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5.1 Introduction
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gives a relation between the input and the output of that system. A dynamica

be linear: ineor. It is said to be linear if the dif

that characterizes the system is linear.

A differential equation is linear if the coefficients are constants or functions
of only the independent variable and not that of the dependent variable. The
most important property of the linear systems is the applicability of the prin-
ciple of superposition, i.e, if y;(t) and y,(t) are two solutions to inputs r((t)
and rz(t) then the solution to the new input r(t)--cm(t) + cara(t) is given
Dy y\l) "‘C])’IU} -+ Czyz\!) This feature enabies US to build system response to
any complex input function by expressing it as a sum of several simple input
functions.

A system is said to be nonlinear if the differential equation that characterizes it
is nonlinear. A differential equation is nonlinear if it contains products or powers
of the dependent variable or its derivatives. Nonlinear differential equations, in
general, are quite difficult to solve. Furthermore, the property of superposition
does not hold for nonlinear systems.

A control system may be an open- or closed-loop system. An open-loop system
is one in which the output has no effect on the input. In other words, in an open-loop
system the output is not fed back for comparison with the input for regulation. An
open-loop control can be used in practice if the relation between the output and
the input is precisely known and the system is not subject to internal parameter

variations or external disturbances. A closed-loon svstem is one in which the output
variations Op sysiemis oncin winch the outpu

is measured and is fed back to the input for comparison and system regulation. An
advantage of the closed-loop or feedback system is that the system response will be
relatively insensitive to internal parameter variations or external disturbances. For
open-loop systems, stability is not a major concern. However, it is of major concern
for a closed-loop system because a closed-loop system may tend to overcorrect
itself and in that process develop instability.
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5.2 Laplace Transform

For linear systems, the application of Laplace transform enables us to express
the given differential equation in an algebraic form that greatly simplifies the
analyses of control systems. Obviously this type of simplification is not possible
for nonlinear systems. In view of this, one often introduces what is called an
equivalent linear system. Such a linearized system is valid for only a limited range
of parameter values. The linearization process may have to be repeated several
times to cover the entire range of parameter values of interest.

In this section, we will briefly review the main results on Laplace transform

that are useful in the anal\lcnc and desion of aircraft control svstems. For mo
in e sign SYs S. I'Or more

information, the reader may refer to the standard texts on linear systems.!3
The Laplace transform of a function f(t) is defined as

In this chapter, we will review the basic principles of linear ime-invanant sys-
tems and their representation in the transfer function form using Laplacc transform.
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and derive expressions for steady-state errors. Furthermore, we will briefly discuss

the frnnnnnn\l racnonca and stahilitv of cloced-loon cvetems and the desion of com-
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pensators. Finally, we will give a brief exposure to modern state-space analyses
and design methods.
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LLF®O) = Fs) = J{ F)e dr 5.1)

where s is a complex variable, equal to o + jw. Quite often, s is also called the
Laplace variable. We assume that f(t) satisfies all the conditions for the existence
of its Laplace transform.
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F) = L7 Fs)] = f Fs)e e (52)

Some of the important theorems on Laplace transform are summarized in the
following.

I) Translated function. The Laplace transform of the translated function f(f—
(Fig. 5.1), where f(r — ) = 0for0 < ¢ < « can be obtained as follows.
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Fig.5.1 Translated function.
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tp t 0
a) Pulse function b) Impulse function

Fig.5.2 Pulse and impulse functions.

We have
LLf()] = F(s) = j; F(r)e™ dr (5.3)

Letr =t — . Then,

f) = -/»00 f(t — a)e™¢ s = /m ft —a)e™dt = e L[ f(t — )]
° ° (5.4)
Therefore,

LIf(t—a)] =™ f(s) (5.5)

This theorem states that the translation of the time function f(¢) by @ corresponds
to a multiplication of its transform by e™*.

Using this theorem, one can obtain the Laplacc transform of a pulse function as
follows A nuleo finction Big § 22) ic oivan by

ulWwSs. A Pulov IURLLUUTI\KIE. J.4&a) 15 given Uy

fi)=A 0<t<iy
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respectively. The Laplace transform of a unit step function is given by
o0 fovel 1
Lson= [ e a= [ ierar= s 58
0 ]

s
Then,
L{f(D)] = LIAI(t)] — L[Al(t — 1p)] = %(1 —e™h) (5.9)

The impulse function is a special limiting case of a pulse function. Consider the
pulse function given by

=0 t<0,10 <t (5.6)

The given pulse function can be expressed as a sum of tw
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0-st p functions, each
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@) = Al(t) — Al(t — 10) 5.7

where [(t) and I(t — 1) are the unit step functions originating at t = O and t = fp,

A

f@) = lim ( \) O<t<py (5.10)
l-’V \l /

=0 t<0 o<t (5.1D)

The height of the impulse is A /1y and its duration is #p. Therefore, the area under
the impulse is equal to A. As the duration 7y approaches zero, the height of the
pulse approaches infinity giving us an impulse (Fig. 5.2b). Note that, even though
the height of the impulse tends to infinity, the area remains finite.

The Laplace transform of an impulse function is given by

_ LAl — e7*0)]
L{f(t)] = hm —(I — ") = Jim —"——— =A (5.12)
=0 (1)

An impulse function of infinite magnitude and zero duration is a mathematical
fiction. However, if the magnitude of a puise input is very large and its duration is
very small, then we can approximate it as an impulse input. An impulse function
whose area is equal to unity is called a unit-impulse function or Dirac delta func-
tion. The Laplace transform of a unit-impulse function is unity. A unit-impulse
function occurring at ¢ = ¢, is usually denoted by §(¢ — 1;), which has the following
properties:

Ofa PR Y n 4 J a 1€ 117N
oi—1n)=0 t#0n (.13)
=00 t=1 (5.14)
00
J s —nydr=1 (5.15)
—00

The concept of the unit-impulse is very useful in differentiating discontinuous
functions. For example,

5(1) = %z(x) (5.16)

where 8(¢) and I(¢) are the unit-impulse and unit-step functions, respectively, and
both occur at the origin. Thus, integrating a unit-impulse function, we get a unit-
step function. The concept of impulse function helps us represent functions involv-
ing multiple discontinuities. Such a representation will have that many impulse
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functions as the number of discontinuities and the magnitude of each impulse
function will be equal to the magnitude of the corresponding discontinuity.

2) Multiplication of {(t) by e~°*. The Laplace transform of the function e ™' f(¢)
is given by

w

— !

e finl= j fye ™e™ dt = f(s +a) (5.17)

Thus, multiplying the function f(t) by e~ has the effect of replacing the Laplace
variable s by s + . Here,  may be real or complex.
3) Change of time scale. Suppose the time # is changed to t/«, then

er (t\] _ f”f/i\e - (5-18)
&)=k T\&) |
Let#t; = t/a and 5y = as. Then,

L[f(-:;)] = fo fr)e " d(an) = a f(si) = o f(as) (5.19)

As an example, consider f(t) = e~* so that f(t/4) = e %2 We have o = 4 and
51 = 4s. Then,

1
LIfHO] = f(s) = Py (5.20)
and
- 4
L[f(%)] =afes) = (5.21)

4) Differentiation. The Laplace transform of the derivative of a function is given
by
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In a similar fashion, we can obtain the Laplace transforms of higher order
derivatives of f(t). For example,

L[dzf ®

5 ] =52 f(s) — s£(0) — F(0) (5.26)

where £(0) is the value of df(¢)/dt atz = 0.
5) Final value theorem. This theorem gives

f(o0) = lim f() = lim [5 7(5)] (5.27)

To prove this theorem, take the limit as s approaches zero in Eq. (5.25).

I T R
Ll__d—t'“”_l =8§J5)—JW) (5.22)
To prove this theorem, we proceed as follows:
14 I’ =00 roQ d&'/ e ~5t
j (e dt = f(:)——~‘ - j ’ — dr (5.23)
Then,
0 dft
fo=L2 4 1[0 (524)
s dt
so that
[df®O7 -
L2 | =si0- 1o (525)

t -
fdf ( )] ~dt = lim [5 ()] - £(0) (5.28)
Jim Jo ~ot 7

Because e~ = 1 as s —» 0, we have

[erdrmni, 0) = lim [s 7(5)] — 7(0 e
| Jat f(00) = £(0) = lim [s f ()] — F(0) (5.29)
0

Hence,
f(e0) = lim [s f(5)] (5.30)

This theorem is very useful in determining the steady-state value of a given function
using its Laplace transform.
6) Initial value theorem. The initial value of a function f(t) is given by

£O) = Tim 57(s) (531)

To prove this theorem, consider the Laplace transform of d f(¢)/ds and take the
limit as s — oo in Eq. (5.25).

(o] d _
lim fo [—%]e“" dt = lim [sf(s) - £(0)] (5.32)

3~ 00

As s approaches infinity, e~** approaches zero. Hence,

fO) = lim [sf(s)] (5.33)

7) Integration theorem. The Laplace transform of the integral of f(t) is given
by
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where f~! = [f(r)dt evaluated at t = 0.
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To prove this theorem, we proceed as follows:

L[ff(t)dt:l = ‘/:0 [/f(t)dl]e“' dr (5.35)

AN 1.] e"‘-" Iw ) 1 Im pron =S 3. r2 LN
i j—j +— e > dr 5.36)
aj], t3 ), S0

l s -3t
- ff(t)dtlx=o+; fo F)edr (5:37)

-1 7
L 0,76 (5.38)

0
Hence, the theorem is proved.
8) Convolution integral. The integral of the form fo" Hi(t —1)fa(r)dr is called
the convolution integral and is frequently encountered in the study of control

systems.
The Laplace transform of the convolution integral is given by

14
L[f Silt — 1) fa(7) df] = f1(5)fAs) (5.39)
0
For the proof of this theorem, the reader may refer elsewhere.!-3

5.3 Transfer Function

Let us consider a linear system represented by the following differential equa-
tion:

y+ay+by=kr@t) (5.40)
where a is the damping constant, b is frequency parameter, and r(t) is the input
function. We assume y(0) = y(0) = 0.

Taking the Laplace transform of both sides and using the initial conditions
¥(0) =y(0) =0,

$25(s) + asy(s) + by(s) = k¥ (s) (5.41)
$(s) k
DAL AN (5.42)
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the input is a unit-impulse function whose Laplace transform is unity, then the
transfer function is equal to the Laplace transform of the output. In other words,
by measuring the output for a unit-impulse function input, one can deduce the
information on the system transfer function.

5.4 System Response

The system response depends on the order of the system. The order of the system
refers to the order of the differential equation representing the physical system or
the degree of the denominator of the corresponding transfer function. For example,

mx + cx + kx = u(t) (5.45)

Let
Vo VRN y(s) V-3 Lo Y
O{s) = —— (2.45)
F(s)
so that
k
G(s) = 5———r (5.44)
st+as+b

Here, G(s) is the ratio of the Laplace transform of the output to the Laplace
transform of the input and is called the transfer function of the given system. If

1s a second-order differential equation. 1t

k
Giis)= ) (5.46)
k
Gas) = Tas b (5.47)

then G (s) is a first-order system and G(s) is a second-order system.

Generally, the output or response of a system consists of two parts: 1) the natural
or free response and 2) forced response. In the following, we discuss the unit-step
response of typical first- and second-order systems.

5.4.1 Response of First-Order Systems
Consider a typical first-order system

s+b

s+a

The response of this system to a unit-step function whose Laplace transform 1/s
is given by

G(s) = (5.48)

¥(s) = G(s)F(s) (5.49)

s+b\/1
-(=2)() o

It is convenient to use the method of partial fractions to factor the right-hand side.
Let

(5.51)

Multiply throughout by s(s + a) so that
s+b=A(s +a)+ Bs (5.52)

This identity is supposed to hold for all values of s. Therefore, with s = —a, we
get B = (a — b)/a and, with s = 0, we get A = b/a. Then,

b (a—b)

¥(s) = —+ (5.53)

Py S T
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Taking the inverse Laplace transform,

y(t) = - (a — b)e”‘” (5.54)
a

a

‘We note that y(0) = 1 and y(co) = b/a.

The first term on the right-hand side represents forced response and the sec-
ond term represents the natural response. The forced response is also known as
steady-state response, and the natural response is also known as transient response.

Observe that the pole at s = 0 corresponding to the input unit-step function gen-
erates the forced response. The transient response is generated hv the system pole

ats = —a and is of the form e~ Thus, the fanher to the left the polc is localed
on the negative real axis, the faster the transient response will decay to zero. On

the other hand, if this pole is located on the positive real axis, then the response
will be of diverging nature because the output will increase steadily with time.

