Chapter

Minimal Reoliza’rions
and Coprime Fractions

7.1 Introduction
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This chapter studies further the realization problem discussed in Section 4.4. Recall that a
transfer matrix G(s) is said to be realizable if there exists a state-space equation

X = Ax + Bu
y=Cx+Du

that has C(s) as its transfer matrix. This is an important problem for the following reasons. First,
many design methods and computational algorithms are developed for state equations. In order
to apply these methods and algorithms. transfer matrices must be realized into state equations.
As an example, computing the respense of a transter function in MATLAB is achieved by first
transforming the transfer function into a state equation. Second. once a transfer function is
realized into a state equation, the transter function can be implemented using op-amp Circuits,
as discussed in Section 2.3.1.

If a transfer function is realizable, then it has infinitely many realizations. not necessarily
of the same dimension. as shown in Examples 4.6 and 4.7. An important question is then raised:
What is the smallest possible dimension? Realizations with the smallest possible dimension
are called minimal-dimensional or minimal realizations. If we use a minimal realization to
implement a transfer function. then the number of integrators used in an op-amp circuit will
be minimum. Thus minimal realizations are of practical importance.

In this chapter, we show how to obtain minimal realizations. We will show that arealization
of $(s) = N(s)/D(s) is minimal if and only if it is controliable and observable. or if and only
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if its dimension equals the degree of g(s). The degree of £(s) is defined as the degree of D(s) if
the two polynomials D(s) and N (s) are coprime or have no common factors. Thus the concept
of coprimeness is essential here. In fact. coprimeness in the fraction N (s)/D(s) plays the same
role of controllability and observability in state-space equations.

This chapter studies only linear time-invariant systems. We study first SISO systems and
then MIMO systems.

7.2 Implications of Coprimeness

Consider a system with proper transfer function g(s). We decompose it as
&(s) = §(X) + gyp(s)

where g,,(s) is strictly proper and g{o<) is a constant. The constant g (o) yields the D-matrix
in every realization and will not play any role in what will be discussed. Therefore we consider
in this section only strictly proper rational functions. Consider

Nis) Bis® + Bas® + Bas + Bs

= - : (7.1)
D(s)  st4asttaast oS +ay )

g(s) =

To simplify the discussion, we have assumed that the denominator D(s) has degree 4 and is
monic (has | as its leading coefficient). In Section 4.4, we introduced for (7.1) the realization
in (4.41) without any discussion of its state variables. Now we will redevelop (4.41) by first
defining a set of state variables and then discussing the implications of the coprimeness of
D(s)and N(s).

Consider

$(s) = N()YDT' (9)a(s) (7.2)

Let us introduce a new variable v(7) defined by t(s) = D~ Y(s5)i(s). Then we have

D(s)(s) = i(s) (7.3)
$(s) = N(s)u(s) (7.4
Define state variables as
X0 v () X(s) s
xa(t) ifal . 12(8) st .
x(t) := - = X(s) = - = N 7.5
W=\ s | T e g |0
x4(t) vir) 14(s) 1
Then we have
fa=x. H3=x. and Xy =2x3 (7.6)

They are independent of (7.1) and follow directly from the definition in (7.5). In order to
develop an equation for x|, we substitute (7.5) into (7.3) or
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(5% + o15° + aas? + o35 + ag)i(s) = i(s)
to yield
521(8) = —o1 X1 (8) — aaa(s) — @3R3 (s) — aafs(s) + d(s)
which becomes, in the time domain,
() =[—a; —as —a3 —aglx(t) +1-u(r) 7.7
Substituting (7.5) into (7.4) yields
§(5) = (Bis® + Bas” + Bas + Ba)i(s)
= Bix(s) + Pziz(S) + Bsx3(5) + Baka(s)
=[B1 B2 B’ BalX(s)
which becomes, in the time domain,
y(&) =1[Bs B3 B B1Ix(1) (7.8)
Equations (7.6), (7.7), and (7.8) can be combined as

—a; —Qy —03 =—04 1
X=Ax+bu= ! 0 0 0 X+ 0 u
0 1 0 0 0 7.9)
0 0 1 0 0

y=cx=[B B B3 Bulx

This is a realization of (7.1) and was developed in (4.41) by direct verification.

Before proceeding, we mention that if N (s) in (7.1)is 1, then y(¢) = v(¢) and the output
y(t) and its derivatives can be chosen as state variables. However, if N(s) is a polynomial of
degree 1 or higher and if we choose the output and its derivatives as state variables, then its
realization will be of the form

X = Ax +bu
y=cx+du+d1u+d2ii+

This equation requires differentiations of u and is not used. Therefore, in general, we cannot
select the output y and its derivatives as state variables.! We must define state variables by
using v(z). Thus v(¢) is called a pseudo state.

Now we check the controllability and observability of (7.9). Its controliability matrix can
readily be computed as

1 - a% - -—a?+2u1a2~a3
0 1 —a a? -,
C= 1 -
0 0 1 —ay (7.10)
0 0 0 1

1. See also Example 2.16, in particular, (2.47).
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Its determinant is 1 for any e;. Thus the controllability matrix C has full row rank and the
state equation is always controllable. This is the reason that (7.9) is called a controllable
canonical form.

Next we check its observability. It turns out that it depends on whether or not N (s) and
D(s) are coprime. Two polynomials are said to be coprime if they have no common factor of
degree at least 1. More specifically, a polynomial R(s) is called a common factor or a common
divisor of D(s) and N (s) if they can be expressed as D(s) = D(s)R(s)and N(s) = N(s)R(s),
where D(s) and N(s) are polynomials. A polynomial R(s) is called a greatest common divisor
(ged) of D(s) and N (s) if (1) it is a common divisor of D(s) and N (s) and (2) it can be divided
without remainder by every other common divisor of D(s) and N (s). Note that if R(s) is a
ged, so is @ R(s) for any nonzero constant «r. Thus greatest common divisors are not unique.’
In terms of the gcd, the polynomials D(s) and N (s) are coprime if their ged R(s) is anonzero
constant, a polynomial of degree 0; they are not coprime if their gcd has degree 1 or higher.

Theorem 7.1
The controllable canonical form in (7.9) is observable if and only if D(s) and N (s) in(7.1) are coprime.

Proof: We first show that if (7.9) is observable, then D(s) and N(s) are coprime. We
show this by contradiction. If D(s) and N (s) are not coprime, then there exists a 4 such
that

NG = BiA3 + Bodl + Bshy + s =0 (7.11)
DO =+ ol +adl+ash +as=0 (7.12)

Let us define v := [k? A% Ay 1V;itis a4 x 1 nonzero vector. Then (7.11) can be written
as N(i1) = cv = 0, where c is defined in (7.9). Using ¢7.12) and the shifting property of
the companion form. we can readily verify

-y —y —Qa3 —04 )\? X;
1 0 0 0 A3 ]
Av = = Fl=a 7.13
“lo 1 0 o ||n P I 7.13)
o o 1 oll1 A
Thus we have A2v = A(Av) = A Av = A?v and A’v = A}v. We compute, using ¢v =0,
c cv cv
A
Ov = ¢ Sl v= CAZV = A;cv
cA” cA%v Ajev
cA’ cAly Alev

which implies that the observability matrix does not have full column rank. This contradicts
the hypothesis that (7.9) is observable. Thus if (7.9) is observable, then D(s) and N(s)
are coprime.

Next we show the converse; that is, if D(s) and N(s) are coprime, then (7.9) is
observable. We show this by contradiction. Suppose (7.9) is not observable, then Theorem
6.01 implies that there exists an eigenvalue A, of A and a nonzero vector v such that

2. If we require R(s) to be monic, then the ged is unique.
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[A—A,I]
v=10
¢

Av=2xv and cv=0

or

Thus v}is an eigenvector of A associated with eigenvalue A;. From (7.13), we see that
v =[A] A7 A1 1] is an eigenvector. Substituting this v into cv = 0 yields

NG&) = Bia] + Bodi + B3k + Ba =0

Thl.ls Ay is a root of N(s). The eigenvalue of A is a root of its characteristic polynomial,
which, because of the companion form of A, equals D(s). Thus we also have D(3)) = 0.
and D(s) and N(s? have the same factor s — A 1. This contradicts the hypothesis that D(s)
and N (s) are coprime. Thus if D(s) and N (s) are coprime, then (7.9) is observable. This
establishes the theorem. Q.E.D.

If (7.9) is a realization of g(s), then we have, by definition,

8)=-c(sI—A)"'b
Taking its transpose yields
g'(s) = §(s) = [e(sI — A)'b) = b/(sT— A)™'¢

Thus the state equation

-0 1 0 0 ﬁ!
x=Ax+cu=| ° 0 10 X+ P u
—0y 0 0 0 ﬂ4

y=bx=[1 0 0 Olx

is a different realization of (7.1). This state equation is always observable and is called an
f)bservable canonical form. Dual to Theorem 7.1, Equation (7.14) is controllable if and only
if D(s) and N(s) are coprime.

We mention that the equivalence transformation X = Px with

0 0 0 17
0 0 10
P= k
0100 713
1 0 0 0l
will transform (7.9) into
0 1 0 0 7 0
%= 0 0 1 0 0
o o o 1 |*T|ol®
-y —a3 —02 —op i

y=1[B1 B3 B2 BilX
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This is also called a controllable canonical form. Similarly, (7.15) will transform (7.14) into

0 0 0 bal* 73 B4
. |1 00 —as B3
=10 10 —an "7 |8 |"
0 0 1 —-o B

v=ex=[000 1]x

This is a different observable canonical form.

7.2.1 Minimal Realizations

We first define a degree for proper rational functions. We call N (s) / D(s) apolynomial fraction
or, simply, a fraction. Because

_ NG) _ N(s)Q(s)
D(s) D()Q(s)

for any polynomial Q(s). fractions are not unique. Let R(s) be a greatest common divisor
(ged) of N(s) and D(s). That is, if we write N(s) = N(s)R(s) and D(s) = D(s)R(s),
then the polynomials N(s) and D(s) are coprime. Clearly every rational function g(s) can be
reduced to g(s) = N(s)/D(:). Such an expression is called a coprime fraction. We call D(s)
a characteristic polynomial of §(s). The degree of the characteristic polynomial is defined as
the degree of §(s). Note that characteristic polynomials are not unique; they may differ by a
nonzero constant, If we require the polynomial to be monic, then it is unique.
Consider the rational function

g(s)

s2-1
4(s?—1)
Its numerator and denominator contain the common factor s — 1. Thus its coprime fraction is
§(s) = (s +1)/4(s*+s +1) and its characteristic polynomial is 452 + 45 +4. Thus the rational
function has degree 2. Given a proper rational function, if its numerator and denominator are
coprime—as is often the case—then its denominator is a characteristic polynomial and the
degree of the denominator is the degree of the rational function.

) =

Theorem 7.2

A state equation (A, b, ¢, d) is a minimal realization of a proper rational function g(s) if and only if
(A, b) is controllable and (A. €) is observable or if and only if

dim A = deg §(s)

Proof: 1If (A, b) is not controllable or if (A, ¢) is not observable, then the state equation
can be reduced to a lesser dimensional state equation that has the same transfer function
(Theorems 6.6 and 6.06). Thus (A, b, ¢, d) is not a minimal realization. This shows the
necessity of the theorem.
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To show the sufficiency, consider the n-dimensional controllable and observable state
equation

x = Ax + bu
(7.16)
y=¢ex+ du
Clearly its n x r controllability matrix
C=Ib Ab --- A"'D] (7.17)
and its n x n observability matrix
c
{ cA
o=1{ . (7.18)
cAn-l

both have rank . We show that (7.16) is a minimal realization by contradiction. Suppose
the fi-dimensional state equation, withn < 7,

X=Ax+ bu
i (7.19)
y=¢Cx+du
is a realization of g(s). Then Theorem 4.1 implies d = d and
cA"b=¢A"b form=0,1,2, ... (1.20)
Let us consider the product
T ¢
cA .
ocC = . [bAb ---A""'b]
LcAn—l
- cb ¢cAb  cA’b .-~ cA"'b
cAb cA%l cA’b .- cA"D
_| cA% cA’d cA'b .- cA™'D (7.21)
LcA"'b cA" cA"'b - cAX*~lp
Using (7.20), we can replace every cA™b by ¢A™b. Thus we have
oC = 0,C, (1.22)

where O,l is defined as in (6.21) for the 7-dimensional state equation in (7.19) and &,, is
defined similarly. Because (7.16) is controllable and observable, we have p(0O) = n and
p(C) = n. Thus (3.62) implies p(0C) = n. Now 0, and G, are, respectively, n x n
and 71 X n; thus (3.61) implies that the matrix O, C, has rank at most 7. This contradicts
p(0,Cy) = p(OC) = n. Thus (A, b, ¢, d) is minimal. This establishes the first part of
the theorem.

‘{4"3’
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The realization in (7.9) is controllable and observable if and only if g =
N(s)/D(s) is a coprime fraction (Theorem 7.1). In this case, we have dim A = deg
D(s) = deg g(s). Because all minimal realizations are equivalent, as will be established
immediately, we conclude that every realization is minimal if and only if dim A = deg
£(s). This establishes the theorem. Q.E.D.

To complete the proof of Theorem 7.2, we need the following theorem.

Theorem 7.3

All minimal reaizations of g(s) are equivalent.

}_’roof.' Let (A, b, c.d) and (A, b, ¢, d) be minimal realizations of £(s). Then we have
d = d and, following (7.22),

oc =0C (7.23)
Multiplying OAC out explicitly and then using (7.20), we can show
OAC = OAC (7.24)

Note that the controllability and observability matrices are all nonsingular square matrices.
Let us define

P:= o0-'o
Then (7.23) implies
P=0"'0=CC' and P'=0"'0=CC" (7.25)

From (7.23), we have C = O~10C = PC. The first columns on both side of the equality
yield b = Pb. Again from (7.23), we have O = OCC~" = OP~!. The first rows on both
sides of the equality yield € = cP~". Equation (7.24) implies

A= O0"'0ACC™! = PAP™!

Thus (A, b, cd) and A, b, ¢, d) meet the conditions in (4.26) and, consequently, are
equivalent. This establishes the theorem. Q.E.D.

Theorem 7.2 has many important implications. Given a state equation, if we compute its
transfer function and degree, then the minimality of the state equation can readily be determined
without checking its controllability and observability. Thus the theorem provides an alternative
way of checking controllability and observability. Conversely, given a rational function, if we
compute first its common factors and reduce it to a coprime fraction, then the state equations
obtained by using its coefficients as shown in (7.9) and (7.14) will automaticatly be controllable
and observable.

Consider a proper rational function g(s) = N(s)/D(s). If the fraction is coprime, then
every root of D(s) is a pole of (s) and vice versa. This is not true if N(s) and D(s) are not
coprime. Let (A, b.c.d) be a minimal realization of g(s) = N(5)/D(s). Then we have
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N
) (I Ay b4+ d =

If N(s) and D(s) are coprime, then deg D(s) = deg g(s) = dim A. Thus we have

D(s) = kdet(sI — A)

for some nonzero constant k. Note that k = 1 if D(s) is monic. This shows that if a state
equation is controllable and observable, then every eigenvalue of A is a pole of 2(s) and every
pole of g(s} is an eigenvalue of A. Thus we conclude that if (A, b, ¢. d) is controtlable and
observable. then we have

Asymptotic stability <= BIBO stability

1]
More generally, controllable and observable state equations and coprime fractions contain
essentially the same information and either description can be used to carry out analysis and
design. ' .

7.3 Computing Coprime Fractions

The imponance of coprime fractions and degrees was demonstrated in the preceding section.
In this section, we discuss how to compute them. Consider a proper rational function

_ N(s)
89 =5

where N(s) and D(s) are polynomials. If we use the MATLAB function roots to compute
their roots and then to cancel their common factors, we will obtain a coprime fraction. The
MATLAB function minreal can also be used to obtain coprime fractions. In this section,
we introduce a different method by solving a set of linear algebraic equations. The method
does not offer any advantages over the aforementioned methods for scalar rational functions.
However, it can readily be extended to the matrix case. More importantly, the method will be
used to carry out design in Chapter 9.

Consider N(s)/D(s). To simplify the discussion, we assume deg N(s) < deg Dis) =
n = 4. Let us write

N(s) N(s)
D(s)y  Dfs)
which implies
D(s)(=N(5)) + N(s)D(s) =0 (7.26)

It is clear that D(s) and N(s) are not coprime if and only if there exist polynomials V(s)
z-md D(s) with deg N(s) < deg D(.\‘) < n = 4 to meet {7.26). The condition deg Dis) < n
is crucial; otherwise, (7.26) has infinitely many solutions N(s) = N(s)R(s) and Dis) =
D(s)R(s) for any polynomial R(s). Thus the coprimeness problem can be reduced to solving
the polynomial equation in (7.26).

Instead of solving (7.26) directly, we will change it into solving a set of linear algebraic
equations. We write
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D(s) = Dy + D15 + Das® + Dis® + Dys’
N(s) = Ny + Nis + Nas® + Nys* + Nys?
Dis) = Do + Dis + Das? + Dss?

1’\_/(S)=1\_/0+N15+N352+1V353 (7.27)
where D; # 0 and the remaining D;. Ni. D;, and N; can be zero or nonzero. Substituting
these into (7.26) and equating to zero the coefficients associated with s*. fork =0, 1. ..., 7,
we obtain

Do Ng i 0 0 S 0 0 P o0 o |[7M]
. . . Do
D1 N1 o Do N() : 0 0 : 0 0
Dy Na i DN Dy NP0 0 |-W
. . . D)
D: N: : D> N» : D N : Dy N
Sm:=| ~ 7 . o o e =0 (728
Dy Ny Ds Ni D> Ny Dy N, —]\_/1
O 0 ! Di No I Dy N2 iDy Na|| -
0 0 1 0 0 : Dy Ny i Di Ni||_g,
Lo o 0 0 1 0 0 ! D v L by

This is a homogeneous linear algebraic equation. The first block column of § consists of two
columns formed from the coefficients of D(s) and N(s) arranged in ascending powers of s.
The second block column is the first block colurnn shifted down one position. Repeating the
process until S is a square matrix of order 21 = 8. The square matrix S is called the Sylvester
resultant. If the Sylvester resultant is singular. nonzero solutions exist in (7.28) (Theorem 3.3).
This means that polynomials N{(s) and D(s) of degree 3 or less exist to meet (7.26). Thus
D(s) and N (s) are not coprime. If the Sylvester resultant is nonsingular, no nonzero soltutions
existin (7.28) or, equivalently, no polynomials A'\—’(s) and D(s) of degree 3 or less exist to meet
(7.26). Thus D(s) and N(s) are coprime. In conclusion. D(s) and N(s) are coprime if and
only if the Svivester resultant is nonsingular.
If the Sylvester resultant is singular, then N (5)/D(s) can be reduced to

NG) NG
D(s)  Dis)

where N (s) and D(s) are coprime. We discuss how to obtain a coprime fraction directly from
(7.28). Let us search linearly independent columns of S in order from left to right. We call
columns formed from D; D-columns and formed from N; N-columns. Then every D-column
is linearly independent of its left-hand-side (LHS) columns. Indeed, because Dy # 0, the first
D-column is linearly independent. The second D-column is also linearly independent of its
LHS columns because the LHS entries of Dy are all zero. Proceeding forward, we conclude
that all D-columns are linearly independent of their LHS columns. On the other hand. an V-
column can be dependent or independent of its LHS columns. Because of the repetitive pattern
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of S, if an N-column becomes linearly dependent on its LHS columns, then all sut->s.eque?t
N-columns are linearly dependent of their LHS columns. Let denote the number of Lmear y
independent N-columns in S. Then the (1 + 1)th N-column 15 th.e first N-columnlt\;) elcome
linearly dependent on its LHS columns and will be called the primary dependent N-column.

which yields

ans zb= [4 2 -3 2 0 1]”

Let us use Sy to denote the submatrix of S that consists of the primary dependent ¥ ‘C"l‘m;“ This monic null vector equals [-No Do —Ni Di  —N: Dz]. Thus we have
. s - f them are linearly _ . .
L e LHS columns, That is, Sy consists of 4 - 1 D-colurns (all of hem &8 ‘0L : Nis)= —4+35+0-57  Do)=2+25+5
independent) and p + 1 N-columns (the last one is dependent). Thus S, has '(u +1) . A
but rank 2 + 1. In other words, 8y has nullity 1 and, consequently, has one independent nu 4 and
vector. Note that if fi is a null vector, s0 is o for any nonzero o; Althoug:l acrilyvr:llélpvgc(t;))r ;23 £ 657 457+ 35 — 20 15— 4
. : i e e -
d, we will use exclusively the null vector with 1 as its last entry 10 ; . : = -
l1)36(?)56150:‘/c0r1veniencc we call )s/uch a null vector a monic null vector. 1f we use the MATLAB 4 25 +757 + 1552+ 165 + 10 2+ 25 +2
funct.ion null to gene}ate a null vector, then the null vector must be divided by its Jast entry ¢  Because the null vector is computed from the first linearly dependent N-column, the computed
10 yield a monic null vector. This is illustrated in the next example. N(s) and D(s) have the smallest possible degrees to meet (7.26) and, therefore. are coprime.
This completes the reduction of N (s)/D(s) to a coprime fraction.

:  ExaMPLE 7.1 Consider

: The preceding procedure can be summerized as a theorem.
;; N __ 6igstEd o0 (729)

% Dis) - 254+753+1552+165+10 » Theroem 7.4

i ) . . j2d (o] .

: We have n = 4 and its Sylvester resultant S is 8 x 8. The fraction is coprime if and only if S

RPN IF RS Rt

e el e AL st e B

B s i b b i 58 1 T =

is nonsingular or has rank 8. We use MATLAB to check the rank of S. Because it is simpler to
key in the transpose of S, we type

d=[(10 16 15 7 21;n=0-20 3 1 6 01
s={d 00 O;nOOO;OdOO;OnOO;
OOdO;OOnO;OOOd;OOOn]’,

m=rank(s)

The answer is 6; thus D(s) and N (s) are not coprime. Because .all four D-columnls of § arg
linearly independent, we conclude that S has only two linearly mdepen@ent Pl;ls—co ;lmnssa:r d
= 2. The third N-column is the primary dependent N-column and all its L > hco ur;m e
linearly independent. Let S, denote the first six columns of Sj an 8 x_6 matmé. }av sul lrlxzran o
S, has three D-column (all linearly independent) and two linearly independent h—co bé
thus it has rank 5 and nullity 1. Because all entries of the last row of S, are zero, they can
skipped in forming S1. We type

s1=[(d 0 C;n 0 0;0 4 0;0n 0;00 d;0 0 nl';

z=null(sl)
which yields

ans z= [ 0.6860 0.3430 -0.5145 0.3430 0.0000 0.1715 17

This null vector does not have 1 as its last entry. We divide it by the last entry or the sixth entry

of z by typing

zb=2/2 (6}

Consider g(s) = N(s)/D(s). Weuse the coefficients of D(s) and N (s) to form the Sylvester resultant
S in (7.28) and search its linearly independent columns in order from left to right. Then we have

deg g(s) = number of linearly independent N-columns =: i

and the coefficients of a coprime fraction gls) = 1\-/(5)/1_)(5) or
(~No Dy —Ny Dy =N, D,

equals the monic null vector of the subrnatrix that consists of the primary dependent N-column and all
its LHS linearly independent columns of S.

We mention that if D- and N-columns in S are arranged in descending powers of 5. then
it is not true that all D-columns are linearly independent of their LHS columns and that the
degree of £(s) equals the number of linearly independent N-columns. See Problem 7.6. Thus
it is essential to arrange the D- and N-columns in ascending powers of sinS.

7.3.1 QR Decomposition

As discussed in the preceding section, a coprime fraction can be obtained by searching linearly
independent columns of the Sylvester resultant in order from left to right. It turns out the widely
available QR decomposition can be used to achieve this searching.

Consider an n x m matrix M. Then there exists an n x n orthogonal matrix Q such that

QM =R

where R is an upper triangular matrix of the same dimensions as M. Because Q operates on the
rows of M, the linear independence of the columns of M is preserved in the columns of R. In
other words, if a column of R is linearly dependent on its left-hand-side (LHS) columns, 5o is
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the corresponding column of M. Now because R is in upper triangular form. its mth column is : 7.4 Balanced Redlization®

linearly independent of its LHS columns if and only if its mth entry at the diagonal position is
nonzero. Thus using R, the linearly independent columns of M, in order from left to right, can
be obtained by inspection. Because Q is orthogonal, we have Q~! = Q' =: Q and QM = R
becomes M = QR. This is called QR decomposition. In MATLAB, Q and R can be obtained
by typing {q, r]=qr(m}.

Let us apply QR decomposition to the resultant in Example 7.1. We type

s={d U 0 0;n

o
o

0.

<o

)
[
joi

<

Because Q is not needed, we show only R:

r—25.1 37 =206 10.1  —11.6 1.0 -4.1 537
0 -207 -103 43 =72 2.1 =36 6.7
0 0 -102 -156 =203 0.8 -—16.8 9.6
e 0 0 0 89 =35 -179 -—112 7.3
0 0 0 0 =50 0 -120 -15.0
0 0 0 0 0 0 =20 0
0 0 0 0 0 0 —46 0
L 0 0 0 0 0 0 0 04

We see that the matrix is upper triangular. Because the sixth column has 0 as its sixth entry
(diagonal position), it is linearly dependent on its LHS columns. So is the last column. To
determine whether a column is linearly dependent, we need to know only whether the diagonal
entry is zero or not. Thus the matrix can be simplified as

rd x x x x x X X7
0 n x x x X X
0 0 4 x «x X x
;e 0 0 0 n x x x «x
0 0 0 0 a4 0 x x
0 00 0 0 0 x O
0 0 000 0 d O
LO 0 60 0 0 0 0 Od

where d. n, and x denote nonzero entries and ¢ also denotes D-column and n denotes N-
column. We see that every D-column is linearly independent of its LHS columns and there are
only two linearly independent N-columns. Thus by employing QR decomposition, we obtain
immediately 4 and the primary dependent N-column. In scalar transfer functions, we can use
either rank or gr to find u. In the matrix case, using rank is very inconvenient; we will use
QR decomposition.

Every transfer function has infinitely many minimal realizations. Among these realizations, it
is of interest to see which realizations are more suitable for practical implementation. If we
use the controllable or observable canonical form, then the A-matrix and b- or c-vector have
many zero entries, and its implementation will use a small number of components. However,
either canonical form is very sensitive to parameter variations; therefore both forms should
be avoided if sensitivity is an important issue. If all eigenvalues of A are distinct, we can
transform A, using an equivalence transformation, into a diagonal form (if all eigenvalues are
real) or into the modal form discussed in Section 4.3.1 (if some eigenvalues are complex). The
diagonal or modal form has many zero entries in A and will use a small number of components
in its implementation. More importantly, the diagonal and modal forms are least sensitive
to parameter variations among all realizations; thus they are good candidates for practical
implementation.
We discuss next a different minimal realization, called a balanced realization. However,
the discussion is applicable only to stable A. Consider
x = Ax + bu
(7.30)
y =X

It is assumed that A is stable or all its eigenvalues have negative real parts. Then the
controllability Gramian W, and the observability Gramian W, are, respectively, the unique
solutions of

AW, + W.A' = —bb’ (7.31)

and
AW, + WA =—c¢ (7.32)

They are positive definite if (7.30) is controliable and observable.
Different minimal realizations of the same transfer function have different controllability
and observability Gramians. For example, the state equation, taken from Reference [23],

! -1 —4/a 1
X = X+ i
4o -2 20
y=[—1 2/alx (7.33)

for any nonzero «, has transfer function 2(s)=3s + 18)/(52 + 35 + 18). and is controllable
and observable. Its controllability and observability Gramians can be computed as

W, = 0.5 07 and W, = 0.5 O’ (734)
0 o 0 l/a*

We see that different « yields different minimal realization and different controllability and
observability Gramians. Even though the controllability and observability Gramians will
change, their product remains the same as diag (0.25, 1) for all a.

3, This section may be skipped without loss of continuity.
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Theorem 7.5

Let(A, b, ¢)and (A, b, &) be minimal and equivalent and let W.W, and W. W, be the products of their
controllability and observability Gramians. Then W_.W, and W_.W,, are similar and their eigenvalues
are all real and positive.

Proof: Let x = Px, where P is a nonsingular constant matrix. Then we have

A=PAP! b=Pb ¢=cP! (7.35)

The controllability Gramian W, and observability Gramian WD of (1_&, b. ) are, respec-
tively, the unique solutions of

AW+ WA = —bb’ (7.36)
and '
AW, + WA = —¢¢ (137)
Substituting A = PAP~! and b = Pb into (7.36) yields
PAP-'W. + W.(P)"'A'P' = —Pbb'P
which implies
AP~'W,(P)"! + P~'W,(P)" 1A’ = —bb’
Comparing this with (7.31) yields
W, =P 'W.(P)"' or W.=PWJP (7.38)
Similarly, we can show
W,=PW,P or W,=(P) WP {(7.39)

Thus we have
W.W, = P 'W.(P) 'PW,P =P 'WW,P

This shows that all W, W, are similar and. consequently, have the same set of eigenvalues.

Next we show that all eigenvalues of W. W, are real and positive. Note that both
W, and W, are symmetric, but their product may not be. Therefore Theorem 3.6 is not
directly applicable to W,W,. Now we apply Theorem 3.6 to W_:

W, = QDQ =QD'/?D'*’Q =: R'R (7.40)

where D is a diagonal matrix with the eigenvalues of W, on the diagonal. Because W,
is symmetric and positive definite, all its eigenvalues are real and positive. Thus we can
express D as D'/2D'/2 where D'/? is diagonal with positive square roots of the diagonal
entries of D as its diagonal entries. Note that Q is orthogonal or Q! = Q'. The matrix
R = D!/2Q is not orthogonal but is nonsingular.

Consider RW,R'; it is clearly symmetric and positive definite. Thus its eigenvalues
are all real and positive. Using (7.40) and (3.66), we have

W
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det(a¥1 — W.W,) = det(c’I — R'RW,) = det(c’ — RW,R") (7.41)

which implies that W. W, and RW,R’ have the same set of eigenvalues. Thus we conclude
that all eigenvalues of W. W, are real and positive. Q.E.D.

Let us define

(7.42)

Y = diag(oy, 02, ..., 0n)

where o; are positive square roots of the eigenvalues of W.W,,. For convenience, we arrange
them in descending order in magnitude or

g >0>2---20,>0

These eigenvalues are called the Hankel singular values. The product W.W, of any minimal
realization is similar to 7.

Theorem 7.6

For any n-dimensional minimal state equation (A, b. ¢), there exists an equivalence transformation
% = PxX such that the controllability Gramian W, and observability Gramian W, of its equivalent state
equation have the property

W, =W,=% (7.43)

This is called a balanced realization.

Proof: We first compute W, = R'R as in (7.40). We then apply Theorem 3.6 to the real
and symmetric matrix RW, R’ to yield

RW,R = UZ’U
where U is orthogonal or UU = 1. Let
P~ =RUZ™?
Then (7.38) and W, = R'R imply

or P=3XVUR)!

W, = UR)YWRTIUZ 2 =3
and (7.39) and RW,R’ = UX?U’ imply
W, = X V'URW,RUL/ = %
This establishes the theorem. Q.E.D.
By selecting a different P, it is possible to find an equivalent state equation with W, =1
and W, = ZZ. Such a state equation is called the input-normal realization. Similarly, we
can have a state equation with W, = ¥2 and W, = I, which is called the output-normal

realization. The balanced realization in Theorem 7.5 can be used in system reduction. More
specifically, suppose
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. = + U
A Ay An]lx by (7.44)

y=le elx
is a balanced minimal realization of a stable g(s) with
W, = W, = diag(Z;. )

where the A-. b-. and c¢-matrices are partitioned according to the order of X,. If the Hankel
singular values of | and X are disjoint. then the reduced state equation

X, =Ax) +bu
(7.45)

¥ :.x €1 Xy
is balanced and Ay is stable. If the singular values of X are much smaller than those of Xy,
then the transfer function of (7.45) will be close to §(s). See Reference [23].
The MATLAB function baireal will ransform (A. b. ¢) into a balanced state equation.
The reduced equation in (7.45) can be obtained by using balred. The results in this section are
based on the controllability and observability Gramians. Because the Gramians in the MIMO
case are square as in the SISO case: all results in this section apply to the MIMO case without
any modification.

7.5 Readlizations from Markov Parameters®

Consider the strictly proper rational function

ﬂlS"A] + ﬁlxn_z + o+ ,B,,-[S + ﬂn

g(s) = 3 (7.46)
8 s st bt A s oy
We expand it into an infinite power series as
gé(x):h(O)-i—/r(])s‘l SR+ (7.47)

If §(s) is strictly proper as assumed in (7.46). then 1(0) = 0. The coefficients A(m). m =
1. 2. ... are called Markov parameters. Let g(t) be the inverse Laplace transform of g(s) or.
equivalently. the impulse response of the system. Then we have

m—1

him) = ——— 81
dt =0

N

form = 1. 2. 3. .... This method of computing Markov parameters is impractical because
it requires repetitive differentiations, and differentiations are susceptible to noise.” Equating
(7.46) and (7.47) yields

4. This section may be skipped without loss of continuity.

5. In the discrete-time case, if we apply an impulse sequence to a system. then the output sequence directly yvields
Markov parameters. Thus Murkov parameters can easily be generated in discrete-time systems.

7.5 Realizations from Markov Parameters 201

Bis" 4 Bos" T 4 + B

— (5" o s T A s T QST )
From this equation, we can obtain the Markov parameters recursively as

hly = pi

h(2) = —a;h(l) + B2

h(3) = —ah(2) —azh(l) + B

hn) = —ohin — D —axhin =2) = —a, it + B, (7.48)
him) = —ahim — 1) —axhtm = 2) — - —a, him ~n 1)
— @, i(m —n) (7.49)

form=n-+1.n+2. .. ..
Next we use the Markov parameters to form the « x 8 matrix

h(l)y h(2) h(3) e (B
h(2y h(3) hid) e B+

T(a. p) = hi3) h(4) h(3) e B+ (7.50)
Ma) hta+1) hla+2) - Mae+8-1D

It is called a Hankel marrix. it is important to mention that even if #(0) # 0. h(0) does not
appear in the Hankel matrix.

Theorem 7.7
A strictly proper rational function £(s) has degree n1 it and only if
pTn.ny=pTn+kn+N=n foreveryk =12 ... (7.51)

where p denotes the rank.

Proof: We first show that if deg g(s) = n. thenpT(n. n) = pTn+ 1.n) = pTizx.n).
If deg g(s) = n. then (7.49) holds. and n is the smallest integer having the property.
Because of (7.49). the (1 + Dth row of Tt + 1. n) can be written as a linear combination
of the first n rows. Thus we have pTin. 1) = pTin + 1. n). Again, because of (7.49). the
(n < 2)th row of T(n + 2. n) depends on its previous n rows and. consequently. on the
first n rows. Proceeding forward. we can establish oTtn. n) = pT(o<. n). Now we claim
pT(00.n) = n. If not. there would be an integer 1 < n having the property {7.49). This
contradicts the hypothesis that deg g(s) = n. Thus we have pT(n.n) = pT(>.n} = n.
Applying (7.49) to the columns of T yields (7.51).

