.238, 860270.98]T.

To design the new observer-based controller, the following MATLAB statements can be
used:

>> H=[441.7,146689.24,6670765.515,2866690.238,860270.98]’;
G=ss(A,B,C,D); Gc=-reg(G,K,H); zpk(Gc)
G_c=feedback(G*Gc,1); step(ss(A-B*K,B,C,D),G_c,3)

The new regulator is

Gc(s) = 464353.6388(s + 33.3)(s + 14.48)(s + 8.953)(s + 4.973)

(s + 157.4)(s2 + 104.3s + 5008)(s2 + 246.2s + 1.814)
.

The step response comparison is shown in Figure 5.25(b). It can be seen that, as expected,
the performance of the observer-based regulator depends on the observer gain vector H

and, of course, the state feedback gain vector K .

5.3 Pole Placement Design
It has been demonstrated that the dynamic behavior of a controlled system is influenced by
its closed-loop poles. If the system is fully controllable, the poles of the closed-loop system
can be arbitrarily shifted or placed in any prespecified positions. Given the desired pole
positions and the system model, in this section we show how to design the controller to shift
the original system poles to the desired positions. This is referred to as the pole placement
controller design method.

Consider the state space model of a plant given by

ẋ = Ax + Bu, y = Cx, (5.38)

where the (A, B, C) matrices have compatible dimensions. State feedback is to be used
with a constant gain matrix K , and the external reference input to the system is denoted by
r . Then, the actual control signal applied to the plant is u = r −Kx. The closed-loop state
space model can be written as

ẋ = (A − BK)x + Br, y = Cx. (5.39)

An important theorem regarding the state feedback and its use in pole placement is
given below.

Theorem 5.1. If the system (A, B) is fully controllable, the eigenvalues of A − BK can
be freely assigned (with the restriction that complex eigenvalues are in conjugate pairs) by
a suitable matrix K .

From Theorem 5.1, if the given system is fully controllable, the closed-loop poles of
the system can be assigned arbitrarily through a static state feedback. In what follows, some
of the commonly used pole placement algorithms are introduced.

166 Chapter 5. Model-Based Controller Design

5.3.1 The Bass–Gura Algorithm

Assume that the desired closed-loop poles of the system are μi, i = 1, . . . , n. Clearly, the
closed-loop characteristic equation α(s) is simply

α(s) =
n∏

i=1

(s − μi) = sn + α1s
n−1 + α2s

n−2 + · · · + αn−1s + αn. (5.40)

Denote by a(s) the open-loop characteristic equation of the original plant model,
which is written as

a(s) = det(sI − A) = sn + a1s
n−1 + a2s

n−2 + · · · + an−1s + an. (5.41)

If the original plant model is fully controllable, the state feedback gain vector K can be
obtained from [56] as

K = [a − α]TL−1Ĉ−1, (5.42)

where

[α − a]T = [(α1 − a1), . . . , (αn − an)], Ĉ = [B, AB, . . . ,An−1B],
and

L =

⎡⎢⎢⎢⎢⎢⎣
an−1 an−2 · · · a1 1
an−2 an−3 · · · 1

...
...

. . .

a1 1
1

⎤⎥⎥⎥⎥⎥⎦ . (5.43)

It can be seen that L is a nonsingular Hankel matrix.
A MATLAB implementation of the above pole placement algorithm is given in

bass_pp(), where

1 function K=bass_pp(A,B,p)
2 n=length(B); a1=poly(p); alpha=[a1(n:-1:2),1];
3 a=poly(A); aa=[a(n:-1:2),1]; L=hankel(aa); C=ctrb(A,B);
4 K=(a1(n+1:-1:2)-a(n+1:-1:2))*inv(L)*inv(C);

The syntax of bass_pp() is K=bass_pp(A,B,p) , where (A,B) is the state
space model and p is a vector containing the expected pole positions. The returned variable
K is the state feedback gain vector.

5.3.2 Ackermann’s Algorithm

The pole placement problem can alternatively be solved in a slightly different way using
Ackermann’s algorithm. The state feedback gain vector K is given by the following formula:

K = −[0, 0, . . . , 0, 1]Ĉ−1α, (5.44)

where αT = [α0, α1, . . . , αn−1].
A MATLAB function acker(), provided in the Control Systems Toolbox, imple-

ments the above algorithm with its syntax the same as that of bass_pp().

5.3. Pole Placement Design 167

5.3.3 Numerically Robust Pole Placement Algorithm

It has been found that the above two pole placement algorithms may not be numerically
robust. A MATLAB function place() provided in the Control Systems Toolbox can be
used to find the feedback matrix K using a numerically robust pole placement algorithm [57].
The syntax is

K=place(A,B,p)

where (A,B) is the state space model, and p is a vector containing the expected pole
positions. The returned variable K is the state feedback gain matrix.

It should be pointed out that the place() function can be used to deal with MIMO
(multiple input–multiple output) pole placement problems. However, in place(), the
expected pole positions have to be distinct, that is, the multiplicity of any desired pole
cannot be greater than 1. On the other hand, acker(), although it cannot handle the
MIMO pole placement problem, can be used for pole placement with desired poles of any
multiplicity.

Example 5.13. Given the plant model

ẋ =

⎡⎢⎢⎣
0 1 0 0
0 0 −1 0
0 0 0 1
0 0 11 0

⎤⎥⎥⎦ x +

⎡⎢⎢⎣
0
1
0

−1

⎤⎥⎥⎦ u, y = [1, 2, 3, 4]x,

design a state feedback controller to place the closed-loop poles at s1,2,3,4 = −1, −2,
−1 ± j1. To design the K for pole placement, the following MATLAB statements can be
used:

>> A=[0,1,0,0; 0,0,-1,0; 0,0,0,1; 0,0,11,0]; B=[0;1;0;-1];
eig(A)’, P=[-1; -2; -1+sqrt(-1); -1-sqrt(-1)];
K=place(A,B,P), eig(A-B*K)’

It is found that the open-loop poles are 0, 0, ±3.3166, indicating that the original
system is unstable. The state feedback vector for placing the poles at the expected location
is K = [−0.4, −1, −21.4, −6]. Since the original system is fully controllable, via the pole
placement technique, one is able to place the poles of the closed-loop system at the desired
positions.

Example 5.14. Consider the multivariable model

ẋ(t) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 2 0 0 −2 0
1 0 0 0 0 −1
0 1 0 0 0 0
0 0 0 3 0 0
2 0 0 1 0 0
0 0 −1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ x(t) +

⎡⎢⎢⎢⎢⎢⎢⎣
1 2
0 0
0 1
0 −1
0 1
0 0

⎤⎥⎥⎥⎥⎥⎥⎦u(t).

168 Chapter 5. Model-Based Controller Design

If one wants to place the closed-loop poles at −1, −2, −3, −4, −1 ± j, the following
statements can be used:

>> A=[0,2,0,0,-2,0; 1,0,0,0,0,-1; 0,1,0,0,0,0;
0,0,0,3,0,0; 2,0,0,1,0,0; 0,0,-1,0,1,0];

B=[1,2; 0,0; 0,1; 0,-1; 0,1; 0,0];
p=[-1 -2 -3 -4 -1+1i -1-1i]; K=place(A,B,p), eig(A-B*K)’

The feedback control gain matrix can be obtained as

K =
[

7.9333 −18.553 −19.134 20.65 18.698 22.126
−0.36944 −2.0412 −2.3166 −9.5475 0.57469 1.5013

]
and it can be found that the poles are at the desired locations.

Example 5.15. Consider the fourth-order system

ẋ(t) =

⎡⎢⎢⎣
−5 8 0 0
−4 7 0 0
0 0 0 4
0 0 −2 6

⎤⎥⎥⎦ x(t) +

⎡⎢⎢⎣
4

−2
2
1

⎤⎥⎥⎦ u(t).

To assign the poles of the closed-loop system to s1,2,3,4 = −1, −2, −1 ± j1, the following
MATLAB statements can be applied:

>> A=[-5,8,0,0;-4,7,0,0;0,0,0,4;0,0,-2,6]; B=[4;-2;2;1];
C=[2,-2,-2,2]; D=0; P=[-1; -2;-1+sqrt(-1);-1-sqrt(-1)];
K=place(A,B,P)

The user is then prompted that the system “can’t place eigenvalues there,” which means that
the closed-loop poles cannot be assigned to the prespecified positions. Let us check the
controllability of the system using

>> Tc=ctrb(A,B); rank(Tc)

The rank of Tc is found to be 3 rather than 4, which means that the original system is
actually not fully controllable. Therefore, the poles of the closed-loop system cannot be
freely assigned.

Example 5.16. Consider the discrete-time state space model given by [53]

x(k + 1) =

⎡⎢⎢⎣
0 1 0 0

−0.91 −0.036 0.91 0.036
0 0 0 1

0.091 0.036 −0.091 −0.036

⎤⎥⎥⎦ x(k) +

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ u(k), y(k) = x1(k)

with sampling interval T = 0.1 second. If one wants to place all the closed-loop poles at
0.9, the following statements can be used:

>> F=[0,1,0,0; -0.91 -0.036 0.91 0.036;
0 0 0 1; 0.091 0.036 -0.091 -0.036];

G=[0; 0; 0; 1]; C=[1 0 0 0]; W=ss(F,G,C,0,’Ts’,0.1);
p=0.9*ones(4,1); K=acker(F,G,p), eig(F-G*K)

5.3. Pole Placement Design 169

The state feedback vector is K = [−3.2544, 0.4391, 3.9754, −3.6720]. Under such a state
feedback gain vector, it can be found that the poles of the closed-loop system are located at
0.9001, 0.9000 ± j0.0001, 0.8999.

5.3.4 Observer Design Using the Pole Placement Technique

Using the pole placement technique discussed above, one can design a state observer by
assigning the observer poles to prespecified positions. Since pole placement in observer
design is simply a dual problem to the state feedback design, the problem can be solved using
the MATLAB function place() or acker(), as illustrated in the following example.

Example 5.17. Consider the fourth-order system in Example 5.13. The desired poles of
the observer are specified as s1,2,3,4 = −1, −2, −1 ± j1. To determine the observer gain
matrix H , the following MATLAB statements can be applied:

>> A=[0,1,0,0; 0,0,-1,0; 0,0,0,1; 0,0,11,0]; B=[0;1;0;-1];
C=[1,2,3,4]; P=[-1; -2; -1+sqrt(-1); -1-sqrt(-1)];
H=place(A’,C’,P)’, eig(A-H*C)’

It can be found that the observer vector isHT = [−0.2203, −0.4750, 0.4238, 1.2247],
and it can be seen that the poles of the observer can indeed be placed at the desired locations.

5.3.5 Observer-Based Controller Design Using the Pole Placement
Technique

We have discussed controller and observer design using the pole placement technique.
Clearly, the pole placement technique can be used to design the observer-based controller.
This observer-based controller has been discussed in Sec. 5.2.6 for LQ optimal control prob-
lems. Under the typical feedback control system structure as shown in Figure 5.24(b), Gc(s)

and H (s) can be represented by [(A − BK − HC), B, −K, I] and [(A − HC), H , C, 0],
respectively. With the reference r = 0, the observer-based regulator is then represented as

Gc(s) =
[

A − BK − HC + HDK H

K 0

]
, (5.45)

which can be obtained again using the MATLAB function reg() provided in the Control
Systems Toolbox.

Example 5.18. Consider a plant model given by

ẋ(t) =
⎡⎣−0.3 0.1 −0.05

1 0.1 0
−1.5 −8.9 −0.05

⎤⎦ x(t) +
⎡⎣2

0
4

⎤⎦ u(t).

Assume that the desired pole positions of the closed-loop system are −1, −2, −3, respec-
tively. From the following MATLAB statements:

>> A=[-0.3,0.1,-0.05; 1,0.1,0; -1.5,-8.9,-0.05]; B=[2; 0; 4];
C=[1,2,3]; D=0; P1=[-1,-2,-3]; Kp1=place(A,B,P1);
step(ss(A-B*Kp1,B,C,D));

the step response of the output signal is obtained as shown in Figure 5.26(a).

170 Chapter 5. Model-Based Controller Design

0 1 2 3 4 5 6
−10

−8

−6

−4

−2

0

2

Step Response

Time (sec)

A
m

pl
itu

de

(a) system poles at (−1, −2, −3)

0 2 4 6 8 10
−60

−50

−40

−30

−20

−10

0

10

Step Response

Time (sec)

A
m

pl
itu

de

(b) system poles at (−1, −1, −1)

Figure 5.26. Step responses of the compensated system with state feedback.

If one tries to place all the poles at −1 with the following MATLAB statements:

>> P2=[-1,-1,-1]; Kp2=place(A,B,P2);

then the prompt “can’t place poles with multiplicity greater than rank(B)” is given. This
means that for the desired poles with multiplicity greater than 1, place() fails to perform
the pole placement. In this case, the function acker() should be used. Let us try the
following MATLAB statements:

>> Kp2=acker(A,B,P2); step(ss(A-B*Kp2,B,C,D));

One can perform the pole placement successfully. The closed-loop response is shown
in Figure 5.26(b), where it can be seen that, compared with Figure 5.26(a), the speed of
response is reduced and the magnitude of the output is increased.

Now, let us assume that the states are not directly measurable. One has to use
the observer-based controller. To design an observer with its desired poles located at
(−1, −2, −3), one can use the following MATLAB statements:

>> P4=[-1,-2,-3]; Ko1=place(A’,C’,P4)’; Ac=A-B*Kp1-Ko1*C;
Ah=A-Ko1*C; t=0:.1:20; G=ss(A,B,C,D); Gc=ss(Ac,Ko1,Kp1,0);
G_c=feedback(G*Gc,1); step(G_c,t)

with the closed-loop step response shown in Figure 5.27(a), which is completely different
than the one using the direct state feedback shown in Figure 5.26(a). Due to the observer
dynamics, the expected system behavior under the direct state feedback may change signif-
icantly. In Chapter 7 this issue will be discussed further.

Let us examine what will happen if the desired observer pole positions are chosen
further left, e.g., (−100, −200, −150). By the following MATLAB statements:

>> P5=[-100;-200;-150]; Ko2=place(A’,C’,P5)’;
Ac=A-B*Kp1-Ko2*C; Ah=A-Ko2*C; t=0:.01:5; G=ss(A,B,C,D);
Gc=ss(Ac,Ko2,Kp1,0); G_c=feedback(G*Gc,1); step(G_c,t)

the step response of the closed-loop system is shown in Figure 5.27(b), which is very
different to what is shown in Figure 5.27(a).

5.4. Decoupling Control of Multivariable Systems 171

0 5 10 15 20
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Step Response

Time (sec)

A
m

pl
itu

de

(a) observer poles at (−1, −2, −3)

0 1 2 3 4 5
−70

−60

−50

−40

−30

−20

−10

0

10

Step Response

Time (sec)

A
m

pl
itu

de

(b) observer poles at (−100, −200, −150)

Figure 5.27. Step responses of observed-based systems.

5.4 Decoupling Control of Multivariable Systems
5.4.1 Decoupling Control with State Feedback

Consider a plant described by the state space model (A, B, C, D) with m inputs and m

outputs. If the control signal u is constructed by state feedback such that u = �r − Kx,
the closed-loop transfer function matrix can be written as

G(s) =
[
(C − DK)(sI − A + BK)−1B + D

]
�. (5.46)

Defining the order dj for each j, j = 1, . . . , m, such that it is the lowest order which
makes cT

j AiB �= 0, i = 0, 1, . . . , n − 1, and cT
j is the j th row of matrix C.

Theorem 5.2. If the m × m matrix

B1 =
⎡⎢⎣cT

1 Ad1B
...

cT
mAdmB

⎤⎥⎦ (5.47)

is nonsingular, the closed-loop system defined in (5.46) can be dynamically decoupled if
the state feedback matrix K can be established [56] as

K =
⎡⎢⎣cT

1 Ad1+1

...

cT
mAdm+1

⎤⎥⎦�, (5.48)

where � = B−1
1 .

A MATLAB function decoupler() is written using the above algorithm to design
the decoupler:

1 function [G1,K,d,Gam]=decoupler(G)
2 A=G.a; B=G.b; C=G.c; [n,m]=size(G.b); B1=[]; K0=[];
3 for j=1:m,

172 Chapter 5. Model-Based Controller Design

4 for k=0:n-1
5 if norm(C(j,:)*Aˆk*B)>eps, d(j)=k; break; end
6 end
7 B1=[B1; C(j,:)*Aˆd(j)*B]; K0=[K0; C(j,:)*Aˆ(d(j)+1)];
8 end
9 Gam=inv(B1); K=Gam*K0; G1=minreal(tf(ss(A-B*K,B,C,G.d))*inv(B1));

The function can be called [G1,K,d,�]=decoupler(G) , where G is the
original multivariable state space model, G1 is the decoupled transfer function matrix, and
K is the state feedback matrix as in (5.48). The vector d contains the values of dj defined
above. Matrix � is the precompensation matrix.

Example 5.19. Consider the two input–two output system discussed in Example 2.6, which
is rewritten as

ẋ =

⎡⎢⎢⎣
2.25 −5 −1.25 −0.5
2.25 −4.25 −1.25 −0.25
0.25 −0.5 −1.25 −1
1.25 −1.75 −0.25 −0.75

⎤⎥⎥⎦ x +

⎡⎢⎢⎣
4 6
2 4
2 2
0 2

⎤⎥⎥⎦u, y =
[

0 0 0 1
0 2 0 2

]
x.

The state feedback gain matrix K can be designed and the system can be fully decoupled
by using the following:

>> A=[2.25, -5, -1.25, -0.5; 2.25, -4.25, -1.25, -0.25;
0.25, -0.5, -1.25,-1; 1.25, -1.75, -0.25, -0.75];

B=[4, 6; 2, 4; 2, 2; 0, 2]; C=[0, 0, 0, 1; 0, 2, 0, 2];
D=zeros(2,2); G=ss(A,B,C,D); [G1,K,d,Gam]=decoupler(G)

The state feedback matrix K and matrix � can be obtained, and it can be seen that the
transfer function matrix G1(s) is fully decoupled:

G1(s) =
⎡⎢⎣1

s
0

0
1

s

⎤⎥⎦ , K = 1

8

[−1 −3 −3 5
5 −7 −1 −3

]
, � =

[−1.5 0.25
0.5 0

]
.

By introducing the state feedback K and a precompensator �, the square multivariable
system can be fully decoupled. The decoupled transfer function matrix can usually be
expressed by

G1 = diag

([
1

sd1+1 , . . . ,
1

sdm+1

])
.

By introducing the decoupling compensator (K, �), the full feedback control structure
can be established as shown in Figure 5.28. Since the control system within the dashbox
can be fully decoupled, the outer controller Gc(s) can be easily designed for the system, on
an individual loop basis.

5.4.2 Pole Placement of Decoupling Systems with State Feedback

It is seen that the dynamic decoupling system presented previously can be used only to
decouple the multivariable system into integrator types of diagonal system, which makes

5.4. Decoupling Control of Multivariable Systems 173

{
ẋ = Ax + Bu

y = Cx + Du� �

K �

��

�

�controller
Gc(s)

��

�

v

x

y

dynamic decoupler

Figure 5.28. Decoupling and controller structure.

the closed-loop design difficult. If one can still assume that the decoupling law is state
feedback which can be written as u = �r − Kx, one may expect to have a decoupled
system in the form

GK,�(s)=

⎡⎢⎢⎢⎢⎢⎣
1

sd1+1+a1,1sd1 +· · ·+a1,d1+1
. . .

1

sdm+1+am,1sdm +· · ·+am,dm+1

⎤⎥⎥⎥⎥⎥⎦ , (5.49)

where di, i = 1, . . . , m are defined as previously. The parameters in each of the polynomials
sdi+1 + ai,1s

di + · · · + ai,di+1 can be assigned by the pole placement method.
The expected polynomial can be defined as the standard transfer function. The stan-

dard transfer function of an nth order system, with the integral of time-multiplied absolute
value of error (ITAE) optimal criterion, is defined in the form [58]

T (s) = 1

sn + a1sn−1 + a2sn−2 + · · · + an−1s + an

, (5.50)

where the coefficients ai minimizing the ITAE criterion of the system T (s) have been
precomputed, as summarized in Table 5.1.

Table 5.1. Standard models under ITAE criterion (type I).

n Overshoot ωnts Denominator, with an+1 = ωn
n

1 s + ωn

2 4.6% 6.0 s2+1.41ωns+ω2
n

3 2% 7.6 s3+1.75ωns2+2.15ω2
ns+ω3

n

4 1.9% 5.4 s4+2.1ωns3+2.4ω2
ns2+2.7ω3

ns+ω4
n

5 2.1% 6.6 s5+2.8ωns4+5.0ω2
ns3+5.5ω3

ns2+2.4ω4
ns+ω5

n

6 5% 7.8 s6+2.25ωns5+6.6ω2
ns4+8.6ω3

ns3+7.45ω4
ns2+2.95ω5

ns+ω6
n

174 Chapter 5. Model-Based Controller Design

The nth order standard transfer function model for the frequency ωn can be created
by the function std_tf(), written as

1 function G=std_tf(wn,n)
2 M=[1,1,0,0,0,0,0; 1,1.41,1,0,0,0,0;
3 1,1.75,2.15,1,0,0,0; 1,2.1,3.4,2.7,1,0,0;
4 1,2.8,5.0,5.5,3.4,1,0; 1,3.25,6.6,8.6,7.45,3.95,1];
5 G=tf(wnˆn,M(n,1:n+1).*(wn*ones(1,n+1)).ˆ[0:n]);

The function can be called by G=std_tf(ωn,n) , where the value ωn is the natural
frequency, n is the order, and G is the standard transfer function obtained.

Define a matrix E, where each row is eT
i = cT

i Adi B, and each row f T
i in another

matrix F can be defined as

f T
i = cT

i

(
Adi+1 + ai,1A

di + · · · + ai,di+1I
)
. (5.51)

The state feedback matrix K and compensation matrix � can be defined as

K = E−1F , � = E−1. (5.52)

Based on the algorithm, the new dynamic decoupling function can be written. In the
function, the above-mentioned algorithm can be easily implemented.

1 function [G1,K,d,Gam]=decouple_pp(G,wn)
2 A=G.a; B=G.b; C=G.c; [n,m]=size(G.b); E=[]; F=[];
3 for j=1:m,
4 for i=0:n-1
5 if norm(C(j,:)*Aˆi*B)>eps, d(j)=i; break, end
6 end,
7 g1=std_tf(wn,d(j)+1); [n,cc]=tfdata(g1,’v’);
8 F=[F; C(j,:)*polyvalm(cc,A)]; E=[E; C(j,:)*Aˆd(j)*B];
9 end

10 Gam=inv(E); K=Gam*F; G1=tf(ss(A-B*K,B,C,G.d))*Gam;

The function can be called by [G1,K,d,�]=decouple_pp(G,ωn) , where
the arguments are the same as the ones in the decouple() function, and ωn is the natural
frequency of the standard transfer function.

Example 5.20. Consider again the multivariable model in Example 5.19. If one selects a
natural frequency of ωn = 5 rad/sec, the following statements can be used:

>> A=[2.25, -5, -1.25, -0.5; 2.25, -4.25, -1.25, -0.25;
0.25, -0.5, -1.25,-1; 1.25, -1.75, -0.25, -0.75];

B=[4, 6; 2, 4; 2, 2; 0, 2]; C=[0, 0, 0, 1; 0, 2, 0, 2];
D=zeros(2,2); G=ss(A,B,C,D); [G1,K,d,Gam]=decouple_pp(G,5)

The system can be decoupled satisfactorily with the decoupling method and the state feed-
back matrix K and precompensation matrix � can be evaluated as

G1(s)=
⎡⎢⎣ 1

s + 5
1

s + 5

⎤⎥⎦ , K = 1

8

[−1 17 −3 −35
5 −7 −1 17

]
, �=

[−1.5 0.25
0.5 0

]
.

5.5. SISOTool: An Interactive Controller Design Tool 175

5.5 SISOTool: An Interactive Controller Design Tool
SISOTool is an interactive controller design tool provided in the Control Systems Toolbox
mainly for SISO systems. SISOTool is particularly useful for classroom use due to its nice
GUI (graphical user interface). In SISOTool, the root locus and Bode diagram methods
are implemented for model-based controller synthesis. We shall demonstrate the use of
SISOTool through an example.

Example 5.21. Consider the following open-loop plant model:

G(s) = 1

s(0.1s + 1)(0.02s + 1)(0.01s + 1)(0.005s + 1)
.

First, let us enter this model into the workspace of MATLAB and then invoke the SISOTool
program using the following MATLAB statements:

>> s=zpk(’s’); G=1/(s*(0.1*s+1)*(0.02*s+1)*(0.01*s+1)*(0.005*s+1));
sisotool(G)

A user interface window appears as shown in Figure 5.29, where the root locus and the Bode
diagram for the plant model are displayed.

The gain and phase margins are also displayed in the Bode diagram. The step response
obtained is shown in Figure 5.31, which is fairly satisfactory with a small overshoot and a
fast response speed.

Within the SISOTool interface, a toolbar is provided for the interactive controller
design with several utility icons. The leftmost icon in the toolbar is the “edit” mode. After
the edit icon, there are four icons for the user to add: a real pole, a real zero, a pair of

Figure 5.29. The user interface of SISOTool.

176 Chapter 5. Model-Based Controller Design

Figure 5.30. A designed controller.

complex poles, and a pair of complex zeros for the controller. An “eraser” icon is provided
to remove the added zeros or poles. After the eraser icon, two other icons provide different
zooming facilities, which are useful to the user in designing a controller.

In what follows, we use SISOTool, to present an interactive method for tuning a phase
lead compensator. According to Figure 5.1(b), the phase lead controller should have a zero
to the right of the pole. Then, one can use the corresponding icons to add a real zero and a
real pole. It can be seen that the shape of the root locus and the Bode diagram will change
automatically for the new system with a phase lead controller. Then, clicking the Analysis
| Response to Step Command menu item displaying the step response of the closed-loop
system in another window. For an interactive design, one should check the Real-Time
Update box.

For an effective interactive design, one can place the step response window next to
the main interface. Furthermore, the zooming facilities can be applied to select an area
on the root locus axis to get more information around the imaginary axis. The controller
design task is done simply by dragging the pole, zero, and gain into the root locus plot until
a satisfactory step response is observed.

A sample design is shown in Figure 5.30. The gain and phase margins are also
displayed in the Bode diagram. The step response obtained is shown in Figure 5.31, which
is fairly satisfactory with a small overshoot and a fast response speed.

By interactively changing the positions of the zeros, poles, and the gain of the con-
troller, one may have a much better understanding of the qualitative relationship between
the pole and zero positions and the system step response.

Alternatively, Bode diagrams can also be used to design a cascade compensator. As
an example, let us design the phase lead controller again. One can add a real zero and a real
pole onto the Bode diagram. Zooming into the Bode diagram to focus on the area of interest,
one can interactively tune the pole position, zero position, and the gain of the controller by

5.5. SISOTool: An Interactive Controller Design Tool 177

Figure 5.31. Step response of the compensated system.

Figure 5.32. Other supported feedback structures in SISOTool.

dragging the magnitude response up and down. Finally, the controller can be designed
with

C(s) = 3.728
0.053s + 1

0.096s + 1
.

Apart from the typical feedback structure, other system structures are also supported
in SISOTool. Clicking the FS button on the system structure icon, one can pick up one of
the feedback system structures, as shown in Figure 5.32. The rest of the controller design
is the same as described in the above.

Problems

1. Consider a plant model

G(s) = 210(s + 1.5)

(s + 1.75)(s + 16)(s + 1.5 ± j3)

and its controller

Gc(s) = 52.5(s + 1.5)

s + 14.86
.

178 Chapter 5. Model-Based Controller Design

Investigate the closed-loop dynamic behavior. Compare the gain and phase margins
of the original plant and the compensated plant. Suggest how to further improve the
control performance.

2. Given the following two transfer function models:

(a) G(s) = 16

s(s + 1)(s + 2)(s + 8)
,

(b) G(s) = 2(s + 1)

s(47.5s + 1)(0.0625s + 1)2 ,

design lead-lag compensators to ensure that the compensated systems have the ex-
pected phase margins and crossover frequencies. Try to change the expected margins
to improve the performances of the closed-loop systems. Use both time and frequency
domain analysis to characterize your closed-loop systems.

3. Suppose the plant model is given by

G(s) = 1000

s(0.26s + 1)
.

Design a phase lead and a phase lead-lag controller.

4. Given the state space matrices

A =

⎡⎢⎢⎢⎢⎣
−0.2 0.5 0 0 0

0 −0.5 1.6 0 0
0 0 −14.3 85.8 0
0 0 0 −33.3 100
0 0 0 0 10

⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎣
0
0
0
0
30

⎤⎥⎥⎥⎥⎦
Q = diag([ρ, 0, 0, 0, 0]), R = 1,

for different values of ρ, solve the corresponding ARE. For each ρ, design a state feed-
back controller and compare the closed-loop response. Comment on the comparison
results with frequency domain justifications.

5. Design a state observer for the plant model given by

ẋ =

⎡⎢⎢⎢⎢⎣
0 0 1 0 0
1 0 0 0 0
0 1 0 1 −1
0 1 1 1 0
0 0 1 0 0

⎤⎥⎥⎥⎥⎦ x +

⎡⎢⎢⎢⎢⎣
1
2
1
0
1

⎤⎥⎥⎥⎥⎦ u, y = [0, 0, 0, 1, 1]x.

Perform a simulation analysis of the designed observer. Comment on whether the
behavior of the observer is satisfactory. If not, redesign the observer until a satisfactory
result is obtained.

5.5. SISOTool: An Interactive Controller Design Tool 179

6. For the state space model⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ẋ =

⎡⎢⎢⎢⎢⎣
17 24.54 1 8 15

23.54 5 7 14 16
4 6 13.75 20 22.5889

10.8689 1.2900 19.099 21.896 3
11 18.089799 25 2.356 9

⎤⎥⎥⎥⎥⎦ x +

⎡⎢⎢⎢⎢⎣
1
2
3
4
5

⎤⎥⎥⎥⎥⎦ u

y = [5, 4, 3, 2, 1]x,

,

if a state feedback vector k = [0.0004, 0.0004, −0.0035, 0.3946, −1.4433] is used,
find the closed-loop state space model for the system. Find all the closed-loop poles
under this state feedback gain vector. Compute the controllability and observability
Gramians of the open-loop and closed-loop system models.

7. Consider a state space model given by

ẋ=

⎡⎢⎢⎢⎢⎣
−0.2 0.5 0 0 0

0 −0.5 1.6 0 0
0 0 −14.3 85.8 0
0 0 0 −33.3 100
0 0 0 0 −10

⎤⎥⎥⎥⎥⎦ x+

⎡⎢⎢⎢⎢⎣
0
0
0
0
30

⎤⎥⎥⎥⎥⎦ u, y=[1, 0, 0, 0, 0]x.

Find the poles and zeros of the system. With the expected poles located at P =
[−1, −2,−3,−4, −5], design a state feedback using the pole placement method. Try
other expected pole locations to further improve the dynamic behavior of the closed-
loop system. Design an observer-based controller for the original plant model and
investigate the closed-loop behavior of the new closed-loop system.

8. For a given multivariable system

x(t) =

⎡⎢⎢⎢⎢⎣
−12 3 1 −8 −1
−1 −12 0 7 4
2 −4 −12 6 0
5 −2 −6 −16 −12
5 −7 −6 7 −15

⎤⎥⎥⎥⎥⎦ x(t) +

⎡⎢⎢⎢⎢⎣
−11 0
−8 −7
10 0
0 0
0 −10

⎤⎥⎥⎥⎥⎦u(t),

design a state feedback matrix K which can place the closed-loop poles at −1 ± j1,

−2, −3, −4.

9. For a discrete-time state space model

x(k + 1) =

⎡⎢⎢⎣
0.13 0.154 0.328 −0.046

−0.126 0.085 −0.232 −0.319
0.128 −0.376 0.783 0.134
0.318 −0.081 0.117 0.044

⎤⎥⎥⎦ x(k) +

⎡⎢⎢⎣
0

−1.292
0

−0.331

⎤⎥⎥⎦ u(k),

with y(k) = [−0.844, 0.497, 1.488, −0.547]x(k) − 0.8468u(k), design a state feed-
back vector K which places the closed-loop poles of the system at −0.5 ± j0.5, ±0.1.
Observe the output signal in the closed-loop system.

180 Chapter 5. Model-Based Controller Design

10. Given a plant model

ẋ =

⎡⎢⎢⎣
2 1 0 0
0 2 0 0
0 0 −1 0
0 0 0 −1

⎤⎥⎥⎦ x +

⎡⎢⎢⎣
0
1
1
1

⎤⎥⎥⎦ u,

find a state feedback gain vector K to place the closed-loop poles at (−2, −2, −1,
−1). Check whether it is possible to place all the poles at −2. If not, explain why.

11. For the plant models in the previous problems, design the observer-based controllers.
Compare the results with the existing direct state feedback approaches and comment
on the performance differences.

12. For the two input–two output system given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ẋ(t)

⎡⎢⎢⎣
2.25 −5 −1.25 −0.5
2.25 −4.25 −1.25 −0.25
0.25 −0.5 −1.25 −1
1.25 −1.75 −0.25 −0.75

⎤⎥⎥⎦ x(t) +

⎡⎢⎢⎣
4 6
2 4
2 2
0 2

⎤⎥⎥⎦u(t)

y(t) =
[

0 0 0 1
0 2 0 2

]
x(t),

assume that the weighting matrix is selected as Q = diag([1, 4, 3, 2]), with R = I2.
Design an optimal LQR and observe the step response of the closed-loop system. If
one wants to further improve the step response of the system, the matrix Q should be
changed, for instance, with the trial-and-error method. Find a reasonable weighting
matrix Q for the system.

13. Design a dynamic decoupling compensator for the multivariable model

G(s)=

⎡⎢⎢⎢⎣
0.806s + 0.264

s2 + 1.15s + 0.202

−15s − 1.42

s3 + 12.8s2 + 13.6s + 2.36

1.95s2 + 2.12s + 0.49

s3 + 9.15s2 + 9.39s + 1.62

7.15s2 + 25.8s + 9.35

s4 + 20.8s3 + 116.4s2 + 111.6s + 18.8

⎤⎥⎥⎥⎦ .

The integral-type decoupling and the pole placement type can be tested. In the latter
type, different expected natural frequency can be tested. Find a good choice of the
natural frequency.

Chapter 6

PID Controller Design

PID (proportional integral derivative) control is one of the earlier control strategies [59].
Its early implementation was in pneumatic devices, followed by vacuum and solid state
analog electronics, before arriving at today’s digital implementation of microprocessors.
It has a simple control structure which was understood by plant operators and which they
found relatively easy to tune. Since many control systems using PID control have proved
satisfactory, it still has a wide range of applications in industrial control. According to a
survey for process control systems conducted in 1989, more than 90 percent of the control
loops were of the PID type [60]. PID control has been an active research topic for many
years; see the monographs [60–64]. Since many process plants controlled by PID controllers
have similar dynamics, it has been possible to set satisfactory controller parameters from
less plant information than a complete mathematical model. These techniques came about
because of the desire to adjust controller parameters in situ with a minimum of effort,
and also because of the possible difficulty and poor cost benefit of obtaining mathematical
models. The two most popular PID techniques were the step reaction curve experiment, and
a closed-loop “cycling” experiment under proportional control around the nominal operating
point.

In this chapter, several useful PID-type controller design techniques will be presented,
and implementation issues for the algorithms will also be discussed. In Sec. 6.1, the pro-
portional, integral, and derivative actions are explained in detail, and some variations of the
typical PID structure are also introduced. In Sec. 6.2, the well-known empirical Ziegler–
Nichols tuning formula and modified versions will be covered. Approaches for identifying
the equivalent first-order plus dead time (FOPDT) model, which is essential in some of the
PID controller design algorithms, will be presented. A modified Ziegler–Nichols algorithm
is also given. Some other simple PID setting formulae, such as the Chien–Hrones–Reswick
formula, Cohen–Coon formula, refined Ziegler–Nichols tuning, Wang–Juang–Chan formula
and Zhuang–Atherton optimum PID controller will be presented in Sec. 6.3. In Sec. 6.4, the
PID tuning formulae for FOIPDT (first-order lag and integrator plus dead time) and IPDT
(integrator plus dead time) plant models, rather than the FOPDT model, will be given. A
graphical user interface (GUI) implementing hundreds of PID controllers tuning formulae
for FOPDT model will be given in Sec. 6.5. In Sec. 6.6, an optimization-based design algo-

181

182 Chapter 6. PID Controller Design

rithm, together with a GUI for optimal controller design, is given. In Sec. 6.7, some of the
advanced topics on PID control will be presented, such as integrator windup phenomenon
and prevention, and automatic tuning techniques. Finally, some suggestions on controller
structure selections for practical process control are provided.

6.1 Introduction
6.1.1 The PID Actions

A typical structure of a PID control system is shown in Figure 6.1, where it can be seen
that in a PID controller, the error signal e(t) is used to generate the proportional, integral,
and derivative actions, with the resulting signals weighted and summed to form the control
signal u(t) applied to the plant model. A mathematical description of the PID controller is

u(t) = Kp

[
e(t) + 1

Ti

∫ t

0
e(τ)dτ + Td

de(t)

dt

]
, (6.1)

where u(t) is the input signal to the plant model, the error signal e(t) is defined as e(t) =
r(t) − y(t), and r(t) is the reference input signal.

The behavior of the proportional, integral, and derivative actions will be demonstrated
individually through the following example.

Example 6.1. Consider a third-order plant model given by G(s) = 1/(s + 1)3. If a pro-
portional control strategy is selected, i.e., Ti → ∞ and Td = 0 in the PID control strategy,
for different values of Kp, the closed-loop responses of the system can be obtained using
the following MATLAB statements:

>> G=tf(1,[1,3,3,1]);
for Kp=[0.1:0.1:1], H=feedback(Kp*G,1); step(H), hold on; end
figure; rlocus(G,[0,15])

The closed-loop step responses are obtained as shown in Figure 6.2(a), and it can be seen
that when Kp increases, the response speed of the system increases, the overshoot of the
closed-loop system increases, and the steady-state error decreases. However, when Kp is
large enough, the closed-loop system becomes unstable, which can be directly concluded
from the root locus analysis in Sec. 3.4. The root locus of the example system is shown in
Figure 6.2(b), where it is seen that when Kp is outside the range of (0, 8), the closed-loop
system becomes unstable.

u(t) plant
model

� e(t)� �
y(t)

�
�

r(t)
�controller

..

..

..

..

..

..

..

..

..

.. ..

���

PID controller

��

��

disturbance d(t)

measure-
ment noise

um

Figure 6.1. A typical PID control structure.

6.1. Introduction 183

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

Step Response

Time (sec)

A
m

pl
itu

de

← Kp = 1

Kp = 0.1

(a) closed-loop step response

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

−2.5 −2 −1.5 −1 −0.5 0 0.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

System: G
Gain: 8
Pole: 2.36e−005 + 1.73i
Damping: −1.37e−005
Overshoot (%): 100
Frequency (rad/sec): 1.73

(b) root locus

Figure 6.2. Closed-loop step responses.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Step Response

Time (sec)

A
m

pl
itu

de

← Ti = 0.7

← Ti =1.5

(a) PI control

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step Response

Time (sec)

A
m

pl
itu

de

← Td = 0.1

← Td =1.5

(b) PID control

Figure 6.3. Closed-loop step responses.

If we fix Kp = 1 and apply a PI (proportional plus integral) control strategy for
different values of Ti , we can use the following MATLAB statements:

>> Kp=1; s=tf(’s’);
for Ti=[0.7:0.1:1.5]

Gc=Kp*(1+1/Ti/s); G_c=feedback(G*Gc,1); step(G_c), hold on
end

to generate the closed-loop step responses of the example system shown in Figure 6.3(a).
The most important feature of a PI controller is that there is no steady-state error in the step
response if the closed-loop system is stable. Further examination shows that if Ti is smaller
than 0.6, the closed-loop system will not be stable. It can be seen that when Ti increases,
the overshoot tends to be smaller, but the speed of response tends to be slower.

184 Chapter 6. PID Controller Design

Fixing both Kp and Ti at 1, i.e., Ti = Kp = 1, when the PID control strategy is used,
with different Td , we can use the MATLAB statements

>> Kp=1; Ti=1; s=tf(’s’);
for Td=[0.1:0.2:2]

Gc=Kp*(1+1/Ti/s+Td*s); step(feedback(G*Gc,1)); hold on
end

to get the closed-loop step response shown in Figure 6.3(b). Clearly, when Td increases the
response has a smaller overshoot with a slightly slower rise time but similar settling time.

In practical applications, the pure derivative action is never used, due to the “derivative
kick” produced in the control signal for a step input, and to the undesirable noise amplifica-
tion. It is usually cascaded by a first-order low pass filter. Thus, the Laplace transformation
representation of the approximate PID controller can be written as

U(s) = Kp

⎛⎝1 + 1

Tis
+ sTd

1 + s
Td
N

⎞⎠E(s). (6.2)

The effect of N is illustrated through the following example.

Example 6.2. Consider the plant model in Example 6.1. The PID controller parameters
are Kp = 1, Ti = 1, and Td = 1. With different selections of N , we can use the MATLAB
commands

>> Td=1; Gc=Kp*(1+1/Ti/s+Td*s); step(feedback(G*Gc,1)), hold on
for N=[100,1000,10000,1:10]

Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N)); step(feedback(G*Gc,1));
end
figure; [y,t]=step(feedback(G*Gc,1)); err=1-y; plot(t,err)

to get the closed-loop step responses with the approximate derivative terms as shown in
Figure 6.4(a). The error signal e(t) when N = 10 is shown in Figure 6.4(b). It can be seen
that with N = 10, the approximation is fairly satisfactory.

6.1.2 PID Control with Derivative in the Feedback Loop

From Figure 6.4(b), it can be seen that there exists a jump when t = 0 in the error signal
of the step response. This means that the derivative action may not be desirable in such a
control strategy.

Thus, in practice, the derivative term may be preferred in the feedback path. Since the
output does not change instantaneously, for a step input, a smoother signal is produced by
taking the derivative of the output. This PID control strategy, which will be denoted PI-D,
is shown in Figure 6.5.

Recall the typical feedback control structure shown in Figure 1.2. The controller and
feedback transfer functions can be equivalently written as

Gc(s) = Kp

(
1 + 1

Tis

)
, (6.3)

6.2. Ziegler–Nichols Tuning Formula 185

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

N = 1

(a) output signal

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) error signal

Figure 6.4. PID control with approximate derivatives.

plant modelKp

(
1+

1

Tis

)
� � �

Tds

1+Tds/N
�

�
� �

�− −

y(t)r(t)

Figure 6.5. PID control with derivative on output signal.

H(s) = (1 + Kp/N)TiTds2 + Kp(Ti + Td/N) + Kp

Kp(Tis + 1)(Tds/N + 1)
. (6.4)

The following example is designed to illustrate the consequence of using the derivative
in the feedback path.

Example 6.3. For the plant model in Example 6.1, by the following MATLAB statements:

>> G=tf(1,[1,3,3,1]); Ti=1; Td=1; Kp=1; N=10; s=tf(’s’);
Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N));
G_c=feedback(G*Gc,1); Gc1=Kp*(1+1/s/Ti);
H=((1+Kp/N)*Ti*Td*sˆ2+Kp*(Ti+Td/N)*s+Kp)/(Kp*(Ti*s+1)*(Td/N*s+1));
G_c1=feedback(G*Gc1,H); step(G_c,G_c1)

the closed-loop step responses for the system with PID and PI-D are obtained and compared
in Figure 6.6. By observation, the response with the PI-D controller is slower and the
overshoot larger for this particular example.

6.2 Ziegler–Nichols Tuning Formula
6.2.1 Empirical Ziegler–Nichols Tuning Formula

A very useful empirical tuning formula was proposed by Ziegler and Nichols in early 1942
[10]. The tuning formula is obtained when the plant model is given by a first-order plus

186 Chapter 6. PID Controller Design

0 5 10 15 20 25 30 35
0

0.5

1

1.5

Step Response

Time (sec)

A
m

pl
itu

de

← D in feedback
← normal PID

Figure 6.6. The closed-loop step responses comparison.

�

�

�

�

k

time t

y(t)

1

Kc

�� Imaginary

real

(a) time response (b) Nyquist plot

a

�

L T����

Figure 6.7. Sketches of the responses of an FOPDT model.

dead time (FOPDT) model expressed by

G(s) = k

1 + sT
e−sL. (6.5)

In real-time process control systems, a large variety of plants can be approximately
modeled by (6.5). If the system model cannot be physically derived, experiments can be
performed to extract the parameters for the approximate model (6.5). For instance, if the
step response of the plant model can be measured through an experiment, the output signal
can be recorded as sketched in Figure 6.7(a), from which the parameters of k, L, and T (or
a, where a = kL/T) can be extracted by the simple approach shown. More sophisticated
curve fitting approaches can also be used. With L and a, the Ziegler–Nichols formula in
Table 6.1 can be used to get the controller parameters.

If a frequency response experiment can be performed, the crossover frequency ωc

and the ultimate gain Kc can be obtained from the Nyquist plot as shown in Figure 6.7(b).
Let Tc = 2π/ωc. The PID controller parameters can also be retrieved from Table 6.1. It
should be noted that Table 6.1 applies for the design of P (proportional) and PI controllers
in addition to the PID controller with the same set of experimental data from the plant.
Since only the 180◦ point on the Nyquist locus is used in this approach, Ziegler and Nichols

6.2. Ziegler–Nichols Tuning Formula 187

suggested it can be found by putting the controller in the proportional mode and increasing
the gain until an oscillation takes place. The point is then obtained from measurement of
the gain and the oscillation frequency. This result, however, is based on linear theory, and
although the technique has been used in practice, it does have major problems.