The zeros of the system and the input function influence the amplitude of both
the steady-state and the transient response. In this case, we have only one system
zero at s = —b, and there is no zero because of the input function. The effect of
this system zero on the amplitude of the response can be seen in Eq. (5.54).

The qiiaﬁiiiy A/a is called the time constant of the glvnn first-order system.
The time constant is a measure of the speed with which a system responds to an
external input. The lower the value of the time constant (or higher the value of a),
the faster will be the system response. Sometimes, a is also called the exponential
decay frequency. For t = 1/a, y(t) = 0.63 times its final rise above the initial
value. In other words, at time equal to one time constant, the output rises to 63%
of its steady-state value above the initial value.

The rise time 7, is the time for the output to increase from 0.1 to 0.9 times its
final or steady-state value. However, it may be noted that some authors define it as
the time for the output to rise from 0.1 to 100% of the final value. However, this
alternative definition is not used in this text.

For a first-order system,

2.2
T, = — (5.55)
a
The settling time 7 is defined as the time required for the output to reach, for
the first occurrence, within 2% of its final or steady-state value. For the first-order
system, this value is approximately given by
4

T, =— (5.56)
a

5.4.2 Response of Second-Order Systems
Now let us consider a second-order system given by

o

GS)=37T—7 5.57
(s) s24+as+b (5.57)
The response to a unit-step input is
¥(s) = G(s)F(s) (5.58)
b

—— e (5 59)
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A second-order system has two poles. In general, the response of a second-order
system can be any one of the four types of responses as shown in Fig. 5.3. Suppose
the system poles, which depend on the values of a and b, are both real and negative
as shown in Fig. 5.3a; then the corresponding response is a steady rise, without
any overshoot, to the final value. This type of response is called an “overdamped”

response If the noles are nurelv imaginarv. then the resnonse is a constant amnli-

255 A2 10 PSS &0 pRita) Alllagiinal)y WAt WAL ILSPVRSL 1 4 LUNSIALL &Py

tude sinusoid that will continue forever because there is no damping in the system
(Fig. 5.3b). This type of response is called “oscillatory response.” The frequency
of this undamped oscillation is called the natural frequency of the system. If the
system poles are a pair of complex conjugate numbers with negative real parts,
then the transient response will be oscillatory and is characterized by overshoots
as shown in Fig. 5.3c. This type of response is called “underdamped response’

—and the frequency of this oscillation is called the exponential decay frequency or

the damped frcquency If the poles are real, negative, and equal to each other, then
the response is said to be critically damped as shown in Fig. 5.3d.

The transfer function of the second-order system given by the Eq. (5.57) can be
expressed in the standard form as follows:

wz

G(s) = L (5.60)
52 + 2L wps + w?
where
wy = b (5.61)
a a
= = 5.62
20, 2Jb (5.62)

Here, w, is the natural frequency of the system, and ¢ is the damping ratio of
the system. The damping ratio is defined as the ratio of the existing damping to
that required for critical damping. For { > 1, the second-order system has two
real, negative, and unequal roots, and the system has an overdamped response
as in Fig. 5.3a. When { =1, the two real negative roots become equal, and the
motion associated with this case is called critically damped motion as shown in
Fig. 5.3d. When { < 1.0, the second-order system has a pair of complex roots
with negative real parts, and the system displays a damped oscillatory motion
as in Fig. 5.3c. Thus, the condition { = 1 represents the boundary between the
overdamped exponential motion and the damped oscillatory motion.

The damping ratio { and the natural frequency w, are two important parameters
that charactcnze a second-order system The respouse of a second-order system

frequency and dampmg ratlo are glvenby
S12 =—04% jwu ' (5.63)
We have
oy ={w, g=0o.y1-{? (5.64)
so that

512 = —{wp £ jouy1—¢2 (5.65)
Here, wy is called the damped frequency.
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The unit-step input response of a second-order system of Eq. (5.60) is given by

w?

y(s) = 2 5.66
¥(s) s(s2+ 2L wps + w?) (566)
ky kas + k3

TS St Uwes + w? 5-67)

where k;, k;, and k3 are constants. Expanding the partial fractions, taking the
inverse Laplace transforms, and simplifying, we obtain

1

c
*
{L
jo
X
-
c) Underdamped response
[}
o yO) = m———
— >
< t
d) Critically damped response

Fig. 53 Second-order system response.

yt)=1- —_\/_i __cze_“""' cos(wgt — @) (5.68)
1 Far ot s s Y 'R U Sy
=1~ 'ﬁe—‘w‘" cos(wnty 1 — (% —9) (5.69)

where the phase angle ¢ is given by

¢ =tan™" (5.70)

4
Vi—-¢?
The typical response for various values of the damping parameter ¢ are shown in
Fig. 5.4. Because the time appears as a product w,t in Eq. (5.69), it is convenient

1.8 ! T
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1.4

Vinmt) 4o

0.8
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wyt

Fig. 54 Typical second-order system response.



LINEAR SYSTEMS, THEORY, AND DESIGN: A BRIEF REVIEW 451
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Steady-State Value
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¥(o0) - v S —— y
el

0.98y(oc0) /
0.9y(c0) ’ /

0.1y(o0) /

> t
~T T,

Fig. 5.5 Characteristics of second-order system response.

to plot y(w,t) vs w,t, which has the effect of normalizing the time with respect
to the system natural frequency w,. We observe that the lower the value of ¢, the
more oscillatory is the response and the larger is the overshoot.

The parameters that characterize the response of a second-order system (see
Fig. 5.5) are as follows:

1) Peak time T, It is the time required to reach the first or maximum peak
y(max).

2) Percent overshoot Oy It is the maximum overshoot above the final or steady-
state value and expressed as a percentage of steady-state value y(oo).

3) Settling time T,. 1t is the time required for the transient response to come and
stay within £2% of the steady-state value.

4) Rise time T,. This is the time required for the response to rise from 0.1 to
0.9 of the final or steady-state value at its first occurrence.

Notice that the settling time and rise time are basically the same as those defined
for first-order systems. The above definitions are general in nature and as such appiy
to systcms of any order

second«order systems However, for the rise Ume T,, itis not possxble to obtam a
mmnlp ;malvm‘al expression.

The peak time T, can be obtained by differentiating Eq. (5.69) with respect to
time ¢ and finding the first zero crossing for t > 0 as

T, =— 571

- (5.72)
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The percent overshoot O is given by
_ y(max) — y(c0)
s
y(co)

where y(max) is the valué of y(t) at t = T,. For the unit-step input, y(co) = 1.
Then,

x 100 (5.73)

0, = eJi-& x 100 (5.74)

Py PRy PR e PR UYL Ry PR S
ClbllUUl ucpcnua umqucly on LllC Udlllpl.llg

oV
ratio ¢. The value of the damping ratio corresponding to a given percent overshoot

—0.(0,/100)
V2 + 62(0,/100)

The settling time T is the value of time ¢ when the amplitude of the damped
response comes within £0.02 for the first occurrence. Using Eq. (5.69),

vy
Il
~
W
N
C
S’

et T = 0.02 (5.76)

Solving, we get

- — 72
I — t (0.02y/1 — £2) 5.77)
{wy

However, this expression is somewhat complex for frequent use. Instead, the fol-
lowing simple approximation is used to evaluaté T;. The numerator of the above
equation varies from 3.91 to 4.74 as ¢ varies from O to 0.9. For typical under-
damped second-order systems, the numerator is usually close to 4. In view of this,
the following approximation is often used:

4

{wn

T, =

(5.78)

5.4.3 Nonminimum Phase Systems

given system is called a minimum phase system. If a system has at least one pole or

one zero in the right half of the s-nlane, then such a system is called a nonminimum
nezcioin e nghi n&k o1 IS s-paang, 1en Such a Sysiem 1§ Catied a nonminimuim

phase system. A characteristic property of a nonminimum phase system is that the
transient response may start out in the opposite direction to the input but comes
back eventually in the same direction.

For the first-order system given by Eq. (5.48), if b <0, the system becomes a
nonminimum phase system. The steady-state value will be negative, whereas the
response starts out with an initial value equal to +1.0.
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5.5 Steady-State Errors of Unity Feedback Systems

Ideally, control systems are designed so that the output follows the reference
input all the time. In other words, it is desired that the steady-state value of the
output be equal to the value of the reference input as closely as possible. However,
it may not always be possible to achieve this goal and, in reality, the steady-state
value of the output differs from the value of the reference input.

The steady-state error is the difference between the steady-state value of the
output and the reference input. Usually, unit-step, unit-ramp, or parabolic functions
are used as test inputs to determine the steady-state error. In the following, we will
derive expressions for steady-state error for unity feedback systems as shown in
Fig. 5.6. It may be noted that any given nonunity feedback systém (Fig. 5.7) can
be expressed as an equivalent unity feedback system by adding and subtracting

a unity feedback loop as shown in Fig. 5.8a and obtaining an equivalent unity
feedback system as shown in Fig. 5.8b.

Let e(t) be the error signal that is the difference between the output and the
input. For steady-state error to be zero, e(t) - 0 as t — oo.

We have
e(t) =r() — y(1) (5.79)
Taking Laplace transforms,
&(s) = F(s) — y(s) (5.80)
= F(s) — G(s)é(s) (5.81)
r(s
= i:ﬁ (5.82)

Using the final value theorem in Eq. (5.30), we can obtain the steady-state error
e(t) as follows:
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T(s) + €(s) y(s)

—-62)»——. G(s) -

l H(s)

e(00) = lim [s#(s)] (5.83)
—~ lim | 7] (5.84)
T s [1+G(S)J )
T(s) + & (s) ¥(s)
——.@——————' G(s) -
-X

Fig. 5.6 Unity feedback system.

Fig.5.7 Nonunity feedback system.

+1

a) Addition and subtraction of unity feedback

T(s) + e(s) Yi(s)
1+G(s) [H(s)~1]

-F

b) Equivalent unity feedback system

Fig. 5.8 Equivalent unity feedback system for a given nonunity feedback system.
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The steady-state error to a unit-step function 7(s) = 1/s is given by

1
o0) = —r—— 5.85
) = I i e GG (585
In other words, for steady-state error to a unit-step function to be zero, lim;_.o G(s)
= 0Q.
Generally, we have

Gls) = CH+a)s+z2) -5+ 2m) (5.86)
SIs+pi)s+ p2)---(s+ pn)

For ratlonal transfer functlons n>m, 1 €., the number of poles exceeds the number

1f q= O the systern is sa1d to be a type “0" system and for a type “0" system

2122 Zm
PipP2-DPn

which is finite. Hence, the steady-state error for a type “0” system to a unit-stcp
input is nonzero and is given by

‘lin}, G(s) = (5.87)

1
= 5.88
e(c0) 17K, (5.88)
Here, K, is called the position constant and is given by
K, =22l (5.89)
PiP2 " Pn

For type “1” or higher systems (g > 1), K, = 00, and the steady-state error to a
unit-step input approaches zero. A type *“1” system is said to have one integrator in
the forward path. In other words, the integer value of g corresponds to the number
of integrators in the forward path.

It can be shown that the steady-state error to a unit-ramp function r(¢) = t or
7(s) = 1/s? is given by

e(c0) = Ki (5.90)

v

where the velocity error coefficient X, is given by
K, = lin},[sG(s)] (5.91)
L s d
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where
K, = :1'_1% [s*G(s)] (5.93)

‘We observe that for a given system to have zero steady-state error to aunit-parabolic
input, we must have at least have three integrators in the forward path. Therefore,
the steady-state error to unit-parabolic input of type “0” and type “1” systems is infi-
nite; for type “2” systems, it is finite; and for systems of type “3” or higher, it is zero.

5.6 Frequency Response
In steady-state, a sinusoidal input to a linear system generates a sinusoidal

Thus, if the steady-state error for a unit-ramp function is to vanish, the velocity
constant X, must be very large, which implies that we must have ¢ > 2. In other
words, we must have at least two integrators in the forward path. Thus, for a type
“0" system, the steady-state error for a unit-ramp function is inﬁnity, for a type
“1” system, it is finite; and for systems of type “2” or higher, it is zero.