Now we show that if (7.51) holds. then g(s) = As™' + h(2)s™> 4+ -+ can
be expressed as a strictly proper rational function of degree n. From the condition
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pT(n + 1,00) = pT(n, c0) = n, we can compute {as, i =1,2,..., n} to meet (7.49).
We then use (7.48) to compute {8, i = 1,2, ..., n}. Hence we have
8s) = h()s™t +hQ@)s 2+ h(B)s™ o
Bistt 4 Bas" 24+ Buo1S + B
Tosntaystl sl apS o

Because the n is the smallest integer having the property in (7.51), we have deg g(s) = n.
This completes the proof of the theorem. Q.E.D.

With this preliminary, we are ready to discuss the realization problem. Consider a strictly
proper transfer function g(s) expressed as .
2(s) = A(Ds T F R +HRB)s T+
If the triplet (A, b, ¢) is a realization of g(s), then
8(s) =c(sI = A)"'b=c[sd~ s~'A) b
which becomes, using (3.57),
§(s) = cbs™' + cAbs ™2 + cA%bs ™ + -+

Thus we conclude that (A, b, ¢) is a realization of g(s) if and only if

h(m)=cA™'d form=1,2, ... (7.52)
Substituting (7.52) into the Hankel matrix T(n, n) yields
cb ¢cAb cA’b - cA"!b
cAb cA?b cA’d .- cA"b
T, n) = cAlb ¢A’d cA'b - cA"'b
cA™'b cA"d cA™'b - cA2n-Dp

which implies, as shown in (7.21),
T(n,n) = OC (7.53)

where Oand C are, respectively, then xn observability and controllability matrices of (A, b, ¢).
Define

h(2) h(3) h(4) <o h(n+1)
h(3) h(#) h(5) o h(n+2)

T, n) = H4) h(5) h(6) <o h(n+3) (7.54)
h.(n+1) h(n+2) h(n+3) --- kA2

It is the submatrix of T(n + 1, n) by deleting the first row or the submatrix of T(n, n + 1) by
deleting the first column. Then as with (7.53), we can readily show

|

4
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T(n,n) = OAC (7.55)

Using (7.53) and (7.55), we can obtain many different realizations. We discuss here only a
companion-form and a balanced-form realization.

Companion form There are many ways to decompose T{(n, n) into OC. The simplest is
to select O = Tor C = I If we select O = I, then (7.53) and (7.55) imply C = T(n,n)
and A = T(n, )T~ (n, n).The state equation corresponding to O = I, C = T(n, n), and
A=Twn T Yn nis

0 1 0 ... 0 0 n(1)
0 0 1 . 0 0 r(2)
xX= : : I ©ox+ : u
0 0 0 ... 0 1 h(n —1)
—Uy —Quo] —Op_2 - —Q)  —a h(n)
y=[100--0 0x (7.56)

Indeed, the first row of O~= I and the first column of C = T(n, n) yield the ¢ and b in (7.56).
Instead of showing A = T(n, n)T~!(n, n), we show

AT(n, n) = T(n, n) (7.57)
Using the shifting property of the companion-form matrix in (7.56), we can readily verify
h{l) h(2) h(2) h(3)
h(2) h(3) h(3) h(4)
. = . ) . = . R (7.58)
h(n) hn+ 1) h(n + 1) hin+2)

We see that the Markov parameters of a column are shifted up one position if the column
is premultiplied by A. Using this property, we can readily establish (7.57). Thus O = I,
C=T(n,n),and A = T )TV (n. n) generate the realization in (7.56). It is a companion-
form realization. Now we use (7.52) to show that (7.56) is indeed a realization. Because of the
form of ¢, cA™b equals simply the top entry of A™b or

cb = A(1), cAb = h(2), cA’b = h(3),

Thus (7.56) is a realization of g(s). The state equation is always observable because O =1
has full rank. It is controllable if C = T(n, n) has rank n.

ExAMPLE 7.2 Consider

5(s) = 45 ~25 -6
B = T oy 252 w35+ 1
=0 57 4257733 2 F 25T 43550 (7.59)

We form T(4, 4) and compute its rank. The rank is 3; thus g(s) in (7.59) has degree 3 and its
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numerator and denominator have a common factor of degree 1. There is no need to cancel first
the common factor in the expansion in (7.59). From the preceding derivation. we have

2 =3 =2 0o 2 -=377! 0 1 0
A=|-3 .22 2 2 -3 2| = 0 o0 1 (7.60)
-2 \_\ 35013 -2 2 -05 -1 0

and
b=[02 -3 ¢=[100]

The triplet (A. b. ¢} is a minimal realization of g(s) in (7.59). o
We mention that the matrix A in (7.60) can be obtained without computing T(n, n)
T-Y(n, n). Using (7.49) we can show .

a3
0 2 -3 =2
[+ 5]
TG.4a=| 2 -3 -2 2 || *|=0
-3 -2 2 35 1‘

Thus a is a null vector of T(3, 4). The MATLAB function
£=[0 2 -3 -2;2 -3 -2 2;-3 -2 2 3.5];a=null(t)

yields a={—0.3333 —0.6667 0.0000 — 0.6667]'. We normalize the last entry of a to 1 by
typing a/a (4), which yields [0.5 1 0 1]'. The first three entries, with sign reversed, are the
last row of A.

Balanced form Next we discuss a different decomposition of T(n.n) = OC, which will
yield a realization with the property

CC'=00
First we use singular-value decomposition to express T(n. n)as
T(n,n) = KAL = KA'ZAL) (7.61)

where K and L are orthogonal matrices and A '~ is diagonal with the singular values of T(n, n)
on the diagonal. Let us select

O=KAY and C=A""L (7.62)
Then we have
OV =A"VK and C'=LA7Y? {(7.63)
For this selection of C and O, the triplet
A=0"'Tn nC™! (7.64)
b = first column of C (7.65)
¢ = firstrow of O (7.66)

2 e e e et
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is a minimal realization of g(s). For this realization. we have
CC’' = AY'L'LAY? = A
and
0'0=A"KKA""=A =CC

Thus itis called a balanced realization. This balanced realization is different from the balanced
realization discussed in Section 7.4. It is not clear what the relationships between them are.

ExaMmpLE 7.3 Consider the transfer function in Example 7.2. Now we will find a balanced
realization from Hankel matrices. We type

t=7C 2 -3;2 -3 -2;-3 -2 2j;te={2 -3 -2;-3 -2 2;-2 2 3.5};
Tk,s,1li=sva()

sl=sgrt(s);

Q=k*sl;C=sl*l’;

a=inv{0)*to*inv(C),

=[C(1,1);C(2,1);C(3, 1)],c=00(1,1y O(1,2) O(1,2y]

This yields the following balanced realization:

0.4003 -1.0024 —0.4805 1.2883
x = 1.0024 -0.3121 0.3209 | x+ | —0.7303 |u
0.4805 0.3209 —0.0882 1.0614

v =[1.2883 0.7303 — 1.0614]x +0-u
To check the correctness of this result, we type [n,d]=ss2tf (a,b, ¢, 0), which yields
2s =3
$+s5+05

This equals 2(s) in (7.59) after canceling the common factor 2(s + 1).

g(s) =

7.6 Degree of Transfer Matrices

This section will extend the concept of degree for scalar rational functions to rational matrices.
Given a proper rational matrix G(s), it is assumed that every entry of G(s) is a coprime
fraction: that is. its numerator and denominator have no common tactors. This will be a standing
assumption throughout the remainder of this text.

Definition 7.1 The characteristic polynomial of a proper rational matrix G(s)is defined
as the least common denominator of all minors ()fé(s). The degree of the characteristic
polynomial is defined as the McMillan degree or, simply, the degree of G(s) and is
denoted by 8(;(5).
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ExampLE 7.4 Consider the rational matrices
i i 2 L
~ SFL s+l ~ s+1
Gi(s) = [’T o ] Gals) = [‘j i]
S+ Tl s+1 s+1

The matrix G(s) has 1/(s + 1), 1/(s + 1), 1/(s+ 1).and 1/(s + 1) as itg minors of Qrder 1,
and det Gl (s) = 0 as its minor of order 2. Thus the characteristic polynomial of Gi(s)is s + 1
and 5G1(s) = 1. The matrix Go(s) has 2/(s + 1), 1/ + D, L/s & 1),and 1/(s + 1) asits
minors of order 1, and det Go(s) =1/ + 1)? as its minor of order 2. Thus the characteristic
polynomial of Ga(s) is (s + D? and 8G2(s) = 2.

From this example, we see that the characteristic polynoEnial of G(s) is, in general,
different from the denominator of the determinant ot; G(s) lif G(3) is square] and different
from the least common denominator of all entries of G(s).

ExaMPLE 7.5 Consider the 2 x 3 rational matrix

s 1 1

N 1 G+bLGs+2) s+3
Gl = s_1 1 1
s+1 G+DGE+D s

1ts minors of order 1 are the six entries of f}(s). The matrix has the following three minors of
order 2:

s 1 s+1 ___‘1____
TGy TGy GHDEH T GHDEED
s 1 1 s+4
15T eEDe 3 GEDETD
i 1 3

oy =
s+ 1s+2)s (+DEs DG +3)  sEHDE+DE+3I)

The least common denominator of all these minorsis s(s + D(s +2)(s + 3). Thus the degree
of G(s) is 4. Note that G(s) has no minors of order 3 or higher.

In computing the characteristic polynomial, every minor must be. reduced to a coprime
fraction as we did in the preceding example; otherwise, we will obtain an em.)neous result.
We discuss two special cases. 1f G(s)is 1 x porg x 1, then there are no minors of order
2 or higher. Thus the characteristic polynomial equals the least common denO@naLor of z.zll
entries of C(s), In particular, if G (s) is scalar, then the characteristic polynomial equals. its
denominator. If every entry of ¢ X p G(s) has poles that differ from those of all other entries,
such as

1 s+2
G(S)’—: (s 5—2 5
s+3 (s +5)s—3)

then its minors contain no poles with multiplicities higher than those of each entry. Thus the
characteristic polynomial equals the product of the denominators of all entries of G(s).

kL
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To conclude this section, we mention two important properties. Let (A, B. C, D) be a
controllable and observable realization of G(s). Then we have the following:

« Monic least common denominator of all rminors of f}(s) = characteristic polynomial of A.

« Monic least common denominator of all entries of C(s) = minimal polynomial of A.

For their proofs, see Reference [4, pp. 302-304].

| Realizations—Matrix Case

We introduced in Section 7.2.1 minimal realizations for scalar transfer functions. Now we
discuss the matrix case.

Theorem 7.M2

A state equation (A. B, C. D) is a minimal realization of a proper rational matrix G(s) if and only if
(A, B) is controllable and (A, C) is observable or if and only if

dim A = deg G(s)

Proof: The proof of the first part is similar to the proof of Theorem 7.2. If (A. B) is not
controllable or if (A, C) is not observable, then the state equation is zero-state equivalent
to a lesser-dimensional state equation and is not minimal. If (A.B.C, D) is of di_me_nsi_on
1 and is controllable and observable, and if the 7-dimensional state equation (A, B.C, D),
with i < n, is a realization of G(s), then Theorem 4.1 implies D = D and

CA"B=CA"B  form=0,1,2....
Thus. as in (7.22). we have

oC = 0,G,

Note that O. C, O,. and C,, are, respectively, ng x n.n x np,nq x i,and i x np matrices.
Using the Sylvester inequality

p(D) + p(C) — n < p(OC) < min(p(0), p(C))
which is proved in Reference [6, p. 31],and p(0) = p(C) = n, we have p(0C) = n.

Similarly, we have p(0,C,) = i1 < n. This contradicts p(OC) = p(@,, C,). Thus every
controllable and observable state equation is a minimal realization.

To show that (A, B, C, D) is minimal if and only if dim A = deg é(.r) is much more
complex and will be established in the remainder of this chapter. Q.E.D.

Theorem 7.M3

All minimal realizations of C(:) are equivalent.
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Proof The proof follows closely the proof of Theorem 7.3.Let (A, B, C,D)and (-\ B,
C. D) be any two n-dimensional minimal realizations of a ¢ x p proper rational matrix
G(s). Asin(7.23) and (7.24), we have

oC = 0C (7.67)
and
OAC = OAC (7.68)

In the scalar case, O, C. O, and C are all n x n nonsingular matrices and their inverses are
well defined. Here O and O are ng x n matrices of rank n; C and C are n x np matrices
of rank n. They are not square and their inverses are not defined. Let us define the n x ng
matrix s

Or = (000 (7.69)
Because ' is n x ng and O is ng x n, the matrix O'Ois n x n and is, following Theorem
3.8, nonsingular. Clearly, we have

*O=(00)'00=1

Thus O is called the pseudoinverse or left inverse of O. Note that 007" isng x ng and
does not equal a unit matrix. Similarly. we define

=y (7.70)
Itis an np x n matrix and has the property
CC* =ccec)y™ =1

Thus C* is called the pseudoinverse or right inverse of C. In the scalar case. the
equivalence transformation is defined in (7.25) as P = 010 = CC~'. Now we replace
inverses by pseudoinverses to yield

P.=0"0=(00'00 (7.71)
=CCr=Cceeh! (7.72)
This equality can be verified directly by premultiplying (0’ 0y and postmultiplying ( CC )

and then using (7.67). The inverse of P in the scalar case is P~ t— 0-'0=CC!
the matrix case, it becomes

P =0"0=(00)"'00 (7.73)
=CC=Ccoeey (7.74)
This again can be verified using (7.67). From 0OC = OC, we have
C=(00'00oCc=rC
0=o0CcC(CC)y ! =op!

Their first p columns and first g rows are B = PB and C = CP~!. The equation
OAC = OAC implies
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A=(OO0) ' O'0OACC(CCHY ' = PAP™!

This shows that all minimal realizations of the same transfer matrix are equivalent.

QED.

We see from the proof of Theorem 7.M3 that the results in the scalar case can be extended
directly to the matrix case if inverses are replaced by pseudoinverses. In MATLAB, the function
pinv generates the pseudoinverse. We mention that minimal realization can be obtained from
nonminimal realizations by applying Theorems 6.6 and 6.06 or by calling the MATLAB
function minreal, as the next example illustrates.

gLkl

EXAMPLE 7.6 Consider the transfer matrix in Example 4.6 or

4s — 10 3
R 3 3
Gis) = s 1“ s (7.7%)

QCs+Dis+2) (s+2)°
Its characteristic polynomial can be computed as (25 + 1) (s + 2)*. Thus the rational matrix has
degree 3. Its six-dimensional realization in (4.39) and four-dimensional realization in (4.44)
are clearly not minimal realizations. They can be reduced to minimal realizations by calling
the MATLAB function mir.r2al. For example, for the realization in (4.39) typing

a=(-4.50 -6 0 -2 2;0-4.50 -60 -2;200000;...
0100¢00;0 +000;000 10 0}
b=[1 0;0 1;0 0;0 ;0 0;0 0]
c={-6 3 -24 7.5 -2< 3;0 1 0.5 1.5 10.5] [2 0;0 O}
[am, bm, cm, dm] =minrsal(a,b,c,d)
yields
—-0.8625 —4.0897 3.2544 0.3218 —0.5305
X = 0.2921 -3.0508 1.2709 0.0459 —0.4983 |u
—0.0944 0.3377 -0.5867 -0.1688 0.0840
0 -0.0339 35.5281 2
vV =
- 0 -—2.1031 -0.5720 0 0

Its dimension equals the degree of G(s): thus it is controllable and observable and is a minimal
realization of G(s) in (7.75).

7.8 Matrix Polynomiatl Fractions

The degree of the scalar transfer function
N(s) _
D(s) -

is defined as the degree of D(s) if N(s) and D(s) are coprime. It can also be defined as
the smallest possible denominator degree. In this section, we shall develop similar results for

g(s) = D7'(s) = DH5)N(s)
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transfer matrices. Because matrices are not commutative, their orders cannot be altered in our
discussion. .
Every g x p proper rational matrix G(s) can be expressed as

G(s) = NE)D ' (s) (1.76)

where N(s) and D(s) areg x pand p X p polynomial matrices. For example, the 2 x 3 rational
matrix in Example 7.5 can be expressed as

-1
1 s+ 1 0 0
G $ s 7.77
= 0 (s+D(s+2) 0 ( )
o [—1 ! S+3] 0 0 s +3)

The three diagonal entries of D(s) in (7.77) are the least common denominators of the. three
columns of é(s). The fraction in (7.76) of (7.77) is called a right polynomial fraction or,
simply, right fraction. Dual to (7.76), the expression

G(s) = D' (5)N(s)

where D(s) and N(s) are ¢ x g and g X p polynomial matrices, is called a left polynomial
fraction or, simply, left fraction. ) _
Let R(s) be any p x p nonsingular polynomial matrix. Then we have

G(s) = INORGIDERE]™
= NERER ' @)D s) = NE)D™ ()

Thus right fractions are not unique. The same holds for left fractions. We introduce in the
following right coprime fractions. ) -

Consider A(s) = B(s)C(s), where A(s), B(s), and C(s) are polynomlal's qf compatible
orders. We call C(s) a right divisor of A(s) and A(s) a left multiple of C(s). Similarly, we call
B(s) a left divisor of A(s) and A(s) a right multiple of B(.S)'

Consider two polynomial matrices D(s) and N(s) with the same number of columns p-
A p x p square polynomial matrix R(s) is called a common right divisor of D(s) and N(s) if
there exist polynomial matrices D(s) and N(s) such that

D(s) = D(s)R(s) and N(s) = N(s)R()

Note that D(s) and N(s) can have different numbers of rows.

Definition 7.2 A square polynomial matrix M(s) is called a unimodular matrix if its
determinant is nonzero and independent of s.

The following polynomial matrices are all unimodular matrices:
2s sS4s+1 -2 §9+s+1 [ s s+l]
[ 2 s+1 :| ' [ 0 3 ] "ols-1 s
Products of unimodular matrices are clearly unimodular matrices. Consider

det M(s)det M~} (s) = det M(s)M™'(s)] =det I =1
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which implies that if the determinant of M(s) is a nonzero constant, so is the determinant of
M-~ 1(s). Thus the inverse of a unimodular matrix M(s) is again a unimodular matrix.

Definition 7.3 A square polynomial matrix Ris) is a greatest common right divisor
(gcrd) of D(s) and N(s) if (i) R(s) is a common right divisor of D(s) and N(s) and (ii)
R(s) is a left multiple of every common right divisor of D(s) and N(s). If a gcrd is a
unimodular matrix, then D(s) and N(s) are said o be right coprime.

Dual to this definition, a square polynomial matrix R(5) is a greatest common left divisor
(geld) of D(s) and N(s) if (i) R(s) is a common left divisor of D(s) and N(s) and (ii) R(s)
is a right multiple of every common left divisor of D(s) and N(s). If a gcld is a unimoduiar
matrix, then D(s) and N(s) are said to be left coprime.

Definition 7.4 Consider a proper rational matrix G(s) factored as
G(s) = ND7(s) = D™ (5)N(s)

where N(s) and D(s) are right coprime, and Nts) and D(s) are left coprime. Then the
characteristic polynomial of G(s) is defined as

det D(s) or det D(s)
and the degree off}(s) is defined as

deg G(s) = deg det D(s) = deg det D(s)

Consider

G(s) = N(D™!(5) = [NGIR()][D()R(s)] ™ (1.78)

where N(s) and b(s) are right coprime. Define D;(s) = D(s)R(s) and Ny(s) = N(5)R(s).
Then we have

detDy{s) = det[D(s)R(s)] = det D(s) det R(s)

which implies
degdetD,(s) = deg dgt Dis) + degdet R(s)

Clearly we have degdet D (s) > degdetD(s) and the equality holds if and only if R{s) is
unimodular or, equivalently, N;(s) anc D, (s) are right coprime. Thus we conclude that if
N(s)D~!(s) is a coprime fraction, then D(s) has the smallest possible determinantal degree
and the degree is defined as the degree of the transfer matrix. Therefore a coprime fraction can
also be defined as a polynomial matrix fraction with the smallest denominator’s determinantal
degree. From (7.78), we can see that coprime fractions are not unique: they can differ by
unimodular matrices.

We have introduced Definitions 7.1 and 7.4 to define the degree of rational matrices. Their
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equivalence can be established by using the Smith-McMillan form and will not be discussed
here. The interested reader is referred to, for example, Reference [3].

7.8.1 Column and Row Reducedness

In order to apply Definition 7.4 to determine the degree of f}(s) = N(s)D~!(s), we must
compute the determinant of D(s). This can be avoided if the coprime fraction has some
additional property as we will discuss next.

The degree of a polynomial vector is defined as the highest power of s in all entries of
the vector. Consider a polynomial matrix M(s). We define

8:M(s) = degree inth column of M(s)
8, M(s) = degree é)f ith row of M(s)
and call 8; the column degree and §,; the row degree. For example, the matrix

s+1 s3=25s45 —1]

M) = |:s -1 52 0

has 561 =1, 552 = 3, 553 = 0, 5,1 = 3, and 5,2 =2.

Definition 7.5 A nonsingular polynomial matrix M(s) is column reduced if
deg det M(s) = sum of all column degrees
It is row reduced if

deg det M(s) = sum of all row degrees

A matrix can be column reduced but not row reduced and vice versa. For example, the
matrix
352425 25+1 ] (7.79)

M(x):[s2+s—3 s

has determinant s* —s2 + 55 + 3. Its degree equals the sum of its column degrees 2 and 1. Thus
M(s) in (7.79) is column reduced. The row degrees of M(s) are 2 and 2; their sum is larger
than 3. Thus M(s) is not row reduced. A diagonal polynomial matrix is always both column
and row reduced. If a square polynomial matrix is not column reduced. then the degree of its
determinant is less than the sum of its column degrees. Every nonsingular polynomial matrix
can be changed to a column- or row-reduced matrix by pre- or postmultiplying a unimodular
matrix. See Reference [6, p. 603].

Let 8,M(s) = k.; and define H,(s) = diag(s*'. s%2, ... ). Then the polynomial matrix
M(s) can be expressed as

M(s) = My H(s) + M. (s) (7.80)

For example, the M(5s) in (7.79) has column degrees 2 and 1 and can be expressed as

=
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3 21[s% 0 2% 1
M(S)z[l 1“0 S}+[x—3 0}

The constant matrix My, is called the column-degree coefficient matrix; its ith column is the
coefficients of the ith column of M(s) associated with s*:. The polynomial matrix M;.(s)
contains the remaining terms and its i th column has degree less than k. If M(s) is expressed
as in (7.80), then it can be verified that M(s) is column reduced if and only if its column-degree
coefficient matrix My, is nonsingular. Dual to (7.80), we can express M(s) as

M(s) = H, (s)Mj, + M, (s)

where §,;M(s) = k,; and H,(s) = diag(s"" . 5% ). The matrix Ml,,, is called the row-degree
coefficient matrix. Then M(s) is row reduced if and only if M}, is nonsingular.

Using the concept of reducedness, we now can state the degree of a proper rational matrix
as follows. Consider G(s) = N(s)D~'(s) = D!(s)N(s), where N(s) and D{s) are right
coprime, N(s) and D(s) are left coprime, D(s) is column reduced, and D(s) is row reduced.
Then we have

deg G(s) = sum of column degrees of D(s)

= sum of row degrees of f)(s)

We discuss another implication of reducedness. Consider C(:) = N(s)D Y(s). If f;(s)
is strictly proper, then §,N(s) < &,D(s), fori = 1,2,..., p; that is, the column degrees
of N(s) are less than the corresponding column degrees of D(s). If G(s) is proper, then
8:N(s) < 84D(s), fori = 1,2, ..., p. The converse, however, is not necessarily true. For
example, consider

2 s =177 (=251 282 ~s5+1
s+1 1 - 1 1

NED () =1[1 2 [

Although 8., N(s) < 8.;D(s) fori = 1,2, N(s)D~!(s) is not strictly proper. The reason is that
D(s) is not column reduced.

Theorem 7.8

Let N(s) and D(s5) be ¢ x p and p x p polynomial matrices, and let D(s) be column reduced. Then
the rational matrix N(S)D‘l (s) is proper (strictly proper) if and only if

8aN(s) = 8:D(s)  [6:iN(s) < 8::D(s)]
fori =1.2....,p.
Proof: The necessity part of the theorem follows from the preceding example. We show
the sufficiency. Following (7.80), we express
D(s) = Dy Hc(s) + Dy (s) = [Dpc + ch(s)Hgvl(:)]Hc(S)
N(S) = NpH.(5) + Nlc(s) = [th + N[C(S)HC_I(S)]H(‘(S)

Then we have
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2 o -1 -1 -1
G(5) := N(&)D ™ (5) = [Npe + Nie(9YHS ()[Dse + Dic(HH ()]
Because Dy (s)H ! (s) and Ny (s)H; ' (s) both approach zero as s — o0, we have
lim G(s) = Ny D}

where Dy is nonsmgular by assumption. Now if SC,N(s) < §.;D(s), then Ny is a nonzero
constant matrix. Thus G(oo) is a nonzero constant and G(s) is proper. If §;N(s) < 8,D(s),
then N, is a zero matrix. Thus G(oo) = 0 and G(s) is strictly proper. This establishes
the theorem. Q.E.D.

We state the dual of Theorem 7.8 without proof.
i
t

Corollary 7.8
Let N(s) and D(s) be g x p and g x g polynomial matrices, and let D(s) be row reduced. Then
the rational matrix D~!(s)N(s) is proper (strictly proper) if and only if
5,:N(s) <8.:D(s)  [8:N(s) < 8:D(s)]

fori =1,2,...,9.

7.8.2 Computing Matrix Coprime Fractions

Given a right fraction N(s)D~!(s), one way to reduce it to a right coprime fraction ‘is to
compute its gerd. This can be achieved by applying a sequence of elementary operatllons
Once a gerd R(s) is computed, we compute N(s) = N(s)R™!(s) and D(s) = D(s)R™(s).
Then N(s)D~(s) = N(s)D~1(s) and N(s)D~!(s) is a right coprime fraction. If D(s) is not
column reduced, then additional manipulation is needed. This procedure will not be discussed

here. The interested reader is referred to Reference [6, pp. 590—591].. . .
We now extend the method of computing scalar coprime fractions in Section 7.3 to the

matrix case. Consider a ¢ x p proper rational matrix G(s) expressed as
G(s) = D 1(s)NGs) = N(s)D™I(s) (7.81)
In this section, we use variables with an overbar to denote left fractions, without an overbar to

denote right fractions. Clearly (7.81) implies .

N(s)D(s) = D(s)N(s)

and
D(s)(~N(s)) + N(s)D(s) = 0 (7.82)

We shall show that given a left fraction D! (s)N(s). not necessarily left coprime, we can
obtain a right coprime fraction N(s)D™!(s) by solving the polynomial matrix equation in
(7.82). Instead of solving (7.82) directly, we shall change it into solving sets of linear algebraic
equations. As in (7.27), we express the polynomial matrices as, assuming the highest degree

to be 4 to simplify writing,
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D(s) = Dy + Dis + Das? + Dys? + Dys?
N(s) = No + Nis + Nas? + Nys?® + Nys*
D(s) = Dg + Dys + Dys? + D;5°
N(s) = Ng + Ny5 + Nas? + Nys?

where D;, N;, D;, and N; are, respectively, ¢ X ¢, x p, p x p,and ¢ x p constant matrices.
The constant matrices D; and N; are known, and D; and N; are to be solved Substituting these
into (7.82) and equating to zero the constant matrices associated with s, for k = 0, 1, ...,
we obtain

Dy N 0 0 0 o0 oo o[ N7
. . Dy
D1 . N1 : Do NO : 0 0 : 0 0
[-)3 Nz ]-)1 Nl ]-)0 No 0 0 “.Nl
- - . - - « - - . - - Dl
D; N; : D N; : :

SM —3 -3 . ‘2 -2 1_)1 N, Dy Ny =0 @83
D; Ny D: N; : D, N, D, N, —N,
0 0 D, N D N !D N|| D
0 0 : 0 0 . D4 N4 . D3 N3 —-N3

Lo o : 0o o : 0o o ! D, NJL Dsd

This equation is the matrix version of (7.28) and the matrix S will be called a generalized
resultant. Note that every D-block column has ¢ D-columns and every N-block column has p
N-columns. The generalized resultant $ as shown has four pairs of D- and N-block columns;
thus it has a total of 4(g + p) columns. It has eight block rows; each block rows has g rows.
Thus the resultant has 8¢ rows.

We now discuss some general properties of S under the assumption that linearly indepen-
dent columns of § from left to right have been found. It turns out that every D-column in every
D-block column is linearly independent of its left-hand-side (LHS) columns. The situation for
N-columns, however, is different. Recall that there are p N-columns in each N -block column.
We use Ni-column to denote the ith N-column in each N-block column. It turns out that if
the Ni-column in some N-block column is linearly dependent on its LHS columns, then all
subsequent Ni-columns, because of the repetitive structure of S, will be linearly dependent on
its LHS columns. Let y;,i = 1,2, ..., p, be the number of linearly independent Ni-columns
in 8. They are called the column indices of G(s). The first Ni-column that becomes linearly
dependent on its LHS columns is called the primary dependent Ni-column. It is clear that the
(i + 1)th Ni-column is the primary dependent column.

Corresponding to each primary dependent Ni-column, we compute the monic null vector
(its last entry equals 1) of the submatrix that consists of the primary dependent ¥ ;-column and
all its LHS linearly independent columns. There are totally p such monic null vectors. From
these monic null vectors, we can then obtain a right fraction. This fraction is right coprime
because we use the least possible ui; and the resulting D(s) has the smallest possible column
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degrees. In addition, D(s) automatically will be column reduced. The next example illustrates
the procedure.

ExaMPLE 7.7 Find a right coprime fraction of the transfer matrix in (7.75) or

4s 10 3
Gis) = 251+ I ji% (7.84)

Cs+DGE+2) (s+2)
First we must find a left fraction. not necessarily left coprime. Using the least common
denominator of each row, we can readily obtain

. 2 9 ! -1
G(S)z[(—5+1)(5+-) 0 1]
0 25+ D(s+2)
- ) 2 - _
L [@s =106 +2) 325+ 1) }:D*mNm
s +2 +D@2s+ 1)
Thus we have
_ 252
Bes) = 25" +S5s+2 ’O
0 253 405> + 125 + 4

20705 07, 02 010 L]0 0,
“lo 4 0o 12]° "o 9 0 2

- 457 — 25 =20 6s+3
N(s) = 5
s+2 25+ 3s + 1

[-20 3 2 6], [4 0] [0 0]
=2 T 3 o 20 Tlo oo

We form the generalized resultant and then use the QR decomposition discussed in Section
7.3.1 to search its linearly independent columns in order from left to right. Because it is simpler
to key in the transpose of S, we type

and

dl=(2 030200 C);32=(04 012090 21;
nl=[-20 2 -2 1 4 0 0 C1;n2={2 123022 0j;
s=[dl 00 0 0;d 0 0 C Q0;nl 000 0;n2 00 0 0;
00 G&> 0 0;00dZ 0 0;00mn: 0 0;6 ¢ n2 0 0;
0000d1;00C 00 d2;0000nL;0000nn2]";
[a,rl=qgr(s)

We need only r: therefore the matrix g will not be shown. As discussed in Section 7.3.1.
we need to know whether or not entries of r are zero in determining linear independence of
columns; therefore all nonzero entries are represented by x. di. and ni. The result is

PO ———
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rdl 0 x x X X x x x 0 x x7
0 d2 x «x roox x x 0 x x x
0 0 nl x x x x X x X X X
0 0 0 n2 x x x x X X x
0O 0 0 0 d x x x x x X x
|10 0 0 0 0 d2 x x x x x x
"“l0o 0 0 0 0 0 al x x x X
o 0 0 o0 0 0O 0 0 x x x 0
0O 0 0 0 0 0O 0 0 di x x O
¢ 0 0 0 0 0 0 0 0 42 0 0
o 0 0 0 0 O O 0 0 0 0 O
Lo 0 0o 0 0 0 0 0 0 0 0 0}

We see that all D-columns are linearly independent of their LHS columns. There are two
linearly independent N l-columns and one linearly independent N 2-column. Thus we have
w1 = 2 and w2 = 1. The eighth column of § is the primary dependent N2-column. We
compute a null vector of the submatrix that consists of the primary dependent N2-column and
all its LHS linearly independent columns as

(41 0 0;d2 0 0;nl 0 3;n2 0 O;...
0 0 dl;0 0 d2;0 ¢ ni;0 0 n2]7); )
and then normalize the last entry to 1 by typing
z2b=22/22(8)
which vields the first monic null vector as
z2b=[7 -1 1 2 -4 0 2 1}
The eleventh column of S is the primary dependent N1-column. We compute a null vector

of the submatrix that consists of the primary dependent N 1-column and all its LHS linearly
independent columns (that is, deleting the eighth column) as

zl=nulli{{41 ¢ 0 0C 0;d42 000 3;nl C 0 CO;n20070 0;...
0041 00:00 d200;00mnl 0 0;...
C 0 00d1;00004d2;00 3 0 nil’y;

which yields the second monic null vector as

z1b={10 -0.5 1 010 2.5 -2 01}
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Thus we have

r—ng ——n(‘)Z'} - 10 717
—nd' -n§’ -05 -1
r—No a4 11
&2 4P 0o 2
Dy
—n}‘ —n}z 1 -4
-N —n¥' —n} 0 0
e = e = (7.85)
D, a'; df 25 2
at a7 1
-N,
—nl! —nl? -2
L D, J —n3! —-n%z 0
d%i 'dzz L 1
dy dy° A

where we have written out N; and D; explicitly with the superscripts ij denoting the i jth entry
and the subscript denoting the degree. The two monic null vectors are arranged as shown. The
order of the two null vectors can be interchanged, as we will discuss shortly. The empty entries
are to be filled up with zeros. Note that the empty entry at the (8 x 1)th location is due to
deleting the second N2 linearly dependent column in computing the second null vector. By
equating the corresponding entries in (7.85), we can readily obtain

117 [25 2 1 07,
D(s)=‘:0 2]—%—[0 1]54—[0 0]3
s24+25s+1 2541

=[ 0 s+2:|

e [32 T1L3 £
05 1 0 0 00
252 —5—10 4s-7
=[ 05 1]

Thus G(s) in (7.84) has the following right coprime fraction
Q2s =5 +2) 45— T (s +2)(s +0.5) 25+ 1
0.5 i 0 s+2

The D(s) in (7.89) is column reduced with column degrees it = 2 and g = 1. Thus we have
deg det D(s) = 2 + 1 = 3 and the degree of G(s) in (7.84) is 3. The degree was computed in
Example 7.6 as 3 by using Definition 7.1.

and

—1
Gis) = [ ] (7.86)
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In general, if the generalized resultant has y; linearly independent Ni-columns, then
D(s) computed using the preceding procedure is column reduced with column degrees ;.
Thus we have

deg é(s) = deg det D(s) = Z Ty
= total number of linearly independent N-columns in S

We next show that the order of column degrees is immaterial. In other words, the order of

the columns of N(s) and D{s) can be changed. For example, consider the permutation matrix

0 01
P={1 0 0
010

and D(s) = D(s)P and K(s) = N(s)P. Then the first, second, and third columns of D(s) and
N(s) become the third, first, and second columns of D(s) and N(s). However, we have

G(s) = Ns)D™' () = ING)P)D©P]™ =N©)D™'(5)

This shows that the columns of D(s) and N(s) can arbitrarily be permutated. This is the same as
permuting the order of the null vectors in (7.83). Thus the set of column degrees is an intrinsic
property of a system just as the set of controllability indices is (Theorem 6.3). What has been
discussed can be stated as a theorem. It is an extension of Theorem 7.4 to the matrix case.