A MATLAB function ziegler() exists to design PI/PID controllers using the
Ziegler–Nichols tuning formulas:

1 function [Gc,Kp,Ti,Td,H]=ziegler(key,vars)
2 Ti=[]; Td=[]; H=1;
3 if length(vars)==4,
4 K=vars(1); L=vars(2); T=vars(3); N=vars(4); a=K*L/T;
5 if key==1, Kp=1/a;
6 elseif key==2, Kp=0.9/a; Ti=3.33*L;
7 elseif key==3 | key==4, Kp=1.2/a; Ti=2*L; Td=L/2; end
8 elseif length(vars)==3,
9 K=vars(1); Tc=vars(2); N=vars(3);

10 if key==1, Kp=0.5*K;
11 elseif key==2, Kp=0.4*K; Ti=0.8*Tc;
12 elseif key==3 | key==4, Kp=0.6*K; Ti=0.5*Tc; Td=0.12*Tc; end
13 elseif length(vars)==5,
14 K=vars(1); Tc=vars(2); rb=vars(3); N=vars(5);
15 pb=pi*vars(4)/180; Kp=K*rb*cos(pb);
16 if key==2, Ti=-Tc/(2*pi*tan(pb));
17 elseif key==3|key==4, Ti=Tc*(1+sin(pb))/(pi*cos(pb)); Td=Ti/4; end
18 end
19 [Gc,H]=writepid(Kp,Ti,Td,N,key);

There is a low-level function writepid()which can be used in the design function;
the content of the function is

1 function [Gc,H]=writepid(Kp,Ti,Td,N,key)
2 switch key
3 case 1, Gc=Kp;
4 case 2, Gc=tf(Kp*[Ti,1],[Ti,0]); H=1;
5 case 3, nn=[Kp*Ti*Td*(N+1)/N,Kp*(Ti+Td/N),Kp];
6 dd=Ti*[Td/N,1,0]; Gc=tf(nn,dd); H=1;
7 case 4, d0=sqrt(Ti*(Ti-4*Td)); Ti0=Ti; Kp=0.5*(Ti+d0)*Kp/Ti;
8 Ti=0.5*(Ti+d0); Td=Ti0-Ti; Gc=tf(Kp*[Ti,1],[Ti,0]);
9 nH=[(1+Kp/N)*Ti*Td, Kp*(Ti+Td/N), Kp];

10 H=tf(nH,Kp*conv([Ti,1],[Td/N,1]));
11 case 5, Gc=tf(Kp*[Td*(N+1)/N,1],[Td/N,1]); H=1;
12 end

It seems that this function is quite lengthy for the simple Ziegler–Nichols formula
given in Table 6.1. In fact, the MATLAB function also embeds a design formula discussed

Table 6.1. Ziegler–Nichols tuning formulae.

Controller from step response from frequency response

type Kp Ti Td Kp Ti Td

P 1/a 0.5Kc

PI 0.9/a 3L 0.4Kc 0.8Tc

PID 1.2/a 2L L/2 0.6Kc 0.5Tc 0.12Tc

188 Chapter 6. PID Controller Design

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Step Response

Time (sec)

A
m

pl
itu

de

t1 =0.76 t2 =2.72

(a) open-loop step response

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

← P controller

← PI controller
← PID controller

(b) closed-loop step response

Figure 6.8. Controller design and responses with time domain parameters.

later in this chapter. Here we shall consider only the syntax for the simple Ziegler–Nichols
tuning rule

[Gc,Kp,Ti,Td]=ziegler(key,vars),

where key determines the controller type with key = 1 for the P controller, key = 2 for
the PI controller, andkey = 3 for the PID controller. When step response data are available,
one should specify vars = [K, L, T , N], while vars = [Kc, Tc, N] are designed for the
given frequency response data.

Example 6.4. Consider a fourth-order plant

G(s) = 10

(s + 1)(s + 2)(s + 3)(s + 4)
.

Enter the following MATLAB statements:

>> s=tf(’s’); G=10/(s+1)/(s+2)/(s+3)/(s+4);
step(G); k=dcgain(G)

The open-loop step response is shown in Figure 6.8(a), with a steady-state value of 0.4167.
From the step response, the parameters of the approximate FOPDT model are k = 0.2941,
L = 0.76, and T = 2.72 − 0.76 = 1.96, based on which the P, PI, and PID controllers can
be designed using the following MATLAB statements:

>> L=0.76; T=2.72-L; [Gc1,Kp1]=ziegler(1,[k,L,T,10])
[Gc2,Kp2,Ti2]=ziegler(2,[k,L,T,10])
[Gc3,Kp3,Ti3,Td3]=ziegler(3,[k,L,T,10])

The P, PI, and PID controllers designed are, respectively,

Gp(s)=6.1895, GPI(s)=5.57

(
1+ 1

2.5308s

)
, G PID(s)=7.4274

(
1+ 1

1.52s
+0.38s

)
.

6.2. Ziegler–Nichols Tuning Formula 189

The closed-loop responses for these different controllers are obtained using the MAT-
LAB statements

>> G_c1=feedback(G*Gc1,1); G_c2=feedback(G*Gc2,1);
G_c3=feedback(G*Gc3,1); step(G_c1,G_c2,G_c3);

and they are shown in Figure 6.8(b). It can be observed that the steady-state error exists
when the P controller is used, and the response of the PID controller is faster than that of
the PI controller.

If the frequency response of the plant model can be measured, the ultimate gain Kc

and the crossover frequency ωc can be read from the Nyquist plot as shown in Figure 6.7(b).
With Kc and ωc, the parameters of different PID-type controllers can be obtained from
Table 6.1. In this case, the MATLAB function ziegler() can still be used.

In fact, since the crossover frequency ωc and the ultimate gain Kc are the gain margin
of the open-loop plant model, one can directly obtain the parameters using the margin()
function.

Example 6.5. Consider the plant model in Example 6.4. By the MATLAB statements

>> G=tf(10, [1,10,35,50,24]);
nyquist(G); axis([-0.2,0.6,-0.4,0.4])
[Kc,pp,wg,wp]=margin(G); [Kc,wg], Tc=2*pi/wg;
[Gc1,Kp1]=ziegler(1,[Kc,Tc,10]); Kp1
[Gc2,Kp2,Ti2]=ziegler(2,[Kc,Tc,10]); [Kp2,Ti2]
[Gc3,Kp3,Ti3,Td3]=ziegler(3,[Kc,Tc,10]); [Kp3,Ti3,Td3]

the gain margin and its crossover frequency are found to be, respectively, 12.6, and 2.2361
rad/sec. The controllers are designed as

Gp(s)=6.3, G PI(s)=5.04

(
1 + 1

2.2479s

)
, G PID(s)=7.56

(
1 + 1

1.405s
+ 0.3372s

)
.

The Nyquist plot of the system can be obtained and is shown in Figure 6.9(a). With
these different controllers, the closed-loop system responses can be obtained using the
MATLAB statements

>> G_c1=feedback(G*Gc1,1); G_c2=feedback(G*Gc2,1);
G_c3=feedback(G*Gc3,1); step(G_c1,G_c2,G_c3);

and the step responses of the closed-loop system are shown in Figure 6.9(b).

6.2.2 Derivative Action in the Feedback Path

Assume that the derivative action is placed in the feedback path; then the normal PID
parameters (Kp, Ti, Td) can be obtained from [65] as

Kp = K ′
p

(
1 + T ′

d

T ′
i

)
, Ti = T ′

i + T ′
d , Td = T ′

i T
′
d

T ′
i + T ′

d

, (6.6)

where (K ′
p, T ′

i , T
′
d) are the PID parameters with derivative in the feedback path.

190 Chapter 6. PID Controller Design

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Nyquist Diagram

Real Axis

Im
ag

in
ar

y
A

xi
s

(a) Nyquist plots

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

Step Response

Time (sec)

A
m

pl
itu

de

← PID controller

← PI controller

← P controller

(b) closed-loop step response

Figure 6.9. Controller design and responses.

In other words, if a PID controller, with derivative action in a forward path, is designed,
then an equivalent PID controller with the derivative action in the feedback path can be
obtained by solving the following algebraic equation:

x2 − Tix + TiTd = 0, ⇒ x1,2 = Ti ± √
Ti(Ti − 4Td)

2
. (6.7)

It is reasonable to assume in most PID controller designs that Ti > 4Td . In this case,
the above equation will have real roots x1,2. Thus, from (Kp, Ti, Td), the equivalent PID
parameters for the new structure, i.e., with derivative in the feedback path, can be computed
as follows:

T ′
i = Ti + √

Ti(Ti − 4Td)

2
, T ′

d = Ti − √
Ti(Ti − 4Td)

2
,

K ′
p = 2TiKp

Ti + √
Ti(Ti − 4Td)

.

(6.8)

The MATLAB function ziegler() can still be used to design such a PID controller.
The syntax of the function now becomes

[Gc,Kp,Ti,Td,H]=ziegler(key,vars)

with key = 4 and H is the equivalent feedback transfer function object.

Example 6.6. Consider the plant model in Example 6.4. The normal PID controller can
be designed using the Ziegler–Nichols algorithm. An effective design of a PID controller
with a derivative in the feedback path can also be obtained with the following MATLAB
statements:

>> G=tf(10,[1,10,35,50,24]); N=10; [Kc,Pm,wc,wp]=margin(G);
Tc=2*pi/wc; [Gc1,Kp1,Ti1,Td1]=ziegler(3,[Kc,Tc,N]),
[Gc2,Kp2,Ti2,Td2,H]=ziegler(4,[Kc,Tc,N]),
G_c1=feedback(G*Gc1,1); G_c2=feedback(G*Gc2,H);
step(G_c1,G_c2)

6.2. Ziegler–Nichols Tuning Formula 191

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Step Response

Time (sec)

A
m

pl
itu

de

← normal PID

← derivative in feedback

Figure 6.10. PID controllers comparison.

The controllers designed are GPID(s) = 7.5600 (1 + 1/1.4050s + 0.3372s), with K ′
p =

4.5360, T ′
i = 0.8430, T ′

d = 0.5620, and the step response comparison is shown in Fig-
ure 6.10(a).

It can be seen that although the PID controller with derivative in the feedback path
might be easier and faster to be implemented compared to the normal PID controller, its
performance may not be very satisfactory. Sometimes, such a PID controller should be
designed using a dedicated algorithm to ensure a good control performance.

6.2.3 Methods for First-Order Plus Dead Time Model Fitting

It can be seen that the model (6.5) is useful for designing a PID controller because of the
availability of a simple formula. The method in Sec. 6.2.1 for finding L and T of a given plant
is simple to use with the graph of a plant step response. Although in modern computation
it is not necessary to reduce a model to this form to find suitable PID controller parameters,
which may be found by using the original model with one of many possible approaches,
nevertheless it can be useful. Given the plant transfer function, we can use one of the
model reduction methods described in Chapter 3. For example, the suboptimal reduction
method [47] is very effective at the expense of a heavy, but acceptable, computational load.
The optimal reduced-order model can be obtained with the function opt_app(), covered
in Sec. 3.6. In this section, two other effective and frequently used algorithms will be
introduced.

Frequency response method

Consider the frequency response of a first-order model

G(jω) = k

T s + 1
e−Ls

∣∣∣∣
s=jω

= k

T jω + 1
e−jωL. (6.9)

192 Chapter 6. PID Controller Design

The ultimate gain Kc at the crossover frequency ωc is actually the first intersection of
a Nyquist plot with the negative part of the real axis, i.e.,⎧⎪⎨⎪⎩

k(cos ωcL − ωcT sin ωcL)

1 + ω2
cT

2 = − 1

Kc

,

sin ωcL + ωcT cos ωcL = 0,

(6.10)

where k is the steady-state value or DC (direct current) gain of the system which can be
directly evaluated from the given transfer function. Define two variables x1 = L and x2 = T

satisfying{
f1(x1, x2) = kKc(cos ωcx1 − ωcx2 sin ωcx1) + 1 + ω2

cx
2
2 = 0,

f2(x1, x2) = sin ωcx1 + ωcx2 cos ωcx1 = 0.
(6.11)

The Jacobian matrix is that

J =
[
∂f1/∂x1 ∂f1/∂x2
∂f2/∂x1 ∂f2/∂x2

]
=
[−kKcωc sin ωcx1−kKcω

2
cx2 cos ωcx1 2ω2

cx2−kKcωc sin ωcx1

ωc cos ωcx1−ω2
cx2 sin ωcx1 ωc cos ωcx1

]
.

(6.12)

So, (x1, x2) can be solved using any quasi-Newton algorithm. The MATLAB function
[K,L,T]= getfod(G) is written for solving x1 and x2 in order to find the parameters

K, L, T of the system.

1 function [K,L,T]=getfod(G,method)
2 K=dcgain(G);
3 if nargin==1
4 [Kc,Pm,wc,wcp]=margin(G); ikey=0; L=1.6*pi/(3*wc); T=0.5*Kc*K*L;
5 if finite(Kc), x0=[L;T];
6 while ikey==0, u=wc*x0(1); v=wc*x0(2);
7 FF=[K*Kc*(cos(u)-v*sin(u))+1+vˆ2; sin(u)+v*cos(u)];
8 J=[-K*Kc*wc*sin(u)-K*Kc*wc*v*cos(u), -K*Kc*wc*sin(u)+2*wc*v;
9 wc*cos(u)-wc*v*sin(u), wc*cos(u)];

10 x1=x0-inv(J)*FF;
11 if norm(x1-x0)<1e-8, ikey=1; else, x0=x1;
12 end, end
13 L=x0(1); T=x0(2);
14 end
15 elseif nargin==2 & method==1
16 [n1,d1]=tfderv(G.num{1},G.den{1}); [n2,d2]=tfderv(n1,d1);
17 K1=dcgain(n1,d1); K2=dcgain(n2,d2);
18 Tar=-K1/K; T=sqrt(K2/K-Tarˆ2); L=Tar-T;
19 end
20 function [e,f]=tfderv(b,a)
21 f=conv(a,a); na=length(a); nb=length(b);
22 e1=conv((nb-1:-1:1).*b(1:end-1),a);
23 e2=conv((na-1:-1:1).* a(1:end-1),b); maxL=max(length(e1),length(e2));
24 e=[zeros(1,maxL-length(e1)) e1]-[zeros(1,maxL-length(e2)) e2];

6.2. Ziegler–Nichols Tuning Formula 193

Transfer function method

Consider the first-order model with delay given by

Gn(s) = ke−Ls

T s + 1
.

Taking the first- and second-order derivatives of Gn(s) with respect to s, one can immediate
find that

G′
n(s)

Gn(s)
= −L − T

1 + T s
,

G′′
n(s)

Gn(s)
−
(

G′
n(s)

Gn(s)

)2

= T 2

(1 + T s)2 .

Evaluating the values at s = 0 yields

Tar = −G′
n(0)

Gn(0)
= L + T , T 2 = G′′

n(0)

Gn(0)
− T 2

ar, (6.13)

where Tar is also referred to as the average residence time. From the former equation, one
has L = Tar − T . Again, the DC gain k can be evaluated from Gn(0).

The solution for the FOPDT model is thus obtained by using the derivatives of its
transfer function G(s) in the above formula.

The MATLAB function getfod() listed earlier can be used with the syntax
[K,L,T]= getfod(G,1) to find the parameters K, L, T of the system.

Example 6.7. Consider the fourth-order model used in Example 6.4. The parameters of its
approximate FOPDT model can be obtained using the MATLAB statements

>> G=tf(10,[1,10,35,50,24]);
[k,L,T]=getfod(G); G1=tf(k,[T 1]); G1.ioDelay=L;
[Gc1,Kp3,Ti3,Td3]=ziegler(3,[k,L,T,10])
[k,L,T]=getfod(G,1), G2=tf(k,[T 1]); G2.ioDelay=L;
nyquist(G,’-’,G1,’--’,G2,’:’); figure
[Gc2,Kp4,Ti4,Td4]=ziegler(3,[k,L,T,10])
G_c1=feedback(G*Gc1,1); G_c2=feedback(G*Gc2,1); step(G_c1,G_c2)

The Nyquist plot comparisons of the plant model and the two approximations are shown in
Figure 6.11(a).

With the frequency response method, the K, L, T parameters are obtained as 0.4167,
0.7882, 2.3049. The PID controller designed with the Ziegler–Nichols formulas is Gc1(s) =
8.4219 (1 + 1/1.5764s + 0.3941s). While the parameters using the transfer function method
are 0.4167, 0.8902, 1.1932, the PID controller is Gc2(s) = 3.8602(1 + 1/1.7804s +
0.4451s). The closed-loop step responses with the above two PID controllers are shown in
Figure 6.11(b).

194 Chapter 6. PID Controller Design

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Nyquist Diagram

Real Axis

Im
ag

in
ar

y
A

xi
s

(a) Nyquist plots

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

← frequency response fitting

← transfer function based fitting

(b) closed-loop step responses

Figure 6.11. PID controller responses.

It can be seen that although the PID controller designed with the transfer function
identification algorithm looks better, it does not reflect the usual overshoot characteristics
of Ziegler–Nichols tuning, presumably due to the inaccurately identified parameters of an
FOPDT model.

With the use of the suboptimal model reduction technique presented in Sec. 3.6.3, the
parameters can be extracted with the following statements and the controller can better be
designed:

Gr=opt_app(G,0,1,1); [n,d]=tfdata(G,’v’);

K=dcgain(G); T =d(1)/d(2); L=Gr.ioDelay;

6.2.4 A Modified Ziegler–Nichols Formula

Consider the Nyquist frequency response shown in Figure 6.12(a), where for a selected
point A on the Nyquist plot, the control effects of the P, I, and D terms are shown in the
appropriate directions. Thus, with properly chosen Kp, Ti , and Td , it is possible to move
the given point A on the Nyquist curve of the uncontrolled plant to an arbitrary position on
the Nyquist plot of the controlled system. The typical Nyquist plot under PID control is
shown in Figure 6.12(b), where A1 corresponds to the point A in Figure 6.12(a).

Denote point A in the complex plane as G(jω0) = raej(π+φa). Suppose A is to be
moved toA1 which is represented by G1(jω0) = rb ej(π+φb). Assume that the PID controller
at frequency ω0 is Gc(s) = rcejφc . Then, obviously,

rbej(π+φb) = rarcej(π+φa+φc). (6.14)

Therefore, rc = rb/ra and φc = φb − φa . So, based on the above analysis, PI and PID
controllers can be designed as follows:

• PI control: The controller can be designed such that

Kp = rb cos(φb − φa)

ra
, Ti = 1

ω0tan(φa − φb)
, (6.15)

6.2. Ziegler–Nichols Tuning Formula 195

�

�Imaginary

real

(a) original Nyquist plot

�Imaginary

real

(b) new Nyquist plot

�
�

�D action
A

�

A1

P action

I action

Figure 6.12. Sketches of FOPDT model.

which means that φa > φb for a positive Ti .

As a special case, the Ziegler–Nichols algorithm design is by

Kp = Kcrb cos φb, Ti = − Tc

2π tanφb

, (6.16)

where Tc = 2π/ωc, ra = 1/Kc, and φa = 0.

• PID control: The controller can be designed such that

Kp = rb cos(φb − φa)

ra
, ω0Td − 1

ω0Ti

= tan(φb − φa). (6.17)

Clearly, Ti and Td are not unique according to (6.17). To get a unique PID design, it
is a usual practice to set Td = αTi , where α is a constant. Given an α, Ti , and Td can
be obtained uniquely from

Ti = 1

2αω0

(
tan(φb−φa)+

√
4α+tan2(φb−φa)

)
, Td = αTi. (6.18)

By inspection, it is seen that the Ziegler–Nichols tuning formula is a special case when
α = 1/4. The Ziegler–Nichols tuning formula can be rewritten as follows:

Kp =Kcrb cos φb, Ti = Tc

π

(
1+sin φb

cos φb

)
, Td = Tc

4π

(
1+sin φb

cos φb

)
, (6.19)

where ra = 1/Kc, φa = 0, and α = 1/4.

It can be seen that the PI and PID controllers can be designed by a suitable choice of rb
and φb. The design problem is then one of selecting suitable values for these two parameters
to give the appropriate performance. This is called a modified Ziegler–Nichols PI/PID tuning
formula, which has been implemented in the MATLAB function ziegler(), too. The
only difference is that vars = [Kc, Tc, rb, φb, N].

196 Chapter 6. PID Controller Design

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step Response

Time (sec)

A
m

pl
itu

de

← φb = 10◦

← φb = 70◦

(a) for different φb

0 2 4 6 8 10
0

0.5

1

1.5

Step Response

Time (sec)

A
m

pl
itu

de

← Ziegler-Nichols PID

← rb = 0.1

(b) for different rb

Figure 6.13. Closed-loop step responses.

Example 6.8. Consider the plant model given by G(s) = 1/(s + 1)3. The PID controller
by the original Ziegler–Nichols tuning method can be obtained as follows:

>> G=tf(1,[1,3,3,1]); [Kc,pp,wg,wp]=margin(G); Tc=2*pi/wg;
[Gc1,Kp1,Ti1,Td1]=ziegler(3,[Kc,Tc,10])

and the controller G(s) = 4.8007 (1 + 1/1.8137s + 0.4353s) is obtained. Now, let us
illustrate the flexibility of the modified Ziegler–Nichols PI/PID tuning formula. First, fix
rb = 0.5 and change φb. By the following MATLAB statements:

>> G_c=feedback(G*Gc1,1); step(G_c,20); rb=0.5; hold on
for pb=[10:10:70]

[Gc2,Kp2,Ti2,Td2]=ziegler(3,[Kc,Tc,rb,pb,10]);
G_c2=feedback(G*Gc2,1); step(G_c2,20);

end

the closed-loop step responses of the system for different values of φb are shown in Fig-
ure 6.13(a). Clearly, when φb increases, the overshoot and oscillation become smaller.
When φb is larger than 60◦, there is no overshoot, but the response becomes too sluggish.
A good choice for the phase angle based on these responses is approximately 45◦.

Now, fix φb at φb = 45◦ and change rb. By the MATLAB statements

>> G_c=feedback(G*Gc1,1); step(G_c,10); pb=45; hold on;
for rb=[0.1:0.1:1]

[Gc2,Kp2,Ti2,Td2]=ziegler(3,[Kc,Tc,rb,pb,10]);
G_c2=feedback(G*Gc2,1); step(G_c2,10);

end

the closed-loop step responses of the system for different rb are compared in Figure 6.13(b).
It can be seen that the smaller the rb, the smaller the overshoot and the slower the response.
Clearly, rb = 0.45, and φb = 45◦ can be considered as a good choice for this example with
almost no overshoot and with a reasonably fast response.

It can be concluded that the modified tuning method is advantageous over the original
Ziegler–Nichols PI/PID tuning technique.

6.3. Other PID Controller Tuning Formulae 197

6.3 Other PID Controller Tuning Formulae
Many variants of the traditional Ziegler–Nichols PID tuning methods have been proposed.
Several of these are given in the following section.

6.3.1 Chien–Hrones–Reswick PID Tuning Algorithm

The Chien–Hrones–Reswick (CHR) method [66] emphasizes the set-point regulation or
disturbance rejection. In addition one qualitative specifications on the response speed and
overshoot can be accommodated. Compared with the traditional Ziegler–Nichols tuning
formula, the CHR method uses the time constant T of the plant explicitly.

The CHR PID controller tuning formulas are summarized in Table 6.2 for set-point
regulation. The more heavily damped closed-loop response, which ensures, for the ideal
plant model, the “quickest response without overshoot” is labeled “with 0% overshoot,” and
the “quickest response with 20% overshoot” is labeled “with 20% overshoot.”

Similarly, Table 6.3 is used to design controllers for disturbance rejection purposes.
A MATLAB function chrPID() is written which can be used to design different

controllers using the CHR algorithms:

1 function [Gc,Kp,Ti,Td,H]=chrpid(key,tt,vars)
2 K=vars(1); L=vars(2); T=vars(3); N=vars(4); a=K*L/T; Ti=[]; Td=[];
3 ovshoot=vars(5); if tt==1, TT=T; else TT=L; tt=2; end
4 if ovshoot==0,
5 KK=[0.3,0.35,1.2,0.6,1,0.5; 0.3,0.6,4,0.95,2.4,0.42];
6 else,
7 KK=[0.7,0.6,1,0.95,1.4,0.47; 0.7,0.7,2.3,1.2,2,0.42];
8 end
9 switch key

10 case 1, Kp=KK(tt,1)/a;
11 case 2, Kp=KK(tt,2)/a; Ti=KK(tt,3)*TT;
12 case {3,4}, Kp=KK(tt,4)/a; Ti=KK(tt,5)*TT; Td=KK(tt,6)*L;
13 end
14 [Gc,H]=writepid(Kp,Ti,Td,N,key);

Table 6.2. CHR tuning formulae for set-point regulation.

Controller with 0% overshoot with 20% overshoot

type Kp Ti Td Kp Ti Td

P 0.3/a 0.7/a

PI 0.35/a 1.2T 0.6/a T

PID 0.6/a T 0.5L 0.95/a 1.4T 0.47L

Table 6.3. CHR tuning formulae for disturbance rejection.

Controller with 0% overshoot with 20% overshoot

type Kp Ti Td Kp Ti Td

P 0.3/a 0.7/a

PI 0.6/a 4L 0.7/a 2.3L

PID 0.95/a 2.4L 0.42L 1.2/a 2L 0.42L

198 Chapter 6. PID Controller Design

The syntax of the chrpid() function is

[Gc,Kp,Ti,Td]=chrPID(key,typ,vars)

where the returned variables are defined similar to those in ziegler(). key = 1, 2, 3
is for P, PI, and PID controllers, respectively. The variable typ denotes the type of criteria
used with typ = 1 for set-point control and any other value for disturbance rejection.
vars = [k, L, T , N, Os] with Os = 0 denotes no overshoot, and any other value denotes
20% overshoot.

Example 6.9. Consider the plant model in Example 6.4. The Ziegler–Nichols PID con-
troller and the four CHR controllers for different controller types and specifications are
obtained using the following statements:

>> s=tf(’s’); G=10/((s+1)*(s+2)*(s+3)*(s+4)); N=10;
[k,L,T]=getfod(G); [Gc1,Kp,Ti,Td]=ziegler(3,[k,L,T,N])
[Gc2,Kp,Ti,Td]=chrpid(3,1,[k,L,T,N,0])
[Gc3,Kp,Ti,Td]=chrpid(3,1,[k,L,T,N,20])
[Gc4,Kp,Ti,Td]=chrpid(3,2,[k,L,T,N,0]);

The four PID controllers designed are, respectively,

G1(s) = 8.4219

(
1+ 1

1.5764s
+0.3941s

)
, G2(s) = 4.2110

(
1+ 1

2.3049s
+0.3941s

)
,

G3(s) = 6.6674

(
1+ 1

3.2268s
+0.3704s

)
, G4(s) = 6.6674

(
1+ 1

1.8917s
+0.3310s

)
.

For the different controllers designed in the above, the step responses of the closed-
loop systems can be obtained using the following MATLAB statements:

>> step(feedback(G*Gc1,1),feedback(G*Gc2,1),
feedback(G*Gc3,1),...
feedback(G*Gc4,1),10)

as summarized in Figure 6.14(a). It can be seen that the set-point regulation controller with
0% overshoot gives a satisfactory result. Similarly, with the following MATLAB statements:

>> step(feedback(G,Gc1),feedback(G,Gc2),feedback(G,Gc3),...
feedback(G,Gc4),30)

the closed-loop responses to a step disturbance signal can be obtained as shown in
Figure 6.14(b). Clearly, compared with the traditional Ziegler–Nichols controller, the effect
of the disturbance signal can be significantly reduced by a CHR controller.

6.3.2 Cohen–Coon Tuning Algorithm

Another Ziegler–Nichols type tuning algorithm is the Cohen–Coon tuning formula [67].
Referring to the FOPDT model (6.5) approximately obtained from experiments, denote

6.3. Other PID Controller Tuning Formulae 199

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

(a) set-point step response

0 5 10 15 20 25 30
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Step Response

Time (sec)

A
m

pl
itu

de

(b) disturbance step response

Figure 6.14. Closed-loop step responses of CHR controllers.

a = kL/T and τ = L/(L + T). The different controllers can be designed by the direct use
of Table 6.4.

A MATLAB function cohenpid() is written which can be used to design a PID
controller using the Cohen–Coon tuning formulas:

1 function [Gc,Kp,Ti,Td,H]=cohenpid(key,vars)
2 K=vars(1); L=vars(2); T=vars(3); N=vars(4);
3 a=K*L/T; tau=L/(L+T); Ti=[]; Td=[];
4 switch key
5 case 1,Kp=(1+0.35*tau/(1-tau))/a;
6 case 2,
7 Kp=0.9*(1+0.92*tau/(1-tau))/a; Ti=(3.3-3*tau)*L/(1+1.2*tau);
8 case {3,4}, Kp=1.35*(1+0.18*tau/(1-tau))/a;
9 Ti=(2.5-2*tau)*L/(1-0.39*tau); Td=0.37*(1-tau)*L/(1-0.81*tau);

10 case 5
11 Kp=1.24*(1+0.13*tau/(1-tau))/a; Td=(0.27-0.36*tau)*L/(1-0.87*tau);
12 end
13 [Gc,H]=writepid(Kp,Ti,Td,N,key);

The syntax is [Gc,Kp,Ti,Td,H]=cohenpid(key,vars) , where the vars argu-

ments should be written as vars = [k, L, T , N].

Table 6.4. Controller parameters of Cohen–Coon method.

Controller Kp Ti Td

P
1

a

(
1 + 0.35τ

1 − τ

)
PI

0.9

a

(
1 + 0.92τ

1 − τ

)
3.3 − 3τ

1 + 1.2τ
L

PD
1.24

a

(
1 + 0.13τ

1 − τ

)
0.27 − 0.36τ

1 − 0.87τ
L

PID
1.35

a

(
1 + 0.18τ

1 − τ

)
2.5 − 2τ

1 − 0.39τ
L

0.37 − 0.37τ

1 − 0.81τ
L

200 Chapter 6. PID Controller Design

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Step Response

Time (sec)

A
m

pl
itu

de

← PI

← PID

← P

← PD

Figure 6.15. Step responses under controllers of the Cohen–Coon method.

Example 6.10. Consider the plant model given in Example 6.4 with its P, PI, PD, and PID
controllers designed using the following MATLAB statements:

>> G=tf(10,[1,10,35,50,24]); [k,L,T]=getfod(G);
[Gc1,Kp1]=cohenpid(1,[k,L,T,10])
[Gc2,Kp2,Ti2]=cohenpid(2,[k,L,T,10])
[Gc3,Kp3,Ti3,Td3]=cohenpid(5,[k,L,T,10])
[Gc4,Kp4,Ti4,Td4]=cohenpid(3,[k,L,T,10])

and the controllers are obtained as

G1(s) = 7.8583, G2(s) = 8.3036 (1 + 1/1.5305s) ,

G3(s) = 9.0895(1 + 0.1805s), G4(s) = 10.0579 (1 + 1/1.7419s + 0.2738s) .

With the following MATLAB statements:

>> G_c1=feedback(G*Gc1,1); G_c2=feedback(G*Gc2,1);
G_c3=feedback(G*Gc3,1); G_c4=feedback(G*Gc4,1);
step(G_c1,G_c2,G_c3,G_c4,10)

the closed-loop step responses of the systems with the different controllers are shown in
Figure 6.15.

6.3.3 Refined Ziegler–Nichols Tuning

Since the PID controller designed by the conventional Ziegler–Nichols tuning formulas
often exhibits rather strong oscillation in the set-point response and a large overshoot, a
refinement to such a PID controller tuning algorithm can be obtained with the use of set-
point weighting [68]:

u(t) = Kp

[
(βuc − y) + 1

Ti

∫
edt − Td

dy

dt

]
, (6.20)

6.3. Other PID Controller Tuning Formulae 201

Kp

β

1

Tis

�

�

�

�

� � plant� ��

KpTds �

�

��

yuuc(t) e(t)

Kp(1 − β) ��

Figure 6.16. Refined PID control structure.

where the derivative action is performed on the output signal and a fraction of the input
signal is added to the control signal. Usually, β < 1. The control law can be rewritten as

u(t) = Kp

(
βe + 1

Ti

∫
edt

)
− Kp

[
(1 − β)y + Td

dy

dt

]
. (6.21)

The block diagram representation of the control system can be constructed as shown in
Figure 6.16. Compared with the typical feedback control structure shown in Figure 1.2,
after some transfer function block manipulations, the controller Gc(s) and the feedback
H(s) can be easily obtained as follows:

Gc(s) = Kp

(
β + 1

Tis

)
, (6.22)

H(s) = TiTdβ(N + 2 − β)s2/N + (Ti + Td/N)s + 1

(Tiβs + 1)(Tds/N + 1)
. (6.23)

Define the normalized delay constant τ as τ = L/T and a constant κ by κ = Kck.
For different ranges of the variables τ and κ , PID controller parameters are suggested as
follows:

• If 2.25 < κ < 15 or 0.16 < τ < 0.57, use the original Ziegler–Nichols design
parameters. To ensure that the overshoot is less than 10% or less than 20%, β should
be evaluated, respectively, from

β = 15 − κ

15 + κ
or β = 36

27 + 5κ
. (6.24)

• If 1.5 < κ < 2.25 or 0.57 < τ < 0.96, the integral parameter Ti in the Ziegler–Nichols
controller should be changed to Ti = 0.5μTc, where

μ = 4

9
κ and β = 8

17
(μ − 1). (6.25)

• If 1.2 < κ < 1.5, in order to keep the overshoot less than 10%, the parameters of the
PID should be refined as

Kp = 5

6

(
12 + κ

15 + 14κ

)
, Ti = 1

5

(
4

15
κ + 1

)
. (6.26)

202 Chapter 6. PID Controller Design

A MATLAB function rziegler() is written which can be used to design a refined
PID controller:

1 function [Gc,Kp,Ti,Td,beta,H]=rziegler(vars)
2 K=vars(1); L=vars(2); T=vars(3); N=vars(4); a=K*L/T; Kp=1.2/a;
3 Ti=2*L; Td=L/2; Kc=vars(5); Tc=vars(6); kappa=Kc*K; tau=L/T; H=[];
4 if (kappa > 2.25 & kappa<15) | (tau>0.16 & tau<0.57)
5 beta=(15-kappa)/(15+kappa);
6 elseif (kappa<2.25 & kappa>1.5) | (tau<0.96 & tau>0.57)
7 mu=4*jappa/9; beta=8*(mu-1)/17; Ti=0.5*mu*Tc;
8 elseif (kappa>1.2 & kappa<1.5),
9 Kp=5*(12+kappa)/(6*(15+14*kappa)); Ti=0.2*(4*kappa/15+1); beta=1;

10 end
11 Gc=tf(Kp*[beta*Ti,1],[Ti,0]); nH=[Ti*Td*beta*(N+2-beta)/N,Ti+Td/N,1];
12 dH=conv([Ti*beta,1],[Td/N,1]); H=tf(nH,dH);

The syntax of the function is [Gc,Kp,Ti,Td,β,H]=rziegler(vars) , wherevars

= [k, L, T , N, Kc, Tc].
Example 6.11. Consider the plant model in Example 6.4. The refined PID controller can
be designed using the following MATLAB statements:

>> G=tf(10,[1,10,35,50,24]); [k,L,T]=getfod(G);
[Kc,p,wc,m]=margin(G); Tc=2*pi/wc;
[Gc,Kp,Ti,Td,beta,H]=rziegler([k,L,T,10,Kc,Tc])
[Gc1,Kp1,Ti1,Td1]=ziegler(3,[k,L,T,10]);
G_c=feedback(G*Gc,H); G_c1=feedback(G*Gc1,1);
step(G_c,G_c1);

The parameters of the refined PID controller should be taken as Kp = 8.4219, Ti =
1.5764, Td = 0.3941, β = 0.4815. The closed-loop step responses under the refined
Ziegler–Nichols PID controller are shown in Figure 6.17, with a comparison to the response
from the conventional Ziegler–Nichols PID controller. The response is significantly im-
proved but not as good as the responses using other tuning algorithms such as the modified
Ziegler–Nichols method with rb = 0.45, and φb = 45◦.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

← Ziegler-Nichols tuning

← refined ZN tuning

Figure 6.17. Step responses under the original and the refined Ziegler–Nichols
controllers.

6.3. Other PID Controller Tuning Formulae 203

6.3.4 The Wang–Juang–Chan Tuning Formula

Based on the optimum ITAE criterion, the tuning algorithm proposed by Wang, Juang, and
Chan [69] is a simple and efficient method for selecting the PID parameters. If the k, L, T

parameters of the plant model are known, the controller parameters are given by

Kp = (0.7303 + 0.5307T/L)(T + 0.5L)

K(T + L)
,

Ti = T + 0.5L, Td = 0.5LT

T + 0.5L
.

(6.27)

A MATLAB function wjcpid() is written for the PID controller design, using the
Wang–Juang–Chan tuning formula:

1 function [Gc,Kp,Ti,Td]=wjcpid(vars)
2 K=vars(1); L=vars(2); T=vars(3); N=vars(4); Td=0.5*L*T/(T+0.5*L);
3 Kp=(0.7303+0.5307*T/L)*(T+0.5*L)/(K*(T+L)); Ti=T+0.5*L;
4 s=tf(’s’); Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N));

where vars = [k, L, T , N].

6.3.5 Optimum PID Controller Design

Optimum setting algorithms for a PID controller were proposed by Zhuang andAtherton [70]
for various criteria. Consider the general form of the optimum criterion

Jn(θ) =
∫ ∞

0
[tne(θ, t)]2dt, (6.28)

where e(θ, t) is the error signal which enters the PID controller, with θ the PID controller
parameter vector. For the system structure shown in Figure 6.1, two parameter setting
strategies are proposed: one for the set-point input and the other for the disturbance signal
d(t). In particular, three values of n are discussed, i.e., for n = 0, 1, 2. These three
cases correspond, respectively, to three different optimum criteria: the integral squared
error (ISE) criterion, integral squared time weighted error (ISTE) criterion, and the integral
squared time-squared weighted error (IST2E) criterion [65]. The expressions given were
obtained by fitting curves to the optimum theoretical results.

Set-point optimum PID tuning

If the plant can be represented by the FOPDT model in (6.5), the typical PI controller can
be empirically represented as

Kp = a1

k

(
L

T

)b1

, Ti = T

a2 + b2(L/T)
, (6.29)

where the (a, b) pairs can be obtained from Table 6.5. When the first-order approximation
to the plant model can be obtained, the PI controller can be designed easily by the direct
use of Table 6.5 and (6.29).

204 Chapter 6. PID Controller Design

Table 6.5. Set-point PI controller parameters.

Range of L/T 0.1 − 1 1.1 − 2

Criterion ISE ISTE IST2E ISE ISTE IST2E

a1 0.980 0.712 0.569 1.072 0.786 0.628

b1 −0.892 −0.921 −0.951 −0.560 −0.559 −0.583

a2 0.690 0.968 1.023 0.648 0.883 1.007

b2 −0.155 −0.247 −0.179 −0.114 −0.158 −0.167

Table 6.6. Set-point PID controller parameters.

Range of L/T 0.1 − 1 1.1 − 2

Criterion ISE ISTE IST2E ISE ISTE IST2E

a1 1.048 1.042 0.968 1.154 1.142 1.061

b1 −0.897 −0.897 −0.904 −0.567 −0.579 −0.583

a2 1.195 0.987 0.977 1.047 0.919 0.892

b2 −0.368 −0.238 −0.253 −0.220 −0.172 −0.165

a3 0.489 0.385 0.316 0.490 0.384 0.315

b3 0.888 0.906 0.892 0.708 0.839 0.832

Table 6.7. Set-point PID controller parameters with D in feedback path.

Range of L/T 0.1 − 1 1.1 − 2

Criterion ISE ISTE IST2E ISE ISTE IST2E

a1 1.260 1.053 0.942 1.295 1.120 1.001

b1 −0.887 −0.930 −0.933 −0.619 −0.625 −0.624

a2 0.701 0.736 0.770 0.661 0.720 0.754

b2 −0.147 −0.126 −0.130 −0.110 −0.114 −0.116

a3 0.375 0.349 0.308 0.378 0.350 0.308

b3 0.886 0.907 0.897 0.756 0.811 0.813

For the PID controller, its gains can be set as follows:

Kp = a1

k

(
L

T

)b1

, Ti = T

a2 + b2(L/T)
, Td = a3T

(
L

T

)b3

, (6.30)

where for different ratios L/T , the coefficients (a, b) are defined in Table 6.6.
To include the derivative action in the output signal, the corresponding PI-D is given by

U(s) = Kp

(
1 + 1

Tis

)
E(s) − sTd

1 + sTd/N
Y(s), (6.31)

where the parameters (a, b) should be determined according to Table 6.7.

6.3. Other PID Controller Tuning Formulae 205

Disturbance rejection PID tuning

Sometimes one may want to design disturbance rejection PID controllers, i.e., to design a
controller having a good rejection performance on the disturbance signal d(t). The param-
eters of the PI controller should be set as

Kp = a1

T

(
L

T

)b1

, Ti = T

a2

(
L

T

)b2

, (6.32)

where the parameters (a, b) are obtained directly from Table 6.8.
Furthermore, for the PID controller,

Kp = a1

T

(
L

T

)b1

, Ti = T

a2

(
L

T

)b2

, Td = a3T

(
L

T

)b3

, (6.33)

and the (a, b) parameters are determined from Table 6.9.
A MATLAB function optpid() is written which can be used to get the parameters

of the PID controller:
1 function [Gc,Kp,Ti,Td,H]=optPID(key,typ,vars)
2 k=vars(1); L=vars(2); T=vars(3); N=vars(4); Td=[];
3 if length(vars)==5, iC=vars(5);
4 switch key
5 case 2
6 A=[0.980,0.712,0.569,1.072,0.786,0.628; 0.892,0.921,0.951,0.560,0.559,0.583;
7 0.690,0.968,1.023,0.648,0.883,1.007; 0.155,0.247,0.179,0.114,0.158,0.167];
8 case 3
9 A=[1.048,1.042,0.968,1.154,1.142,1.061; 0.897,0.897,0.904,0.567,0.579,0.583;

Table 6.8. Disturbance rejection PI controller parameters.

Range of L/T 0.1 − 1 1.1 − 2

Criterion ISE ISTE IST2E ISE ISTE IST2E

a1 1.279 1.015 1.021 1.346 1.065 1.076

b1 −0.945 −0.957 −0.953 −0.675 −0.673 −0.648

a2 0.535 0.667 0.629 0.552 0.687 0.650

b2 0.586 0.552 0.546 0.438 0.427 0.442

Table 6.9. Disturbance rejection PID controller parameters.

Range of L/T 0.1 − 1 1.1 − 2

Criterion ISE ISTE IST2E ISE ISTE IST2E

a1 1.473 1.468 1.531 1.524 1.515 1.592

b1 −0.970 −0.970 −0.960 −0.735 −0.730 −0.705

a2 1.115 0.942 0.971 1.130 0.957 0.957

b2 0.753 0.725 0.746 0.641 0.598 0.597

a3 0.550 0.443 0.413 0.552 0.444 0.414

b3 0.948 0.939 0.933 0.851 0.847 0.850

206 Chapter 6. PID Controller Design

10 1.195,0.987,0.977,1.047,0.919,0.892; 0.368,0.238,0.253,0.220,0.172,0.165;
11 0.489,0.385,0.316,0.490,0.384,0.315; 0.888,0.906,0.892,0.708,0.839,0.832];
12 case 4
13 A=[1.260,1.053,0.942,1.295,1.120,1.001; 0.887,0.930,0.933,0.619,0.625,0.624;
14 0.701,0.736,0.770,0.661,0.720,0.754; 0.147,0.126,0.130,0.110,0.114,0.116;
15 0.375,0.349,0.308,0.378,0.350,0.308; 0.886,0.907,0.897,0.756,0.811,0.813];
16 end
17 ii=0; if (L/T>1) ii=3; end; tt=L/T; a1=A(1,ii+iC); b1=-A(2,ii+iC);
18 a2=A(3,ii+iC); b2=-A(4,ii+iC); Kp=a1/k*ttˆb1; Ti=T/(a2+b2*tt);
19 if key==3| key==4
20 a3=A(5,ii+iC); b3=A(6,ii+iC); Td=a3*T*ttˆb3;
21 end
22 else,
23 Kc=vars(5); Tc=vars(6); k=vars(7);
24 switch key
25 case 2, Kp=0.361*Kc;Ti=0.083*(1.935*k+1)*Tc;
26 case 3, Kp=0.509*Kc; Td=0.125*Tc; Ti=0.051*(3.302*k+1)*Tc;
27 case 4, Kp=(4.437*k-1.587)/(8.024*k-1.435)*Kc;
28 Ti=0.037*(5.89*k+1)*Tc; Td=0.112*Tc;
29 end
30 end
31 [Gc,H]=writepid(Kp,Ti,Td,N,key);

The syntax of the function is

[Gc,Kp,Ti,Td,H]=optpid(key,typ,vars)

where key = 2, 3, 4 for PI, normal PID, and PID controllers with D in the feedback
path, respectively, and typ = 1, 2 for set-point and disturbance rejection, respectively.
The variable vars = [k, L, T , N, C], where C is the criterion type with C = 1, 2, 3
for ISE, ISTE, and IST2E criteria, respectively. The returned variables are Gc, the cascade
controller object, and Kp,Ti ,Td are the PID controller parameters. H is returned, ifkey = 4,
as the equivalent feedback transfer function for the structure with the derivative in the
feedback path.

Example 6.12. Consider the plant model in Example 6.4. The optimal PI and PID con-
trollers can be designed using the following MATLAB statements:

>> G=tf(10,[1,10,35,50,24]); N=10; [k,L,T]=getfod(G);
f1=figure; f2=figure;
for iC=1:3

[Gc,Kp,Ti,Td]=optpid(2,1,[k,L,T,N,iC]);
figure(f1),G_c=feedback(G*Gc,1); step(G_c,10),hold on,
[Gc,Kp,Ti,Td]=optpid(3,1,[k,L,T,N,iC]);
figure(f2),G_c=feedback(G*Gc,1); step(G_c,10),hold on,

end

The relevant closed-loop step responses are shown in Figures 6.18(a) and (b).

6.3. Other PID Controller Tuning Formulae 207

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

← ISE control
← ISTE control

← IST2E control

(a) PI control

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

(b) PID control

Figure 6.18. Closed-loop step responses of optimal controllers.

PID controller design based on ultimate frequency and gain

When the crossover frequency ωc and the ultimate gain Kc are known, with Tc = 2π/ωc,
three types of PID controllers are summarized in Table 6.10, where κ = kKc is the nor-
malized gain of the plant model [70]. The values given were deduced from the relationship
between the FOPDT plant parameters and the ultimate gain and frequency.

The corresponding values for the PI controller are given in Table 6.11.
When the relay automatic tuning strategy is used, which will be discussed later in

this chapter, the oscillation frequency ω0 and the magnitude a0 can be measured. Then,
T0 = 2π/ω0 and K0 = 4h/(a0π). Assume that κ0 = kK0. ω0 and K0 are approximations
to ωc and Kc, but more accurate results can be obtained for the PID controller parameters
from Table 6.12.