Similarly, the steady-state error to a unit-parabolic input function, r(t) = 12 or
F(s) = 1/s°, can be obtained as

1

e(00) = ra (5.92)

response (output) of the same frequency. However, the magnitude and phase angles

of the response are generally different from those of the input and also vary with the
frequency of the applied input. In the following, we will determine the steady-state
response (magnitude and phase angle) to sinusoidal inputs.*

In general, a sinusoid input function can be represented as

r(t) = Acoswt 4 Bsinwt (594
= M; cos(wt + ¢;) (5.95)

Here, M; and ¢; are the magnitude and phase angle of the input sinusoid function
and are given by the following expressions:

M; = A2 4 B2 (5.96)
B
¢; = —tan 'Z' (5.97)
In phasor notation,
r(t) = M;.¢; (5.98)

Furthermore, we assume that we can represent r(t) as a complex number, 7(t) =
A~ jBsothat A— jB = M;e/# and A + jB = M;e /. Taking the Laplace
transform of Eg. (5.94), we get

_ As + Bw
F(s) = ( s ) (5.99)
The response to a sinusoidal input is given by
/As
i) = ( )G(s) » (5.100)
As + Bo )
(( s+ jo)s — jw) G(s) (5.101)

NAY vz

. B 4o (5.102)
s+ jo  s—jo

Because we are interested in only the steady-state response, we have ignored the
terms corresponding to G(s), which generate the transient response. Recall that
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the steady-state response comes from the poles because of input function, which
in this case are at s = &+ jw. Using partial fraction method, we get

k= [A: + B s )] (5.103)
S=—jo
A iB
=226 jw) (5.104)

Because G(jw)is acomplex number, we can write G (jw) = Mgze/?t or G(— jw) =
Mge~i% With A+ jB = M;e /%, wehave

Ly, — lM.,—h’lM e~ (5.105)
T 2 4 2 A} 7
M;M, il LA P,
= =g J\WIT¥ (5.106)
2
Similarly,
ky = Mi;lx ICELY (5.107)
=k} (5.108)

where * denotes the complex conjugate. Then,
MM, [ e~ +8)  Lilér+ep) ]
— + -
2 LGHjo) (-jw)

where the suffix co denotes the steady-state value (t — o0) and M, and ¢, are
the magnitude and phase angle of the transfer function G(s) (with s = jw) and
are given by

Yools) = (5.109)
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¢, with frequency is called the frequency response of the system. In other words,
the frequency response of a system whose transfer function is G(s),s = jw is
nothing but the variation of M, and ¢, with frequency w.

One of the most widely used methods of obtaining the frequency response of

a transfer function is the Bode plot. It consists of two parts: the magnitude plot
in decibels where one decibel of M = 20 loc. . M and the phase nlot in deorees

RETIVAS VY adwi v ViU ULvauwa VA e AU IVE[Q 7 U AT PRISST paln A LOERElS,

both plotted against frequency w, which is usually exprcssed in radlans/sccond
Generally, the Bode plot is drawn for open-loop transfer function G(s). Further-
more, if the transfer function contains a variable gain k, then the Bode plot is made
for k = 1. For any other value of k, the corresponding Bode plot can be easily
obtained by shifting the entire Bode plot by 20 log,q k. The plot shifts upward if
k > 0 and downward if k < 0. We will illustrate the method of drawing a Bode

My = |G(jw)l (5.110)
Loy = LG(jw) (5.111)
Taking the inverse Laplace transforms in Eq. (5.109), we get
Yoolt) = M‘.zhll [e~j(¢| + ¢y +ot) + i@ +¢y +wr)] (5.112)
= M; M, cos(¢; + ¢, + wt) (5.113)
or, in phasor notation,
Mool = MMy (s + ) (5.114)

Thus, at any frequency, the magnitude of the steady-state output is the product
of the magnitude of the input and the magnitude of the transfer function. The
phase of the steady-state output is the sum of the phase of the input and the phase
of the transfer function. Therefore, if we want to know how the magnitude and
phase of the system response vary with frequency of a given sinusoidal input, it is
sufficient to know the variation of M, and ¢, with frequency because M; and ¢;
are supposed to be known. This process of determining the variation of M, and

plot with the help of Example 5.1.

Example 5.1
Draw the Bode plot for a system given by

G(S) = M
T s(s+ D)5 +2)

Solution. The first step is to assume k=1 and rewrite the given transfer
function in the following form:

36+1)
sts+ 1(5+1)
___ 3G
G2(5)G3(5)Ga(s)

G(s) =

where

/s O\
Gi(s) = (§+ 1)

Giy(s)=s
Y foN — a3 1)
Gasj=+ L)

........

Substituting s = jw, taking logarithms on boih sides, multiplying by 20 to convert
to decibels, and taking absolute values, we get

20 log;o |G(jw)] = 20 logyg 3 + 20 logyo |G1(jw)|

(574 Pguy \l AN 1. PRAY

— 20 logg 1G2(jw)| — 2010gyo IG3(jw)] — 20 log;q |Ga(jw)i

Now let us consider the magnitude plot of each one of the terms on the right-hand
side separately. The magnitude plot of the term 20 log,q 2 5 = 3.5218 for all values
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jw

(-3—+1)|
| [
\/——+1’

For smaller values of @ (low-frequency approximation), we assume

of the frequency w. For the second term,

20 log,o [G1(jw)| = 20 log,q

= 20 loglo

20 logy |G1(jw)| = 20 log,o 1

n
=uU

and, for higher values of @ (high-frequency approximation), we assume
. w
20 logyo G1(jw)| = 20 logyg =

Thus, for v = 3 rad/s, 20 log,;, |G1(jw)| =0 and, for @ = 30 rad/s, 20 logy,
% |G (jw)| = 20 db. The slope of the high-frequency approximation of this term
is 420 db/decade. Here, one decade means a tenfold increase in frequency.

The frequency at which the low-frequency approximation intersects the high-
frequency approximation is called the corner frequency. For the magnitude plot of
G (jw), the corner frequency is 3 rad/s. The low-frequency approximation holds
for frequencies that are below the corner frequency, and the high-frequency ap-
proximation holds for frequencies that are above the corner frequency. Proceeding
in a similar way, we find that the magnitude plots of G3(jw) and G4(jw) have
corner frequencies of 1.0 and 2.0rad/s, respectively. The magnitude plot of G2(jw)
is a straight line and hence has no corner frequency. Each of the magnitude plots
of Ga(jw), G3(jw), and G4(jw) have a slope of —20 db/decade. The component
magnitude plots of G(jw), G3(jw), G3(jw), and G4(jw) are shown in Fig. 5.9.

The phase plot can be drawn using the relation

LG(jw) = L} + LG1(jw) =~ LGa(jw) = LG3(jw) ~ LGa(jw)

Note that / 2 = 0. As before, let us consider the terms on the right-hand side one
by one. The phase of the second term is given by

_ (e e

! B 3
For smail values of @ (low-frequency approximation), ZG1{(jw) = 0. Asw — O
(high-frequency approximation), £G1(jw) = 90deg. Forw = rad/s LGi(jw) =

AS5degand, forw = 30rad/s. /G { i) ~ 90decsothat theslone of hich-freqguency

T UCE Qlll,, iVl W = SViaWo, LU ju) — FuGlg sU u.u;u.vuxuyvvnn 1pamaityonly

approximation is 45 deg/decade. We assume that the low-frequency approximation
holds for frequencies that are one decade below the frequency at which the phase
angle is 45 deg. For /G {(jw), this value is 0.3 rad/s.

With these approximations, the phase plot ZG(jw) and those of other terms
are shown in Fig. 5.10.
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20db/dec
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20 logyg |Ga(jw)| 0 |
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Fig.5.9 Component Bode-magnitude plots for Example 5.1.
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Fig.5.10 Component Bode-phase plots for Example 5.1.

The combined magnitude and phase plots, which are the sum of component
plots, are shown in Fig. 5.11.

MATLAB* is a convenient tool for control system analysis and design. We
assume that the reader has access to this or a software with similar capabilities.
Using MATLAB,* the magnitude and phase plots of the given transfer function
are drawn as shown in Fig. 5.12. It is interesting to observe that the approximate

method that involves the concept of corner frequencies comes close to the more
accurate plots given by MATLAB.#

5.7 Stability of Closed-Loop Systems

Ore of the most important requirements for a control system is stability. A linear,
time-invariant system is said to be stable if a bounded input produces a bounded
output. In other words, for a stable system the output should reach a steady state.
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Fig. 5.11 Combined Bode plots for Example 5.1.

If the input is zero, then the transient or free response must decay or go to zero
as the time approaches infinity. Therefore, if the output to a bounded input is not

bounded and the free response does not decay, the system is said to be unstable.
The transient response depends on the location of the system poles in the s-plane.
If ail poies are on the left haif of the s-plane—i.e., aii poles are negative if reai or
have negative real parts if complex—then the transient response is one of expo-
nnnnn 1 Aannes ~e Ancccnnd Acaillotiae aed tha rotasa so atabkl. MNa tha ihae hand
llDlllldl ucuvay vl umupcu um,luauuu, ailyg ulU Dyblclll iS Stdoie. uUn ui€ oulct uauu,
if any one or more of the system poles are located on the right half of the s-
plane—i e., are positive if real or have positive real parts if complex—then the

transmnt response is one of exponential dlvergence or an oscxllatory motion with
ever-increasing amplitude. Such a system is said to be unstable. Thus, a stable
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Fig. 5.12 Bode plots using MATLAB® for Example 5.1.

system has all poles located in the left half of the s-plane, and an unstable system
has one or more of its poles located in the right half of the s-plane. If some or all
the system poles are located on the imaginary axis, the transient response will be
consisting of pure oscillatory motion in which the amplitude of oscillation neither
increases nor decreases. Such a system is said to be neutrally stable.

The task of determining the stability of an open-loop system 1s simple and
straightforward because the open-loop poles are known. However, it is not so
straightforward for the closed-loop systems because the closed-loop poles, which
are the roots of the characteristic equation 1 + kG H =0, are not known. Moreover,
the exercise of finding the closed-loop poles has to be repeated many times if a
system parameter like the gain & is a variable. It is a simple task to determine the

roots of the characteristic equation 1+kG H = 0 if this expression is a polynomial
in s of dggrep. lower than three. For fourth- or highnr deoree pg[ynnmialc, the

ol Ceglcl I ulian uice. IO Oy 2200 QCEICh POLYynoOzas, wut

analytical determination of the roots is not a simple task. In the following, we will
discuss methods that help us determine the stability of the closed-loop systems
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The procedure is as follows.
1) Express the characteristic polynomial in the following form:

aps" +ays" "+ ays" 24 Fa s+a, =0 (5.115)

where the coefficients aq, a1, ..., a, are real quantities. We assume that a, # 0
so that any zero root is removed.

2) Examine the value of each coefficient. If any coefficient is zero or negative
when at least one other coefficient is positive, then Routh’s criterion states that
there will be at least one root of the characteristic polynomial that is imaginary
or has a positive real part. In such a case, the system is not stabie. Therefore, for
stability, all the coefficients must be positive or must have the same sign. This

3) To check whether the sufficiency condition is satisfied, form the Routh’s array
as follows:
" ay ax a4 ag
"7 a1 a3 as @
by by by
"3 o ¢ e
s di dr d3 ds

without actually solving the characteristic equation 1 + kGH = 0. These are
1) Routh’s stability criterion, 2) the root-locus method, and 3) Nyquist stability
criterion.

5.7.1 Routh'’s Stability Criterion

Routh’s stability criterion helps us determine whether any of the closed-loop
poles are positive if real or have positive real parts if complex without actually
solving the closed-loop characteristic equation.

(5.116)
2 e e
s! h
So 81
where
by = ala2“aﬂaii’ by = ﬂla4—aoas, by = alas—aoa7, . (5.117)
ay a) a;
biaz — ayb —ayb bya; — ayb.
clz_'_ail__‘i‘_%' 02=_b‘_a;5_L_a_‘_3, c3=-‘_a7_L_fl_‘1_ ... (5.118)
14 D1 Dy
and
by—b by ~b
dl - C 2" 152‘ d2 = C103 1C3 (5.119)
Cy Ci
(5.120)

This process is continued until nth row has been completed. The complete array of
coefficients is triangular. Note that the evaluation of b;, ¢;, and d;, etc., is continued
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until the remaining ones ate zero. For example, for a fourth-degree polynomial in s, Example 5.3
as=ag=--- =0sothatby=by=--- =0,c;=c3=+-- =0,dy =d3 = --- =0, Given the characteristic polynomial
eg=e3=---=0,and fo=fy=... =0.
Routh’s stability criterion states that the number of roots of the characteristic 433 4252 +45+1=0
polynomial with positive real parts is equal to the number of changes in sign of
the coefficients of the first column of Routh’s array. It is important to note that the Examine the stability of the system using Routh’s stability criterion
exact values of these coefficients need not be known; instead only the signs are
required. Thus, the sufficiency condition for a closed-loop system to be stable is Solution. Because all of the coefficients of this fourth-degree polynomial

that all the elements of the first column of Routh’s array must be positive or must
have the same sign.
To summarize, the necessary and sufficient condition for the stability of a closed-

are positive, the necessary condition is satisfied. To see whether the sufficiency
condition is satisfied, form Routh’s array as follows:

loop system is that all the coefficients of the characteristic polynomial and the st 1 2 1
elemen € mn ay positive or ave the 3. 3 4 0
same sign. ) ) )

If any of the coefficients of the characteristic polynomial or any element of s 510
the first column in the Routh’s array is zero, then replace that term by a very st _% 0
small positive number ¢ and proceed as usual with the evaluation of the rest of the 0. 1
elements of Routh’s array. 5

For a fourth-order polynomial, the Routh’s stability criterion reduces to the There are two sign changes in the first column starting with the row corresponding
following: to s2. Hence, there will be two roots that are either positive or have positive real

1) All coefficients ap, a1, Az, as, and a4 must be pOSlnve parts and the given system is unstable.