Theoremn 7.M4

Lct_é(s) = f)“ (5)N(s) be aleft fraction, not necessarily left coprime. We use the coefficient matrices
of D(s) and N(s) to form the generalized resultant S shown in (7.83) and search its linearly independent
columns from left toright. Let jt;,i = 1,2, ..., p.be the number of linearly independent N i-columns.
Then we have

deg G(s) = s+ pa+ -+ 1p (7.87)

and a right coprime fraction N(s)D~!(5) can be obtained by computing p monic null vectors of the p
matrices formed from each primary dependent Nii-column and all its LHS linearly independent columns.

The right coprime fraction obtained by solving the equation in (7.83) has one additional
important property. After permutation, the column-degree coefficient matrix Dy, can always
become a unit upper triangular matrix (an upper triangular matrix with | asits diagonal entries).
Such a D(s) is said to be in column echelon form. See References [6. pp- 610-612; 13, pp.
483-487). For the D(s) in (7.86), its column-degree coefficient matrix is

12
Dy =
w=[o 1]

It is unit upper triangular; thus the D(s) is in column echelon form. Although we need only
column reducedness in subsequent discussions, if D(s) is in column echelon form, then the
result in the next section will be nicer.

Dual to the preceding discussion, we can compute a left coprime fraction from a right
fraction N(s)D~(s), which is not necessarily right coprime. Then similar to (7.83), we form
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[-NoDg: =Ny Dy i —=NoDy ! =Ny D3]T=0 (7.88)
with
rDp Dy D D; Dy 0 0 07

No N; N;, N3z N, 0 0 0
0 Dy Dy D, D; D; 0 0
0 No Ny, N2 N3 Ny 0 O
Tom | oo e (7.89)

0 0 Dy D, D, D; D, O
0 0 No ;’ N1 N N3 N4 0

0 0 0 Dy Db D D; D,
LO 0 0 No Ny N N N4J

We search linearly independent rows in order from top to bottom. Then all D-rows are linearly
independent. Let the Ni-row denote the ith N-row in each N block-row. If an Ni-row becomes
linearly dependent, then all Ni-rows in subsequent N block-rows are linearly dependent on
their preceding rows. The first Ni-row that becomes linearly dependent is called a primary
dependent Ni-row. Let v;, i = 1,2, ..., q, be the number of linearly independent Ni-rows.
They are called the row indices of C(s). Then dual to Theorem 7.M4, we have the following
corollary.

Corollary 7.M4

Let G(s) = N(s)D~'(s) be a right fraction, not necessarily right coprime. We use the coefficient
matrices of D(s) and N(s) to form the generlized resultant T shown in (7.89) and search its linearly
independent rows in order from top to bottom. Let v;, fori = 1,2, ..., g. be the number of linearly
independent Ni-rows in T. Then we have

degév(s)zul +vrtF oy,
and a left coprime fraction D! (s)N(s) can be obtained by computing ¢ monic left null vectors of the

g matrices formed from each primary dependent Ni-row and all its preceding linearly independent rows.

The polynomial matrix D(s) obtained in Corollary 7.M4 is row reduced with row degrees
fvi.i=12..., g}. In fact, it is in row echelon form; that is, its row-degree coefficient
matrix, after some row permutation, is a unit lower triangular matrix.

7.9 Redlizations from Matrix Coprime Fractions

Not to be overwhelmed by notation, we discuss a realization of a 2 x 2 strictly proper rational
matrix G(s) expressed as

G(s) = N(s)D™'(s) (7.90)
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where N(s) and D(s) are right coprime and D(s) is in column echelon form.® We further assume
that the column degrees of D(s) are y; = 4 and p; = 2. First we define

st 0 st 0
His): I: 0 s“l} [O 52] 79
and
sht=d 0 $ 0
20
0 s 0
= 7.92
Lor=1 ¢ gom 1o 752
0 s
0 1 0 1

The procedure for developing a realization for
¥(5) = G(5)(s) = N(s)D™"i(s)

follows closely the scalar case from (7.3) through (7.9). First we introduce a new variable v(¢)
defined by ¥(s) = D! (s)@(s). Note that ¥(s), called a pseudo state, is a 2 x 1 column vector.
Then we have

D(s)v(s) = a(s) (7.93)
§(s) = N()V(s) (7.94)
Let us define state variables as
sl 0
A =L ~ _ 1 0 01(5)}
X(s) = L(s)v(s) = 0 gkl 505)
0 1
s*1(s) x(s)
$281(5) x2(8)
I I (7.95)
vy (s) x4(s)
s02(5) xs(s)
U2 (s) Xg(s)

or, in the time domain,
nm=vP®  n@®=H)  BEO =00 x@) =)

xs(t) = 02(r)  xelt) = walt)

6. All discussion is still applicable if D(s) is column reduced but not in echelon form.
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This state vector has dimension w1 4+ py = 6. These definitions imply immediately
X =x X3 =X Xy =1x3 X6 = X5 (7.96)
Next we use (7.93) to develop equations for x; and xs. First we express D(s) as
D(s) = DuH(s) + Dy L(s) (7.97)
where H(s) and L(s) are defined in (7.91) and (7.92). Note that D, and D, are constant

matrices and the column-degree coefficient matrix Dy, is a unit upper triangular matrix.
Substituting (7.97) into (7.93) yields
[DacH(s) + DiL{s)I¥(s) = 0(s)

or i
1

H(s)¥(s) + D;!D;.L(s)¥(s) = D; ) (s)

Thus we have, using (7.95),

H(5)¥(s) = —D; ' Dik(s) + D} 1i(s) (7.98)
Let
D;Clnlc - [01111 a2 @3 oe oq2g 01122] (7.99)
a2y Q212 @213 214 @221 Q222
and
_ 1 b
D, = [0 | ] (7.100)

Note that the inverse of a unit upper triangular matrix is again a unit upper triangular matrix.
Substituting (7.99) and (7.100) into (7.98), and using 5%, (s) = s*3,(s), and s25(s) = s82(s),
we find

sks(s) azn Qa2 0213 04 O 02

1 b]z ~
+[0 l]u(s)

which becomes, in the time domain,
[Xl] - [Otm Q2 QU3 dng Qi alzz]x+ [1 blz] a (101
X5 Q1 0212 213 Q214 Q1 a2 0 1
If G(s) = N(s)D~!(s) is strictly proper, then the column degrees of N(s) are less than the
corresponding column degrees of D(s). Thus we can express N(s) as

Bin Buz Bus Bua Pin /51:2}
o = L 7.102
© [ﬂlll B2z B2z Bus P P ) ( )

[Sfl(s)]_ [Otm a1z 0n3 Qs @ dlZZ]Q(S)
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Substituting this into (7.94) and using X(5) = L(s)V(s), we have

N Bin Bz Bus Bus B B . -
- 7.103
y(s) |:/3211 Bz Bas Bas B ﬂzzszX(S) ( )

Combining (7.96), (7.101), and (7.103) yields the following realization for C(s):

—¢ o2 T3 oy : —opp —em
1 0 0 0 : 0 0
0 1 0 0 : 0 0
X=1 0 0 1 0 : 0 o |*
—Q21  —@212 —a213 o4 : —Q2) 222
L O 0 0 0 1 o
r 1l by (7.104)
0 0
0 0
+[0 0w
0 1
LO 04

B Bz Bus Bus 1 B Bim
B Bz Bas Pus 1 Bm B

Thisis a (¢ +42)-dimensional state eduation. The A-matrix has two companion-form diagonal
blocks: one with order 41 = 4 and the other with order u, = 2. The off-diagonal blocks are
zeros except their first rows. This state equation is a generalization of the state equation in
(7.9) to two-input two-output transfer matrices. We can easiiy' show that (7.104) is always
controllable and is called a controllable-form realization. Furthermore, the controllability
indices are u; = 4 and uy = 2. As in (7.9), the state equation in (7.104) is observable if
and only if D(s) and N(s) are right coprime. For its proof, see Reference {6, p. 282]. Because
we start with a coprime fraction N(s)D!, the realization in (7.104) is observable as well. In
conclusion, the realization in (7.104) is controllable and observable and its dimension equals
11 + iz and, following Theorem 7.M4, the degree of C(s). This establishes the second part
of Theorem 7.M2, namely, a state equation is minimal or controllable and observable if and
only if its dimension equals the degree of its transfer matrix.

ExAMPLE 7.8 Consider the transfer matrix in Example 7.6. We gave there a minimal realiza-
tion that is obtained by reducing the nonminimal realization in (4.39). Now we will develop
directly a minimal realization by using a coprime fraction. We first write the transfer matrix as
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4s — 10 3
¢ 25 + 1 -2 A N
Gls) = . T | =6+ Gy
2s+ D +2) (s+2)
12 3
—_—|:2 0 2s +1 s+2
00 1 s+ 1

2s+ D5 +2) (s+2)°
As in Example 7.7, we can find a right coprime fraction for the strictly proper part of Gis)as

—65 — 12 —9} [52+2.5s+1 2s+1r

G,p(s) =
(s) [ 0.5 I 0 s+2

Note that its denominator matrix is the same as the one in (7.86). Clearly we have 1, = 2 and
(r = 1. We define

2 0 s 0
H(s) = { S] Ls)=1|1 0
0 1

Then we have

12 25 1 1
D(s) =
(s) [0 I}H(S)Jr{ 0 0 2]L(S)

and
We compute
and

- 1 -2 .
DhCIDICZ[O I:H:O 0 2

Thus a minimal realization of G(s) is

(3]

in

_

_

| I—

1l

| —

Sl

A

O -
o |

[9'8)

[ SR |

-25 -1 3 -
x=| 1 0 0 (x4l O Oy
0 o - 0 1 (7.105)
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This A-matrix has two companion-form diagonal blocks: one with order 2 and the other
order 1. This three-dimensional realization is a minimal realization and is in controllable
canonical form.

Dual to the preceding minimal realization, if we use (A}(s) = D~!(s)N(s). where Dis)
and N(s) are left coprime and D(s) is in row echelon form with row degrees {v;. i =
1.2,.... q}. then we can obtain an observable-form realization with observability indices
{u.i=12...., g}. This will not be repeated.

We summarize the main results in the following. As in the SISO case. an n-dimensional
multivariable state equation is controllable and observabie if its transfer matrix has degree #. If
a proper transfer matrix is expressed as a right coprime fraction with column reducedness. then
the realization obtained by using the preceding procedure will automatically be controllable
and observable. . R

Let (A.B.C.D) be a minimal realization of G(s) and let G(s) = D™'(sN(s) =
N(s)D~!(s) be coprime fractions; D(s) is row reduced, and D(s) is column reduced. Then

we have
B(s1-A)"'C+D=NED'(s) = D '(5)N(s)

which implies

B[Adj(s] - A)IC+D =

Tot(ed — A) N(s)[Adj(D(s
det(sI - A) det D(s) ($){A)(D(s))]

1 _ _
= _ Adj(D(s))]N(s)
de[D(s)[ iDENINGS

Because the three polynomials det (sT — A), det D(s), and det D(s) have the same degree.
they must denote the same polynomial except possibly different leading coefficients. Thus we
conclude the following:

o deg f;(s) = deg det D(s) = deg det D(s) = dim A.

« The characteristic polynomial of (A}(x) = k| det D(s) = kj det Dis) = k; det (s — A) for
some nonzero constant &, .

« The set of column degrees of D(s) equals the set of controllability indices of (A. B).

« The set of row degrees of D(s) equals the set of observability indices of (A, O).

We see that coprime fractions and controllable and observable state equations contain essen-
tially the same information. Thus either description can be used in analysis and design.

7.10 Realizations from Matrix Markov Parameters

Consider a g x p strictly proper rational matrix G(s). We expand it as

Gis) =H()s™ ' + H)s >+ HBs 7 + - (7.106)
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where H(m) are ¢ x p constant matrices. Let  be the degree of the least common denominator
of all entries of G(s). We form

~H(1) HQ) H(3) ~o H(r)
H(2) HE) H(4) N )
T=|H3 H@ H(5) . Hr+2) (7.107)
LH() He+1) Hr+2) - H2r-1)
~H(2) H(3) H(4) <o Hr+1
H(3) H#) H(S) o Hr+2)
§=| H&4 H(5) | H©) <o Hr+3) (7.108)
: : t : . :
LHG +1) H(r+2) Hr+3) - HQn

Note that T and T have r block columns and r block rows and, consequently, have dimension
rg x rp. As in (7.53) and (7.55), we have

T=0C and T=0AC (7.109)

where O and C are some observability and controllability matrices of order rg x n andn xrp,
respectively. Note that n is not yet determined. Because r equals the degree of the minimal

polynomnial of any minimal realization of é(s) and because of (6.16) and (6.34), the matrix T
is sufficiently large to have rank ». This is stated as a theorem.

Theorem 7.M7
A strictly proper rational matrix G(S) has degree 1 if and only if the matrix T in (7.107) has rank n.
The singular-value decomposition method discussed in Section 7.5 can be applied to the

matrix case with some modification. This is discussed in the following. First we use singular-
value decomposition to express T as

A O
T=K L 7.110
[0 0} (7.110)
where K and L are orthogonal matrices and A = diag(y, A2, ... Xn). where X; are the positive

square roots of the positive eigenvalues of T'T. Clearly n is the rank of T. Let K denote the
first » columns of K and L’ denote the first n rows of L'. Then we can write T as

T = KAL = KA?AYVL = OC (7.111)
where
O0=KAY? and C=AYL

Note that O is ng x n and C is n x np. They are not square and their inverses are not defined.
However, their pseudoinverses are defined. The pseudoinverse of O is. as defined in (7.69),
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O+ — [(Al/Z)’R'KAl/E]—l(Al/l)'f\ﬂ

Because K is orthogonal, we have K'K = I and because A/ is symmetric. the pseudoinverse
O reduces to

0" = AVK (7.112)
Similarly, we have
Ct=LA"'? (7.113)

Then, as in (7.64) through (7.66), the triplet

A=0"ICt (7.114)
B = first p columns of C (7.115)
C = first g rows of O (7.116)

is a minimal realization of G(s). This realization has the property
00 =AKEKA=A

and, using L'L =1,
CC =AYV LLAY = A

Thus the realization is a balanced realization. The MATLAB procedure in Example 7.3 can
be applied directly to the matrix case if the function inverse (inv) is replaced by the function
pseudoinverse (pinv). We see once again that the procedure in the scalar case can be extended
directly to the matrix case. We also mention that if we decompose T = OC in (7.111)
differently, we will obtain a different realization. This will not be discussed.

7.11 Concluding Remarks

In addition to a number of minimal realizations, we introduced in this chapter coprime fractions
(right fractions with column reducedness and left fractions with row reducedness). These
fractions can readily be obtained by searching linearly independent vectors of generalized
resultants and then solving monic null vectors of their submatrices. A fundamental result of
this chapter is that controllable and observable state equations are essentially equivalent to
coprime polynomial fractions. denoted as

controllable and observable state equations

¢

coprime polynomial fractions

Thus either description can be used to describe a system. We use the former in the next chapter
and the latter in Chapter 9 to carry out various designs.

A great deal more can be said regarding coprime polynomial fractions. For example, it is
possible to show that all coprime fractions are related by unimodular matrices. Controllability
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PROBLEMS

and observability conditions can also be expressed in terms of coprimeness conditions. See
References [4, 6, 13, 20]. The objectives of this chapter are to discuss a numerical method to
compute coprime fractions and to introduce just enough background to carry out designs in
Chapter 9.

In addition to polynomial fractions, it is possible to express transfer functions as stable
rational function fractions. See References [9, 21]. Stable rational function fractions can be
developed without discussing polynomial fractions; however, polynomial fractions can provide
an efficient way of computing rational fractions. Thus this chapter is also useful in studying
rational fractions.

7.1 Given
. s—1
=TT+

find a three-dimensional controllable realization. Check its observability.

7.2 Find a three-dimensional observable realization for the transfer function in Problem 7.1.
Check its controllability.

7.3  Find an uncontrollable and unobservable realization for the transfer function in Problem
7.1. Find also a minimal realization.

7.4 Use the Sylvester resultant to find the degree of the transfer function in Problem 7.1.
7.5 Use the Sylvester resultant to reduce (2s — 1)/(4s> — 1) to a coprime fraction.

7.6 Form the Sylvester resultant of g(s) = (s + 2)/(s* + 2s) by arranging the coefficients of
N(s) and D(s) in descending powers of s and then search linearly independent columns
in order from left to right. Is it true that all D-columns are linearly independent of their
LHS columns? Is it true that the degree of §(s) equals the number of linearly independent
N-columns?

7.7 Consider
. Bis + B2 N(s)
gis) = ————— =1 —
sty s+ o D(s)

and its realization

x=[_f‘ _gz}w{é}u v =18 Balx

Show that the state equation is observable if and only if the Svlvester resultant of D(s)
and N(s) is nonsingular.

7.8 Repeat Problem 7.7 for a transfer function of degree 3 and its controllable-form realiza-
tion.

7.9  Verify Theorem 7.7 for g(s) = 1/(s + ).
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7.10 Use the Markov parameters of g(s)=1/(s+ 1)? to find an irreducible companion-form
realization.

7.11 Use the Markov parameters of gy =1/(s + 1)* 1o find an irreducible balanced-form
realization.

7.12 Show that the two state equations

. 2 1 1 D 2
X = 01 X + 0 u vy=[2 2}
k:l:_:; _?:‘x-f—[;]u vy =1[2 0x

are realizations of (25 + 2)/(52 — 5 — 2). Are they minimal realizations? Are they
algebraically equivalent?

and

7.13 Find the characteristic polynomials and degrees of the following proper rational matrices

1 s+3 1 1
G s A 1)2 1 2
Gw=| 5 STH Gw=| OV OF e+
s+3 s+1 s+2 (s + (s +2)
and

1 s+3 1

; | +D? s+2 545

Gi(s) = | si 1 |

(s+3)?% s+4 s

Note that each entry of G (s) has different poles from other entries.

co=[% ][]

to form a generalized resultant as in (7.83), and then search its linearly independent
columns in order from left to right. What is the number of linearly independent N-
columns? What is the degree of G(s)? Find a right coprime fraction of G(s). Is the given
left fraction coprime?

7.14 Use the left fraction

715 Are all D-columns in the generalized resultant in Problem 7.14 linearly independent of
their LHS columns? Now in forming the generalized resultant, the coefficient matrices of
D(s) and N (s) are arranged in descending powers of s, instead of ascending powers of
s as in Problem 7.14. Is it true that atl D-columns are linearly independent of their LHS
columns? Does the degree of G{(s) equal the number of linearly independent N-columns?
Does Theorem 7.M4 hold?
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7.16 Use the right coprime fraction of G(s) obtained in Problem 7.14 to form a generalized
resultant as in (7.89), search its linearly independent rows in order from top to bottom,

and then find a left coprime fraction of G(s).

7.17 Find a right coprime fraction of

s24+1 2541
Aoy — 53 52
G) = s+2 2
52 5

and then a minimal realization.

Chapter

State Feedback
and State Estimators

8.1 Introduction

The concepts of controllability and observability were used in the preceding two chapters to
study the internal structure of systems and to establish the relationships between the internal
and external descriptions. Now we discuss their implications in the design of feedback control
systems.

Most control systems can be formulated as shown in Fig. 8.1, in which the plant and
the reference signal r(t) are given. The input u(t) of the plant is called the actuating signal
or control signal. The output y(¢) of the plant is called the plant output or controlled signal.
The problem is to design an overall system so that the plant output will follow as closely as
possible the reference signal r(z). There are two types of control. If the actuating signal u(t)
depends only on the reference signal and is independent of the plant output, the control is
called an open-loop control. If the actuating signal depends on both the reference signal and
the plant output, the control is called a closed-loop ot feedback control. The open-loop control
is, in general, not satisfactory if there are plant parameter variations and/or there are noise
and disturbance around the system. A properly designed feedback system, on the other hand,

Figure 8.1 Design of control systems.

— Plant b
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can reduce the effect of parameter variations and suppress noise and disturbance. Therefore
feedback control is more widely used in practice.

This chapter studies designs using state-space equations. Designs using coprime fractions
will be studied in the next chapter. We study first single-variable systems and then multivariable
systems. We study only linear time-invariant systems.

8.2 State Feedback

AN
-

Consider the n-dimensional single-variable state equation
X = Ax + bu

(8.1)
y=cx

i

where we have assumed d = 0 to simplify c.iiscussionA In state feedback. the input u is given by
n

umr—kKe=r—lkik kX =r= "k (8.2)
i=1

as shown in Fig. 8.2, Each feedback gain &, is a real constant. This is called the constant gain
negative state feedback or, simply, state feedback. Substituting (8.2) into (8.1) yields
X = (A -~ bk)x + br
(8.3)

y=cx

Theorem 8.1 .

The pair (A — bk. b). for any 1 x 7 real constant vector K, is controllable if and only if (A. b} is
controtlable.

Proof: We show the theorem for n = 4. Define
C = (b Ab A’b A’D]
and
Cr =[b (A -bk)b (A —bk)’b (A - bk)’b]

They are the controllability matrices of ¢8.1) and (8.3). It is straightforward to verify

Figure 8.2 State feedback.

x | K
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I —kb —K(A—bkb —k(A —bk)’b
0 1 ~kb _K(A — bk)b
¢ =C ( ) (8.4)
) 0 0 1 —kb
o o 0 |

Note that k is I x n and bis n x 1. Thus kb is scalar: so is every entry in the rightmost
matrix in (8.4). Because the rightmost matrix is nonsingular for any k. the rank of C;
equals the rank of C. Thus (8.3) is controllable if and only if (8.1) is controllable.

This theorem can also be established directly from the definition of controllability.
Let xp and x; be two arbitrary states. It (8.1) is controllable, there exists an input u, that
transfers x; to x; in a finite time. Now if we choose r| = u + kx, then the input r, of the
state feedback system will transfer x, to x;. Thus we conclude that if (8.1) is controllable,
so is (8.3). .

We see from Fig. 8.2 that the input » does not control the state x directly: it generates
u to control x. Therefore. if u cannnot control x. neither can ». This establishes once again
the theorem. Q.E.D.

Although the controllability property is invariant under any state feedback. the observ-
ability property is not. This is demonstrated by the example that follows,

ExampLE 8.1 Consider the state equation

y=[I2)]x

The state equation can readily be shown to be controllable and observable. Now we introduce
the state feedback

u=r—[3 1]x
Then the state feedback equation becomes

[} 3]

v=[l 2]x

0 2
C =
which is nonsingular. Thus the state feedback equation is controllable. Its observability matrixis

12
o= 3]

which is singular. Thus the state feedback equation is not observable. The reason that the
observability property may not be preserved in state feedback will be given later.

Its controllability matrix is
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We use an example to discuss what can be achieved by state feedback.

ExampLE 8.2 Consider a plant described by

ik

The A-matrix has characteristic polynomial

Ay =(s—1?—9=s—2s—8=(s—Hls+2)

and, consequently, eigenvalues 4 and —2. It is unstable. Let us introduce state feedback
‘ u = r — [ki k2]x. Then the state feedbag:k system is described by

g .‘ 1
(R e
=3 1 0 0 0
IS

- 3 1 0
This new A-matrix has characteristic polynomial

A) = (s — 1HE) =D =3G k)
=24 —2)s+ G-k —8)

i k
It is clear that the roots of Af(s) or, equivalently, the e1g<'anva}<ues (;fktheFit:t;?flﬁgiacif
i iti i ate k; and k2. s
be placed in any positions by selecting appropri 2. ] le, i
fr)::ttevgg Ce;ilc[rlenvaliues are to bz placed at —1 £ j2, then the desired cha;z;(cten’scm pglyngrr;z:ll (112
i j ingk, —2 =2and 3kz —ky — 6=
i 1 — j2) = s% +2s + 5. Equating X} and 3 .
5{5 t lztin]dzlzz(sjﬂ / 3]Thus the state feedback gain [4 17 /3] will shift the eigenvalues from
1= = .

4 210 -1 & j2.

This example shows that state feedback can be-used to pl'flce .elge.?-;?h;es 1;:) :g})\/ F;:)osvl\::,r;:
Moreover the feedback gain can be computed by §1rect .subsmuuon. i.sonpsp More, Ty
will become very involved for three- or highe.r-.dlmensx'o.nal state eg:::) xthe &eSign‘ seriossly.
the approach will not reveal how the controliability condmon comes 1d O theorem.
a more systematic approach is desirable. Before proceeding, we nee O sty
We state the theorem for n = 4; the theorem, however, holds for every p

» Theotem 8.2

L al
Consider the state equation in (8.1) with n = 4 and the charactenstic polynomia

AGs) = det (sT— A) =" +ays? +ans® Fass o (8.5)
jon X = ith
If (8.1) is controilable, then it can be transformed by the transformation X = PX wi
1 ap ay a3
1 oy a2 (8.6)
0 1 oy
0o 0 01

o O

Q:=P"' =[b Ab A’b A’b]

i
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into the controllable canonical form

-y —0y —03 —Qy 1
. - - 1 0
X=AX+bu = 0 0 X+ 0 u
0 1 0 0 0 8.7
0 0 1 0 0
y=&=[8 B B AR
Furthermore, the transfer function of (8.1) with n = 4 equals
. 53 4 Bas? + Bas + B
46y = P15 B4 s s .

5%+ ays? +ars? +ass +ay

E Proof: Let C and C be the controllability matrices of (8.1) and (8.7). In the SISO case,

both C and C are square. If (8.1) is controllable or C is nonsingular, so is C. And they
are related by C = PC (Theorem 6.2 and Equation (6.20)). Thus we have

P=CC' or Q:=P'=(C""
The controllability matrix C of (8.7) was computed in (7.10). Its inverse turns out to be

1(11 oy Qa3

- 0 1 o o«
-1 _ 1 2

= 0 0 1 e (89
0 0 0 1

This can be verified by multiplying (8.9) with (7.10) to yield a unit matrix. Note that the
constant term a4 of (8.5) does not appear in (8.9). Substituting (8.9) into Q = CC~! yields
(8.6). As shown in Section 7.2, the state equation in (8.7) is a realization of (8.8). Thus

the transfer function of (8.7) and, consequently, of (8.1) equals (8.8). This establishes the
theorem. Q.E.D.

With this theorem, we are ready to discuss eigenvalue assignment by state feedback.

Theorem 8.3

If the n-dimensional state equation in (8.1) is controllable, then by state feedback u = r — kx. where
kis a1l x n real constant vector, the eigenvalues of A — bk can arbitrarily be assigned provided that
complex conjugate eigenvalues are assigned in pairs.

Proof: We again prove the theorem for n = 4.1f (8.1) is controllable, it can be transformed
into the controllable canonical form in (8.7). Let A and b denote the matrices in (8.7).

Then we have A = PAP~! and b = Pb. Substituting X = Px into the state feedback
yields

u=r—kx=r—kP 'z = r — kx

where k := kP~!. Because A — bk = P(A — bk)P~!, A — bk and A — bk have the same
set of eigenvalues. From any set of desired eigenvalues, we can readily form
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As(s) = s* + @57 + Gas? + @rs + Gs (8.10)
If k is chosen as
k=@ -0 G— a2 @3 — a3 @ —-ay) (8.11)

the state feedback equation becomes

—&1 —a) —&3 —&4 1
§=@-bog+br=| - O 0 0o 100,

0 1 0o o0 0 (8.12)

0 0 1 0 0

y=[8 B B Bl

Because of the companion form, the characteristic polynomial of (A — bk) and, conse-
quently, of (A — bk) equals (8.10). Thus the state feedback equation has the set of desired
eigenvalues, The feedback gain k can be computed from

k=kP=kCC™' (8.13)
withk in (8.11), =" in (8.9),and C = [b Ab A2b A’b]. QE.D.

We give an alternative derivation of the formula in (8.11). We compute
Af(s) = det (sT — A +bk) = det ((sI — A)[I+ (sI~A)~'bk])
= det (sI — A)det [T+ (sI — A)~'bk]
which becomes, using (8.5) and (3.64),
Ap(s) = A + k(s - A)~'b]
Thus we have
Ap(s) — As) = AGKGE— A)7'b = AT - A)~'b (8.14)

Let z be the output of the feedback gain shown in Fig. 8 2 and letk = [k; k> k3 k3]. Because
the transfer function from  to y in Fig. 8.2 equals
Bis® + Bas® + Pas + Ba

A(s)

EI-A)"'b=
the transfer function from u to z should equal
_ S kSt s +k
R(sT— A)~1p = S" T has” H s 1y (8.15)
A(s)
Substituting (8.15), (8.5), and (8.10) into (8.14) yields

@ —a)s + (@ — a2)s? + (@ — 02)s5 + (@ — ag) = kys® + kas? + Fss + ks
This yields (8.11).
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Feedback transfer function Consideraplantdescribedby (A. b. ¢). If (A. b) is controllable.
(A. b, c) can be transformed into the controllable form in (8.7) and its transfer function can
then be read out as, forn = 4,

B1s + Bas® + Bas + By

gy =cisI-A) b= .
st as? + st + o3s +ay

(8.1

After state feedback. the state equation becomes (A — bk. b, ¢) and is still of the controllable
canonical form as shown in (8.12). Thus the feedback transfer function from r to v is

Bis* + Bas? + Pas + By

sr(s) =c(sT—A+bk™'b = e - =
&7ts) (s ) St ayst oSt + ays + @y

(8.17)

We see that the numerators of (8.16) and (8.17) are the same. In other words, state feedback
does not affect the zeros of the plant transfer function. This is actually a general property of
feedback: feedback can shift the poles of a plant but has no effect on the zeros. This can be used
to explain hy a state feedback may alter the observability property of a state quation. If one or
more poles are shifted to coincide with zeros of ¢(s), then the numerator and denominator of
§,~(x) in (8.17) are not coprime. Thus the state equation in (8.12) and. equivalently, (A —bk. ¢)
are not observable (Theorem 7.1).

ExampLE 8.3 Consider the inverted pendulum studied in Example 6.2. Its state equation is.
as derived in (6.11),

01 0 0 0

. 00 -1 0 - 1

X = ] U
00 1 0 (8.18)
00 5 0 -2

v=[10 0 0]x

It is controllable: thus its eigenvalues can be assigned arbitrarily. Because the A-matrix is block
triangular, its characteristic polynomial can be obtained by inspection as

Al) =53 (2 =5) =s'+0-57 -5+ 0.5 +0

First we compute P that will transform (8.18) into the controllable canonical form. Using (8.6).
we have

0 I 0 2971l 0 =5 0
o 10 2 of|lo1 0 =5
Pr=CC=1 6 5 o —wlloo 1 o
-2 0 -10 odlo o o 1
0 1 0 -3
1 0 -3 0
1o -2 0 0
2 0 0 0

Its inverse is
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Let the desired eigenvalues be —1.5 £0.5j and —1 % j. Then we have

=

Ladf

Ap(s) = (s +15 —05/)(s+15+05/)+ 1-Ds+14]))
= st 4553 + 10557 + 11s +5
Thus we have, using (8.11),
k=[5-0 10.5+5,‘11—0 5-0]=[5 155 11 5]
and :

Kk 2 L 8.19
k=kP=[-% -4 -F 3% (8.19)

. .
This state feedback gain will shift the eigenvalues of the plant from {0, 0, £j/5} to

{(-1.5x05j, -1 j}.

The MATLAB function place computes state feedback gains for eigenvalue placement
or assignment. For the example, we type

a0 170 0;0 0 -1 0;0 0 0 1;0 0 5 01;b=[0;1:0:-2]7
p=[-1.5+0.57 -1.5-0.53 -1+3 -1-31:
k=place(a,b.p)

which yields [—1.6667 — 3.6667 — 8.5833 — 4.3333}. Thisis the gainlin (8"[11?1)5 depends
. is poi t of desired eigenvalues.
One may wonder at this point how to select aset . '
on the perfon};xa.nce criteria, such as rise time, settling time, and overshoot, usedhm the dzsfxixlle.
Because the response of a system depends not only on polels but also opl Ize;tousr,att eeoiebr:)rsn e
i i iti hysical systems will s
lant will also affect the selection. In addition, most piysic . : '
?hc magnitude of the actuating signal is very large. This will again agfect :hg Zt;lecctix:l)r}\: ?; dges;g,;i
1 11 eigenvalues inside the region denote -8.3(a).
poles. As a guide, we may place all ergenvaiues ' o il
ion i i 1 line. The larger the distance o
The region is bounded on the right by a vertica arger e e bt
he i i i . The region is also bounded by two g
fi the imaginary axis, the faster the response v
1;?:; emanatirgxg ?rrgm the origin with angle 6. The larger the angle, the la_rger the ov ers?lorc;té iSoc;e
i int or group them il a very sma ,
Reference [7]. If we place all eigenvalues at one pom. g ‘ | A
i he actuating signal will be large.
then usually the response will be slow and t : r : e o Shore 1
i d a circle with radius r inside the sector .
better to place all eigenvalues evenly aroun rinside the SCct S aer
i - however, the actuating signal will als g
The larger the radius, the faster the response; ' o e e
i tem will be larger and the resulting sy
Furthermore, the bandwidth of the feedback sys ' . ing syster
i i i final selection may involve compromises g
will be more susceptible to noise. Therefore 2 | ) :
many conflicting requirements. One way 10 proceed is by gomputcr sxmula.uc(;n. Another way
is to find the state feedback gain k to minimize the quadratic performance index

J = foo[X’(an(t) +u'(ORu()]dr
0
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Figure 8.3 Desired eigenvalue location.

See Reference [1]. However, selecting Q and R requires trial and error. In conclusion. how to
select a set of desired eigenvalues is not a simple problem.

We mention that Theorems 8.1 through 8.3—in fact, all theorems to be introduced later
in this chapter—apply to the discrete-time case without any modification. The only difference

is that the region in Fig. 8.3(a) must be replaced by the one in Fig. 8.3(b), which is obtained
by the transformation z = ¢°.

8.2.1 Solving the Lyapunov Equation

This subsection discusses a different method of computing state feedback gain for eigenvalue

assignment. The method. however, has the restriction that the selected eigenvalues cannot
contain any eigenvalues of A.

Procedure 8.1

Consider controllable (A. b). where Aisn X nandbisn x 1. Finda ] X 1 real K such that (A — bk)
has any set of desired eigenvalues that contains no eigenvalues of A.

1. Selectan n X n matrix F that has the set of desired eigenvalues. The form of F can be chosen arbitrarily
and will be discussed later.

2. Select an arbitrary 1 x n vector K such that (F. l_() is observable.

3. Solve the unique T in the Lyapunov equation AT — TF = bk.

4. Compute the feedback gain k = KT~!.

We justify first the procedure. If T is nonsingular, then k = kT and the Lyapunov equation
AT — TF = bk implies

(A=bK)T=TF or A —bk=TFT!

Thus (A — bk) and T are similar and have the same set of eigenvatues. Thus the eigenvalues
of (A — bk) can be assigned arbitrarily except those of A. As discussed in Section 3.7, if A and
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F have no eigenvalues in common, then a solution T exists in AT — TF = bk for any Kk and
is unique. If A and F have common eigenvalues, a solution T may or may not exist depending
on bk. To remove this uncertainty, we require A and F to have no eigenvalues in common.
What remains to be proved is the nonsingularity of T.

Theorem 8.4

If A and F have no eigenvalues in common, then the unique solution T of AT — TF = bk is nonsingular
if and only if (A, b) is controilable and (F. k) is observable.