The PI controllers for disturbance rejection can also be obtained with the direct use
of Table 6.13.

Table 6.10. PID controller parameters for ISTE criterion.

PID Set-point Disturbance rejection D in feedback

Kp 0.509Kc
4.434κ − 0.966

5.12κ + 1.734
Kc

4.437κ − 1.587

8.024κ − 1.435
Kc

Ti 0.051(3.302κ + 1)Tc
1.751κ − 0.612

3.776κ + 1.388
Tc 0.037(5.89κ + 1)Tc

Td 0.125Tc 0.144Tc 0.112Tc

Table 6.11. PI controller parameters for ISTE criterion.

PI Set-point Disturbance rejection

Kp
4.264 − 0.148κ

12.119 − 0.432κ
Kc

1.892κ + 0.244

3.249κ + 2.097
Kc

Ti 0.083(1.935κ + 1)Tc
0.706κ − 0.227

0.7229κ + 1.2736
Tc

208 Chapter 6. PID Controller Design

Table 6.12. PID controller parameters for ISTE criterion for autotuning.

PID Set-point Disturbance rejection D on output

Kp 0.604K0
6.068κ0 − 4.273

5.758κ0 − 1.058
K0

2.354κ0 − 0.696

3.363κ0 + 0.517
K0

Ti 0.04(4.972κ0 + 1)T0
1.1622κ0 − 0.748

2.516κ0 − 0.505
T0 0.271κ0T0

Td 0.130T0 0.15T0c 0.1162T0c

Table 6.13. PI controller parameters for ISTE criterion for autotuning.

PI Set-point Disturbance rejection

Kp
1.506κ0 − 0.177

3.341κ0 + 0.606
K0

6.068κ0 − 4.273

5.758κ0 − 1.058
K0

Ti 0.055(3.616κ0 + 1)T0
5.352κ0 − 2.926

5.539κ0 + 5.536
T0

Improved gain-phase approach

The gain-phase assignment algorithm can be used to design a PID controller

Kp = m cos φ

| G(jωc) | = mKc cos φ, Td = tanφ+
√

4/α+ tan2φ

2ωc

, Ti = αTd, (6.34)

where α = 0.413(3.302κ + 1) or α = 1.687κ0. The constants φ and m can be obtained
from one of the following two cases:

• For the normalized gain κ ,

φ = 33.8◦(1 − 0.97e−0.45κ), m = 0.614(1 − 0.233e−0.347κ). (6.35)

• If the frequency and the gain under automatic tuning are measured, the following
approach can be used:

φ = 33.2◦(1 − 1.38 e−0.68κ0), m = 0.613(1 − 0.262 e−0.44κ0). (6.36)

The MATLAB function optpid() can be used again to solve for the PID controller
parameters with the improved gain-phase method. The syntax of the function, for the particu-
lar design tasks with this algorithm, is [Gc,Kp,Ti,Td,H]=optpid(key,typ,vars)

where vars = [k, L, T , N, Kc, Tc, κ] are the relevant parameters of the plant model. As
before, if the value of key is selected as key = 4, the effective PID controller, with
derivative action in the feedback path, can be designed.

6.3. Other PID Controller Tuning Formulae 209

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

(a) step responses

−360 −315 −270 −225 −180 −135 −90 −45 0
−40

−30

−20

−10

0

10

20

30

40

 6 dB
 3 dB

 1 dB

 0.5 dB
 0.25 dB

 0 dB

 −1 dB

 −3 dB

 −6 dB

 −12 dB

 −20 dB

 −40 dB

Nichols Chart

Open−Loop Phase (deg)

O
pe

n−
L

oo
p

G
ai

n
(d

B
)

(b) Nichols charts

Figure 6.19. Responses for the optimal gain-phase margins design.

Example 6.13. Consider again the plant model in Example 6.4. The PID controller can be
designed using the following MATLAB statements:

>> G=tf(10,[1,10,35,50,24]); [Kc,pm,wc,wm]=margin(G);
Tc=2*pi/wc; kappa=dcgain(G)*Kc; [k,L,T]=getfod(G);
N=10; vars=[k,L,T,N,Kc,Tc,kappa];
[Gc,Kp,Ti,Td,H]=optpid(3,1,vars); step(feedback(G*Gc,1));
figure,nichols(G*Gc);grid;axis([-360,0,-40,40])

the controller is

Gc(s) = 6.4134

(
1 + 2.6276

s
+ 0.3512s

)
.

The closed-loop step response and the Nichols chart of the system are obtained as shown
in Figures 6.19(a) and (b), respectively. It can be seen that the responses are satisfactory,
compared with the controllers designed using other approaches.

Example 6.14. Let us revisit the original Ziegler–Nichols tuning algorithm. We have seen
in Sec. 6.2 that the original Ziegler–Nichols parameter setting formula does not achieve a
very satisfactory PID control performance. In this example, we will show, via redesigning
the PID controller for the plant model in Example 6.4, a new Ziegler–Nichols parameter
setting procedure can give a much improved performance which is close to that achieved
by the optimum PID parameter setting method.

Before applying the original Ziegler–Nichols parameter setting formula, the optimal
reduced-order model is obtained first to extract the characteristics of the plant model. Then,
with this optimally reduced FOPDT model, a PID controller can be designed using the
Ziegler–Nichols algorithm. By the following MATLAB statements:

>> G=tf(10,[1,10,35,50,24]); R=opt_app(G,0,1,1); L=R.ioDelay;
T=R.den{1}(1)/R.den{1}(2); K=R.num{1}(2)/R.den{1}(2);
Gc=ziegler(3,[K,L,T,10]); Gc1=optpid(3,1,[K,L,T,10,2]);
step(feedback(G*Gc,1),feedback(G*Gc1,1))

the new Ziegler–Nichols PID controller and the optimum PID controller can be designed.
Their step responses are compared in Figure 6.20. We can see that the new Ziegler–Nichols

210 Chapter 6. PID Controller Design

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

← optimum controller

← new Ziegler-Nichols tuning

Figure 6.20. Step responses comparison of two PID controllers.

parameter setting procedure gives a much improved performance compared with that pre-
sented in Example 6.4. In fact, this new Ziegler–Nichols PID controller performs similarly
to the optimum PID controller in terms of step response speed and overshoot.

6.4 PID Controller Tuning Algorithms for Other Types of
Plants

All the PID tuning algorithms discussed in the previous sections are based on the FOPDT
plant models; they cannot be used for many other plant models in practice. A great many PID
tuning algorithms have been collected in the handbook [71], where apart from the FOPDT-
based algorithms, tuning algorithms for other plant models are also given. Here only a few
PID controller algorithms are summarized, with their MATLAB implementations.

6.4.1 PD and PID Parameter Setting for IPDT Models

A widely encountered plant model is described by a mathematical description G(s) =
Ke−Ls/s, which is referred to as the integrator plus dead time (IPDT) model. This kind of
plant model cannot be controlled by the PD and PID controllers using the setting algorithms
given in the previous sections.

Since there already exists an integrator in the plant model, an extra integrator in the
controller is not required to remove a steady-state error to a step input, but it is needed to
remove the output error caused by a steady disturbance at the plant input. PD controllers may
also be used to avoid large overshoot. The mathematical models of PD and PID controllers
are, respectively,

GPD(s) = Kp(1 + Tds), G PID(s) = Kp

(
1 + 1

Tis
+ Tds

)
. (6.37)

6.4. PID Controller Tuning Algorithms for Other Types of Plants 211

Table 6.14. The coefficients of the controller for IPDT models.

criterion a1 a2 a3 a4 a5

ISE 1.03 0.49 1.37 1.49 0.59

ITSE 0.96 0.45 1.36 1.66 0.53

ISTSE 0.9 0.45 1.34 1.83 0.49

PD and PID parameter setting algorithms were presented in [72], based on various
performance indices, and given as

PD controller Kp = a1

KL
, Td = a2L,

PID controller Kp = a3

KL
, Ti = a4L, Td = a5L,

(6.38)

where for different criteria, the coefficients ai can be selected as shown in Table 6.14. The
following MATLAB function can be written to implement the above algorithms:

1 function [Gc,Kp,Ti,Td]=ipdtctrl(key,key1,K,L,N)
2 a=[1.03,0.49,1.37,1.49,0.59; 0.96,0.45,1.36,1.66,0.53;
3 0.9,0.45,1.34,1.83,0.49]; s=tf(’s’); Ti=inf;
4 if key==1
5 Kp=a(key1,1)/K/L; Td=a(key1,2)*L; Gc=Kp*(1+Td*s/(1+Td/N*s));
6 else
7 Kp=a(key1,3)/K/L; Ti=a(key1,4)*L; Td=a(key1,5)*L;
8 Gc=Kp*(1+1/Ti/s+Td*s/(1+Td/N*s));
9 end

In the function, key is the switch for PD and PID controller selections, with key = 1 for
PD, 2 for PID. The argument for key1 is set to 1, 2, 3 for ISE, ITAE, and ISTSE selections,
respectively.

6.4.2 PD and PID Parameters for FOIPDT Models

Another category of plant model is defined by a first-order lag and integrator plus dead time
(FOIPDT) whose mathematical model is

G(s) = Ke−Ls

s(T s + 1)
.

Since an integrator is contained in the model, an extra integrator is not necessary in the
controller to remove the steady-state error to a set point change. Thus, a PD controller may
be used if there is no steady-state disturbance at the plant. A PD controller setting algorithm
is included in [71, 73]:

Kp = 2

3KL
, Td = T . (6.39)

Also a PID setting algorithm is included in [71, 74] such that

Kp = 1.111T

KL2

1[
1+(T /L)0.65

]2 , Ti = 2L

[
1+
(

T

L

)0.65
]

, Td = Ti

4
. (6.40)

212 Chapter 6. PID Controller Design

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step Response

Time (sec)

A
m

pl
itu

de

PID controller

PD controller

Figure 6.21. Comparisons of the PID and PD controllers.

A control design function foipdt() is written to implement the two algorithms,
where key is used to select the structure of the controller, i.e., 1 for PD and 2 for PID. If
the parameters K, L, T , N are known, the controller can immediately be designed.

1 function [Gc,Kp,Ti,Td]=foipdt(key,K,L,T,N)
2 s=tf(’s’);
3 if key==1
4 Kp=2/3/K/L; Td=T; Ti=inf; Gc=Kp*(1+Td*s/(1+Td*s/N));
5 else
6 a=(T/L)ˆ0.65; Kp=1.111*T/(K*Lˆ2)/(1+a)ˆ2;
7 Ti=2*L*(1+a); Td=Ti/4; Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N));
8 end

Example 6.15. Consider the plant model

G(s) = 1

s(s + 1)4 ,

where there exists an integrator and the rest of the model can be described by an FOPDT
model. Thus, the original model can be approximated by an FOIPDT model. The following
statements can be used to design PD and PID controllers. The step response of the closed-
loop systems are obtained as shown in Figure 6.21.

>> s=tf(’s’); G1=1/(s+1)ˆ4; G=G1/s; R=opt_app(G1,0,1,1);
K=R.num{1}(2)/R.den{1}(2); L=R.ioDelay; T=1/R.den{1}(2);
[Gc1,Kp1,Ti1,Td1]=foipdt(1,K,L,T,10);
[Gc2,Kp2,Ti2,Td2]=foipdt(2,K,L,T,10);
step(feedback(G*Gc1,1),feedback(G*Gc2,1))

The controllers are

GPD(s)=0.3631

(
1+ 2.3334s

1+0.23334s

)
, GPID(s)=0.1635

(
1+ 1

7.9638s
+ 1.9910s

1+0.1991s

)
.

It can be seen from the control results that the PD controller is significantly better than the
PID controller. This is because the 180◦ lag given by two integrators makes good control
more difficult.

6.5. PID_Tuner: A PID Controller Design Program for FOPDT Models 213

Table 6.15. The coefficients of the controller for unstable FOPDT models.

Criterion a1 b1 a2 b2 a3 b3 γ

ISE 1.32 0.92 4 0.47 3.78 0.84 0.95

ITSE 1.38 0.9 4.12 0.9 3.62 0.85 0.93

ISTSE 1.35 0.95 4.52 1.13 3.7 0.86 0.97

6.4.3 PID Parameter Settings for Unstable FOPDT Models

In practical control systems, the plant model may approximate an unstable FOPDT model, i.e.,

G(s) = Ke−Ls

T s − 1
.

The following algorithms may be used to design the PID controller, [72].

Kp = a1

K
Ab1 , Ti = a2T Ab2 , Td = a3T

[
1 − b3A

−0.02
]
Aγ , (6.41)

where A = L/T . For different criteria, the coefficients ai, bi, γ of the PID controller can
be obtained in Table 6.15. Based on the algorithm, a PID controller design function for
unstable FOPDT models can be written such that

1 function [Gc,Kp,Ti,Td]=ufopdt(key,K,L,T,N)
2 Tab=[1.32, 0.92, 4.00, 0.47, 3.78, 0.84, 0.95;
3 1.38, 0.90, 4.12, 0.90, 3.62, 0.85, 0.93;
4 1.35, 0.95, 4.52, 1.13, 3.70, 0.86, 0.97];
5 a1=Tab(key,1); b1=Tab(key,2); a2=Tab(key,3); b2=Tab(key,4);
6 a3=Tab(key,5); b3=Tab(key,6); gam=Tab(key,7); A=L/T;
7 Kp=a1*Aˆb1/K; Ti=a2*T*Aˆb2; Td=a3*T*(1-b3*Aˆ(-0.02))*Aˆgam;
8 s=tf(’s’); Gc=Kp*(1+1/Ti/s+Td*s/(1+Td/N*s));

6.5 PID_Tuner: A PID Controller Design Program for
FOPDT Models

Hundreds of PID parameter tuning algorithms have been collected in the handbook [71].
Many of the methods are based on the FOPDT plant models. Thus, a GUI is designed,
which can be used to design PID-type controllers, and also a closed-loop simulation for the
designed controllers can be obtained. With the interface, the following procedures can be
used to design PID controllers:

1. Enter pid_tuner under the MATLAB prompt. The interface in Figure 6.22 is
given, which can be used to design PID-type controllers.

2. Click the Plant model button; a dialog box will be given to prompt you to enter the
plant model. Any single input–single output (SISO) continuous model, with or without
time delays, can be defined. The button Modify Plant Model can be used to modify
the plant models.

3. Once the plant model is specified, the Get FOPDT parameters button can be clicked
to extract the FOPDT parameters, i.e., to find the parameters K, L, T . Many different

214 Chapter 6. PID Controller Design

Figure 6.22. PID controller design interface.

methods can be used to extract the parameters, for instance, using the optimum fitting
methods. The fitting algorithms can be selected via the FOPDT model parameters
fitting list box.

4. With the K, L, T parameters, the controller can be designed. The controller type can
be selected by the combinations of the list boxes Choose controller type, Apply to,
and Tuning algorithm selection, which provides the algorithms in [75].

5. The Design Controller button can be used to design the relevant PID controller.

6. The Closed-loop Simulation button can be used to show the closed-loop step response
of the system under the controllers designed.

Example 6.16. For the plant model

G(s) = 1

(s + 1)6 ,

click Plant model to enter the model. The dialog box shown in Figure 6.23 is displayed, and
the numerator, denominator, coefficient vectors, and delay constant can be entered. Then
click the Apply button to model the input procedure.

6.5. PID_Tuner: A PID Controller Design Program for FOPDT Models 215

Figure 6.23. Dialog box of plant model input.

Figure 6.24. PID controller design and display.

To design a controller, the FOPDT parameters should be obtained first. The fitting
algorithms can be selected as the suboptimal reduction item; the button Get FOPDT
model can then be clicked to extract the model parameters, as shown in Figure 6.24.

The controller can be obtained by the Design Controller button. For instance, the
Minimum IAE (Wang et al) item can be used to design the controller

Gc(s) = 0.936172

(
1 + 1

4.565340s
+ 1.062467s

)
.

216 Chapter 6. PID Controller Design

Click the Closed-loop Simulation button to show the closed-loop step response. One
may click the Hold button to hold the results. The step responses under different controllers
can be displayed together. So, this feature can be used to compare different algorithms, as
shown in Figure 6.24.

6.6 Optimal Controller Design
Optimal control is defined as the optimization of certain predefined performance indices.
For instance, commonly used performance indices can be the ones in (3.50). Sometimes,
parametric objective functions may be used, for example, the linear quadratic optimal reg-
ulator problem, where the two weighting matrices Q, R need to be defined. There is as yet
no universally accepted way to define these two matrices.

In this section, we first summarize and illustrate some solutions to unconstrained
and constrained optimization problems using MATLAB. Then the method can be applied
to optimal controller design problems. Finally, a MATLAB interface optimal controller
designer (OCD) for optimal controller design is presented.

6.6.1 Solutions to Optimization Problems with MATLAB

Unconstrained optimization problems

The mathematical formulation of the unconstrained optimization problem is

min
x

F(x), (6.42)

where x = [x1, x2, . . . , xn]T. The interpretation of the formula is: find the vector x such
that the objective function F(x) is minimized. If a maximization problem is treated, the
objective function can be changed to −F(x) such that it can be converted to a minimization
problem.

A MATLAB function fminsearch() is provided using the well-established sim-
plex algorithm [76]. The syntax of the function is

[x,fopt,key,c]=fminsearch(Fun, x0, OPT)

where Fun is a MATLAB function, an inline function, or an anonymous function to describe
the objective function. The variable x0 is the starting point for the search method. The
argument OPT contains further control options for the optimization process.

Example 6.17. If a function with two variables is given by z=f (x, y)=(x2−2x)e−x2−y2−xy

and the minimum point is required, one should first introduce a vector x for the unknown
variables x and y. One may select x1 = x and x2 = y. The objective function can be
rewritten as f (x) = (x2

1 − 2x1)e−x2
1−x2

2−x1x2 . The objective function can be expressed as
an anonymous function such that

>> f=@(x)[(x(1)ˆ2-2*x(1))*exp(-x(1)ˆ2-x(2)ˆ2-x(1)*x(2))];

6.6. Optimal Controller Design 217

If one selects an initial search point at (0, 0), the minimum point can be found with the
statements

>> x0=[0; 0]; x=fminsearch(f,x0).

Then the solution obtained is x = [0.6110, −0.3055]T.

Constrained optimization problems

The general form of the unconstrained optimization problem is

min

x s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ax ≤ B

Aeqx = Beq
xm ≤ x ≤ xM

C(x) ≤ 0
Ceq(x) = 0,

F (x) (6.43)

where x = [x1, x2, . . . , xn]T. The constraints are classified as linear equality constraints
Aeqx = Beq , linear inequality constraints Ax ≤ B, and nonlinear constraints Ceq(x) = 0
and C(x) ≤ 0. The upper and lower bounds of the optimization variables can also be
defined such that xm ≤ x ≤ xM .

The interpretation of the optimization problem is: find the vector x, which minimizes
the objective function F(x), while satisfying all the constraints.

A MATLAB function fmincon() can be used to solve constrained optimization
problems. The syntax of the function is

[x,fopt,key,c]=fmincon(Fun,x0,A,B,Aeq,Beq,xm,xM,CFun,OPT)

where Fun again could be M-functions, inline functions, or anonymous functions for the
objective function, and x0 is the starting search point. The nonlinear constraints can be
described by the MATLAB function CFun.

Example 6.18. Consider the following nonlinear programming problem:

min

x s.t.

⎧⎪⎪⎨⎪⎪⎩
x2

1+x2
2+x2

3−25=0

8x1+14x2+7x3−56=0

x1,x2,x3≥0

1000 − x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3.

The objective function can be expressed with an anonymous function

>> f=@(x)1000-x(1)*x(1)-2*x(2)*x(2)-x(3)*x(3)-x(1)*x(2)-x(1)*x(3);

Also, the two constraints are equalities, one of which is nonlinear. The nonlinear
constraints can be described in the following MATLAB function, where two constraint
variables ceq and c are returned. Since there is no inequality constraint, the variable c
returns an empty matrix.

1 function [c,ceq]=opt_con(x)
2 ceq=x(1)*x(1)+x(2)*x(2)+x(3)*x(3)-25; c=[];

218 Chapter 6. PID Controller Design

The linear equality constraint can be expressed by the Aeq , Beq matrices, while the
linear inequality matrices A and B should be empty ones, since there is no linear inequalities
in the problem. Selecting an initial search position at x0 = [1, 1, 1]T, the problem can then
be solved using the following statements:

>> x0=[1;1;1]; xm=[0;0;0]; xM=[]; A=[]; B=[]; Aeq=[8,14,7]; Beq=56;
[x,f_opt,c,d]=fmincon(f,x0,A,B,Aeq,Beq,xm,xM,’opt_con’)

The optimum solution can then be found, where x∗ = [3.5121, 0.2170, 3.5522]T and fopt =
961.7151.

6.6.2 Optimal Controller Design

With the powerful tools provided in MATLAB, many optimal control problems can be
converted into conventional optimization problems. With the above-mentioned functions,
some optimal controller design problems can be easily solved. Although not allowing
elegant analytical solutions, numerical methods are extremely powerful practical techniques
for controller design.

Example 6.19. Assume that

G(s) = 10(s + 1)(s + 0.5)

s(s + 0.1)(s + 2)(s + 10)(s + 20)
.

The phase lead-lag controllers can be designed using the method in Sec. 5.1. Here opti-
mal controller design is explored. Integral-type criteria are very suitable for servo control
problems. Given the plant model, a Simulink block diagram can be established as shown in
Figure 6.25(a), where the ITAE criterion can be evaluated as shown.

In order to minimize the ITAE criterion, the following MATLAB function can be
written to describe the objective function:

1 function y=c6optml(x)
2 assignin(’base’,’Z1’,x(1)); assignin(’base’,’P1’,x(2));
3 assignin(’base’,’Z2’,x(3)); assignin(’base’,’P2’,x(4));
4 assignin(’base’,’K’,x(5)); % assign variable into MATLAB workspace
5 [t,xx,yy]=sim(’c6moptm1.mdl’,3); y=yy(end); % evaluate objective function

1

time1

K(s+Z1)(s+Z2)

(s+P1)(s+P2)

Zero−Pole1

4(s+1)(s+0.5)

s(s+0.1)(s+10)(s+20)(s+2)

Zero−Pole
Step Scope

1
s|u|

(a) Simulink model (file: c6moptm1.mdl)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

(b) closed-loop response

Figure 6.25. Phase lead-lag controller and system response.

6.6. Optimal Controller Design 219

The assignin() function can be used to assign the variables in the MATLAB workspace,
and the model parameters can be defined in the optimization variable vector x. The following
MATLAB statements can be used to solve the optimization problem:

>> x0=20*ones(5,1); x=fminsearch(’c6optm1’,x0)

and the parameters are returned in the variable x, from which the controller model can be
written as

Gc(s) = 243.77
(s + 53)(s + 66.58)

(s + 38.28)(s + 62.09)
.

Under this controller, the step response of the system is shown in Figure 6.25(b).
In practical calculation, when the zero of the controller is very small, the computation

may become extremely slow. To solve the problem, a suitable constraint to ensure that
all the five variables do not become smaller than 0.01 can be introduced. The following
statements can then be used to solve the problem:

>> x=fmincon(’c6optm1’,x0,[],[],[],[],0.01*ones(5,1))

Based on the numerical optimization technique, an extra constraint can be introduced.
For instance, if one wants to reduce the overshoot such that σ ≤ 3%, a new Simulink model
can be established as shown in Figure 6.26(a). The objective function can be rewritten as

1 function y=c6optm2(x)
2 assignin(’base’,’Z1’,x(1)); assignin(’base’,’P1’,x(2));
3 assignin(’base’,’Z2’,x(3)); assignin(’base’,’P2’,x(4));
4 assignin(’base’,’K’,x(5)); % Assign variables to MATLAB workspace
5 [t,xx,yy]=sim(’c6moptm2.mdl’,3); y=yy(end,1); % Evaluate objective function
6 if max(yy(:,2))>1.03, y=1.2*y; end % update objective function

It can be seen from the last line that if the overshoot is too large, one can increase the
objective function purposely as a penalty.

The following statements can be given to solve the problem, and the closed-loop step
response of the system is shown in Figure 6.26(b).

>> x=fmincon(’c6optm2’,x0,[],[],[],[],0.01*ones(5,1))

2

1

time1

K(s+Z1)(s+Z2)

(s+P1)(s+P2)

Zero−Pole1

4(s+1)(s+0.5)

s(s+0.1)(s+10)(s+20)(s+2)

Zero−Pole
Step Scope

1
s|u|

(a) modified Simulink model (file:c6moptm2.mdl)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) closed-loop step response

Figure 6.26. Modified simulation model and response.

220 Chapter 6. PID Controller Design

3

2

1

time1

K(s+Z1)(s+Z2)

(s+P1)(s+P2)

Zero−Pole1

4(s+1)(s+0.5)

s(s+0.1)(s+10)(s+20)(s+2)

Zero−Pole
Step ScopeSaturation

1
s|u|

Figure 6.27. The Simulink model with saturation (file: c6moptm3.mdl).

The controller model

Gc2(s) = 161.4965
(s + 43.1203)(s + 55.7344)

(s + 28.4746)(s + 61.0652)

can be designed.

In ordinary control theory, hardware-related implementation of the PID controller is
often not considered; i.e., in theory, extremely large signals are acceptable. In real-time
control, however, the signal cannot be too large in order to avoid hardware failure. It can
be seen that for a unit step input, this controller gives an initial output of 200, which is too
high. It could cause hardware problems with a bad design and saturate the actuator leading to
nonlinear operation. However, if saturation is included in the actuator, the resulting response
can be easily solved using numerical methods, since one can simply add a saturation block
in the Simulink model.

Example 6.20. Consider again the controller design problem. Assuming that the control
signal should be kept within ±20, the Simulink model can be modified as shown in Fig-
ure 6.27, and the objective function can be rewritten as

1 function y=c6optm3(x)
2 assignin(’base’,’Z1’,x(1)); assignin(’base’,’P1’,x(2));
3 assignin(’base’,’Z2’,x(3)); assignin(’base’,’P2’,x(4));
4 assignin(’base’,’K’,x(5)); % assign variables in MATLAB workspace
5 [t,xx,yy]=sim(’c6moptm3.mdl’,15); y=yy(end,1); % evaluate objective function
6 if max(yy(:,2))>1.03, y=1.4*y; end % update the objective function

The following statements can be used to search for the optimum controller for the
system:

>> x=fmincon(’c6optm3’,x0,[],[],[],[],0.01*ones(5,1))

and the controller

Gc(s) = 37.1595
(s + 142.6051)(s + 62.6172)

(s + 20.3824)(s + 27.6579)

can be designed. The output signal and the control signal under such a controller can be
obtained as shown in Figure 6.28. It can be seen that the control results are satisfactory.

6.6. Optimal Controller Design 221

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) output signal

0 5 10 15

−20

−10

0

10

20

(b) control signal

Figure 6.28. Step response of the system when saturations are introduced.

Figure 6.29. OCD interface.

6.6.3 A MATLAB/Simulink-Based Optimal Controller Designer and
Its Applications

From the examples in the previous section, using numerical optimization algorithms, optimal
controller design can be made simple. In this section, we will introduce a MATLAB/Simulink-
based optimal controller designer (OCD) with some application examples.

The procedures for applying the OCD program are as follows:

1. Type ocd at the MATLAB prompt; the main interface is shown in Figure 6.29. The
program can be used in optimal controller design.

222 Chapter 6. PID Controller Design

2. A Simulink model can be established and the model should contain at least two
elements: the undetermined variable names and the outport reflecting the optimum
criterion. For instance, in the PI controller design problem, the two variables Kp and
Ki can be assigned. The ITAE criterion can be represented in the Simulink model as
outport 1.

3. Fill in the Simulink model name in the Select a Simulink model edit box.

4. Fill in the variable names to be optimized in the Specify Variables to be optimized
edit box, with variable names separated with commas.

5. Estimate the terminate time for the error to become zero and enter it in the Simulation
terminate time edit box.

6. Click Create File to automatically generate a MATLAB function optfun_*.m and
click Clear Trash to delete the temporary objective function files.

7. Click Optimize to start the optimization process. The optimal variables can be ob-
tained. Sometimes, the button should be clicked again to ensure more accurate opti-
mum solutions. The functions fminsearch(), nonlin() and fmincon() can
be called automatically for parameter optimization.

8. The upper and lower bounds to the variables can also be used, and an initial search
point can be specified, if necessary.

Example 6.21. Consider the FOIPDT-type plant model in Example 6.15; i.e., the plant
model is given by

G(s) = 1

s(s + 1)4 .

The Simulink model for the PID control, with ITAE descriptions, is established as shown
in Figure 6.30(a), and it is saved in the file c6mopt4.mdl.

Fill in the Simulink model name in the Select a Simulink model edit box, for instance,
fill in c6mopt4 for this example. The variable names to be optimized, Kp,Ki,Kd should
be entered in the SpecifyVariables to be optimized edit box, and enter 30 in the Simulation
terminate time edit box. Then click the Create File button to automatically generate the
MATLAB function to describe the objective function

1

1

s(s+1)(s+1)(s+1)(s+1)

Zero−Pole

Ki

s

Kd.s

0.01s+1

Step
Scope

1
s

Kp

|u|

(a) Simulink model (file: c6mopt4.mdl)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step Response

Time (sec)

A
m

pl
itu

de

↓
← PID controller

PD controller

← optimum controller

(b) comparisons

Figure 6.30. PID control model and response comparisons.

6.6. Optimal Controller Design 223

1 function y=optfun_2(x)
2 assignin(’base’,’Kp’,x(1));
3 assignin(’base’,’Ki’,x(2));
4 assignin(’base’,’Kd’,x(3));
5 [t_time,x_state,y_out]=sim(’c6mopt4.mdl’,[0,30.000000]);
6 y=y_out(end);

where the second, third, and fourth lines in the code will assign the variables in vector x

to the variables Kp, Ki, Kd in the MATLAB workspace. Simulation is then performed to
calculate the objective function.

Click the Optimize button to initiate the optimization process. In the meantime, the
scope window should be opened to visualize the optimization process. After optimization,
the optimum PID controller will be obtained as

Gc(s) = 0.2583 + 0.0001

s
+ 0.7159s

0.01s + 1

which minimizes the ITAE criterion. It can be seen that Ki = 0.0001 is very small, which
can be neglected, and thus a PD controller is sufficient for the system. The closed-loop
step response is shown in Figure 6.30(b). It can be seen that the control response is highly
superior to the one obtained in Example 6.15.

Example 6.22. The OCD program is not restricted to simple PID controller problems. It
can also be used for complicated system models such as the cascade PI control system shown
in Figure 2.11.

To solve the problem, the Simulink model shown in Figure 6.31 can be established,
and saved as c6model2.mdl. Note that four undetermined parameters Kp1, Ki1, Kp2,
Ki2 should be optimized. The ITAE criterion can be defined. Starting the OCD, the model
name c6model2 should be entered into the Select a Simulink model edit box, and in
the Specify Variables to be optimized edit box, Kp1,Ki1,Kp2,Ki2 should be filled
in. Also, in the Simulation terminate time edit box, one may fill in 0.6. Click the Create
File to generate the MATLAB function. One may design the controllers by clicking the
Optimize button, and the controllers, which minimize the ITAE criterion, can be found as

1
time

0.21

0.15s+1

130

s0.0067s+1

70

ThyristerStep

0.01s+1

0.0044

Speed with filter

Scope

Kp1.s+Ki1

s

Outer PI
Controller

1
s

Kp2.s+Ki2

s

Inner PI
Controller

0.212

0.01s+1

0.1

Filter

0.01s+1

0.1

Current with filter

|u|

Abs

Figure 6.31. Simulation model of cascade PI control (file: c6model2.mdl).

224 Chapter 6. PID Controller Design

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

250

Figure 6.32. Optimal control of the system.

Kp1 = 37.9118, Ki1 = 12.1855, Kp2 = 10.8489, and Ki2 = 0.9591, i.e., the controllers are

Gc1(s) = 37.9118 + 12.1855

s
and Gc2(s) = 10.8489 + 0.9591

s
.

Under these controllers, the step response of the closed-loop system can be obtained
as shown in Figure 6.32. It can be seen that the response is satisfactory.

It can be seen from the previous examples that the OCD program is quite versatile
in finding the optimal controllers. However, in some applications, the OCD may not find
a solution due to the poorly posed problem or because a good initial search point has not
been found. This can be a drawback in conventional optimization algorithms, but many
such problems can be avoided by intelligent use based on an understanding of the system
behavior.

The genetic algorithm (GA) [77] allows the optimization search from many initial
points in a parallel manner. The Genetic Algorithm Optimization Toolbox (GAOT) [78]
provides a series of MATLAB-based functions for solving optimization problems using
genetic algorithms. This toolbox is used with the OCD program, and the facility is useful
in solving problems where conventional optimization methods cannot easily find an initial
feasible search point. The GA Optimization Toolbox is the last list box in Figure 6.29.

Example 6.23. Consider an unstable plant model

G(s)= s + 2

s4+8s3+4s2−s+0.4
.

By the direct use of the OCD program, a feasible PID controller cannot be designed. How-
ever, one may still establish a Simulink model as shown in Figure 6.33, which is the same
as the previous examples.

In order to ensure that the control action is not too large, a saturation element can be
appended to the controller, with the saturation width of � = 5. From the OCD program,
with the GAOT selection, the optimal PID controller can be designed as

Gc(s) = 47.8313 + 0.2041

s
+ 55.3632s

0.01s + 1
.

6.7. More Topics on PID Control 225

1
time

s
Ki(s)

Kd.s

0.02s+1

s+2

s +8s +4s −s+0.44 3 2
Step ScopeSaturation

1/s

Kp

|u|

Kp

approximate Kd

Ki

ITAE criterion

unstable plant

Figure 6.33. Simulink model for PID control (file: c6munsta.mdl).

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Figure 6.34. Simulation results for an unstable plant with a PID controller.

The step response of the closed-loop system under the optimal controller is shown in
Figure 6.34. It can be seen that the PID controller can still be designed, with the help of
GAs, and the transient response is satisfactory.

6.7 More Topics on PID Control
6.7.1 Integral Windup and Anti-Windup PID Controllers

A Simulink model for the study of the phenomenon of integrator windup is shown in Fig-
ure 6.35.

The plant model is given by

G(s) = 10

s4 + 10s3 + 35s2 + 50s + 24
,

226 Chapter 6. PID Controller Design

3

Out3

2

Out2

1

Out1

num(s)

den(s)

plant

1

Ti.s

Transfer FcnStep Gain
Saturation

Kp

Figure 6.35. Integrator windup demonstration (file: c6mwind.mdl).

0 1 2 3 4 5 6 7 8 9 10
0

2

4

t2

0 1 2 3 4 5 6 7 8 9 10
0
2
4
6

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

t1

output y(t)

control signal u(t)

integrator output yi (t)

Figure 6.36. Integrator windup demonstration.

and the parameters for the PI controller are given by Kp = 5.04 and Ti = 1.124. With
an actuator saturation nonlinear element given by um = 3.5, the related signals in the PI
controlled system are shown in Figure 6.36. When there is an initial set-point change in
r(t), the error signal is initially so large that the control signal u(t) quickly reaches its
actuator saturation limit. Even when the output signal reaches the reference value at the
time t1, which gives a negative error signal due to the large value of the integrator output,
the control signal still remains at the saturation value um, which causes the output of the
system to continuously increase until it reaches the time t2, and the negative action of
the error signal begins to have effect. This phenomenon is referred to as the integrator
windup action, which is undesirable in control applications. Therefore, we need to briefly
introduce different antiwindup PID controllers for use in practice. We shall use Simulink
for illustration.

An antiwindup PID controller is provided as an icon in the Simulink environment, and
the internal structure is shown in Figure 6.37. The signal reflecting the actuator saturation
is fed into the integrator action, which is determined by a ratio 1/Tt . For instance, one
can simulate the PID control system in the previous example using the Simulink model as
shown in Figure 6.38(a). For different Tt , the output signals are compared in Figure 6.38(b).
It can be seen that for smaller values of Tt , the windup phenomenon can be reduced more
significantly.

6.7. More Topics on PID Control 227

1
control signal

b

set point weighting

Saturation

Kp

ProportionalModified
PID action

1

Ti.s

Integrator

−Tds

Td/N.s+1

Derivative

1/Tt

Anti Windup Gain

2
system output

1
Set point

Figure 6.37. Anti-windup PID structure (file: c6awpid.mdl).

1
Out1

num(s)

den(s)
Transfer Fcn

Step

Saturation

Sp

y
u

Auti−windup
PID controller

(a) Simulink model (c6fpid.mdl)
0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

← Tt = 10

← Tt = 5
← Tt = 2

(b) the effect of Tt

Figure 6.38. Effect of anti-windup PI controllers.

PID
controller

relay
element

plant�
control

tuning

�

�

�

�

�

uc(t) u(t) y(t)

Figure 6.39. Structure of a relay automatic tuning PID controller.

6.7.2 Automatic Tuning of PID Controllers

An automatic tuning (also known as autotuning or autotuner) PID controller strategy is pro-
posed by Åström and Hägglund [61]. Now the commercial automatic tuning PID controllers
are available from most hardware manufacturers.

The structure of the relay-type of automatic tuning is shown in Figure 6.39, and it can
be seen that the two modes are alternated by the use of switching. When the operator feels
the need to adjust the parameters of the PID controller, he or she can simply press a button

228 Chapter 6. PID Controller Design

relay
element

plant� � � �
�

uc(t) e(t) u(t) y(t)

�

�

�

�
��

��

h

���

(b) typical relay element(a) relay control block diagram

Figure 6.40. Nonlinear model of relay control.

to switch the process to the tuning mode, and the parameters can be tuned automatically.
When this tuning task is completed, the process can be switched back to normal feedback
control mode.

Under the tuning mode, the system is equivalent to the structure shown in Figure 6.40(a),
and the typical relay nonlinearity is shown in Figure 6.40(b). Several approaches can be used
to determine the crossover frequency ωc and the ultimate gain Kc. The describing function
approach is the theoretical basis for relay autotuning analysis, and Tsypkin’s method (see
Atherton [51]) can also be applied as described below.

Determining ωc and Kc with the describing function method

In the describing function approach [51], one can approximately represent the static non-
linear element by an equivalent gain in analyzing the so-called limit cycles. Such a gain
is referred to as the describing function of the nonlinearity and is in fact input amplitude
dependent. For different nonlinear functions, the describing functions may also be different;
a comprehensive study of describing functions can be found in [51].

The limit cycle, or oscillation, can be approximately determined by finding the inter-
section of the Nyquist plot of the plant model with the negative reciprocal of the describing
function N(a), as illustrated in Figure 6.41(a), which means that the conditions when the
oscillation occurs are

1 + N(a)G(s) |s=jωc= 0, i.e., G(jωc) = − 1

N(a)
. (6.44)

The describing function of the system with relay nonlinearity given in Figure 6.40(b)
is that

N(a) = 4h

πa2

(√
a2 − �2 − j�

)
, (6.45)

from which the negative reciprocal of the describing function N(a) is simply

− 1

N(a)
= − π

4h

√
a2 − �2 − j

π�

4h
, (6.46)

which is just a straight line as shown in Figure 6.41(b).
The crossover frequency ωc and the ultimate gain Kc can be obtained. For simplicity,

assume that � = 0. Then, the describing function can be simplified to N(a) = 4h/(πa).
So, immediately, one has

Kc = 4h

πa
, Tc = 2π

ωc

. (6.47)

6.7. More Topics on PID Control 229

�

�

− 1

N(a) G(jω)

�

�

�

− 1

N(a)

Re

ImIm

Re

(b) describing function of relay(a) determination of oscillations

−π�

4h

Figure 6.41. Determination of the magnitude and frequency of oscillations.

Determining ωc and Kc with Tsypkin’s method

The describing function method is essentially based on the principle of fundamental har-
monic equivalence. Tsypkin’s method, on the other hand, can be used when more accurate
analysis of relay systems is required, where the higher-order harmonics need to be consid-
ered apart from the fundamental one, for relay nonlinearities.

The Fourier series expansion of the square wave signal, which is the output of the
relay action, can be written as

y(t) =
∞∑

n=1(2)

4h

nπ
sin nω(t − t1), (6.48)

where “(2)” represents a step of 2; i.e., only odd harmonics are considered since the relay
function is an odd function. The Fourier series expansion of the output signal can then be
written as

c(t) =
∞∑

n=1(2)

4h

nπ
gn sin[nω(t − t1) + φn] (6.49)

with gn and φn the magnitude and phase of the plant model, respectively, i.e., G(njω) =
gnejφn . If the external input to the system is 0, then x(t) = −c(t), and the switching point
satisfies x(t1) = δ, ẋ(t1) < 0. The locus A(ω) can be defined as

Re[AG(θ, ω)] =
∞∑

n=1(2)

[
VG(nθ) sin(nθ) + UG(nθ) cos(nθ)

]
, (6.50)

Im[AG(θ, ω)] =
∞∑

n=1(2)

[
1

n
VG(nθ) cos(nθ) − UG(nθ) sin(nθ)

]
, (6.51)

where G(njω) = UG(nω) + jVG(nω). Assume that t1 = 0. The magnitude and frequency
of the limit cycles can be solved from

Im[AG(0, ω) + AG(ω�t, ω)] = −πδ

2h
(6.52)

and with the constraints Re[AG(0, ω)−AG(ω�t, ω)] < 0. If the relay element is symmetrical,
then one has

Im[AG(0, ω)] = −πδ

4h
. (6.53)

230 Chapter 6. PID Controller Design

6.7.3 Control Strategy Selection

It has been pointed out in some references, such as [60], that PID controllers can be used
only for plants with relatively small time delay (or equivalent delays). When the delay
constant increases, the PID controller cannot guarantee good responses. In fact, apart from
the traditional PID control structure, other control strategies may also be used to deal with
such cases. This leaves us with the following question: In practical applications, what kind
of controller structure should be used to design a usable controller for a given plant model?

Such a question is well studied in [79], where the normalized parameters τ and κ

are introduced, from which different control strategies are suggested, as summarized in
Table 6.16, where apart from the τ and κ parameters, τ2 and κ2 are also introduced for the
plant model given by

G(s) = Kv

s(1 + sTv)
e−sL

with the relations

τ1=
L

Tv

, κ2=
lim
s→0

sG(s)

ωc|G(jωc)|=
1

2π
KvKcTc, and τ2=

2

π
+atan

√
κ2

2 − 1√
κ2

2 − 1
. (6.54)

It can be seen that Table 6.16, in some sense, can be used as a guide for choosing a
suitable controller structure for a given plant model.

Table 6.16. Controller selection from the plant model.

Ranges of τ or κ No precise Precise control needed

control

necessary

High

noise

Low

saturation

Low measure-

ment noise

τ > 1, κ < 1.5 I control I+B+C PI+B+C PI+B+C

0.6 < τ < 1

1.5 < κ < 2.25

I or

PI control
I+A PI+A

PI+A+C or

PID+A+C

0.15 < τ < 0.6

2.25 < κ < 15
PI control PI PI or PID PID

τ < 0.15, κ > 15or

τ2 > 0.3, κ2 < 2

P or PI

control
PI PI or PID PI or PID

τ2 < 0.3, κ2 > 2 PD+E F PD+E PD+E

A represents forward compensation suggested

B represents forward compensation necessary

C represents dead-zone compensation suggested

D represents dead-zone compensation necessary

E represents set-point weighting necessary

F represents for pole placement

6.7. More Topics on PID Control 231

Problems

1. For the plant models

(a) Ga(s) = 1

(s + 1)3 , (b) Gb(s) = 1

(s + 1)5
, (c) Gc(s) = −1.5s + 1

(s + 1)3 ,

design PID (or PI) controllers using different design algorithms from this chapter and
compare the closed-loop behaviors of the controlled systems.

2. Find the FOPDT approximations to the plant models given by

(a) G(s) = 12(s2 − 3s + 6)

(s + 1)(s + 5)(s2 + 3s + 6)(s2 + s + 2)
,

(b) G(s) = −5s + 2

(s + 1)2(s + 3)3 e−0.5s ,

(c) G(z) = 1.0569×10−5(z+18.42)(z+1.841)(z+0.3406)(z+0.03405)

(z−0.8025)(z−0.7866)(z−0.7711)(z−0.7558)(z−0.6703)
, T =0.1,

using various algorithms discussed in this chapter. Compare the closeness of the
approximation using relevant time and frequency domain analysis techniques.

3. Investigate the disturbance rejection properties of the controllers designed for the plants
in Problem 1. Assume that the disturbances are added in the steady-state responses.
If any of the controllers does not perform well for disturbance rejection, design a new
PID controller to improve the disturbance rejection performance and check whether
the new PID controller is suitable for set-point control.

4. For different PID controllers in problem 1, analyze the compensated systems with time
and frequency domain tools. When the derivative term in the controller is disabled,
what will happen with the control performance?

5. Using the PID tuner program, compare the PID controllers designed from different
design approaches for the plant model

G(s) = 1

(s + 1)6 ,

and find a good PID controller.

6. Construct a Simulink model for PID control system structures with the plant model
containing a pure delay term. Design different PID controllers for the plant models
given below:

(a) Ga(s)= 1

(s + 1)(2s + 1)
e−s , (b) Gb(s)= 1

(17s + 1)(6s + 1)
e−30s ,

(c) Gc(s)= s + 2

(s + 1)(4s + 1)
e−0.1s , (d) G(z)= 0.01752z + 0.01534

z2 − 1.637z + 0.6703
z−10, T =0.2.

Compare the simulation results with the approximate results when the pure delay term
is replaced by a Padé approximation.

232 Chapter 6. PID Controller Design

7. Design PID controllers for the plants

(a) G(s) = 15

s(s + 1)(s + 2)2(s + 5)
, (b) G(s) = 5(s − 5)

s(s + 5)4 .

8. Solve the unconstrained optimization problem

min
x

100(x2 − x2
1)2 + (1 − x1)

2 + 90(x4 − x2
3) + (1 − x2

3)2

+10.1
[
(x2 − 1)2 + (x4 − 1)2

]+ 19.8(x2 − 1)(x4 − 1).