2) The Routh’s discriminant (aja; — apas)as — ala4 must be positive. :

Example 5.4
Example 5.2 For the system whose characteristic polynomial is given by

Using Routh’s criterion, determine the stability of the system represented by the 4 2

following characteristic polynomial: S+257+55+2=0

4 3 5 Examine the stability of the system using Routh’s criterion.
s57+257+55°+2+2=0

Solution. Notice that the s> term is missing. Hence, we rewrite the given
Solution. Thisis afourth-degree polynomialins. Wehaveap=1,a;=2,a, = polynomial as follows:

) =7 =2 and a:- = 0. Recause 2ll the coefficients are nositive and none of
Hhdz=4,843=4,an0 35 = ] Clents are nene o1

the coefficients ap to a4 is zero, the necessary condition for stability is satisfied. s*tesP +252 455 4+2=0
To examine whether the sufficiency condition is satisfied, we form Routh’s array

; where € is a small positive number, say 0.0001. With this, we observe that the nec-
as follows:

essary condition is satisfied. To see whether the sufficiency condition is satisfied,

wa form Danth?s aecede: ne fallawo-

S

5 l 5 2 WU lUlii I\Uuul D ail d’ ad IuIuUwo.

$:2 20 54 1 2 2

s2: 4 2 0 s3: € 50

ol 1 0 2 cnnnn 9 N

s 1 0 5 —50,00 2 U

s 2 st 5 0

. - 59 2
We observe that all the elements of the first column of this table are positive; hence
the ulmmpnrv condition is also satisfied. Hence, the characteristic nnlvnnm|9_1 has T . on changes. Hence. there will be two roots that are either positive
ormaal Lhiere are two sign chainiges. Hence, there will be two roots that are either positive

no positive real oot or a complex root with positive real part and the given system or have positive real parts. Hence, the given system is unstable. Note Lhat i

is stable. appears in any expression, we have to evaluate the value of that expression by

taking the limit as € tends to zero.
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T(s) + €(s) vi(s)
KG(s) .

H(s) -

Fig. 5.13 Feedback control system.

5.7.2 Root-Locus Method

The root-locus is a powerful method of determining the nature of transient
response and stability of control systers. It is a graphical method and is particularly
well suited for armhcatmn to those problems where any parameter or the loop-gain
is a variable.

Consider a closed-loop system as shown in Fig. 5.13. The closed-loop transfer
function is given by

kG(s)

The equation
14+ kG(s)H(s) =0 (5.122)

is known as the characteristic equation of the given closed-loop system. The roots
of this equation are also called the eigenvalues of the closed-loop system. In
other words, the poles of T'(s) are the eigenvalues of the closed-loop system. The
root-locus is a plot of the variation of roots of Eq. (5.122) as the parameter & is
varied from zero to infinity. Using Eq. (5.122), we can deduce the following two
conditions for a given point to lie on the root-locus.

1) Magnitude condition. If a given point s is to lie on the root-locus, we must

have
aave

[kG(s)H(s)| =1 (5.123)
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x  Poles of G(s)H(s)
0 Zeros of G(s)H(s)

/Pé
la Is N I

I

2) Phase condition. For a given point to lie on the root-locus, we must have

LkG(s)H(s) = (2n + 1)180 (5.124)

-
&

iere = 0, &1, £2 Note t € SSi
. (5.124) is an odd multxple 180 deg with either positive
ese two conditions 1 ing
k varies from zero to mﬁmty
To understand the meaning of Egs. (5.123) and (5.124), let us refer to Fig. 5.14.

Suppose P is to be a point on the root-locus; then according to the magnitude

19,1
—

25
¢

%\ 5 8 B

S A

Fig. 5.14 Magnitudes and angles of vectors for a point on the root-locus.

condition
_ 1 _ I1 Lip
TIG@HO! T [The
where J; , and J; 2 are the magmtudes of the vectors drawn from each of the poles

ana Zeros o the glVCIl pUll’ll on mc rom—ux.ua Forthe luul-l()bub bllUWll .lll Flg 5. 1‘%,
the magnitude and phase conditions are

(5.125)

L (5.126)
Il
6, + 6, — 63 — 8y = (2n + 1)180 (5.127)

Rules for sketching root-locus.

1) Number of branches of root-locus. Note that each of the closed-loop poles
moves in the s-plane as the parameter k varies. Therefore, the number of branches
of the root-locus is equal to the number of closed-loop poles.

2) Symmetry. For all physical systems, the coefficients of the characteristic
equation are reai. As a result, if any of its roots are complex, then they occur in
pairs as complex conjugates. All the real roots lie on either the positive or negative
real axes. Hence, the root-locus of a physical system is always symmetric with
respect to the real axis.
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3) Real axis segments. Whether a given segment of the real axis forms a part
of the root-locus depends on the angle condition shown in Eq. (5.124), i.e., the
algebraic sum of the angles subtended at that point because all the poles and
zeros must be equal to an odd multiple of 180 deg. The net angle contribution of
the complex poles or zeros is zero because they always occur as complex conjugate
pairs. Furthermore, the angle contribution of a real axis pole or zero located to the
nght of a point on the real axis is zero. The angle contnbuuon to a point on the root-
locus comes only from those real axis poles and zeros that are located on the left
side and is equal to —180 deg for poles and 180 deg for zeros. Because the sum
of all such contributions has to be an odd multiple of 180 deg, it is clear that only
that part of the real axis segment forms a branch of the root-locus that lies to the
left of odd number of poles and/or zeros.

begins and where it ends as the parameter k is varied from zero to infinity, let

N.(s)
G(s) = =L 5.128
6)) D,®) ( )
Hs) = () (5.129)
Dy(s)

Note that N, =0and D, =0 give us, respectively, the zeros and poles of the open-
loop transfer function G(s). Similarly, Nx(s) =0 and Dy (s) = 0 give, respectively,
the zeros and poles of H(s).

Then,

kNg(s)Dy(s)
Dg(s)Di(s) + kN (s)Ni(s)

‘When the parameter k — 0, the closed-loop transfer function T (s) can be approx-
imated as

T(s)= (5.130)

kN (s)Dy(s)

T =5, )Dts)

(5.131)

i.e., when k — 0, the poles of T'(s) coincide with the combined open-loop poles
of G(s) and H(s). Therefore, the root-locus starts at the open-loop poles of the

Ng(s)Dh(s)
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We have three poles at s = 0, —3, —5 and no finite zeros. Therefore, the missing
zeros are located at s = oo.

As s — 00, G(s) = 1/s3 = 0, i.e., G(s) has three zeros at s = co

Consider

Gis)=s (5.134)

This system has azero ats = 0and a pole at infinity because, as s — 00, G(s) — oo.
Similarly, G(s) = 1/s has a zero at infinity because G(s) — O as s — oo.

5) Asymptotes. The asymptotes give the behavior of the root-locus as the param-

eter k approaches infinity. The point of intersection of the asymptotes with the real
axis g, (see Fig. 5.15a) and the slopes of the asymptotes M at this point are given by

Y " poles — ¥ zeros

T(s) = ~ (5.132)
Ng(s)Np(s)
Thnot 1o whae b s tha smnanlaa AF T o\ arnmenanh tha anmbhinad darae ~AF I

Al1GL 1Dy WAUVIL A —7 W, uie l}\Jan L) S § \n)] ayplua\,u IV VULLULLIGAL LULUDS UL U0 )
and H(s). In other words, the root-locus ends at the open-loop zeros of the system.
Summarizing, the root-locus starts at the open-loop poles and ends at the open-loop
zeros. This statement iroplies that the system should have equal number of poles
and zeros, which is true if we assume that the missing zeros and poles are located

at infinity. To understand this point, consider

k

O = G619

(5.133)

0, = . (5.135)
P z
M =Gt m (5.136)

where n, and n, are the number of open-loop poles and zeros, respectively, and
n =0, %1,42,.... The running index n gives the slopes of the asymptotes that
form the branches of the root-locus as k — oo.

Imaginary axis crossing. Another characteristic feature that is of interest in
the root-locus method is the point where the root-locus crosses the imaginary axis
because the system stability changes at this point. If the imaginary axis crossing
is from right to left of the s-plane, the closed-loop becomes stable as the gain is
increased. If it is from left to right, then the closed-loop system becomes unstable
on increasing the gain.

The point(s) where the root-locus crosses the imaginary axis can be determined
by 1) using the Routh’s criterion and finding the values of the gain k that give all
the zeros in any one row of the Routh’s table-or 2) substituting s = jw in the
characteristic equation, setting both real and imaginary parts to zero and solving
for the gain k and frequency w. We will illustrate this second procedure in the
following example.

Example 5.5
Sketch the root-locus for the unity feedback system with
k(s +4)

G(s) =

sG+DHE+2)6+

Solution. We have four poles at s = 0, —1, —2, —5 and only one finite zero
at s = —4. Therefore, the other three missing zeros are at infinity. We have four
branches of the rooi-iocus. Furthermore, the root-locus wiil be symmeirical wiih
respect to the real axis. That segment of the real axis forms a part of the root-locus,

which lies to the laft of the MR number of noles and/or zeros. Thus, the real a\'lc
waila 185 1€ iCIK O Uil DUMOoCT O1 pO:Cs anG/Or ZEros. ius, Wic I

segment between the poles at 0 and —1 and between the pole at —2 and zero at
—4 and all the real axis that is to the left of the pole at —5 forms the branches of
the root-locus.
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Imaginary Axis /

Asymptote
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We should have three asymptotes corresponding to three branches of the root-
locus, which seek zeros at infinity. We have

__ ) poles — 3 zeros

0 =

=-—4/3

Asymptote

Real Axis
b)

Fig. 5.15 Root-locus for Example 5.5.

np—n;
_ 0-1-2-5)— (-4
- 4—1
4
73
M =1a @n+ Dr
np—n,
@2n+ D
= tan
3
=tan-g n=20
=tannw n=1
5
= tan— =2
3 n

With this information, the root-locus can be sketched as shown in Fig. 5.15a.
The root-locus crosses the imaginary axis from the left half to the right half of the
s-plane, i.e., the closed-loop system becomes unstable as the value of the gain k
is increased beyond this point.

The value of the gain k and frequency w where the root-locus crosses the imag-
inary axes can be obtained as follows.

The characteristic equation is

s 4857 + 172 + 500+ k) +4k =0
Substituting s = jw, we obtain

0* —170* + 4k + j(—80® + w[10 +k]) =0

PYY -4 ANt

uqualmg rcal and lmagmary pa.l'(s o Zero, we ge[ K = 5 4870 an(l W= :rll JLUL.
MATLAB" isa convement tool for plottmg the root—locus The MA’I'LAB com-

to ﬁnd the value of the gam k and the locatmn of the closed—loop poles con'espond—
ing to any point on the root-locus. Using RLOCFIND, we find that ¥ = 8.8 and
@ = 1.55 when the root-locus crosses the imaginary axis. These values are in good
agreement with the analytical values. Furthermore, the corresponding locations of
the closed-loop poles are —5.15, —2.88, and 0 + 1.55.

The root-locus obtained using MATLAB* is shown in Fig. 5.15b.

We can aiso find other information using MATLAB.* For example, we can find
the value of the gain k so that the closed-loop system is stable and operates with
a damping ratio ¢ of 0.4. Using RLOCFIND, we obtain ¥ = 2.0 and closed-loop
poles p = —5.04, —2.4, and —0.3 + j0.8.
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5.7.3 Nyaquist Stability Criterion

Concept of mapping. Before we discuss the Nyquist stability criterion, let
us briefly review the concept of mapping. Suppose we are given a contour A in the
the s-plane as shown in Fig. 5.16a and a function F(s) = 52 + 25 + 1. Consider
a point P on the contour A in the s-plane, and let the coordinates of point P be
4 + j3.If we substitute this complex number into the given function F(s), we get
another complex number

F(s)=(4+ j3)* +24+ j3)+1 =16+ j30 (5.137)

Suppose we plot the real and imaginary parts of this number in another plane,
called the F-plane; we get point Py as shown in Fig. 5.16b. The point P; in the

. y
the mapping function. In a similar way, we can map all other points on contour A to

P
/’\ / Contour A

Y

a) s-plane

/\( Contour B
N

.
N

Re
b) F-plane

Fig. 5.16 Concept of mapping,
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c)F(s)=s—274

Fig. 5.17 Illustration of contour mapping.

corresponding points in the F-plane and obtain the contour B. Then the contour A
in the s-plane is said to be mapped to the contour B in the F-plane. We assume
that the mapping is one to one, i.e., for every point in the s-plane, there is one and
only one corresponding point in the F-plane and vice versa.