Proof: We prove the theorem for n = 4. Let the characteristic polynomial of A be
Als) = st + otl":v5 +oaast ays +ay (8.20)
Then we have
AA) = A 4 o A+ A" +asA + oyl =0
(Cayley—Hamilton theorem). Let us consider
A(F) = F + o F? + ooF + osF + ol (8.21)

If 4, is an eigenvalue of F, then A(X;) is an eigenvalue of A(F) (Problem 3.19). Because
A and F have no eigenvalues in common, we have A(&;) # 0 for all eigenvalues of F.
Because the determinant of a matrix equals the product of all its eigenvalues, we have

det A(F) = H A(h) #£0

i

Thus A(F) is nonsingular. ~
Substituting AT = TF + bk into AT — AF? yields

AT — TF? = A(TF + bk) — TF* = Abk + (AT - TF)F
= Abk + bkF
Proceeding forward. we can obtain the following set of equations:
IT-TI=0
AT — TF = bk

A’T — TF? = Abk + bkF

A’T - TF? = A’bk + AbKF + bkF”

A'T — TF* = A%bk + A’bKF + AbKF? + bkF?
We multiply the first equation by a4, the second equation by a3, the third equation by o3,

the fourth equation by «,, and the last equation by 1, and then sum them up. After some
manipulation, we finally obtain

AA)T — TAF) = -TAF)
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a3 > o 1 k

- a> o) 1 O l_(F
=[bAbA’bA’D - 22
b Ner 1 0 ollke (8.22)

1 0 0 0JLkF

where we have used A(A) = 0. If (A, b) is controllable and (F. k) is observable, then all
three matrices after the last equality are nonsingular. Thus (8.22) and the nonsingularity of
A(F) imply that T is nonsingular. If (A. b) is uncontrollable and/or (F, k) is unobservable,
then the product of the three matrices is singular. Therefore T is singular. This establishes
the theorem. Q.E.D.

We now discuss the selection of F and k. Given a set of desired eigenvalues, there are
infinitely many F that have the set of eigenvalues. If we form a polynomial from the set. we
can use its coefficients to form a companion-form matrix F as shown in (7.14). For this F,
we can select k as [1 O .- 0] and (F. K) is observable. If the desired eigenvalues are all
distinct, we can also use the modal form discussed in Section 4.3.1. For example, if n = 3.
and if the five distinct desired eigenvalues are selected as Ay, o + jf;. and o2 £ jBs, then we
can select F as

A 0 0 0 O
0 o /3; 0 0
F=|0 -$ o 0 0 (8.23)
0 0 0 a 4B
0 0 0 —f a

It is a block-diagonal matrix. For this F, if k has at least one nonzero entry associated with
each diagonal block suchask =[11010, k=[11001],ork = [1 111 1], then (F. k) is
observable (Problem 6.16). Thus the first two steps of Procedure 8.1 are very simple. Once F
and k are selected, we may use the MATLAB function 1yap to solve the Lyapunov equation
in Step 3. Thus Procedure 8.1 is easy to carry out as the next example illustrates.

ExampLE 8.4 Consider the inveried pendulum studied in Example 8.3. The plant state
equation is given in (8.18) and the desired eigenvalues were chosenas —14 j and ~1.5+0.5;.
We select F in modal form as

-1 1 0 0

e 0 0

0 0 =15 05

0 0 -05 -15

F=

andk = [1010]. We type

a=[0 10 0;00 -20;000 1;0 05 01;b=[0;1;0;-23;
=[-1 10 0;-1--0¢;00 -1.50.5;00 -0.5 -1.5];

kb={1 0 1 0};t=_vap(a,b,-b*kb};

k=kb*inv(t)
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The answer is [—1.6667 — 3.6667 —8.5833 — 4.3333], which is the same as the one obtained

k i i k. Not
by using function place. If weusea differentk = [1111], we will obtain the same ote

that the feedback gain is unique for the SISO case.

8.3 Regulation and Tracking

in Fi ignal r is zero,
Consider the state feedback system shown In Fig. 8.2. Supp.osle‘ the re{de‘rc.ancse 5%%1 o roblem
and the response of the system is caused by some nonzero initial con: itions. e B e s
1o find a state feedback gain so that the response will die out at a desired rate. This 13

regulator problem. This problem may arise when an aircraft is cruising ata fixed altitude Hy.

ow, because 0 lll]‘bula Ce O CLO] the aircra t may deviate from the desir ed al[l{llde.
N s nce r other factorg,

Bringing the deviation to z€ro is a regulator problem. This pro
iquid level in Fig. 2.14 at equilibrium. - _

the 1lgzllclosely relatfd problem is the tracking problem. Suppose the reference Slocnt;latr 175(3

constant or r(t) = a, fort = 0. The problem is to design an overall system 8 y

- i is i ] ] ing of a step
i _ This is called asymptotic tracking O
approaches r(f) = a as t approaches infinity. 1his o reduoes o P

reference input. It is clear that if r(f) = a = 0, then the trackmgatel e e e same
regulator problem. Why do we then study these two problems separ I Yz'1 o reer rence input
st:te equation is valid forall r, designing a system to track asymptoncztx. 0}; , Og e e by
will automatically achieve regulation. Hov./ever, a linear state eguj allid ey vy el
shifting to an operating point and linearization, ar}d the equa:;;)n 1s g O tep reference
or zero; thus the study of the regulator problem is ne'eded. fe meft O s st pot
input can be set by the position of a potentiometer andis th.ere ore 0 ael e arater it
Maintaining a chamber ata desired temperature is often said to bed Fe?ucc:ilc) n,is e
is actually tracking the desired temperature. Thex_'efore no shm 1stmconsmm e
between regulation and tracking a step reference input. Trac?cmg z; non o
is called a servomechanism problem and is a much more difficuit qu) A 'ée e sector shown
Consider a plant described by (A. b, ©). If z.il.l elgcnv;'xl.ues of A] ;e insi o aero e
in Fig. 8.3, then the response caused by any initial cor}dltxons wil eca)tlSidg e
no state feedback is needed. If A is stable but spme eigenvalues }z:rer:: e e e b,y o
the decay may be slow or too oscillatory. If A is unstable, _then.t e ws R
nonzero initial conditions will grow unbounded. In these snuani):s,’rhen m); o ek
feedback to improve the behavior of the system. Let u =br _'0)‘1.5
equation becomes (A — bk, b, ¢) and the response caused by x(

V([) — Ce(A—hk)!x(O)

If all eigenvalues of (A — bK) lie inside the sector in Fig..83(a), Fhen the (;ut%\;tar;:ll decay
rapidly to zero. Thus regulation can easily be achieved by mtrodgcmg §t9te tee o fe;edback
The tracking problem is slightly more complex. In general. in addition to s .

we need a feedforward gain p as
u(r) = pr(t) —kx

i d
Then the transfer function from r to y differs from the one 1n (8.17) only by the feedforwar
gain p. Thus we have
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O] = Bis? + B25? + Bas + Bs

8r(s) = 3 d Ml bl
& I'(S) S4+&l53+a25-+a35+d4

(8.24)

If (A, b) is controllable, all eigenvalues of (A — bk) or, equivalently, all poles of g¢(s) can
be assigned arbitrarily, in particular, assigned to lie inside the sector in Fig. 8.3(a). Under this
assumption, if the reference input is a step function with magnitude a, then the output y(¢)
will approach the constant g¢(0) - @ as ¢ — oo (Theorem 5.2). Thus in order for y(r) to track
asymptotically any step reference input, we need

A . 0y 5
1=gr(0) P, o B (8.25)
which requires B4 # 0. From (8.16) and (8.17), we see that 84 is the numerator constant term
of the plant transfer function. Thus 8, # 0 if and only if the plant transfer function §(s) has no
zero at s = 0. In conclusion, if £(s) has one or more zeros at s = 0, tracking is not possible.
If g(s) has no zero at s = 0, we introduce a feedforward gain as in {8.25). Then the resulting
system will track asymptotically any step reference input.

We summarize the preceding discussion. Given (A, b, ¢); if (A, b) is controllable, we
may introduce state feedback to place the eigenvalues of (A — bk) in any desired positions and
the resulting system will achieve regulation. If (A, b) is controliable and if ¢(sT — A)~'b has
no zero at s = 0, then after state feedback, we may introduce a feedforward gain as in (8.25).
Then the resulting system can track asymptotically any step reference input.

8.3.1 Robust Tracking and Disturbance Rejection!

The state equation and transfer function developed to describe a plant may change due to
change of load, environment, or aging. Thus plant parameter variations often occur in practice.
The equation used in the design is often called the nominal equation. The feedforward gain
p in (8.23), computed for the nominal plant transfer function, may not yield g,(0) = 1 for
nonnominal plant transfer functions. Then the output will not track asymptotically any step
reference input. Such a tracking is said to be-nonrobust.

In this subsection we discuss a different design that can achieve robust tracking and
disturbance rejection. Consider a plant described by (8.1). We now assume that a constant

disturbance w with unknown magnitude enters at the plant input as shown in Fig. 8.4(a). Then
the state equation must be modified as

X = AX + bu + bw
(8.26)
y =cx

The problem is to design an overall system so that the output y(r) will track asymptotically
any step reference input even with the presence of a disturbance w(¢) and with plant parameter
variations. This is called robust tracking and disturbance rejection. In order to achieve this
design, in addition to introducing state feedback, we will introduce an integrator and a unity
feedback from the output as shown in Fig. 8.4(a). Let the output of the integrator be denoted by

1. This section may be skipped without loss of continuity.
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s

(©)

Figure 8.4 (a) State feedback with internal model. (b) Interchange of two summers. (c) Transfer-
function block diagram.

x,(t). an augmented state variable. Then the system has the augmented state vector X x,]".
From Fig. 8.4(a), we have ’
Xg=r—y=r—cx (8.27)
=1k k] [ X } (8.28)
X

a

For convenience, the state is fed back positively to u as shown. Substituting these into (8.26)
yields
X _ A +bk bk, x]+[0]r+[b]w
Xg —c 0 Xq 1 0
X
y=1[c 0]
Xa

This describes the system in Fig. 8.4(a).

(8.29)

Theorem 8.5

If (A. b) is controllable and if §(s) = ¢(sI — A)~'b has no zero at s = 0, then all eigenvalues of the
A-matrix in (8.29) can be assigned arbitrarily by selecting a feedback gain [k kgl

Proof: We show the theorem forn = 4. We assume that A, b, and ¢ have been transformed
into the controllable canonical form in (8.7) and its transfer function equals (8.8). Then
the plant transfer function has no zero ats = 0 if and only if 84 # 0. We now show that
the pair
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Sl L) oz

is controllable if and only if 84 # 0. Note that we have assumed n = 4; thus the dimension
of (8.30) is five because of the additional augmented state variable x,. The controllability
matrix of (8.30) is

b Ab A’ A’b A*b

0 —cb —cAb —cA’d —cA’b

1 —ay oi—oy —ael—m)+tmey—a3 as
0 1 @) 01% —ay azs
= 0 0 1 —Q ass
0 0 0 1 ais

0 —B1 Poi—pr —Bila] —a2) + fras = B ass
where the last column is not written out to save space. The rank of a matrix will notchange
by elementary operations. Adding the second row multiplied by 8, to the last row. and
adding the third row multiplied by B to the last row, and adding the fourth row multiplied
by B; to the last row, we obtain

R
1 —ap aj—oa2 —al(af-—az)—i—agotl—ag ags

0 1 -0 af —ay ass
0 0 1 —a ass 8.31)
0 0 0 1 Qs
0 0 0 0 —Bs

Its determinant is — B4. Thus the matrix is nonsingular if and only if 4 # 0. In conclusion,
if (A, b) is controllable and if g(s) has no zerc at s = 0. then the pair in (8.30) is
controllable. It follows from Theorem 8.3 that all eigenvalues of the A-matrix in (8.29)
can be assigned arbitrarily by selecting a feedback gain [k k;]. Q.E.D.

We mention that the controllability of the pair in (8.30) can also be explained from pole~
zero cancellations. If the plant transfer function has a zero ats = 0, then the tandem connection
of the integrator, which has transfer function 1/s, and the plant will involve the pole-zero
cancellation of 5 and the state equation describing the connection will not be controllable. On
the other hand. if the plant transfer function has no zero at s = 0, then there is no pole-zero
cancellation and the connection will be controllable.

Consider again (8.29). We assume that a set of n 4 1 desired stable eigenvalues or,
equivalently, a desired polynomial A (s) of degree n + | has been selected and the feedback
gain [k k,] has been found such that

(8.32)

sT—A—-bk -bk,
Af(S)Idet c

5

Now we show that the output y will track asymptotically and robustly any step reference input
r(t) = a and reject any step disturbance with unknown magnitude. Instead of establishing
the assertion directly from (8.29), we will develop an equivalent block diagram of Fig. 8.4(a)
and then establish the assertion. First we interchange the two summers between v and # as
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shown in Fig. 8.4(b). This is permitted because we have i = v + kx + w before and after the
interchange. The transfer function from ¥ to y is
S A—{ ()
(s) := =
D(s)
with D(s) = det (sI — A — bk). Thus Fig. 8.4(a) can be redrawn as shown ?n Fig: 8.4(c). We
next establish the relationship between Af(s) in (8.32) and g(s) in (8.33). Itis straightforward
to verify the following equality:

[ I 0][sl—A—bk —bka]
—c(sI—-A—bk) 1 c 5

sI—A-bk —bk, ]
= 0 s+ c(sT— A — bK) bk,

.= ¢(s1— A —bk)~!'b (8.33)

€]

Taking its determinants and using (8.32) and (8.33), we obtain

_ 1\7(3)
1-Ap(s) = D(s) (S + 1—')(_s§k“>

which implies
Af(s) = sD(s) + kaN (5)

This is a key equation. _
From Fig. 8.4(c), the transfer function from w to y can readily be computed as

N(s) ) )
A D(s) _ sN(s) __sN()
Eyw = . LN(G)  sD)+kN@)  Ar06)
sD(s)

If the disturbance is w(t) = w forali ¢ > 0, where @ is an unknown constant, then w(s) = w/s
and the corresponding output is given by
sNEw _ BN(s) (8.34)

W) =65 T a0

Because the pole s in (8.34) is canceled, all remaining poles of ¥,,(s) are stable poles. Th‘e.refore
the corresponding time response, for any w, will die out as t — oo. The only cpndmon Fo
achieve the disturbance rejection is that y,,(s) has only stable poles. Thus m‘e rejection still
holds, even if there are plant parameter variations and variations in the feedtorvyard gain k.a
"and feedback gain k, as long as the overall system remains stable. Thus the disturbance is
suppressed at the output both asymptotically and robustly.
The transfer function from r to y is

lfgﬁ(s) i )
6.,(s) = S D(S) - kaN(S)_ _ ko N{(s)
8= ko N(s)  sD(s) +kaN(sy  A505)

s D(s)
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We see that
ka N (0) _kNO _
0-D©) +k,N©) kN@O

Equation (8.35) holds even when there are parameter perturbations in the plant transfer function
and the gains. Thus asymptotic tracking of any step reference input is robust. Note that this
robust tracking holds even for very large parameter perturbations as long as the overall system
remains stable.

We see that the design is achieved by inserting an integrator as shown in Fig. 8.4. The
integrator is in fact a model of the step reference input and constant disturbance. Thus it is
called the internal model principle. This will be discussed further in the next chapter.

4y (0) =

(8.35)

8.3.2 Stabilization

If a state equation is controllable, all eigenvalues can be assigned arbitrarily by introducing
state feedback. We now discuss the case when the state equation is not controllable. Every
uncontrollable state equation can be transformed into

;(c _ Ac A12 ic Bc
-1 R 63

where (A, b,) is controllable (Theorem 6.6). Because the A-matrix is blogk triangular. the
eigenvalues of the original A-matrix are the union of the eigenvalues of A, and A;. If we
introduce the state feedback

u=r——kx=r—l_(i:r—[l_(11-(2]|:)_‘c]
%=

i

where we have partitioned K asin %, then (8.36) becomes

%, A.—bk; A -—bk 1%, b.
.| _ - beks 8.37
[ie] [ 0 A; }[ié]+|:0]r ©7

We see that A; and, consequently, its eigenvalues are not affected by the state feedback. Thus
we conclude that the controllability condition of (A, Db) in Theorem 8.3 is not only sufficient
but also necessary to assign all eigenvalues of (A — bk) to any desired positions.

Consider again the state equation in (8.36). If A; is stable, and if (A, l;c) 1s controllable,
then (8.36) is said to be stabilizable. We mention that the controllability condition for tracking
and disturbance rejection can be replaced by the weaker condition of stabilizability. But in this
case, we do not have complete control of the rate of tracking and rejection. If the uncontrollable
stable eigenvalues have large imaginary parts or are close to the imaginary axis, then the
tracking and rejection may not be satisfactory.

8.4 State Estimator

We introduced in the preceding sections state feedback under the implicit assumption that all
state variables are available for feedback. This assumption may not hold in practice either
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because the state variables are not accessible for direct connection or because sensing devices
or transducers are not available or very expensive. In this case, in order to apply state feedback,
we must design a device, called a state estimator or state observer. so that the output of the
device will generate an estimate of the state. In this section, we introduce full-dimensional
state estimators which have the same dimension as the original state equation. We use the
circumflex over a variable to denote an estimate of the variable. For example, % is an estimate
of x and X is an estimate of &.
Consider the n-dimensional state equation

X = Ax + bu
(8.38)
Y =ex

where A, b, and ¢ are given and the input «(¢) and the output v(r) are available to us. The
state X, however, is not available to us. The problem is to estimate X from » and v with the
knowledge of A, b, and ¢. If we know A and b, we can duplicate the original system as

% = A% + bu (8.39)

and as shown in Fig. 8.5. Note that the original system could be an electromechanical system
and the duplicated system could be an op-amp circuit. The duplication will be called an open-
loop estimator. Now if (8.38) and (8.39) have the same initial state, then for any input, we have
X(1) = x(t) for all t > 0. Therefore the remaining question is how to find the initial state of
(8.38) and then set the initial state of (8.39) to that state. If (8.38) is observable, its initial state
x(0) can be computed from 1 and y over any time interval, say, [0, #;]. We can then compute
the state at £» and set X(r) = x(#»). Then we have %() = x(z) for all ¢ > £,. Thus if (8.38) is
observable, an open-loop estimator can be used to generate the state vector.

There are, however, two disadvantages in using an open-loop estimator. First. the initial
state must be computed and set each time we use the estimator. This is very inconvenient.
Second, and more seriously, if the matrix A has eigenvalues with positive real parts, then
even for a very small difference between x(1g) and X(to) for some fo, which may be caused by
disturbance or imperfect estimation of the initial state, the difference between x(r) and X(r)
will grow with time. Therefore the open-loop estimator is, in general, not satisfactory.

We see from Fig. 8.5 that even though the input and output of (8.38) are available. we

u b 1] x ’ v Figure 8.5 Open-loop state estimator.
& - [
s
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Figure 8.6 Closed-loop state estimator.

NsI-a)”!

use only the input to drive the open-loop estimator. Now we shall modify the estimator in Fig.
8.5 to the one in Fig. 8.6, in which the output y(¢) = cx(¢) of (8.38) is compared with ¢X(r).
Their difference, passing through an n x 1 constant gain vector L. is used as a correcting term.
If the difference is zero, no correction is needed. If the difference is nonzero and if the gain |
is properly designed. the difference will drive the estimated state to the actual state. Such an
estimator is called a closed-loop or an asymptotic estimator or, simply, an estimator.

The open-loop estimator in (8.39) is now modified as, following Fig. 8.6.

);(——-Ai-%-bu-f-l(y—-cf()
which can be written as
$=(A-1O%+bu+ly (8.40)

and is shown in Fig. 8.7. It has two inputs # and y and its output vields an estimated state X.
Let us define

e(t) 1= x(t) — x(1)

It is the error between the actual state and the estimated state. Differentiating e and then
substituting (8.38) and (8.40) into it, we obtain

Figure 8.7 Closed-loop state estimator. u b A 51— 4y NE . v
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é=%—%=Ax +bu — (A - lo)k — bu — 1(cx)
=A-lox—A-lox=A-le)(x~ X)
or
é=(A—loe (8.41)

This equation governs the estimation error. If all eigenvalues of (A — l¢) can be assigned
arbitrarily, then we can control the rate for e(t) to approach zero or, equivalently, for the
estimated state to approach the actual state. For example, if all eigenvalues of (A — Ic) have
negative real parts smaller than —o, then all entries of e will approach zero at rates faster
than e~°*. Therefore, even if there is a large error between %(10) and x(zp) at initial time 7,
the estimated state will approach the actual state rapidly. Thus there is no need to compute
the initial state of the original state equation. In conclusion, if all eigenvalues of (A — Ic) are
properly assigned, a closed-loop estimator is much more desirable than an open-loop estimator.
As in the state feedback, what constitutes the best eigenvalues is not a simple problem.
Probably, they should be placed evenly along a circle inside the sector shown in Fig.-8.3(a). If
an estimator is to be used in state feedback, then the estimator eigenvalues should be faster than
the desired eigenvalues of the state feedback. Again, saturation and noise problems will impose
constraints on the selection. One way to carry out the selection is by computer simulation.

Theorem 8.03

Consider the pair (A, ¢). All eigenvalues of (A — lc) can be assigned arbitrarily by selecting a real
constant vector | if and only if (A. ¢} is observable.

This theorem can be established directly or indirectly by using the duality theorem. The
pair (A, ¢) is observable if and only if (A, ¢') is controllable. If (A, ¢') is controllable, all
eigenvalues of (A’ — ¢'k) can be assigned arbitrarily by selecting a constant gain vector k. The
transpose of (A’ — ¢'k) is (A — k'c). Thus we have |l = K'. In conclusion, the procedure for
computing state feedback gains can be used to compute the gain 1 in state estimators.

Solving the Lyapunov equation We discuss a different method of designing a state estimator
for the n-dimensional state equation

x = Ax + bu
(8.42)

y=«cX

The method is dual to Procedure 8.1 in Section 8.2.1.

Procedure 8.01
1. Select an arbitrary # X n stable matrix F that has no eigenvalues in common with those of A.

2. Select an arbitrary # x 1 vector | such that (F, 1) is controllable.

3. Solve the unique T in the Lyapunov equation TA — FT = lc. This T is nonsingular following the
dual of Theorem 8.4.
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4. Then the state equation
z=Fz+ Thu +1ly (8.43)
=Tz (844)

generates an estimate of X.

We first justify the procedure. Let us define
e:=z—Tx
Then we have, replacing TA by FT + Ic,
€=12—Tx =Fz+Tbu +lcx — TAx — Thu
=Fz+lex — (FT + le)x = F(z —~ Tx) = Fe
If F is stable, for any e(0), the error vector e(r) approaches zero as t — 00. Thus z approaches

Tx or, equivalently, T~'z is an estimate of x. All discussion in Section 8.2.1 applies here and
will not be repeated.

8.4.1 Reduced-Dimensional State Estimator

Consider the state equation in (8.42). If it is observable, then it can be transformed, dual to
Theorem 8.2, into the observable canonical form in (7.14). We see that y equals x;, the first
state variable. Therefore it is sufficient to construct an (n — 1)-dimensional state estimator to
estimate x; for i = 2,3, ..., n. This estimator with the output equation can then be used to
estimate all n state variables. This estimator has a lesser dimension than (8.42) and is called a
reduced-dimensional estimator.

Reduced-dimensional estimators can be designed by transformations or by solving Lya-
punov equations. The latter approach is considerably simpler and will be discussed next. For
the former approach, the interested reader is referred to Reference [6, pp. 361-363].

Procedure 8.R1}

1. Select an arbitrary (n — 1) x (n — 1) stable matrix F that has no eigenvalues in common with those
of A.

2. Select an arbitrary (n — 1) x | vector I such that (F, 1) is controllable.
3. Solve the unique T in the Lyapunov equation TA — FT = I¢. Note that T is an (n — 1) x 7 matrix.

4. Then the (n — 1)-dimensional state equation

Z=Fz+Tbu+1y (8.45)
-1

N c y

¥ [T] H . (849

We first justify the procedure. We write (8.46) as

is an estimate of X.
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which implies y = ¢& and z = TR. Clearly v is an estimate of cx. We now show that z is an
estimate of Tx. Define

e=z-—Tx
Then we have
eé=12—Tx = Fz + Thu + lex — TAx — Thu = Fe
Clearly if F is stable, then e(r) — 0 ast — oco. Thus z is an estimate of Tx.
Theorem 8.6
If A and F have no common eigenvalues, then the square matrix
c
P =
T
where T is the unique solution of TA ~ FT = lc, is nonsingular if and only if (A, ¢) is observable and

(F., 1) is controllable.

Proof: 'We prove the theorem for n = 4. The first part of the proof follows closely the
proof of Theorem 8.4. Let

Afs) = det (sT—A) = 5* + 157 + 025 + 35 + as
Then, dual to (8.22), we have

ay oy oy 1 [
. 1 0| ca
~TA(F) =(1FFIF| % “
) =1 ] ar 1 0 0[] cA? ®47)

1 0 0 04LcA’

and A(F) is nonsingular if A and F have no common eigenvalues. Note that if A is 4 x 4,
then F is 3 x 3. The rightmost matrix in (8.47) is the observability matrix of (A, ¢) and will
be denoted by O. The first matrix after the equality is the controllability matrix of (F, 1)
with one extra column and will be denoted by Cs. The middle matrix will be denoted by
A and is always nonsingular. Using these notations, we write T as —A™ ' (F)C;A O and P

becomes
I —-A ! (F) C4A O

_[l 0 :’ ¢
“lo —am QAO] 8.48)

Note thatif n = 4, then P, O, and A are 4 x 4; T and C, are 3 x 4 and A(F) is 3 x 3.
If (F, 1) is not controllable, Cy has rank at most 2. Thus T has rank at most 2 and P is
singular. If (A, ¢) is not observable, then there exists a nonzero 4 x 1 vector r such that
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Or = 0, which implies cr = 0 and Pr = 0. Thus P is singular. This shows the necessity

of the theorem.
Next we show the sufficiency by contradiction. Suppose P is singular. Then there

exists a nonzero vector r such that Pr = 0, which implies

[ ¢ ]r—[ T 1= 8.49
caol T lcaor]”T (8.49)

Define a := AOr = [a; a; a3 a;) =: [2 a,]’, where a represents the first three entries of
a. Expressing it explicitly yields

a; a3y oy ap 1 cr x
an _ a2 Ot 1 0 cAr _ X
a | ey 1 0 0 cAlr | T

as 1 0 0 O cA’r cr

where x denotes entries that are not needed in subsequent discussion. Thus we have
ay = cr. Clearly (8.49) implies a; = cr = 0. Substituting ay = 0 into the lower part of
(8.49) yields

CGAOr=Ca=Ca=90 (8.50)

where C is 3 x 3 and is the controllability matrix of (F, 1) and a is the first three entries
of a. If (F, 1) is controllable, then Ca = 0 implies a = 0. In conclusion, (8.49) and the
controllability of (F,1) imply 2 = 0.

Consider AOr = a = 0. The matrix A is always nonsingular. If (A, ¢) is observable,
then O is nonsingular and AOr = 0 implies r = 0. This contradicts the hypothesis that r
is nonzero. Thus if (A, ¢) is observable and (F, 1) is controllable, then P is nonsingular.
This establishes Theorem 8.6. Q.E.D.

Designing state estimators by solving Lyapunov equations is convenient because the
same procedure can be used to design full-dimensional and reduced-dimensional estimators.
As we shall see in a later section, the same procedure can also be used to design estimators for
multi-input multi-output systems.

8.5 Feedback from Estimated States

Consider a plant described by the n-dimensional state equation

X = AX + bu
(8.51)

y=«X

If (A, b) is controllable, state feedback u = r — kx can place the eigenvalues of (A — bk)
in any desired positions. If the state variables are not available for feedback, we can design a
state estimator. If (A, ¢) is observable, a full- or reduced-dimensional estimator with arbitrary
eigenvatues can be constructed. We discuss here only full-dimensional estimators. Consider
the n-dimensional state estimator

f=A~10%+bu+1ly (8.52)



254

STATE FEEDBACK AND STATE ESTIMATORS

The estimated state in (8.52) can approach the actual state in (8.51) with any rate by selecting
the vector 1.

The state feedback is designed for the state in (8.51). If x is not available, it is natural to
apply the feedback gain to the estimated state as
u=r—kx (8.53)

as shg»\}n in Fig. 8.8. The connection is called the controller-estimator configuration. Three
questions may be raised in this connection: (1) The eigenvalues of (A — bk) are obtained from
u=r- kx. Do we still have the same set of eigenvalues in using # = r — kx? (2) Will
the‘ eigenvalues of the estimator be affected by the connection? (3) What is the effect of the
estimator on the transfer function from r to y7 To answer these questions, we must develop
a state equation to describe the overall system in Fig. 8.8. Substituting (8.53) into (8.51) and
(8.52) yields !

X = Ax — bkx + br

X = (A —IOR +b(r — k&) + lex

They can be combined as

HE e RN
y=le 01[2}

This 2n-dimensional state equation describes the feedback system in Fig. 8.8. It is not easy
to answer the posed questions from this equation. Let us introduce the following equivalence

transformation: HERAEEAHEN

C0n_1puting P!, which happens to equal P, and then using (4.26), we can obtain the following
equivalent state equation:

HE s
v=le OJ[H

v Figure 8.8 Controller-estimator configuration.

(8.54)

(8.55)

Plant

Estimator
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The A-matrix in (8.55) is block triangular; therefore its eigenvalues are the union of those
of (A — bk) and (A — Ic). Thus inserting the state estimator does not affect the eigenvalues
of the original state feedback; nor are the eigenvalues of the state estimator affected by the
connection. Thus the design of state feedback and the design of state estimator can be carried
out independently. This is called the separation property.

The state equation in (8.55) is of the form shown in (6.40); thus (8.55) is not controllable
and the transfer function of (8.55) equals the transfer function of the reduced equation

x=(A-bk)x+br y=cx
or
§r(s) =csI—A+bk)™'b

(Theorem 6.6). This is the transfer function of the original state feedback system without using
a state estimator. Therefore the estimator is completely canceled in the transfer function from
r to y. This has a simple explanation. In computing transfer functions, all initial states are
assumed to be zero. Consequently, we have x(0) = X(0) = 0, which implies x(t) = x(1)
for all . Thus, as far as the transfer function from r to y is concerned, there is no difference
whether a state estimator is employed or not.

8.6 State Feedback—Multivariabie Case

This section extends state feedback to multivariable systems. Consider a plant described by
the n-dimensional p-input state equation

x=Ax+Bu
(8.56)
y=0Cx
In state feedback, the input u is given by
u=r-—Kx (8.57)

where K is a p x n real constant matrix and r is a reference signal. Substituting (8.57) into
(8.56) yields

x = (A - BK)x + Br
(8.58)

y=Cx

> Theorem 8.M1

The pair (A — BK. B). for any p x 7 real constant matrix K, is controllable if and only if (A.B)is
controllable.

The proof of this theorem follows closely the proof of Theorem 8.1. The only difference
is that we must modify (8.4) as
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I, -KB —K(A-BK)B —K(A-BK)’B
G=c|l® b -KB ~K(A —BK)B

0 0 1, -KB

0 o 0 1,

where C; and C are n x np controllability matrices with n = 4 and I, is the unit matrix of
order p. Because the rightmost 4p x 4p matrix is nonsingular. C; has rank n if and only if C
has rank n. Thus the controllability property is preserved in any state feedback. As in the SISO
case, the observability property, however, may not be preserved. Next we extend Theorem 8.3
to the matrix case

Theorem 8.M3

All.eigenyalugs of (A — BK) can be assigned arbitrarily (provided complex conjugate eigenvalues are
assigned in pairs) by selecting a real constant K if and only if (A, B) is controilable.

If (A.‘" B) isnot con_trollable. then (A. B) can be transformed into the form shown in (8.36)
and the eigenvalues of Az will not be affected by any state feedback. This shows the necessity
of the theorem. The sufficiency will be established constructively in the next three subsections.

8.6.1 Cyclic Design

In this design, we change the multi-input problem into a single-input problem and then apply
Theorem 8.3. A matrix A is called cvclic if its characteristic polynomial equals its minimal
polynomial. From the discussion in Section 3.6, we can conclude that A is cyclic if and only
if the Jordan form of A has one and only one Jordan block associated with each distinct
eigenvalue.

Theorem 8.7

If the n-dimensional p-input pair (A, B) is controliable and if A is cyclic. then for almost any p X \
vector V. the single-input pair (A. Bv) is controliable.

We argue intuitively the validity of this theorem. Controllability is invariant under any
equivalence transformation; thus we may assume A to be in Jordan form. To see the basic idea,
we use the following example:

210 0 0 01 X
021 0 0 00 ‘\'
A=l002 0 0 B=|1 2 B :B[”‘]_ a | (859
000 -1 1 4 3 v X
000 0 -l 10 ]

There is only one Jordan block associated with each distinct eigenvalue; thus A is cyclic. The
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condition for (A, B) to be controllable is that the third and the last rows of B are nonzero
(Theorem 6.8).

The necessary and sufficient conditions for (A, Bv) to be controllable are o # 0 and
B # 0in (8.59). Because o = vy + 2v» and B = vy, either a or B 1s zero if and only if
vy = 0 orv;/v2 = —2/1. Thus any v other than v; = 0 and v; = —2v» will make (A.Bv)
controllable. The vector v can assume any value in the two-dimensional real space shown in
Fig. 8.9. The conditions v; = 0 and vy = =212 constitute two straight lines as shown. The
probability for an arbitrarily selected v to lie on either straight line is zero. This establishes
Theorem 8.6. The cyclicity assumption in this theorem is essential. For example, the pair

210 21
A=[0 2 0 B= 0 2
0 0 2 1 0

is controllable (Theorem 6.8). However. there is no v such that (A.Bv) is controtiable

(Corollary 6.8).
If all eigenvalues of A are distinct, then there is only one Jordan block associated with

each eigenvalue. Thus a sufficient condition for A to be cyclic is that all eigenvalues of A are
distinct.

Theorem 8.8

If (A. B) is controllable, then for almost any p X 1 ceal constant matrix K. the matrix (A — BK) has

only distinct eigenvalues and 1s, consequently. cyclic.

We show intuitively the theorem forn = 4.Letthe characteristic polvnomial of A—BKbe
Ag(s) = st 0133 + a;s2 + ass + ay

where the a, are functions of the entries of K. The differentiation of A;(s) with respectto s
yields

A}(s) =45 +3a15” + a5 + a3

If Ay(s)has repeated roots. then A (s)and A/f (s) are not coprime. The necessary and sutticient
condition for them to be not coprime is that their Sylvester resultant is singular or

Figure 8.9 Two-dimensional real space.
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raq, a3 0 ©0 0 O O
a3 2a> as a3 O 0 O
ay 3(11 as 2(13 ay  a 0

O O O

ay 4 ar 3(l| az 261_7_ aq as
det =bkj)=0
1 0 a 4 an 3(1] as 2a2 ( j)
0 0 1 0 a; 4 a» 3&1
0 0 0 o I 0 a 4

+t0 0 0 0 o0 0 t 0d

See (7.28). It is clear that all possible solutions of b(k;;) = 0 constitute a very small subset of
all real &;;. Thus if we select an arbitrary K, the probability for its entries to meet b(k; ) =0
is.0. Thus all eigenvalues of (A — BK) will be distinct. This establishes the theorem.

With these two theorems, we can now find a K to place all eigenvalues of (A — BK) in
any desirefi positions. If A is not cyclic, we introduce u = w — K;x, as shown in Fig. 8.10,
such that A := A — BK in

X = (A — BK))x + Bw =: Ax + Bw ' (8.60)

is cyclic. Bec_ause (A, B) is controllable, so is (A. B). Thus there exists a p x 1 real vector
v such that (A, Bv) is controllable.? Next we introduce another state feedback w = r — Kx
with K» = vk, where k is a I x n real vector. Then (8.60) becomes

%= (A —BK:»)x +Br = (A — Bvk)x + Br

Because the single-input pair (A, Bv) is controllable, the eigenvalues of (A — Bvk) can

/3_:::

Figure 8.10  State feedback by cyclic design.