9. Solve the constrained optimization problems

(a) min

x s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1+x2≤0

−x1x2+x1+x2≥1.5

x1x2≥−10

−10≤x1,x2≤10

ex1(4x2
1 + 2x2

2 + 4x1x2 + 2x2 + 1),

(b) max

x s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.003079x3
1x3

2x5−cos3 x6≥0

0.1017x3
3x3

4−x2
5 cos3 x6≥0

0.09939(1+x5)x
3
1x2

2−cos2 x6≥0

0.1076(31.5+x5)x
3
3x2

4−x2
5 cos2 x6≥0

x3x4(x5+31.5)−x5[2(x1+5) cos x6+x1x2x5]≥0

0.2≤x1≤0.5,14<≤x2≤22,0.35≤x3≤0.6

16≤x4≤22,5.8≤x5≤6.5,0.14≤x6≤0.2618

1

2 cos x6

[
x1x2(1 + x5) + x3x4

(
1 + 31.5

x5

)]
.

10. Using ITAE, IAE, and ISE criteria, design optimal PID controllers for the open-loop
plants

(a) Ga(s) = 1

(s + 1)(2s + 1)
e−s , (b)Gb(s) = 1

(17s + 1)(6s + 1)
e−30s

and comment on which criterion will usually lead to the best control results.

11. For a time varying plant model ÿ(t)+e−0.2t ẏ(t)+e−5t sin(2t +6)y(t) = u(t), design
an optimal PI control which minimizes the ITAE criterion. Analyze the closed-loop
behavior of the system.

6.7. More Topics on PID Control 233

12. For the plant model

G(s) = 1 + 3e−s

s+1

s + 1
,

design an optimal PID controller and analyze the step response of the closed-loop
system.

13. In the OCD examples, the selection of simulation terminate time tf is quite important.
Please summarize how the tf should be selected.

Chapter 7

Robust Control
Systems Design

So far, we have presented some model-based controller design techniques in Chapter 5 and
PID controller design methods in Chapter 6 which require only a rough model of the plant
to be controlled. It is natural and practically important to ask, “Is the designed controller
robust against the uncertainty and disturbance?”

We should note that the control system design methods discussed in Chapters 5 and 6
did not explicitly and quantitatively take into consideration the disturbance and uncertainty.
It was assumed in Chapter 5 that an accurate plant model is available. This is usually not
true in practice. The model is essentially an approximation of the actual physical plant.
There may exist modeling uncertainty, which is the difference between the model and
the actual plant property, also known as model mismatch. If the designed controller can
tolerate the model mismatch, the controller is called “robust.” This implies that the control
system performance will not degrade significantly in the presence of model mismatch using
the “robust controller.” In Chapter 6, to design a PID controller with a reasonably good
performance, an accurate model of the plant to be controlled was not required. There,
PID controllers were considered to have certain robustness in the sense of tolerating model
uncertainty. However, we must be clear that in the design of PID controllers, no quantitative
information about the model mismatch is used. Therefore, PID controllers sometimes may
not be robust.

In this chapter, we present a new framework within which uncertainty and distur-
bance can be explicitly and quantitatively taken into account during the design of the
controller. This is referred to as the robust controller design and has been the focus
of research for decades. We believe that robust control will continue to be a topic of
further research since the robustness issue of any controller design is an inherent prob-
lem that must always be addressed. Moreover, the research on robust control will be
multifaceted. The reason is obvious: different types of knowledge about uncertainty
and disturbance will lead to different robust controller design methods. In this chapter,
we cover some more advanced materials on robust control. Specifically, the presenta-
tion will be closely coupled with the Robust Control Toolbox for MATLAB. In Sec. 7.1,
we introduce the linear quadratic Gaussian (LQG) problem, and in particular, the loop

235

236 Chapter 7. Robust Control Systems Design

transfer recovery (LTR) technique. H2- and H∞-norm design problems are summarized
in Sec. 7.2. In Sec. 7.3, we focus on the H∞ design technique with detailed MATLAB
solutions. The optimal H∞ controller design technique will also be discussed. Sec. 7.4
covers the H2-norm controller design technique with relevant MATLAB solution methods.
More problems on H∞ control, weighting function selections, and so on are presented
in Sec. 7.5.

7.1 Linear Quadratic Gaussian Control
LQG control is considered a robust control method since noise in the state and output
equations is explicitly considered. Furthermore, quantitative information about the noise is
used in the controller design.

7.1.1 LQG Problem

Consider the state space model of the plant

ẋ(t) = Ax(t) + Bu(t) + �ξ(t), y(t) = Cx(t) + θ(t), (7.1)

where ξ(t) and θ(t) are random noises in the state equation and the output measurements,
respectively. Assume that ξ(t) and θ(t) are zero mean Gaussian random processes with
covariance matrices given by

E[ξ(t)ξT(t)] =
 ≥ 0, E[θ(t)θT(t)] = � > 0, (7.2)

where E[x] denotes the mean value of x and E[xxT] is the covariance matrix of the zero
mean Gaussian signal x. The random signals ξ(t) and θ(t) are further assumed to be
mutually independent, i.e., E[ξ(t)θT(t)] = 0. The performance index for optimal control
is defined as

J = E

{∫ ∞

0

[
zT(t)Qz(t) + uT(t)Ru(t)

]
dt

}
, (7.3)

where z(t) = Mx(t) is the linear combination of state vector x(t) with M defined by
the user to measure the performance. The constant weighting matrices Q and R are,
respectively, a symmetrical semipositive-definite and a symmetrical positive-definite matrix,
that is, Q = QT ≥ 0, R = RT > 0. Note that R is a scalar when (7.1) is a single input–
single output (SISO) feedback control system—the main theme of this book.

The LQG problem can be divided into the following two subproblems:

1. The LQ optimal state feedback control, as discussed in Sec. 5.2, and

2. the state estimation with disturbances.

7.1.2 LQG Problem Solutions Using MATLAB

LQG control with Kalman filters

The states can be estimated optimally if a Kalman filter, rather than an observer, is used.

7.1. Linear Quadratic Gaussian Control 237

B
∫� � � C ��

A � �

Kf
�

��

u(t) �
y(t)

x̂(t)

x̂(t)

Figure 7.1. Kalman filter.

One can first find an optimal state estimation signal x̂(t), which minimizes the covari-
ance E[(x − x̂)(x − x̂)T], and then use the estimated signal x̂(t) to replace the actual state
variables such that the original problem can be reduced to an ordinary LQ optimal control
problem.

The block diagram of the Kalman filter is shown in Figure 7.1, where the Kalman
filter gain matrix Kf is given by

Kf = Pf CT�−1, (7.4)

where Pf satisfies the algebraic Riccati equation (ARE)

Pf AT + APf − Pf CT�−1CPf + �
�T = 0, (7.5)

and Pf is a symmetrical semipositive-definite matrix, i.e., Pf = PT
f ≥ 0.

A MATLAB function kalman() provided in the Control Systems Toolbox can be
used to find the Kf matrix of the Kalman filter. The syntax of the function is

[Gk,Kf ,Pf]=kalman(G,
,�)

where G is the extended state space model object with Gaussian disturbances, i.e., G =
(A, B̃, C, D̃). G can be regarded as an extended model with two input matrices with
B̃ = [B, �] and D̃ = [D, D]. Gk is the state space object of the Kalman filter. Kf is the
state feedback matrix and Pf is the solution of the Riccati equation of the Kalman filter
given in (7.5).

Example 7.1. For the system given by

ẋ =

⎡⎢⎢⎣
−0.02 0.005 2.4 −32
−0.14 0.44 −1.3 −30

0 0.018 −1.6 1.2
0 0 1 0

⎤⎥⎥⎦ x +

⎡⎢⎢⎣
0.14
0.36
0.35

0

⎤⎥⎥⎦ u +

⎡⎢⎢⎣
−0.12
−0.86
0.009

0

⎤⎥⎥⎦ ξ(t), y = x2 + θ(t),

where
 = 10−3 and � = 10−7, the Kalman filter can be designed using the following
MATLAB statements:

>> A=[-0.02,0.005,2.4,-32; -0.14,0.44,-1.3,-30;
0,0.018,-1.6,1.2; 0,0,1,0];

B=[0.14; 0.36; 0.35; 0]; G=[-0.12; -0.86; 0.009; 0];C=[0,1,0,0];
G=ss(A,[B,G],C,[0,0]); Xi=1e-3; Theta=1e-7;
[Gk,Kf,Pf]=kalman(G,Xi,Theta)

238 Chapter 7. Robust Control Systems Design

and it can be found that KT
f = [215.33, 87.371, −2.5369, −3.5741] and

Pf =

⎡⎢⎢⎣
0.0044357 2.1533×10−5 −3.6456×10−5 −7.7729×10−5

2.1533×10−5 8.7371×10−6 −2.5369×10−7 −3.5741×10−7

−3.6456×10−5 −2.5369×10−7 3.0037×10−7 6.3871×10−7

−7.7729×10−5 −3.5741×10−7 6.3871×10−7 1.3623×10−6

⎤⎥⎥⎦ .

Separation principle for LQG design

When the optimal filter signal x̂(t) is obtained, the block diagram of the LQG compensator
can be constructed, as shown in Figure 7.2, with the optimal control u∗(t) given by

u∗(t) = −Kcx̂(t) (7.6)

and the optimal state feedback matrix Kc given by

Kc = R−1BTPc, (7.7)

where the symmetrical semipositive-definite matrix satisfies the following ARE:

ATPc + PcA − PcBR−1BTPc + MTQM = 0. (7.8)

From the above discussions, we can observe that, in the LQG optimal control problem,
the optimal estimation and optimal control problems are solved separately. This is the well-
known “separation principle.” That is, to design an LQG controller, one can first design a
state estimator and then use the estimated states, as if the states are exactly measurable, to
design the LQR state feedback controller.

Observer-based LQG controller

For the state space plant model⎧⎨⎩ ẋ(t) = Ax(t) + Bu(t) + ξ(t),

y(t) = Cx(t) + Du(t) + θ(t)
(7.9)

Kf
��� �

∫
−Ke G(s) ���� x̂(t) u(t)

B �

�

A

C

�

�

���

LQG controller

r(t) y(t)

û(t)

�

plant
noise ξ(t)

� �

measurement
noise θ(t)

Figure 7.2. LQG control structure.

7.1. Linear Quadratic Gaussian Control 239

and the optimization criterion

J = lim
tf →∞ E

{∫ tf

0
[xT uT]

[
Q Nc

NT
c R

] [
x

u

]
dt

}
, (7.10)

where Nc can normally be selected as a zero matrix, the observer-based LQG controller is
illustrated in Figure 7.3. Suppose that the state feedback gain matrix Kc and the Kalman
filter gain matrix Kf have been obtained via the separation principle. Then, the Kalman
filter dynamic equation is written as

˙̂x = Ax̂ + Bu + Kf (y − Cx̂ − Du). (7.11)

So, the observer-based LQG controller can be compactly formulated as follows:

Gc(s) =
[

A − Kf C − BKc + Kf DKc Kf

Kc 0

]
. (7.12)

A MATLAB function lqg() provided in the Robust Control Toolbox can be used to
design an observer-based LQG controller. The syntax of the function is

Gc = −lqg(G,W,V)

[Af ,Bf ,Cf ,Df] = lqg(A,B,C,D,W,V)

where (Af ,Bf ,Cf ,Df) is the state space model of the LQG controller Gc(s). Here, W and
V can be constructed as follows:

W =
[

Q Nc

NT
c R

]
, V =

[

 Nf

NT
f �

]
, (7.13)

where
 and � are, respectively, the covariances of the plant noise ξ(t) and measurement
noise θ(t), with Nc and Nf often assumed to be zero matrices. It can be easily seen that
the matrix V is in fact the joint correlation function of signals ξ(t) and θ with

E

{[
ξ(t)

θ(τ)

]
[ξ(t) θ(τ)]T

}
=
[

 Nf

NT
f �

]
δ(t − τ). (7.14)

Note that
 is the covariance of ξ(t). If the plant model given in (7.1) is used,
 should be
replaced by �
�T.

∫

A

� � C �

�
�

�B ����

D�

�
�

plant noise ξ(t) measurement noise θ(t)

�

LQG controler
Gc(s)

�

Figure 7.3. Observer-based LQG control structure.

240 Chapter 7. Robust Control Systems Design

Example 7.2. Consider the following system with Gaussian noises ξ and θ :

ẋ(t) =

⎡⎢⎢⎣
0 1 0 0

−5000 −100/3 500 100/3
0 −1 0 1
0 100/3 −4 −60

⎤⎥⎥⎦ x +

⎡⎢⎢⎣
0

25/3
0

−1

⎤⎥⎥⎦ u +

⎡⎢⎢⎣
−1
0
0
0

⎤⎥⎥⎦ ξ(t),

y(t) = [0, 0, 1, 0]x + θ(t)

with covariances � = 7 × 10−4 and � = 10−8. Taking the weighting functions Q =
diag(5000, 0, 50000, 1) andR = 0.001, the LQG problem can be solved using the following
MATLAB statements:

>> A=[0,1,0,0;-5000,-100/3,500,100/3;0,-1,0,1;0,100/3,-4,-60];
B=[0; 25/3; 0; -1]; C=[0,0,1,0]; D=0; G=[-1; 0; 0; 0];
Q=diag([5000,0,50000,1]); R=0.001; Sys=ss(A,B,C,D);
Xi=7e-4; Theta=1e-8; W=[Q,zeros(4,1); zeros(1,4),R];
V=[Xi*G*G’,zeros(4,1); zeros(1,4),Theta];
Gf=-lqg(Sys,W,V); Gc=zpk(Gf)

and the controller can be designed as

Gc(s) = −1231049.0702(s + 40.47)(s2 + 105.5s + 5000)

(s2 + 39.17s + 868.2)(s2 + 493.9s + 1.234×105)
.

Using the above designed LQG controller, the closed-loop step response of the system,
with the random signals neglected, can be obtained as shown in Figure 7.4(a) using the
following MATLAB statements:

>> step(feedback(Gc*Sys,1)), figure, bode(Sys,’:’,Gc*Sys,’-’)
[Gm,Pm,Wcg,Wcp]=margin(Sys*Gc)

The gain and phase margins are, respectively, 4.3730 and 43.0440◦, at frequencies 323.2318
and 125.1567 rad/sec. The open-loop Bode diagrams for both the original and the compen-
sated systems are shown in Figure 7.4(b). It can be seen that the closed-loop behavior is
significantly improved with the LQG controller.

Now, let us assign R with different values denoted by ρ. A series of LQG controllers
can be designed using the following MATLAB statements:

>> G=ss(A,B,C,D); f1=figure; f2=figure;
for rho=[100,10,1,0.1,0.01,0.001]

W=[Q,zeros(4,1); zeros(1,4),rho*R]; G=ss(A,B,C,D);
Gc=-lqg(G,W,V);figure(f1),step(feedback(G*Gc,1),0.5),hold on
figure(f2), bode(G*Gc,{0.1,10000}); hold on;

end

with the closed-loop step responses and open-loop Bode diagrams compared in Figures 7.5(a)
and (b), respectively. We can observe that when ρ decreases, the dynamic behavior of the
closed-loop system improves. Meanwhile, the gain and phase margins, as well as the
crossover frequencies, tend to increase, which indicates the improvements in the dynamic
behavior of the controlled system.

7.1. Linear Quadratic Gaussian Control 241

7.1.3 LQG Control with Loop Transfer Recovery

LQG/LTR design algorithms

The story sounds good so far: with Kalman filters, the optimal LQG control design amounts
to solving two independent Riccati equations, (7.5) and (7.8), which, with MATLAB, is a
fairly easy task.

However, things are never as simple as that. It has been pointed out in [80] that the
controller thus designed may have very small stability margins, implying that if the system
is subjected to very small disturbance, the overall system may become unstable.

There is a seemingly correct intuition in control engineering practice that the dynamics
of the signal filtering block should be much faster than the plant dynamics. It would therefore
appear that if the dynamics of the Kalman filter were made fast, a satisfactory design would
be achieved. This is, unfortunately, not true. We will show, through analysis and examples,
that the LQG controller may not increase the stability margin of the overall system, but can
significantly reduce it.

Suppose that accurate state measurement is possible, as in the LQR case. With the
optimal LQR controller, the open-loop transfer function is simply GLQSF (s) = Kc(sI −
A)−1B. However, under LQG control, the open-loop transfer function becomes

GL,LQG(s) = Kc(sI − A + BK + LC)−1LC(sI − A)−1B. (7.15)

The following example demonstrates the difference between GLQSF (s) and GL,LQG(s).

Example 7.3. Consider the plant

G(s) = −(948.12s3 + 30325s2 + 56482s + 1215.3)

s6 + 64.554s5 + 1167s4 + 3728.6s3 − 5495.4s2 + 1102s + 708.1
.

Its state space model can be obtained by the following MATLAB statements:

>> num=-[948.12, 30325, 56482, 1215.3];
den=[1,64.554,1167,3728.6,-5495.4,1102,708.1];G=ss(tf(num,den));

this model is the state space object G.

Step Response

Time (sec)

A
m

pl
itu

de

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

From: y1 To: Out(1)

(a) step response

10-3 10-2 10-1 100 101 102 103 104
-150

-100

-50

0

50

10-3 10-2 10-1 100 101 102 103 104
-300

-200

-100

0

100

(b) Bode diagram

Figure 7.4. System responses under LQG control.

242 Chapter 7. Robust Control Systems Design

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

From: y1 To: Out(1)

Step Response

Time (sec)

A
m

pl
itu

de

← ρ = 100

← ρ = 10

(a) step response

−150

−100

−50

0

50

100
From: y1 To: Out(1)

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

10
3

10
4

−270

−180

−90

0

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

ρ = 10000 →

ρ = 10000 →

(b) Bode diagram

Figure 7.5. Closed-loop system responses with different ρ.

-10 -5 0 5
-15

-10

-5

0

5

10

15

Real Axis

Im
ag

e
A

xi
s

(a) GLQSF (s)

-6 -5 -4 -3 -2 -1 0 1 2
-6

-4

-2

0

2

4

6

Real Axis

Im
ag

e
A

xi
s

(b) GL,LQG(s)

Figure 7.6. Open-loop Nyquist plot comparison.

With the weighting matrices Q = CTC and R = 1, the optimal LQ controller can
be obtained, and the open-loop Nyquist plot of the system (A, B, K, 0) can be drawn, as
shown in Figure 7.6(a), using the following MATLAB statements:

>> Q=G.c’*G.c;R=1;[Kc,P]=lqr(G.a,G.b,Q,R);
nyquist(ss(G.a,G.b,Kc,0))

It can be seen that the original system is closed-loop stable since there are two encirclements
around the point (−1, j0), which equals the number of unstable poles in the open-loop model.

If Gaussian noises are present in the system, the � vector is defined as � = B,
and
 = 10−4 and � = 10−5, then a Kalman filter can be obtained using the following
MATLAB statements:

>> Xi=1e-4; Theta=1e-5; G1=ss(G.a,[G.b, G.b],G.c,[G.d,G.d]);
[K_Sys,L,P2]=kalman(G1,Xi,Theta); a1=G.a-G.b*Kc-L*G.c;
G_o=G*ss(a1,L,Kc,0); Nyquist(G_o), [Gm,Pm,Wcg,Wcp]=margin(G_o)

7.1. Linear Quadratic Gaussian Control 243

The gain and phase margins are 2.6882 and 33.7375◦, at frequencies 10.8799 and 4.4401
rad/sec, respectively. The resulting Nyquist plot of GL,LQG(s), which can be regarded
as two subsystems (A − BK − LC, L, K, 0) and (A, B, C, 0) in series connections, is
different from that of GLQSF (s), as shown in Figure 7.6.

Clearly, if the weighting functions are not suitably chosen, there will be a difference,
possibly large, between the open-loop transfer functions as demonstrated in Figure 7.6.
To effectively reduce this difference, use the loop transfer recovery (LTR) technique. The
basic idea is to make the loop transfer function in the LQG structure approach as closely as
possible that using the direct full state feedback.

Let �′ = q�. It can be shown that when q → ∞, the open-loop transfer function of
the LQG control problem with �′ will approach that for the LQR problem, i.e.,

lim
q→∞ Kc(sI − A + BK + LC)−1LC(sI − A)−1B = Kc(sI − A)−1B. (7.16)

Obviously, the key point in LQG/LTR controller design is to select a large q.
Alternatively, one can first solve the standard LQR problem to get a suitable state

feedback gain vector and then use the LTR technique to make the final system with the
open-loop transfer function, including the Kalman filter, approach that of the LQR system
as closely as possible. This leads to the following two-step algorithm:

• Design an optimal LQR controller with the specified weighting matrices Q and R,
and adjust the matrices Q and R such that the open-loop transfer function −Kc(sI −
A)−1B is satisfactory. A common practice is to set Q = CTC and change R to make
the open-loop transfer function close to a target transfer function, with the sensitivity
and complementary sensitivity functions having the desired shapes.

• Set � = B, W = W0 + qI , and V = I . Increase the value of q so that the
return difference of the compensated system approaches −Kc(jωI − A)−1B. With
the selected q, the observer Riccati equation is then changed to

Pf AT

q
+ APf

q
− Pf CTV −1CPf

q
+ �W0�

T

q
+ ���T = 0, (7.17)

where q is referred to as the fictitious-noise coefficient. When the original system
C(sI − A)−1B has no transmission zeros on the right-hand side of the s-plant, the
filter gain matrix can then be evaluated from

Kf → q1/2BV −1/2 when q → ∞. (7.18)

In practice, q should not be too large. Too large a q will introduce numerical truncating
errors, which may in turn affect the robustness of the overall system.

Example 7.4. Consider again the problem in Example 7.3. Let us apply the LTR technique
with different values of q using the following MATLAB statements:

>> num=-[948.12, 30325, 56482, 1215.3]; marg=[];
den=[1,64.554,1167,3728.6,-5495.4,1102,708.1];G=ss(tf(num,den));
Xi=1e-4; Theta=1e-5; Q=G.c’*G.c; R=1; [Kc,P]=lqr(G.a,G.b,Q,R);

244 Chapter 7. Robust Control Systems Design

-10 -5 0 5
-15

-10

-5

0

5

10

15

Real Axis

Im
ag

e
A

xi
s

q=108

q=1
q=106

q=104

LQ/SF
q=1010,1012

(a) Nyquist plots

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (secs)

A
m

pl
itu

de

(b) closed-loop step response

Figure 7.7. LQG/LTR results.

nyquist(ss(G.a,G.b,Kc,0)), hold on
for q0=[1,1e4,1e6,1e8,1e10,1e12,1e14]

G1=ss(G.a,[G.b, G.b],G.c,[G.d,G.d]);
[K_Sys,L,P2]=kalman(G1,q0*Xi,Theta);
a1=G.a-G.b*Kc-L*G.c; G_o=G*ss(a1,L,Kc,0); nyquist(G_o)
[Gm,Pm,Wcg,Wcp]=margin(G_o); marg=[marg; [Gm,Pm,Wcg,Wcp]];

end

The Nyquist diagrams of the open-loop system for different values of q are shown in Fig-
ure 7.7(a). It can be seen that when q = 1010, the loop transfer function can almost
be recovered. For this case, the closed-loop step response, obtained using the following
MATLAB statements, is shown in Figure 7.7(b).

>> q=1e10; [K_Sys,L,P2]=kalman(G1,q*Xi,Theta); a1=G.a-G.b*Kc-L*G.c;
G_o=G*ss(a1,L,Kc,0); G_c=feedback(G_o,1);
t=0:0.01:10; figure; step(G_c,t)

The phase margin and crossover frequency versus q plots, drawn using the following
MATLAB statements:

>> q0=[1,1e4,1e6,1e8,1e10,1e12,1e14];
semilogx(q0,marg(:,2)), figure, semilogx(q0,marg(:,4))

are compared in Figure 7.8(a) and (b), respectively. It can be seen that by the LQG/LTR
controller, the phase margin and crossover frequency are significantly increased. Further
increasing q will not contribute much to the gain margin and the crossover frequency. For
this example, it is enough to set q = 1010.

Linear quadratic Gaussian/loop transfer recovery problem solution using
MATLAB

Two functions, ltru() and ltry(), are provided in the Robust Control Toolbox for
effective LQG/ LTR controller design.

7.1. Linear Quadratic Gaussian Control 245

100 102 104 106 108 1010 1012 101430

35

40

45

50

55

60

65

70

(a) phase margin plots

100 102 104 106 108 1010 1012 10144

4.5

5

5.5

6

6.5

7

7.5

(b) crossover frequency plots

Figure 7.8. The phase margin and crossover frequency versus q.

The function ltru() performs the LTR design at the input of the plant model, while
ltry() does so at the output. Recovering the loop transfer function at the input side means
that

lim
q→∞ �Kc(sI − A + BKc + Kf C)−1Kf = Kc(sI − A)−1B. (7.19)

The recovery of the loop transfer function at the output implies that

lim
q→∞ �Kc(sI − A + BKc + Kf C)−1Kf = C(sI − A)−1Kf . (7.20)

The syntax of function ltru() is

Gc=ltru(G,Kc,
,�,q,ω);

[Af ,Bf ,Cf ,Df]=ltru(A,B,C,D,Kc,
,�,q,ω);

where q is a vector containing the selected values of q for the LTR process. The loop
transfer function can then be expressed as Gc(s)C(sI − A)−1B. In the function call, the
Nyquist plots of the open-loop transfer function for different specified q will be displayed
automatically.

Similarly, the syntax for the ltry() function is

Gc=ltry(G,Kf ,Q,R,q,ω)

[Af ,Bf ,Cf ,Df]=ltry(A,B,C,D,Kf ,Q,R,q,ω)

where Kf is the Kalman filter gain matrix.

Example 7.5. Consider again the plant model in Example 7.3. With different values of q,
the corresponding LTR controller can be designed using the following MATLAB statements:

>> num=-[948.12, 30325, 56482, 1215.3];
den=[1, 64.554, 1167, 3728.6, -5495.4, 1102, 708.1];
G=ss(tf(num,den)); Xi=1e-4; Theta=1e-5;

246 Chapter 7. Robust Control Systems Design

-10 -5 0 5
-15

-10

-5

0

5

10

15
NYQUIST LOCI -- LQG/LTR (recov. gain ---> 1e+014)

REAL

IM
A

G q=1
q=104q=106

q=108

q=1010-1014

(a) LTR for different q

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (secs)

A
m

pl
itu

de

(b) closed-loop step response

Figure 7.9. LQG/LTR control results.

Q=G.c’*G.c; R=1; [Kc,P]=lqr(G.a,G.b,Q,R);
q0=[1,1e4,1e6,1e8,1e10,1e12,1e14]; w=logspace(-2,2);
Gc=ltru(G,Kc,Xi,Theta,q0,w); Gc=zpk(Gc))

and the controller designed is

G(s)= −22026697072.6516(s+30.22)(s+29.71)(s+6.763)(s+1.315)(s+0.01261)

(s+1.445×104)(s+30)(s+1.963)(s+0.0218)(s2+1.444×104s+2.087×108)
.

The Nyquist plots for different values of q are compared in Figure 7.9(a). It can be observed
once again that when q is relatively large, for instance, q > 1010, the loop transfer at the
input side of the plant approaches the LQR solutions asymptotically.

The closed-loop step response under the LQG/LTR controller can be obtained using
the following MATLAB statements:

>> q=10e10; Gc=ltru(G,Kc,Xi,Theta,q,w);
G_c=feedback(G*Gc,1); figure; step(G_c,10)

and is shown in Figure 7.9(b). It can be seen that the response is similar to the one shown
in Example 7.4.

Example 7.6. Now, let us consider a nonminimum phase unstable plant model

G(s) = −948.12s3 + 30325s2 − 56482s − 1215.3

s6 + 64.554s5 + 1167s4 + 3728.6s3 − 5495.4s2 + 1102s + 708.1

with � = B, � = 10−4, � = 10−5. To design an LQG/LTR controller, the following
MATLAB statements can be issued:

>> num=[-948.12, 30325, 56482, -1215.3];
den=[1,64.554,1167,3728.6,-5495.4,1102,708.1];G=ss(tf(num,den));
Xi=1e-4; Th=1e-5; Q=diag([100,10,20,30,40,100]); R=1;
[Kc,P]=lqr(G.a,G.b,Q,R); q0=[1,1e4,1e6,1e8,1e10,1e12,1e14];
w=logspace(-2,2); Gc=ltru(G,Kc,Xi,Th,q0,w); hold on; nyquist(G);

7.2. General Descriptions of the Robust Control Problems 247

-10 -5 0 5
-15

-10

-5

0

5

10

15
NYQUIST LOCI -- LQG/LTR (recov. gain ---> 1e+014)

Real Axis

Im
ag

 A
xi

s

q=104

q=1

q=106
q=108

q=1012

q=1010

q=1014

expected

(a) results of ltru() function

-10 -5 0 5
-20

-15

-10

-5

0

5

10

15

20

Real Axis

Im
ag

 A
xi

s

expected

q=1
q=108

q=1016
q=1018

q=1020

q=1012

(b) LTR design results

Figure 7.10. LQG/LTR controller design using different methods.

The Nyquist plots for different values of q are shown in Figure 7.10(a). It can be seen that
when q is increased to a certain value, say, 1012, the algorithm does not consistently converge
to the expected one, i.e., the LQR solution. It can also be seen that even when q increases
further, the converged shape of the Nyquist plot is in fact far away from the expected loop
transfer function. Thus, we may conclude that the loop recovery is not achievable in this
example.

We can perform a similar LTR design without using theltru() function. Here, let us
use the simple computation procedures introduced in Sec. 7.1.3 by the following MATLAB
statements:

>> nyquist(ss(G.a,G.b,Kc,0)); hold on;
for q0=[1,1e8,1e12,1e16,1e18,1e20]

G1=ss(G.a,[G.b,G.b],G.c,[G.d,G.d]);
[K_Sys,L,P2]=kalman(G1,q0*Xi,Theta);
a1=G.a-G.b*Kc-L*G.c; Gc=ss(a1,L,Kc,0); G_o=G*Gc; nyquist(G_o)

end

The resulting Nyquist diagrams for different values of q are shown in Figure 7.10(b). In-
terestingly, when q approaches 1020, a satisfactory LTR can be achieved which is different
than what is shown in Figure 7.10(a). This indicates that ltru() may not be numeri-
cally reliable when q is too large. Note that, however, in this example, with q = 1020 the
closed-loop system may not be stable.

7.2 General Descriptions of the Robust Control Problems
The small gain theorem plays a pivot role in robust control. In this section, we will first
briefly introduce the small gain theorem and the uncertainty description. Then, the robust
controller structures and the model representation in MATLAB will be discussed.

7.2.1 Small Gain Theorem

A general description of robust control system structure is shown in Figure 7.11(a), where
P (s) is the augmented plant model and F (s) is the controller model. The transfer function

248 Chapter 7. Robust Control Systems Design

P (s)
��

F (s) �

�
y1(t)u1(t)

y2(t)u2(t)

(a) standard feedback control

M(s)

�(s)

� � �

�� �

�

w2

w1

e2

e1

(b) sketch for small gain theorem

Figure 7.11. General structure of H2 and H∞ control.

from the input u1(t) to the output y1(t) is denoted by Ty1u1(s). It should be emphasized at
this point that the block diagram shown in Figure 7.11(a) is fairly general. The signal vector
u1(t) can include both reference and disturbance signals. P (s) can include both the plant
model and the disturbance generation model. Moreover, uncertainties can also be included
in P (s). The key idea of robust control is to separate the known part and the uncertain
part from the knowledge about the uncertain system under investigation. This is illustrated
in Figure 7.11(b), where M(s) denotes the known part of the uncertain system and �(s)

denotes the uncertain part. Usually, we have some limited knowledge about �(s) such as the
upper bound information. Note that M(s), after some transformations from Figure 7.11(a),
contains both the plant and the controller. By designing F (s), we can change M(s). The
bottom line is how to design F (s) such that the overall system is stable for all possible �(s).
This is the so-called small gain theorem summarized below.

Theorem 7.1 (small gain theorem). Suppose that M(s) is stable and let γ > 0. The
interconnected system shown in Figure 7.11(b) is well-posed and internally stable for all
stable �(s) if the small gain condition

‖M(s)‖∞‖�(s)‖∞ < 1 (7.21)

is satisfied.

Clearly, if we know that ‖�(s)‖∞ < γ , we should properly design F (s) to ensure
‖M(s)‖∞ < 1/γ such that the overall system is robustly stable, according to the small gain
theorem.

7.2.2 Unstructured Uncertainties

The unstructured uncertainties can be classified into the additive and multiplicative uncer-
tainties. The feedback system structure with uncertainties is shown in Figure 7.12. In
general, the uncertain model can be represented by

Gp(s) = �A(s) + G(s)[I + �M(s)]. (7.22)

If �A(s) ≡ 0, one has Gp(s) = G(s)[I + �M(s)], and the uncertainty is referred
to as the multiplicative uncertainty. When �M(s) ≡ 0, the uncertainty is referred to as the
additive uncertainty with the model Gp(s) = G(s) + �A(s).

Based on the discussions of the small gain theorem in the last subsection, starting
from here, with no loss of generality, if we assume that the uncertainty norm bound shown

7.2. General Descriptions of the Robust Control Problems 249

F (s) G(s) I + �M(s)� � � � � �
�

�A(s)�

�

plant model

Figure 7.12. Feedback control with uncertainties.

in Figure 7.11(b) is unity, then we can concentrate on Figure 7.11(a) as if there were no
uncertainty in P (s). But now our control design task amounts to designing F (s) such that
‖Ty1u1(s)‖∞ < 1. We should understand that it is always possible to scale �(s) such that
the scaled uncertainty bound is less than 1.

In what follows, we shall focus on the robust control problem based on Figure 7.11(a).
Our robust controller design task is simply to make the norm of Ty1u1(s) small. The popular
measures of the smallness are the H∞-norm and the H2-norm. This leads to the two popular
robust controllers, the H∞ controller and the H2 controller, which are the main topics of
this chapter. However, at this point, we should emphasize that different measures will lead
to different robust control design methods or even different frameworks. For example,
the μ-synthesis technique, not covered in this book, is one of the other alternatives. For
more complete coverage of robust control, we refer to [81]. This chapter serves only as an
entry-level introduction to robust control techniques.

7.2.3 Robust Control Problems

Based on the above arguments, we now focus on the configuration shown in Figure 7.11(a),
where an augmented plant model can be constructed as

P (s) =
⎡⎣ A B1 B2

C1 D11 D12
C2 D21 D22

⎤⎦ (7.23)

with the augmented state space description as follows:

ẋ = Ax + [B1 B2]
[
u1
u2

]
,

[
y1
y2

]
=
[
C1
C2

]
x +

[
D11 D12
D21 D22

] [
u1
u2

]
. (7.24)

Straightforward manipulations give the following closed-loop transfer function:

Ty1u1(s) = P11(s) + P12(s)[I − F (s)P22(s)]−1F (s)P21(s). (7.25)

The above expression is also known as the linear fractional transformation (LFT) of the
interconnected system. The objective of robust control is to find a stabilizing controller
u2(s) = F (s)y2(s) such that ‖Ty1u1(s)‖ < 1. Based on (7.25), the following three robust
control problems are particularly interesting in control engineering practice:

• The H2 optimal control problem: min
F (s)

‖Ty1u1‖2;

• the H∞ optimal control problem: min
F (s)

‖Ty1u1‖∞;

• the standard H∞ robust control: ‖Ty1u1‖∞ < 1.

250 Chapter 7. Robust Control Systems Design

7.2.4 Model Representation Under MATLAB

A MATLAB function mksys(), provided in the Robust Control Toolbox, can be used
to describe the system model with a single variable name. The syntax of the function is
S=mksys(A,B,C,D) , where (A,B,C,D) is the state space model of the system. The

model variable S is also referred to as the tree variable in the Robust Control Toolbox.
The tree S can then be used directly throughout the robust control analysis and design
functions in the Robust Control Toolbox. Generally, mksys() can be called in the format
S=mksys(V1, V2, . . . , VN, TY) , where (V1, V2, . . . , VN) are the model parameters of

different types identified by the argument TY. The details of these variables are listed in
Table 7.1. Note that the ’tss’ format uses the representation in (7.23). The descriptor
system takes a more general state space representation described as{

Eẋ = Ax + Bu,

y = Cx + Du,
(7.26)

where matrix E can be either singular or nonsingular; in the former case, the system is
referred to as the singular system. The details of the singular system will not be covered in
this book.

Apart from the model descriptions given in Table 7.1, some other model formats are
allowed, such as the multivariable transfer function model, impulse response model, and
the generalized state space model.

Example 7.7. Consider a two input–two output (TITO) state space model

ẋ =
⎡⎣−1 0 0

0 −2 0
0 0 −3

⎤⎦ x +
⎡⎣ 1 0

2 3
−3 −3

⎤⎦u, y =
[

1 0 0
1 1 1

]
x.

The model can be entered into MATLAB with the following statements and then packed
into a single tree variable S:

>> A1=[-1,0,0; 0,-2,0; 0,0,-3]; B1=[1,0; 2,3; -3,-3];
C1=[1,0,0; 1,1,1]; D1=zeros(2,2); S=mksys(A1,B1,C1,D1,’ss’);

For a given transfer function model

G(s) = s3 + 7s2 + 24s + 24

s4 + 10s3 + 35s2 + 50s + 24
,

Table 7.1. Variable description of the mksys function.

TY Reserved names of V1, V2, . . . , VN Description

’ss’ a, b, c, d Standard state space (default)

’des’ a, b, c, d, e Descriptor system

’tss’ a, b1, b2, c1, c2, d11, d12, d21, d22 Two-port state space

’tf’ num, den Transfer function

7.2. General Descriptions of the Robust Control Problems 251

it can be packed into a tree variable S1 using the following MATLAB statements:

>> num=[1,7,24,24]; den=[1,10,35,50,24]; S1=mksys(num,den,’tf’);

A MATLAB function branch() is provided to retrieve the variables from a given
model (tree) variable S, [V1, V2, . . . , VN]=branch(S) , where S is the existing tree
variable and V1, V2, . . . , VN are the variables packed into S, as shown in Table 7.1. For
instance, the state space model can be retrieved from the tree structure S as follows:
[a,b,c,d]=branch(S) . For the tree structure S1, the transfer function parameters

can be retrieved from [n,d]=branch(S1) .
With tree variable structures to represent the plant models, we can call some of the

functions in the Robust Control Toolbox in alternative formats. For instance, ltru() and
ltry() can be called in the following way:

Gf =ltru(G,Kc,
,�,r,ω,svk)

Gf =ltry(G,Kf ,Q,R,q,ω,svk)

where G and Gf are the tree variables for the plant and the controller, respectively.
Moreover, the individual parameter of the state space model can be retrieved by using

the same branch() function. For instance, the a and c matrices within the tree variable S

can be retrieved using the MATLAB statement [a,c]=branch(S,’a,c’) . It should
be noted that although the original names A1, C1 were used in packing the tree variable S,
one still needs to use a, c to retrieve them from the tree.

7.2.5 Dealing with Poles on the Imaginary Axis

If the plant model contains purely imaginary poles, the robust control design techniques
cannot be used directly. In this case, a new variable z can be introduced with s = (αz +
δ)/(γ z +β). Replace the s term in the plant model and transform it into a transfer function
of z. This transformation is referred to as the bilinear transformation, also known as the
frequency domain or complex plane bilinear transformation.

With the bilinear transformation, the poles will be shifted away from the imaginary
axis. The basic idea is to take the shifted model as the new plant model and design a
robust controller based on it. Suppose that a controller F (z) is designed. Then, one can set
z = (−βs + δ)/(γ s + α) and substitute the z term in the controller F (z) to retrieve the
corresponding controller Gc(s) for the system.

The bilinear transformation can simply be represented as

G(s) = C(sI − A)−1B + D ⇒ G(z) = Cb(zI − Ab)
−1Bb + Db, (7.27)

and the state space description (A, B, C, D) under bilinear transformation can be written as[
(βA − δI)(αI − γA)−1 (αβ − γ δ)(αI − γA)−1B

C(αI − γA)−1 D + γC(αI − γA)−1B

]
. (7.28)

252 Chapter 7. Robust Control Systems Design

Table 7.2. Available bilinear transformation methods.

Method Method name Mathematical Variables aug

’Tustin’ Tustin Transform s = 2(z − 1)

T (z + 1)
T

’P_Tust’ Prewarped Tustin s = w0(z − 1)

tan(w0T/2)(z + 1)
[T , w0]

’BwdRec’ Backward Rectangular s = z − 1

T z
T

’FwdRec’ Forward Rectangular s = z − 1

T
T

’S_Tust’ Shifted Tustin s = 2(z − 1)

T (z/γ + 1)
[T , γ]

’G_Bili’ General Bilinear s = αz + δ

γ z + β
[α, β, γ, δ]

A MATLAB function bilin(), provided in the Robust Control Toolbox, can be
used to perform the bilinear and the reversed bilinear transformations for a given system
model. The syntax is as follows:

Sb=bilin(Sa,revs,method,aug)

[Ab,Bb,Cb,Db]=bilin(A,B,C,D,revs,method,aug)

where Sa is the tree structure or state space object, of the original model, and Sb is the
bilinearly transformed model tree as explained in the above. The variable revs is used to
describe the direction in the bilinear transformation, with revs=1 for s ⇒ z transformation
(the default one), and −1 for z ⇒ s. The method describes the bilinear transformation
method used as listed in Table 7.2.

Example 7.8. Consider a transfer function model

G(s) = 10

s(s + 1)(s + 2)
.

Note that there is a pole at s = 0. One can get a state space model from G(s) first and
then use the Tustin method to get the bilinear transformation under T = 0.5. From the new
transfer function obtained using the following MATLAB statements:

>> s=tf(’s’); G=10/s/(s+1)/(s+2); G=ss(G); T=0.5;
Gf=bilin(G,1,’Tustin’,T), eig(G), eig(Gf)

it can be seen that the poles of the original model G are 0, −1, −2, with one of the poles on
the imaginary axis. Taking Tustin’s bilinear transformation, the poles of Gf are shifted to
1, 0.6000, 0.3333, all moved from the imaginary axis.

When calling bilin() with revs set to −1, the model can be shifted back:

>> G1=bilin(Gf,-1,’Tustin’,T); G2=tf(G1)

7.3. H∞ Controller Design 253

7.3 H∞ Controller Design
7.3.1 Augmentations of the Model with Weighting Functions

In this section, we will focus on the weighted control structure shown in Figure 7.13, where
W1(s), W2(s), and W3(s) are weighting functions or weighting filters. We assume that
G(s), W1(s), and W3(s)G(s) are all proper; i.e., they are bounded when s → ∞. It can be
seen that the weighting function W3(s) is not required to be proper. By slightly rearranging
the block diagram in Figure 7.13, we obtain the control structure shown in Figure 7.14,
which agrees with the standard structure in Figure 7.11(a).

One may wonder why we need to use three weighting functions in Figure 7.13. First,
we note that the weighting functions are, respectively, for the three signals, namely, the
error, the input, and the output. In the two-port state space structure, the output vector
y1 = [y1a, y1b, y1c]T is not used directly to construct the control signal vector u2. We
should understand that y1 is actually for the control system performance measurement. So,
it is not strange to include the filtered “input signal” u(t) in the “output signal” y1 because
one may need to measure the control energy to assess whether the designed controller is
good or not. Clearly, Figure 7.13 represents a more general picture of optimal and robust
control systems. The weighting functions can also be regarded as filters. This type of

G(s)F (s)� � � W3(s)� �

W2(s)

W1(s)

� �

� �

y1b

y1a

y1cy(t)

u(t)

e(t)

r(t)

-
�

Figure 7.13. Block diagram of general weighted sensitivity functions.

G(s)

F (s)

� W3(s)� �

W2(s)

W1(s)

� �

�

y1b

y1a

y1cy(t)

u(t)

e(t)

-
�

�

�

augmented plant model P (s)

controller model

u2

�u1

y2

Figure 7.14. Two-port diagram with weighting functions.

254 Chapter 7. Robust Control Systems Design

frequency-dependent weighting is more practical. For example, if one wishes to emphasize
the tracking error in the low frequency band, W1(s) can be simply chosen as a low-pass
filter. We will show next that, given the weighting transfer functions, we can design an H∞
by using the idea of the augmented state space model.

Assume that the state space representation of the plant model is given by (A, B, C, D).
Denote by (AW1 , BW1 , CW1 , DW1) the state space representation for W1(s) and by
(AW2 , BW2 , CW2 , DW2) that for W2(s). For W3(s), which may possibly be improper,
it is denoted as follows:

W3(s) = CW3(sI − AW3)
−1BW3 + Pmsm + · · · + P1s + P0. (7.29)

Under the above setup, (7.24) can be written as

P (s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A 0 0 0 0 B

−BW1C AW1 0 0 BW1 −BW1D

0 0 AW2 0 0 BW2

BW3C 0 0 AW3 0 BW3D

−DW1C CW1 0 0 DW1 −DW1D

0 0 CW2 0 0 DW2

C̃ + DW3C 0 0 CW3 0 D̃ + P0D

−C 0 0 0 I −D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7.30)

where
C̃ = P0C + P1CA + · · · + PmCAm−1,

D̃ = P0D + P1CB + · · · + PmCAm−2B.
(7.31)

We remark that each weighting function can be assumed to be empty, i.e., in MATLAB
terminology, Wi (s) = []. Among robust control problems, we focus on the following three
cases:

1. Sensitivity problem: W2(s) and W3(s) are not specified.

2. Mixed robust stability and performance: W3(s) is empty.

3. General mixed sensitivity problem: All three weighting functions are present. In
general, the augmented plant model P (s) can be written in the following form:

P (s) =
⎡⎢⎣W1 −W1G

0 W2
0 W3G

I −G

⎤⎥⎦ , (7.32)

which in H∞ design is called the general mixed sensitivity problem. The linear fractional
transformation representation of such a problem can be written as

Ty1u1 =
⎡⎣ W1S

W2FS

W3T

⎤⎦ , (7.33)

7.3. H∞ Controller Design 255

where F (s) is the controller to be designed, S(s) is the sensitivity transfer function defined as

S(s) = E(s)R−1(s) = [I + F (s)G(s)]−1, (7.34)

and T (s) is the complementary sensitivity transfer function defined as

T (s) = I − S(s) = F (s)G(s)[I + F (s)G(s)]−1. (7.35)

7.3.2 Model Augmentation with Weighting Function Under
MATLAB

First, the tree structures of the weighting functions should be created using the mksys()
as follows:

Sw1=mksys(Aw1,Bw1,Cw1,Dw1)

Sw2=mksys(Aw2,Bw2,Cw2,Dw2)

Sw3=mksys(Aw3,Bw3,Cw3,Dw3)

where the state space tree variables for the weighting functions W1(s), W2(s) and the proper
part of W3(s) can be established, respectively. The final plant augmentation is usually in
’tss’ (i.e., two-port state space model) format. This can be obtained using the augss()
function provided in the Robust Control Toolbox with syntax

STss=augss(S,Sw1,Sw2,Sw3,w3poly)

where S is the plant tree variable, and w3poly is the polynomial of W3(s) if it is not proper.
Of course, different ways of callingaugss() are allowed. If any of the weighting functions
is not provided, the variable in the function call can be replaced by an empty system. In
recent versions of MATLAB, the models S and others can also be provided in state space
models.