To understand the concept of mapping further, let F(s) = s —z, and let the point
5 = z;, which is the zero of F(s), lie outside the contour A as shown in Fig. 5.17a.

Instead of using the coordinates of point P, let us use the vector approach. Every
point P on the contour A is associated with a vector V. Let V'’ be the image

clockwise along the contour A, the magnitude and phase of the vector V vary.
The phase oscillates between the two limiting values ¢, and ¢,. In this case, a
clockwise movement along the contour A corresponds to a clockwise movement

alnnn tha ;mnnn roantanr R in tha F,n]nnn
Vg Wil LBGgU VULLWWL O i v g AR .

Now let F(s) = 1/(s — p;) and let the pole s = p; lie outside the contour A as
shown in Fig. 5.17b. For this case, |V’] = 1/|V]and LV’ = —/V. As aresult, the
contour A in the first quadrant maps to contour B in the fourth quadrant. Observe
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Im
m
V'
PI

d) F(s) = U(s — p1)

joo 4

Im

i

o

Re

>
e) F(s) = (s — z3)(s — z2)/s — p1)(s — p2)

Fig. 5.17 Ilustration of contour mapping, continued.

that a clockwise movement along the contour A in the s-plane corresponds to a
counterclockwise movement along the contour B in the F-plane because the phase
angle in the F-plane is negative of that in the s-plane.

Suppose the zero of F(s) = s — z; lies inside the contour A as shown in
Fig. 5.17c. Then the vector V' makes one complete rotation of 360 deg in the
F-plane so that the contour B encloses the origin. Similarly, we have a pole of
the mapping function F(s) = 1/(s — p;) that lies inside the contour A; then the
image contour B in the F-plane also encloses the origin as shown in Fig. 5.17d.
If the contour A encloses an equal number of poles and zeros of the mapping
function F(s), then clockwise encirclement of the origin due to the zeros cancels
the counterclockwise encirclement due to poles, and the image contour B does not
enclose the origin as shown in Fig. 5.17e.

Nyquist plot. Suppose the contour A in the s-plane is a semicircle of infi-
nite radius covering the entire right half of the s-plane, then the corresponding
imagc contour in the F-plane is said to be the Nyquist plot of right half of the

'pldﬂ(: uuuugn uu: glV_(:ll md.pping lum.uun l' \A) ll we lldVC LOIUS and/or punca in
the right half of the s-plane, then the image contour B in the F-plane will encircle

the origin n1 times where n =n, —n, and n, and n, are, rpnnprnvplv the number
rigin n imes wheren = n, n,anc spectively, the number

of zeros and poles of the mapping function F(s) locatcd in the nght half of the
s-plane. If n > 0, then we will have n clockwise encirclements and, if n < 0, we
will have that many counterclockwise encirclements of the origin.
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Nyquist criterion of stability. The transfer function of a closed-loop system
is given by

T(s) = ——C)__ (5.138)
1+ G(s)H(s)
_ NyDy
= 5D T (5.139)

where G(s) = Ng/Dg and H(s) = Ny/Dy.
n Tlo)nra cnnaralley nat Laaicin oo .l

lhc pUICD Uf ulic bluaﬁu*luu uauafcn f.ullblloll ] \.) } alo EGIIGLAII] 1nuL NIU 11 aln
have to be determined actually by solving the closed-loop characteristic equation
closed-loop system will be unstable if any of the poles of T'(S) are located in the
right half of the s-plane. The usefulness of the Nyquist stability criterion is that
it enables us to know whether any of the poles of T(s) are located in the right
half of the s-plane without actually solving the closed-loop characteristic equation
1+G(s)H(s) =0. In this way, it gives us an idea whether the given closed-loop sys-
tem is stable or not without actually knowing the location of the closed-loop poles.
1 ms lnIOl'maIlOﬂ is very uscxm in cvaluaung thc St&Dlllly ()I a CIOSCQ'IOOP system
as a certain system parameter, say the gain k, is varied.

Suppose we make a Nyquist plot of the function F(s) = 1+ G(s)H(s). Note that
the zeros of this function F(s) are the poles of the closed-loop transfer function
T(s) and the poles of F(s) are the combined poles of the open-loop transfer
function G(s)H(s), which are known. Then, the Nyquist criterion for stability
centers around the determination of the parameter, N = P — Z, where N is the
number of encirclements of the origin in the F-plane, P is the number of poles of
F(s) located in the right haif of the s-plane, and Z is the number of zeros of F(s)
that are located in the right half of the s-plane. Note that a positive value of N
corresponds to counterclockwise encirclement of the origin and a negative value to
clockwise encirclement. Here, P is known but Z is not known. Therefore, unless
we have a method to determine Z, we cannot sketch a Nyquist plot and determine
the system stability. As said before, we do not have an easy method of finding Z.

Suppose we use the function G(s)H(s) as the mapping function instead of 1 +
G(s)H(s) because all the poles and zeros of the function G(sYH (s) are known. The
resulting Nyquist plot is the same as that of 1+ G(s) H(s) except thatit is displaced
by one unit to the left of the origin. Then, instead of counting the encirclement of
the origin, we can count the encirclement of the point — 1. Everything else remains
the same, and we can now use the Nyquist plot to determine the system stability.

system can be restated as follows.

If a contour A in the s-plane that covers the entire right half o
il & Coniour A 1n i€ S-piane Wial Covers wie enure nignt nail

mapped to the F-plane with the mappmg function F (s) = G(s)H (s), then the
number of closed-loop poles Z that lie in the right half of the s-plane equals
the number of open-loop poles P thatare in the n'ght half of the s-plane minus the
number of counterclockwise rotations N of the Nyquist plot around the point —1
in the F-plane, i.e., Z = P — N. For stability of the closed-loop system, Z must
be equal to zero.

To understand the Nyquist criterion, let us study two cases shown in Fig. 5.18.
Let us assume that somehow we know the zeros of 1 + G(s)H(s), which are

'1

tha c_nla

Of uie pra
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x  Poles of G(s)H(s)

w4 O Zerosof G(s)H(s) ym ﬁ'
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x  Poles of G(s)
0  Zeros of G(s)
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" I e
-1
X
s-plane F-plane
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Fig. 5.18 Nyquist plots for mapping function 1 + G(s)H(s).

poles of the closed-loop transfer function T'(s). The poles of 1+ G(s)H(s) are the
combined poles of the open-loop transfer function G(s)H (s) and are known. Let
the open circles denote the zeros of 1+ G(s)H (s) and cross the poles of G(s)H (s).
s-plane, i.e., P = 0 and Z = 0. Hence, the Nyquist plot will not encircle the point
—1in the F-plane as shown in Fig. 5.18b. For this case, N = P — Z = Q0 and the
system is stable. For Fig. 5.18b, we have one zero of 1 + G(s) H(s) located in the
right half of the s-plane (unstable system). Therefore, Z = 1. Furthermore, P = 0
because there are no poles of 1 + G(s)H(s) located in right half of the s-plane.
Hence, according to the Nyquist criterion, N = P — Z = —1, i.e., the Nyquist plot
in the F-plane will encircle the point —1 once in the clockwise direction as shown
in Fig. 5.19b.

The number of encirclements can be conveniently determined by drawing a
radial line from the point —1 and counting the number of intersections with the

a) b)
G(s) =56 +2)/(s + 1)s +3)

Im 4

jo s

Q
q-f c F Re
A

d)
G(s) =5(s +2)ss + (s +3)

Fig. 5.19 Nyquist plots for Examples 5.6 and 5.7.

Nyquist plot as shown. However, the reader should keep in mind that, in a given
problem, the locations of closed-loop poles are not known as assumed in this

discussion.

Example 5.6
Draw the Nyquist plot for a unity feedback system with
5(s+2)

G(s) =

Solution. The first step is to select some points along the Nyquist contour in
the s-plane as shown in Fig. 5.19a. Consider an arbitrary point P. Let V;, V,, and
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V3 be the vectors drawn to point P from the zeros and poles as shown. Then,
;1 Sl
Vel = V2l V3]
LVp =LV =LV~ (Vs

If point P coincides with A, |V|| = 2, |V,| = 1, and | V3] = 3 sothat [V | = 10/3.
The phase angles V) = LV, = £V3 = 0 so that /V, = 0. Thus the point A in
the s-plane maps to point A’ on the real axis in the F-plane with abscissa equal to
10/3. In a similar fashion, we find the magnitude and phase angles at other image
points such as |Vz| = 0, LV = —90 deg; |[V{| = 0, LV, = 0; and |V,] = 0,
LV} =90 deg.

Based on this information, the Nyquist plot can be sketched as shown in Fig.
5.19b. Observe that the Nyqu1st plotdoes notencircle the origin but j JUS[ goes around
ll ll'l a SemlCﬁCle UJ. LCIU Iauma ﬂb wE€ move blUCKWle l[l Lllc N pldﬂ(: bldIU [lb
at point A, we move in the counterclockwise direction in the F-plane from A’.

In this example we didn’t have any poles of the mapping function on the imag-
inary axis. If we did, then we have to draw semicircles of infinitesimally small
radii around each one to prevent a breakdown of the mapping procedure at thesc
points. We illustrate the procedure of drawing such Nyquist plots with the help of
Example 5.7.

Example 5.7
Draw the Nyquist plot for the system with

5(s +2)

= G+ 06+

Solution. Here, we have a pole at s = 0 at the origin. As said above, we draw
a semicircle of infinitesimally small radius around it as shown in Fig. 5.19c. The
magnitudes and phase angles of the image points A'~F" are as follows: | V| = oo,
LVE =0; |V}] = oo, LV = —90 deg; {Vz| =0, LVy = —180 deg; |V =0,
LV =0;|Vp]l =0, LV} = 180 deg; and | V| = oo, LV = 90 deg.

The Nyquist plot is shown in Fig. 5.19d. Observe that the small circle of “zero”
radius encircles the origin in the F-plane in the counterclockwise direction because
the phase angle changes from —180 deg at B’ to +180 deg at D’.

AR

Example 5.8
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Determine the stability of a unity feedback system given by

k(s +2)
0= —

Solution. Here, H(s) = 1. Furthermore, assume that the gain k is a variable.
We use MATLAB* and the root-locus is drawn as shown in Fig. 5.20a. We observe
that the root-locus starts in the right half of the s-plane, implying that the closed-
loop system is unstable for small values of the gain k and, for k > 4.9420, the

a) Root-locus

a3t

a2

air

i
< a
g 0
E
0.1
-0.2 4
~Q. -
a3 a2 X [] o 02 [x) 0.

b) Nyquist plot fork =1

Fig. 5.20 Root-locus and Nyquist plots for Example 5.8.

root-locus crosses over to the left half of the s-plane, indicating that the closed-loop
system becomes stable for k > 4.9420.

Now usmg MA'I'LAB 4 let us draw the Nqust plot as shown in Fig. 5 20b

the pomt -1, whlch means that N = 0. Instcad it 1ntersects the negative real
axis at s = —0.2. We have P = 2 because the pnlpc s = 2and s = 3 of G(s)

0CLalUlss Ul QL &)

are located in the right half of the s-plane. According to Nyquist criterion, we
get Z=P — N =2. In other words, the Nyquist criterion predicts that there are
two poles of the closed-loop transfer function T (s) located in the right half of the
s-plane and, therefore, the system is unstable. From the root-locus of Fig. 5.20a,
we find this to be true.

Suppose we increase the gain k beyond unity. Then the Nyquist plot will expand
and eventually touch the critical point —1. When this happens, the value of k is
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¢) Nyquist plot fork= 6
Fig. 520 Root-locus and Nyquist plots for Example 5.8, continued.

equal to 1/0.2 = 5, which is quite close to that predicted by the root-locus method.
For higher values of gain &, the Nyquist plot will expand further and will encircle
the critical point —1 twice in a counterclockwise direction as shown in Fig. 5.20c
for k = 6. We then have N = 2and Z = P — N =2 — 2 =0, which indicates that
the closed-loop system has become stable.