2. The chcices of K| and v are not unique. They can be chosen arbitrarily and the probability is 1 that they will meet
the requirements. In Theorem 7.5 of Reference {5]. a procedure is given to choose K, and V with no uncertainty.
The computation, however, is complicated.

v
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be assigned arbitrarily by selecting a k (Theorem 8.3). Combining the two state feedback
u=w—Kixandw=r—K>xas
u=r—(K;+Ky)x=r-Kx

we obtain a K := K, + K; that achieves arbitrary eigenvalue assignment. This establishes
Theorem 8.M3.

8.6.2 Lyapunov-Equation Method

This section will extend the procedure of computing feedback gain in Section 8.2.1 to the
multivariable case. Consider an n-dimensional p-input pair (A. B). Find a p x n real constant
matrix K so that (A — BK) has any set of desired eigenvalues as long as the set does not contain

any eigenvalue of A.

Procedure 8.M1

1. Select an n X n matrix F with a set of desired eigenvalues that contains no eigenvalues of A.
2. Select an arbitrary p x n matrix K such that (F, K) is observable.

3. Solve the unique T in the Lyapunov equation AT — TF = BK.

4. If T is singular, select a different K and repeat the process. If T is nonsingular. we compute
K = KT!, and (A — BK) has the set of desired eigenvalues.

If T is nonsingular, the Lyapunov equation and KT = K imply

(A-BK)T=TF or A-BK=TFT"'

Thus (A — BK) and F are similar and have the same set of eigenvalues. Unlike the SISO case
where T is always nonsingular, the T here may not be nonsingular even if (A. B) is controllable
and (F, K) is observable. In other words, the two conditions are necessary but not sutficient

for T to be nonsingular.

Theorem 8.M4

If A and F have no eigenvalues in common, then the unigue solution T of AT —TF = BK is nonsingular
only if (A. B) is controllable and (F, K) is observable.

Proof: The proof of Theorem 8.4 applies here except that (8.22) must be modified as. for
n=4,

(!31 (I]I a11 1 K
_TA(F) =B AB a%B A%py| 1 ol 1 04| KF
ol I 0 0]]|KF
1 0 o0 o0JllKF

or
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-TA(F)=CXO0 (8.61)

where A(F) is nonsingular and C, X, and O are, respectively, n X np, np x np, and
np x n.If Cor O has rank less than n, then T is singular following (3.61). However,
the conditions that C and O have rank n do not imply the nonsingularity of T. Thus the
controllability of (A, B) and observability of (F. K) are only necessary conditions for T
to be nonsingular. This establishes Theorem 8.M4.  Q.E.D.

Given a controllable (A, B). it is possible to construct an observable (F. K) so that the
T in_Theorem 8.M4 is singular. However, after selecting F, if K is selected randomly and if
(F.K) is observable. it is believed that the probability for T to be nonsingular is 1. Therefore
solving the Lyapunov equation is a viable method of computing a feedback gain matrix to
achieve arbitrary eigenvalue assignment; As in the SISO case, we may choose F in companion
form or in modal form as shown in (8.23). If F is chosen as in (8.23), then we can select K as

- 1 1.0 00 -
R — |: o K= 001 0O
00010 10010
(see Problem 6.16). Once F and K are chosen, we can then use the MATLAB function lvap
to solve the Lyapunov equation. Thus the procedure can easily be carried out.

8.6.3 Canonical-Form Method

We introduced in the preceding subsections two methods of computing a feedback gain matrix
to achieve arbitrary eigenvalue assignment. The methods are relatively simple: however, they
will not reveal the structure of the resulting feedback system. In this subsection. we discuss
a different design that will reveal the effect of state feedback on the transfer matrix. We also
give a transfer matrix interpretation of state feedback.

In this design. we must transform (A.B) into a controllable canonical form. It is an
extension of Theorem 8.2 to the multivariable case. Although the basic idea is the same, the
procedure can become very involved. Therefore we will skip the details and present the final
result. To simplify the discussion, we assume that (8.56) has dimension 6, two inputs. and two
outputs. We first search linearly independent columns of C = {B AB -.. A’B}inorder from
left to right. It is assumed that its controllability indices are g; = 4 and - = 2. Then there
:xists a nonsingular matrix P and X = Px will transform (8.56) into the controllable canonical
orm

IR e A e ST e TR : a2 —01123-
1 0 0 0 E 0 0
. 0 ! 0 0 : 0 0
N 0 ! 0 0 o |*
Qo —r2 —0213 0 —02gy —0 —0om
L 0 0 0 0 1 0
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“ 1 bp
0 0
0 0

+1 0 0 |u (8.62)
0 1
L O 0 |

y=—f31n Bz Buz B Bin 13122],-(
LBt Bz Bz Brw P Bom

Note that this form is identical to the one in (7.104).
We now discuss how to find a feedback gain matrix to achieve arbitrary eigenvalue
assignment. From a given set of six desired eigenvalues, we can form

4, = -2, = - 2, = -
Ag(s) = (* + &us + anas® + @rss + a@na)(s” + @as + &) (8.63)
Let us select K as
—1 - - -
K = 1 b2 oy o 2 T2 o3 — @3
0 1 Q) — @ G2 — Q@2 Gg13 — Q213
Qg — Q4 =2 ~a 22
_ _ _ (8.64)
Oojs — Q21 022 — Q221 Q222 — Q222

Then it is straightforward to verify the following

—@ —@p -0y~ 0 0
1 0 0 0 0 0
0 1 0 0 0 0
A-BK= 0 0 1 0 0 0 (8.65)
—&y  —Gua @3 —@us L —Gm —dm
L O 0 - 0 0 : 1 0

Because (A — BK) is block triangular, for any &1, i = 1.2, 3, 4, its characteristic polynomial
equals the product of the characteristic polynomials of the two diagonal blocks of orders 4
and 2. Because the diagonal blocks are of companion form, we conclude that the characteristic
polynomial of (A —BK) equals the one in (8.63). If K = KP. then (A—BK) = P(A-BK)P™".
Thus the feedback gainK = KP will place the eigenvalues of (A —BK) in the desired locations.
This establishes once again Theorem 8.M3.

Unlike the single-input case. where the feedback gain is unique, the feedback gain matrix
in the multi-input case is not unique. For example, the K in (8.64) yields a lower block-triangular
matrix in (A — BK). It is possible to select a different K to yieid an upper block-triangular
matrix or a block-diagonal matrix. Furthermore, a different grouping of (8.63) will again yield
a different K.



STATE FEEDBACK AND STATE ESTIMATORS

8.6.4 Effect on Transfer Matrices’

In the single-variable case. state feedback can shift the poles of a plant wransfer function g(s) to
any positions and yet has no effect on the zeros. Or, equivalently, state feedback can change the
denominator coefficients, except the leading coefficient 1, to any values but has no effect on the
numerator coefficients. Although we can establish a similar result for the multivariable case
from (8.62) and (8.65), it is instructive to do so by using the result in Section 7.9. Following
the notation in Section 7.9, we express é(s) =C(I— A 'Bas

G(s) =N5D™'() (8.66)
or
§(s) = NED™ (D) (8.67)
where N(s) and D(s) are right coprime and D(s) is column reduced. Define
D(s)¥(s) = u(s) (8.68)
as in (7.93). Then we have ‘
§(s) = NG)V() (8.69)

Let H(s) and L(s) be defined as in (7.91) and (7.92). Then the state vector in (8.62) is
%(s) = L(s)¥(s)
Thus the state feedback becomes, in the Laplace«transform domain,
i(s) = £(s) — K&k(s) =F(s) — KL(s)¥(s) (8.70)

and can be represented as shown in Fig. 8.11.
Let us express D(s) as

D(s) = Dy H() + DicLis) (8.71)
Substituting (8.71) and (8.70) into (8.68) yields
Dy H(s) + DicL($)] ¥(5) = £(s) — KL(s)¥(s)

which implies

F(s) 4+ ) ¥(s) ¥(s) Figure 8.11 Transfer matrix
Dl (s5) Nts) interpretation of state feedback.

x(5)

K L(s)

3. This subsection may be skipped without loss of continuity. The material in Section 7.9 is needed to study this
subsection.
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Dy H(s) + Dy + K)L(5)] ¥(s) = E(s)
Substituting this into (8.69) yields
§(s) = N(s) [DrcH(s) + Dic + K)L(s)]"' £(5)
Thus the transfer matrix fromr to y is
Gr(s) = N(s) [DacH(s) + (D + KIL(s)] ™! (8.72)

The state feedback changes the plant transfer matrix N(s)D~!(s) to the one in (8.72). We see
that the numerator matrix N(s) is not affected by the state feedback. Neither are the column
degree H(s) and the column-degree coefficient matrix Dy, affected by the state feedback.
However, all coefficients associated with L(s) can be assigned arbitrarily by selecting a K.
This is similar to the SISO case.

It is possible to extend the robust tracking and disturbance rejection discussed in Section
8.3 to the multivariable case. It is simpler, however, to do so by using coprime fractions:
therefore it will not be discussed here.

8.7 State Estimators—Multivariable Case

All discussion for state estimators in the single-variable case applies to the multivariable
case: therefore the discussion will be brief. Consider the n-dimensional p-input g-output state
equation

%X = Ax + Bu

(8.73)

y=Cx
The problem is to use available input u and output y to drive a system whose output gives an
estimate of the state x. We extend (8.40) to the multivariable case as

${=(A-LOX+Bu+Ly (8.74)
This is a full-dimensional state estimator. Let us define the error vector as
e(r) 1= x(r) — X(1) (8.7
Then we have, as in (3.41),
¢=(A-—LC)e (8.76)

If (A, C) is observable, then all eigenvalues of (A—LC) can be assigned arbitrarily by choosing
an L. Thus the convergence rate for the estimated state X to approach the actual state X can be
as fast as desired. As in the SISO case, the three methods of computing state feedback gain K
in Sections 8.6.1 through 8.6.3 can be applied here to compute L.

Next we discuss reduced-dimensional state estimators, The next procedure is an extension
of Procedure 8.R1 to the multivariable case.
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Procedure 8.MR1

Consider the n-dimensional g-output observable pair (A, C). It is assumed that C has rank g.

1. Select an arbitrary (n — q) X (n — ¢) stable matrix F that has no eigenvalues in common with those

of A.

. Select an arbitrary {(n — ¢) X ¢ matrix L such that (F., L) is controllable.

"~

. Solve the unique (n — g) X n matrix T in the Lyapunov equation TA — FT = LC.

C
P= [T} (8.77)

is singular, go back to Step 2 and repeat the process. If Pis nonsingular. then the (7 — g)-dimensional
state equation )

W

. If the square matrix of order n

z=Fz+TBu+ Ly (8.78)

<[+ ]

We first justify the procedure. We write (8.79) as

)-[s]

which implies y = Cx and z = TxX. Clearly y is an estimate of Cx. We now show that z is an
estimate of Tx. Let us define

generates an estimate of X.

e:=z—Tx
Then we have
¢=2-Tx =Fz+ TBu + LCx — TAx — TBu
=Fz+(LC-TA)x =F(z - Tx) = Fe

It F is stable, then e(r) — 0 as + — oc. Thus z is an estimate of Tx.

Theorem 8.Mé

1 A and F have no common eigenvalues, then the square matrix

-[1]

where T is the unique solution of TA — FT = LC, is nonsingular only if (A. C) is observable and
(F. L) is controllable.

This theorem can be proved by combining the proofs of Theorems 8.M< and 8.6. Unlike
Theorem 8.6, where the conditions are necessary and sufficient for P to be nonsingular. the
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conditions here are only necessary. Given (A. C). it is possible to construct a controllable pair
(F. L) so that P is singular. However, after selecting F. if L is selected randomly and if (F. L)
is controllable. it is believed that the probability for P to be nonsingular is 1.

8.8 Feedback from Estimated States—Multivariable Case

This section will extend the separation property discussed in Section 8.5 to the multivariable
case. We use the reduced-dimensional state estimator: therefore the development is more
complex.
Consider the n-dimensional state equation
x = Ax + Bu
(8.80)
y=0Cx
and the (n — g)-dimensional state estimator in (8.78) and (8.79). First we compute the inverse
of P in (8.77) and then partition it as {Q; Q-]. where Q isn x ¢ and Qzis i1 x (n —g); thatis,

C ,
(Q Ql][T}:QIC“\‘Q:T:I (8.81)
Then the (n — g)-dimensional state estimator in (8.78) and (8.79) can be written as
z=Fz+TBu+Ly (8.82)
x=Qy+Q:z (8.83)

If the original state is not available for state feedback, we apply the feedback gain matrix to
to yield

u=r—-Kx=r-KQ,y-KQ.z (8.84)
Substituting this into (8.80) and (8.82) yields
x = Ax + B(r - KQ,Cx - KQ:z)

= (A — BKQ,;C)x — BKQ-z + Br (8.83)
z=Fz+TB(r - KQ,;Cx - KQ.z) + LCx
= (LC — TBKQ,C)x + (F — TBKQ-)z + TBr (8.86)

They can be combined as
X _ A-— BKQ[C —BKQ: X ) B
z| |LC-TBKQ,C F-TBKQ, ||z TlT1B f
y=IC 0] m (8.87)

This (2n — ¢)-dimensional state equation describes the feedback system in Fig. 8.8. As in the
SISO case. let us carry out the following equivalence transformation
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BEASE T

ily obtain the
After some manipulation and using TA — FT = LC and (8.81), we can finally

following equivalent state equation .
X A —-BK —BKQ;][X]_{_[ ‘Jr
[ é} =L o F e] L0 -
0 X
y=I[C 0

ion is simi single-variable ca
This equation is similar to (8.55) for the’, Tt’vaﬁame e
applies, without any modification, to the muld e
state feedback and the design of a state e§t1mat01r car(l) oo
the separation property. Furthermore, all eigenvaiues
transfer matrix from r to y equals

Gr(s) =CGI—A+ BK) 'B

se. Therefore all discussion there
other words, the design of a
d out independently. This is
ntrollable from r and the

Given

ﬁ:[z 11]x+[;]u y=[1 1x
-1

- - its
ain k so that the state feedback system has —1 and —2 as i

find the state feedback g 2 any equivalence wransformation.

eigenvalues. Compute k directly without usin,
8.2 Repeat Problem 8.1 by using (8.13).
83 Repeat Problem 8.1 by solving a Lyapunov eguation.

8.4 Find the state feedback gain for the state equation

11 =2 1
x=10 1 1 |x+ 0 lu
0 0 1 1

so that the resulting system has eigenval;es. —n
is the simplest by hand to carry out the design.

8.5 Consider a system with transfer function
s-D+2)
W s blsTa)
B =TI -6+

Is it possible to change the transfer function to
s—1
GO = I DG+

1 table?
by state feedback? Is the resulting system BIBO stable? Asymptotically s

2and —1+ j1. Use the method you think
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8.6 Consider a system with transfer function
R (—-Ds+2)
gls) =
+DE-DG+3)
Is it possible to change the transfer function to

A 1
gf(S) = m

by state feedback? Is the resulting system BIBO stable? Asymptotically stable?

8.7 Consider the continuous-time state equation

1 1 =2 1
=10 1 1 |x+]|0]u

0 0 1 1
y=1[20 0

Let u = pr — kx. Find the feedforward gain p and state feedback gain k so that the

resulting system has eigenvalues —2 and —1 = j 1 and will track asymptotically any step
reference input.

8.8 Consider the discrete-time state equation

11 -2 1
xk+1=]0 1 x[k]+ | O [ulk]
0 0 1

1
1
y[k] = [2 0 Q]x[k}

Find the state feedback gain so that the resulting system has all eigenvalues at z = 0.

Show that for any initial state, the zero-input response of the feedback system becomes
identically zero for k > 3.

8.9 Consider the discrete-time state equation in Problem 8.8. Let u[k] = prlk] — kx[k],
where p is a feedforward gain. For the k in Problem 8.8, find a gain p so that the output
will track any step reference input. Show also that y[k] = r[£] for k > 3. Thus exact
tracking is achieved in a finite number of sampling periods instead of asymptotically.

This is possible if all poles of the resulting system are placed at z = 0. This is called the
dead-bear design.

8.10 Consider the uncontrollable state equation

2 1 0 0 0
e=|0 2 0 0

0 0 -1 0 1

00 0 -1 1

Is it possible to find a gain Kk so that the equation with state feedback u = r — kx has
eigenvalues —2, —2, —1, —1? Is it possible to have eigenvalues ~2, —2, ~2, —1? How
about —2, =2, ~2, —2? Is the equation stabilizable?
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8.11 Design a full-dimensional and a reduced-dimensional state estimator for the state equa-
tion in Problem 8.1. Select the eigenvalues of the estimators from {—3, —2 + j2}. Chapter

8.12 Consider the state equation in Problem 8.1. Compute the transfer function from r to y of
the state feedback system. Compute the transfer function from  to y if the feedback gain
is applied to the estimated state of the full-dimensional estimator designed in Problem
8.11. Compute the transfer function from r to y if the feedback gain is applied to the
estimated state of the reduced-dimensional state estimator also designed in Problem 8.11.
Are the three overall transfer functions the same?

8.13 Let
> 01 o - Pole Placement and
B B Model Matching
2 100 0 2
Find two different constant matrices K such that {A — BK) has eigenvalues —4 % 3
and -5 +4;.

9.1 Introduction

We first give reasons for introducing this chapter. Chapter 6 discusses state-space analysis
(controllability and observability) and Chapter 8 introduces state-space design (state feedback
and state estimators). In Chapter 7 coprime fractions were discussed. Therefore it is logical to
discuss in this chapter their applications in design.

One way to introduce coprime fraction design is to develop the Bezout identity and to
parameterize all stabilization compensators. See References [3, 6, 9, 13, 20]. This approach
is important in some optimization problems but is not necessarily convenient for ail designs.
See Reference [8]. We study in this chapter only designs of minimum-degree compensators
to achieve pole placement and model matching. We will change the problems into solving
linear algebraic equations. Using only Theorem 3.2 and its corollary. we can establish all
needed results. Therefore we can bypass the Bezout identity and some polynomial theorems
and simplify the discussion.

Most control systems can be formulated as shown in Fig. 8.1. That is. given a plant with
input « and output v and a reference signal r. design an overall system so that the output y
will follow the reference signal r as closely as possible. The plant input « is also called the
actuating signal and the plant output y. the controlled signal. If the actuating signal u depends
only on the reference signal r as shown in Fig. 9.1(a). it is called an open-toop control. If «
depends on r and y. then it is called a closed-loop or feedback control. The open-loop control
is. in general, not satisfactory if there are plant parameter variations due to changes of load,
environment, or aging. It is also very sensitive to noise and disturbance, which often exist in
the real world. Therefore open-loop control is used less often in practice.

269
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The simplest is the unity-feedback

i ations. ¢
There are many possible feedback configur. T e he compensatr e

configuration shown in Fig. 9.1(b) in which the constan
wransfer function C(s) are to be designed. Clearly we have
F y 9.1
i(s) = CHpris) - ()] .1
nce signal r and the plant output y drive essentially the same
ng si;nal. Thus the configuration is said to have one degree
t=J

figuration also has one degree of freedom.
e estimator in Fig. 8.8 can be redrawn as shown

Because p is a constant, the refere
compensator to generate an actuati
of freedom. Clearly the open-loop con
The connection of state feedback and stat

in Fig. 9.1(c). Simple manipulation yields
i6) = ) = 2D 5(5) ©.2)
1+ Ci(sk 1+ Ci(s)

: figuration
We see that r and y drive two independent compensators to generate a i. Thus the contig

is said to have two degrees of freedom.
A more natural two-degree-of-freedom con

9.1) as

figuration can be obtained by modifying

fi(s) = C1()F(s) — Ca(s)¥(s) (9.3)
and is plotted in Fig. 9.1(d). This is the most gc'eneralicoptrol signal bzc;:;sge;zfi}; :; ;Satr}llc:e);
drives a compensator, which we have freedom in designing. Thu; no C O e, for
degrees of freedom. There are many possible twg—degree—of—free‘ om mmje, mnﬁéumﬁon;
ex;mple, Reference [12]. We call the one in Fig. 9.1@) the mo-;:zf“dbaCk confgurater
the one in Fig. 9.1(c) the controller-estimator ot plant-mput—outpual edbact s Sugable o
Because the two-parameter configuration seems to be. more n}ziturter e s ueing the
practical application, we study only this configuration in this chapter.

plant~input—output-feedback configuration, see Reference [6].

v r =+ Cls) i 2(5) ¥
I cw L IO : ~ ;——v‘
(a)
(b)
+ v r + u §5) ¥
-~ . &) - Culs) >
+ _+
Ci(s) Ca(s) o
(d)
(©)

Figure 9.1 Control configurations.

9.1 Introduction 271

The plants studied in this chapter will be limited to those describable by strictly proper
rational functions or matrices. We also assume that every transfer matrix has full rank in the
sense that if G(s) isg x p,thenithasag x g or p x p submatrix with a nonzero determinant.
If G(s) is square, then its determinant is nonzero or its inverse exists. This is equivalent to
the assumption that if (A, B, C) is a minimal realization of the transfer matrix, then B has full
column rank and C has full row rank.

The design to be introduced in this chapter is based on coprime polynomial fractions
of rational matrices. Thus the concept of coprimeness and the method of computing coprime
fractions introduced in Sections 7.1 through 7.3 and 7.6 through 7.8 are needed for studying
this chapter. The rest of Chapter 7 and the entire Chapter 8, however, are not needed here. In
this chapter, we will change the design problem into solving sets of linear algebraic equations.
Thus the method is called the linear algebraic method in Reference [7].

For convenience, we first introduce some terminology. Every transfer function §(s) =
N{(s)/D(s) is assumed to be a coprime fraction. Then every root of D(s) is a pole and every
root of N(s) is a zero. A pole is called a stable pole if it has a negative real part; an unstable
pole if it has a zero or positive real part. We also define

e Minimum-phase zeros: zeros with negative real parts

o Nonminimum-phase zeros: zeros with zero or positive real parts

Although some texts call them stable and unstable zeros, they have nothing to do with stability.
A transfer function with only minimum-phase zeros has the smallest phase among all transfer
functions with the same amplitude characteristics. See Reference [7. pp. 284-285]. Thus we
use the aforementioned terminology. A polynomial is called a Hurwitz polynomial if all its
roots have negative real parts.

9.1.1 Compensator Equations—Classical Method

Consider the equation
A()D(5) + B(s)N(s) = F(s) 9.4)

where D(s), N(s), and F(s) are given polynomials and A(s) and B(s) are unknown poly-
nomials to be solved. Mathematically speaking, this problem is equivalent to the problem of
solving integer solutions A and Bin AD + BN = F, where D, N, and F are given integers.
This is a very old mathematical problem and has been associated with mathematicians such
as Diophantine. Bezout, and Aryabhatta.! To avoid controversy, we follow Reference [3] and
call it a compensator equation. All design problems in this chapter can be reduced to solving
compensator equations. Thus the equation is of paramount importance.

We first discuss the existence condition and general solutions of the equation. What will
be discussed, however, is not needed in subsequent sections and the reader may glance through
this subsection.

I. See Reference {21, last page of Preface].
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Theorem 9.1
Given polynomials D(s) and N{s), polynomial solutions A(s) and B(s) exist in (9.4) for any

polynomial F(s) if and only if D(s) and N (s) are coprime.

Suppose D(s) and N(s) are not coprime and contain the same factor s + a. Then the
factor s + a will appear in F(s). Thus if F(s) does not contain the factor, no solutions exist in
(9.4). This shows the necessity of the theorem.

If D(s) and N (s) are coprime, there exist polynomials A(s) and B(s) such that

A(s)D(s) + B(s)N{s) = (9.5)

[ts matrix version is called the Bezour identiry in Reference [13]. The polynomials A(s) and
B(s) can be obtained by the Euclidean algotithm and will not be discussed here. See Reference
[6, pp. 578-580]. For example, if D(s) = s?—land N(s) = s — 2, then A(s) = 1/3 and
B(s) = —(s + 2)/3 meet (9.5). For any polynomial F(s), (9.5) implies

F()A(s)D(s) + F(s)B(s)N(s) = F(s) (9.6)

Thus A(s) = F(S)A-(S) and B(s) = F(x)fi(s) are solutions. This shows the sufficiency of the
theorem.

Next we discuss general solutions. For any D(s) and N(s), there exist two polynomials
A(s) and é(s) such that

A)D(s) + B(s)N(s) =0 9.7)

Obviously A(x) = —N(s) and B(s) = D(s) are such solutions. Then for any polynomial

Q(s),

AS) = AGYF(s) + Q)As)  B(s) = BO)IF(s) + Q) B(s) (9.8)
are general solutions of (9.4). This can easily be verified by substituting (9.8) into (9.4) and
using (9.5) and (9.7).

ExampLE 9.1 Given D(s) = 57 —~ 1. N(s) =5 — 2.and F(s) = 57 + 4s? + 65 + 4. then
Alsy =15t 4457 + 65 +4) + Q) =5 +2)
Bis)=—1(s + 0" + 457 + 65 +4) + Q(s)(s* = 1) (9.9)
for any polynomial Q(s), are solutions of (9.4).
Although the classical method can yield general solutions, the solutions are not necessarily
convenient to use in design. For example, we may be interested in solving A(s) and B(s) with

least degrees to meet (9.4). For the polynomials in Example 9.1, after some manipulation, we
find that if Q(s) = (s + 65 + 15)/3, then (9.9) reduces to

Als) =5+ 34/3 B(s) = (=225 —23)/3 (9.10)

9.2 Unity-Feedback Configuration—Pole Placement 273

They are the least-degree solutions of Example 9.1. In this chapter, instead of solving the
compensator equation directly as shown, we will change it into solving a set of linear algebraic
equations as in Section 7.3. By so doing. we can bypass some polynomial theorems.

9.2 Unity-Feedback Configuration—Pole Placement

Consider the unity-feedback system shown in Fig. 9.1(b). The plant transfer function §(s) is
assumed to be strictly proper and of degree 1. The problem is to design a proper compensator
C(s) of least possible degree m so that the resulting overall system has any set of n -+ m desired
poles. Because all transfer functions are required to have real coefficients, complex conjugate
poles must be assigned in pairs. This will be a standing assumption throughout this chapter.

Let ¢(s) = N(s)/D(s) and C(s) = B{(s)/A(s). Then the overall transfer function from
r to v in Fig. 9.1(b) is

B(s) N(s)
als) = PCE)EG) PAs) D)
’ 1+ C(5)4(s) 1+@N(g)
A(s) D(s)

_ pBSIN(s) ©.11)
AS)D(s) + B(s)N(s)

In pole assignment, we are interested in assigning all poles of g,(s) or, equivalently, all roots
of A(s)D(s) + B(s)N(s). In this design, nothing is said about the zeros of 8,(s). As we
can see from (9.11), the design not only has no effect on the plant zeros (roots of N(s))
but also introduces new zeros (roots of B(s)) into the overall transfer function. On the other
hand, the poles of the plant and compensator are shifted from D(s) and A(s) to the roots of
A(s)D(s) + B(s)N(s). Thus feedback can shift poles but has no effect on zeros.

Given a set of desired poles, we can readily form a polynomial F(s) that has the desired
poles as its roots. Then the pole-placement problem becomes one of solving the polynomial
equation

AG)D() + Bs)N(s) = F(s) (9.12)

Instead of solving (9.12) directly, we will transform it into solving a set of linear algebraic
equations. Let deg N(s) < deg D(s) = n and deg B(s) < deg A(s) = m. Then F(s)in(9.12)
has degree at most n + m. Let us write

D(s) =Dop+ Dis+ D:s™+ -+ D,s" D, #0

N(s) =Ny + Nis + Nas™+ -+ Nps"

A) = Ao+ Aps + Aos™ 4 Ays™

B(s) = By + Bis + Bas™ + - - + Bjs™

F(s) = Fo-+ Fis + Fos™ 4 -+ F 5"t

where all coefficients are real constants, not necessarily nonzero. Substituting these into (9.12)
and matching the coefficients of like powers of s, we obtain
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AoDp + BoNy = Fo
AoDy + BoN, + A Dy + BNy =F

A,,,Dn + BmNn = Fn+m

There are atotal of (n +m + 1) equations. They can be arranged in matrix form as

[AO BO Al Bl Am Bm]srn:[FO Fl Fz F"'H"] (913)
with
i~ Do Dy ,‘i Dy 0 0 _1
No Ny oo N 0 0
0 Dy --- Dy D, - 0
G 0 No -+ Naog Moo 0 (9.14)
L 0 Q - 0 No - N, |

If we take the transpose of (9.13), then it becomes the standard form studied in Theoremsr;sl.ql
and 3.2. We use the form in (9.13) because it can be extended directly to the matnx case. 1he
matrix S,, has 2(m + 1) rows and (n +m + 1) columns an(jl is formed from the coefﬁclem(s1
of D(s) and N (s). The first two rows are simply the coefficients of Q(s) and N(;);lr;ange

in ascending powers of 5. The next two rows are the first two rows s}}lfted to the Ifight 5] gge
position. We repeat the process until we have (m + 1) sets of coefficients. The left- arll‘-csx e
row vector of (9.13) consists of the coefficients of the compensat'or C(s)to be solved: f (s)f
has degree m, then the row vector has 2(m + 1) em@es. The right-hand-side row Yectgrlcz)

(9.13) consists of the coefficients of F(s). Now 59011v3mg the compensator equation in 9.12)

ving the linear algebraic equation in {9.13). '

bec()i:;;lng éorollary 3.2,gwe concﬁxde that (9.13) has a solutio‘n for any F(s) }f} and or;ly
if S,, has full column rank. A necessary condition for S,, to have full column rank is that §,,

is square or has more rows than columns, that is,
2m+ 1) zn+m+1 or m>n—1

Ifm < n— 1, then S,, does not have full column rank and solutions may exist_ fgr some F .(5).
but not for every F (s). Thus if the degree of the compensator is less thann — 1, it is not possible

to achieve arbitrary pole placement. .
Ifm = n—1,S,_{ becomes a square matrix of order 2a. It is the transpose of the Sylvester

resultant in (7.28) with n = 4. As discussed in Section 7.3, Sf,_, is nonsingular if and onlz' 15
D(s) and N (s) are coprime. Thus if D(s) and N (s) are copnme, t?xen S,_1 has rank 27 ( 1;
column rank). Now if m increases by 1, the number of columns increases by 1 but the the
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number of rows increases by 2. Because D, # 0, the new D row is linearly independent of its
preceding rows. Thus the 2(n + 1) x (2n + 1) matrix S, has rank (21 + 1) (full column rank).
Repeating the argument, we conclude that if D(s) and N(s) are coprime and if m = n — 1,
then the matrix S,, in (9.14) has full column rank.

Theorem 9.2

Consider the unity-feedback system shown in Fig. 9.1(b). The plant is described by a strictly proper
transfer function 2(s) = N(s)/D(s) with N(s) and D(s) coprime and deg N (s) < deg D(s) = n.
Letm > n — 1. Then for any polynomial F (s) of degree (n + m}), there exists a proper compensator
C(s) = B(s)/A(s) of degree m such that the overall transfer function equals

: pN(s)B(s) _ PN()B()
A(s)D(s) + B(s)N(s) F(s)

Furthermore, the compensator can be obtained by solving the linear algebraic equation in (9.13).

éo(s) =

As discussed earlier, the matrix S,, has full column rank for m > n — 1; therefore, for
any (n + m) desired poles or. equivalently, for any F (s) of degree (n + m), solutions exist in
(9.13). Next we show that B(s)/A(s) is proper or A, # 0. If N(s)/D(s) is strictly proper,
then N, = 0 and the last equation of (9.13) reduces to

AnD, + BmNn =D, An = Fn+m

Because F(s) has degree (n + m), we have F,., # 0 and, consequently, A, # 0. This
establishes the theorem. If m = n — 1, the compensator is unique; if m > n — 1, compensators
are not unique and free parameters can be used to achieve other design objectives, as we will
discuss later.

9.2.1 Regulation and Tracking

Pole placement can be used to achieve the regulation and tracking discussed in Section 8.3.In
the regulator problem, we have r = 0 and the problem is to design a compensator C(s) so that
the response excited by any nonzero initial state will die out at a desired rate. For this problem.
if all poles of §,(s) are selected to have negative real parts, then for any gain p, in particular
p = 1 (no feedforward gain is needed), the overall system will achieve regulation.

We discuss next the tracking problem. Let the reference signal be a step function with
magnitude a. Then 7(s) = a/s and the output 3(s) equals

$(5) = Zols)F(s) = éom?

If 3,(s) is BIBO stable, the output will approach the constant §,(0)a (Theorem 5.2). This can
also be obtained by employing the final-value theorem of the Laplace transform as

lim y(¢) = lim s3(s) = §,(0)a

(g} s-=0

Thus in order to track asymptotically any step reference input, g, (s) must be BIBO stable and
8,(0) = 1. The transfer function from r to y in Fig. 9.1(b) is 8,(s) = pN(s)B(s)/F(s). Thus
we have
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Thus in order to track any step reference input, we require By # 0 and Ny % 0. The constant
By is a coefficient of the compensator and can be designed to be nonzero. The coefficient N
is the constant term of the plant numerator. Thus if the plant transfer function has one or more
zeros ats = 0, then Ny = 0 and the plant cannot be designed to track any step reference input.
This is consistent with the discussion in Section 8.3.

If the reference signal is a ramp function or r(t) = at, for t > 0, then using a similar
argument, we can show that the overall transfer function &,(s) must be BIBO stable and has
the properties £,(0) = 1 and g/ (0) = O (Problems 9.13 and 9.14). This is summarized in the
following.

p (5.15)

« Regulations g,(s) BIBO stable.
» Tracking step reference input<> §,(s) BIBO stable and £,(0) = 1.
o Tracking ramp reference input<> g,(s) BIBO stable, §,(0) = 1, and §,(0) = 0.

ExaMpLE 9.2 Given a plant with transfer function (s) = (s — 2)/(s% = 1), find a proper
compensator C(s) and a gain p in the unity-feedback configuration in Fig. 9.1(b) so that the
output y will track asymptotically any step reference input.

The plant transfer function has degree n = 2. Thus if we choose m = 1, all three poles of
the overall system can be assigned arbitrarily. Let the three poles be selected as —2, —1 & il
they spread evenly in the sector shown in Fig. 8.3(a). Then we have

FS)=@+DG+1+DG+1—jD)=(+2("+25+2) =s> +4s° + 65+ 4

We use the coefficients of D(s) = —1 +0.54+1-s2and N(s) = =2+ 1.5 +0- s> to form
(9.13) as

—1 0 1 0
-2 1 0 0
[Ao By A, B)] =4 6 4 1)
0 -1 0 1
0 -2 1 0

Its solution is
A =1 Ay =134/3 By =-22/3 By = -23/3

This solution can easily be obtained using the MATLAB function / (slash), which denotes
matrix right division. Thus we have?