Example 7.9. Consider the plant model in Example 7.2. The weighting functions are
selected as W1(s) = 100/(s + 1) and W3(s) = s/1000. Then, the augmented plant model
can be constructed by the following MATLAB scripts:

>> A=[0,1,0,0; -5000,-100/3,500,100/3; 0,-1,0,1; 0,100/3,-4,-60];
B=[0; 25/3; 0; -1]; C=[0,0,1,0]; D=0; S=mksys(A,B,C,D,’ss’);
W1num=[100]; W1den=[1,1]; [a,b,c,d]=tf2ss(W1num,W1den);
S1=mksys(a,b,c,d); S2=mksys([],[],[],[]); S3=mksys([],[],[],[]);
W3poly=[1/1000]; SysTss=augss(S,S1,S2,S3,W3poly);

If the weighting functions are given in transfer function format, the MATLAB func-
tion augtf() provided in the Robust Control Toolbox can also be used. The syntax is
ST =augtf(S,W1,W2,W3) , where ST is the tree variable of the plant model, and W1,

W2, W3 are the transfer function representations of the weighting functions which can be
represented by two-row matrices, whose first row is the numerator and second row the
denominator. The transfer function augmentation accepts the improper transfer functions.
The returned variable ST is the two-port state space representation of the augmented system.
In new versions of the Robust Control Toolbox, the plant and weighting functions can also
be described by linear time-invariant (LTI) objects, thus the augmentation is even simpler.
In the following linear time-invariant examples, such augmentations are demonstrated.

256 Chapter 7. Robust Control Systems Design

F (s) G(s)�
�

� � �� �
�

r e u
d

y

Figure 7.15. Typical feedback control structure.

Example 7.10. Consider again the problem in Example 7.9. The augmented system can be
obtained with the following MATLAB statements:

>> A=[0,1,0,0; -5000,-100/3,500,100/3; 0,-1,0,1; 0,100/3,-4,-60];
B=[0; 25/3; 0; -1]; C=[0,0,1,0]; D=0; G=ss(A,B,C,D);
W1=tf(100,[1,1]); W2=[]; W3=tf([1 0],1000);
SysTss1=augtf(G,W1,W2,W3);

It can be seen that the statements are quite straightforward.
The two-port format of the augmented system can be retrieved by the direct use of the

branch() function as demonstrated in the following:

>> [a,b1,b2,c1,c2,d11,d12,d21,d22]=branch(SysTss1);

and the results can be represented mathematically as

P(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
−5000 −100/3 500 100/3 0 0 25/3

0 −1 0 1 0 0 0
0 100/3 −4 −60 0 0 −1
0 0 −1 0 −1 1 0
0 0 0 0 100 0 0
0 −1/1000 0 1/1000 0 0 0
0 0 −1 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

7.3.3 Weighted Sensitivity Problems: A Simple Case

The weighted sensitivity problem is a simple case of H∞ controller design. In the general
weighting case, W2(s) and W3(s) are set to [] for this weighted sensitivity problem.
Denoting the sensitivity transfer function by S(s), and introducing a weighting function
W (s), our design objective is to find a controller such that ‖W (s)S(s)‖∞ < 1.

A typical feedback control structure under discussion in this subsection is shown in
Figure 7.15. Before we go further into controller design, we present the following theorem.

Theorem 7.2. If the plant model G(s) is a stable and proper transfer function, the set of all
controllers F (s) which internally stabilize the open-loop system can be written as

F (s) = Q(s)[I − G(s)Q(s)]−1, (7.36)

where Q(s) is any stable proper transfer function. Equation (7.36) is also referred to as the
Youla parameterization formula.

7.3. H∞ Controller Design 257

Thus, our controller design task is to pick up, from a set of controllers defined by
the above Youla parameterization, a subset of controllers ensuring that ‖W (s)S(s)‖∞ < 1.
Note that, this subset consists of controllers that are all called robust controllers, as explained
earlier in Sec. 7.2.1. Here, W (s) has two roles. The first role is the scaling so that ‖�‖∞ < 1.
The second, more practical role is that W (s) can be used in the frequency domain to put
a different emphasis on the shape of S(s), known as sensitivity shaping. If we can define
an optimal performance index so that we can pick up a unique controller from this subset
of robust controllers, this uniquely determined controller is then the robust and optimal
controller.

Stable minimum phase plant model considerations

Define a kth-order transfer function J (s) = 1/(τs + 1)k , with k a positive integer. For any
given stable and strictly proper transfer function G(s), it can be shown that

lim
τ→0

‖G(1 − J)‖∞ = 0. (7.37)

From (7.36), WS = W(1 − GQ). With the introduced J (s), and k selected as the
pole-zero excess, of the plant model, set

Q(s) = G−1J (7.38)

such that Q(s) is a stable proper transfer function. Then, WS = W(1 − J). Thus, for
relatively small τ , ‖W(s)S(s)‖∞ < 1.

A MATLAB function minsens() is written which can be used to design a minimum
sensitivity stabilizing controller for stable minimum phase plant model G(s):

1 function [Gc,tau]=minsens(G,W,options)
2 t1=options(1); t2=options(2);G=tf(G); W=tf(W); num=G.num{1};
3 den=G.den{1}; ii=find(abs(num>eps)); num=num(ii(1):end);
4 k=length(den)-length(num); zr=roots(num); norms=[]; JJ=[];
5 tt=logspace(log10(t1),log10(t2),10);
6 if ˜any(real(zr)>=0)
7 for i=1:length(tt), Jden=1;
8 for j=1:k,Jden=conv(Jden,[tt(i),1]);end
9 nn=Jden-[zeros(1,k),1]; JJ=[JJ; Jden]; g1=tf(nn,Jden);

10 g=ss(g1*W); norms=[norms,normhinf(g.a,g.b,g.c,g.d)];
11 end
12 end
13 norms, key=input(’Select a number n=> ’);
14 tau=tt(key); Qnum=den; Qden=JJ(key,:); nn=JJ(key,:)-[zeros(1,k),1];
15 g1=tf(Qnum,Qden); g2=tf(JJ(key,:),nn); Gc=minreal(g1*g2);

The syntax of the function is [Gc,τ ∗]=minsens(G,W,Tau_range) , where
G is the transfer function object of the plant and W is the weighting function W(s).
Tau_range is used to specify the minimum and maximum values of τ . Gc returned
is the stabilizing controller F(s), and τ ∗ returns the best value of τ .

Example 7.11. Consider a stable minimum phase plant model

G(s)= 100

s2+7s+2

258 Chapter 7. Robust Control Systems Design

0 0.004 0.008 0.012 0.016 0.02
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (secs)

A
m

pl
itu

de

(a) for τ = 0.0022

0 0.001 0.002 0.003 0.004 0.005
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (secs)

A
m

pl
itu

de

τ=0.001

τ=0.0046

(b) for different values of τ

Figure 7.16. Step responses for different τ .

with a weighting function of W(s) = 100/(s + 1). The following MATLAB statements are
used to design a robust controller for the minimum sensitivity problem. The step response
under such a controller is shown in Figure 7.16(a):

>> G=tf(100,[1,7,2]); W=tf(100,[1,1]);
[Gc,tau]=minsens(G,W,[0.001,1]); tau, zpk(Gc)

As an intermediate result, a series of norm values 0.1996, 0.4294, 0.9221, 1.9722,
4.1836, 8.7499, 17.6146, 33.3642, 56.5321, 82.0190 is displayed. If 0.4294 is selected, the
optimum value of τ is 0.0022, and the optimal controller obtained is

Gc(s) = 215443.469(s + 6.702)(s + 0.2984)

s(s + 928.3)
.

The step response under the controller can be drawn with the following statements, as shown
in Figure 7.16(a):

>> G_o=G*Gc; G_c=feedback(G_o,1); step(G_c,0:0.00005:0.02)

Now, let us check the other two values of τ : τ = 0.0046 and τ = 0.001. By the
following MATLAB statements:

>> [Gc1,tau]=minsens(G,W,[0.001,1]);
Select a number n=> 3
>> G_c1=feedback(G*Gc1,1); [Gc2,tau]=minsens(G,W,[0.001,1]);
Select a number n=> 1
>> G_c2=feedback(G*Gc2,1); step(G_c1,G_c2,0.01);

the obtained step responses are compared in Figure 7.16(b). It can be seen that the smaller
the τ , the quicker the response. However, too small a τ may induce the numerical roundoff
problem.

The following MATLAB statements can be used to perform the frequency domain
analysis:

>> g1=feedback(1,G*Gc); [m1,p1,w]=bode(g1);
g2=feedback(1,G*Gc1); [m2,p2]=bode(g2,w);

7.3. H∞ Controller Design 259

10-2 10-1 100 101 102 103 104
-140

-120

-100

-80

-60

-40

-20

0

20

40

τ=0.001
τ=0.0046

W1(jω)

τ=0.0022

(a) sensitivity functions

10-2 10-1 100 101 102 103 104
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

τ=0.0046τ=0.0022

τ=0.001

-14dB
-19.4dB

-25.9dB

(b) weighted sensitivity functions

Figure 7.17. Bode magnitude plots for different controllers.

g3=feedback(1,G*Gc2); [m3,p3]=bode(g3,w); [m,p]=bode(W,w);
m1=20*log10(m1(:)); m2=20*log10(m2(:));
m3=20*log10(m3(:)); m=20*log10(m(:));
semilogx(w,m,’-’,w,m1,’--’,w,m2,’:’,w,m3,’-.’),
figure; semilogx(w,m+m1,’--’,w,m+m2,’:’,w,m+m3,’-.’)

The magnitude Bode plot of the sensitivity functions, together with the weighting
function W(s), is shown in Figure 7.17(a). The plots for ‖W(jω)S(jω)‖∞ are also obtained
and shown in Figure 7.17(b). It can be seen that for all three controllers, ‖W(jω)S(jω)‖∞ <

1 for all the frequencies, i.e., below the 0dB line. The peak values representing the H∞-
norms are also labeled on the plots.

Coprime factorization of transfer functions

It is obvious that the above algorithm with Q(s) = G−1J is applicable only for stable
minimum phase plants. If G(s) is nonminimum phase, Q(s) = G−1J will contain unstable
poles which will cause the system to be internally unstable. The design algorithm for
nonminimum phase plants can be done using the coprime factorization technique.

Definition 7.1. For a given transfer function which can be written as G(s) = N(s)/M(s),
where N(s) and M(s) are stable proper transfer functions, if there exist two other stable
proper transfer functions X(s) and Y (s) such that

N(s)X(s) + M(s)Y (s) = 1, (7.39)

the transfer functions N(s) and M(s) are called coprime. Finding the four transfer functions
(N, M, X, Y) is called the coprime factorization of G(s). Equation (7.39) is also called the
Bezout equation.

To understand the concept of coprimeness of two transfer functions N(s) and M(s),
we note the following:

(1) N(s) and M(s) are both stable proper transfer functions.

(2) The zeros, including the infinity ones, of N(s) cannot be canceled with those
of M(s).

260 Chapter 7. Robust Control Systems Design

If G(s) is stable, there is no need to perform coprime factorization. In this case, a
straightforward solution to the Bezout equation is that

N(s) = G(s), M(s) = Y (s) = 1, X(s) = 0. (7.40)

Example 7.12. Let us illustrate the concept of coprimeness through an example. Consider
an unstable transfer function G(s) = 1/(s − 1). If two transfer functions N(s) = 1/(s + 1)

and M(s) = (s − 1)/(s + 1) are chosen, it is clear that the above two conditions are
satisfied. Thus N(s) and M(s) are coprime. Consider another two transfer functions
N1(s) = 1/(s + 1)2 and M1(s) = (s − 1)/(s + 1)2. It can be seen that a zero of M1(s) is
at s = ∞, which is the same as one zero of N1(s). Thus, the (N1, M1) pair is not coprime.

It should also be noted that the pair N(s) = 1/(s + 2) and M(s) = (s − 1)/(s + 2)

is also a coprime representation of G(s). So, the coprime factorization of a given transfer
function is not unique.

From the above example, it is readily seen that obtaining a coprime representation
N(s)/M(s) is very simple. However, one may have difficulty finding the transfer functions
X(s) and Y (s) satisfying the Bezout equation. From among different methods for coprime
factorization, we shall only present the state space approach.

Theorem 7.3. Let (A, B, C, D) be the state space representation of G(s). Pick a matrix F

stabilizing A + BF . Then, the state space representations of M(s) and N(s) are given as

M(s) =
[

A + BF B

F 1

]
, N(s) =

[
A + BF B

C + DF D

]
. (7.41)

Choose a matrix H to ensure that A + HC is stable. Then, the state space represen-
tations of X(s) and Y (s) are as follows:

X(s) =
[

A + HC H

F 0

]
, Y (s) =

[
A + HC −B − HD

F 1

]
. (7.42)

A MATLAB functioncoprime() is written for coprime factorization given a transfer
function G(s), where the pole placement algorithm is used to determine F and H :

1 function [N,M,X,Y]=coprime(G,K1,K2)
2 G=ss(G); a=G.a; b=G.b; c=G.c; d=G.d;
3 if length(K1)==1, K1=K1*ones(size(c)); end
4 if length(K2)==1, K2=K2*ones(size(c)); end
5 F=-acker(a,b,K1); H=-acker(a’,c’,K2)’; M=ss(a+b*F,b,F,1);
6 N=ss(a+b*F,b,c+d*F,d); X=ss(a+H*c,H,F,0);Y=ss(a+H*c,-b-H*d,F,1);

The syntax of the function is [N,M,X,Y]=coprime(G,K1,K2) , where G is
the transfer function of G(s), and the returned variables are the transfer function objects for
N, M, X, Y , respectively. For SISO systems, K1, K2 are defined as follows:

(1) If K1 or K2 is a column vector, it contains the desired pole positions:

(2) If K1 or K2 is a scalar, it will contain the expected repeated pole position of the
relevant stabilization problems.

7.3. H∞ Controller Design 261

Example 7.13. Perform a coprime factorization for the unstable nonminimum phase system

G(s) = (s − 1)2(s2 − s + 1)

(s − 2)2(s + 1)3 .

To perform a coprime factorization of G(s), let us assume that the desired poles are all
located at s = −2 for F and at s = −0.1 for H . Then, the following MATLAB statements
can be used:

>> s=tf(’s’); G=(s-1)ˆ2*(sˆ2-s+1)/((s-2)ˆ2*(s+1)ˆ3);
[N,M,X,Y]=coprime(G,-2,-0.1); zpk(N),zpk(M),zpk(X),zpk(Y)

It can then be found that

M(s) = (s − 1)2(s2 − s + 1)

(s + 2)5
, N(s) = (s + 1)3(s − 2)2

(s + 2)5
,

X(s) = −190.5279(s − 4.71)(s + 0.9637)(s2 + 2.036s + 1.038)

(s + 0.1)5
,

Y (s) = (s − 0.823)(s2 − 1.036s + 0.9908)(s2 + 13.36s + 275.1)

(s + 0.1)5
.

To design a robust controller for an unstable minimum phase plant G(s), the following
steps can be used to ensure that ‖W(s)S(s)‖∞ < 1:

1. Perform a coprime factorization to get (N, M, X, Y);

2. select a τ which is small enough to make ‖WMY(1−J)‖∞ < 1, with k in J (s) equal
to the pole-zero excess of G(s);

3. set Q = YN−1J ;

4. get a robust controller from F(s) = (X + MQ)/(Y − NQ).

Nonminimum phase plant model consideration

For a nonminimum phase system model, the following alternative design procedure [82],
which is slightly different from the design steps presented in the above, was proposed to
design a robust controller to achieve ‖W(s)S(s)‖∞ < 1:

1. Perform coprime factorization (N, M, X, Y);

2. find a stable Q0 such that ‖WM(Y − NQ0)‖∞ < 1;

3. find a relatively small τ such that ‖WM(Y − NQ0J)‖∞ < 1;

4. select a Q such that Q = Q0J ;

5. obtain a robust controller from F(s) = (X + MQ)/(Y − NQ).

7.3.4 H∞ Controller Design: The General Case

To consider the general case, let us focus on the two-port system structure for H∞ control
described in Figure 7.11(a). The design objective is to find a robust controller Fc(s) guar-
anteeing the closed-loop system with an H∞-norm bounded by a given positive number γ ,

262 Chapter 7. Robust Control Systems Design

i.e., ‖Ty1u1(s)‖∞ < γ . The controller can be represented by

Fc(s) =
[

Af −ZL

F 0

]
, (7.43)

where

Af = A + γ −2B1B
T
1 X + B2F + ZLC2,

F = −BT
2 X, L = −YCT

2 , Z = (I − γ −2YX)−1,
(7.44)

and X and Y are, respectively, the solutions of the following two AREs:

ATX + XA + X(γ −2B1B
T
1 − B2B

T
2)X + C1C

T
1 = 0,

AY + YAT + Y (γ −2CT
1 C1 − CT

2 C2)Y + BT
1 B1 = 0.

(7.45)

The conditions for the existence of an H∞ controller are as follows:

• D11 is small enough such that D11 < γ ;

• the solution X of the controller ARE is positive-definite;

• the solution Y of the observer ARE is positive-definite;

• λmax(XY) < γ 2, which indicates that the eigenvalues of the product of the two Riccati
equation solution matrices are all less than γ 2.

A MATLAB function hinf() is provided in the Robust Control Toolbox for H∞
controller design for the general mixed stability and performance problem. The syntax
is [Fc,Gcl]=hinf(G) , where G is the two-port state space description of the plant
model, including the specifications of the weighting functions. The returned tree variable
Fc is the designed H∞ controller in state space form and Gcl is the state space object of the
closed-loop system.

The existence of the H∞ controller is checked first. Then, an H∞ controller is
designed if all the conditions are satisfied. Otherwise, the error messages will be given to
report the failure of the function call.

Example 7.14. Consider a plant model given by

G(s) = 400

s2 + δs + 400
,

where the uncertain parameter δ varies within a certain range. The nominal value of δ is 2.
Define the weighting functions as

W1(s) = 100(0.005s + 1)2

ρ(0.2s + 1)2 , W3(s) = s2

40000
.

Let us first consider ρ = 1. The magnitude Bode diagrams of the weighting functions
W1(s) and W3(s) are shown in Figures 7.18(a) and (b), respectively, using the following

7.3. H∞ Controller Design 263

10
−1

10
0

10
1

10
2

10
3

10
4

−30

−20

−10

0

10

20

30

40

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

Frequency (rad/sec)

(a) W1(jω)

10
0

10
1

−95

−90

−85

−80

−75

−70

−65

−60

−55

−50

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

Frequency (rad/sec)

(b) W3(jω)

Figure 7.18. Bode magnitude plots for weighting functions.

MATLAB statements:

>> num=400; den=[1,2,400]; G=tf(num,den); s=tf(’s’);
W1=100*(0.005*s+1)ˆ2/(0.2*s+1)ˆ2; W3=sˆ2/40000;
bodemag(W1); figure, bodemag(W3)

The two-port augmented system can be established, and the H∞ controller can then
be designed by the direct use of the hinf() function,

>> S_T=augtf(G,W1,[],W3); Gc1=hinf(S_T); zpk(Gc1)

Then the following messages are displayed:

1 << H-inf Optimal Control Synthesis >>
2 Computing the 4-block H-inf optimal controller
3 using the S-L-C loop-shifting/descriptor formulae
4 Solving for the H-inf controller F(s) using U(s) = 0 (default)
5 Solving Riccati equations and performing H-infinity existence tests:
6 1. Is D11 small enough? OK
7 2. Solving state-feedback (P) Riccati ...
8 a. No Hamiltonian jw-axis roots? OK
9 b. A-B2*F stable (P >= 0)? OK

10 3. Solving output-injection (S) Riccati ...
11 a. No Hamiltonian jw-axis roots? OK
12 b. A-G*C2 stable (S >= 0)? OK
13 4. max eig(P*S) < 1 ? OK
14 ---
15 all tests passed -- computing H-inf controller ...
16 DONE!!!
17 ---

We can see that all the existence conditions are satisfied and the design process of the H∞
controller is successful. The controller Gc1(s) is obtained as in the following format:

Gc1(s) = 8597.8554(s + 42.84)(s2 + 2s + 400)

(s + 5)2(s2 + 308.5s + 4.388×104)
.

264 Chapter 7. Robust Control Systems Design

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.5

1

1.5

Step Response

Time (sec)

A
m

pl
itu

de

(a) with ρ = 1

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

(b) with ρ = 0.5

Figure 7.19. Closed-loop step responses for different ρ.

The closed-loop step response of the system obtained with the MATLAB statements

>> G_o=G*Gc; G_c=feedback(G_o,1); step(G_c)

is shown in Figure 7.19(a). Let us see what will happen if ρ is reduced to 0.5. Using the
following MATLAB statements:

>> W1=2*W1; S_T1=augtf(G,W1,[],W3); F=hinf(S_T1);
Gc2=zpk(F), G_o=G*Gc2; G_c=feedback(G_o,1); step(G_c);

we find that and the controller is

Gc2(s) = 27751.2951(s + 51.54)(s2 + 2s + 400)

(s + 5)2(s2 + 542s + 1.078×105)
.

The closed-loop step response under the new ρ is shown in Figure 7.19(b). Clearly, by
decreasing ρ, the step response of the system will be faster with the overshoot reduced
while keeping approximately the same shape in the dynamic response curves.

Now let us perturb the parameter δ ∈ (−10, 10) in the plant model. Note that when
δ < 0, the open-loop plant model is unstable. The step response under the same H∞
controller F1(s) can be obtained using the following MATLAB statements:

>> f1=figure; f2=figure;
for delta=-10:1:10

den(2)=delta; G=tf(num,den); Go=G*Gc1; Gc=feedback(Go,1);
figure(f1);step(Gc),hold on;figure(f2); nichols(Go);hold on

end
figure(f1); xlim([0,0.2]); figure(f2),axis([-360,0,-40,40]),grid

The step responses of the controlled system with different values of δ are compared in
Figure 7.20(a). It can be observed that although the plant model is greatly perturbed, e.g.,
from unstable to stable and with large change in pole positions, the step responses are rather
close. The controlled system is indeed robust.

7.3. H∞ Controller Design 265

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Step Response

Time (sec)

A
m

pl
itu

de

(a) step responses

−360 −315 −270 −225 −180 −135 −90 −45 0
−40

−30

−20

−10

0

10

20

30

40

 6 dB
 3 dB

 1 dB
 0.5 dB

 0.25 dB
 0 dB

 −1 dB

 −3 dB

 −6 dB

 −12 dB

 −20 dB

 −40 dB

Nichols Chart

Open−Loop Phase (deg)

O
pe

n−
L

oo
p

G
ai

n
(d

B
)

(b) Nichols charts

Figure 7.20. System responses for different δ.

To further appreciate of the robustness, see the Nichols charts for different values of
δ in Figure 7.20(b). In the display window, the Nichols charts for δ ≤ 0 have been split into
two segments. Obviously, despite the great variation of δ, the Nichols charts are all kept
away from the 6dB constant M contour, which ensures the satisfactory dynamic behavior
of the closed-loop system.

Example 7.15. Consider the sensitivity problem for the nonminimum phase plant model
given by G(s) = (s − 1)/(s + 1)2, with

W(s) = 0.62
s2 + 1.2s + 1

(s + 0.001)(s + 1.2)(0.001s + 1)

as the weighting function. Using the following MATLAB statements:

>> num=[1,-1]; den=[1,2,1]; G=tf(num,den); s=tf(’s’);
GW=0.62*(sˆ2+1.2*s+1)/(s+0.001)/(s+1.2)/(0.001*s+1);
S_T=augtf(G,GW,[],[]); F1=hinf(S_T);

it can be seen that an error message is given complaining that the matrix D12 in (7.30) is
not full ranked. To meet the full rank requirement, it can be seen that at least one of the
following three conditions should be satisfied:

−DDW1D �= 0, − DW2 �= 0, D̃ + DW3D �= 0. (7.46)

As a remedy, let us choose the weighting function W2(s) as a small constant value ε,
for instance, ε = 10−5. In this way, the problem can be solved as shown below:

>> S_T1=augtf(G,GW,1e-5,[]); F1=hinf(S_T1); zpk(F1)

Therefore, an H∞ controller can now be designed:

F1(s) = 51328980.8773(s − 5.848)(s + 1.778)(s + 1)2

(s + 1.014×104)(s + 1000)(s + 84.42)(s + 1.2)(s + 0.001)
.

266 Chapter 7. Robust Control Systems Design

0 2 4 6 8 10
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Step Response

Time (sec)

A
m

pl
itu

de

(a) step responses

−360 −315 −270 −225 −180 −135 −90 −45 0
−40

−30

−20

−10

0

10

20

30

40

 6 dB
 3 dB

 1 dB
 0.5 dB

 0.25 dB
 0 dB

 −1 dB

 −3 dB

 −6 dB

 −12 dB

 −20 dB

 −40 dB

Nichols Chart

Open−Loop Phase (deg)

O
pe

n−
L

oo
p

G
ai

n
(d

B
)

(b) Nichols charts

Figure 7.21. System responses with an H∞ controller.

The closed-loop step response and the open-loop Nichols chart of the system under
controller F1 are shown, respectively, in Figures 7.21(a) and (b) by using the following
MATLAB statements:

>> G_o=G*F1; G_c=feedback(G_o,1); step(G_c,10),
figure, nichols(G_o), grid; axis([-360,0,-40,40])

It can be seen that the dynamic behavior of the controlled system is satisfactory with
a small undershoot.

Example 7.16. Consider a double integrator plant model G(s) = 1/s2. Let the weighting
functions be W1(s) = 0.5(s + 4)/(s + 1) and W3(s) = s2/100. An H∞ controller can be
designed using the following MATLAB statements:

>> G=tf(1,[1 0 0]); W1=tf([0.5,2],[1,1]); W3=tf([1 0 0],100);
S_T=augtf(G,W1,[],W3); C=zpk(hinf(S_T)), step(feedback(G*C,1))

and the controller designed is

C(s) = 185.132(s + 2.831×10−8)(s − 2.831×10−8)

(s + 1)(s2 + 14.67s + 105.3)
.

The step response of the closed-loop system is shown in Figure 7.22. Since the controller
just cancels the poles of the plant at s = 0 directly, this is usually not suggested as a good
controller design. It can also be seen that the steady-state value of the closed-loop system
will never reach 1.

Since there exist poles at s = 0, one may shift the poles away from the imaginary
axis and design an H∞ controller for the shifted plant. Then, shift the designed H∞
controller back. A common shift algorithm uses a special bilinear transformation z =
(s + p1)/(s/p2 + 1), with p2 = ∞ and p1 < 0. Then, the plant model will be shifted
from (A, B, C, D) to (A − p1I , B, C, D). After the controller design, use the inverse
bilinear transformation to convert (AF , BF , CF , DF) back into (AF +p1I , BF , CF , DF).

7.3. H∞ Controller Design 267

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Step Response

Time (sec)

A
m

pl
itu

de

Figure 7.22. System responses with an H∞ controller.

Assume p1 = −0.1. The H∞ controller can be designed using the following MATLAB
statements:

>> G1=ss(G); [a,b,c,d]=ssdata(G1); p1=-0.1; a1=a-p1*eye(size(a));
S_shift=ss(a1,b,c,d); W3=tf([1 0 0],100);
TSS_shift=augtf(S_shift,W1,[],W3); Gc=hinf(TSS_shift);
af=Gc.a+p1*eye(size(Gc.a)); Gc=zpk(ss(af,Gc.b,Gc.c,Gc.d))

The controller is then designed as

Gc(s) = 242.6903(s + 0.426)(s + 0.1241)

(s + 1.1)(s2 + 15.76s + 118.7)
.

To compare the step responses and Nichols charts, use the following MATLAB state-
ments:

>> G_o=G*Gc; G_c=feedback(G_o,1); step(G_c,t),
figure, nichols(G_o), axis([-360,0,-40,40]), grid

The results are shown in Figures 7.23(a) and (b), respectively. It can be seen that the speed
of the responses, for this example, is rather slow.

7.3.5 Optimal H∞ Controller Design

Consider the case in Example 7.14. When ρ in the weighting function decreases, the system
response increases. This leaves us to question how small the value of ρ can be to ensure
that one gets the best response.

In optimal H∞ controller design, the optimal criterion is defined as

max
γ

‖Ty1u1‖ <
1

γ
, and in general, max

γ

⎡⎣ W1S

W2FS

W3T

⎤⎦ ≤ 1

γ
. (7.47)

268 Chapter 7. Robust Control Systems Design

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Step Response

Time (sec)

A
m

pl
itu

de

(a) step responses

−360 −315 −270 −225 −180 −135 −90 −45 0
−40

−30

−20

−10

0

10

20

30

40

 6 dB
 3 dB

 1 dB
 0.5 dB

 0.25 dB
 0 dB

 −1 dB

 −3 dB

 −6 dB

 −12 dB

 −20 dB

 −40 dB

Nichols Chart

Open−Loop Phase (deg)

O
pe

n−
L

oo
p

G
ai

n
(d

B
)

(b) Nichols charts

Figure 7.23. System responses when the poles are shifted.

Even more generally, all three terms in the matrix on the left-hand side of (7.47) can be
individually weighted by γ . An iteration method, known as the γ -iteration method, can be
used in finding the optimal γ .

A MATLAB function hinfopt(), provided in the Robust Control Toolbox, can be
used to perform the optimal H∞ controller design. A bisectional algorithm is used in the
iteration process. The syntax of the function is [γ ∗,Gf,Gcl]=hinfopt(G) , where

G is again the augmented two-port state space system, which can be either the tree structure
or an LTI model. The variable γ ∗ is the optimal value for γ .

Example 7.17. Consider again the problem in Example 7.14. The following MATLAB
statements can be used to design an optimal H∞ controller:

>> G=tf(400,[1,2,400]); s=tf(’s’);
W1=100*(0.005*s+1)ˆ2/(0.2*s+1)ˆ2; W3=sˆ2/40000;
G_T=augtf(G,W1,[],W3); [g,F,ccL]=hinfopt(G_T); Gc=zpk(F)

The intermediate iteration results are
1 << H-Infinity Optimal Control Synthesis >>
2 No Gamma D11<=1 P-Exist P>=0 S-Exist S>=0 lam(PS)<1 C.L.
3 --
4 1 1.0000e+000 OK OK OK OK OK OK STAB
5 2 2.0000e+000 OK OK FAIL OK OK OK UNST
6 3 1.5000e+000 OK OK OK OK OK OK STAB
7 4 1.7500e+000 OK OK OK OK OK OK STAB
8 5 1.8750e+000 OK OK OK OK OK OK STAB
9 6 1.9375e+000 OK OK FAIL OK OK OK UNST

10 7 1.9062e+000 OK OK FAIL OK OK OK UNST
11 8 1.8906e+000 OK OK OK OK OK OK STAB
12 Iteration no. 8 is your best answer under the tolerance: 0.0100.

and it is found that γ ∗ = 1.8906, and the controller can be written as

Gc(s) = 505249.1691(s + 48.42)(s2 + 2s + 400)

(s + 9617)(s + 216.4)(s + 5)2 .

7.3. H∞ Controller Design 269

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

Step Response

Time (sec)

A
m

pl
itu

de

(a) step responses

−360 −315 −270 −225 −180 −135 −90 −45 0
−40

−30

−20

−10

0

10

20

30

40

 6 dB
 3 dB

 1 dB
 0.5 dB

 0.25 dB
 0 dB

 −1 dB

 −3 dB

 −6 dB

 −12 dB

 −20 dB

 −40 dB

Nichols Chart

Open−Loop Phase (deg)

O
pe

n−
L

oo
p

G
ai

n
(d

B
)

(b) Nichols charts

Figure 7.24. System responses for different δ.

Now, let us investigate the effect of uncertain parameter δ. With different values of δ,
by using the following MATLAB statements:

>> f1=figure; f2=figure;
for delta=-10:1:10

G.den{1}(2)=delta; G_o=G*Gc; G_c=feedback(G_o,1);
figure(f1); step(G_c), hold on;
figure(f2), nichols(G_o), hold on

end
figure(f2), axis([-360,0,-40,40]), grid

the closed-loop step responses and the open-loop Nichols charts can be obtained as compared
in Figures 7.24(a), and (b), respectively. It can be seen that the dynamic responses of the
system are improved compared to those shown in (7.20), where only a robust H∞ controller
is employed.

Example 7.18. Assume that a multivariable system is given by

G(s) =

⎡⎢⎢⎣
0.806s + 0.264

s2 + 1.15s + 0.202

−15s − 1.42

s3 + 12.8s2 + 13.6s + 2.36
1.95s2 + 2.12s + 0.49

s3 + 9.15s2 + 9.39s + 1.62

7.15s2 + 25.8s + 9.35

s4 + 20.8s3 + 116.4s2 + 111.6s + 18.8

⎤⎥⎥⎦ .

The model can be entered easily into the MATLAB environment. Now consider the mixed
sensitivity problem, with the weighting functions chosen as

W1(s) =
⎡⎢⎣ 100

s + 0.5
0

0
100

s + 1

⎤⎥⎦ , W3(s) =
⎡⎣ s

1000
0

0
s

200

⎤⎦ . (7.48)

Let W2(s) be an empty matrix. In fact, to avoid the singularity problem, one may still
assume that W2(s) = diag([10−5, 10−5]). Thus, the following statements can be used to

270 Chapter 7. Robust Control Systems Design

0

0.5

1

T
o:

 O
ut

(1
)

From: In(1)

0 0.05 0.1
0

0.5

1

T
o:

 O
ut

(2
)

From: In(2)

0 0.05 0.1

Step Response

Time (sec)

A
m

pl
itu

de

Figure 7.25. Step response under the optimal H∞ controller.

augment the system to a two-port system. The optimal H∞ can then be designed. The step
response of the multivariable can be obtained as shown in Figure 7.25.

>> g11=tf([0.806 0.264],[1 1.15 0.202]); s=tf(’s’);
g12=tf([-15 -1.42],[1 12.8 13.6 2.36]);
g21=tf([1.95 2.12 0.49],[1 9.15 9.39 1.62]);
g22=tf([7.15 25.8 9.35],[1 20.8 116.4 111.6 18.8]);
G=[g11, g12; g21, g22]; W1=[100/(s+0.5),0; 0,100/(s+1)];
W2=[tf(1e-5),0; 0,tf(1e-5)]; W3=[s/1000,0; 0,s/200];
Tss=augtf(G,W1,W2,W3); [g,Gc]=hinfopt(Tss); zpk(Gc(1,2))
step(feedback(G*Gc,eye(2)),0.1)

It can be seen that the control results are satisfactory. The decoupling problem of
multivariable control was solved successfully and the performance of the responses are well
acceptable. Unfortunately, the orders of the designed controller are extremely high. For
instance, the off-diagonal term g12(s) in the controller is a 14th-order model given by

g12(s) =

1522968.8928(s + 1222)(s + 763)(s + 11.54)(s + 8.096)

(s + 8.002)(s + 0.9354)(s + 0.9336)(s + 0.9306)

(s + 0.5)(s + 0.2175)(s + 0.2164)(s + 0.2147)(s + 0.09511)

(s + 2.132×104)(s + 1677)(s + 657.8)(s + 11.55)(s + 8.1)

(s + 1.052)(s + 1)(s + 0.9331)(s + 0.9218)(s + 0.5)

(s + 0.3369)(s + 0.2467)(s + 0.2263)(s + 0.2167)

.

It is also obvious from the result that the response of the y22(t) signal is relatively slow,
compared with that of output y11(t). Weighting must be added to w1,22(s) in W1(s). For
instance, let w1,22(s) = 1000/(s + 1). A new optimal H∞ controller can be designed, and
the improved control result can be obtained as shown in Figure 7.26.

7.4. Optimal H2 Controller Design 271

0

0.5

1

T
o:

 O
ut

(1
)

From: In(1)

0 0.05 0.1
0

0.5

1

T
o:

 O
ut

(2
)

From: In(2)

0 0.05 0.1

Step Response

Time (sec)

A
m

pl
itu

de

Figure 7.26. New result with modified W1(s) function.

>> W1(2,2)=1000/(s+1); Tss=augtf(G,W1,W2,W3);
[g,Gc1]=hinfopt(Tss); step(feedback(G*Gc1,eye(2)),0.1);

Since the order of the controller is extremely high, which is not easily implemented in
real control applications, model reduction techniques should be used. The model reduction
technique in Chapter 3 cannot be used for each individual item of the multivariable controller
only. Instead, a closed-loop controller reduction technique should be used [83, 84].

7.4 Optimal H2 Controller Design
The H2 optimal control problem is to find a stabilizing controller Fc(s) for the augmented
system model P (s) given by

P (s) =
⎡⎣ A B1 B2

C1 D11 D12
C2 D21 D22

⎤⎦ (7.49)

such that the H2-norm of the linear fractional transformation Ty1u1(s),

‖Ty1u1(s)‖2 = ‖P11(s) + P12(s)[I − F (s)P22(s)]−1F (s)P21(s)‖2 < 1, (7.50)

is minimized. For SISO systems, the H2 optimal control problem can be represented as

min
F (s)

‖Ty1u1‖2 = min
F (s)

√
1

π

∫ ∞

0
Ty1u1(−jω)Ty1u1(jω)dω. (7.51)

272 Chapter 7. Robust Control Systems Design

The H2 optimal control problem is equivalent to the LQG/LTR problem as explained
in the following:

• The Kalman filter is expressed by

˙̂x = Ax̂ + B2u2 + Kf (y2 − C2x̂ − D22u2) (7.52)

with
Kf = (�CT

2 + Nf)�−1 = (�CT
2 + B1D

T
21)(D21D

T
21)

−1, (7.53)

where � is a symmetrical matrix satisfying the ARE

�AT + A� − (�CT
2 + Nf)�−1(C2� + NT

f) +
 = 0. (7.54)

• The full state feedback u2 = −Kcx̂ with

Kc = R−1(BT
2 + NT

c) = (DT
12D12)

−1(BT
2 P + DT

12C1), (7.55)

where
ATP + PA − (PB2 + Nc)R

−1(BT
2 P + NT

c) + Q = 0. (7.56)

The observer-based H2 optimal controller can be compactly denoted by

Fc(s) =
[

A − Kf C2 − B2Kc + Kf D22Kc Kf

Kc 0

]
. (7.57)

Furthermore, it can be seen that by sending D21 → 0, the H2 optimal control problem
can be made equivalent to the LQG/LTR problem.

A MATLAB function h2lqg(), provided in the Robust Control Toolbox, is for the
design of the optimal H2 controller. It should be noted that this optimal controller is also
robust. The syntax of the function is

[Fc, Gcl] =h2lqg (G)

where, as before, G is the two-port state space description of the robust control problem,
and the returned variables Fc and Gcl are the state space representations of the controller
and the closed-loop system, respectively.

Example 7.19. Consider again the problem in Example 7.14. The H2 optimal controller
can be designed by using the following MATLAB statements:

>> G=tf(400,[1,2,400]); s=tf(’s’);
W1=100*(0.005*s+1)ˆ2/(0.2*s+1)ˆ2; W3=sˆ2/40000;
G_T=augtf(G,W1,[],W3); [F,ccL]=h2lqg(G_T); Gc=zpk(F)

with the controller

Gc(s) = 6086.1502(s + 40.73)(s2 + 2s + 400)

(s + 5)2(s2 + 258.4s + 3.339×104)
.

7.5. The Effects of Weighting Functions in H∞ Control 273

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step Response

Time (sec)

A
m

pl
itu

de

(a) step responses

−360 −315 −270 −225 −180 −135 −90 −45 0
−40

−30

−20

−10

0

10

20

30

40

 6 dB
 3 dB

 1 dB
 0.5 dB

 0.25 dB
 0 dB

 −1 dB

 −3 dB

 −6 dB

 −12 dB

 −20 dB

 −40 dB

Nichols Chart

Open−Loop Phase (deg)

O
pe

n−
L

oo
p

G
ai

n
(d

B
)

(b) Nichols charts

Figure 7.27. System responses for different δ.

With the H2 controller designed in the above, the closed-loop step response of the system
with different values of δ can be obtained using the following MATLAB statements:

>> f1=figure; f2=figure;
for delta=-10:1:10

G.den{1}(2)=delta; G_o2=G*Gc2; G_c2=feedback(G_o2,1);
figure(f1); step(G_c2,0.2), hold on;
figure(f2), nichols(G_o2), hold on

end
figure(f2), axis([-360,0,-40,40]), grid

The results are summarized in Figure 7.27(a), and the Nichols charts for different values of
δ are compared in Figure 7.27(b). It can be seen that the controller is robust to the changes
in the plant model. Unfortunately, yet interestingly, for this example the dynamic behavior
is not as good as the H∞ optimal controller obtained in the previous section. However, we
remark that there is no definite conclusion that the H∞ optimal controller is, in general,
better than the H2 optimal controller under the same robust control setup.

7.5 The Effects of Weighting Functions in H∞ Control
In this section, via several examples we will illustrate how the weighting functions affect
the performance of a robust control system.

Example 7.20. Consider the system model given in [82]

G(s) = −6.4750s2 + 4.0302s + 175.7700

s(5s3 + 3.5682s2 + 139.5021s + 0.0929)
.

For the sensitivity problem, select a weighting function as

W1(s) = 0.9(s2 + 1.2s + 1)

1.021(s + 0.001)(s + 1.2)(0.001s + 1)
.

274 Chapter 7. Robust Control Systems Design

Since there is a pole at s = 0, the shift technique should be used in the robust controller
design. We can easily design an H∞ control with the following MATLAB statements:

>> G=tf([-6.4750,4.0302,175.77],[5,3.5682,139.5021,0.0929,0]);
s=tf(’s’); W1=0.9*(sˆ2+1.2*s+1)(1.012*(s+1e-3)*(s+1.2)*(1e-3*s+1));
[a,b,c,d]=ssdata(ss(G)); p1=-0.1; a1=a-p1*eye(size(a));
S=mksys(a1,b,c,d); TSS_=augtf(S,W1,1e-5,[]);
C_shift=hinf(TSS_); [a2,bf,cf,df]=branch(C_shift);
af=a2+p1*eye(size(a2)); Gc=zpk(ss(af,bf,cf,df))

The user will be prompted that

1 ---
2 all tests passed -- computing H-inf controller ...
3 DONE!!!
4 ---

and the controller can be designed as

Gc(s)= −7658521.09(s−72.32)(s+2.491)(s2+0.3334s+0.03009)(s2+0.713s+27.9)

(s+1000)(s+41.05)(s+4.908)(s+1.3)(s+0.101)(s2+605.9s+1.814×105)
.

With this controller, let us draw the open-loop Nichols chart and the closed-loop step
response of the system using the following MATLAB statements:

>> G_o=G*Gc; G_c=feedback(G_o,1); figure; step(G_c),
figure, nichols(G_o), grid; axis([-360,0,-40,40])

The results are shown, respectively, in Figures 7.28(a) and (b).
To design the optimal H∞ controller, use the following MATLAB statements:

>> [gg,C_shopt]=hinfopt(TSS_);
[af1,bf,cf,df]=branch(C_shopt);
af=af_shift+p1*eye(size(af1)); Gc1=zpk(ss(af,bf,cf,df))

-360 -270 -180 -90 0
-40

-30

-20

-10

0

10

20

30

40

6 db
3 db

1 db
0.5 db

0.25 db
0 db

-1 db

-3 db

-6 db

-12 db

-20 db

-40 db

Open-Loop Phase (deg)

O
pe

n-
L

oo
p

G
ai

n
(d

b)

(a) Nichols chart

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (secs)

A
m

pl
itu

de

(b) step response

Figure 7.28. Dynamic behavior of a system under the H∞ controller.

7.5. The Effects of Weighting Functions in H∞ Control 275

The following message will be displayed

1 << H-Infinity Optimal Control Synthesis >>
2 No Gamma D11<=1 P-Exist P>=0 S-Exist S>=0 lam(PS)<1 C.L.
3 ---
4 6 3.2500e+000 OK OK OK OK OK OK STAB
5 Iteration no. 6 is your best answer under the tolerance: 0.0100
6 --

and the controller can then be designed as

Gc(s)= −3562725.71(s−604.2)(s+2.616)(s2+0.3342s+0.03021)(s2+0.713s+27.9)

(s+1000)(s+197)(s+4.908)(s+1.3)(s+0.101)(s2+516.5s+1.521×105)
.

Then, use the following MATLAB statements to perform system analysis:

>> G_o1=G*Gc1; G_c1=feedback(G_o1,1); step(G_c1),
figure, nichols(G_o1), grid; axis([-360,0,-40,40])

The obtained open-loop Nichols chart and the closed-loop step response of the system are
shown in Figures 7.29(a) and (b), respectively.

For the above two controllers, the magnitude Bode diagrams for the sensitivity func-
tions and the weighted sensitivity functions are obtained by the following MATLAB state-
ments:

>> w=logspace(-5,4); g1=feedback(1,G*Gc);
g2=feedback(1,G*Gc1);
[m1,p1]=bode(g1,w); m1=20*log10(m1(:));
[m2,p2]=bode(g2,w); m2=20*log10(m2(:));
[m,p]=bode(tf(nW1,dW1),w); m=20*log10(m(:));
semilogx(w,m,’-’,w,m1,’--’,w,m2,’:’),
figure; semilogx(w,m+m1,’--’,w,m+m2,’:’)

with the results compared in Figures 7.30(a) and (b), respectively. It can be seen that the
weighted sensitivity functions are all below the 0dB line, which means that the design
specifications are met.

-360 -270 -180 -90 0
-40

-30

-20

-10

0

10

20

30

40

6 db
3 db

1 db
0.5 db

0.25 db
0 db

-1 db

-3 db

-6 db

-12 db

-20 db

-40 db

Open-Loop Phase (deg)

O
pe

n-
L

oo
p

G
ai

n
(d

b)

(a) Nichols chart

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

Time (secs)

A
m

pl
itu

de

(b) step response

Figure 7.29. Dynamic behavior of a system with the optimal H∞ controller.