This example has illustrated an important concept that the stability of closed-
loop systems depends on the value of the gain. Feedback systems that are unstable
for low values of gain can become stable for higher values of gain, and those that
are stable for low values of gain can become unstable for higher values of gain.
The Nyquist criterion can be used to determine the gain at the crossover point.
This kind of dependence of the system stability on the value of the gain leads to
the concepts of gain and phase margins as discussed in the next section.

5.7.4 Gain and Phase Margins

The Nyquist stability criterion enables us to define two quantities that are mea-
sures of the level of stability of a given closed-loop system. These quantities are
the so-called gain and phase margin that are widely used in the control system
analyses and design. Generally, the systems with higher values of gain and phase

fore becoming unstable.

The concepts of gain margin and phase margin are illustrated in Fig. 5.21.

The gain margin Gy is the reclprocal of the magmtude |G(jw)| at the phase
crossover frequency. The phase crossover frequency is the frequency w, at which
the phase angle of the open-loo;; transfer function G( jw)is —180 deg. The gain
margin is given by

1
Gy = ———0H 1
" = GG (5.140)
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Fig. 521 Gain and phase margins.
If a = |G(jw)| (see Fig. 5.21), then
1
Gpy=-— (5.141)
a
The gain margin is usually expressed in decibels as
1
Gu(db) = 20 log,, ( a) (5.142)

The gain margin expressed in decibels is positive if a <1 (Fig. 5.21a) and is
negative if @ > 1 as shown in Fig. 5.21b. A positive gain margin (in decibels)
means that the system is stable, and a negative gain margin (in decibels) means
that the system is unstable. For a stable minimum phase system, the value of the
gain margin indicates how much the open-loop gain can be increased before the
closed-loop system becomes unstable. For example, a gain margin of 30 db implies

loop system becomes unstable. On the other hand, if thc'gain margin is —30 db,

then thn clnead lann svstem ic alraadvu ninctahla and tha cain hac ta ha reduced hvy
L LAUSUUSIUUP Sy otllil 45 dllLaly UiIslauil, aiil Uil pulil a0 WU Ov ivaucsu vy

a factor of 31.6228 to make the closed-loop system stable.

The phase margin is defined as the amount of additional phase lag at the gain
crossover frequency that can be introduced in the open-loop system to make the
closed-loop system unstable. The gain crossover frequency w, is that frequency
when the magnifude of the open-loop transfer function G(jw) is unity.



LINEAR SYSTEMS, THEORY, AND DESIGN: A BRIEF REVIEW 483

The phase margin is usually denoted by ¢ and is expressed in degrees and is
given by

om = 180+ ¢ (5.144)

where ¢ = {G{(jw,) is the open-loop phase angle at the gain crossover frequency

" as shown in Fig. 5.21. Note that the value of the phase angle ¢ is negative in
Fig. 5.21 because it is measured in the clockwise direction. Thus, for a stable
system (Fig. 5.21a), the phase margin is positive because |[¢| < 180 deg, and for an
unstable system the phase margin is negative because |¢| > 180 deg as indicated in
Fig. 5.21b. For example, a phase margin of 30 deg indicates that the open-loop phase
lag can be increased further by 30 deg before making the system unstable. On the

other hand, a phase margin of —30 deg indicates that the system is already unstable,
and the open-loop phase lag has to be reduced by 30 deg to make the system stable.

It is important to bear in mind that the Nyquist plots shown in Fig. 5.21 are
drawn for unity gain. For the purpose of estimating the gain and phase margins,
a simplified Nyquist plot mapping only the positive imaginary axis in the s-plane
is usually sufficient. The part of the Nyquist plot in the F-plane that corrcsponds

to the semicircle of infinite radius in the v-nlanp is ncnal]v the circle(s) of “zero”

radius around the origin in the F-plane and hence is not needed in evaluatmg the
gain and phase margins. Furthermore, the mapping of the positive imaginary axis
is equivalent to studying the frequency response of the system because the Nyquist
diagram is a polar plot of the magnitude vs phase of the open-loop transfer function
with frequency as an implicit variable.

The Bode plot also offers an alternative and a convenient method to estimate
the gain and phase margins as illustrated in Fig. 5.22.

Positive Gain Margin
Negative Gain
N I . \l / Margin
M(db) ™~ i M(db)
ol ~ A\t 0 ’\
\ w w

s
~
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5.8 Relations Between Time-Domain and Frequency-Domain
Parameters

Generally, the performance requirements for control systems are specified in
terms of time-domain parameters like rise time T;, settling time Ty, time for peak
amplitude T, and percent overshoot O;. In the following, we present some rela-
tions between these time-domain parameters and frequency-domain parameters.
These relations will be useful in the analyses and design of control systems using
frequency-domain methods.

Consider a second-order system whose open-loop and unity feedback closed-
loop transfer functions are given by

2

Ml&:—mﬂ .l
\ e {ucg)
-180 = -180 ©
Positive Phase ) \
gin Negative Phase
Margin

Fig. 5.22 Gain and phase margins using Bode plots.

7))
Gis)= 4 (5-145)
s(s + 2L wn)
(1)2
TEG) = ——2— 5.
(S) 52 + 2;0),,5 + (0% ( 146)

Let M denote the magnitude of the closed-loop frequency response. Then,
w?
= |T(jw)| = 2" (5.147)
‘/ (02 — 0?)" + 452w2a?

A typical plot of M vs w is shown in Fig. 5.23.
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Fig. 523 Frequency-response parameters.
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To determine the peak amplitude M, and the corresponding frequency w,, take
the squares on both sides of Eq. (5.147), differentiate with respect to , and equate
the resulting expression to zero to obtain

M, = (5.148)

2r.
5

0, = wpy/T— 207 (5.149)

Equations (5.148) and (5.149) show that M, and w,, of the closed-loop frequency

response are dn-nr-ﬂv related to the damnine ratio £, The nercent overshoot f) and
respo ampingr - 11e percent ove

damping ratio { arc related through Eq. (5.75), which is reproduced heré in the
following:

j,‘
[ ]

-1
5

»

_ —ta(0,/100)
Vr? + t3(0,/100) -

Using these relations, given the value of M, we can determine the percent over-
shoot O, of the given closed-loop system and vice versa.

The bandwidth wpw is another important characteristic of the closed-loop fre-
quency response. The bandwidth is defined as that frequency at which the magni-
tude M drops to 0.707 or 1/+/2 of its value at = 0. This is also equivalent to
a drop by 3 db. From Eq. (5.147), we find that M = 1 when w = 0. Therefore,
substituting M = 1/4/2 and @ = wpw in Eq. (5.147), we obtain

wny = ony (1 — 267 + VAT — 42T+ 2 (5.151)

The settling time T; and time for peak amplitude T, given by Egs. (5.77) and (5.72)
are reproduced in the following:

(5.150)

4
T, = o (5.152)
b4
T, = o (5.153)
n

= e (5.154)

wp/1 — L2

Using Eq. (5.151), we can rewrite these relations in terms of bandwidth wpw as
follows:
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Another important parameter of the frequency-domain design method is the
phase margin ¢ . A relation between phase margin ¢,, and the damping parameter
¢ can be obtained as follows.

Let w = w; when the magnitude of the open-loop frequency response is unity,
ie,|G(jw)=1,o0r

o,
|Gj(en)] = - =1 (5.157)
U (e + j28wne)]

so that

0 = oa =207 + /T4 408 (5.158)

I, = (——4—\\/(1 =202+ 4Lt —4r2 42 (5.155)
\wpwl /"’

7o () A—20)+ /At —ar2 12 (5.156
el ) VAR AR R (5156

The above equations give relations between the time-domain parameters T, and
T, apd the frequency—respoqsc parameter wgw for second-order systems. These
relations contain the two basic system parameters, ¢ and w,.

The phase angle of G(jw) at w = w) is given by

LG(jwy) = —90 — tan™" — (5.159)
2t w,
(=202 + JTF 2%
= —90 — tan~* k (5.160)
2
The phase margin is given by
-202 41+ 474
¢ = 180+ LG(jw,) = 90 — tan™" ‘[ 5 (5.161)
) 2
= tan (5.162)
/~2;2+,/1 + 474 .
The variation of ¢y with ¢ is shown in Fig. 5.24

5.9 Design of Compensators

The response characteristics of a given system depend on the internal physical
nature of the system and may not meet the specified performance requirements.
A simple modification of the plant dynamics is-an obvious first choice to meet

the performance specifications. However, such a thing may not be possible in
practice because the plant can be quite complex so that it may not be easy to
affect the necessary modifications. In such cases, the adjustment of the gain is the
next obvious step. However, in many cases, this alone may not be sufficient, and
one may have to redesign the entire plant. Such a process can be quite expensive
and time consuming. A simpler alternative is to introduce a compensator into the
system that compensates for the deficiencies of the criginal plant s¢ that the overall
system, including the compensator, meets the specified performance requirements.

A compensator is also called a controller. Compensators that employ pure inte-
gration to improve steady-state error or pure differentiation to speed up the transient



LINEAR SYSTEMS, THEORY, AND DESIGN: A BRIEF REVIEW 487

80 — Y T T T T T T T

[-2]
(=]

[4,]
Q

Phase Margin, Deg
]

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Damping Ratio

Fig. 5.24 Relation between phase margin and damping ratio.

response are called ideal compensators. However, a disadvantage of ideal compen-
sators is that their implementation requires active networks like operational am-
plifiers. It is possible to construct passive networks involving resistors, inductors,
and capacitors and to achieve performances close to those of ideal compensators.
Such compensators are called either lead or lag or lead-lag or lag-lead compen-
sators depending on their type. We will not be dealing with the issues concerning
hardware implemention of the compensator designs discussed here. The interested
reader may refer elsewhere.!-

In this section, we will discuss the design of compensators to obtain the specified
transient response or steady-state error or both for single-input-single-output sys-
tems. Basically, there are two design methods: 1) the root-locus method and 2) the

frequency-response method. The frequency-response method has the advantage

that the explicit knowledge of the plant transfer function is not needed. All that
is needed is the plant frequency response. However, the main disadvantage of the
frequency-response method is that the quantities one deals with are not directly re-
lated to the time-response parameters, which are specified as design requirements.

Hence, the design bccomes more of trial and error, and the numbcr of iterations
depends on the knowledge and experience of the designer. On the other hand,
the root-locus method has a clear advantage in that the quantities it deals with are
directly related to the design requirements. Furthermore, the correlation of the root-

locus with time response is quite good. Also, the effect of changing compensator
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parameters can be easily observed by studying the root-locus. With the availability
of tools like MATLAB,* the root-locus method becomes very attractive for con-
trol system design. However, a disadvantage of the root-locus method is that it
becomes more complex as the order of the system increases.

Here, we will use the root-locus method for compensator design of single-input-

single-ontout svstems. Readers interested in ||qna freauencv-domain methods mav

1pAC- 0N PR S S0IARS, ARCaCOls AL B A1 U Rl UG AU S ikiay

refer elsewhere.!? For multi-input-multi-output systems, the modern state-space
methods are quite convenient. We will discuss these approaches in Section 5.10.

§£.8.1 Proporticnal-integral Compensator

‘To understand the basic principles of designing an integral compensator, con-

for this system is sketched in Fig. 5.25b. Let us assume that t.he- system is operating

atnnint A havine tha A i i 3 nAnoa
at point A, having the desired transient response. Recall that the transient response

is characterized by the settling time 7y, time for peak amplitude T, and the rise
time 7, all of which depend on the damping ratio ¢ and frequency w. At point A,

T(s) +_ &(s) . y(s)
G(3) = Graytrsaverss

-

a) Given unity feedback system

jo A
¢ =const

o ¥
Q

r
s

b) Root-locus

Fig. 525 System operating at the desired point A.
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T(s) + &(s) V(s)

1
iy Gl(s) —-

a) Integral compensator

jo

¢ =const ~ /

ay

b) Roet-locus of pure integral ¢) Root-locus of PI
compensator compensator

Fig. 526 Proportional-integral compensator.

the closed-loop poles are a pair of complex roots and one real root. The steady-
state error of this system is equal to €(c0) = 1/(1 + K,), where K, = k/p) p2p3.
Because K, is finite, the steady-state error is nonzero.