2. This is the solution obtained in (9.10). This process of solving the polynomial equation in (9.13) is considerably
simpler than the procedure discussed in Section 9.1.1.

e
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A(s) =5 +34/3 B(s) = (-22/3)s — 23/3 = (-225 — 23)/3
and the compensator

_ B(s)  —(23+225)/3 =225 -123

Cls) = = -
© =% 3473 +5 35 + 34

(9.16)

will place the three poles of the overall system at —2 and —1 = j 1. If the system is designed to
achieve regulation, we set p = 1 (no feedforward gain is needed) and the design is completed.
To design tracking. we check whether or not Ny # 0. This is the case; thus we can find a 14
so that the overall system will track asymptotically any step reference input. We use (9.15) to
compute p:

P= BgNg - (—-23/3)(~2)
Thus the overall transfer function from r to y is

. 6 [—(22s5 +23)/31(s — 2) ~2(225 +23)(s - 2)
8o(8) = = = , (9.18)
23 (s +4s3+65+4) 23(s3 + 452 + 65 + 4)

©.17

Because g,(s) is BIBO stable and g,(0) = 1, the overall system will track any step reference
input.

?.2.2 Robust Tracking and Disturbance Rejection

Consider the design problem in Example 9.2. Suppose aftgr the design is completed, the plant
transfer function g(s) changes. due to load variations, to g(s) = (s — 2. 1)/(s* — 0.95). Then
the overall transfer function becomes
. —-225 -23 s -2.1
o PCWEW) 6 35334 5-005
SO 1+ CHE(s) 231+—225—23 s=21
35 +34 5-10.95
—6(22s + 23)(s = 2.1)

= 9.19
23(35% + 1252 + 20.35s + 16) ©-19)

This g,(s) is still BIBO stable, but 2,(0) = (6 - 23 - 2.1)/(23 - 16) = 0.7875 % 1. If the
reference input is a unit step function, the output will approach 0.7875 as 1 — oc. There is
a tracking error of over 20%. Thus the overall system will no longer track any step reference
input after the plant parameter variations, and the design is said to be nonrobust.

In this subsection. we discuss a design that can achieve robust tracking and disturbance
rejection. Consider the system shown in Fig. 9.2, in which a disturbance enters at the plant
input as shown. The problem is to design an overall system so that the plant output y will track
asymptotically a class of reference signal r even with the presence of the disturbance and with
plant parameter variations. This is called robust tracking and disturbance rejection.

Before proceeding. we discuss the nature of the reference signal r(r) and the disturbance
w(r). If both (+) and w(r) approach zero as t — oo, then the design is automatically
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Figure 9.2 Robust tracking and disturbance rejection.
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Ny (s)
NS) s = =l (9.20)
Fs)=LIrM]= Do) W(s) = LIw(D)] 0.6 (
nknown
jals; however, N,(s) and N,(s) a{e u
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Theorem 9.3 o
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then there exists a proper compensator such that the overall system will track r

asymptotically and robustly.

Consider the unity-feedback system sh

N(s)/D(s). then D(s)¢(s) and N(s) arei
coprime. Thus there exists a proper compensator B(s)/A(s) such that the polynomia

F(s)in
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8.3(a). We claim that the compensator

ide the sector shown in Fig.
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B(s)
A()o(s)

as shown in Fig. 9.2(a) will achieve the design. Let us compute the transfer function from
wto y:

C(S) =

N(s)/D(s)
1+ (B(s)/Als)@(s))(N(s)/D(s))
_ N(s)A(s)g(s) _ NEABGe ()
CAGD®SG) +BENG)  F()
Thus the output excited by w(t) equals

gyw(S) =

N()A(s)P(s) Ny(s)
F(s) Dy(s)
Because all unstable roots of D, (s) are canceled by ¢ (s), all poles of ¥,,(s) have negative
real parts. Thus we have y, (r) — 0 ast — oo. In other words, the response excited by
w(t) is asymptotically suppressed at the output.
Next we compute the output ¥,(s) excited by 7 (s):
B(s)N(s) R
;
A)D(s)p(s) + B(s)N(s)

Fu(s) = gy (D)W (s) = 9.21)

_9r(5) = é)r(S);(S) =

(s)

Thus we have

e(s) :=F(s) = ¥ () = (1 = gy, (5))F(s)
_ A()D(s)¢(s) N, (s)
T F(s)  Di(s)

Again all unstable roots of D,(s) are canceled by ¢(s) in (9.22). Thus we conclude
r{t) — y,(t) —» 0ast — oo. Because of liriearity, we have y(t) = y, (1) + y,(r) and
r(t) — y(t) — 0as¢ — oc. This shows asymptotic tracking and disturbance rejection.
From (9.21) and (9.22), we see that even if the parameters of D(s), N(s), A(s), and B(s)
change, as long as the overall system remains BIBO stable and the unstable roots of D, (s)

and D, (s) are canceled by ¢ (s), the system still achieve tracking and rejection. Thus the
design is robust:  Q.E.D.

(9.22)

This robust design consists of two steps. First find a model 1/¢(s) of the reference signal
and disturbance and then carry out pole-placement design. Inserting the medel inside the loop
is referred to as the intemal model principle. If the model 1/¢ (s) is not located in the forward
path from w to y and fromr to e, then ¢ (s) will appear in the numerators of §,,,(s) and g.,(s)
(see Problem 9.7) and cancel the unstable poles of w(s) and 7(s), as shown in (9.21) and
(9.22). Thus the design is achieved by unstable pole-zero cancellations of ¢ (s). It is important
to mention that there are no unstable pole-zero cancellations in the pole-placement design and
the resulting unity-feedback system is totally stable, which will be defined in Section 9.3. Thus
the internal model principle can be used in practical design.

In classical control system design, if a plant transfer function or a compensator transfer
function is of type 1 (has one pole at s = 0), and the unity-feedback system is designed to be
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BIBO stable, then the overall system will track asymptotically and robustly any step reference
input. This is a special case of the internal model principle.

ExaMpPLE 9.3 Consider the plant in Example 9.2 or gis) = (s = 2)/(s> — 1). Design a
unity-feedback system with a set of desired poles to track robustly any step reference input.

First we introduce the internal model ¢ (s) = 1/s. Then B(s)/A(s) in Fig. 9.2(a) can be
solved from

A(5)D(s)9(s) + B(s)N(s) = F(s}
Because 5(5) := D(s)o(s) has degree 3, we may select A(s) and B(s) to have degree 2. Then
Fis) has degree 5. If we select five desired poles as =2, —2 % jl.and —1= j2.then we have
Fs) = (s +2)(s?+ 45 + 5)(s? + 25 +5)
=55 + 85" + 305> + 665° + 855 + 50

Using the coefficients of D(s) = (s?—1)s = 0—s+0-s2+s3and N(s) = —2+5+0-57+0-s?,
we form

r 0 -1 0 {0 0-}
-2 1 0o 0 0

0 1
[Ao Bo Ay By Az Ba] — (50 85 66 30 8 1]

0 0 0o -1 O 1
L O 0 -2 1 0 0

Its solution is [127.3 =25 0 —118.7 1 —96.3]. Thus we have
B(s) —96.3s> — 118.7s — 25

A(s) 514+ 127.3
and the compensator is
B(s) —96.35% — 118.7s — 25
C(s) = — = -
A(s)e(s) (s2+127.3)s

Using this compensator of degree 3. the unity-feedback system in Fig. 9.2(a) will track robustly
any step reference input and has the set of desired poles.

9.2.3 Embedding Internal Models

The design in the preceding subsection was achieved by first introducing an internal model
1/¢(s)and then designing a proper B(s)/A(s). Thus the compensator B(s)/A(s)¢(s) is always
strictly proper. In this subsection, we discuss a method of designing a biproper compensator
whose denominator will include the internal model as a factor as shown in Fig. 9.2(b). By so
doing, the degree of compensators can be reduced.
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Consider
A(s)D(s) + B(s)N(s) = F(s)

If deg D(s) = r and if deg A(s) = n — 1, then the solution A(s) and B(s) is unique. If
we increase the degree of A(s) by one, then solutions are not unique, and there is one free
parameter we can select. Using the free parameter, we may be able to include an internal model
in the compensator, as the next example illustrates.

ExampLE 9.4 Consider again the design problem in Example 9.2. The degree of D(s)is 2. If
A(s) has degree 1, then the solution is unique. Let us select A(s) 10 have degree 2. Then F(s)
must have degree 4 and can be selected as

F(s) = (s> +ds +5)(s> + 25 +5) =5 +65° + 1857 + 305 +25

We form

{Ag Bg A1 Bi Ay B] =1{25 30 18 6 1] (9.23)

1
L o 0 -2 1 0d
In order for the proper compensator

Cls) = By + Bis + B;sz1
Ao + A]S + AgS'

to have /s as a factor, we require Ag = 0. There are five equations and six unknowns in
(9.23). Thus one of the unknowns can be arbitrarily assigned. Let us select Ag = 0. This is
equivalent to deleting the first row of the 6 % 5 matrix in (9.23). The remaining 5 x 5 matrix
is nonsingular, and the remaining five unknowns can be solved uniquely. The solution is

[Ag By A; By Ay Bol=[0 —12.5 348 —387 1 —28.8]

Thus the compensator is

B(s) —28.857 —38.7s — 123
Cis)=——= ,
A(s) s2+ 34.8s

This biproper compensator can achieve robust tracking. This compensator has degree 2, one
less than the one obtained in Example 9.3. Thus this is a better design.

In the preceding example, we mentioned that one of the unknowns in (9.23) can be
arbitrarily assigned. This does not mean that any one of them can be arbitrarily assigned. For
example, if we assign A> = O or, equivalently, delete the fifth row of the 6 x 5 matrix in (9.23).
then the remaining square matrix is singular and no solution may exist. In Example 9.4, if we
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select Ag = 0 and if the remaining equation in (9.23) does not have a solution, then we must
increase the degree of the compensator and repeat the design. Another way to carry out thei
design is to find the general solution of (9.23). Using Corollary 3.2, we can express the general

solution as

[A Bo A1 By Ay Bil=[1 —13 343 —3871 —283]+02 =1 —10 0 1]

with one free parameter «. If we selecta = —0.5, then Aq = 0 and we will obtain the same
compensator. ' )
We give one more example and discuss a different method of embedding ¢ (s) in the

compensator.

ExAMPLE 9.5 Consider the unity-feedback system in Fig. 9.2(b) with £(s) = 1/s. Design a
proper compensator C(s) = B(s)/ A(s) so that the system will track asymptotically any step
reference input and reject disturbance w(r) =4 sin(2t + 8) with un@own a and 6.

In order to achieve the design, the polynomial A(s) must contain the disturbance .model
(52 + 4). Note that the reference model s is not needed because the plant already contains the

factor. Consider

A(s)D(s) + B(s)N(s) = F(s)

hus if m = n ~ 1 = 0, then the solution is

For this equation, we have deg D(s) =n = 1. T
If m = 2, then we have two free parameters

unique and we have no freedom in assigning A(s).
that can be used to assign A(s). Let

AGs) = Ao(s>+4)  B(s) = Bo + Bis + Bas’

Define

7 7 A 7 2,3

D(s) = D(s)(s2 +4) = Dy + Dis + Dys? 4+ Das® =0+4s+0- 5"+
We write A(s)D(s) + B(s)N(s) = F(s) as
AoD(s) + B(s)N(s) = F(5)

Equating its coefficients, we obtain
Do Dl Dz D3
No Ny 0 O
No N|
0 No M

(Ao By B1 Bl | ~ (R P F B3]
0

For this example, if we select
F(s)=(s+2)(s*+2s+2) =s3+4sP +65+4

then the equation becomes

[Ao Bo By Ba) =[4641]

[« BN =T -]
(=T =
- o O ©
—_— 0 O -
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Its solution is [1 4 2 4]. Thus the compensator is

B(s) 4s7+25+4  4s7+25+4

A Ix(s2+4)  s7+4

This biproper compensator will place the poles of the unity-feedback system in the assigned

positions, track any step reference input. and reject the disturbance asin(2r + ), both
asymptotically and robustly.

C(s) =

9.3 implementable Transfer Functions

Consider again the design problem posed in Fig. 8.1 with a given plant transfer function
2(s). Now the problem is the following: given a desired overall transfer function g,(s). find
a feedback configuration and compensators so that the transfer function from r to y equals
80(s). This is called the mode! matching problem. This problem is clearly different from the
pole-placement problem. In pole placement, we specify only poles; its design will introduce
some zeros over which we have no control. In model matching, we specify not only poles but
also zeros. Thus model matching can be considered as pole-and-zero placement and should
yield a better design.

Given a proper plant transfer function §(s), we claim that g,(s) = 1 is the best possible
overall system we can design. Indeed, if g,(s) = 1, then y(¢) = r(¢t) for ¢t > 0 and for any
r(t). Thus the overall system can track immediately (not asymptotically) any reference input
no matter how erratic r (1) is. Note that although y(¢) = r(¢), the power levels at the reference
input and plant output may be different. The reference signal may be provided by turning a
knob by hand; the plant output may be the angular position of an antenna with weight over
several tons.

Although §,(s) = 1 is the best overall system, we may not be able to match it for a given
plant. The reason is that in matching or implementation, there are some physical constraints
that every overall system should meet. These constraints are listed in the following:

1. All compensators used have proper rational transfer functions.

2. The configuration selected has no plant leakage in the sense that all forward paths from r
to y pass through the plant.

3. The closed-loop transfer function of every possible input—output pair is proper and BIBO
stable.

Every compensator with a proper rational transfer function can be implemented using the
op-amp circuit elements shown in Fig. 2.6. If a compensator has an improper transfer function,
then its implementation requires the use of pure differentiators, which are not standard op-
amp circuit elements. Thus compensators used in practice are often required to have proper
transfer functions. The second constraint requires that all power passes through the plant and
no compensator be introduced in parallel with the plant. All configurations in Fig. 9.1 meet
this constraint. In practice. noise and disturbance may exist in every component. For example,
noise may be generated in using potentiometers because of brush jumps and wire irregulanty.
The load of an antenna may change because of gusting or air turbulence. These will be modeled
as exogenous inputs entering the input and output terminals of every block as shown in Fig. 9.3.
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Clearly we cannot disregard the effects of these exogenous inputs on the system. Although the
plant output is the signal we want to control, we should be concerned with all variables inside
the system. For example, suppose the closed-loop transfer function from r to « is not BIBO
stable: then any r will excite an unbounded u and the system will either saturate or burn out. If
the closed-loop transfer function from n, to u is improper, and if n, contains high-frequency
noise. then the noise will be greatly amplified at # and the amplified noise will drive the system
crazy. Thus the closed-loop transfer function of every possible input—output pair of the overall
system should be proper and BIBO stable. An overall system is said to be well posed if the
closed-loop transfer function of every possible input—output pair is proper; it is totally stable
if the closed-loop transfer function of every possible input~output pair is BIBO stable.

Total stability can readily be met in design. If the overall transfer function from r to y is
BIBO stable and if there is no unstable pole—zero cancellation in the system, then the overall
system is totally stable. For example. consider the system shown in Fig. 9.3(a). The overall
transfer function from r to y is

1

=T

which is BIBO stable. However, the system is not totally stable because it involves an
unstable pole-zero cancellation of (s — 2). The closed-loop transfer function from n; to y
is 5/(s — 2)(s + 1), which is not BIBO stable. Thus the output will grow unbounded if noise
na, even very small, enters the system. Thus we require BIBO stability not only of g,(s) but
also of every possible closed-loop transfer function. Note that whether or not 2(s) and C(s)
are BIBO stable is immaterial.

T}}e condition for the unity-feedback configuration in Fig. 9.3 to be well posed is
C(cx)1§(00) # —1 (Problem 9.9). This can readily be established by using Mason'’s formula.
See Reference {7, pp. 200-201]. For example, for the unity-feedback system in Fig. 9.3(b),
we have C(00)g(00) = (—1/2) x 2 = —1. Thus the system is not well posed. Indeed, the

closed-loop transfer function from r to y is
R (—s +2)(2s +2
Sols) = _—)_.._’__)
s+3

which }s iAmproper. The condition for the two-parameter configuration in Fig. 9.1(d) to be well
Posed is §(00)Ca(o0) # —1. In the unity-feedback and two-parameter configurations, if g(s)
is strictly proper or §(c0) = 0, then g (oc)C(o0) = 0 # ~1 forany proper C(s) and the overall
systems will automatically be well posed. In conclusion, total stability and well-posedness can
easily be met in design. Nevertheless. they do impose some restrictions on g,(s).

l"l n ns ny
Lio—=2 éa“ ! l y o I+ S
s 52

- _ 25 + 1
' C(s) &1(s) C(s)

(a) b)

Figure 9.3 Feedback systems.
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Definition 9.1 Given a plant with proper transfer function §(s), an overall transfer
function g,(s) is saidto be implementable if there exists a no-plant-leakage configuration
and proper compensators so that the transfer function from r 1o y in Fig. 8.1 equals
8.(s) and the overall system is well posed and totally stable.

If an overall transfer function g,(s) is not implementable, then no matter what configura-
tion is used to implement it, the design will violate atleast one of the aforementioned constraints.
Therefore, in model matching, the selected g,(s) must be implementable; otherwise, it is not
possible to implement it in practice.

Theorem 9.4

Consider a plant with proper transfer function £(s). Then 8,(s) is implementable if and only if g,(s)
and

is) o= 529 9.24)
g(s)

are proper and BIBO stable.

Corollary 9.4

Consider a plant with proper transfer function g(s) = N(s)/D(s). Then 8.(5) = E(s)/F(s)is
implementable if and only if

1. All roots of F(s) have negative real parts (£ (s) is Hurwitz).
2. Deg F(s) —deg E(s) > deg D(s) — deg N (s) (pole-zero excess inequality).
3. All zeros of N (s) with zero or positive real parts are retained in E () (retainment of nonminimum-

phase zeros).

We first develop Corollary 9.4 from Theorem 9.4. If §,(s) = E(s)/F(s) is BIBO stable,
then all roots of F(s) have negative real parts. This is condition (1). We write (9.24) as
8o(s) _ E()D(s)

1(s) = =" = ———
2(s) FN)

The condition for £(s) to be proper is

deg F(s) +deg N(s) > deg E(s) +deg D(s)

which implies (2). In order for 7(s) to be BIBO stable, all roots of N (s) with zero or positive real
parts must be canceled by the roots of E(s). Thus E(s) must contain the nonminimum-phase
zeros of N(s). This is condition (3). Thus Corollary 9.4 follows directly Theorem 9.4.

Now we show the necessity of Theorem 9.4. For any configuration that has no plant
leakage, if the closed-loop transfer function from r to y is £,(s). then we have

3(s) = 8o ()F(s) = &(s)uls)



286

POLE PLACEMENT AND MODEL MATCHING

T el g

e

which implies

i) = £85(5) = i) (o)
g(s)

Thus the closed-loop transfer function from r to u is #(s). Total stability requires every closed-
loop transfer function to be BIBO stable. Thus £,(s) and 7(s) must be BIBO stable. Well-
posedness requires every closed-loop transfer function to be proper. Thus g,(s) and £(s) must
be proper. This establishes the necessity of the theorem. The sufficiency of the theorem will
be established constructively in the next subsection. Note that if g(s) and 1(s) are proper, then
2,(s) = &(s)i(s) is proper. Thus the condition for ,(s) to be proper can be dropped from
Theorem 9.4.

In pole placement, the design will always introduce some zeros over which we have no
control. In model matching, other than retaifing nonminimum-phase zeros and meeting the
pole—zero excess inequality, we have complete freedom in selecting poles and zeros: any pole
inside the open left-half s-plane and any zero in the entire s-plane. Thus model matching
can be considered as pole-and-zero placement and should yield a better overall system than
pole-placement design. '

Given a plant transfer function g(s), how to select an implementable model g,(s) is not
a simple problem. For a discussion of this problem, see Reference [7, Chapter 9].

9.3.1 Model Matching—Two-Parameter Configuration

This section discusses the implementation of 3,(s) = £(5)#(s). Clearly, if C(s) = i(s) in Fig.
9.1(a), then the open-loop configuration has 3, (s) as its transfer function. This implementation
may involve unstable pole-zero cancellations and, consequently, may not be totally stable.
Even if it is totally stable, the configuration can be very sensitive to plant parameter variations.
Therefore the open-loop configuration should not be used. The unity-feedback configuration in
Fig. 9.1(b) can be used to achieve every pole placement; however it cannot be used to achieve
every model matching, as the next example shows.

ExamMPLE 9.6 Consider a plant with transfer function g(s) = (s —2)/ (s* — 1). We can readily
show that
~-(s—-2)

_— 9.25
s2 425 +2 ( )

go(s) =

is implementable. Because §,(0) = 1, the plant output will track asymptotically any step
reference input. Suppose we use the unity-feedback configuration with p = 1 to implement
go(s). Then from

. C()g(s)

8o(8) = —————
1+ C(s)g(s)

we can compute the compensator as
FAG) _ —(s2-1)

O = =0 - 5653

-

TP
PSP e a4

| SRAESO
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This compensator is proper. However, the tandem connection of C(s) and g(s) involves the
pole-zero cancellation of (s2 — 1) = (s + )(s — 1). The cancellation of the stable pole s + |
will not cause any serious problem in the overall system. However, the cancellation of the
unstable pole s — 1 will make the overall system not totally stable. Thus the implementation
is not acceptable.

Model matching in general involves some pole—zero cancellations. The same situation
arises in state-feedback state-estimator design; all eigenvalues of the estimator are not con-
trollable from the reference input and are canceled in the overall transfer function. However,
because we have complete freedom in selecting the eigenvalues of the estimator, if we select
them properly, the cancellation will not cause any problem in design. In using the unity-
feedback configuration in model matching, as we saw in the preceding example, the canceled
poles are dictated by the plant transfer function. Thus, if a plant transfer function has poles with
positive real parts, the cancellation will involve unstable poles. Therefore the unity-feedback
configuration, in general, cannot be used in model matching.

The open-loop and the unity-feedback configurations in Figs. 9.1(a) and 9.1(b) have one
degree of freedom and cannot be used to achieve every model matching. The configurations
in Figs. 9.1(c) and 9.1(d) both have two degrees of freedom. In using either configuration.
we have complete freedom in assigning canceled poles; therefore both can be used to achieve
every model matching. Because the two-parameter configuration in Fig. 9.1(d) seems to be
more natural and more suitable for practical implementation, we discuss only that configuration
here. For model matching using the configuration in Fig. 9.1(c), see Reference [6].

Consider the two-parameter configuration in Fig. 9.1(d). Let
_ L(s) Cats) = M(s)

A(s) Ax(s)
where L(s). M(s), A|(s), and A,(s) are polynomials. We call C,(s) the feedforward com-
pensator and Cy(s) the feedback compensator. In general, A;(s) and A,(s) need not be the
same. It turns out that even if they are chosen to be the same, the configuration can still be used
to achieve any model matching. Furthermore, a simple design procedure can be developed.
Therefore we assume A;(s) = A2(s) = A(s) and the compensators become

L(s) M(s)
= L (5) = 9.26
Ci(s) A0) Ca(s) AG) (9.20)
The transfer function from r to v in Fig. 9.1(d) then becomes
N(s)
s g(s) _ L D(s)
#O =T Re6E T A, VW M)
D(s) A(s)
_ L(s)N(s) 9.27)
A(S)D(s) + M(s)N(s)
Thus in model matching, we search for proper L(s)/A(s) and M(s5)/A(s) to meet
3.(5) = E(s) _ L(s)N(s) (9.28)

F(s) ~ A(s)D(s) + M{s)N(s)
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ltlote .that l.he two-parameter configuration has no plant leakage. If the plant transfer function
g(s) is -stnctly pr‘oper as assumed and if C2(s) = M(s)/A(s) is proper. then the overall
system is automatically well posed. The question of total stability will be discussed in the next
subsection.

Prroblem Given g(s) = N(s)/D(s), where N{(s) and D(s) are coprime and deg
N(s) < degD(s) = n, and given an implementable g,(s) = E(s)/F(s). find proper
L(s)/A(s) and M(s)/A(s) to meet (9.28).

Procedure 9.1

1. Compute ;
2()  Es)  E®)
N(s) FNG)  F(s)

(9.29)

where E(s) and F(s) are coprime. Since F(s) and F(s) are implicitly assumed to be coprime,
common factors may exist only between E'(s) and N (s). Cancel all common factors between them
and denote the restas £(s) and F (s). Note thatif E(s) = N(s), then F(s) = F(s)and E(s)=1
Using (9.29), we rewrite (9.28) as .

E(5)N(s) L(S)N(s)

F(s)  A@E)DG)+ M(S)N(s) 9:30)

én(s) =

From this equation, we may be tempted to set L(s) = E(s) and solve for A(s) and M(s) from
F(5) = A(s)D(s) + M(s)N(s). However. no proper C2(s) = M(s)/A(s) may exist in the

equation. See Problem 9.1. Thus we need some additional manipulation.

2. Introduce an arbitrary Hurwitz_polynomial 1:'(5) such that the degree of F(S)I:"(s) is2n — tor
higher. In other words, if deg F(s) = p.thendeg F(s) > 2n — | — p. Because the polynomial
g'(s) will be canceled in the design. its roots should be chosen to lie inside the sector shown in Fig

a). -

3. Rewrite (9.30) as

. ES)F()NGs) L(s)N(s)
8o($) = —=— = (9.3
F(s)F(s) A)YD(s) + M(sIN(s) -
Now we set
L(s) = E()F(s) 19.32)
and solve A(s) and M(s) from
A(5)D(s) + M(s)N(s) = F()F(5) (9.33)

If we write
AG)=Ap+ Ais+ Aas® + -+ A"
M(s) = Mo+ Bys + Mas™ + -+ M,,s™
1:"(5)1:'(5) =Fo+ Fis + Fas® 4 oo+ Fpps™™

| I
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withm > n — 1. then A(s) and M (s) can be obtained by solving

(Ao Mo Ay My -+ Ay My1S, = [Fo Fy Fo -+ Fusm) (934
with

TDy Di -+ Dy O - 07
Nr) N] IVn 0 0
0 DO Drl-] Dn e 0
0 1V0 T Avu—l Nn e 0

S, = .

0 O 0 D() T Du

Lo 0 - 0 Ny -+ Nal

The computed compensators L(s)/A(s)and M(s)/A(s) are proper.

We justify the procedure. By introducing F(s). the degree of 1-"(5)1:"(5) is 2n — 1 or higher
and. following Theorem 9.2, solutions A(s) and M (s) with deg M(s) < deg A(s) = m and
m > n — | existin (9.34) for any I?(s)lf'(s)‘ Thus the compensator M (s)/A(s) is proper. Note
that if we do not introduce ﬁ(s). proper compensator M (s)/A(s) may not exist in (9.34).

Next we show deg L(s) < deg A(s). Applying the pole—zero excess inequality to (9.3
and using (9.32), we have

deg (F(s)ﬁ(s)) — deg N(s) — deg L(s) = deg D(s) — deg N(s)
which implies
deg L(s) < deg (F(s)F(s)) — deg D(s) = deg A(s)
Thus the compensator L(s)/A(s) is propet.

ExampPLE 9.7 Consider the model matching problem studied in Example 9.6. That is. given
8(s) = (s — /(s> — 1), match g,(s) = —(s - 2)/(s% + 25 + 2). We implement it in the
two-parameter configuration shown in Fig. 9.1(d). First we compute

o1}
<

&ols) _ -s-2 —1 (s

N T OIF BN stz E®)

Because the degree of F(s) is 2, we select arbitrarily F(s) = s + 4 so that the degree of
F(s)F(s)is3 =2n— 1. Thus we have

Ls)=EG@Fs) =—(s+4) (9.35)
and A(s) and M (s) can be solved from

A()D(s) + MENG) = FYE(s) = (7 + 25 + D(s +4)
=3 +6s7+ 105 +8
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or
-1 0 10
-2 1 0 O
[Ao Mo Ay M1] ce . =[8 10 6 1]
o -1 0 1
0 -2 1 0
The solution is Ag = 18, Ay = 1, My = —13,and M, = _12. Thus we have A(s) = 18 + s
and M(s) = =13 — 12s and the compensators are
c _ L_(i), _ —(s+4) Cals) = M _ —(12s +13)
W=7 s+18 i AG) s+ 18

, <
This completes the design. Note that, because §,(0) = 1, the output of the feedback system
will track any step reference input.

ExaMPLE 9.8 Given §(s) = (s — 2)/(s* — 1), match
—(s —2)(@ds+2) —4s” 4+ 65 +4
n o =2 S
8o(s) = (2 +25+DG+D 3 +4s2+6s+4
This g(s) is BIBO stable and has the property £,(0) =1 ar?d g, (s) = O: thus the o.veraltl
system will track asymptotically not only any step reference mput. but also any ra-mp input.
See Problems 9.13 and 9.14. This 8,(s) meets all three conditions in Corollary 9.4; thus it 1s
implementable. We use the two-parameter configuration. First we compute
8,(5) —(s —2@s+2) _ —Us+y  _E®
TS meAm Y = .
NG) (2425 +2)(s+206—2) S+4s2+6s+4  F(s)

Because the degree of F(s) is 3, which equals 2n — 1 = 3, there is no need to introduce F(s)
and we set I:"(s) = 1. Thus we have

L(s) = E()E(s) = —(4s +2)

and A(s) and M(s) can be solved from

L
_—
[
o]

[Ao My A} M,] =[4641]
i
o -2 1 O
as Ag= 1,4, =34/3, Mo = —23/3, and M, = —22/3. Thus the compensators are
- 2 —(22s +23)
sy O
s +34/3 3s +
This completes the design. Note that this design does not involve any pole—zero cancellation
because I:"(s) = 1.

o
[

_

o

Ci(s) =
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9.3.2 Implementation of Two-Parameter Compensators

Given a plant with transfer function §(s) and an implementable model g, (s). we can implement
the model in the two-parameter configuration shown in Fig. 9.1(d) and redrawn in Fig. 9.4(a).
The compensators C(s) = L(s)/A(s) and Ca(s) = M(s)/A(s) can be obtained by using
Procedure 9.1. To complete the design, the compensators must be built or implemented. This
is discussed in this subsection.

Consider the configuration in Fig. 9.4(a). The denominator A(s) of C,(s) is obtained by
solving the compensator equation in (9.33) and may or may not be a Hurwitz polynomial. See
Problem 9.12. If it is not a Hurwitz polynomial and if we implement C;(s) as shown in Fig.
9.4(a). then the output of C,(s) will grow without bound and the overall system is not totally
stable. Therefore, in general, we should not implement the two compensators as shown in Fig.
9.4(a). If we move Ca(s) outside the loop as shown in Fig. 9.4(b), then the design will involve
the cancellation of M (s). Because M(s) is also obtained by solving (9.33), we have no direct
control of M (s). Thus the design is in general not acceptable. If we move Cy(s) inside the
Joop, then the configuration becomes the one shown in Fig. 9.4(c). We see that the connection
involves the pole-zero cancellation of L(s) = I:'(:)E_(s). We have freedom in selecting I:'(s).
The polynomial E (s) is part of E(s), which, other than the nonminimum-phase zeros of N(s),
we can also select. The nonminimum-phase zeros, however, are completely canceled in E (s).
Thus L(s) can be Hurwitz® and the implementation in Fig. 9.4(c) can be totally stable and is

r L(s) + u R v r Lis) + M) | oo . ¥
— () —— s}
A a & M [ ) &
M(s)
Als)
(a) (b)
Co ot TTmmmT T !
r+ Lis) u . v ro ! + | u N v
~— ) - A L =1 (s) -
—»O——-— A 8(s) ’ (s) > AT T g
_ \ :
! |
i
M(s) | !
M (s
Lis) ! M |
|
LT |
() (d)

Figure 9.4 Two-degrees-of-freedom configurations.

3. This may not be true in the multivariable case.
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acceptable. However, because the two compensators L (s)/A(s) and M (s)/L(s) have different
denominators, their implementations require a total of 2m integrators. We discuss next a better
implementation that requires only m integrators and involves only the cancellation of F(s).
Consider
L(s) ., M(s) .

u(s) = Ci(5)r(s) - C2(s)y(s) = X(S—)r(S) T Am ¥{s)

= AT OILE) = M(s) [ﬁ(s)]
y(s)

This can be plotted as shown in Fig. 9.4(d). Thus we can consider the two compensators as a
single compensator with two inputs and one ouiput with transfer matrix

C(s) =[Cils) ~ Cals¥] = A7 (SIL(s) — M(5)] (9.36)

If we find a minimal realization of (9.36), then its dimension is m and the two compensators
can be implemented using only m integrators. As we can see from (9.31), the design involves
only the cancellation of F(s). Thus the implementation in Fig. 9.4(d) is superior to the one in
Fig. 9.4(c). We see that the four configurations in Fig. 9.4 all have two degrees of freedom and
are mathematically equivalent. However, they can be ditferent in actual implementation.

ExampLE 9.9 Implement the compensators in Example 9.8 using an op-amp circuit. We write
—(4s +2) 7335 +7.677[F(s)
s+ 1133 s+11.33 y(s)

RS —75.38]) [fm]
s+ 11.33 ¥(s)

fi(s) = C1(5)F(s) — C2()F(s) = {

= ([~4 7.33]+

Its state-space realization is, using the formula in Problem 4.10,
’
N

X =-1133x +[43.33 —7538] [ :I

r

u=x+[~4 7.331[ }

(See Problem 4.14.) This one-dimensional state equation can be realized as shown in Fig. 9.5.
This completes the implementation of the compensators.

9.4 Multivariable Unity-Feedback Systems

This section extends the pole placement discussed in Section 9.2 to the multivariable case.
Consider the unity-feedback system shown in Fig. 9.6. The plant has p inputs and ¢ outputs
and is described by a ¢ x p strictly proper rational matrix G(s). The compensator C(s) to be
designed must have g inputs and p outputs in order for the connection to be possible. Thus
Ci(s) is required to be'a p x ¢ proper rational matrix. The matrix P is a ¢ x ¢ constant gain
matrix. For the time being, we assume P = 1,. Let the transfer matrix from r to y be denoted
by (A}U(s). a g x g matrix. Then we have

Figure 9.5 Op-amp circuit

implementation.
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R RC=1

Figure 9.6 Multivariable unity feedback system with P =1,.

Go(s) = [, + G(ICE)I ' G($)C(s)

= GHICE)N, + Gs)Cs)™
=GO, + C»)G)) ' Cs) 9.37)
The first equality is obtained from ¥(s) = G(5)C()[E(s) — F): the second one from
e(s) =r(s) — G(5)C(s)é(s); and the third one from @i(s) = C(s)F(s) — G(s)yua(s)]. They can

also be verified directly. For example, pre- and postmultiplying by (I, + C(S)C(s)] in the first
two equations yield

GEHCWI, + G6)CET = [, + GTHIGECE)

which is an identity. This establishes the second equality. The third equality can similarly be

established. 1
Let C(s) = N(s)D~'(s) be a right coprime fraction and let C(s) = A7 (s)B(s) be a left

fraction to be designed. Then (9.37) implies
G,(s) = NOD ' I + A (9BENED ™ ()] ' A™ (5)B(s)
= NED () {A" AEDE) + BONGID 5} A7 (9)B(s)
= N()[A()D(s) + Bs)N($)]'B(s)
= N()F ' ()B(s) (9.38)
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v

where
A(s)D(s) + B(s)N(s) = F(s) (9.39)

It is a polynomial matrix equation. Thus the design problem can be stated as follows: given
p x pD(s)and g x p N(s) and an arbitrary p x p F(s), find p x p A(s) and p x g B(s) to
meet (9.39). This is the matrix version of the polynomial compensator equation in (9.12).

Theorem 9.M1
Given polynomial matrices D(s) and N(s). polynomial matrix solutions A (s) and B(s) exist in (9.39)

for any polynomial matrix F(s) if and only if D(s) and N(s) are right coprime.