276 Chapter 7. Robust Control Systems Design

10-4 10-2 100 102 104-150

-100

-50

0

50

H∞

W1(s)

H∞ optimal

(a) sensitivity
10-4 10-2 100 102 104-100

-80

-60

-40

-20

0

H∞ optimal

H∞

(b) weighted sensitivity

Figure 7.30. Magnitude Bode diagrams with different controllers.

Example 7.21. Consider again the double integrator problem given in Example 7.16. Let
us change the weighting functions such that [85]

W1(s) = β(αs2 + 2ζ1ω1c

√
αs + ω2

1c
)

βs2 + 2ζ2ω1c

√
βs + ω2

1c

with α=1.5, β=100, ω1c=3, ζ1 = ζ2=0.7.

Using the following MATLAB statements:

>> G=tf(1,[1,0,0]); s=tf(’s’); [a,b,c,d]=ssdata(ss(G));
p1=-0.1; a1=a-p1*eye(size(a)); G_shift=ss(a1,b,c,d);
beta=100; alpha=1.5; w1c=3; zeta1=0.7; zeta2=0.7;
w1=tf(beta*[alpha 2*zeta1*w1c*sqrt(alpha) w1c*w1c],...

[beta 2*zeta2*w1c*sqrt(beta) w1c*w1c]);
TSS_shift=augtf(G_shift,w1,[],sˆ2/100);
[gg,ss_Fopt_shift]=hinfopt(TSS_shift);
[a2,bf,cf,df]=branch(ss_Fopt_shift);
af=af_shift+p1*eye(size(a2)); Gc=zpk(ss(af,bf,cf,df))

the messages displayed are

1 << H-Infinity Optimal Control Synthesis >>
2 No Gamma D11<=1 P-Exist P>=0 S-Exist S>=0 lam(PS)<1 C.L.
3 ---
4 7 5.7812e-001 OK OK OK OK OK OK STAB
5 Iteration no. 7 is your best answer under the tolerance: 0.0100.
6 ---

and the optimal H∞ controller can then be designed such that

Gc(s) = 42944.8733(s + 1.73)(s + 0.1798)(s + 0.2235)

(s + 497.9)(s + 27.19)(s2 + 0.62s + 0.142)
.

To check the time and frequency performance, use the following MATLAB commands:

>> G_o=G*Gc; G_c=feedback(G_o,1); step(G_c),
figure, nichols(G_o), grid; axis([-360,0,-40,40])

7.5. The Effects of Weighting Functions in H∞ Control 277

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (secs)

A
m

pl
itu

de

(a) step responses

-360 -270 -180 -90 0
-40

-30

-20

-10

0

10

20

30

40

6 db
3 db

1 db
0.5 db

0.25 db
0 db

-1 db

-3 db

-6 db

-12 db

-20 db

-40 db

Open-Loop Phase (deg)

O
pe

n-
L

oo
p

G
ai

n
(d

b)

(b) Nichols charts

Figure 7.31. System responses with optimal H∞ controllers.

to get the closed-loop step response and the open-loop Nichols chart shown in Figures 7.31(a)
and (b), respectively. It can be seen that with the newly assigned weighting functions, the
speed of the system responses is significantly increased.

Let us further change ω1c to different values. By the following MATLAB commands:

>> f1=figure; f2=figure;
for w1c=1:10

w1=tf(beta*[alpha 2*zeta1*w1c*sqrt(alpha) w1c*w1c],...
[beta 2*zeta2*w1c*sqrt(beta) w1c*w1c]);

TSS_shift=augtf(G_shift,w1,[],sˆ2/100);
[gg,ss_Fopt_shift]=hinfopt(TSS_shift);
[af_shift,bf,cf,df]=branch(ss_Fopt_shift);
af=af_shift+p1*eye(size(af_shift));
Gc=ss(af,bf,cf,df); G_o=G*Gc; G_c=feedback(G_o,1);
figure(f1); step(G_c); hold on;
figure(f2); nichols(G_o), hold on

end
figure(f2), axis([-360,0,-40,40]); grid

the message for each ω1c is displayed and summarized as

1 << H-Infinity Optimal Control Synthesis >>
2 No Gamma D11<=1 P-Exist P>=0 S-Exist S>=0 lam(PS)<1 C.L.
3 --
4 9 6.3672e-001 OK OK OK OK OK OK STAB 7
5 6.0938e-001 OK OK OK OK OK OK STAB 7
6 5.7812e-001 OK OK OK OK OK OK STAB 7
7 5.4688e-001 OK OK OK OK OK OK STAB 9
8 5.1953e-001 OK OK OK OK OK OK STAB 9
9 4.8828e-001 OK OK OK OK OK OK STAB 8

10 4.6094e-001 OK OK OK OK OK OK STAB 5
11 4.3750e-001 OK OK OK OK OK OK STAB 8
12 4.1406e-001 OK OK OK OK OK OK STAB 7
13 3.9062e-001 OK OK OK OK OK OK STAB
14 --

The closed-loop step responses and the open-loop Nichols charts for different values of
ω1c are compared in Figures 7.32(a) and (b), respectively. Note that the above displayed

278 Chapter 7. Robust Control Systems Design

messages about H∞ design are only for the converged value of γ for each ω1c. Clearly, with
a different ω1c, a different H∞ controller is designed using a different weighting function.
As shown in Figures 7.32(a) and (b), the dynamic behavior of the system is greatly improved.
Specifically, when ω1c increases, the dynamic response tends to be faster.

From the above examples, it can be concluded that the performance of the system is
largely dependent upon the selection of the weighting functions.

We have shown that the performance of the robust control system is largely dependent
upon the selection of the weighting functions. However, a proper choice of the weighting
functions is not an easy task. One has to embed certain design experience, intuition, and
domain knowledge in the robust controller design. In this section, we provide a practical
and useful method for determining the weighting functions.

Recall the “standard functions” defined in Sec. 5.4. Assume that the expected standard
function, which minimizes the ITAE criterion, is represented by GT (s). Then, we can set
GT = Ĝ/(1 + Ĝ), where Ĝ is the equivalent open-loop model for the standard function
if the unity negative feedback is assumed. The sensitivity function can then be written
as ST = 1/(1 + Ĝ). From the above two formulae, it is readily seen that the “standard
sensitivity function” ST (s) can be written as ST (s) = 1 −GT (s), which is a proper transfer
function.

To improve the plant with a dynamic behavior similar to GT (s), a reasonable weighting
function W1(s) can be selected as W1(s) = S−1

T (s).
It is worth mentioning that, theoretically, there is a pole at s = 0 in the weighting

function W1(s) thus selected. In the current version of the Robust Control Toolbox, this
will cause computational problem. A practical solution is to replace the constant term in
the denominator by a small positive constant, e.g., ρ = 0.001.

Example 7.22. Consider the unstable plant model given by

G(s) = s + 5

s2 − 2s + 4
.

Select a third-order standard transfer function with an ITAE criterion for the type I format
in Table 5.1. The weighting function W1(s) with different specified natural frequencies ωn

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (secs)

A
m

pl
itu

de

ω1c = 3
ω1c = 2

ω1c = 1

ω1c increase←−

(a) step responses

-360 -270 -180 -90 0
-40

-30

-20

-10

0

10

20

30

40

6 db
3 db

1 db
0.5 db

0.25 db
0 db

-1 db

-3 db

-6 db

-12 db

-20 db

-40 db

Open-Loop Phase (deg)

O
pe

n-
L

oo
p

G
ai

n
(d

b)

ω1c = 1

←− ω1c increase

ω1c increase −→ ω1c = 10

ω1c = 1

ω1c = 10

(b) Nichols charts

Figure 7.32. System responses with an H∞ controller.

7.5. The Effects of Weighting Functions in H∞ Control 279

can be obtained using the following MATLAB statements:

>> for wn=[1,10,50,100],
GT=std_tf(wn,3); W1=inv(1-GT);
[m,p,w]=bode(W1); semilogx(w,20*log10(m(:)’)); hold on

end

The magnitude Bode diagrams for different ωn are shown in Figure 7.33(a), and it can be
seen that with larger values of ωn, the penalties on the low frequency response are increased,
which will reduce the sensitivity of the system in low frequencies.

The optimal H∞ controllers with different W1(s) under different ωn can be designed
by using the following MATLAB statements:

>> G=tf([1,5],[1,-2,4]); [a,b,c,d]=ssdata(ss(G));
for wn=[1,10,50,100]

GT=std_tf(wn,3); W1=inv(1-GT); W1.den{1}(end)=1e-3;
TSS_=augtf(G,W1,1e-5,[]); [gg,Gc]=hinfopt(TSS_);
step(feedback(G*Gc,1),1); hold on

end
xlim([0,1]), zpk(Gc)

The messages displayed are

1 << H-Infinity Optimal Control Synthesis >>
2 No Gamma D11<=1 P-Exist P>=0 S-Exist S>=0 lam(PS)<1 C.L.
3 ---
4 8 9.9219e-001 OK OK OK OK OK OK STAB
5 8 9.9219e-001 OK OK OK OK OK OK STAB
6 8 9.9219e-001 OK OK OK OK OK OK STAB
7 8 9.9219e-001 OK OK OK OK OK OK STAB
8 ---

The controller is then designed as

Gc(s) = 3207304.3993(s2 + 1.841s + 3.688)(s2 + 173.5s + 2.712×105)

(s + 8.018×105)(s + 5)s(s2 + 175s + 2.15×104)
.

The closed-loop step responses are compared in Figure 7.33(b). It can be seen that for larger
ωn, the system responses are more satisfactory.

10
−2

10
−1

10
0

10
1

10
2

10
3

−5

0

5

10

15

20

25

30

35

ωn =1

ωn = 10

ωn = 100

← ωn = 50

(a) Bode magnitude of W1(s)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Step Response

Time (sec)

A
m

pl
itu

de

ωn = 50
ωn =10

ωn = 100

(b) step response

Figure 7.33. System responses with optimal H∞ controllers.

280 Chapter 7. Robust Control Systems Design

Example 7.23. Consider the double integrator problem again. Let us now use the second-
order standard ITAE type I system as its reference. For different values of natural frequen-
cies, with the following MATLAB statements:

>> G=tf(1,[1,0,0]); f1=figure; f2=figure; p1=-0.1;
[a,b,c,d]=ssdata(ss(G)); a1=a-p1*eye(size(a));
G1=ss(a1,b,c,d); for wn=[10,50,100]

GT=std_tf(wn,2); W1=inv(1-GT); W1.den{1}(end)=1e-3;
TSS_=augtf(G1,W1,1e-5,[]); [gg,Gc_shift]=hinfopt(TSS_);
[af_shift,bf,cf,df]=branch(Gc_shift);
af=af_shift+p1*eye(size(af_shift));
Gc=ss(af,bf,cf,df); G_o=G*Gc; G_c=feedback(G_o,1);
figure(f2); nichols(G_o); hold on;
figure(f1); step(G_c,2); hold on;

end
figure(f2), grid, axis([-360,0,-40,40]), zpk(Gc)

the message for each ωn is displayed and summarized as

1 << H-Infinity Optimal Control Synthesis >>
2 No Gamma D11<=1 P-Exist P>=0 S-Exist S>=0 lam(PS)<1 C.L.
3 ---
4 8 9.9219e-001 OK OK OK OK OK OK STAB
5 8 9.9219e-001 OK OK OK OK OK OK STAB
6 8 9.9219e-001 OK OK OK OK OK OK STAB
7 ---

The controller designed is

Gc(s) = 43351967.8308(s + 917)(s2 + 0.3989s + 0.03983)

(s + 3218)(s + 1238)(s + 141.1)(s + 0.1)
.

We can design a family of optimal H∞ controllers. The closed-loop step responses and
open-loop Nichols charts with different ωn are compared, respectively, in Figures 7.34(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

Time (secs)

A
m

pl
itu

de

ωn = 10
ωn = 50

ωn = 100

(a) step response

-360 -270 -180 -90 0
-40

-30

-20

-10

0

10

20

30

40

6 db
3 db

1 db
0.5 db

0.25 db
0 db

-1 db

-3 db

-6 db

-12 db

-20 db

-40 db

Open-Loop Phase (deg)

O
pe

n-
L

oo
p

G
ai

n
(d

b)

ωn = 100
ωn =1

(b) Nichols charts

Figure 7.34. System responses with optimal H∞ controllers.

7.5. The Effects of Weighting Functions in H∞ Control 281

and (b). Clearly, when ωn = 100 rad/sec, the response of the system is satisfactory. In this
case, the response is faster compared with that using the weighting functions W1(s) and
W3(s) given in Example 7.21.

Problems

1. Design a Kalman filter for the system given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ(t) =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1

−1.25 1.25 0 0
1.25 −1.25 0 0

⎤⎥⎥⎦ x(t) +

⎡⎢⎢⎣
0
0
1
0

⎤⎥⎥⎦ [u(t) + ξ(t)],

y(t) = [2, 1, 3, 4]x(t) + θ(t),

where the variances of disturbance signals ξ(t) and σ(t) are, respectively, E[ξ2] =
1.25 × 10−3 and E[θ2] = 2.25 × 10−5, and furthermore, ξ(t) and θ(t) are mutually
independent.

2. Select a weighting matrix Q and assume that R = 1. Design an LQG controller for
the system given in the previous problem. Furthermore, design an observer-based
controller for the same plant and find the gain and phase margins of the compensated
system. Compare the time and frequency domain responses using MATLAB.

3. In the above problem, check whether the return difference transfer function with the
LQG controller matches that under direct state feedback. If there is a mismatch, design
an LQG/LTR controller (find a suitable value of q) and then compare the responses.

4. Create a tree variable in a MATLAB workspace for the following state space model:

ẋ =
⎡⎣ 1 0 −1

0 −2 0
−1 0 2

⎤⎦ x +
⎡⎣3

2
1

⎤⎦ u, y = [1, 2, 3]x + 4u.

5. Perform the coprime factorization for the following models:

(a) G1(s) = 5s + 2

s2 + 5s + 4
,

(b) G2(s) = s − 1

s(s − 2)
,

(c) G3(s) = (s − 2)2(s2 − s − 1)

(s − 1)2(s + 1)2 + 2
.

Find the transfer functions X(s) and Y (s) satisfying the Bezout equation.

6. For the plant model G(s) = 1

(0.01s + 1)2 , with the weighting functions W1(s) =
10

s3 + 2s2 + 2s + 1
and W3(s) = 10s + 1

20(0.01s + 1)
, do the following:

282 Chapter 7. Robust Control Systems Design

(a) Write the two-port description of the system with weighting functions.

(b) Design the optimal H∞ controller.

(c) Draw the closed-loop step response and open-loop Nichols chart.

(d) Evaluate the dynamic performance of the controlled system.

(e) Design the H2 optimal controller and compare the control performance.

7. Consider the following plant models:

(a) G(s) = 10

(s + 1)(s + 2)(s + 3)(s + 4)
,

(b) G(s) = 10(−s + 3)

s(s + 1)(s + 2)
.

Design the optimal H∞ controllers for the minimum sensitivity problems. (Note: The
standard target transfer functions can be used in the controller design.) Perform time
and frequency domain analyses for the system. Draw the magnitude Bode plots for
the sensitivity and complementary sensitivity functions.

8. In Problem 7(b), if the optimal H∞ controller is designed, check the stability if the
numerator in the plant model is changed to 10(s + 3). Verify the result using time and
frequency domain analysis tools.

9. Using the weighting function based on the standard transfer functions, compare the
robust controller designed for the sensitivity problem for the plant models given in
Problem 7. Find qualitatively the effect of natural frequency of the standard transfer
functions.

10. Design H∞ and H2 controllers for the plant models given in Problem 7.5 for the
sensitivity problem. Perform frequency domain analysis of the controlled system.

Chapter 8

Fractional-Order
Controller: An
Introduction

Using the notion of fractional-order may be a more realistic step because real processes
are generally “fractional” [86]. However, for many real processes, fractionality is very
low. A typical example of a noninteger, (fractional-) order system is the voltage–current
relationship of a semi-infinite lossy resistor and capacitor (RC) line or the diffusion of heat
in a semi-infinite solid, where the heat flow q(t) is naturally equal to the semiderivative
of temperature T (t) [87], as described by the following simple fractional-order differential
equation (FODE):

d0.5T (t)

dt0.5
= q(t).

Clearly, using an integer-order ordinary differential equation (ODE) description for the
above system may differ significantly from the actual situation. However, the fact that
the integer-order dynamic models are more welcome is probably due to the absence of
solution methods for FODEs. Details of past and present progress in the analysis of dynamic
systems modeled by FODEs can be found in [88–95]. For example, PID (proportional
integral derivative) controllers, which have been dominating industrial controllers, have
been modified using the notion of a fractional-order integrator and differentiator. It has
been shown that two extra degrees of freedom from the use of a fractional-order integrator
and differentiator make it possible to further improve the performance of traditional PID
controllers. In addition, the plant to be controlled can also be modeled as a dynamic system
described by an FODE. For fractional-order systems, the fractional controller CRONE was
developed in [96], while [89, 97, 98] presented the PDδ controller and [99] proposed the
PIλDδ controller.

In theory, control systems can include both the fractional-order dynamic system or
plant to be controlled and the fractional-order controller. However, in control engineering,
it is a common practice to consider only the fractional-order controller. This is due to the
fact that the plant model may have already been obtained as an integer-order model in a
classical sense. In most cases, our objective is to apply fractional-order control (FOC) to
enhance system control performance. Therefore, in this chapter we will concentrate on the
scenario in which the controller is fractional-order.

283

284 Chapter 8. Fractional-Order Controller: An Introduction

This chapter serves as an introduction to the essentials of FOC for control engineering
practice, with an emphasis on how to analyze and realize fractional-order systems using
MATLAB. For a broader introductory coverage of fractional-order calculus and its applica-
tions in engineering, we refer the interested reader to the textbook [100].

This chapter is organized as follows. In Sec. 8.1, definitions and properties of
fractional-order calculus are briefly introduced, followed by frequency and time domain
analysis of fractional-order linear systems in Sec. 8.2. Then, in Sec. 8.3 filter approxima-
tions to fractional-order differentiators are introduced using Oustaloup’s recursive scheme
and its refined version. With this filter approximation, using Simulink, a simulation method
for a general nonlinear fractional-order dynamic system is proposed with an illustrative
example. Since the fractional-order controller after finite dimensional approximation is
usually of a very high order, controller order reduction is discussed and demonstrated in
Sec. 8.4. Finally, we present some controller design case studies for fractional-order systems
in Sec. 8.5.

Note that this chapter, like previous chapters, is designed so that the text and illustrative
MATLAB scripts flow in a natural and smooth manner. We hope that this design enables
readers to quickly get started on problem solving. It is worth mentioning that the design of
a MATLAB class for a fractional-order transfer function is demonstrated thoroughly in the
chapter.

8.1 Fractional-Order Calculus and Its Computations
In a letter to Hôpital in 1695, Leibniz raised the following question: Can the meaning of
derivatives with integer order dny(x)/dxn be generalized to derivatives with noninteger
orders, so that in general n ∈ C ? (Here C is the set for all complex numbers.) Hôpital
was a bit curious about this question and replied with another question to Leibniz: What if
n = 1/2? Leibniz, in a letter dated September 30, 1695, replied: It will lead to a paradox,
from which one day useful consequences will be drawn.

The question raised by Leibniz for a fractional-order derivative has been a topic of
ongoing study in the last 300 years. Several mathematicians contributed to this subject over
the years. People like Liouville, Riemann, and Weyl made major contributions to the theory
of fractional-order calculus. So, the term “fractional-order calculus” is by no means new.
It is a generalization of ordinary differentiation by noninteger derivatives. The subject is as
old as the calculus of differentiation and goes back to the 17th century when Leibniz and
Newton invented calculus. The theory of fractional-order derivatives was developed mainly
in the 19th century. For more information, see [91, 93, 101, 102].

In the development of fractional-order calculus, there appeared different definitions
of fractional-order differentiations and integrations. Some of the definitions extend di-
rectly from integer-order calculus. The well-established definitions include the Cauchy
integral formula, the Grünwald–Letnikov definition, the Riemann–Liouville definition, and
the Caputo definition. The definitions will be summarized first, and then properties will be
given.

8.1. Fractional-Order Calculus and Its Computations 285

8.1.1 Definitions of Fractional-Order Calculus

Definition 8.1 (Cauchy’s fractional-order integration formula). This definition is a general
extension of the integer-order Cauchy formula

Dγ f (t) = �(γ + 1)

2π j

∫
C

f (τ)

(τ − t)γ+1 dτ, (8.1)

where C is the smooth curve encircling the single-valued function f (t).

Definition 8.2 (Grünwald–Letnikov definition). The definition is defined as

aD
α
t f (t) = lim

h→0

1

hα

[(t−a)/h]∑
j=0

(−1)j
(

α

j

)
f (t − jh), (8.2)

where w
(α)
j = (−1)j

(
α
j

)
represents the coefficients of the polynomial (1 − z)α . The coeffi-

cients can also be obtained recursively from

w
(α)
0 = 1, w

(α)
j =

(
1 − α + 1

j

)
w

(α)
j−1, j = 1, 2, (8.3)

Based on the Definition 8.2, the fractional-order differentiation can easily be calculated
from

aD
α
t f (t) = lim

h→0

1

hα

[(t−a)/h]∑
j=0

(−1)j
(

α

j

)
f (t − jh) ≈ 1

hα

[(t−a)/h]∑
j=0

w
(α)
j f (t − jh). (8.4)

Assuming that the step size h is small enough, we see that (8.4) can be used to
evaluate the differentiations of the given function. It can be shown [93] that the accuracy
of the method is o(h). Thus, based on the Grünwald–Letnikov definition, the following
MATLAB function can be written to evaluate the fractional-order differentiation [103]:

1 function dy=glfdiff(y,t,gam)
2 h=t(2)-t(1); dy(1)=0; y=y(:); t=t(:);
3 w=1; for j=2:length(t), w(j)=w(j-1)*(1-(gam+1)/(j-1)); end
4 for i=2:length(t), dy(i)=w(1:i)*[y(i:-1:1)]/hˆgam; end

The syntax of the function is dy=glfdiff(y,t,γ) , where y, t are, respectively, the

vectors composed of the samples and the time instances. The time vector t is assumed to
be evenly distributed. γ is the order of fractional-order differentiation. The returned vector
dy is the vector of the fractional-order derivatives.

Definition 8.3 (Riemann–Liouville fractional-order differentiation). The fractional-order
integration is defined as

aD
−α
t f (t) = 1

�(α)

∫ t

a

(t − τ)α−1f (τ)dτ, (8.5)

286 Chapter 8. Fractional-Order Controller: An Introduction

where 0 < α < 1, and a is the initial time instance, often assumed to be zero, i.e., a = 0.
The differentiation is then denoted as D−α

t f (t).

The Riemann–Liouville definition is the most widely used definition in fractional-
order calculus. The subscripts on both sides of D represent, respectively, the lower and
upper bounds in the integration [104].

Such a definition can also be extended to fractional-order differentiations when the
order satisfies n − 1 < β ≤ n. The fractional-order differentiation is then defined as

aD
β
t f (t)= dn

dtn

[
aD

−(n−β)
t f (t)

]
= 1

�(n−β)

dn

dtn

[∫ t

a

f (τ)

(t−τ)β−n+1 dτ

]
. (8.6)

Definition 8.4 (Caputo’s definition of fractional-order differentiation). Caputo’s definition
is given by

0D
α
t y(t) = 1

�(1 − γ)

∫ t

0

y(m+1)(τ)

(t − τ)γ
dτ, (8.7)

where α = m + γ , m is an integer, and 0 < γ ≤ 1. Similarly, Caputo’s fractional-order
integration is defined as

0D
γ
t = 1

�(−γ)

∫ t

0

y(τ)

(t − τ)1+γ
dτ, γ < 0. (8.8)

It can be shown [93] that for a class of real functions, the fractional-order differenti-
ations from the Grünwald–Letnikov and Riemann–Liouville definitions are identical.

8.1.2 Properties of Fractional-Order Differentiations

The fractional-order differentiation has the following properties [105]:

1. The fractional-order differentiation 0Dα
t f (t), with respect to t of an analytic function

f (t), is also analytical.

2. The fractional-order differentiation is exactly the same with integer-order one, when
α = n is an integer. Also 0D0

t f (t) = f (t).

3. The fractional-order differentiation is linear; i.e., for any constants a, b, one has

0D
α
t [af (t) + bg(t)] = a 0D

α
t f (t) + b 0D

α
t g(t). (8.9)

4. Fractional-order differentiation operators satisfy the commutative-law, and also satisfy

0D
α
t

[
0D

β
t f (t)

]
= 0D

β
t

[
0D

α
t f (t)

]
= 0D

α+β
t f (t) (8.10)

5. The Laplace transform of fractional-order differentiation is defined as

L
[

0D
α
t f (t)

]
= sαL [f (t)] −

n−1∑
k=1

sk
[

0D
α−k−1
t f (t)

]
t=0

. (8.11)

In particular, if the derivatives of the function f (t) are all equal to 0 at t = 0, one has
L [0D

α
t f (t)] = sαL [f (t)].

8.2. Frequency and Time Domain Analysis of Fractional-Order Linear Systems 287

8.2 Frequency and Time Domain Analysis of
Fractional-Order Linear Systems

The fractional-order system is the direct extension of classical integer-order systems. The
fractional-order system is established upon the fractional-order differential equations, and
the fractional-order transfer function of a single variable system can be defined as

G(s) = b1s
γ1 + b2s

γ2 + · · · + bmsγm

a1sη1 + a2sη2 + · · · + an−1sηn−1 + ansηn
, (8.12)

where bi, ai are real numbers and the orders γi, ηi of the numerator and the denominator can
also be real numbers. The analysis of the fractional-order Laplace transformations and their
inverse is very complicated. The closed-form solutions to the problems are not possible in
general.

8.2.1 Fractional-Order Transfer Function Modeling

For the fractional-order transfer function model in (8.12), it can be seen that if the coefficients
and the orders of the numerator and denominator are given, the model can be established.
Thus, an “fotf” class can be constructed by creating the @fotf directory and writing in
the directory an fotf() function as follows:

1 function G=fotf(a,na,b,nb)
2 if nargin==0,
3 G.a=[]; G.na=[]; G.b=[]; G.nb=[]; G=class(G,’fotf’);
4 elseif isa(a,’fotf’), G=a;
5 elseif nargin==1 & isa(a,’double’), G=fotf(1,0,a,0);
6 else,
7 ii=find(abs(a)<eps); a(ii)=[]; na(ii)=[];
8 ii=find(abs(b)<eps); b(ii)=[]; nb(ii)=[];
9 G.a=a; G.na=na; G.b=b; G.nb=nb; G=class(G,’fotf’);

10 end

The syntax of the function is G=fotf(a,η,b,γ) , where a and b are the coefficients of
the denominator and the numerator, respectively, while η and γ are the order sequences in
the denominator and the numerator, respectively.

A display function should also be created for the fotf class. The file should also be
saved in the @fotf directory such that

1 function display(G)
2 sN=polydisp(G.b,G.nb); sD=polydisp(G.a,G.na); s=’ ’;
3 nm=max([length(sN),length(sD)]); nn=length(sN); nd=length(sD);
4 disp([char(s*ones(1,floor((nm-nn)/2))) sN]), disp(char(’-’*ones(1,nm)));
5 disp([char(s*ones(1,floor((nm-nd)/2))) sD])
6 function strP=polydisp(p,np)
7 P=’’; [np,ii]=sort(np,’descend’); p=p(ii);
8 for i=1:length(p), P=[P,’+’,num2str(p(i)),’sˆ{’,num2str(np(i)),’}’]; end
9 P=P(2:end); P=strrep(P,’sˆ{0}’,’’); P=strrep(P,’+-’,’-’);

10 P=strrep(P,’ˆ{1}’,’’); P=strrep(P,’+1s’,’+s’); strP=strrep(P,’-1s’,’-s’);
11 if length(strP)>=2, if strP(1:2)==’1s’, strP=strP(2:end); end,end,

288 Chapter 8. Fractional-Order Controller: An Introduction

Example 8.1. Suppose that the fractional-order transfer function is given by

G(s) = −2s0.63 − 4

2s3.501 + 3.8s2.42 + 2.6s1.798 + 2.5s1.31 + 1.5
.

With the following statement, the fractional-order transfer function can be entered into the
MATLAB environment:

>> b=[-2,-4]; nb=[0.63,0]; a=[2 3.8 2.6 2.5 1.5];
na=[3.501,2.42,1.798,1.31,0]; G=fotf(a,na,b,nb)

The display of the fractional-order transfer function is

-2sˆ{0.63}-4

2sˆ{3.501}+3.8sˆ{2.42}+2.6sˆ{1.798}+2.5sˆ{1.31}+1.5

A function fotf() can be written in the @tf directory to convert an integer-order
transfer function to an fotf object:

1 function G1=fotf(G)
2 n=G.num{1}; d=G.den{1}; i1=find(abs(n)<eps); i2=find(abs(d)<eps);
3 if length(i1)>0 & i1(1)==1, n=n(i1(1)+1:end); end
4 if length(i2)>0 & i2(1)==1, d=d(i2(1)+1:end); end
5 G1=fotf(d,length(d)-1:-1:0,n,length(n)-1:-1:0);

8.2.2 Interconnections of Fractional-Order Blocks

Based on the newly defined fotf class, the plus(), mtimes() and feedback()
functions can be written as follows:

• Plus function plus() for block parallel connections:

1 function G=plus(G1,G2)
2 a=kron(G1.a,G2.a); b=[kron(G1.a,G2.b), kron(G1.b,G2.a)]; na=[]; nb=[];
3 for i=1:length(G1.a), na=[na G1.na(i)+G2.na]; nb=[nb, G1.na(i)+G2.nb]; end
4 for i=1:length(G1.b), nb=[nb G1.nb(i)+G2.na]; end
5 G=unique(fotf(a,na,b,nb));

• Multiplication function mtimes() for block series connections:

1 function G=mtimes(G1,G2)
2 G2=fotf(G2); a=kron(G1.a,G2.a);
3 b=kron(G1.b,G2.b); na=[]; nb=[];
4 for i=1:length(G1.na), na=[na,G1.na(i)+G2.na]; end
5 for i=1:length(G1.nb), nb=[nb,G1.nb(i)+G2.nb]; end
6 G=unique(fotf(a,na,b,nb));

• Feedback function feedback() for block negative feedback connections:

1 function G=feedback(F,H)
2 H=fotf(H);

8.2. Frequency and Time Domain Analysis of Fractional-Order Linear Systems 289

3 b=kron(F.b,H.a); a=[kron(F.b,H.b), kron(F.a,H.a)]; na=[]; nb=[];
4 for i=1:length(F.b), nb=[nb F.nb(i)+H.nb]; na=[na,F.nb(i)+H.nb]; end
5 for i=1:length(F.a), na=[na F.na(i)+H.na]; end
6 G=unique(fotf(a,na,b,nb));

• Simplification function unique():

1 function G=unique(G)
2 [a,n]=polyuniq(G.a,G.na); G.a=a; G.na=n;
3 [a,n]=polyuniq(G.b,G.nb); G.b=a; G.nb=n;
4 function [a,an]=polyuniq(a,an)
5 [an,ii]=sort(an,’descend’); a=a(ii); ax=diff(an); key=1;
6 for i=1:length(ax)
7 if ax(i)==0, a(key)=a(key)+a(key+1); a(key+1)=[]; an(key+1)=[];
8 else, key=key+1; end
9 end

Other functions should also be designed, such as minus(), uminus(), inv(),
and the files should be placed in the @fotf directory to overload the existing ones. The
listings of these functions are not given in this text but available from the book’s companion
Website.

Example 8.2. Suppose in the unity negative feedback system, the system models are given
by

G(s) = 0.8s1.2 + 2

1.1s1.8 + 0.8s1.3 + 1.9s0.5 + 0.4
, Gc(s) = 1.2s0.72 + 1.5s0.33

3s0.8 .

The plant and controller can be easily entered and the closed-loop system can be
directly obtained with the commands

>> G=fotf([1.1,0.8 1.9 0.4],[1.8 1.3 0.5 0],[0.8 2],[1.2 0]);
Gc=fotf(3,[0.8],[1.2 1.5],[0.72 0.33]); H=fotf(1,0,1,0);
GG=feedback(G*Gc,H)

and the result is given by

G(s) = 0.96s1.92 + 1.2s1.53 + 2.4s0.72 + 3s0.33

3.3s2.6+2.4s2.1+0.96s1.92+1.2s1.53+5.7s1.3+1.2s0.8+2.4s0.72+3s0.33
.

It can be seen from the above illustrations that, although the plant and controllers
are relatively simple, an extremely complicated closed-loop model may be obtained. This
makes the analysis and design of the fractional-order system a difficult task.

8.2.3 Frequency Domain Analysis of Linear Fractional-Order
Systems

It can be seen that, when jω is used to substitute for the variable s in the fractional-order
transfer function model, the frequency domain response G(jω) can be easily evaluated.
Thus, the fractional-order Bode diagrams, Nyquist plots, and Nichols charts can be easily
evaluated with the function bode(), which is written as an overload function for the fotf
object

290 Chapter 8. Fractional-Order Controller: An Introduction

1 function H=bode(G,w)
2 a=G.a; eta=G.na; b=G.b; g=G.nb; if nargin==1, w=logspace(-4,4); end
3 for i=1:length(w)
4 P=b*((sqrt(-1)*w(i)).ˆg.’); Q=a*((sqrt(-1)*w(i)).ˆeta.’); H1(i)=P/Q;
5 end
6 H1=frd(H1,w); if nargout==0, bode(H1); else, H=H1; end

The syntax of the function is H=bode(G,ω) , where G is the fractional-order
transfer function object and the optional argument ω is the frequency vector.

If one wants to draw the Bode diagram, there is no need to return any variable. If
frequency domain response data are needed, the response results can be found in the returned
variable H . The variable H can be used in drawing the Nyquist plot and the Nichols chart
by using nyquist(H) and nichols(H) , respectively.

8.2.4 Time Domain Analysis of Fractional-Order Systems

The evaluation of the time domain response of a fractional-order system is more complicated.
Let us consider a special form of a fractional-order differential equation [93]

a1D
η1
t y(t) + a2D

η2
t y(t) + · · · + an−1D

ηn−1
t y(t) + anD

ηn
t y(t) = u(t), (8.13)

where u(t) can be represented by a certain function and its fractional-order derivatives.
Assume also that the output function y(t) has zero initial conditions. The Laplace transform
can be used to find the transfer function

G(s) = 1

a1sη1 + a2sη2 + · · · + an−1sηn−1 + ansηn
. (8.14)

Consider the Grünwald–Letnikov definition in (8.4). The discrete form of it can be
rewritten as

aD
ηi
t y(t) � 1

h
ηi

[(t−a)/h]∑
j=0

w
(ηi)

j yt−jh = 1

h
ηi

⎡⎣yt +
[(t−a)/h]∑

j=1

w
(ηi)

j yt−jh

⎤⎦ , (8.15)

where w
(βi)

0 can be evaluated recursively from the formula (8.3). By substituting it into
(8.13), the numerical solution to the fractional-order differential equation can be written as

yt = 1∑n
i=1

ai

h
ηi

⎡⎣ut −
n∑

i=1

ai

h
ηi

[(t−a)/h]∑
j=1

w
(ηi)

j yt−jh

⎤⎦ . (8.16)

For the general form of the fractional-order transfer function in (8.12), the right-hand
side can equivalently be evaluated first by using the numerical method discussed earlier.
The final solution can be obtained from (8.16). A MATLAB function can be written for the
fotf object to evaluate the time domain response as follows:

1 function y=lsim(G,u,t)
2 a=G.a; eta=G.na; b=G.b; gamma=G.nb; nA=length(a);
3 h=t(2)-t(1); D=sum(a./[h.ˆeta]); W=[]; nT=length(t);

8.2. Frequency and Time Domain Analysis of Fractional-Order Linear Systems 291

4 vec=[eta gamma]; D1=b(:)./h.ˆgamma(:);
5 y1=zeros(nT,1); W=ones(nT,length(vec));
6 for j=2:nT, W(j,:)=W(j-1,:).*(1-(vec+1)/(j-1)); end
7 for i=2:nT
8 A=[y1(i-1:-1:1)]’*W(2:i,1:nA); y1(i)=(u(i)-sum(A.*a./[h.ˆeta]))/D;
9 end

10 for i=2:nT, y(i)=(W(1:i,nA+1:end)*D1)’*[y1(i:-1:1)]; end

The syntax of the function is y=lsim(G,u,t) , where the time vector and the input
vector are defined in the variables t and u, respectively. The returned vector y is the
solution to the equations. If there are more points in the equation, the computation may be
very slow.

An overloaded step() function can also be written, based on the lsim() function
given above, as

1 function y=step(G,t)
2 u=ones(size(t)); y=lsim(G,u,t);
3 if nargout==0, plot(t,y); end

with y=step(G,t) , where G is an fotf object, and t should be given as an evenly
distributed time vector. The step response of the system is returned in vector y.

It is possible to solve the above fractional-order differential equation analytically
by using the Mittag–Leffler function in two parameters, which is a generalization of the
exponential function ez. The Mittag–Leffler function in two parameters is defined as

Eα,β(z) =
∞∑

k=0

zk

�(αk + β)
, (α, β > 0). (8.17)

Clearly, ez is a particular case of the Mittag–Leffler function [92]:

E1,1(z) =
∞∑

k=0

zk

�(k + 1)
=

∞∑
k=0

zk

k! = ez.

Furthermore, one can get more particular cases for the Mittag–Leffler function in two pa-
rameters, for example,

E2,1(z) = cosh(
√

z), E1,2(z) = ez − 1

z
, E2,2(z) = sinh(

√
z)√

z
, (8.18)

E1/2,1(
√

z) = 2√
π

e−zerfc(−√
z). (8.19)

The analytical solution of the n-term FODE is given in general form [92] by

y(t) = 1

an

∞∑
m=0

(−1)m

m!
∑

k0+k1+···+kn−2=m

k0≥0,...,kn−2≥0

(m; k0, k1, . . . , kn−2)

n−2∏
i=0

(
ai

an

)ki

t
(βn−βn−1)m+βn+

n−2∑
j=0

(βn−1−βj)kj −1
(8.20)

292 Chapter 8. Fractional-Order Controller: An Introduction

E (m)

βn−βn−1,βn+
n−2∑
j=0

(βn−1−βj)kj

(
−an−1

an

tβn−βn−1

)
,

where Eλ,μ(z) is the Mittag–Leffler function in two parameters as defined in (8.17) and

E (n)
λ,μ(y) ≡ d n

d yn
Eλ,μ(y) =

∞∑
j=0

(j + n)! yj

j ! �(λj + λn + μ)
for n = 0, 1, 2, (8.21)

8.3 Filter Approximation to Fractional-Order
Differentiations

It can be seen that the Grünwald–Letnikov definition gives a very good fitting to the
fractional-order derivatives for given functions. However, in control system analysis and
design, the definition is not useful, since the samples of the function should be known. On-
line real-time fractional-order differentiation may be required in control systems. Using
filters is one of the best ways to solve the problems.

8.3.1 Oustaloup’s Recursive Filter

Some continuous filters have been summarized in [105]. Among the filters, the well-
established Oustaloup recursive filter has a very good fitting to the fractional-order dif-
ferentiators [106]. Assume that the expected fitting range is (ωb, ωh). The filter can be
written as

Gf (s) = K

N∏
k=−N

s + ω′
k

s + ωk

, (8.22)

where the poles, zeros, and gain of the filter can be evaluated from (8.23) such that

ω′
k = ωb

(
ωh

ωb

)k+N+ 1
2 (1−γ)

2N+1

, ωk = ωb

(
ωh

ωb

)k+N+ 1
2 (1+γ)

2N+1

, K = ω
γ

h . (8.23)

With the above algorithm, the following MATLAB function oustafod() can be written
to design the continuous filter. Thus, the y(t) signal can be filtered through the filter and
the output of the filter can be regarded as an approximation to the D

γ
t y(t) signal.

1 function G=oustafod(r,N,wb,wh)
2 mu=wh/wb; k=-N:N; w_kp=(mu).ˆ((k+N+0.5-0.5*r)/(2*N+1))*wb;
3 w_k=(mu).ˆ((k+N+0.5+0.5*r)/(2*N+1))*wb;
4 K=whˆr; G=tf(zpk(-w_kp’,-w_k’,K));

The function can be called with Gf=oustafod(γ,N,ωb,ωh) , where γ is the order

of the differentiation, 2N + 1 is the order of the filter, and the frequency fitting range is
given by (ωb, ωh). The filter Gf can be designed such that it may fit very well within the
frequency range of the fractional order differentiator.

8.3. Filter Approximation to Fractional-Order Differentiations 293

−250

−200

−150

−100

−50

0

50

M
ag

ni
tu

de
 (

dB
)

10
−4

10
−2

10
0

10
2

10
4

−540

−360

−180

0

180

360

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

← integer-order

← fractional-order

(a) Bode diagrams

0 5 10 15 20 25 30
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Step Response

Time (sec)

A
m

pl
itu

de

(b) step response

Figure 8.1. Time and frequency domain comparisons.

Example 8.3. Consider a fractional-order model

G(s) = −2s0.63 − 4

2s3.501 + 3.8s2.42 + 2.6s1.798 + 2.5s1.31 + 1.5
.

Since the original orders are all fractional, it may not be easy to design controllers for
them. Thus, a model reduction technique can be considered to reduce the order such that a
low integer-order approximation can be achieved. Suppose that one wants to approximate
the differentiators within the frequency range of (10−3, 104); the high-order term can also be
approximated as s3.501 = s3s0.501, and the integer-order approximation can be obtained as

>> N=4; w1=1e-3; w2=1e4; g1=oustafod(0.501,N,w1,w2);
s=tf(’s’);
g2=oustafod(0.42,N,w1,w2); g3=oustafod(0.798,N,w1,w2);
g4=oustafod(0.31,N,w1,w2); g5=oustafod(0.63,N,w1,w2);
G1=(-2*g5-4)/(2*sˆ3*g1+3.8*sˆ2*g2+2.6*s*g3+2.5*s*g4+1.5);

It is found that the order of the approximation reaches 48. The exact Bode diagram and
its 48th-order approximation are shown in Figure 8.1(a). The step responses of the system
is obtained as shown in Figure 8.1(b). With the following MATLAB statements, it can
be seen that the time response of the filter can accurately approximate the fractional-order
derivatives of the system.

>> b=[-2 -4]; nb=[0.63 0]; a=[2 3.8 2.6 2.5 1.5];
na=[3.501 2.42 1.798 1.31 0]; G=fotf(a,na,b,nb);
w=logspace(-4,4,500); H=bode(G,w); bode(G1,H,{1e-4,1e4});
figure; t=0:0.004:30; y=step(G,t); step(G1,30); line(t,y)

The open-loop Nyquist plots and Nichols charts can also be obtained as shown in
Figure 8.2. It can be seen that the Nyquist plot accurately fits the theoretical one, while the
Nichols chart is shifted by 360◦, which means the two are identical:

>> H=bode(G,w); nyquist(G,H,{1e-4,1e4});
figure; nichols(G,H,{1e-4,1e4}); grid

294 Chapter 8. Fractional-Order Controller: An Introduction

−6 −4 −2 0 2 4
−10

−8

−6

−4

−2

0

2

4

6

8

10
Nyquist Diagram

Real Axis

Im
ag

in
ar

y
A

xi
s

(a) Nyquist plots

−360 −270 −180 −90 0 90 180 270

−30

−20

−10

0

10

20

30

 −12 dB

 3 dB
 6 dB

 0.25 dB

 −6 dB

 1 dB

 0.5 dB

 −3 dB

 0 dB

 −1 dB

Nichols Chart

Open−Loop Phase (deg)

O
pe

n−
L

oo
p

G
ai

n
(d

B
)

(b) Nichols plots

Figure 8.2. Comparisons of other frequency domain plots.

8.3.2 A Refined Oustaloup Filter

Here we introduce a new approximate realization method for the fractional-order derivative
in the frequency range of interest [ωb, ωh]. Our proposed method here gives a better approx-
imation than Oustaloup’s method with respect to both low frequency and high frequency.

Assume that the frequency range to be fit is defined as (ωb, ωh). Within the pre-
specified frequency range, the fractional-order operator sα can be approximated by the
fractional-order transfer function as

K(s) =
(

1 + bs
dωb

1 + ds
bωh

)α

, (8.24)

where 0 < α < 1, s = jω, b > 0, d > 0, and

K(s) =
(

bs

dωb

)α(
1 + −ds2 + d

ds2 + bωhs

)α

. (8.25)

In the frequency range ωb < ω < ωh, by using a Taylor series expansion, we obtain

K(s) =
(

bs

dωb

)α(
1 + αp(s) + α(α − 1)

2
p2(s) + · · ·

)
(8.26)

with

p(s) = −ds2 + d

ds2 + bωhs
.

It is then found that

sα = (dωb)
αb−α[

1 + αp(s) + α(α − 1)

2
p2(s) + · · ·

] (1 + bs
dωb

1 + ds
bωh

)α

. (8.27)

8.3. Filter Approximation to Fractional-Order Differentiations 295

Truncating the Taylor series to 1 leads to

sα ≈ (dωb)
α

bα
(
1 + αp(s)

) (1 + bs
dωb

1 + ds
bωh

)α

. (8.28)

Thus, the fractional-order differentiator is defined as

sα ≈
(

dωb

b

)α(
ds2 + bωhs

d(1 − α)s2 + bωhs + dα

)(1 + bs
dωb

1 + ds
bωh

)α

. (8.29)

Expression (8.29) is stable if and only if all the poles are on the left-hand side of the
complex s-plane. It is easy to check that expression (8.29) has three poles:

• One of the poles is located at −bωh/d, which is a negative real pole since ωh > 0,
b > 0, d > 0;

• The two other poles are the roots of the equation

d(1 − α)s2 + aωhs + dα = 0 (8.30)

whose real parts are negative since 0 < α < 1.