To drive the steady-state error to zero, let us make it a type “1” system by
adding a pure integrator in the forward path as shown in Fig. 5.26a. This amounts
to adding a pole at the origin as shown in Fig. 5.26b. The root-locus of the entire
system is now changed and does not go through point A as shown in Fig. 5.26b.
In other words, the steady-state error is driven to zero, but the transient response
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>3
s

T(s) + +

RALBZ - G(s)

‘il
<

Fig. 5.27 Implementation of a PI compensator.

has changed. To solve this problem, add a compensator zero at s = —z., which
is close to the origin so that this zero almost cancels the compensator pole. Such
a compensator is calied a proportionai—imcgr'ai (PI) compensator. Now, the root-
locus with PI compensatxon (Fig. 5. 26c) is nearly the same as that of the basic

PRI WP S S LY ML Lo IS M. PPN | [P,

uubumpcuaau:u dysSicil \Flg J.LJI0). lllClClUlC, tne transient rcapunsc will XCllldill
unaffected while the steady-state error is driven to zero.

The transfar function of 2 PI compensator i is g“'en by

Go(s) = 1%

(5.163)

The schematic implementation of a PI compensator is shown in Fig. 5.27 with
k
Gels) = ki + (?’) (5.164)

[ (1] (5.165)
=k|i+—f- 165
| U a\G) ’
In this implementaion, k; = 1 and k; = z... Note that the first term on the right-hand
side is the “proportional” part and the second term is the “integral” part.

5.9.2 Proportional-Derivative Compensator

Generally, the derivative compensation is used when a simple gain adjustment
alone cannot give the desired transient response of the closed-loop system. This
concept is illustrated in Fig. 5.28. In Fig. 5.28a, a simple gain adjustment is suffi-
cient because the root-locus passes through the desired operating point A. However,
in Fig. 5.28b, the root-locus cannot pass through A for any value of the gain k.
The addition of a compensator zero close to the origin modifies the root-locus so
that it is made to pass throngh point A as shown in Fig. 5.28¢c. Such a compensator
that produces a zero in the forward path is called a propomonal—denvauve (PD)
compensator.

The transfer function of a PD compensator is of the form

G (e — ¢ L
c\wJ L

—~
n
—
N

N

L4
~C

which is essentially the sum of a differentiator s and a gain z,.

The mmplementation of a PD compensator i1s schematically shown 1n Fig. 5.29.
The transfer function of such a compensator can also be written in the following

Lo

orm:

The first term on the richt-hand side is the “pronortional” nnrt and the cacond term

The first term on the right-hand side is the “propor and the second term
is the “derivative” part. The gains k; and k; are design vanables to be determined
so that the system attains the specified transient response.
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ks

T(s) * - Yis)
_r_i_.& kl " G(S) yis)

Fig. 529 Implementation of PD compensator.

<)

Fig.5.28 Concept of proportional-derivative compensation.

5.9.3 Lead/Lag Compensator

The implementation of a PI or a PD compensator requires active elements.
Instead, we can use passive networks to achieve nearly the same objective. A
passive network usually produces a pole-zero combination.

The transfer function of a lead/lag compensator is of the form

s+ 2z
s+ pc

Ge(s) = (5.168)
A schematic diagram of a lead/lag compensator is shown in Fig. 5.30. By a suit-
able choice of the locations of pole and zero, we can have either a lag or lead
compensator. For example, if the zero is close to the origin (z, ~ 0) and the pole
is farther away to the left of the zero, then it is a lead compensator. On the other
hand, if both the pole and zero are located close to the origin with the pole located
to the right of the zero, then it is a lag compensator.

Note that for both the lead and lag compensators, the pole and the zero are
supposed to be located in the left half of the s-plane.

5.9.4 Proportional-Integral and Derivative Controller

Suppose we want to improve the transient response as well as reduce the steady-
state error, then we use the PID (proportional-integral and derivative) controller.

T(s) + g(s) ¥ (s)

———’(%—v e Plant

Y

-¥

Fig.5.30 Lead/lag compensator.
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Fig. 531 Proportional-integral and derivative controller.

There are two ways of designing a PID controller: 1) design a PD controller first to
improve the transient response and then add a PI controller to improve the steady-
state error or 2) design a PI controller first and then add a PD controller. Both
methods are iterative because one affects the other.

The schematic diagram of a PID controller is shown in Fig. 5.31.

5.9.5 Feedback Compensation

The desired transient response can also be obtained by feedback compensation.
With a proper choice of the feedback-loop transfer function, the root-locus can
be modified to obtain the desired transient response. This method offers an added
advantage that the parts of the system can be isolated for improvement in tran-
sient response prior to closing the major loop. This approach is also equivalent to
relocating the open-loop poles of the system so that the root-locus is reshaped to
obtain the desired closed-loop poles.

Feedback compensation can be accomplished in two ways: 1) major-loop com-
pensation and 2) minor-loop compensation as schematically shown in Fig. 5.32.

Major-loop compensation. Let H.(s) = ks be the transfer function of the

rate gyro whose input is a displacement and output is the time rate of change of
displacement or velocity. For example, if the input is bank angle, then the output
will be roll rate.

The closed-loop transfer function is given by

T(s) = kGE) (5.169)
1+ kkyGGs)(s + 1)

The characteristic equation of this major-loop feedback compensated system is
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HLIS kG(s) ),
H(s)
a) Major-loop compensation
r(s) t & + ) G(s) y(a)>

b) Minor-loop compensation
Fig. 532 Feedback compensation.
given by
14+ kk,,G(s)(s + Elh-) =0 (5.170)

Thus, in principle, the major-loop feedback compensation introduces a zero into the
system at s = —1/kj so that the root-locus is reshaped to pass through the desired
operating point. By varying the parameter k;, we can vary the gain as well as the
location of this zero. Even though this concept is similar to the PD compensation,
there is a difference. The compensator zero in the case of a PD compensator is an
open-loop zero, whereas the zero introduced in major-loop feedback compensation
is not an open-loop zero.

Minor- loop compensation. With H.(s) = kas, the open-loop transfer func-
tion of the minor loop is G (s)kxs. Thus, the addition of a zero at the origin of the
minor-loop root-locus considerably speeds up the response of the minor loop and
alon Lac ace offo 4 o o moeal) cocebacan e s e n Nt onln ad

aldU flad all Clicit on l.llc UVCldll bybwlll pcuuuuauu: WHILC 1Ic sniu th ia auJualcu

to obtam the desxred performance of the mmor loop, the outer loop is closed and

method of compensanon is usually used in au'craft control systems to 1mprove thc
response to individual degrees of freedom like pitch, roll, or yaw before closing
the outer loop as we will discuss in Chapter 6.

Example 5.9

For the system shown Iin l:.n ( .23 1) desien a2 PI compensator to reduce the
SYS§ own In >3, 1) GESIgnN & & npen

steady-state error to zero and 2) a lag compensator to reduce the steady-state error
by a factor of 10 for a step input without affecting the transient response. Assume
that the system is required to operate with a damping ratio of  =0.2.
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T(s) +__@(s) y(s)

K
(8+2) (345) {3+12)

Fig. 533 Control system of E).(ample 5.9.

Solution. We have

k
(s +2)s 4+ 5)¥s 4+ 12)

G(s) =

The first step is to draw the root-locus of the basic (uncompensated) system and
determine the value of the gain for operation at ¢ =0.2. Using MATLAB,* the

root-locus is drawn as shown in Fig. 5.34a. For operation with { = 0.2, the values
of the gain and closed-loop pole locations are k¥ = 679.086 and rp= 162416

DL LIS pAAi QG CRUSUA-00 ViV 1UVauUaS aiC 77,000 @il 10, L5410,

—1.3792 £ j6.8773.
The position constant K, and the steady-state error e(c0) are given by

k_ 679.086

) = = = 5.6590
F pip2p3 2%5x%12

1 1
€00 = 1%, = T 5.6590 ~ 102
With this, we get the steady-state value of the output (for a unit-step input),
y(00) =1 — e(c0) =0.8498.
Design of a PI compensator. The PI compensator is characterized by a pole at
the origin and a zero close to it. Let us choose the zero at s = —0.05. With this, the
open-loop transfer function of the PI-compensated system is

k(s + 0.05)
s(s + 2)(s + 5)(s + 12)

Now let us determine the value of the gain k so that the PI-compensated sys-
tem operates at a damping ratio of 0.2, while the steady-state error is driven to

Ge(s) =
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Poot-Locus of Besic Sysiem

zero. Using , 7 we draw the root-locus for the PI-compensated system as
shown in Fig. 5.34b. For operating with { = 0.2, we obtain k =673.175 and p =
_1£7110 __ 172779 1L L QANQ ~nd N NANL

AU.4L110, 1.9740 L JU.04UO, alil —VU.UTLU.

Comparing these results with those obtained earlier for the basic system, we
observe that the dominant second-order complex nnle&: that determine the transient

response are virtually unchanged because the pole at s = —0.0426 almost cancels
with the zero at s = —0.05. The pole ats = —16.2118 is so far away on the left-hand
side of the s-plane that its influence is negligible. In view of this, the system will
essentially behave like a second-order system with dominant poles at —1.3728 +
J6.8408.

Fig. 5.34 Root-locii for the control system of Example 5.9.

Design of the lag compensator. We have to design the lag compensator to

achieve a reduction in the ctpadv..el'mp error hv a factor of 10, i.e.,

e(o0) = 0.1502
10
= 0.01502
Then,
1—e(c0) 1-0.01502
P™ e(c0) ~— 0.01502 64.7895
For the lag-compensated system,
Zck

K, =

Dox2%5%12
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oct-Locus of Lag Compansaled Sysiem

Fig. 534 Root-lodii for the control system of Example 5.9, continued.

Here, we have three unknowns k, z., and p. and one relation as above. To begin
with, let us assume k == 679.086 (uncompensated gain). Then, we can choose one
of the two remaining unknowns arbitrarily. Let us choose z, = 0.05 so that we get
pe =0.0044. The open-loop transfer function of the lag-compensated system is
given by

k(s + 0.05)
(5 + 0.0044)(s + 2)(s + S)(s + 12)

Now we can draw the root-locus as shown in Fig. 5.34c and determine the value
of the gain and closed-loop poles for operating with { = 0.2. We get k = 670.3530
and p ==—16.2019, —1.3796 & j6.8304, and —0.0433.
Thus, the pole locations are similar to those observed for the PI compensator.
With this new value of the gain k = 670.3530, the steady-state error is slightly
changed. We have

G(s) =

_ zck

P e #2%5%12
005 %670.3530
T 0.0044 %2 x5 %12
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y(t)

= 63.4804
1
€)= 17x,
_ 1
" 14 63.4804
= 0.0155

which is close to the target value of 0.01502. Hence, we need not repeat the design
process.
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Fig. 535 Unit-step responses of Example 5.9.

Now to test the designs of PI- and lag-compensated systems, we have obtained
unit-step responses of the basic, PI-, and lag-compensated systems as shown in
Fig. 5.35. We observe that the design objectives are met. The transient response
of the PI- and lag-compensated systems are almost identical to that of the basic
system. Furthermore, as ¢ assumes large values, the steady-state error for the PI
compensator approaches zero and that for the lag compensator approaches the
target value of 0.01502.

Example 5.10
For the following system, design 1) a PD compensator and 2) a lead-lag compen-
sator so that the peak time is reduced by a factor of 3, while the percent overshoot
remains unchanged at 25.38%.
k
G(s)= ————ro
O = T+
Solution.
prPD l‘nmppncnfnr The first 5"? is to draw the root-locus of the basic cvctpm

as shown in Fig. 5.36a. Using Eq. (5.75), we find that the damping rano that
corresponds to 25.38% overshoot is equal to 0.4. For the basic (uncompensated)
system, the value of the gain that corresponds to { = 0.4 is equal to 28.3825, and
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Root-Locus of PD Compensated System

Root~Locus of Basic System
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Heal Axis Fig. 5.36 Root-locii for the control system of Example 5.10, continued.

the closed-loop pole locations are —0.8299 + j1 9426 and —6.3402. Because the
-third pole located at —6.3402 is farther from the second-order poles, we can use the
second-order approxxmanon. With this assumption, the times for peak amplitude

£ nd that for tha """‘pensated °)’S!€m Tp are gnlpn hv

i
l
i tha ha
1 ior lllb vasic a_yau.ul ‘ P andG natl 107 in Cor
l ‘ d
1 Tp =
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Fig.5.36 Root-locii for the control system of Example 5.10.
. w
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Root-Locus of lead-lag compensated system.
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Fig. 5.36 Root-locii for the control system of Example 5.10, continued.