Suppose D(s) and N(s) are not right c;;oprime, then there exists a nonunimodular polyno-
mial matrix R(s) such that D(s) = D(s)R(s) and N(s) = N(s)R(s). Then F(s) in (9.39) must
be of the form fT(s)R(s), for some polynomial matrix F(s). Thus if F(s) cannot be expressed
in such a form, no solutions exist in (9.39). This shows the necessity of the theorem. If D(s)
and N(s) are right coprime, there exist polynomial matrices A(s) and B(s) such that

AG)D(s) + BNy =1

The polynomial matrices A(s} and B(s) can be obtained by a sequence of elementary oper-
ations. See Reference [6, pp. 587-595]. Thus A(s) = F(s)A(s) and B(s) = F(s)B(s) are
solutions of (9.39) for any F(s). This establishes Theorem 9.MI1. As in the scalar case, it
is possible to develop general solutions for (9.39). However, the general solutions are not
convenient to use in our design. Thus they will not be discussed.

Next we will change solving (9.39) into solving a set of linear algebraic equations.
Consider G(s) = N(s)D~!(s), where D(s) and N(s) are right coprime and D(s) is column
reduced. Let u; be the degree of the ith column of D(s). Then we have, as discussed in
Section 7.8.2,

deg C(x) =degdet D(s) = p1 +p2+---+u, =:n (9.40)
Let p := max(u,, ia, . .., itp). Then we can express D(s) and N(s) as

D(s) =Dy +Dys +Das>+---+D,s* D, #0

N(s) = Ng + Nys 4+ Nas® + -+ + N5

Note that D,, is singular unless u; = yp = - -+ = . Note also that Ny, = 0, following the
strict properness assumption of G(s). We also express A(s), B(s), and F(s) as

A(s) =Ag+Ais + A7+ + Aps”
B(s) = By + Bis + Bys® + -+ + Bs”
F(s) =Fo+ Fis +Fas? + - + Fyps*™
Substituting these into (9.39) and matching the coefficients of like powers of s, we obtain

(Ao Bo A B, --- A, B,1S,=[Fo F; - Fun]=F (9.41)
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where
Dy D, -~ D, 0 0 .- 07
No Ne o N 0 0 o
0 Do D,y D, 0 0
Si=| 0 No o Nesw N, O . 0 ©.4)
o 0 ... 0 D, Dy --- D,
0 0 . 0 N N .. N,

The matrix S,, has m 4 1 block rows; each block row consists of p D-rows and g N-rows.
Thus S,, has (m + 1)(p +¢) number of rows. Let us search linearly independent rows of S,, in
order from top to bottom. It turns out that if N()D™ ' (s) is proper. then all D-rows are linearly
independent of their previous rows. An N-row can be linearly independent of its previous rows.
However, if an N-row becomes linearly dependent, then, because of the structure of S,,, the
same N-rows in subsequent M-block rows will be linearly dependent. Let v; be the number of
linearly independent ith N-rows and let

v = max{vy, vz, ..., Vg}

It is called the row index of G(s). Then all ¢ N-rows in the last N-block row of S, are linearly
dependent on their previous rows. Thus S, _; contains all linearly independent N-rows and its
total number equals, as discussed in Section 7.8.2, the degree of C(s), that is.

vitvz+---t+vy,=n (9.43)

Because all D-rows are linearly independent and there are a total of pv D-rows in S,_,, we
conclude that S, has n + pv independent rows or rank n + pv.
Let us consider

g _[D D Dy D,
°T[No Ny -+ Ny, N,

It has p(u + 1) number of columns; however, it has at least a total of Zf':, (i — ;) zero
columns. In the matrix Sy, some new zero columns will appear in the rightmost block column.
However, some zero columns in S¢ will not be zero columns in S;. Thus the number of zero
columns in S, remains as

P
wi=) (w—p)=pu— ittt =pu—n (9.44)

i=t
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-

In fact, this is the number of zero columns in S,,. 7 = 2. 3. Let S“_l be the matrix S,
after deleting these zero columns. Because the number of columns in S, is p(p + 1 + 1), the
number of columns in S, is

Bi=plu+l+v—1—(pu—n)y=pvtn (9.45)

The rank of SW] clearly equals the rank of S, or pv + 1. Thus gu,] has full column rank.
Now if mt increases by 1. the rank and the number of the columns of S, both increase by
p {because the p new D-rows are all linearly independent of their previous rows): thus S,
still has full column rank. Proceeding forward. we conclude that S,,,. for m > w — 1. has full
column rank.
Let us define ,

H, (s) := diag(s"', s/, ... sHP) (9.46)
and

H,(s) = diag(s™" . s™. ..., s"e) 9.4

Then we have the following matrix version of Theorem 9.2.

Theorem 9.M2

Consider the unity-feedback system shown in Fig. 9.6 with P = Iq. The plant is described by a g X p
strictly proper rational matrix G(s). Let G(s) be factored as G(s) = N(s)D™1(s5). where D(s) and
N{s) are right coprime and D(s) is column reduced with column degrees i;. i=1.2..... p.Letv
be the row index of G{s) and tet m; = v ~ lfori = 1.2..... p. Then forany p x p polynominal
matrix F(s). such that

lim H ' (s)F()H ' (5) = F, (9.48)

s

is a nonsingular constant matrix. there exists a p X ¢ proper compensator A7H(5)B(s). where A(s) is
row reduced with row degrees m1;, such that the transter matrix from I to ¥ equals

G, (5) = N )F ' (5)B(s)

Furthermore. the compensator can be obtained by solving sets of linear algebraic equations in {9411

Proof: Letm = max(m,mz..... m,). Consider the constant matrix
F:=[Fy, F, F» -+ F,_.l

1t is formed from the coefficient matrices of F(s) and has order p x {m 4t + ). Clearly
F(s) has column degrees at most m + u;. Thus F has at least @ number of zero columns.
where o is given in (9.44). Furthermore. the positions of these zero columns coincide
with those of §,,. Let F be the constant matrix F after deleting these zero columns. Now
consider

[Al) B() AI Bl U Am Bm]Sm = F (949)
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It is obtained from (9.41) by deleting & number of zero columns in'S,, and the correspond-
ing zero columns in F. Now because S,” has full column rank if m > v — 1. we conclude
that for any F(s) of column degrees at mostm + g solutions A, and B; existin (9.49). Or.
equivalently, polynomial matrices A(s) and B(s) of row degree m or less exist in (9.49).
Note that generally S,,, has more rows than columns: therefore solutions of (9.49) are not
unique.

Next we show that A~!(s)B(s) is proper. Note that D, is. in general. singular and the
method of proving Theorem 9.2 cannot be used here. Using H,(s) and H.(s}, we write.
as in (7.80),

D(s) = [Dye + Dic(sHHT (9)1He(s)

N(s) = [Ny + Nie (O (9)TH(5)

Als) = Hy(9)[An + H ' (9)A(5))

B(s) = H,(5)[By, + H, ' (5)B1 ()]

F(s) = H, (5)[Fx + H ' (OF (0 ()1H ()
where Dy (s)HZ'(s), Nic($OH (), H ()As (5), H ' (5)B, (5).and H ' (5)F; HH
are all strictly proper rational functions. Substituting the above into (9.39) yields. ats = .

Ay Dy + By N = Fy
which reduces to. because Ny = 0 following strict properness of G(A‘).
Ap Dy = Fy

Because D(s) is column reduced. Dy, is nonsingular. The constant matrix F;, is nonsingular
by assumption: thus A, = F/,D,j(_l is nonsingular and A(s) is row reduced. Therefore
A~ '(5)B(s) is proper (Corollary 7.8). This establishes the theorem.  Q.E.D.

A polynomial matrix F(s) meeting (9.48) is said to be row—column reduced with row
degrees m, and column degrees y;. If my = my = -+ = m, = m. then the row—column
reducedness is the same as column reducedness with column degrees m + ;. In application.
we can select F(s) to be diagonal or triangular with polynomials with desired roots as its
diagonal entries. Then F~'(s) and. consequently, (A;(,(s) have the desired roots as their poles.

Consider again S,_;. It is of order (p + g)v x (u + v)yp. Ithas @ = pu — n number
of zero columns. Thus the matrix_S\_l is of order (p 4+ q)v x [(u + vip — {(pp —mjor
(p + q)v x (vp + n). The matrix S, contains pv linearly independent D-rows but contains
only v + - -+ + v, = n linearly independent N-rows. Thus S‘Pl contains

yvi=(p+glv—pv—n=qgv—n

linearly dependent N-rows. Let S._| be the matrix S, _, after deleting these linearly dependent
N-rows. Then the matrix S, _; is of order

[(p+qv—(gv—m]x(vp+n)=(vp +n)x (vp +n)

Thus S,_, is square and nonsingular.
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Consider (9:49) withm=v —1:
KS,_, :=[AgBo A B1 -

i i ts of linear algebraic equations
1t actually consists of the following p s .

k[g,,_xzii ":—‘1,2,..‘.17

- Aunt B, 18,1 =F

i S 1 column rank, for
SPCC“V"'lY- Becauseoi/vs— éhr:iiscfziumns. the general
f m in S;n INCIEASES by 1 from
) but the rank of Sy increase;s
y +g. Thusin

where k; and f. are the ith row of Kand F,re A
any f;, solutions K; exist in (9.50). Because Su.cl a1
solution of (9.50) contains y free paramf.te\.*s (Co N . r
» — 1 to v, then the number of rows of S, increases Y .111)‘ Dy o
ly b ,In this case, the number of free parameters Wiil inc e
(t)}rxleyMI};\fé) case. we have a great deal of freedom i.n %myri (:/u;i:‘ :aﬂy dbe p.endcm Voo 1
i i _The matrix Sy—1 '
d:f:t: ltshceusseslziirl?:ri;ailzgiig;?.l\sl(-)r)ows from §,_, and assign the corresponding cqlumns
we

in B; as zero, then (9.50) becomes ] )
[Ag Bo -+ Av-l B,_11Ss-1 =F o .

where S,1 is. as discussed earlier, square and nonsingular. Thus the solution is unique. 1t

is illustrated in the next example-

fer matrix

ExampLE 9.10 Consider a plant with the strictly proper trans

N 152 /s 1 1]{52 0]-1 ZNED'® 9.51)
G(S)=[ 0 1/s]= 0 1]10 s

ed with column degrees 41 = 2 and

i

prime and D(s) is column reduc

The fraction is right co
1 0}
00 0 0 [ ]S_
Dm:[o 0]’{0 1]” 0 0

;L2=1.Wewrite
d
" 11 00 “{0 0]52
Nm:[o 1]* 00 00

ow index. The QR decomposition Qis
lumns, from teft to right, of a. matrix.
of Swm; therefore we W1

We use MATLAB to compute the r
can reveal linearly independent €0
independent rows, from top to bottom,
the transpose of Sn. We type

E

{ 00010];d2=[0001001;

3 nl=1{ lOOOO];nZ:[OlOOOO];

‘ ci-fdl 0 0;d2 0 0;nl 0 0;n2 9 0;.--
0 0 d1;0 0 d2;0 0 nii0 0 n2l;

(q.rl=qr{sl”)

d1=1{0
1

cussed in Section 7.3 A
Here we need linearly
1t apply QR decomposition to

9.4 Multivariable Unity-Feedback Systems 299

3 which yields, as in Exampie 7.7,

rdl 0 0 0 0 0 0 0n

0 d2 06 0 0 0 x x

0O 0 nl x O O 0O O
|0 0 0 n2 0 0 0 O
"o 0o 0 0 d 0 0 0
0 0 0 0 0 d2 0 0

0 0 0 0 0 0 nl O

Lo 0 0 0o 0 0 0 o

The matrix g is not needed and is not typed. In the matrix r, we use x. di, and ni to denote
nonzero entries. The nonzero diagonal entries of r yield the linearly independent columns of S|
or, equivalently. linearly independent rows of §;. We see that there are two linearly independent
Nl1-rows and one linearly independent N2-row. The degree of G(s) is 3 and we have found
three linearly independent N-rows. Therefore there is no need to search further and we have
v; = 2 and va = 1. Thus the row index is v = 2. We selectm| = my =m = v — 1 = 1. Thus
for any column-reduced F(s) of column degrees m 4+ | = 3 and m + u» = 2, we can find a
proper compensator such that the resulting unity-feedback system has F(s) as its denominator
matrix. Let us choose arbitrarily

e R S R SRS

: (52 +4s +5)(s+3) 0
; F(s) = R
3 0 s-+25+5
15 + 175 + 752 + 53 0
_ + s sT+s ) 9.52)
é 0 5+2s+s-
% and form (9.41) withm =v —1 = L:
ro 0 0 0O 1 0 0 07 -

0o 0 O 1 0O 0 0 O
E 1 1 o 0o 0 o 0 O

0 1 o 0 o0 o0 0 o

[Ao By A} By]

o 0 0 0 0 O 1 0
: o 0 0 0 0 1 0
0 0 I 1 0 0 0 0
] L0 O O 1 0o 0 1 0 J
: iI5 017 0 7 01 O -

- = 9.53)

I: 0S5 02010 OJ F ( !
1 The « in (9.44) is 1 for this problem. Thus S; and F both have one zero column as we can
4 see in (9.53). After deleting the zero column, the remaining Sy has full column rank and, for

4 any F, solutions exist in (9.53). The matrix 51 has order 8 x 7 and solutions are not unique.
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3]
B

ST GO U

In searching the row index, we knew that the last row of 51 is a linearly dependent row. If
we delete the row. then we must assign the second column of B, as 0 and the solution will be

unique. We type

d1=(0 00 0 0 1};d42=(0 0 0 1 0 0};

nl={2 100 0 0};n2=(0 10 0 0 0]

dit=[0 0 0 0 1];d2t=[C 0 0 1 Ql:nlt={0 1 0
slt=1dl 0;d2 0;nl 0;n2 0;0 0 dlt;0 0 42t;0
fit={15 0 17 ¢ 7 11:

flt/slt

0 Cl;
0 nitl;

whichyields[7 —17 15 —15 10 17].Cc§mputing once again for the second row of F, we
can finally obtain

7 —-17 15 -15 1 0 17 0O
0 2 0 501 00

Note that MATLAB yields the first 7 columns; the last column 0 is assigned by us (due to
deleting the last row of S;). Thus we have

T+s —17 15+17s —15
A(S)“[o 2+s} B(S)_[ 0 5}

[AgBo A1 By] = [

and the proper compensator
7 177 [17s+15 15
Cls) = s+ 1 s+
0 s+2 0 5
will yield the overall transfer matrix

2 -1
Co(s):[l I:H:(s +4s +3)(s+3) . 0 ]
0 1 0 s +2s+5

« 17s +15 —15 9.59)
0 5

This transfer matrix has the desired poles. This completes the design.

The design in Theorem 9.M2 is carried out by using a right coprime fraction of G(s). We
state next the result by using a left coprime fraction of G(s).

Corollary 9.M2

Consider the umty -feedback system shown in Flg 9.7. The plant is described by a ¢ X p strictly proper

rational matrix G(s). Let G(s) be factored as Gis) = D-1(s)N(s). where D(5) and N(s) ase left
copnme and D(s) is row reduced with row degrees v;, = 1.2, ..., g.Let it be the column index of
G(s) andletm; > g — 1. Then for any g x g row-colurnn reduced polynormnal matrix F(s) such that

lim diag(s ™, 572, ..., s"0)F(s)diag(s ™', s7™, ..., sT") =Ty
§—2C
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Figure 9.7 Unity feedback with G(s) = D7 (N(s).

. . . . o -l
is a nonsingular constant matrix. there exists a p X g proper compensator C(s) = B(s)A (), where
A(s) is column reduced with column degrees m,, to meet

D(s)A(s) + N(s)B(s) = F(s) (9.55)
and the transfer matrix from F to ¥ equals

G, (5) =1 — A()F ' (5)D(s) (9.56)

Substituting G(s) = D'N(s) and C(s) = B($)A - (s) into the first equation in (9.37)
yields
Go(s) = 1+ D (HN®BHA ™ ()17 D (NBOA ()
— A DAs) + NoBoT ' NBEA  15)
which becomes, after substituting (9.55).
Go(s) = A)F ' (9)[F(s) — D(s)A(s)A
=I- A(S)F‘ (S)D(S)

This establishes the transfer matrix from r to y in the theorem. The design in Corollary 9.M2
hinges on solving (9.55). Note that the transpose of (9.55) becomes ( 9.39): left coprime and
row reducedness become right coprime and column reducedness. Thus the linear algebraic
equation in (9.41) can be used to solve the transpose of (9.55). We can also solve (9.55)

directly by forming

i "D, No 0 0 0 0 |
- B 7 _ ) _ ~
;\0 D] N[ DO NO 0 0
B,
Tm Al = ]_),, N,, l.)n—l Nn—l 0 0
B:m 0 D, N, Dy No
LA,
Lo o 0 0 D, N,
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e kit e

r

By
A() FO
B[ F[
x| Al =1 F (9.57)
Bm Fﬂ +m
— Am -

We search linearly independent columns of T, in order from left to right. Let x be Ehe column
index of C(s) or the least integer such that T,,_; contains n linearly independent N-columns.
Then the compensator can be solved from (9.57) with m = u — 1.

9.4.1 Regulation and Tracking ;

As in the SISO case, pole placement can be used to achieve regulation and tracking in
multivariable systems. In the regulator problem, we have r = 0 and if all poles of the overall
system are assigned to have negative real parts, then the responses caused by any nonzero
initial state will decay to zero. Furthermore, the rate of decaying can be controlled by the
locations of the poles; the larger the negative real parts, the faster the decay.

Next we discuss tracking of any step reference input. In this design, we generally require
a feedforward constant gain matrix P. Suppose the compensator in Fig. 9.6 has been designed
by using Theorem 9.M2. Then the g x g transfer matrix from r to y is given by

G,(s) = N()F ' (s)B(s)P (9.58)

If éo(s) is BIBO stable, then the steady-state response excited by r(r) = d, for ¢ _>_ 0. or
F(s) = ds™!, where d is an arbitrary g x I constant vector, can be computed as, using the

final-value theorem of the Laplace transform,
lim y(r) = lim sG,(s)ds ™" = G,(0)d
=0 50
Thus we conclude that in order for y(¢) to track asymptotically any step reference input, we
need, in addition to BIBO stability,
G,(0) = NOF ' (OBOP =1, (9.59)

Before discussing the conditions for meeting (9.59), we need the concept of transmission zeros.

Transmission zeros Consider a ¢ x p proper rational matrix G(s) = N(s)D~1(s), where
N(s) and D(s) are right coprime. A number A, real or complex, is called a transmission zero
of C(s) if the rank of N(A) is smaller than min{p, g).

ExaMmpLE 9.11 Consider the 3 x 2 proper rational matrix

el
\ s+1 s © Trs+2 077
G =| 0 — =1 0o s+1 5
5~ 0 s
+1 1 s+1 s

s+2 s
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This N(s) has rank 2 atevery s: thus Gl (s) has no transmission zero. Consider the 2 x 2 proper

rational matrix
s
- 0 _
Ga(s) = s+2 K 0 s+2 071!
EL st 2 T o s+2fl o
s

This N(s) hasrank 1 at s = O and s = 2. Thus Gg(s) has two transmission zeros at 0 and
—2. Note that G(s) has poles also at 0 and —2.

From this example, we see that a transmission zero cannot be defined directly from C(s);
it must be defined from its coprime fraction. Either a right coprime or left copn'me fraction
can be used and each yields the same set of transmission zeros. Note that if G(a) is square
and if G(s) = Ns)D~'(s) = D~ (s)N(s), where N(s) and D(s) are right coprime and D(s)
and N(s) are left coprime, then the transmission zeros of G(s) are the roots of det N(s) or the
roots of det N(s) Transmission zeros can also be defined from a minimal realization of G(s)
Let (A, B, C, D) be any n-dimensional minimal realization of a g x p proper rational matrix
f;(s). Then the transmission zeros are those A such that

Al-A B
-C D

This is used in the MATLAB function tzero to compute transmission zeros. For a more
detailed discussion of transmission zeros, see Reference [6, pp. 623-635].

Now we are ready to discuss the conditions for achieving tracking or for meeting (9.59).
Note that N(s), F(s), and B(s) are ¢ x p, p x p, and p x q. Because I, has rank ¢, a necessary
condition for (9.59) to hold is that the ¢ x p matrix N(0) has rank g. Necessary conditions
for p(N(0)) = g are p > g and s = O is not a transmission zero of G(s) Thus we conclude
that in order for the unity-feedback configuration in Fig. 9.6 to achieve asymptotic tracking,
the plant must have the following two properties:

rank [ :l < n+min(p, q)

¢ The plant has the same or a greater number of inputs than outputs.

o The plant transfer function has no transmission zero at s = 0.

Under these conditions. N(0) has rank g. Because we have freedom in selecting F(s), we can
select it such that B(0) has rank ¢ and the q x ¢ constant matrix N(O)F~! (0)B(0) is nonsingular.
Under these conditions, the constant gain matrix P can be computed as

= IN(OF ' (0)B(0)]™" (9.60)
Then we have f}o(O) = I,. and the unity-feedback system in Fig. 9.6 with P in (9.60) will

track asymptotically any step reference input.
9.4.2 Robust Tracking and Disturbance Rejection

As in the SISO case, the asymptotic tracking design in the preceding section is not robust. In
this section. we discuss a different design. To simplify the discussion, we study only plants with
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¢ (s AT B(s) N(s) O]

Figure 9.8 Robust tracking and disturbance rejection.

an equal number of input terminals and output terminals or p = ¢. Consider the unityAfeedbac‘k
system shown in Fig. 9.8. The plant is described by a p x p strictly proper transfer matrix
factored in left coprime fraction as G(s) =D (s)&'(s). It is assumed that p x 1 disturbance
w(r) enters the plant input as shown. The problem is to design a compensator so that the output
y(r) will track asymptotically a class of p x 1 reference signals r(t) even with the presence
of the disturbance w{t) and with plant parameter variations. This is called robust tracking and
disturbance rejection.

As in the SISO case. we need some information on r(¢) and w(z) before carrying out the
design. We assume that the Laplace transforms of r(t) and w(r) are given by

Bs) = Lir0)] = N()D () Wie) = LIwO) = Nu@)D'(s) - (961

where D, (s) and D, (s) are known polynomials: however, N, (s) and N, (s) are unknown to
us. Let ¢(s) be the least common denominator of the unstable poles of t(s) and w(s). The
stable poles are excluded because they have no _effect ony(f) ast —> 0O We intro.c‘luce the
internal model ¢~ ()1, as shown in Fig. 9.8. If D(s) and N(s) are left_coprime and if no root
of ¢(s) is a transmission zero of é(s) or, equivalently, ¢(s) and det N(s) are coprime. then
it can be shown that f)(s)d)(s) and I(i(s) are left coprime. See Reference [?. 1p 443]. Then
Corollary 9.M2 implies that there exists a proper compensator C(s) = B(s)A  (s) such that

B(s)D()A(s) + N()B(s) = F(s) 9.62)

forany F(s) meeting the condition in Corollary 9.M2. Clearly F(s) can be chosen to be diagapnl
with the roots of its diagonal entries lying inside the sector shown in Fig. 8.3(a). The‘umty-
feedback system in Fig. 9.8 so designed will track asymptotically and robustly the reference
signal r(r) and reject the disturbance w{r). This is stated as a theorem.

Theorem 9.M3

Consider the unity-feedback system shown in Fig. 9.8 where the plant has a p x p strictly proper transfer
matrix C(S) =D (S)&'(S). Itis assumed lhatl—)(s) and N(s) are left coprime and D(s) is row reduced
with row degrees v;, i = 1,2...., p. The reference signal r(#) and disturbance w(r) are queled
as I(s) = N,(S)D,—l(s) and W(s) = Nu.(s)D;l(s). Let ¢(5) be the least common denominator
of the unstable poles of F(s) and W(s). If no root of ¢ (s) is a transmission zero of G(s), then there
exists a proper compensator C(s) = I_S(s)(A(s)zj)(s))_l such that the overall system will robustly and
asymptotically track the reference signal r(r) and reject the disturbance w(t).
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Proof: First we show that the system will reject the disturbance at the output. Let us
assume r = 0 and compute the output ¥, (s) excited by w(s). Clearly we have

Fuls) = D ONEH() ~ BOA™ ()07 () (5)]
which implies
Yuls) = 1+ D OREBEA™ (507 ()] D (5)N()W(s)
= [0 D6 AL +N(s)l's(snfi“(s)as-‘(s)]‘l
x DTH)N(s)W(s)
= ¢(HAE)DSP(HA(s) + N($)B(5)] ' N(s)W(s)
Thus we have, using (9.61) and (9.62),
Fu(5) = AOF (NP ()N () D, (5) (9.63)

Because all unstable roots of D, (s) are canceled by ¢ (s), all poles of ¥,.(s) have negative
real parts. Thus we have y,(t) — 0 ast — oc and the response excited by w(r) is
suppressed asymptotically at the output.

Next we compute the error &, (s) excited by the reference signal r(s):

&(s) = i(s) = D ONEOBEA™ (97 ()8, ()
which implies
&,(5) = [1+ D' (HNEB©A™ ()97 (9] 'F(s)
= ¢()AE)D$)P(HA(s) + N(s)B(5)] ™' D($)F(s)
= AGE)F 1 ($)D()¢ (N (s) D! (5) (9.64)

Because all unstable roots of D, (s) are canceled by ¢(s), the error vector & (s) has only
stable poles. Thus its time response approaches zero as t — co. Consequently, the output
y (1) will track asymptotically the reference signal r(¢). The tracking and disturbance rejec-
tion are accomplished by inserting the internal model ¢! (s)1,. If there is no perturbation
in the internal model, the tracking property holds for any plant and compensator parameter
perturbations, even large ones, as long as the unity-feedback system remains BIBO stable.
Thus the design is robust. This establishes the theorem. Q.E.D.

In the robust design, because of the internal model, ¢ (s) becomes zeros of every nonzero
entry of the transfer matrices from w to y and from r to e. Such zeros are called blocking zeros.
These blocking zeros cancel all unstable poles of w(s) and F(s); thus the responses due to these
unstable poles are completely blocked at the output. It is clear that every blocking zero is a
transmission zero. The converse, however, is not true. To conclude this section, we mention
that if we use a right coprime fraction for G(s), insert an internal model and stabilize it, we
can show only disturbance rejection. Because of the noncommutative property of matrices. we
are not able to establish robust tracking. However, it is believed that the system still achieves
robust tracking. The design discussed in Section 9.2.3 can also be extended to the multivariable
case; the design, however, will be more complex and will not be discussed.
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9.5 Multivariable Model Matching—Two-Parameter Configuration

In this section, we extend the SISO model matching to the multivariable case. We study only
plants with square and nonsingular strictly proper transfer matrices. As in t.he SISO f:ase,
given a plant transfer matrix C(s), a model G, (s) is said to be implemental.)le if there ixtslsh a
no-plant-leakage configuration and proper compensators so that the resulting system has the
overall transfer matrix f}o(s) and is totally stable and well posed. The next theorem extends
Theorem 9.4 to the matrix case.

Theorem 9.M4

Consider a plant with p x p strictly proper transfer matrix G(s). Thena p x p transfer matrix Go(s)
is implementable if and only if G,(s) and

T(s) = 671G (9.65)
are proper and BIBO stable.
For any no-plant-leakage configuration, the closed-loop transfer matrix from r to u is

T(s). Thus well posedness and total stability require Gols) apd T(s) to be proper and BIBO
stable. This shows the necessity of Theorem 9.M4. Let us wrte (9.65) as

Go(s) = G T (9.66)

Then (9.66) can be implemented in the open-loop configuration in Fig. 9. 1(a) with C(s) = T(s).
This design, however, is not acceptable either because itis not total])f stable or because it1s very
sensitive to plant parameter variations. If we implement it in the unity-feedback configuration,

we have no freedom in assigning canceled poles. Thus the configuration may not be acceptable.
In the unity-feedback configuration, we have
i(s) = CEEE) — ¥
Now we extend it to
fi(s) = C((T(s) — C1()¥(s) (9.67)

This is a two-degrees-of-freedom configuration. As in the SISO case, we may select Ci(s) and
C,(s) to have the same denominator matrix as

Cis) =AN L) Gl = A™HM(s) (9.68)

Then the two-parameter configuration can be plotted as shown in Fig. 9.9. From the figure,
we have

i(s) = AT ®LEOFE) —~ M(s)N(s)D ™ (9)(s)]
which implies

- . .
4 1f G(s) is not square, then G,(s) is implementable if and only if G,(s) is proper, 1 BIBO slabie:; and can be
expressed as C,(s) = C(s)’i'(s), where T(s) is proper and BIBO stable. See Reference {6, pp- 517-5231.
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:;) L(s) AT | b ) No -

Figure 9.9 Two-parameter configuration.

i(s) = 1+ A7 OMENEHD (9] AT (L))
=D()[AE)D(s) + MEN©] L))
Thus we have ’
§(s) = N()D™'()i(s) = N(s)[A(5)D(s) + M(s)N(5)] ' L{s)E(s)
and the transfer matrix fromr toy is
G,(s) = N()[A(5)D(s) + M()N($)I"'L(s) (9.69)
Thus model matching becomes the problem of solving A(s), M(s) and L(s) in (9.69).

Problem Given a p x p strictly proper rational matrix (A}(s) = N()D~1(s), where
N(s) and D(s) are right coprime and D(s) is column reduced with column degrees
wi, i = 1,2,..., p, and given any implementable G,(s), find proper compensaiors
A~1(s)L(s) and A~ (s)M(s) in Fig. 9.9 to implement Co(s).

Procedure 9.M1
1. Compute
NG, (s) = FU()E(s) (9.70)
where F'(5) and E(s) are left coprime and F(s) is row reduced.

2. Compute the row index v ofé(s) = N(s)D~'(s). This can be achieved by using QR decomposition.
3. Select

F(s) = diaglo; (5), @2(s). ..., @p(5)) 9.71)

where o; (5) are arbitrary Hurwitz polynomials, such that ﬁ(s)i'(s) is row—column reduced with
column degrees g; and row degrees m; with

mipzv—1 (9.72)
fori =1,2,...,p.
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4, Set
L(s) = F(5)E() 9.73)
and solve A(s) and M(s) from
AG)ID(s) + M(5)N() = F()F(s) = F(s) (9.74)
Then proper compensators A~!(s)L(s) and A~!(s)M(s) can be obtained to achieve the model

matching.

This procedure reduces to Procedure 9.1 if G(s) is scalar. We first justify the procedure.
Substituting (9.73) and (9.74) into (9.69) yields

G, (5) = N&)E(F(©)]F©E) = N©F ' ()Es)
This is (9.70). Thus the compensators implement G,, (s). Define
H.(s) = diag(s*!, s*2, ..., s%7) H,(s) = diag(s™.s™, ..., s"")
By assumption, the matrix
lim H ' (s)F()H]'(s) = Fy
5=
is a nonsingular constant matrix. Thus solutions A(s), having row degrees m; and being row

reduced, and M(s), having row degrees m; or less, exist in (9.74) (Theorem 9.M2). Thus
A~1(s)M(s) is proper. To show that A~Y(s)L(s) is proper, we consider

T(s) = 671 ()G, (s) = DENT'9)Go(s)
= D(s)F 1 (5)E(s) = D) [F()F(5)] T F($)ECs)
= D(s)[A(5)D(s) + M(sIN()] ' L(s)
= D(s) [AGT +A™ ©MEONGD ™ (9D} L)
=+ A OMEEGHI AT GLEG)
which implies, because G(s) = N(s)D~'(s) is strictly proper and A~H(s)M(s) is proper.
lim T(s) = lim A~ (L)

s—x
Because T(oco) is finite by assumption, we conclude that A~ U(s)L(s) is proper. If G(s) is
strictly proper and if all compensators are proper. then the two-parameter configuration 18
automatmally well posed. The design involves the pole—zero cancellation of F(s) which we
can select. If F(s) is selected as diagonal with Hurwitz polynomials as its entries, then pole-
zero cancellations involve only stable poles and the system is totally stable. This completes
the justification of the design procedure.

ExaMpLE 9.12 Consider a plant with transfer matrix

N VR V2 B DU R T K o}“ 075
G(S)_[ 0 1/5]‘[0 1“0 s ©7)

[ AEPIREERRE I

S IRYA SRS

4

P

Ao o oo
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It has column degrees 4| = 2 and u,=1. Let us select a model as
2

- - 0
~ 2 o] bl
Gy=] 5 T=F- 5 (9.76)
0 [
sP4+25+2

which is proper and BIBO stable. To check whether or not Gg (s) is implementable, we compute

25? —2s2
Fis) = G 1()G () = [sO“ —s-] Eois) = s2+2s+2 2 +22; +2
0 —
s+ 2542
which is proper and BIBO stable. Thus Go(s) is implementable. We compute
2
- = 0
-~ 1 -1 2
N_I(S)Go(s): ST+ 25+ 2 .
L0 1 0 -
sT4+25 42
r 2 -2
o sTE2 2 st42s+2
= , 5
L 52+ 25+ 2
[+ 242 0 2 -2
L 0 P25+ 2 0 2
=: F_I(S)E(S)

For this example, the degree of N~ 1(s)G(,(s) can easily be computed as 4. The determinant

of F(s) has degree 4; thus the pair F(s) and E(s) are left copnme It is clear that F(s) is row
reduced with row degrees r; = r, = 2. The row index of G(s) was computed in Example 9.10
as v = 2. Let us select

F(s) = diag((s + 2). 1)

Then we have

.- (sT+25+2Ms +2) 0

F<s>F<x>={ 0 ,TQH]
C[4+6s+d57+5 0 ©.77)
a 0 2425 457 ’

It is row—column reduced with row degrees {m; = m2 = 1 = v — 1} and column degrees
{ir = 2, w2 = 1}. Note that without introducing F(s), proper compensators may not exist.

We set
S s+2 02 -2
L(s) = F(s)E(s) = l: 0 1] [0 5 }

_ [2(5 +2) =2+ 2)] 9.78)
0 2
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and solve A(s) and M(s) from
A(5)D(s) + M(s)N(s) = F(5)F(s) =: F(s) 9.79)

From the coefficient matrices of D(s) and N(s) and the coefficient matrices of (9.77), we can

readily form

{Ag My A; My]

<
[=)
[=]
o]
o
—
<
(=]

0 0 o 0 O

1 t 0
Lo 0 0 1 O 0 O 0 4
_ 406 04 010 (9.80)
02020100

As discussed in Example 9.10, if we delete the last column of Sy, then the remaining S] has
full column rank and for any F(s), after deleting the last zero column, solutions exist in (9.80).
Now if we delete the last N-row of Sy, which is linearly dependent on its previous row, the set
of solutions is unique and can be obtained, using MATLAB, as

-6 4 -4 1 0 6 0]

(9.81)
2 0 2 0100

4
[Ao My A} M) = l:o

Note that the last zero column is by assignment because of the deletion of the last N-row in

Sx. Thus we have
445 —6 4465 —4]
= M(s) = (9.82)
AW [ 0 2 +s] ® [ o 2

The two compensators A~ (s)M(s) and A~!(s)L(s) are clearly proper. This completes the
design. As a check, we compute

2(s +2) 0
N 3 2 4
Go(s) = NF (s)L(s) = | ' Fa7T65+ 5
0 s2+25s+2
2
s2425+2
2
0 s24+2s+2

This is the desired model. Note that the design involves the cancellation of (s + 2), which we
can select. Thus the design is satisfactory.

9.5 Multivariable Model Matching 3N

Let us discuss a special case of model matching. Given G(s) N(s)D~(s), let us select
T(s) D(s)D‘l (s), where D (s) has the same column degrees and the same column-degree

coefficient matrix as D(s). Then T(s) is proper and Ga(s) G(s)T(s) N(s)D‘l(s) This
is the feedback transfer matrix discussed in (8.72). Thus the state feedback design discussed
in Chapter 8 can also be carried out by using Procedure 9.M1.