Thus, all the poles of (8.29) are stable within the frequency range (ωb, ωh).
The irrational fractional-order part of expression (8.29) can be approximated by the

continuous-time rational model

K(s) = lim
N→∞ KN(s) = lim

N→∞

N∏
k=−N

1 + s/ω′
k

1 + s/ωk

. (8.31)

According to the recursive distribution of real zeros and poles, the zero and pole of rank k

can be written as

ω′
k =

(
dωb

b

) α−2k
2N+1

, ωk =
(

bωh

d

) α+2k
2N+1

. (8.32)

Thus, the continuous rational transfer function model can be obtained [107] as

sα ≈
(

dωh

b

)α (
ds2 + bωhs

d(1 − α)s2 + bωhs + dα

) N∏
k=−N

s + ω′
k

s + ωk

. (8.33)

Through confirmation by experimentation and theoretical analysis, the synthesis ap-
proximation can obtain the good effect when b = 10 and d = 9.

Through the approximation method, the fractional-order system may be approximated
as the very high integer-order system. The high integer-order rational transfer function could
be very tedious.

296 Chapter 8. Fractional-Order Controller: An Introduction

With the above algorithm, a MATLAB function new_fod() is written

1 function G=new_fod(r,N,wb,wh,b,d)
2 if nargin==4, b=10; d=9; end
3 mu=wh/wb; k=-N:N; w_kp=(mu).ˆ((k+N+0.5-0.5*r)/(2*N+1))*wb;
4 w_k=(mu).ˆ((k+N+0.5+0.5*r)/(2*N+1))*wb; K=(d*wh/b)ˆr;
5 G=zpk(-w_kp’,-w_k’,K)*tf([d,b*wh,0],[d*(1-r),b*wh,d*r]);

with the syntax Gf=new_fod(γ,N,ωb,ωh,b,d) .

Example 8.4. Consider a model

G(s) = s + 1

10s3.2 + 185s2.5 + 288s0.7 + 1

which is a fractional-order model. The exact Bode diagram can be obtained with thebode()
function. The approximations using the Oustaloup filter, and the refined Oustaloup filter,
can be obtained as shown in Figure 8.3(a). The approximations to the G(s) model are shown
in Figure 8.3(b). It can be seen that the refined method provides a much better fit:

>> b=[1 1]; a=[10,185,288,1]; nb=[1 0]; na=[3.2,2.5,0.7,0];
w=logspace(-4,4,200); G0=fotf(a,na,b,nb); H=bode(G0,w);
s=zpk(’s’); N=4; w1=1e-3; w2=1e3; b=10; d=9;
g1=oustafod(0.2,N,w1,w2); g2=oustafod(0.5,N,w1,w2); a1=g1;
g3=oustafod(0.7,N,w1,w2);
G1=(s+1)/(10*sˆ3*g1+185*sˆ2*g2+288*g3+1);
g1=new_fod(0.2,N,w1,w2,b,d); g2=new_fod(0.5,N,w1,w2,b,d);
g3=new_fod(0.7,N,w1,w2,b,d); bode(g1,a1); figure
G2=(s+1)/(10*sˆ3*g1+185*sˆ2*g2+288*g3+1); bode(H,G1,G2)

8.3.3 Simulink-Based Fractional-Order Nonlinear Differential
Equation Solutions

From the previous discussions, it can be found that the refined Oustaloup recursive filter
is an effective way to compute the fractional-order derivatives. It should be noted that the

−40

−30

−20

−10

0

10

20

M
ag

ni
tu

de
 (

dB
)

10
−4

10
−2

10
0

10
2

10
4

0

45

90

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

← refined

↓
Oustaloup’s

← refined

← Oustaloup’s

(a) s0.2 fittings

−200

−150

−100

−50

0

M
ag

ni
tu

de
 (

dB
)

10
−4

10
−2

10
0

10
2

10
4

−180

−135

−90

−45

0

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

↑
Oustaloup’s

← Oustaloup’s

(b) Bode diagram comparisons

Figure 8.3. Bode diagram comparisons.

8.3. Filter Approximation to Fractional-Order Differentiations 297

orders of the numerator and the denominator in the refined Oustaloup filter are the same,
which may cause algebraic loops in Simulink. To avoid the algebraic loops, the filter should
be followed by a low-pass filter, with a crossover frequency ωh. The constructed block is
shown in Figure 8.4(a).

With the mask facilities provided in Simulink, the fractional-order differentiator block
can be built, as shown in Figure 8.4(b). Double click the fractional-order differentiator block
to display the dialog box in Figure 8.4(c), which allows the user to enter parameters into the
refined Oustaloup filters:

1 wb=ww(1); wh=ww(2); G=new_fod(gam,n,wb,wh,10,9);
2 num=G.num{1}; den=G.den{1}; T=1/wh; str=’Fractional\n’;
3 if isnumeric(gam)
4 if gam>0, str=[str, ’Der sˆ’ num2str(gam)];
5 else, str=[str, ’Int sˆ{’ num2str(gam) ’}’]; end
6 else, str=[str, ’Der sˆgam’]; end

In practical simulation processes, the model established could be made up of stiff
systems. Thus, ode15s or ode23tb algorithms should be selected to ensure high efficiency
and accuracy. Examples will be given to demonstrate the solutions of FODEs.

Example 8.5. Consider the nonlinear FODE described by

3D0.9y(t)

3 + 0.2D0.8y(t) + 0.9D0.2y(t)
+
∣∣∣2D0.7y(t)

∣∣∣1.5 + 4

3
y(t) = 5 sin(10t).

It can be seen that solving the original FODE is very complicated. From the original
equation, the output signal y(t) can explicitly be expressed as

y(t) = 3

4

[
5 sin(10t) − 3D0.9y(t)

3 + 0.2D0.8y(t) + 0.9D0.2y(t)
−
∣∣∣2D0.7y(t)

∣∣∣1.5
]

.

A Simulink model can then be established from the above equations, as shown in Fig-
ure 8.5(a). It can be seen from the model that each fractional-order differentiator can be
modeled with the above designed block. In Figure 8.5(b), the simulation results are shown,
with different parameters of the refined Oustaloup filter.

1
Out1T.s+1

1

Transfer Fcn1

num(s)

den(s)
Transfer Fcn

1
In1

(a) fractional-order filter

Fractional
Der s^0.9

(b) masked block (file: c7mfode.mdl)

(c) Dialog box of fractional-order differentiators

Figure 8.4. Fractional-order differentiator block design.

298 Chapter 8. Fractional-Order Controller: An Introduction

y(t)

1
Out1

Sine Wave

Product

3
0.75

Gain3

2

0.9

0.2

Fractional
Der s^0.7

Fractional
Der s^0.2

Fractional
Der s^0.8

Fractional
Der s^0.9

abs(u)^1.5

Fcn

3

(a) Simulink model (file: c7mfod2.mdl)
0 0.5 1 1.5 2 2.5 3 3.5 4

−2.5

−2

−1.5

−1

−0.5

0

0.5

(b) simulation results

Figure 8.5. Simulink modeling and results of a nonlinear FODE.

It can be seen that the results are the same, and the only exception is the combination
of ωb = 0.001, ωh = 1000, N = 2. However, even with this rough approximation, the
error is still acceptable.

8.4 Model Reduction Techniques for Fractional-Order
Systems

It has been shown that if the integer-order approximation is used to fit the fractional-order
transfer function models with the use of the refined Oustaloup recursive filter, the order of
the final system could be extremely high. Thus, a low-order approximation to the original
problem can be found using the optimal model reduction method.

Recall the expected reduced-order model given by

Gr/m,τ (s) = β1s
r + · · · + βrs + βr+1

sm + α1sm−1 + · · · + αm−1s + αm

e−τs . (8.34)

An objective function for minimizing the H2-norm of the reduction error signal e(t) can be
defined as

J = min
θ

∥∥∥Ĝ(s) − Gr/m,τ (s)

∥∥∥
2
, (8.35)

where θ is the set of parameters to be optimized such that

θ = [β1, . . . , βr , α1, . . . , αm, τ]. (8.36)

For an easy evaluation of the criterion J , the delayed term in the reduced-order model
Gr/m,τ (s) can be further approximated by a rational function Ĝr/m(s) using the Padé ap-
proximation technique [47]. Thus, the revised criterion can then be defined by

J = min
θ

∥∥∥Ĝ(s) − Ĝr/m(s)

∥∥∥
2

(8.37)

and the H2-norm computation can be evaluated recursively using the algorithm in [108]. The
function opt_app() discussed in Sec. 3.6 can still be used for fractional-order systems.

8.4. Model Reduction Techniques for Fractional-Order Systems 299

Table 8.1. Comparisons of different order combinations.

r m Reduced-order model Error

2 3
0.03147s2 − 0.8141s − 0.07206

s3 + 0.3168s2 + 0.2582s + 0.02703
0.2286

2 4
−0.0119s2 − 23.21s − 2.035

s4 + 28.78s3 + 9.242s2 + 7.365s + 0.7634
0.2308

2 5
−4.932s2 − 0.8602s − 0.00386

s5 + 5.741s4 + 2.794s3 + 1.596s2 + 0.3134s + 0.001448
0.1342

2 6
−2.327×104s2 − 4059s − 18.21

s6+4719s5+2.709×104s4+1.318×104s3+7534s2+1479s+6.831
0.1342

0 5 10 15 20 25 30
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Step Response

Time (sec)

A
m

pl
itu

de

(a) step responses

−250

−200

−150

−100

−50

0

50

M
ag

ni
tu

de
 (

dB
)

10
−4

10
−2

10
0

10
2

10
4

−180

−90

0

90

180

270

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

(b) Bode diagrams

Figure 8.6. Comparisons of the reduced-order models.

Example 8.6. Consider again the high-order fractional-order transfer function given in
Example 8.3, where a 48th-order model was obtained, and with the refined Oustaloup
filter, a 58th-order model can be obtained. Using optimal reduction techniques for different
order combinations, the reduced-order models can be found as shown in Table 8.1. It can
be seen that the G2/5(s) model is the best one. The step responses and Bode diagrams are
compared in Figure 8.6. It can be seen that the approximation is satisfactory. It should
be noted that in the code, the opt_app() function may be called several times since the
original model should be used in these cases.

>> N=4; w1=1e-3; w2=1e3; s=tf(’s’); g1=new_fod(0.501,N,w1,w2,9,10);
g2=new_fod(0.42,N,w1,w2,9,10); g3=new_fod(0.798,N,w1,w2,9,10);
g4=new_fod(0.31,N,w1,w2,9,10); g5=new_fod(0.63,N,w1,w2,9,10);
G=(-2*g5-4)/(2*sˆ3*g1+3.8*sˆ2*g2+2.6*s*g3+2.5*s*g4+1.5);
Gr1=opt_app(G,2,3,0);norm(G-Gr1),Gr2=opt_app(G,2,4,0);norm(G-Gr2)
Gr3=opt_app(G,2,5,0); Gr3=opt_app(G,2,5,0,Gr3); norm(G-Gr3)
Gr4=opt_app(G,2,6,0); Gr4=opt_app(G,2,6,0,Gr4);
Gr4=opt_app(G,2,6,0,Gr4); norm(G-Gr4)
step(G,Gr1,Gr2,Gr3,Gr4,30); figure; bode(G,Gr1,Gr2,Gr3,Gr4)

300 Chapter 8. Fractional-Order Controller: An Introduction

8.5 Controller Design Studies for Fractional-Order
Systems

From the analysis given previously, it can be seen that the behaviors of fractional-order
controllers may be different from their integer-order counterparts. For instance, if the
widely used PID controller is considered, its fractional-order version PIλDμ controller can
be expressed by [99]

Gc(s) = Kp + Ki

sλ
+ Kdsμ. (8.38)

In the illustration in Figure 8.7, the fractional-order PID controller is explained, with
the horizontal axis as the order of the integrator and the vertical axis the order of the
differentiator. It can be seen that the ordinary PI (proportional plus integral), PD, and PID
controllers are special cases of the fractional-order PID controller since the values of λ and
μ can be selected freely, which adds two more degree of freedom to the controller design. It
has been shown that the control behavior of the best fractional-order PID controller is quite
superior to the best conventional PID controller in some applications [109].

If the loop shaping technique is considered, it can be seen that the Bode magnitude
diagrams is no longer restricted to 20k dB/decade slopes. Thus the shape of the loop transfer
function can be set freely for better performance and robustness. In this section, several
examples will be given to show the design of an integer-order controller and fractional-order
controller for fractional-order plants.

Example 8.7. For a plant model

G(s) = 1

s2.6 + 2.2s1.5 + 2.9s1.3 + 3.32s0.9 + 1
,

if an integer-order PID controller is expected, it is quite natural to first find an FOPDT
approximate model,

Gp(s) = k
e−Ls

T s + 1

and then design a PID controller for the FOPDT model. The designed controller can then
be used in closed-loop control of the fractional-order plant G(s). For instance, the Wang–
Juang–Chan algorithm [69] in Sec. 6.3.4 can be used to design a PID controller for an

�

�

μ = 1

λ = 1

λ

μ

PI controller

PD controller PID controller

Figure 8.7. Fractional-order PID controller.

8.5. Controller Design Studies for Fractional-Order Systems 301

FOPDT model with an optimum ITAE criterion:

Kp = (0.7303 + 0.5307T/L)(T + 0.5L)

K(T + L)
, Ti = T + 0.5L, Td = 0.5LT

T + 0.5L
. (8.39)

The following statements can be used to extract the FOPDT model from the approxi-
mated high-order plant model:

>> N=4; w1=1e-3; w2=1e3; s=tf(’s’);
g1=new_fod(0.6,N,w1,w2,9,10); g2=new_fod(0.5,N,w1,w2,9,10);
g3=new_fod(0.3,N,w1,w2,9,10); g4=new_fod(0.9,N,w1,w2,9,10);
G=1/(sˆ2*g1+2.2*s*g2+2.9*s*g3+3.32*g4+1); Gr=opt_app(G,0,1,1)

The reduced plant model is then

Gr(s) = 0.1702

s + 0.1702
e−0.612s .

The PID controller can be designed such that

>> K=0.1702/0.1702; T=1/0.1702; L=0.612;
Ti=T+0.5*L; Kp=(0.7303+0.5307*T/L)*Ti/(K*(T+L));
Td=(0.5*L*T)/(T+0.5*L); Gc=Kp*(1+1/Ti/s+Td*s),

The integer-order PID controller is designed as

Gc(s) = 4.7960

(
1 + 1

5.6315s
+ 0.3076s

)
= 1.614s2 + 5.55s + 0.8979

s
.

Under such a controller, the closed-loop step response is obtained as shown in Figure 8.8. It
can be seen that the integer-order PID controller can still be used in the fractional-order plant
control. The control results are satisfactory. It is also seen that the high-order approximation
to the closed-loop system is very accurate:

>> Gcf=fotf(1,1,[1.614 5.55 0.8979],[2,1,0]); H=fotf(1,0,1,0);
a=[1 2.2 2.9 3.32 1]; an=[2.6,1.5,1.3 0.9 0]; G0=fotf(a,an,1,0);
GG=feedback(Gcf*G0,H); t=0:0.005:15;
step(feedback(G*Gc,1),t); hold on, step(feedback(G0*Gcf,H),t);

Example 8.8. Consider a fractional-order plant model

G(s) = 10

sα + 2.2
,

where the order α is an undetermined parameter, within the interval α ∈ (1.2, 1.6). The
nominal value of the variable is α0 = 1.4. In order to get a low-order robust controller, a
relatively smaller value of N can be selected, for instance, N = 2. The following statements
can be used to approximate the original model by integer-order approximation such that

>> N=2; w1=1e-3; w2=1e3; s=tf(’s’);
g1=oustafod(0.4,N,w1,w2); G=1/(s*g1+2.2);

302 Chapter 8. Fractional-Order Controller: An Introduction

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Figure 8.8. Integer-order PID control of fractional-order plant.

Select weighting functions w1(s) = 100/(s + 1) and w3(s) = 10/(0.01s + 100). The
optimal H∞ controller can be designed such that

>> W1=100/(s+1); W3=100/(0.01*s+100); Gc=mixsyn(G,W1,[],W3);

The controller can be designed as

Gc(s) =
71870205(s + 1000)(s + 144.3)(s + 8.265)(s + 0.1116)

(s + 0.006921)(s2 + 1.73s + 2.388)

(s + 9499)(s + 9975)(s + 346.4)(s + 27.46)

(s + 1.738)(s + 1)(s + 0.1096)(s + 0.006918)

.

Under such a controller, the open-loop Bode diagrams and the closed-loop step response
are obtained as shown in Figures 8.9(a) and (b), respectively:

>> f1=figure; bode(G*Gc); hold on
f2=figure; step(feedback(G*Gc,1),0.1); hold on
for a=[0.2:0.05:0.6]

g1=oustafod(a,4,w1,w2); G1=1/(s*g1+2.2);
figure(f1); bode(G1*Gc);
figure(f2); step(feedback(G1*Gc,1),0.1)

end

Example 8.9. Consider again the fractional-order plant model in Example 8.7. The integer-
order approximation can be obtained such that

>> N=4; w1=1e-3; w2=1000; s=tf(’s’);
g1=oustafod(0.6,N,w1,w2); g2=oustafod(0.5,N,w1,w2);
g3=oustafod(0.3,N,w1,w2); g4=oustafod(0.9,N,w1,w2);
G=1/(sˆ2*g1+2.2*s*g2+2.9*s*g3+3.32*g4+1);

Using the integer-order model, the Simulink model for optimal controller design with
an integer-order PID controller is established as shown in Figure 8.10(a). A saturation
actuator with limits ±5 is also included in the Simulink model.

8.5. Controller Design Studies for Fractional-Order Systems 303

−150

−100

−50

0

50

100

M
ag

ni
tu

de
 (

dB
)

10
−2

10
0

10
2

10
4

10
6

−180

−135

−90

−45

0

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

(a) Bode diagrams

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

(b) closed-loop step responses

Figure 8.9. Time and frequency domain analysis under robust controller.

2

1
time

Step Scope

G

LTI System

1
s

Ki

s

Integrator

Kd

Kp

Gain3

du/dt

Actuator
Saturation

|u|

(a) Simulink model (file: c8mfpid2.mdl)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) closed-loop response

Figure 8.10. Optimal PID controller design for fractional-order plant.

It can be found by using the Optimal Controller Designer (OCD) program that
the parameters of the PID controller are Kp = 14768.1007, Ki = 1.35636077, Kd =
2306.39271. Under such a controller, the optimum step response of the closed-loop system
can be obtained as shown in Figure 8.10(b). It can be seen that the controller obtained with
the OCD is much better than the one obtained in Example 8.7. Also the control action is
restricted within the specific range.

Due to the robustness of the PID controllers, the errors in the controller parameters
may not cause any problem in the control results. For instance, if we had the erroneous
parameters Kp = 10000, Ki = 1, Kd = 2500, where the errors reach 35%, the control
results would be as shown in Figure 8.11(a). It can be seen that the system responses are
almost the same with the optimal PID controller:

>> Kp=10000; Ki=1; Kd=2500;
[t,x,y]=sim(’c8mfpid2’,[0,10]); plot(t,y(:,2))

Assume that plant model is changed to

G(s)= 2

s2.6+5s1.5+4s1.3+5.32s0.9+1
,

where the parameters are all perturbed. If the erroneous PID controller is still used, the
control results are as shown in Figure 8.11(b). It can be seen that, although the plant models

304 Chapter 8. Fractional-Order Controller: An Introduction

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) controller parameters change

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) plant and controller change

Figure 8.11. The robustness of the PID controller.

change significantly, the PID controller can still behave perfectly. This demonstrates the
robustness of the PID controller in fractional-order plant models:

>> G=2/(sˆ2*g1+5*s*g2+4*s*g3+5.32*g4+1);
[t,x,y]=sim(’c8mfpid2’,[0,10]); plot(t,y(:,2))

Problems

1. Assume that a fractional-order linear differential equation is given by

0.8D2.2
t y(t) + 0.5D0.9

t y(t) + y(t) = 1,

with initial values y(0) = y′(0) = y′′(0) = 0. Solve numerically the FODE. If the
order of 2.2 is approximated by 2, and 0.9 is approximated by 1, the original fractional-
order differential equation can be approximated by an integer-order system. Compare
the accuracy of the approximated integer-order systems.

2. For a fractional-order model given by

(a). G(s) = 5

s2.3 + 1.3s0.9 + 1.25

and

(b). G(s) = 5s0.6 + 2

s3.3 + 3.1s2.6 + 2.89s1.9 + 2.5s1.4 + 1.2
,

approximate the fractional-order models with low-order integer-order models, and
compare the accuracy of the frequency and time domain fittings. Discuss what order
combination is most suitable for the original model.

3. Suppose that the plant model is

G(s)= 1

s2.6+2.2s1.5+2.9s1.3+3.32s0.9+1
,

8.5. Controller Design Studies for Fractional-Order Systems 305

and an integer-order PID controller is

Gc(s) = 1.614s2 + 5.55s + 0.8979

s
.

Find the closed-loop fractional-order model.

4. Write a function to find the solutions to the FODE using the algorithm in (8.17)–
(8.21), and compare the results with the Grünwald–Letnikov definition approach and
the block diagram algorithm.

5. Consider the linear FODE given by

Dx(t) +
(

9

1 + 2λ

)α

Dαx(t) + x(t) = 1,

where λ = 0.5, α = 0.25 and x(0) = 0. Solve the equation numerically.

6. Find a good approximation to s0.7 with the revised Oustaloup filter and see which N

can best fit the fractional-order differentiator.

7. Solve the following nonlinear FODE with the block diagram algorithm with x(0) = 0:

D2x(t) + D1.455x(t) +
[
D0.555x(t)

]2 + x3(t) = sin t.

8. For the plant model

G(s) = 5s0.6 + 2

s3.3 + 3.1s2.6 + 2.89s1.9 + 2.5s1.4 + 1.2
,

design an integer-order PID controller and observe the control results.

9. For the fractional-order model

G = b

as0.7 + 1
,

design an H∞ controller which can tolerate the parameter changes in the fractional-
order model, for instance, a ∈ (0.2, 5) and b ∈ (0.2, 1.5).

Appendix

CtrlLAB: A Feedback
Control System Analysis
and Design Tool

A.1 Introduction
A.1.1 What Is CtrlLAB?

CtrlLAB, a MATLAB-based toolkit with an integrated graphical user interface (GUI), was
designed by the authors for solving the modeling, analysis, and design problems in SISO
(single input–single output) feedback control systems. It is developed from the old Control
Kit by the authors [110]. CtrlLAB has become a flexible and powerful tool for both teaching
and engineering design and requires minimum user effort. It can be used as a companion
to this book.

CtrlLAB, written and tested under MATLAB v4.2, was first made public on the
MathWorks anonymous ftp site as a user-contributed MATLAB program. Since then, much
useful feedback has been received. Over the years, CtrlLAB has been greatly improved. It
has already been used as a CAI (computer aided instruction) tool in control courses at many
universities worldwide. The latest version of CtrlLAB can also run under other versions
of MATLAB, including MATLAB R2007b. It is still freely downloadable from MATLAB
Central at

http://www.mathworks.com/matlabcentral/index.shtml

Currently, CtrlLAB is the most downloaded tool under the Controls and Systems Modeling
file exchange category at MATLAB Central.

The main facilities provided by CtrlLAB are

• model entry, including Simulink model entry;

• model display;

• state space realizations;

• model reduction using various algorithms;

• system analysis in frequency and time domains;

• graphical display with figure editing and manipulation;

• a GUI matrix processor and editor;

307

308 Appendix. CtrlLAB: A Feedback Control System Analysis and Design Tool

• many controller design modules such as the model-based approaches (lead-lag, LQ
(linear quadratic) optimal, pole-placement, etc.); PID (proportional integral derivative)
parameter setting and PID tuning schemes; and robust controller design approaches
(such as LQG (linear quadratic Gaussian), LQG/LTR (loop transfer recovery), H2,
H∞, etc.).

A.1.2 Installation and Requirements

With the downloadedctrllab.zipfile, unzip it to a directory usingWinZiporpkunzip
software. Before running CtrlLAB, the directory of CtrlLAB should be added to the MAT-
LAB path. This can be set with the File | Set Path menu item in the MATLAB command
window.

CtrlLAB is written for the PC Windows platform; however, it should also be able to
run on other platforms. Although CtrlLAB has not been fully tested on other platforms,
with a MATLAB version newer than 4.2c, the cross platform compatibility will be much
better than what was experienced under MATLAB version 4.2c. We believe that CtrlLAB
can run on any current version of other platforms with little modification.

A.1.3 Execution of CtrlLAB

To run CtrlLAB, simply type ctrllab under the MATLAB prompt, and a GUI with
menus will pop up, as shown in Figure A.1. The user must first enter or to define the
models, which include the plant, the controller, and the feedback element. The default
models for the latter two are all unity. The possible time delay may also be specified. With
the specified models, the analysis and design tasks can be performed.

Menus and dialog boxes are provided to invoke relevant functions to fulfill the user’s
own analysis and design tasks. Note that all the functions provided in CtrlLAB can be
accessed through the efficient and user friendly GUI. There is no need to call these functions

Figure A.1. The GUI of CtrlLAB.

A.2. Model Entry and Model Conversion 309

manually. CtrlLAB is designed for linear feedback control system analysis and design using
only mouse clicks and numeric key strokes. Great effort has been made in CtrlLAB to
minimize the user involvement in the analysis and design of feedback control systems.

A.2 Model Entry and Model Conversion
A.2.1 Transfer Function Entry

To quickly enter a default model, the user can click one of the model icons in the block
diagram shown in Figure A.1, and CtrlLAB will check whether the model exists in the work
space. If it does not exist, a dialog box, shown in Figure A.2, will appear by default, which
allows the user to enter the system model by specifying the numerator and denominator,
respectively, in the appropriate edit boxes.

The transfer function model can be entered in two ways. The first is by entering
the standard MATLAB vectors in descending order of the Laplace complex variable s.
The second is by representing the polynomials in a “natural way.” These two methods
are demonstrated in Table A.1. It can be seen that for the factorized polynomials, the
s polynomial representation is much more “natural” and simpler than a pure MATLAB
expression.

A.2.2 Entering Other Model Representations

The state space model, or zero-pole-gain model, can also be entered if the corresponding
item from the list box shown in Figure A.2 is selected.

Figure A.2. Dialog box for transfer function model entry.

Table A.1. Examples of polynomial representations.

Mathematical MATLAB commands s polynomial

s2 + 5s + 4 [1,5,4] s2+5s+4

s2(s + 5)(s2 + 7) [conv([1,5],[1,0,7]),0,0] s2(s+5)(s2+7)2

1.5s3(s3+7s2+6s+2)12 too complicated 1.5s3(s3+7s2+6s+2)12

310 Appendix. CtrlLAB: A Feedback Control System Analysis and Design Tool

Figure A.3. Dialog box for zero-pole-gain model entry.

Figure A.4. Dialog box for state space model entry.

In Figure A.2, if the menu item pole-zero (for zero-pole-gain model) is selected, the
dialog box shown in Figure A.3 will appear, where the zero-pole-gain model parameters
can be entered in the corresponding edit boxes. Then, press the OK button to confirm.
Internally, a transfer function object will be generated automatically from the user-specified
zero-pole-gain model. For the state space item, the dialog box shown in Figure A.4 will
appear, where the (A, B, C, D) matrices of the system can be entered in the corresponding
edit boxes. Then, a transfer function object of the block can be generated automatically
from the given state space model.

A.2.3 A More Complicated Model Entry

If the system model under study has a more complicated structure, such as containing com-
plex block diagrams or nonlinearities, the Simulink program should be used to construct the
system model. In this case, the user can select the Simulink item from the dialog box shown
in Figure A.2. A model name (an internal name) will be requested and then the Simulink
editing environment will appear, as shown in Figures A.5(a) and (b), where Figure A.5(a) is
the model library from which all the Simulink library models can be accessed. FigureA.5(b)
is a blank Simulink model editing window in which the user can draw the system model
between the input and output ports of the system. Once the model entry process is completed
in the Simulink edit window, as shown in Figure A.5(b), double click Return to CtrlLAB
to return the user system model to CtrlLAB. If the user model in Simulink is nonlinear, the
linearized transfer function model of the user system will be created and saved, together with
the original Simulink model, for CtrlLAB use. A simple nonlinear model entry example in

A.3. Model Transformation and Reduction 311

(s−1)

poles(s)

Zero−Pole

1

s+1

Transfer Fcn

Sum

x’ = Ax+Bu
 y = Cx+Du

State−Space

Nonlinear

1
s

Integrator

1

Gain

Simulink

Double click to
call Simulink

du/dt

Derivative

(a) model library (b) model entering window

Figure A.5. Simulink model entering in CtrlLAB.

Figure A.6. Complicated model entry in CtrlLAB via Simulink.

CtrlLAB is shown in Figure A.6 which uses Simulink to describe the nonlinear part. Note
the Return to CtrlLAB button in FigureA.6 for returning a linearized transfer function object
for use with CtrlLAB.

A.3 Model Transformation and Reduction
A.3.1 Model Display

To display the model of a block in Figure A.1, select Model | Model Select in the menu
shown in Figure A.7, or simply click the relevant block button in the main interface shown
in Figure A.1.

312 Appendix. CtrlLAB: A Feedback Control System Analysis and Design Tool

Figure A.7. Model selecting menu.

Figure A.8. Transfer function display.

Figure A.9. Display format selection.

As an example, consider the transfer function of the plant model given by

G(s) = s3 + 7s2 + 24s + 24

s4 + 10s3 + 35s2 + 50s + 24
.

To display the transfer function model of the plant, simply press the G(s) button in the main
interface shown in Figure A.1. The transfer function model will then be displayed in the
Information Display Window as shown in Figure A.8. The displayed model can also be
modified in the display window by pressing the Modify button. The dialog box shown in
Figure A.2 will be displayed again for model parameter changes.

The block model can be displayed in various formats. This can be done by selecting
the Model | Model Display menu, shown in Figure A.9, with the transfer function format
as the default. Through the Model | Model Display | FactorizedTF menu item, the transfer
function in the factorized format will be displayed as shown in Figure A.10.

A.3. Model Transformation and Reduction 313

Figure A.10. Factorized transfer function display format.

Figure A.11. State space model display format.

Figure A.12. Display via the Matrix Processor.

Moreover, the state space model can be displayed by the Model | Model Display |
state space menu item as demonstrated in Figure A.11. When the Show button is clicked,
the Matrix Processor is activated; the typical window is shown in Figure A.12. The zero-
pole-gain format of the system is displayed by the Model | Model Display | Pole-Zero
menu item which is shown in Figure A.13.

If the nonlinear system model is involved, only the linearized model will be displayed
as in Figure A.14. To display the original Simulink model, simply press the to CtrlLAB
button.

314 Appendix. CtrlLAB: A Feedback Control System Analysis and Design Tool

Figure A.13. Zero-pole-gain display format.

Figure A.14. Linearized model display.

A.3.2 State Space Realizations

Different state space realizations can be performed for a given transfer function plant model.
This can be done by the Model | Realisation menu items shown in Figure A.15, and an
example of the Jordanian canonical form of the system is obtained, as shown in Figure A.16,
via the Matrix Processor interface.

A.3.3 Model Reduction

Reduced-order models of the system can also be obtained by the Model | Reduction menu
item. The model reduction dialog box will appear as in Figure A.17, where various model
reduction approaches are implemented such as the continued-fraction approach, the Padé
method, the Routh method, the dominant mode method, the balanced realization method,
the optimal reduction method, the FF-Padé method, the modal method, and the optimal
Hankel approximation method.

For example, if the Padé approximation method is chosen from the list box of model
reduction methods, the expected order of the reduced model can be specified as in Fig-
ure A.17. The reduced-order model is then obtained as shown in Figure A.18.

Figure A.15. State space realization menu.

A.3. Model Transformation and Reduction 315

Figure A.16. Jordan realization.

Figure A.17. Model reduction dialog box.

Figure A.18. Model reduction result via the Padé approximation method.

To compare the reduced-order model with the original model, click on Compare re-
sponses in the model display window. A new dialog box pops up for choosing a comparison
plot from a list of responses which include the Bode diagrams, Nyquist plots, Nichols charts,
as well as the step and impulse responses between the original model and the reduced-order
model. For instance, the step response comparison, and the Bode diagram comparison, of
the original system and the reduced model via the Padé approximation method are shown in
Figures A.19(a) and (b), respectively, where the solid line represents for the original model
and the dotted line the reduced-order model. It can be seen that the responses of the two

316 Appendix. CtrlLAB: A Feedback Control System Analysis and Design Tool

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) step response comparison

10-2 10-1 100 101 102
-60

-40

-20

0

10-2 10-1 100 101 102
-100

-50

0

(b) Bode diagram comparison

Figure A.19. Comparisons of the reduced order and the original models.

models are quite close, especially in the step response comparison, where the two curves
are almost indistinguishable.

A.4 Feedback Control System Analysis
Various linear system analysis tasks covered in this book can be performed by the direct use
of CtrlLAB. After performing the model entry from Sec. A.2, select Analysis from the main
menu shown in Figure A.1. The system analysis menu will appear as shown in Figure A.20.
In this menu, plots for time domain, frequency domain, and root locus analysis can be
generated by just using mouse clicks. In what follows, some detailed instructions are given
in the subsections to follow.

A.4.1 Frequency Domain Analysis

The Bode diagram of the system can be obtained by the Analysis | Frequency Domain
Analysis | Bode Diagram menu item. The result is shown as in Figure A.21(a).

Via the Options | Show asymptotes sub-menu in the Bode diagram window, the
Bode plot asymptotes are drawn together with the exact Bode diagram, as demonstrated in
Figure A.21(b).

The properties of the graphs can be modified by the Options | Plot preference
sub-menu in the Bode diagram window, and a dialog box is then provided as shown in

Figure A.20. System analysis menu in CtrlLAB.

A.4. Feedback Control System Analysis 317

10-2 10-1 100 101 102
-60

-40

-20

0

10-2 10-1 100 101 102
-100

-50

0

(a) Bode diagram

10-2 10-1 100 101 102
-100

-50

0

10-2 10-1 100 101 102
-60

-40

-20

0

(b) with asymptotes

Figure A.21. Bode diagram of a given linear system.

Figure A.22. Graph properties setting dialog box.

Figure A.22, where some of the details on the graph can be modified such as the boxes, grid,
colors, etc. Moreover, the open-loop and closed-loop properties of the plots can also be
changed. If a controller model is available, the Combinations group can be used to choose
the Compensated as well as the Uncompensated frequency response. For instance, if the
user checks the Closed Loop box, the closed-loop Bode diagram can then be obtained as
shown in Figure A.23.

The Nyquist and Nichols charts can be obtained via the Analysis | Nyquist Plot
and Analysis | Nichols Chart menu items. Results shown in Figures A.24(a) and (b),
respectively.

The root locus plot can be obtained by using Analysis | Root Locus. For some
particular systems, the directly obtained root locus of the system may not be very informative
due to the poor quality of the automatically chosen plot ranges. In this case, the user can
change the axis of the plot via the Options | Zoom | User Define menu item on the root
locus window. A dialog box then appears as shown in Figure A.25(a). The ranges of the
x and y axes can be changed until a good display result is obtained. For instance, with the
properly chosen axes, the more informative root locus of the system can then be redrawn,
as shown in Figure A.25(b).

318 Appendix. CtrlLAB: A Feedback Control System Analysis and Design Tool

10-1 100 101 102
-40

-30

-20

-10

0

10-1 100 101 102
-100

-50

0

Figure A.23. The modified graph.

0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(a) Nyquist plots

-350 -300 -250 -200 -150 -100 -50 0
-40

-30

-20

-10

0

10

20

30

40

6 db
3 db

1 db
0.5 db

0.25 db
0 db

-1 db

-3 db

-6 db

-12 db

-20 db

-40 db

Open-Loop Phase (deg)

O
pe

n-
L

oo
p

G
ai

n
(d

b)

(b) Nichols chart

Figure A.24. Frequency responses.

(a) zoom dialog box

-10 -8 -6 -4 -2 0
-3

-2

-1

0

1

2

3

(b) root locus

Figure A.25. Root locus analysis.

A.4.2 Time Domain Analysis

The step and impulse responses of the system can be obtained directly from the menu
Analysis | Step response, and Analysis | Impulse response, respectively. For instance, the

A.4. Feedback Control System Analysis 319

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

(a) closed-loop system

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) open-loop system

Figure A.26. Step response analysis.

Figure A.27. Simulation parameter setting dialog box.

step response of the system can be obtained as shown in Figure A.26(a). This step response
shown in Figure A.26(a) is the closed-loop step response. One can obtain the open-loop step
response of the system by selecting the relevant submenu item in the Analysis menu and
the open-loop step response of the system can then be redrawn in the step response window
as shown in Figure A.26(b).

For nonlinear systems, one can also specify the type of input signals, via the Options
| Simulation parameters menu item in the relevant graphics window. A dialog box will
appear as shown in Figure A.27 which prompts the user to specify the input signals as well
as the simulation parameters. For instance, when studying the system with the Simulink
model, to display the step response of the linearized system and that of the original system,

320 Appendix. CtrlLAB: A Feedback Control System Analysis and Design Tool

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure A.28. Step responses of a nonlinear system with linearization.

(a) plot range setting

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

(b) with a new time range

Figure A.29. Time range modifications.

check the Show Linearised box. The time response of the system can then be displayed as
shown in Figure A.28.

The plot range can also be set by the Options | Plot range menu item in the graphics
window. A dialog box, shown in Figure A.29(a), prompts the user to select a new plot range.
For instance, the user can set a new terminating time at 50, and the new system responses
are then obtained as shown in Figure A.29(b).

Other signal types apart from the step and impulse signals can also be applied. For
instance, the user can select square wave, saw tooth, wave and sine wave by using the
dialog box shown in Figure A.27. Other parameters such as the frequency of the signal can
also be changed. The time response to a square wave input is shown in Figure A.30(a).
To display other signals such as the error signal e(t), select the Options | Other signals
menu item in the graphics window and click the error signal e(t) in the block diagram of
the feedback system. The error signal for a step input can then be obtained as shown in
Figure A.30(b).

A.4. Feedback Control System Analysis 321

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) square wave input response

0 5 10 15 20 25 30 35 40 45 50
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(b) error signal

Figure A.30. Time response of other signals.

Figure A.31. Gain and phase margins.

Figure A.32. Analytical closed-loop step response.

A.4.3 System Properties Analysis

The stability property, gain and phase margins, and the analytical solutions to step and im-
pulse signals can also be obtained through the menu system. For instance, for the nonlinear
system model, the gain and phase margins to the linearized model can be obtained as shown
in Figure A.31, and the analytical solutions to the step response of the system can then be
shown as in Figure A.32.

322 Appendix. CtrlLAB: A Feedback Control System Analysis and Design Tool

Figure A.33. System design menu.

Figure A.34. Lead-Lag compensator dialog box.

A.5 Controller Design Examples
A.5.1 Model-Based Controller Designs

We shall use the phase lead-lag controller design problem as an example to illustrate the
controller design for a given plant model via CtrlLAB. The model-based controller design
menu is shown in FigureA.33, and it can be seen that several model-based design algorithms
can be selected within the menu, as discussed in Chapter 5. For instance, with a typical
lead-lag controller design dialog box, shown in Figure A.34, the user is requested to enter
the parameters such as the expected phase margin γ , the crossover frequency ωc, and the
steady-state error tolerance Kv .

Let us try a plant model given by G(s) = 1/[s(s + 1)(0.2s + 1)]. Set the expected
phase margin γ = 50◦, the crossover frequency ωc = 5 rad/sec, and the steady-state
error tolerance Kv = 100. Then, a lead-lag compensator can be designed as shown in
Figure A.35(a). With a proper menu selection, the controller can be shown in the factorized
form as in Figure A.35(a). The Bode diagrams of the system before and after lead-lag
compensation can be obtained using the Analysis | Bode Diagram menu item, as shown in
Figure A.35(b).

Via CtrlLAB, it is also very easy to design the LQ optimal controller and the pole-
placement controller with either full state feedback or observer-based structures. The
straightforward model-based controllers can also be designed with CtrlLAB.

A.5.2 Design of PID Controllers

Consider the PID controller design problem with the plant model G(s) = 10/[(s + 1)(s +
2)(s + 3)(s + 4)] entered via CtrlLAB. By the Design | PID Controller menu item, the
design menu will appear as shown in FigureA.36. It can be seen that different PID controller
design algorithms have been implemented within CtrlLAB. The “one-shot” submenu item

A.5. Controller Design Examples 323

(a) lead-lag controller

10-2 10-1 100 101 102 103

-250

-200

-150

-100

Compensated

compensated
original

10-2 10-1 100 101 102 103

-100

-50

0

50

original

(b) Bode diagram comparison

Figure A.35. A lead-lag compensator.

Figure A.36. Main menu for PID controller design.

(a) controller parameters

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Ziegler-Nichols

refined Ziegler-Nichols

uncompensated

(b) step response comparison

Figure A.37. Ziegler–Nichols PID controller.

in Figure A.36 means that the PID controller can be designed directly from the known plant
model with no other extra specification needed. One may design a PID controller using
the Ziegler–Nichols algorithm by selecting Design | PID controller | One-shot design |
Ziegler–Nichols Tuning. This will immediately generate the PID controller as shown in
Figure A.37(a). Furthermore, the refined Ziegler–Nichols controller can be designed, as
also shown in Figure A.37(a), when the One-shot design | Refined Ziegler–Nichols menu
is selected. By the Analysis | Step response menu item, the closed-loop step response of

324 Appendix. CtrlLAB: A Feedback Control System Analysis and Design Tool

Figure A.38. PID controller structures.

Figure A.39. FOPDT model fitting methods.

Figure A.40. PID with specified parameters.

Figure A.41. Optimum PID controller design.

the system will be obtained as in Figure A.37(b) where it is shown together with the step
response of the uncompensated system.

Apart from the standard PID controllers, other similar structures such as the P con-
troller, the PI controller, and the PID controller with D in the feedback loop, can also
be designed, which can be selected from the Design PID Controller | Controller Type
menu item as shown in Figure A.38. We know that the PID controller parameter setting is
based on the first-order plus dead time (FOPDT) model. Given a high-order plant model,
we can select different approaches to fit the original plant model by a standard first-order
model with dead time. The fitting algorithms can be selected from the menu shown in
Figure A.39.

PID controllers can also be designed with other algorithms using the Specified
parameters and Optimum Tuning menu items as shown in Figures A.40 and A.41,
respectively.

With the above different tuning algorithms, we can design PID controllers that have
better performance. For instance, the suboptimal first-order approximation to the plant
model can be obtained using menu item First-order model identification | Optimal re-
duction, and from this an optimum PID controller can be designed. Using these controllers,

A.5. Controller Design Examples 325

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Ziegler-Nichols

Original model

Refined Ziegler-Nichols

Optimum PID, with D in feedback

Optimum normal PID

Optimum normal PID with freq ident

Figure A.42. Step response comparison of different PID controllers.

Figure A.43. Robust control design menu.

the closed-loop step responses are then compared as in Figure A.42. It can be seen that per-
formance can be significantly improved, compared to the results from other “one-shot” PID
controllers.

A.5.3 Robust Controller Design

In this section, only the H∞ controller design via CtrlLAB will be demonstrated, although
other design problems can also be solved in CtrlLAB. The example we shall use is the
double integrator plant model as given in Example 7.16. The design submenus for the
robust controllers can be obtained by selecting the Design | Robust Control menu item as
shown in Figure A.43.

To get an H∞ optimal controller, select the Design | Robust Control | H_inf Op-
timal Control menu item to obtain the dialog box shown in Figure A.44. Specify various
weighting functions W1(s), W2(s), and W3(s) in the dialog box. To design an H∞ con-
troller for the sensitivity problem, check Sensitivity so that a new dialog box will appear
as shown in Figure A.45(a). In Figure A.45(a), the expected order and the natural fre-
quency for the ITAE standard reference model should be entered. For instance, if one
selects n = 2 and ωn = 10 rad/sec, an optimal H∞ controller can be designed as shown in
Figure A.45(b).

The Nichols charts and the closed-loop step response of the system can then be ob-
tained as shown in Figures A.46(a) and (b), respectively. Other types of robust controllers,
such as the H2 controller and the LQG/LTR controllers, can also be designed and analyzed
with little effort using the menus and dialog boxes.

326 Appendix. CtrlLAB: A Feedback Control System Analysis and Design Tool

Figure A.44. H -norm-based dialog box.

(a) dialog box for the sensitivity problem (b) optimal H∞ controller

Figure A.45. Robust control design results.

-350 -300 -250 -200 -150 -100 -50 0
-40

-30

-20

-10

0

10

20

30

40

6 db
3 db

1 db
0.5 db

0.25 db
0 db

-1 db

-3 db

-6 db

-12 db

-20 db

-40 db

(a) Nichols charts

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) closed-loop step response

Figure A.46. Robust control system analysis.

A.6. Graphical Interface-Based Tools 327

A.6 Graphical Interface-Based Tools
Two useful graphics-based tools are provided in CtrlLAB which can be used to process
matrices and figures, respectively. In the following subsections, detailed descriptions of
these two programs will be given.

A.6.1 A Matrix Processor

A matrix processor, MatxProc() is developed which can be used to process and edit
matrices and state space models, and perform various kinds of matrix analyses in a visual
way. The GUI facilities are extensively used to make the matrix processor very flexible and
easy to use.

When MatxProc is typed in the MATLAB prompt, a GUI will appear as shown
in Figure A.47. The program can also be called from within CtrlLAB. In MATLAB,
MatxProc() can be called using the format MatxProc(A), where A is a given ma-
trix, or simply using MatxProc.

The File | New matrix menu can be selected to create a new matrix. The dialog
box shown in Figure A.48 will appear to prompt the user to select from different matrix
templates. For instance, if one selects a Hilbert matrix with 3 rows, the matrix will then be
created by MatxProc as shown in Figure A.49.

Various display formats are allowed in MatxProc(). The user can select the For-
mat menu as shown in Figure A.50(a). It can be seen that the user can specify different
display precisions (high, normal, or rational), different alignment requirements (left, right,
or center), and different truncating thresholds. For instance, the high precision display is
given in Figure A.50(b), with part of the matrix elements hidden due to the limited size of
the window. The hidden part of the matrix can be displayed via the horizontal scroll bar.
The matrix can also be displayed in rational number format.

A matrix displayed can be analyzed and processed within MatxProc(). For in-
stance, to analyze the matrix, simply select the Analysis to obtain the menu appearing
in Figure A.51. To get the parameters of the given matrix, select the Analysis | Matrix

Figure A.47. A matrix processor interface.

328 Appendix. CtrlLAB: A Feedback Control System Analysis and Design Tool

Figure A.48. Matrix creating dialog box.

Figure A.49. Creating a new matrix.

(a) format menu (b) high precision display

Figure A.50. Display formats of a matrix.

A.6. Graphical Interface-Based Tools 329

Figure A.51. Matrix analysis menu.

Figure A.52. Matrix parameters display.

(a) manipulation menu (b) inverse matrix

Figure A.53. Matrix manipulations.

Parameters menu item. The analysis results will be obtained and displayed in the Infor-
mation Display Window as shown in Figure A.52. Other analysis tasks such as evaluating
the determinant, trace, norm, characteristic polynomial of the matrix can also be performed
using the Analysis menu.

Matrix manipulation such as matrix inversion and rotation can be performed within
MatxProc(). To manipulate the matrix, select the Analysis | Manipulations menu as
shown in Figure A.53(a) to easily obtain, for example, the inversion of the matrix shown in
Figure A.53(b).

Different decompositions for a given matrix can also be obtained, such as the QR
decomposition, LU decomposition, singular value decomposition (SVD), etc. The Analysis
| Decomposition menu is shown in Figure A.54(a), where the U matrix of the Schur
decomposition can easily be obtained by selecting the relevant menu item, and the results
are shown in Figure A.54(b). In addition, the button labeled T matrix in the GUI prompts
the user to display the other matrix, for example, the T matrix, such that A = UT UT.

330 Appendix. CtrlLAB: A Feedback Control System Analysis and Design Tool

(a) decomposition menu (b) U matrix

Figure A.54. Matrix decompositions.

(a) matrix evaluation menu (b) cosine function

Figure A.55. Matrix function evaluations.

(a) matrix edit menu (b) matrix editing interface

Figure A.56. Matrix editing facilities.

Matrix function evaluations can be performed within MatxProc() by selecting the
Analysis | Matrix Evaluation menu. Contents of the menu are displayed in Figure A.55(a).
When the user selects the Cos(A) function display, the cosine of matrix A can be obtained
as shown in Figure A.55(b).

A matrix can be edited using the Edit menu as shown in Figure A.56(a). By the Edit |
Edit an Element menu item, the cursor will be changed to the cross sign, which prompts the
user to select a matrix element. Once the user has selected an element to edit, the value of
the element will be entered into the edit box for modification, as shown in Figure A.56(b).
Once the edit process is done, the user can press the Accept button to confirm the change.

A.6. Graphical Interface-Based Tools 331

(a) TEX format (b) MATLAB format

Figure A.57. Matrix display in other formats.

The matrix can be shown in other formats as well, such as the TEX format and the
MATLAB format. This is particularly useful in dealing with large and complicated matrices.
For instance, the TEX format of the matrix can be obtained by selecting the Edit | Show in
TeX Format menu item, and the result is as shown in Figure A.57(a), while the MATLAB
format of the matrix is shown in Figure A.57(b).

A.6.2 A Graphical Curve Processor

The graphical curve processor is not currently an independent MATLAB function. It has
been integrated into CtrlLAB. It is mainly used to “decorate” the graphs obtained using
CtrlLAB to any degree of complexity. It can be used to do simple things such as add or
remove grids, add arrows, add floating legends to the graph, etc. Most of the figures in this
book used this unique graphical curve processor within CtrlLAB. We remark that, although
the current version of MATLAB has provided a plot editing toolbar for various graph editing
utilities, the graphical curve processor within CtrlLAB has been working similarly and more
powerfully with earlier versions of MATLAB (since version 4.2c) and is compatible with
versions 5.x and 6.x. The ultimate objective of CtrlLab is to minimize user effort.

An Option menu in the standard MATLAB graphics window allows for some of the
useful facilities to be called; this menu is shown in Figure A.58(a). For instance, via the
Options | Axis and Grid | with Boxes off and Options | Axis and Grid | with Grid off
menu items, the time response graph will then be changed to the display format shown in
Figure A.58(b), where the grids and boxes are turned off.

Note that, to turn off the grids, we can typegrid offwithin the MATLAB command
line. However, our objective here is to avoid such a user involvement. At this point, we
remark again that CtrlLAB is designed for linear feedback control system analysis and
design by only mouse clicks and some essential numeric key strokes. Great efforts have
been made to minimize the user involvement in the analysis and design of feedback control
systems. The Matrix Processor and Graph Processor described in this section are also part
of the efforts to achieve this goal.

To draw several curves together with a common coordinate, select the Options | Axis
and Grid | Hold on menu item to hold the current graph coordinate and then display another
curve on the current plot. This is demonstrated in Figure A.59(a).

332 Appendix. CtrlLAB: A Feedback Control System Analysis and Design Tool

(a) Options menu

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

(b) curve without box and grid

Figure A.58. Graphics processor menu and results.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) graph holding

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

(6.464,0.8743)

(10.69,0.9829) (31.36,1)

(4.352,0.7242)

(4.192,0.4848)

(1.76,0.3216)

(29.79,0.5)

(b) cursor positioning

Figure A.59. Screen hold and cursor.

To cancel the hold protection, select the Options | Axis and Grid | Hold off menu
item. To locate the specific points on the graph, use the Options | Cursor positions
menu item. For instance, the curves with some points selected and marked are shown in
Figure A.59(b).

Furthermore, various legends can be added to the graphs. The Options | Legends
menu is shown in Figure A.60, where one can select to add, move, or edit text strings on the
graphs, and also to draw lines or lines with arrows on the graph.

Two text legends are added on the graph shown in Figure A.61(a), and several lines
and arrows can be further added on the graph as shown in Figure A.61(b). It can be seen that
the legends (including lines and arrows) can be added or edited freely using the facilities
provided. The user can also remove the legends by selecting Options | Legends | Delete
a Legend to remove an existing legend.

The properties of the legends can be modified if the user selects the Legends | Proper-
ties menu item, and a dialog box for assigning legend properties will be displayed as shown
in Figure A.62(a). With proper settings, the modified version of the graph with different
fonts, and line types will be obtained as shown in Figure A.62(b).

A.6. Graphical Interface-Based Tools 333

Figure A.60. Legends menu.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

This is curve 1

This is curve 2

(a) examples of legends

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

This is curve 2

This is curve 1

(b) examples of arrows and lines

Figure A.61. Adding more legends on graphs.

(a) legend properties dialog box

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

Τηισ ισ χυρϖε 1

This is curve 2

(b) modified legends

Figure A.62. Changing the properties of legends.

334 Appendix. CtrlLAB: A Feedback Control System Analysis and Design Tool

(a) zoom menu

2 4 6 8 10 12
0.4

0.5

0.6

0.7

0.8

0.9

1

(b) zoomed graphic display

Figure A.63. Zoom facilities.

(a) axis specification dialog box

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) zoomed graphic display

Figure A.64. Axis range specifications.

The user may also change the view in the graph window by selecting the Options
| Zooming menu item as shown in Figure A.63(a), which allows the user to change the
current coordinates using a mouse. For instance, the user can redefine the range for display
by dragging the mouse, and the results can then be displayed as shown in Figure A.63(b).

Moreover, using the Zooming | User Define menu item, the dialog box shown in
Figure A.64(a) will pop up to allow the user to select a reasonable display range. If the
plot range in Figure A.64(a) is used, the zoomed output will be displayed as shown in
Figure A.64(b).

Problems
1. Use the following plant models to test the previously described analysis and design

tasks using CtrlLAB:

(a) G(s) = 50000

(s + 1)(s + 2)(s + 3)(s + 4)(s + 5)(s + 6)(s + 7)(s + 8)
.

A.6. Graphical Interface-Based Tools 335

(b) ẋ =

⎡⎢⎢⎣
2.25 −5 −1.25 −0.5
2.25 −4.25 −1.25 −0.25
0.25 −0.5 −1.25 −1
1.25 −1.75 −0.25 −0.75

⎤⎥⎥⎦ x +

⎡⎢⎢⎣
4
2
2
0

⎤⎥⎥⎦ u, y = x1 + 5x2.

(c) The DC drive system given in Example 2.11. Use both the direct method and the
Simulink method to create the system model.

2. Analyze the system matrix in problem 1(b). Find the norms, determinant, eigenvalues,
and characteristic polynomial of A, and do LU, QR, SVD decomposition of A within
CtrlLAB. Find the matrices eA, sin(A), and log(A).

3. Try to reproduce Figure 3.14(a) by using the graphics processor.

Bibliography

[1] Callier F. M., Desoer C. A. Multivariable Feedback Systems. New York: Springer-
Verlag, 1982

[2] Freudenberg J. S., Looze D. P. Frequency Domain Properties of Scalar and Mul-
tivariable Feedback Systems, Lecture Notes in Control and Information Sciences,
volume 104. Berlin: Springer-Verlag, 1988

[3] Maciejowski J. M. Multivariable Feedback Design. Wokingham, England: Addison-
Wesley, 1989

[4] Postlethwaite I., MacFarlane A. G. J. A Complex Variable Approach to the Analysis
of Linear Multivariable Feedback Systems. Berlin: Springer-Verlag, 1979

[5] Skogestad S., Postlethwaite I. Multivariable Feedback Control: Analysis and Design.
Chichester, England: John Wiley & Sons, 1996

[6] Vardulakis A. I. G. Linear Multivariable Control — Algebraic Analysis and Synthesis
Methods. Chichester, England: John Wiley & Sons, 1991

[7] Wonham W. M. Linear Multivariable Control — A Geometric Approach, Lecture
Notes in Economics and Mathematical Systems, volume 101. Berlin: Springer-
Verlag, 1974

[8] Mayr O. The Origins of Feedback Control. Cambridge, MA: MIT Press, 1970

[9] Minorsky N. Directional stability of automatically steered bodies. Journal of the
American Society of Naval Engineering, 1922, 34(2):280–309

[10] Ziegler J. G., Nichols N. B. Optimum settings for automatic controllers. Transactions
of the ASME, 1942, 64:759–768

[11] Nyquist H. Regeneration theory. Bell System Technology Journal, 1932, 11:126–147

[12] Bode H. W. Network Analysis and Feedback Amplifier Design. Princeton, NJ: Van
Nostrand, 1945

[13] James H. M., Nichols N. B., Phillips R. S.Theory of Servomechanisms, MIT Radiation
Laboratory Series, volume 25. New York: McGraw–Hill, 1947

337

338 Bibliography

[14] Evans W. R. Graphical analysis of control systems. Transactions of the AIEE, 1948,
67:547– 551

[15] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F. The Math-
ematical Theory of Optimal Processes. New York: Interscience Publishers, 1962.
Translated from the Russian by K. N. Trirogoff

[16] Bellman R. Dynamic Programming. Princeton, NJ: Princeton University Press, 1957

[17] Kalman R. E. On the general theory of control systems. IRE Transactions on Auto-
matic Control, 1959, 4(3):110. Abstract. Full paper published in Proceedings of the
1st IFAC Congress, Moscow, 1960

[18] Kalman R. E. Mathematical description of linear dynamical systems. SIAM Journal
of Control, 1963, 1(2):152–192

[19] Kalman R. E. When is a linear control system optimal? Transactions of ASME
Journal of Basic Engineering Series D, 1964, 86:51–60

[20] Doyle J. C., Stein G. Robustness with observers. IEEE Transactions on Automatic
Control, 1979, AC-24:607–611

[21] Zhang Z., Freudenberg J. S. Loop transfer recovery for nonminimum phase plants.
IEEE Transactions on Automatic Control, 1990, 35(5):547–553

[22] Zames G. Feedback and optimal sensitivity: Model reference transformations, mul-
tiplicative seminorms and approximate inverses. IEEE Transactions on Automatic
Control, 1981, AC-26(4):301–320

[23] Doyle J. C., Glover K., Khargoneckar P. P., Francis B. A. State space solutions to
standard H2 and H∞ control problems. IEEE Transactions on Automatic Control,
1989, 34(8):831–847

[24] Melsa J. L., Jones S. K. Computer Programmes for Computational Assistance in the
Study of Linear Control Theory. New York: McGraw–Hill, 1973

[25] Moler C. B. MATLAB — An Interactive Matrix Laboratory. Technical Report 369,
University of New Mexico, Albuquerque, NM, 1980

[26] Åström K. J. Computer aided tools for control system design. In Jamshidi M, Herget C,
eds., Computer-Aided Control System Engineering. Amsterdam: Elsevier Science
Publishers B. V, 1985, 3–40

[27] Using MATLAB version 6.1. The MathWorks, Natick, MA, 2001

[28] Xue D. Computer-aided Design of Control Systems with MATLAB. Beijing: Tsinghua
University Press (in Chinese), 1996

[29] Xue D., ChenY. Q. MATLAB/Simulink Based System Simulation Techniques. Beijing:
Tsinghua University Press (in Chinese), 2002

Bibliography 339

[30] Moore B. Principal component analysis in linear systems: controllability, observabil-
ity, and model reduction. IEEE Transactions on Automatic Control, 1981, 26:17–32

[31] Ljung L. System Identification — Theory for the User. 2nd edition. Upper Saddle
River, NJ: PTR Prentice Hall, 1999

[32] Akaike H. A new look at the statistical model identification. IEEE Transactions on
Automatic Control, 1974, 19(6):716–723

[33] Levy E. C. Complex-curve fitting. IRE Transactions on Automatic Control, 1959,
4:37–43

[34] Andresen T. A logarithmic-amplitude polar diagram. Modeling, Identification and
Control, 2001, 22(2):65–72

[35] Davison E. J. A method for simplifying linear dynamic systems. IEEE Transactions
on Automatic Control, 1966, 11:93–101

[36] Atherton D. P., Borne P. Concise Encyclopedia of Modelling and Simulation. New
York: Pergamon Press, 1992

[37] Bultheel A., van Barel M. Padé techniques for model reduction in linear system
theory: A survey. Journal of Computational andApplied Mathematics, 1986, 14:401–
438

[38] Decoster M., van Cauwenberghe A. R. A comparative study of different reduction
methods (Parts 1 & 2). Journal A, 1976, 17:68–74;125–134

[39] Hutton M. F. Routh approximation for high-order linear systems. In Proceedings of
the 9th Allerton Conference. 1971, 160–169

[40] Shamash Y. Linear system reduction using Padé approximation to allow retention of
dominant modes. International Journal of Control, 1975, 21:257–272

[41] Lucas T. N. Some further observations on the differential method of model reduction.
IEEE Transactions on Automatic Control, 1992, 37:1389–1391

[42] Chen C. F., Chang C. Y., Han K. W. Model reduction using the stability-equation
method and the continued fraction method. International Journal of Control, 1980,
32:81–94

[43] Hu X. H. FF-Padé method of model reduction in frequency domain. IEEE Transac-
tions on Automatic Control, 1987, 32:243–246

[44] Hwang C., LeeY. Multi-frequency Padé approximation via Jordan continued-fraction
expansion. IEEE Transactions on Automatic Control, 1989, 34:444–446

[45] Xue D., Atherton D. P. An optimal model reduction algorithm for linear systems. In
Proceedings of the American Control Conference. Boston, MA, 1991, 2128–2129

[46] Xue D. Model Reduction Techniques and Applications. Shenyang, China: Lecture
Notes of Northeastern University, 1996

340 Bibliography

[47] Xue D., Atherton D. P. A suboptimal reduction algorithm for linear systems with a
time delay. International Journal of Control, 1994, 60(2):181–196

[48] Gruca A., Bertrand P. Approximation of high-order systems by low-order models with
delays. International Journal of Control, 1978, 28:953–965

[49] Glover K. All optimal Hankel-norm approximations of linear multivariable systems
and their L∞-error bounds. International Journal of Control, 1984, 39:1115–1193

[50] Stahl H., Hippe P. Comments on “FF-Padé method of model reduction in frequency
domain.” IEEE Transactions on Automatic Control, 1988, 33:415–416

[51] Atherton D. P. Nonlinear Control Engineering — Describing Function Analysis and
Design. London: Van Nostrand Reinhold, 1975

[52] Using Simulink Version 4.1. The MathWorks, Natick, MA, 2001

[53] Franklin G. F., Powell J. D., Workman W. Digital Control of Dynamic Systems. 3rd
edition. Reading, MA: Addison Wesley, 1988

[54] Frederick D. K., Rimer M. Benchmark problem for CACSD packages. In Abstracts
of the Second IEEE Symposium on Computer-Aided Control System Design. Santa
Barbara, CA, 1985

[55] Dorato P. Linear Quadratic Control — An Introduction. New York: McGraw–Hill,
1995

[56] Balasubramanian R. Continuous Time Controller Design. Stevenage, UK: Peter Pere-
grinus Ltd., 1989

[57] Kautskey J., Nichols N. K., Van Dooren P. Robust pole-assignment in linear state
feedback. International Journal of Control, 1985, 41(5):1129–1155

[58] Dorf R. C., Bishop R. H. Modern Control Systems. 9th edition. Upper Saddle River,
NJ: Prentice-Hall, 2001

[59] Bennett S. Development of the PID controllers. IEEE Control Systems Magazine,
1993, 13(2):58–65

[60] Åström K. J., Hägglund T. PID Controllers: Theory, Design and Tuning. Research
Triangle Park: Instrument Society of America, 1995

[61] Åström K. J., Hägglund T. Automatic Tuning of PID Controllers. Research Triangle
Park: Instrument Society of America, 1988

[62] Yu C. C. Autotuning of PID Controllers: Relay Feedback Approach. Advances in
Industrial Control. London: Springer-Verlag, 1999

[63] Tan K. K., Wang Q.-G., Hang C. C., Hägglund T. Advances in PID Control. Advances
in Industrial Control. London: Springer-Verlag, 2000

Bibliography 341

[64] Wang L. P., Cluett W. R. From Plant Data to Process Control: Ideas for Process
Identification and PID Design. Research Triangle Park: Taylor & Francis, 2000

[65] Zhuang M. Computer Aided PID Controller Design. Ph.D. thesis, Sussex University,
UK, 1992

[66] Chien K.-L., Hrones J. A., Reswick J. B. On the automatic control of generalised
passive systems. Transactions of the ASME, 1952, 175–185

[67] Cohen G. H., Coon G.A. Theoretical considerations of retarded control. Transactions
of the ASME, 1953, 827–834

[68] Hang C. C., Åström K. J., Ho W. K. Refinement of the Ziegler–Nichols tuning formula.
Proceedings of the IEE, Part D, 1991, 138:111–118

[69] Wang F. S., Juang W. S., Chan C. T. Optimal tuning of PID controllers for single and
cascade control loops. Chemical Engineering Communications, 1995, 132:15–34

[70] Zhuang M., Atherton D. P. Automatic tuning of optimum PID controllers. Proceedings
of the IEE, Part D, 1993, 140:216–224

[71] O’Dwyer A. Handbook of PI and PID Controller Tuning Rules. London: Imperial
College Press, 2003

[72] Visioli A. Optimal tuning of PID controllers for integral and unstable processes.
Proceedings of the IEE, Part D, 2001, 148(2):180–184

[73] HaalmanA. Adjusting controllers for a deadtime process. Control Engineering, 1965,
71–73

[74] McMillan G. K. Control loop performance. In Proceedings of the ISA/84 International
Conference on Advances in Instrumentation. Houston, TX, 1984, 589–603

[75] O’DwyerA. PI and PID controller tuning rules for time delay processes: A summary.
Parts 1 & 2. In Proceedings of the Irish Signals and Systems Conference, 1999

[76] Nelder J.A., Mead R. A simplex method for function minimization. Computer Journal,
1965, 7:308–313

[77] Goldberg D. E. Genetic Algorithms in Search, Optimization and Machine Learning.
Reading, MA: Addison-Wesley, 1989

[78] Houck C. R., Joines J. A., Kay M. G. A Genetic Algorithm for Function Optimization:
A MATLAB Implementation. Electronic Version of the GAOT Manual, 1995

[79] Åström K. J., Hang C. C., Persson P., Ho W. K. Towards intellegient PID control.
Automatica, 1992, 28(1):1–9

[80] Stein G., Athans M. The LQG/LTR procedure for multivariable feedback control
design. IEEE Transactions on Automatic Control, 1987, 32(2):105–114

[81] Zhou K. Optimal and Robust Control. Upper Saddle River, NJ: Prentice Hall, 1996

342 Bibliography

[82] Doyle J. C., Francis B. A., Tannerbaum A. R. Feedback Control Theory. New York:
MacMillan Publishing Company, 1991

[83] Anderson B. D. O. Controller design: Moving from theory to practice. IEEE Control
Systems Magazine, 1993, 13(4):16–25. Also, Bode Prize Lecture, CDC, 1992

[84] Anderson B. D. O., Liu Y. Controller reduction: Concepts and approaches. IEEE
Transactions on Automatic Control, 1989, AC-34(8):802–812

[85] Chiang R.Y., Sofanov M. G. Robust Control Toolbox User’s Guide. The MathWorks,
Natick, MA, 1992

[86] Torvik P. J., Bagley R. L. On the appearance of the fractional derivative in the
behavior of real materials. Transactions of the ASME, 1984, 51(4):294–298

[87] Podlubny I., Dorčák L., Misanek J. Application of fractional-order derivatives to
calculation of heat load intensity change in blast furnace walls. Transactions of the
Technical University of Kosice, 1995, 5(5):137–144

[88] Axtell M., Bise E. M. Fractional calculus applications in control systems. In Pro-
ceeding of the IEEE 1990 Natational Aerospace and Electronics Conference. New
York, 1990, 563–566

[89] Dorčák L. Numerical models for simulation the fractional-order control systems. UEF
SAV, The Academy of Sciences Institute of Experimental Physics. Kosice, Slovak
Republic, 1994, 62–68

[90] Matignon D. Stability result on fractional differential equations with applications to
control processing. In IMACS-SMC Proceedings. Lille, France, 1996, 963–968

[91] Oldham K. B., Spanier J. The Fractional Calculus. NewYork: Academic Press, 1974

[92] Podlubny I. The Laplace transform method for linear differential equations of the
fractional order. In Proceedings of the 9th International BERG Conference. Kosice,
Slovak Republic, 1997, 119–119 (in Slovak)

[93] Podlubny I. Fractional Differential Equations. San Diego: Academic Press, 1999

[94] Woon S. C. Analytic continuation of operators — operators acting complex s-times.
Applications: from number theory and group theory to quantum field and string
theories. Reviews in Mathematical Physics, 1999, 11(4):463–501

[95] Zavada P. Operator of fractional derivative in the complex plane. Communications
in Mathematical Physics, 1998, 192(2):261–285

[96] Oustaloup A. La Dérivation non Entière. Paris: HERMES, 1995

[97] Petráš I., Dorčák L., Kostial I. Control quality enhancement by fractional order
controllers. Acta Montanistica Slovaca, 1998, 2:143–148

Bibliography 343

[98] Podlubny I. Fractional-Order Systems and Fractional-Order Controllers. Technical
Report UEF-03-94, The Academy of Sciences Institute of Experimental Physics,
Kosice, Slovak Republic, 1994

[99] Podlubny I. Fractional-order systems and PIλDμ-controllers. IEEE Transactions on
Automatic Control, 1999, 44(1):208–214

[100] Magin R. L. Fractional Calculus in Bioengineering. Redding, CT: Begell House
Publishers, 2006

[101] Miller K. S., Ross B. An Introduction to the Fractional Calculus and Fractional
Differential Equations. New York: Wiley, 1993

[102] Samko S. G., Kilbas A. A., Marichev O. I. Fractional Integrals and Derivatives and
Some of Their Applications. Minsk: Nauka i Technika, 1987

[103] Xue D., ChenY. Q. MATLAB Solutions to Advanced Applied Mathematical Problems.
Beijing: Tsinghua University Press, 2004. (in Chinese)

[104] Hilfer R. Applications of Fractional Calculus in Physics. Singapore: World Scientific,
2000

[105] Petráš I., Podlubny I., O’Leary P. Analogue Realization of Fractional Order Con-
trollers. Fakulta BERG, TU Košice, 2002

[106] Oustaloup A., Levron F., Mathiew B., Nanot F. Frequency band complex noninteger
differentiator: Characterization and synthesis. IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, 2000, 47(1):25–39

[107] Xue D., Zhao C. N., ChenY. Q. A modified approximation method of fractional order
system. In Proceedings of the IEEE Conference on Mechatronics and Automation.
Luoyang, China, 2006, 1043–1048

[108] Åström K. J. Introduction to Stochastic Control Theory. London: Academic Press,
1970

[109] Xue D., Zhao C. N., Chen Y. Q. Fractional order PID control of a DC-motor with
elastic shaft: A case study. In Proceedings of the American Control Conference.
Minneapolis, MN, 2006, 3182–3187

[110] Xue D., GoucemA., Atherton D. P. A menu-driven interface to PC-MATLAB for a first
course on control systems. International Journal of Electrical Engineering Education,
1991, 28(1):21–33

Index of MATLAB Functions

Bold page numbers indicate where to find the syntax explanation of the function

acker, 166, 167, 169, 170
aic, 41
are, 152
arx, 36, 37–39, 41–44
atannyq, 90
augss, 255
augtf, 255, 256, 263–268, 270, 272, 274,

276, 277, 279, 280

balreal, 32, 101
bass_pp, 166
bilin, 252
bode, 7, 85, 87, 95, 102, 103, 141, 143–145,

148, 240, 258, 275, 279, 289, 293, 296,
299, 302

bodemag, 263
branch, 251, 256, 274, 276, 277, 280

c2d, 34, 74, 87, 123
canon, 30, 31
chrpid, 197, 198
cohenpid, 199, 200
collect, 24
comet3, 118
conv, 15, 97, 309
coprime, 260, 261
ctrb, 56, 168
ctrbf, 56, 57, 58, 62

d2c, 34, 35, 43
dare, 156
dcgain, 72, 188, 194, 209
decouple_pp, 174
decoupler, 172
dlinmod, 132, 134

dlqr, 156
dsolve, 135

eig, 52, 53, 55, 155, 156, 158, 159, 161,
167–169, 252

expm, 68
ezplot, 10

feedback, 21, 22–24, 53, 55, 82, 88, 120,
123, 137, 142, 144, 148, 151, 164, 165,
170, 182–185, 189, 190, 193, 196, 198,
200, 202, 206, 209, 212, 240, 244, 246,
258, 264, 266, 267, 269, 270, 273–277,
279, 280, 288, 289, 301, 302

fmincon, 217, 218–220, 222
fminsearch, 216, 217, 219, 222
foipdt, 212
fotf, 287, 288, 289, 293, 296, 301

getfod, 192, 193, 198, 200, 202, 206, 209
glfdiff, 285
gram, 59
grid, 7, 78, 79, 81, 84, 85, 88, 149, 150,

209, 264, 266, 267, 269, 273–277, 280,
293

h2lqg, 272
hinf, 262, 263–267, 274
hinfopt, 268, 270, 274, 276, 277, 279, 280

iddata, 37, 43, 44
ident, 39
idinput, 42, 43, 44
ilaplace, 14, 69, 70
impulse, 75, 76, 77
intstable, 54, 55

345

346 Index of MATLAB Functions

inv, 152, 279, 280, 289
ipdtctrl, 211
iztrans, 69

kalman, 237, 242–244, 247
kalmdec, 60, 61

laplace, 13, 14, 69, 70
leadlagc, 147, 148–150
linmod, 132, 133
linmod2, 132, 134
logspace, 245, 246, 275, 293, 296
lqg, 239, 240
lqr, 153, 154, 155, 157–159, 164, 242,

243, 245, 246
lsim, 38, 42, 43, 77, 291
ltru, 244, 245, 246, 247, 251
ltry, 244, 245, 251
lyap, 59

margin, 89, 141, 144, 150, 189, 190, 196,
202, 209, 240, 242, 243

markovp, 64
minreal, 23, 33, 44, 55, 132
mksys, 250, 255
modred, 101, 102

new_fod, 296, 299, 301
nichols, 85, 149, 150, 209, 264, 266, 267,

269, 273–277, 280, 290, 293
nonlin, 222
norm, 65, 66, 99, 299
nyqlog, 90, 91
nyquist, 84, 85, 88, 90, 91, 141, 143, 189,

242, 243, 246, 247, 290, 293

obsv, 57, 58
obsvf, 58, 62
ocd, 216, 221, 223, 224, 303
ohklmr, 103
open_system, 112
opt_app, 100, 103, 209, 212, 299, 301
opt_fun, 99
optpid, 205, 206, 208, 209
oustafod, 292, 293, 296, 301, 302

pade, 96, 97

pade_app, 93, 97
pademod, 93, 94
paderm, 96, 97, 120
pid_tuner, 213, 213–216
place, 167, 168–170
plot, 7, 38, 71, 73, 74, 117, 118, 121, 122,

124, 125, 130, 153, 154, 161, 162, 184,
303

plot3, 118
pole, 52
pzmap, 52, 53

rank, 56–58, 168, 170
reg, 163, 164, 165, 169
rlocus, 78, 79–83, 182
routhmod, 95
rziegler, 202

schmr, 102
semilogx, 244, 258, 275, 279
sim, 117, 118, 121, 122, 124, 125, 130,

303, 304
simobsv, 160, 161, 162
simset, 118, 124, 125
sisotool, 139, 175, 177
ss, 18, 19, 25, 26, 27, 28, 31–34, 55, 61,

62, 66, 68, 102, 103, 120, 132–134,
153, 154, 157, 159, 161, 162, 164, 165,
168–170, 172, 174, 237, 240–247, 252,
256, 267, 274, 276, 277, 279, 280

ss2ss, 28
ss_augment, 67, 68
ssdata, 267, 274, 276, 279, 280
stairs, 10, 42, 122
std_tf, 174, 279, 280
step, 73, 74, 75, 77, 82, 88, 93, 95, 97,

100, 102, 103, 120, 123, 133, 142, 144,
148, 151, 153, 154, 157, 159, 164, 165,
169, 170, 182–185, 188–190, 193, 196,
198, 200, 202, 206, 209, 212, 240, 244,
246, 258, 264, 266, 267, 269, 270,
273–277, 279, 280, 291, 293, 299, 301,
302

svd, 59
syms, 13, 23, 24, 68–70

Index of MATLAB Functions 347

tf, 14, 15, 16, 17, 22, 23, 25, 26–28,
30–32, 34, 37, 38, 42–44, 52, 53, 55,
63, 73–77, 79–82, 85, 86, 88–91,
93–95, 97, 100–103, 120, 141, 143,
144, 148, 182–185, 188–190, 193, 196,
198, 200, 202, 206, 209, 212, 241, 243,
245, 246, 252, 256, 258, 261, 263–268,
270, 272, 274–277, 279, 280, 293, 299,
301, 302

tfdata, 16, 194
timmomt, 63, 97
trim, 131, 132
tzero, 27

ufopdt, 213

wjcpid, 203
writepid, 187

xlim, 264, 279

zero, 52
ziegler, 187, 188, 189, 190, 193, 195, 196,

198, 202, 209
zpk, 19, 21, 23, 26, 33, 62, 94, 95, 100,

102, 103, 123, 132, 134, 145, 149, 150,
164, 165, 175, 240, 245, 258, 261, 263–
268, 270, 272, 274, 276, 279, 296

ztrans, 69

Index

Ackermann’s algorithm, 166
actuator saturation, 220, 226, 302
additive uncertainty, 248
AIC, 40, 41
Akaike’s information criterion, 337
algebraic Riccati equation (ARE), 152,

158, 237, 238, 262
analytical solution, 66–70, 135, 160, 291,

321
anti-windup, 5, 226
ARE (algebraic Riccati equation), 152,

158, 237, 238, 262
automatic tuning, 207, 208, 227–228

relay, 5, 128, 207, 228, 229
Tsypkin’s method, 228–229

autonomous system, 67

balanced realization, 31–32, 58, 59,
101–103, 314
Schur’s, 102

Bass–Gura algorithm, 166
Bezout equation, 259, 260
bilinear transform, 251, 252, 266
block diagram, 1, 4, 20–24, 60, 111, 163,

201, 248, 309
Bode diagram, 7, 85–88, 317, 322

magnitude, 259, 262, 275, 279, 282,
300

bounded input–bounded output, 52

canonical form, 56, 57, 59, 62
controllable, 29
Jordanian, 29–31, 314
observable, 29

Caputo’s definition, 284, 286
cascade PI controller, 223
Cauchy’s definition, 284, 285

Chien–Hrones–Reswick formula, 181,
197–198

class, 287, 288
Cohen–Coon formula, 181, 198–200
complementary sensitivity function, 108,

243, 255
complex plane, 194, 251
connection

feedback, 21–22, 288
parallel, 20–21, 32, 288
series, 11, 20, 22, 288

constrained optimization, 131, 216, 217
control strategy, 2, 3, 157, 158, 162,

182–184, 230
Control Systems Toolbox, 2, 6, 8
controllability, 51, 55–60, 168

Gramian, 51, 58, 59, 179
staircase form, 56, 57

controllable canonical form, 29
controller

H∞, 236, 249, 262, 263, 266, 270, 325
H2, 272, 273, 325
fractional-order, 283, 284, 300
PD, 200, 210–212, 223, 300
PI, 123, 183, 186, 188, 189, 194–196,

198, 200, 203, 205–207, 222, 226,
300, 324

PID, 181–233
coprime factorization, 259–261
crossover frequency, 142, 146–149, 186,

189, 192, 207, 228, 297, 322
CtrlLAB, 5–7, 9, 307

damping ratio, 78, 81
iso-, 78, 81, 82

DC (direct-current) gain, 42, 192, 193

349

350 Index

decoupling, 5, 139, 171–174, 270
dynamic, 172, 174
with state feedback, 171–174

default discretization, 34
delayed system, 79, 120
describing function, 126, 228–229
descriptor system, 250
difference equation, 44
differential equation, 12, 14, 17, 283

fractional-order, 283, 290, 291
differential Riccati equation, 152, 158
differentiation, 14, 284

fractional-order, 285, 286, 292
direct-current (DC) gain, 42, 192, 193
discrete-time Riccati equation, 156
discretization, 34
disturbance, 53, 198, 203, 205, 235, 241,

248
rejection, 197, 198, 205–207

dominant poles, 81
dual, 29, 58, 169
dynamic decoupling, 172, 174

feedback connection, 21–22, 288
filter

Kalman, 236–239, 241–243, 245, 272
low-pass, 184, 254, 297
Oustaloup’s, 292–293, 298, 299
refined Oustaloup’s, 294–299

first-order lag and integrator plus dead
time (FOIPDT), 211, 212, 222

first-order plus dead time (FOPDT), 181,
186, 188, 193, 198, 209, 324

fixed step, 117
FOIPDT (first-order lag and integrator plus

dead time), 211, 212, 222
FOPDT (first-order plus dead time), 181,

186, 188, 193, 198, 209, 324
Fourier series expansion, 41, 229
fractional transformation representation,

249, 254
fractional-order, 283–305

calculus, 284, 286
controller, 283, 284, 300
differential equation, 283, 290, 291
differentiation, 285, 286, 292

Caputo’s definition, 284, 286
Cauchy’s definition, 284, 285
Grünwald–Letnikov definition,

284–286, 290, 292
Riemann–Liouville definition,

284–286
transfer function, 287–289, 298, 299

frequency responses, 5, 43, 64, 65, 84–92,
186, 191–192, 194, 317

gain margin, 88–89, 141, 144, 189, 244
general mixed sensitivity problem, 254
genetic algorithm (GA), 224
GeneticAlgorithm Optimization Toolbox

(GAOT), 9, 224
Grünwald–Letnikov definition, 284–286,

290, 292

H -norm, 65
H2-norm, 65–66, 98, 99, 236, 249
H∞-norm, 236, 249, 259, 261
H2 controller, 272, 273, 325
H∞ controller, 236, 249, 262, 263, 266,

270, 325
optimal, 267, 270, 274, 276, 280, 302,

325
standard, 249

Hankel matrix, 166
Hankel norm, 103
Hardy space, 3, 5, 65

identification
system, 4, 11, 35–45, 139, 194

impulse response, 51, 62, 63, 70, 75–77,
125, 250, 315, 319

impulse signal, 65, 76, 77, 98, 125, 320,
321

integral of absolute error (IAE), 98, 173,
203, 218, 223, 278, 301

integral of squared error (ISE), 98–100,
203–206

integrator plus dead time (IPDT), 181, 210
internal stability, 51–55
internal structure, 4, 17, 35, 57, 226
inverse system, 83
inverse Z transform, 69

Index 351

IPDT (integrator plus dead time), 181, 210
ISE (integral of squared error) criterion,

98–100, 203–206
iso-damping, 78, 81, 82
iso-frequency, 78
ITAE (integral of absolute error) crite-

rion, 98, 173, 203, 218, 223, 278, 301

Jordanian canonical form, 29–31, 314

Kalman decomposition, 51, 59–61
Kalman filter, 236–239, 241–243, 245,

272

L-norm, 65
L1-norm, 65
L2-norm, 65
L∞-norm, 65
Lp-norm, 64
Laplace transform, 11–14, 25, 62, 64,

68–69, 77, 98, 99, 286, 287, 290
inverse, 13, 69

lead-lag compensator, 139–151, 218, 308,
322

Lebesgue space, 65
limit cycle, 111, 126, 129, 131, 228, 229
linear quadratic Gaussian control (LQG),

3, 235–247
linear quadratic regulator (LQR), 3, 152,

156, 180, 216
linear system

fractional-order, 283–305
state space, 3, 4, 11, 17–19, 24–33, 51,

55–57, 59, 62, 64, 101–103, 281
transfer function, 4, 7, 11, 14–17,

19–22, 24–28, 44, 288, 295
linear time invariant (LTI), 14, 18, 131,

133, 134, 138, 151
logarithmic Nyquist plot, see Nyquist plot,

logarithmic
loop transfer recovery (LTR), 3, 236, 243,

245, 247
low-pass filter, 184, 254, 297
LQG (linear quadratic Gaussian control),

3, 235–247
LQR (linear quadratic regulator), 3, 152,

156, 180, 216

LTI (linear time invariant), 14, 18, 131,
133, 134, 138, 151

LTR (loop transfer recovery), 3, 236, 243,
245, 247

Lyapunov equation, 10, 58

Maclaurin series, 62, 96, 97
magnitude Bode diagram, 259, 262, 275,

279, 282, 300
Markov parameters, 51, 63–64
MATLAB toolbox

CtrlLAB, 5–7, 9, 307
Genetic Algorithm Optimization Tool-

box (GAOT), 9, 224
Optimal Controller Designer (OCD),

216, 221–225, 303
PID_ Tuner, 213–216
Robust Control, 9, 235, 250–252, 255
Simulink, 111–135, 296–298
Symbolic, 9, 13, 14, 68–70
System Identification, 9, 36, 39

measurement noise, 53, 239
minimum

phase, 164, 257–259, 261
realization, 21, 32–33, 44, 61, 62
sensitivity problem, 257, 258

Mittag–Leffler function, 291, 292
mixed stability, 262
model conversion, 4, 11, 25, 26, 38, 43,

44, 67
model mismatch, 235
model reduction, 4, 51, 58, 59, 92–103,

194, 271, 293, 314–316
optimal Hankel norm approximation,

103, 314
Padé approximation, 92, 94, 96, 97, 99,

120, 133, 298, 314
Routh approximation, 94, 95, 314
Schur’s balanced realization, 102
suboptimal reduction, 191, 215, 298,

299, 314
multiple input–multiple output, 7, 16
multiplicative uncertainty, 248
multivariable system, 16, 44–45, 120,

171–174

352 Index

natural frequency, 174, 180, 282, 325
Nichols chart, 85, 148–151, 289
nominal value, 262, 301
nonminimum phase model, 246, 259,

261–267
nonlinear system, 5, 17, 111, 112, 116,

126, 129, 131–134, 136, 313, 319, 321
nonlinearity, 111, 112, 127, 128, 228, 310

double-valued, 111, 126–128
piecewise linear, 111, 126
relay, 128, 228, 229
saturation, 112, 123, 224
single-valued, 111, 126–128
static, 126, 128, 228

Nyquist plot, 42, 51, 84, 85, 87–90
atan, 90
logarithmic, 90–92

Nyquist Theorem, 87, 88

observability, 51, 57–60
Gramian, 58, 59
staircase form, 58

observable canonical form, 29
observer, 3, 139, 159–162, 164, 165, 169,

236, 262
observer-based

controller, 139, 322
regulator, 165, 169

OCD (Optimal Controller Designer), 216,
221–225, 303

operating point, 131, 132
optimal control, 181, 216, 218–225
Optimal Controller Designer (OCD), 216,

221–225, 303
optimal Hankel norm approximation, 103,

314
optimization, 99, 181, 216–219, 221, 223,

224, 239
constrained, 131, 216, 217
Genetic Algorithm Toolbox, 9, 224
unconstrained, 216–217

optimum PID controller, 181, 209, 324
ordinary differential equations (ODE), 12,

14, 17, 283

Oustaloup recursive approximation,
292–293, 298, 299
refined, 294–299

overshoot, 71, 72, 74, 196–198

Padé approximation, 92, 94, 96, 97, 99,
120, 133, 298, 314

parallel connection, 20–21, 32, 288
PD controller, 200, 210–212, 223, 300
phase margin, 88–89, 141, 144, 146–151,

175, 240, 243, 244, 281, 321, 322
assignment, 207

PI controller, 183, 186, 188, 189, 194–196
PIλDμ controller, 300
PID controller, 181–233

anti-windup, 5, 226
Chien–Hrones–Reswick, 181, 197–198
Cohen–Coon, 181, 198–200
for FOIPDT plant, 211, 212, 222
for IPDT plant, 181, 210
fractional-order, 300
modified Ziegler–Nichols, 181, 202
optimum setting, 181, 209, 324
phase margin assignment, 207
refined Ziegler–Nichols, 181, 200–202,

323
Wang–Juang–Chan, 181, 203, 300
Ziegler–Nichols, 181, 185–198, 200–202,

209, 323
PID_ Tuner, 213–216
plant augmentation, 247, 249, 255
plant model, 2, 53, 82

FOIPDT, 211, 212, 222
FOPDT, 181, 186, 188, 193, 198, 209,

324
IPDT, 181, 210
minimum phase, 164, 257–259, 261
nonminimum phase, 246, 259, 261–267
unstable FOPDT, 213

pole placement, 139, 165–170, 173, 260
Ackermann’s algorithm, 166
Bass–Gura’s algorithm, 166
robust algorithm, 167–169

prefilter, 2
pseudorandom binary sequence (PRBS),

42–44

Index 353

ramp response, 77
realization, 58, 59, 61, 62, 101, 102, 163,

307, 314
balanced, 31–32, 58, 59, 101–103, 314
minimum, 21, 32–33, 44, 61, 62

reduced-order model, 59, 92–95, 98, 298,
299, 315

refined Oustaloup recursive approxima-
tion, 294–299

refined Ziegler–Nichols tuning, 181, 200–202,
323

relay, 128, 228, 229
autotuning, 5, 207, 228

Riccati equation, 155, 156, 237, 241, 262
algebraic, 152, 158, 237, 238, 262
differential, 152, 158
discrete-time, 156

Riemann–Liouville definition, 284–286
rise time, 72, 73
Robust Control Toolbox, 235, 250–252,

255, 278
robust pole placement algorithm, 167–169
root locus, 3, 51, 78–83, 316, 317
Routh approximation, 94, 95, 314

sampling interval, 15, 17, 19, 39, 74, 87,
122, 123

saturation, 112, 123, 224
actuator, 220, 226, 302

Schur decomposition, 329
Schur’s balanced realization, 102
sensitivity function, 243, 255, 256, 259,

275, 278
sensitivity problem, 254, 256, 265, 325

general mixed, 262
minimum, 257, 258

series connection, 11, 20, 22, 288
settling time, 72, 74
similarity transformation, 28, 59–62
Simulink, 111–135, 296–298
single input–single output, 7, 16
SISOTool, 175–177
small gain theorem, 247–248
stability, 3, 51–55, 84, 86–88, 90, 94, 95

assessment, 51–53
internal, 51–55

stability margins, 3, 241
stabilizing controller, 249, 257, 260, 271
standard transfer function, 11, 173, 174,

278
state augmentation, 67, 68, 254
state feedback, 152, 153, 155, 156,

163–167, 171–174, 236, 239, 243, 272
decoupling with, 171–174

state space, 3, 4, 11, 17–19, 24–33, 51,
55–57, 59, 62, 64, 101–103

steady-state, 42
error, 183, 189, 210, 211, 322
response, 62, 64, 231
value, 71, 72, 152, 192, 266

step response, 70, 73–75, 121, 291, 299,
301–303

suboptimal reduction, 191, 215, 298, 299,
314

Symbolic Toolbox, 9, 13, 14, 68–70
System Identification Toolbox, 4, 9, 11,

35–45, 139, 194

Taylor series expansion, 62–64, 92, 294
time domain response, 77, 87, 290

impulse response, 51, 62, 63, 70, 75–77,
125, 250, 315, 319

ramp response, 77
step response, 70, 73–75, 121, 291,

299, 301–303
time moment, 62–63, 96
time varying system, 111, 118, 123–125,

152
transfer function, 4, 7, 11, 14–17, 19–22,

24–28, 44, 288, 295
discrete-time, 16, 35, 39, 42, 43, 69,

79, 134
fractional-order, 287–289, 298, 299
matrix, 16, 24, 25, 28, 38, 44, 45, 120,

172
standard, 11, 173, 174, 278

transmission zero, 27, 243
tree variable, 250–252, 255, 262, 268
Tsypkin’s method, 228–229
Tustin transform, 252

bilinear, 251, 252, 266
two degrees-of-freedom control, 2

354 Index

two-port state-space, 250, 253, 255, 256,
261–263, 268, 270, 272

uncertainty, 64, 159, 235, 247, 248, 262, 269
additive, 248
multiplicative, 248
unstructured uncertainty, 248–249

unconstrained optimization, 216–217
undershoot, 266
unity negative feedback, 53, 78, 87, 88,

163, 289
unstable FOPDT (first-order plus dead time),

213

variable step, 117

Wang–Juang–Chan formula, 181, 203, 300
weighting function, 99, 236, 243, 253–256,

258, 262, 273–281, 302, 325

weighting matrix, 152, 154, 157, 158,
164, 180

well-posedness, 53–54, 248

Youla parameterization, 256, 257

Z transform, 16
inverse, 69

zero initial conditions, 13, 14, 25, 106
zero-order-hold (ZOH), 34, 121, 123
zero-pole-gain model, 19, 25–27, 32, 94,

112
Ziegler–Nichols formula, 181, 185–198,

200–202, 209, 323
modified algorithm, 181, 202
refined, 181, 200–202, 323

ZOH (zero-order-hold), 34, 121, 123