9.5.1 Decoupling

Consider a p x p strictly proper rational matrix G(s) = N(s)D~(s). We have assumed that
G(s) is nonsingular. Thus G~1(s) = D(s)N~!(s) is well defined; however, it is in general
improper. Let us select T(s) as

T(s) = G (s)diag(d ' (5). 5 (5), ..., d; ' (5)) (9.83)
where d; (s) are Hurwitz polynomials of least degrees to make T(s) proper. Define
X(s) = diag(di (s), da(s), ..., dp(s)) (9.84)
Then we can write ’i‘(s) as
T(s) = DENT(HZ7Hs) = D()[T ()N 9.83)

If all transmission zeros of G(s) or, equivalently, all roots of det N(s) have negative real parts.
then T(s) is proper and BIBO stable. Thus the overall transfer matrix

G, (s) = G()T(s) = N()D ($)DS)[Z()N(5)] ™"
=NG[ZENGS]! =X 4s) (9.86)

is implementable. This overall transfer matrix is a diagonal matrix and is said to be decoupled.
This is the design in Example 9.12. .

If f}(s) has nonminimum-phase transmission zeros or transmission zeros with zero or
positive real parts, then the preceding design cannot be employed. However, with some

modification, it is still possible to design a decoupled overall system. Consider again Gy =
N(s)D~(s). We factor N(s) as

N(s) = Ni(s)Na(s)
with
Ni(s) = diag(Bi1(s). Bi2(s). .. -, Bip(s)

where By;(s) is the greatest common divisor of the ith row of N(s). Let us compute Ny Y,
and let By;(s) be the least common denominator of the unsrable poles of the ith column of
Nz_l (). Define

Nag 1= diag(Bai(s), Bn2(s). . .-, B25(s)
Then the matnx

Na(s) := Ny ' (s)N2g(s)
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4
A
A
-3

:
’i
4

ki

B i i B s s

has no unstable poles. Now we select ’i“(s) as
T(s) = D(s)Na(s) T 7 (s) (9.87)
with
Z(s) = diag(d;(s), d2(s), . ... dp(s))

where d; (s) are Hurwitz polynomials of leﬂast degrees to make 'i‘(:) proper. Because N;(s) has
only stable poles, and d;(s) are Hurwitz, T(s) is BIBO stable. Consider

Go(5) = G(5)T(5) = Ny (9)Na(5)D ™ (5)D()N1 () E7(s)
= N{(5)N24(s)Z™!(s)

_ dia (ﬁl(S) Bs) ﬂp(5)>
G B dye)

(9.88)

where 8:(s) = ;31,({);32,- (s). It is proper because both T(s) and G(s) are proper. It is clearly
BIBO stable. Thus G, (s) is implementable and is a decoupled system.

s 1 $+1 1770
-1 s—1 0 52

We compute det N(s) = (s — 1)(s — 1) = (s — 1)°. The plant has two nonminimum-phase
transmission zeros. We factor N(s) as

10 qfs 1
N(s)—Nl(S)NZ(S):{o s—lHl 1}

with Ny (s) = diag(1, (s — 1)), and compute

ExampLE 9.13 Consider

G(s) = N(s)D™1(s) = L

If we select
N, =diag((s — 1), (s — 1)) (9.89)

then the rational matrix
- . 1 -1
Na(s) = N3 (s)Nag(s) = )
— s

has no unstable poles. We compute

- s 1 -1
D N = By
M) [ 0 s“}[—l s :l
[ = +s—1
T =5t 341

If we choose

i e i e et e A
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T(s) = diag((s? + 25 + s + 2. (7 + 25+ 2)(s +2))
then
T(s) = DN ETHS)

is proper. Thus the overall transfer matrix

. P i s—1 (s —1)° )
G,(s) = G(s)T(s) = diag <m (52 425+ (s +2)

is implementable. This is a decoupled system. This decoupled system will not track any step
reference input. Thus we modify it as
\ . _ 4G -1 s = 1)? ) ©.90)
Cols) = diag ((51 T+ B HDE+D)

which has GU(O) = I and will track any step reference input. _
Next we implement (9.90) in the two-parameter configuration. We follow Procedure 9.M1.

To save space, we define d(s) := (57 4+ 25 + 2){s = 2). First we compute

—Hs—D
“1(5)€ s N BTN
: (S)GO(S)zL—l s—l} 4(s + 1)?
0 da(s)
—4(s - 1) 0
1 s—1 -1 dis)
=(s—1)z[l—s s} 0 4(s — 1)°
d(s)
-4 =4
dis) d(s) dis) 0 }-‘[—4 _4}
N :[0 dis) 4 4s
dis) d
= F'(5)E(s)

It is a left coprime fraction.
From the plant transfer matrix, we have

Lol oo<00310}3
; D(;):[O 0]+[0 Oj|s+[0 1]5 +|:O ols

and
0 1 1 0 0 0], |:0 0] 3
(§) = + s
N”)_[—l —1}+[1 1]”[0 o]> "lo o
We use QR decomposition to compute the row index of G(5). We type

dl=(1

00
00

OO

01;82={0 0 0001
0):n2=(-1 -1110000];

(SR

0
1

PR

1
nl=(0
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s2=[d1 0 0 0 0;d2 000 O0;n1 000 0;n2 000 0;...
OOleO;OOd200;OOnlOO;O0n200;...
0000d1;0000d2;0000n1;0OOOnZ];

[q,rl=qgr{s2’)

From the matrix r (not shown), we can see that there are three linearly independent N1-rows
and two linearly independent N2-rows. Thus we have v, = 3 and v, = 2 and the row index
equals v = 3. If we select

F(s) = diag (s +3)% (s +3))

then l:“(s)i‘(s) is row—column reduced with row degrees {2, 2} and column degrees {3, 2}. We

set !

. —4(s + 32 —4(s +3)?
- = 9.91
L(s) = F(s)E(s) [ As+3)  ds(s+3) ©-91)
and solve A(s) and M(s) from
A(s)D(s) + M(s)N(s) = F(s)F(s) := F(s)
Using MATLARB, they can be solved as
s% 4+ 105 + 329 100
- 92
Als) [ ~46 sT4Ts + 6] 69
and
—290s% — 1145 — 36 1895 +293
= 9.93
M(s) [ 4652 +34s 412 —34s — 46] @99

The compensators A~ (s)M(s) and A~! (s)Li(s) are clearly proper. This completes the design.

The model matching discussed can be modified in several ways. For example, if stable
roots of det N, (s) are not inside the sector shown in Fig. 8.3(a), they can be included in By;.
Then they will be retained in G, (s) and will not be canceled in the design. Instead of decoupling
the plant for each pair of input and output, we may decouple it for a group of inputs and a
group of outputs. In this case, the resulting overall transfer matrix is a block-diagonal matrix.
These modifications are straightforward and will not be discussed.

9.6 Concluding Remarks

In this chapter, we used coprime fractions to carry out designs to achieve pole placement or
model matching. For pole placement, the unity-feedback configuration shown in Fig. 9.1(a),
a one-degree-of-freedom configuration, can be used. If a plant has degree n, then any pole
placement can be achieved by using a compensator of degree n — 1 or larger. If the degree of
a compensator is larger than the minimum required, the extra degrees can be used to achieve
robust tracking, disturbance rejection, or other design objectives.
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Model matching generally involves pole-zero cancellations. One-degree-of-freedom
configurati@ns cannot be used here because we have no freedom in selecting canceled poles.
Any two-degree-of-freedom configuration can be used because we have freedom in selecting
canceled poles. This text discusses only the two-parameter configuration shown in Fig. 9.4.

All designs in this chapter are achieved by solving sets of linear algebraic equations. The
basic idea and procedure are the same for both the SISO and MIMO cases. All discussion
in this chapter can be applied, without any modification, to discrete-time systems; the only
difference is that desired poles must be chosen to lie inside the region shown in Fig. 8.3(b)
instead of in Fig. 8.3(a). 5

This chapter studies only strictly proper G(s). If G(s) is proper, the basic idea and
procedure are still applicable, but the degree of compensators must be increased to ensure
properness of compensators and well posedness of overall systems. See Reference [6]. The
model matching in Section 9.5 can also be extended to nonsquare plant transfer matrices. See
also Reference [6].

The controller-estimator design in Chapter 8 can be carried out using polynomi al fractions.
See References [6, pp. 506-514: 7, pp. 461—465]. Conversely, because of the equivalence of
controllable and observable state equations and coprime fractions, we should be able to use
state equations to carry out all designs in this chapter. The state-space design, however. will
be more complex and less intuitively transparent, as we may conclude from comparing the
designs in Sections 8.3.1 and 9.2.2.

The state-space approach first appeared in the 1960s, and by the 1980s the concepts of
controllability and observability and controller-estimator design were integrated into most
undergraduate control texts. The polynomial fraction approach was developed in the 1970s:
its underlying concept of coprimeness, however, is an ancient one. Even though the concepts
and design procedures of the coprime fraction approach are as simple as, if not simpler than,
the state-space approach. the approach appears to be less widely known. It is hoped that this
chapter has demonstrated its simplicity and usefulness and will help in its dissemination.

Consider
AG)D(s) + B(S)N(s) = s> + 25 +2

where D(s) and N (s) are given in Example 9.1. Do solutions A(s) and B(s) exist in the
equation? Can you find solutions with deg B(s) < deg A(s) in the equation?

9.2 Given a plant with transfer function §(s) = (s — 1)/{s* — 4), find a compensator in
the unity-feedback configuration so that the overall system has desired poles at —2 and
—1 4 jl. Also find a feedforward gain so that the resulting system will track any step
reference input.

9.3  Suppose the plant transfer function in Problem 9.2 changes to §(s) =(-09)/(s>—4.1)
after the design is completed. Can the overall system still track asymptotically any step
reference input? If not, give two different designs, one with a compensator of degree 3
and another with degree 2, that will track asymptoticaily and robustly any step reference
input. Do you need additional desired poles? If yes, place them at —3.
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94

9.5

9.6

9.7

9.8

9.9

9.10

Repeat Problem 9.2 for a plant with transfer function g(s) = (s — 1)/s(s — 2). Do
you need a feedforward gain to achieve tracking of any step reference input? Give vour
reason.

Suppose the plant transfer function in Problem 9.4 changes to §(s) =(-09)/s(s=2.1)
after the design is completed. Can the overall system still track any step reference input?
Is the design robust?

Consider a plant with transfer function g(s) = 1/(s — 1). Suppose a disturbance of form
w(t) = asin(2t +6), with unknown amplitude a and phase 9, enters the plant as shown
in Fig. 9.2. Design a biproper compensator of degree 3 in the feedback system so that
the output will wrack asymptotically any step reference input and reject the disturbance.
Place the desired poles at —1 & j2 and —2 £ j 1.

Consider the unity feedback system shown in Fig. 9.10. The plant transfer function is
&(s) = 2/s(s + 1). Can the output track robustly any step reference input? Can the
output reject any step disturbance w(t) = a? Why?

w(r)
o ; > 1.5 O—{-2 4
_[ ) = ss+ 1)

Consider the unity-feedback system shown in Fig. 9.11(a). Is the transfer function from
r to y BIBO stable? Is the system totally stable? If not, find an input—output pair whose
closed-loop transfer function is not BIBO stable.

Figure 9.10

ny ny ny
r+ XL+ 1 r + l+
04 co) _.(g_. 2)
- s—2 - + " u -
(a) (b}
Figure 9.11

Consider the unity-feedback system shown in Fig. 9.11(b). (1) Show that the closed-loop
transfer function of every possible input—output pair contains the factor (1+C(s)g(s1 7.
(2) Show that (1 + C(s)g(s)~is proper if and only if

14+ C(0)g(c0) # 0

(3) Show that if C(s) and g (s) are proper, and if C(20)g(o0) # —1, then the system is
well posed.

Given 2(s) = (s> — 1)/(s® + a;5* + a25 + a3). which of the following g,(s) are
implementable for any a; and b;.

9.11

9.12

9.13

9.14

9.15

9.16
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s—1 s+1 st —1
s+ G+26+3 (-2
(2=1) (s—=Dlhos+b) 1
(s+2)7 (s+2¥sT+25+2) 1

Given g(s) = (s — 1)/s(s = 2), implement the model go(s) =205 — 1)/(52 +2s+2)
in the open-loop and the unity-feedback configurations. Are they totally stable? Can the
implementations be used in practice?

Implement Problem 9.11 in the two-parameter configuration. Select the poles to be
canceled at s = —3. Is A(s) a Hurwitz polynomial? Can you implement the two
compensators as shown in Fig. 9.4(a)? Implement the two compensators in Fig. 9.4(d)

and draw its op-amp circuit.
Given a BIBO stable g,(s). show that the steady-state response Vo (2) 1= lim o ¥ (1)
excited by the ramp reference input (1) = at for t > 0 is given by
v (8) = éa(o)at + g(;(o)a
Thus if the output is to track asymptotically the ramp reference input we require g,(0) = 1
and §,(0) = 0.
Given a BIBO stable
bo+bis+ -+ bps”
ag +ays + -+ aps”

go(s) =

with n > m, show that 3,(0) = 1 and §,(0) = 0 if and only if ap = bgand a; = by.
Given a plant with transfer function g(s) = (s + 3)(s — 2)/(s% + 25 — D. (1) find
conditions on by, bg. and a so that

N b]S + bo

‘mn=;:§:;
is implementable; and (2) determine if

(s — 2)1b1s + bo)

= TG+ D
is implementable. Find conditions on b and by so that the overall transfer function will
track any ramp reference input.

o>

Consider a plant with transfer matrix

s+1
G (s) = s(s i_ 1)
s?—-1
Find a compensator in the unity-feedback configuration so that the poles of the.overall
system are located at —2, ~1 £ j and the rest at s = —3. Can you find a feedforward

gain so that the overall system will track asymptotically any step reference input?
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9.17 Repeat Problem 9.16 for a plant with transfer matrix

- s+1 17
G)=|—"7
) [s(s—l) sT-1]
9.18 Repeat Problem 9.16 for a plant with transfer matrix
s—2 1 7
Ao | st=1 s—1
GE=1"4 2
s s—1-

9.19 Given a plant with the transfer matrix in Problem 9.18,1s
4(s2—4s + 1)
2425+ +2)

0

0

Gols) = AP —4s+ 1)

(2425 +2)(s+2)
implementable? If yes, implement it.

9.20 Diagonalize a plant with transfer matrix

. 1 1 s2+177"
G“)z[l i” "o ]

Set the denominator of each diagonal entry of the resulting overall system as 2425 +2.
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Answers to Selected Problems

CHAPTER 2

2.1 (a) Linear. (b) and (¢) Nonlinear. In (b). shift the operating point to (0, ¥,); then (u, ¥) is linear,
where y = y — Yo-

2.3 Linear, time varying, causal.

2.5 No, yes, no for x(0) 3 0. Yes, yes, yes for x(0) = 0. The reason is that the superposition property
must also apply to the initial states.

29 y(t) =0fort <Oand!? > 4.

0.5¢2 for0 <t <1
yy={ —1.5* +4r—2 forl <t <2
—y@d -1 for2 <t <4

210 g(s) =1/(s +3).8() = e fort > 0.
2.12

Du(s) Du(s)]"[zvnm le(s)]

é =
® [021(5) Dx(s) Nai(s) Nn(s)

2.15 (a) Define x; = 0 and x2 = 6. Then x|, = x2, X2 = —(g/l)sinx — (u/ml)cosxy. If 9 is

small, then
X = 0 ! X + 0
“l-gst 0 ~1/mg |"

1t is a linear state equation. .
(b) Define x| = 6y, x2 = 0, X3 = >, and x4 = ;. Then
X =X
% = — (g/l)sinx; + (mag/ml)cosx3 sin(xz — x1)
+ (1/myl)sinxzsin(xs —x)) - u
X3 = X3

— (g/h) sinx3 + (1/mal2)(cos x3)u

I

Xa
This is a set of nonlinear equations. If §; = 0 and 6;6; = 0, then it can be linearized as

321
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0 1 0 0 0

. —g(ml +mz)/m111 0 ng/mlll 0 0

X =
0 o o 1| o "
0 0 —g/h 0 1/mals

2.16 From
mh=fi — fr=kif — kau
B+b6=U+b)f-hh
we can readily obtain a state equation. Assuming / = 0 and taking their Laplace transforms can
yield the transfer function. ; ’
t
218 §1(5) = Si(s)/i(s) = 1/(ARs + 1. dals) = F6)/Fi(s) = 1/(AeRas + 1. Yes.
F(5)/i(s) = £1(s)g2(s).

2.20
0 0 1/C
k=] 0 0 176 x
-1/Ly —1/Li —(Ri+ R)/Ly
0 -1/C
+{ 0 0 }[“‘]
uz
/L Ri/Ly
y=[-1 =1 —Rx+[1 RiJu
y 2
sy = 28 s? + (Ra/Ly)s
i) s2+(R'+Rz)s+(L+_1_>L
Ll Cl CZ |
§2(5)=;i(5_) - (Rys + (1/C))(s + (R2/L1)
us(s) s2+<R1+R2)5+(L+_1_>_1_
Ly G Cy/) Ly
$(s) = g1(s)ir (s) + &2(s)ka(s)
CHAPTER 3

31 [ 8] 1-2 18
33

2 1
=37 1 © =173 X

3.5 p(Ay) =2, nullity(A;)=1:3,0;3. 1.

37 x = [1 1}isasolution. Unique. No solution if
39 o =4/11,a2= 16/11. The solution
4 -8 —4 -16
xz[ﬁ I
has the smallest 2-norm.
312
000 -8
i 100 20
010 —I8
001 7
313
1o -1
Q;:{O 1 } A=
00 1
5 40
Q4=[O 20 1} A=
0 =25 0
3.18
A = (= M) = R)
A0 = (= 2
A3 = (=)
Asd) = (k= A
321
119
A“’:[O 0 1
00 1
o e —1 tef—e+1
e‘“’—{o 1 el =1
0 0 e
322
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y=[111]

i) = &)

) = (=2’
i) = (= 1)
Yald) = (A — A1)

1 4r+2.50 3r+20
AM=10 1+20 16t
-25t 120t

11102
A‘“:{O 0o 1
00 1

|
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3.24
In Ay 0 0
B= 0 Inks 0
0 0 in A3
Inx 1/~ O
B = 0 ina O
0 0 Ini

3.32 Eigenvalues: 0, 0. No solution for Cy. For any m . [m; 3 — m ] is a solution for C;.

334 V6.1.47.17.

CHAPTER 4
4.2 v(r) =5e " sinr forr > 0.
43 ForT =m.
—00432 0 1.5648
xfk+ 1] = )
(k=1 [ 0 —0.0432} Xk + [-1.0432} ulk]

yIk] = [2 3]x([k]

4.5 MATLAB yields |,"]max = 0.55. X lmax = 0.5, |X?_imux = 1.05. and ‘x:aimu.r = 0.52 for unit
step input. Define X; = x. X» = 0.5x», and X3 = x3. Then

-2 0 0 1
X={05 0 05|%+|0fju y=[1 20
0 -4 -2 1

The largest permissible a is 10/0.55 = 18.2.
4.8 They are not equivalent but are zero-state equivalent.

4.11 Using (4.34), we have

=3 0 -2 0 107
o -3 0 -2 0 1
=10 0 o ol |ool"

Lo 1 0 o0 00
[2 2 4 3 00
Y=13 22 =6 —2]”[1 1}“

4.13

~~3 1 0 0 2 2

|20 00 |4 3]
0 0 —3 1 3 -2
Lo 0 —2 0 -6 -2

Answers to Selected Problems

_[roo0o0] oo
Y=loo 1 0o/ |1 1]"

Both have dimension 4.

4.16
r 4 eO.Srzdr
X(t) = o i }
LO 80.31'
(1 05 f; 5t
- i)
(1. 1) = 0 L0502 =13)
—e’[ e{
X(t) =
) L 0 22"}
_e_(,_,o) 0.5(616{“ — el e®
®(t,10) = Lo p—li=10)
4.20
eCOSI—COS!Q 0
B, 1) = {: 0 g Sinzsing }

4.23 Let X(1) = P(r)x(¢) with

Pkt 0
P(t) = [ 0 esinr}

ThenX(t) =0 -% = 0.

4.25
t:e_)“'
X=0-x+ | ~2e™ |u v=[e te* rfe™x
e’}"
3n =3a A7 1
x=|1 0 0 lx+|0|u y=[002]x
0 1 0 0
CHAPTER 5

325

5.1 The bounded input u(r) = sin? excites y(t) = 0.5¢ sin r, which is not bounded. Thus the system

is not BIBO stable.
5.3 No. Yes.

5.6 Ifu(t) =3, then ¥(t) > —6.1f u(t) = sin 2z then y(1) — 1.265sin(27 + 1.25).

o
=3

Yes.
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5.10 Not asymptotically stable. Its minimal polynomial can be found from its Jordan form as ¥ (&) =
A(A+ 1). 1 = Ois a simple eigenvalue, thus the equation is marginally stable.

5.13 Not asymptotically stable. Its minimal polynomial can be found from its Jordan form as W (}) =
(A = D2(A + 1). & = | is a repeated eigenvalue, thus the equation is not marginally stable.

M= 22 1.6
116 48

It is positive definite; thus all eigenvalues have magnitudes less than 1.

5.15 If N =, then

5.17 Because XMx = x'[0.5(M~+M')]x. the only way to check positive definiteness of nonsymmetric
M is to check positive definiteness of symmetric 0.5(M + M).
t

5.20 Both are BIBO stable.

5.22 BIBO stable, marginally stable, not asymptotically stable. P () is not a Lyapunov transformation.

CHAPTER 6

6.2 Controllable, observable.

- I
gz[ol _01]”[0]” y=[0 — 1]x+2u

Not controllable, not observable.
67 p;=1foralliandp = 1.
69 y=12u.
6.14 Controllable, not observable.
6.17 Using x| and x; yields
<[ o[ e ymem o

This two-dimensional equation is not controllable but is observable.
Using x1, X2, and x3 yields

—2/11 0 0 -2/11
x=| 3/22 0 0|x+| 3/22 fu y=[00IlKk
(/22 0 0 1/22

This three-dimensional equation is not controllable and not observable.
6.19 For T = , not controllable and not observable.

6.21 Not controllable at any f. Observable at every f.

Answers to Selected Problems

CHAPTER 7
71
-2 1 2 1
x=| 1 0 0|x+|0|u y=[01 -1
0 10 0
Not observable.
7.3
21 2 q 1
g=| L 00 @l 10 y=001 —1c4x
0 10 a 0 ¢
0 0 0 a4 0.

For any a; and c4, it is an uncontrollable and unobservable realization.

g— -3 -2 17
=11 0 X+ O_u y=[0 1]x

A controllable and observable realization.

7.5

Solve the monic null vector of

-1 -1 0 07[r-No
0 2 ~1 =t D |_,
4 0 0o 2 ||-~§|"

0 0 4 0 D
as{—0.5 0.5 0 17. Thus 0.5/(0.5 + s) = 1/(2s + 1).

. [o 1 0
k= _IJX+[1}u y=[10]x

7.13
A(s) =s(s+ D(s+3) deg =3
M) =G+ 125 +2)  deg=5

7.17 Its right coprime fraction can be computed from any left fraction as

2.5 s+0.5][ 0.5s 52+0.53]_1

é =
© [2.5 s+25{]s—-05 -05

or, by interchanging their two columnns,

327
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A s+05 257[s2+05 055 17
G(s) =
s+25 25 -0.5 s—0.5
Using the latter, we can obtain
~0.5 -025 -0.25 1 =05
X = 1 0 0 x+|0 O u
0 5 0.5 0 1
1 05 25
= X
1 25 25
CHAPTER 8
81 k=[4 1]
83 For

we have

8.5 Yes, yes. yes.

87 u = pr—kxwithk=[15 47 —8Jand p =0.5.

8.9 ulk] = prik] — kx[k] withk

=[1 5 2]and p = 0.5. The overall transfer function is

05022 -8z +9%)

gr(0) = )

and the output excited by r[k}
k>3

8.11 Two-dimensional estimator:

. [-2
=
-2

= ais ¥[0] = 0. ¥[1] = a. ¥[2} = —3a.and y[k] = a for

2 062821 1],
13 3
2 |2 03105 0]

N —-12 =275
X = z
19 32

One-dimesnional estimator:

F=-3z4+(132Du+y

P

Answers to Selected Problems 329

8.13 Select
43 0 O
po|-34 00
0 0 -5 4
0 0 -4 -5
x_|1 010 625 147 20 515.5]
IfK = . [s2.
[0 0 0 0] lhcnl\—[ o 0 0 0
x|l 000 _6062 —168 —142 -2
ItK:[ thenK = :|
0010 3711 1192 149 22
CHAPTER 9

9.2 C(s) = (105 4+20)/(s — 6), p = —0.2.

94 C(s) = (225 —4)/(s — 16), p = 1. There is no need for a feed forward gain because 2(s)
contains 1/s.

9.6 C(s) = (7s* + 145 + 345 + 25)/(s(s* + 4)).

9.8 Yes, no. The transfer function from r to u is g,,(s) = s/(s + 1)(s — 2), which is not BIBO
stable.

9.10 Yes, no, no, no, yes, no (row-wise).

9.12 Ci(s) = —2(s+3)/(s =21). Ca(s) = (285 —6)/(s —21). A(s) = s — 21 is not Hurwitz. Its
implementation in Fig. 9.4(a) will not be totally stable. A minimal realization of [C; (s) — C2(5)]
is

X =2lx+[-48 —582][ ] y=x+[-2 —28]|:r}

r
y ¥
from which an op-amp circuit can be drawn.
9.15 (1) a > O and by = —2b. (2) Yes. by = -2.by = —4.

9.16 The | x 2 compensator

1
C(s) = m[le + 12 =2]

will place the closed-loop poles at =2, —1 % j, —3. No.
9.18 If we select
F(s) = diag((s + 2)(s* + 25 + 2)(s + 3), (s2+ 25 +2))
then we cannot find a feedforward gain to achieve tracking. If

N(ss L2
F(S)z[(s—i—-)(s + 25+ 2)(s + 3) 0 }
1 242542

then the compensator
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s—47 =537 ]“ [—30.3s —29.7 42s-— 12]

Co) = A" BE) = [ ~33 s5-43 ~075-03 451

and the feedforward gain matrix
P 092 0
T -428 1

will achieve the design.

9.20 The diagonal transfer matrix

—2(s - 1)

A s24254+2
Go(s) = o 2D
! s2+25+2

is implementable. The proper compensators A~1(s)L(s) and A~ (s)M(s) with

- -2 3 25+
A(s)=[5+5 14] Lm:[ (s+3) 2s ]

0 s+4 2 —-2s
-6 13s+1
o[ 5]

in the two-parameter configuration will achieve the design.

Index

Actuating signal, 231

Adder, 16

Additivity, 8, 32

Adjoint, 52

Asymptotic stability, 131, 138

Asymptotic tracking, 242, 302
of ramp input, 276
of step nput, 276

Balanced realization, 204, 227
Basis, 45

change of, 53

orthonormal, 46
Bezout identity, 272
BIBO stability, 122, 125, 138, 192
Black box, 5
Blocking zero, 15, 305

Canonical-form, companion, 97. 203
controtlable, 102, 187, 235
Jordan, 61, 164, 182
modal, 98, 182, 241
observable, 188

Causality, 6, 10, 32

Cayley-Hamilton theorem, 63

Characteristic polynomial, 55, 225
of constant matrix, 55
of rational function, 189
of rational matrix, 205

Column degree, 212, 225

Column-degree-coeffictent matrix, 213, 219

Column echelon form, 219

Column indices. 215

Companion-form matrix. 54, 81
characteristic polynomial of. 55
eigenvectors of, 81

Compensator, 273, 283
feedback. 287
feedforward, 287

Compensator equation, 271

Configuration. See Control configuration

Control configuration, 270
closed-loop, 267

controller-estimator, 270, 287
feedback, 267
no-plant-leakage. 283
one-degree-of-freedom, 270. 287
open-loop, 269
plant-input-output feedback, 270
two-degree-of-freedom, 270, 287
two-parameter, 270. 287, 291, 307
unity-feedback. 273, 284, 287
Controllability, 144. 169, 176
after sampling. 172
from the origin. 172
Gramian, 145, 170
index, 151
indices. 150, 225
matrix, 145, 169
to the origin, 171
Convolution, integral. 12
discrete, 32
Coprimeness, 15. 187. 211, 214
left, 211
right, 211
Cyclic matrix, 256

Dead beat design. 267
Decoupling, 311
Degree of rational function, 189
McMillan, 203
of rational matrix. 203, 211
Description of systems, 2
external, 2
input-output. 2. 8. 12
internal, 2
state-space, 2. 10. 35
Determinant, 52
Discretization, 90
Disturbance rejection, 243, 277
Divisor, common. 187, 210
greatest common. 187, 211
left, 210
right, 210
Duality, theorem of, 155
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INDEX

Eigenvalue. 55
assignment of, 234, 256
index of, 62
multiplicity of. 59. 62

Eigenvector, 55
generalized, 59

Equivalence, 95, 112. 191
algebraic, 95, 112
Lyapunov, 114
zero-state, 96

Equivalence transformation, 95, 112, 152

Floguet, theory of, 115
Fraction, polynomial, 189
coprime, 189, 192
matrix, 209, 210
Fundamental cutset, 27
Fundamental loop. 27
Fundamental matrix. 107, 108

gcd. 187
ecld. 112
gerd, 112
General solution, 50. 272, 282
Generalized eigenvector, 59
chain of, 59
grade of, 59
Gramian, controliability, 145, 170
observability, 156, 171

Hankel matrix, 201, 226
Hankel singular value, 199
Homogeneity, 8. 32

Hurwitz polynomial, 271, 285

Implementable transfer function, 285, 306
Impulse response. 10

matrix, 10

sequence, 32
Impulse sequence, 31
Integrator, 16
Internal model principle. 247, 279
Inverter. 16

Jacobian, 18
Jordan block, 60
Jordan-form matrix. 60, 164

Kalman decomposition theorem, 162

Laplace expansion. 52
Laplace transform. 13
Leverrier algorithm, 83
Linear algebraic equations, 48
Linear space, 45

basis of, 45
change of basis, 53
dimension, 45

Linearity, 7

Linearization, 18, 30

Link, 27

Lyapunov equation, 70, 239
discrete, 135

Lyapunov theorem, 132, 135

Lyapunov transformation, 114

Markov parameter, 200, 225
Matrix, 44
cofactor of, 52
cyclic, 256
tunction of, 63
fundamental, 107
inverse of, 52
left inverse of, 208
minor of, 52, 205
nilpotent, 61
nonsingular, 52
norm of, 78
orthogonal, 74
principal minor, 75
leading. 75
pseudoinverse of, 208
rank of, 49
right inverse of, 208
singular value of, 76
state transition, 108
symmetric, 73
trace of, 83
Minimal polynomial, 62
Minimal realization, 184, 191
Minimum energy controf, 149
Minor, 52, 205
Modal form, 98, 182, 241
Model matching, 283. 306
Model reduction, 200
Monic potynomial. 62
Multiple, lett, 210
right, 210
Multiplier, 12

Nilpotent matrix, 61
Nominal equation, 243
Norm. of matrix, 78
Euclidean. 47
induced, 78
of vector, 46
Nommal tree, 27
Null vector, 49
monic, 194
Nullity, 49

Observability, 153, 170. 179

Gramian, 156, 171

index, 157

indices. 157,225

matrix, 156, 171
Observer. See State estimator
Op-amp circuit. 16

magnitude scaling, 98
Orthogonal matrix. 74
Orthogonality of vectors, 47
Orthonormal set, 47, 48

Parametenization, 50, 272, 282
Periodic state system, 114
Pole, 15
Pole placement, 273, 292
Pole-zero cancellation, 287
unstable, 287
Pole-zero excess inequality, 285
Polynomial matrix, 210
column degree, 212, 225
column-degree-coefficient matrix. 213. 219
column reduced, 212
echelon form. 219, 220
left divisor. 210
left multiple, 210
right divisor. 210
right multiple, 210
row degree, 212, 225
row-degree-coefficient matrix. 213
row reduced, 212
unimodular, 210
Positive definite matrix, 74
Positive semidefinite matrix. 74
Primary dependent column. 194. 215, 219
row, 220
Principal minor, 75
leading, 75
Pseudoinverse, 208
Pseudostate. 186, 221

QR decomposition. 196
Quadratic form, 73

Range space. 49
Rank, of matrix, 49
of product of matrices, 72
Rational function. 14
biproper. 135
improper. 15, 34
proper. 14
strictly proper, 15
Rational matrix. 13
biproper. I5
proper. 15

INDEX

strictly proper, 15
Reachability, 172
Realization, 100

balanced, 197, 204, 227

companion-form, 203

controllable-form. 101, 104, 223

input-normal. 199

minimal, 189. 207

observable-form. 118, 119

output-normal, 197

time-varying, 115
Reduced. column, 212

row. 212
Regulator problem, 242, 302
Relaxedness. 10
Response, 8, 31

impulse, 10

zero-input, 8. 31

zero-state, 8. 31
Resultant, generalized, 215

Sylvester, 193,274
Robust design. 243, 304
Robust tracking, 243, 278
Row degree, 212,225
Row-degree-coefficient matrix, 213
Row echelon form. 220
Row indices. 220

Schmidt orthonormalization. 48

Separation property, 255. 266

Servomechanism, 242

Similar matrices. 54

Similarity transformation, 54

Singular value. 76

Singular value decomposition. 77. 204, 226

Stability. asymptotic, 130. 138
BIBO, 122,125,138

discrete, 126, 129

in the sense of Lyapunov. 130. 131
marginal, 130, 131. 138
total, 284

Stabilization. 247

State. 6
pseudo-, 186. 121
variable, 7

State equation. 2, 11, 15
discrete-time., 35.91. 110
discretization of. 91
equivalent. 95
periodic, 114
reduction, 159. 162, 181
solution of, 87, 93, 106
time-varying. 106. 110

State estimator. 248, 263
asymptotic. 249
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State estimator (continued)
closed-loop, 249
full-dimensional, 248, 263
open-loop, 248
reduced-dimensional, 251, 264

State feedback, 232

State-space equation. See State equation

State transition matrix, 108

Superposition property, 8

Sylvester resultant, 193, 274

Sylvester’s inequality, 207

System, 1
causal, 6, 10
continuous-time, 6
discrete-time, 6, 31
distributed, 7
linear, 7
lumped, 7
memoryless, 6
MIMO, 5
multivariable, 5
nonlinear, 7
single-variable, 5
SISO, 5
time-invariant, 11
time-varying, {1

Total stability, 284
Trace of matrix, 83
Tracking. See Asymptotic tracking
Transfer function, 13
discrete, 33
pole of, 15

zero of, 15
Transfer matrix, 14, 16
blocking zero, 15, 305
pole of, 15
transmission zero, 302, 311
Transmission zero, 302, 311
Tree, 27
branch, 27
normal, 27
Truncation operator, 38

Unimodular matrix, 210
Unit-time-delay element, 7, 12, 14. 33

Vandermonde determinant, 81
Vector, 45
Euclidean norm of, 47
Infinite norm of, 47
1-norm of, 47
2-norm of, 47

Well-posedness, 284

Zero, 15
blocking, 15, 305
minimum-phase zero, 311
nonminimum-phase zero, 311
transmission, 302, 311
Zero-input response, 8, 31
Zero-pole-gain form, 15
Zero-state equivalence, 96
Zero-state response, 8, 31
z-transform, 32