Odc = —§{Wnc

= —0.4 * 6.3587

= —2.5435

Here, 04, and wy, are the real and imaginary parts for the dominant second-order

poles. -
The transfer function of the PD compensator is given by

Ge(s)=s+2

Now we have to determine the location of the compensating zero Z. so that the
root-locus passes through the point (04;, @g4.). The value of z is determined by
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the angle condition of Eq. (5.124), which in this case leads to
e — (61 + 6, + 63) = (2n + 1)180

Referring to Fig. 5.36b (ignoring the pole ats = p.), we find 8; = 113.5736 deg,
6, =85.5274 deg, and 6; = 67.1488 deg. Choosing n = —1, we obtain 8, = 86.2498
deg and z, =2.9261. Then, the transfer function of the PD-compensated system
is given by

k(s +2.9261)

ofe 1. 2o 1 &)
IS TINS TI)

Ge(s) =

Then we draw the root-locus using MATLAB* as shown in Fig. 5.36c and obtain
k =40.2971 and p = —2.5435 % j5.8317 and —2.9130 for operating at { = 0.4,

Lead-lag compensator. The transfer function of the lead compensator is given
by Eq. (5.168) as

s+ 2
S+Pc

G(s) =

We have to find the locations of the zero z. and the pole p. on the real axis so that
the design objectives are met.

From the analysis of PD compensator as in 1) above, we know that the net
angle contribution due to the zero at s = —z. and pole at s = — p, must be equal
to 86.2498 deg. Let us assume that the angle contribution due to zero at s = —z,
is 8;c = 90 deg so that z, =2.5435. Then, the angle contribution due to the pole at
§=—pc is 8, =3.7502 deg so that p.=88.9. Then, the transfer function of the
lead-compensated system is given by

Guts) o K +2:5435)
= G+ 36 + 56 + 83.90)

Now we draw the root-locus of the lead-lag compensated system as shown in
Fig. 5.36d (the root-locus around the origin is shown in this figure) and select the
operating point for £ =0.4. We get k =3451.4 and closed-loop poles at —89.3603,
~2.5405 %+ j5.7879, and —2.4588.

Let us verify the designs by performing the simulation, i.c., we determine the
unit-step response using MATLAB.* The results are shown in Fig. 5.37. We observe
that the peak amplitudes (hence the percent overshoot Oy) for all three cases are
nearly equal. For the basic system, T, = 1.80s and, for PD- and lead-compensated

—systems, T, ~ 0.65. Thus, the desigmobjectives have beenreatized.

Example 5.11
Design a PID controller for a unity feedback system with
k(s + 15)
+DE+3)s+9)

to operate at a peak time, which is 50% of the basic system and has a zero steady-
state error for a unit-step input while continuing to operate at adamping ratio of 0.3.

G(s) =
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Step Responses, Basic, PD-Compensated and Lag-Lag Compensated Systems
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Fig. 5.37 Unit-step responses for Example 5.10.

Solution. The approach we take here is to design the PD controller first and

then add a PI controller.
Draw the root-locus for the basic system using MATLAB* as shown in Fig

5.38a and pick the point on the root-locus corresponding to { =0.3. We get
k=14.2869 and p=—10.089, —1.4555=% j4.6685. Using this information,
we get T, =0.6729 s. Then, for the compensated system, Tpc =1, /2=0.3365 s,
which corresponds to g =9.3378, Wne =wuc//1 —{2=9.7887, and o4 =

¢ wne =2.9366.

Now we calculat: le contributionsg ng{\pnrhnu as before in Examplp

Now we calcu g
, 6, == 89,6355, 6, =39.0601, and 6 = 58.2290 so that

5.10, wegetﬂl 101 1851
= = th function of the PD-

compensated system is given by
| 2 -
A T AI R T AT.TURT)

0= T D F e +9)
Next, we add the PI controller. Select a pole at s =0 and a zero at s = —0.5 so
that the transfer function of the PID controller is given by
k(s + 0.5)(s + 15)(s + 19.9014)
ss+ 1D +3)(s+9)

L 18V o L 10(\[\14\

G(s) =
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Now we draw the root-locus of the PID system as shown in Fig. 5.38b and pick
the point corresponding to ¢ =0.3. We get k =6.1112 and closed-loop poles at

11 VYALN nend N AQL0

2 LQAL L 17 N4
—J.U0%U L J1L.L090, T 11.490V, alll —TUSrIUT,

The umt—step rcsponses of the basu:, PD- and PlD-compensated systems are

the des:gn requnremcnts
Example 5.12
For the system of Exampie 5.10, design a major-loop feedback to achieve the
same performance.

Solution. 'We have found in Example 5.10 that 6,, = 86.2498. With this, we
obtain the equivalent pole location, z. =2.9261, and k; = 1/z, = 0.3418. We then
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plot the root-locus using MATLAB and obtain the value of the gain as 40.2971,
which is equal to kky, so that k = 117.8967. The reader may verify that this response
is identical to that of the PD controller of Example 5.10.

Example 5.13

For the control system shown in Fig. 5.39a, determine the gain k; so that the
minor loop operates with a damping ratio of 0.707 and the complete system has a
damping ratio of 0.4. '

Solution. Consider the minor loop. We draw the root-locus using MATLAB*

as shown in Fig. 5.39b and pick the point on the root-locus corresponding to { =
.707. Then, we get k, = 14. and p=35. , —L. Jji- . Having
designed the minor loop and knowing the value of k;, we can simplify the system

T(s) + + B y(s)_
._? ’ K —? s(s+3) (s+5) Y

k,.s

a) Control system

Root-L.ocus of Minor-Loop

10 O Y LE D SRRETSNT) Lihiee T 4 ™ T L

Imag Axis
o

506

T(s) +
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- k
"g? —» Gi()=ggr F(ky+15)s

y(s)

Fig. 539 Minor-loop design for Example 5.13.

Imag Axis

¢) Outer-loop block diagram

LN AR I . T T ¥

Real Axis
d) Root-locus of outer loop

Fig.5.39 Minor-loop design for Example 5.13, continued.
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block diagram as shown in Fig. 5.39c. We have
k
53 + 852 + (ky + 15)s
For this system, we draw the root-locus as shown in Fig. 5.39d and obtain k =
ing at { = Chi

Gi(s) =

£0 RAKTY nmd 2o A QAQKE 1 €YY L. 2 ADD) Fasm ~Arar
UZ.J7J4 allg p—— . ITTI, LdLlL L JOoMMLlLsL 1UL Upbldll

completes the design.

5.10 State-Space Analysis and Design

The classical method of analyses discussed in the previous sections is called
the frequency-domain technique because it is based on system representation in

the torm of transier function. 1The main advantage of this approach s that the
govcming differential equation of the system is replaced by an algebraic transfer
liil_lCliOﬁ HUWCVCI, a uladuvaﬁtagﬁ Ul UﬁS ClaSSICEll rﬂetllUU lb llldl. ll lb llllllLCU {o
linear time-invariant systems with zero initial conditions. The modem state-space
approach is more general in nature because it can be used to represent nonlinear,
time-varying systems with nonzero initial conditions. The state-space method can
also handle multi-input-multi-output systems in a compact manner. Furthermore,
the state-space approach becomes very attractive because it is based on matrix
algebra, and powerful matrix analyses tools like MATLAB* are commercially

available.

5.10.1 Concept of State Variable

The choice of a set of variables to be designated as state variables for a given
system is somewhat arbitrary. In other words, there is no unique method of defining
what should be a set of state variables for a given system. However, the state
variables have to meet some requirements, which can be stated as follows.

1) The variables selected as state variables must be linearly independent, i.e., it
should not be possible to express any one or more of the state variables in terms of
the remaining state variables. Mathematically, if x is an n dimensional vector with
components x;, i = 1, n, then the components x; are said to be linearly independent
if ajx; #0, for all ; %0 and all x; #0. Here, «;, A, ¢ = 1, and n are arbitrary
constants.

2) Given all the initial conditions, the input for ¢ > 0, and the solution of the

ooverning diffarential anuatinn in terme nf tho calantad ctata variahlac anea muct he
goverming Giiitronuia: Squation in oIS O1 i SCIECLEG Siail variacies, ond musi oc

able to describe uniquely any physical parameter (state and output) of the system
f > ; :

cannot be described in this manner, then the selected variables do not qualify to
be designated as state variables.

5.10.2 State-Space Representation

A state vector is a vector whose elements are the state variables satisfying the
above requirements. If » is the dimension of a state vector, then the state-space
is an n dimensional space whose axes are the state variables. For example, if
X1, X2, and x3 are the elements of the state vector x, then n = 3, and the state-space
is a three-dimensional space with x;, x,, and x5 as three axes.
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The state equation is a set of n simultaneous first-order differential equations
involving n state variables and m inputs. Usually, m < n. The output equation is a
set of algebraic equations that relate the outputs of the system to the state variables.

For example,

x = Ax + Bu (5.171)
y=Cx+ Du (5.172)

where
X
X2

X3

X = (5.173)

Xn
[ SR N

any &z a3 - an,
az ax»n axpm - an
a a a - a
A 31 32 33 3n (5. 174)

lfhll an2 Gn3 - annJ

B= b’ (5.175)

It

is a state-space representation of an nth order system. Here, the order of the
system is equal to the number of simultaneous first-order differential equations.
In Egs. (5.171) and (5.172), x is the state vector of dimension n, A is the system
matrix of dimension n X n, B is an n X m input coupling matrix, u is an m x 1
input vector, y is the output vector of dimension g, C is a ¢ x n output matrix,
and D is a ¢ x m feed forward matrix. The term feed forward is used when a part
of the input directly appears at the output. A schematic diagram of the state-space

I NPy IS Py NPV, Sy 4

1opicycniauvin auu‘w’n i 1‘15 o "fU

—5.10-3 State Transition Matrix

Consider the homogeneous part (u =0) of state Egs. (5.171) and (5.172) as
given by

= Ax (5.176)
y=Cx (5.177)
The state transition matrix ®(¢) is defined as a matrix that satisfies the equation

x(t) = ®(t)x(0) (5.178)
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D
u(t) + m % r » + + vit)
—l—— B J c ——b@—-b" !
+
A

In other words, given the initial conditions x(0), the state transition mairix enables
us to predict the state vector at ¢ > 0.
Substituting for x(¢) from Eq. (5.178) into state Eq. (5.176), we obtain

®(1)x(0) = AD()x(0) (5.179)
[@¢) — A®()]x(0) =0 (5.180)

If this identity is to hold for all arbitrary values of x(0), we must have
D) - AP(@)=0 (5.181)

This shows that the state transition matrix ®(z) is a solution to the homogeneous
state Eq. (5.176).

Determination of state transition matrix. Take the Laplace transformation
of Eq. (5.176),
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where / is the identity matrix. We note that Eq. (5.186) satisfies the homogeneous
state Eq. (5.176). Hence,
2t2 An n
®(1) = et -—1+At+-——+ <+

4 (5.188)

s aman

Using this, me solution of the complete nonhomogeneous state Eq. (5.171) can be
expressed as'-

t
x(t) = (1)x(0) + / ®(t — )Bu(r)dr (5.189)

and the output

s5(s) — x(0) = A%(s) (5.182)
x(s) = (sI — A)~'x(0) (5.183)
Here, we assume that (s] — A)™! exists, i.e., (s/ — A) is nonsingular. Then,
x(t) = L7'[(sI — A)"']x(0) (5.184)
fort > 0. Comparing Eqs. (5.184) and (5.178), we get
®(t) = L7 (s1 — A)"] (5.185)
Let
x(t) = e’ x(0) (5.186)
The matrix exponential is given by
A4 At Az'z +o4 A (5.187)

t
y(t) = C[d’(t)x(O) + [\ ot ~ t)Bu(r)dr] + Du (5.190)

The integral in Eq. (5.189) is the convolution integral, which was introduced
earlier in Eq. (5.39). The first term on the right-hand side of Eq. (5.189) represents
the solution to the homogeneous part of the state equation and givcs the free (tran-
sient) response. The second term represents the forced response and is independent

of the mmal conditions x(0).

Properties of state transition matrix. The state transition matrix ®(t) has
the following properties. The proof of these identities is left as an exercise to the
reader.

OO) =1 (5.191)
o7 (1) = ®(—1) (5.192)
Oty — 1)D(1y — to) = D(t2 — to) (5.193)
(D) = D(ke) (5.194)

Characteristic equation. Given a square matrix A, the equation
AQ)=|A—-A|=0 (5.195)

is called the characteristic equation of matrix A. Here, |.| denotes the determinant
of the argument (square) matrix.

Eigenvalues and eigenvectors. The roots of characteristic Eq. (5.195) are
called the eigenvalues of the matrix A and are usually denoted by 4;,i =1,...,n,
where n is the number of rows or columns of the matrix A. As an example, let

M 1 .
A= |.4 IJ (5.1960)
so that

A-1 -1
lI—A:[_4 1—1] (5.197)
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and
AQ) =] —Al=2*=22-3=0 (5.198)

Solving, we get X; = 3 and Ay = —1.

An important property of the eigenvalues is that they remain invariant under any
linear transformation. A direct consequence of this property is that the closed-loop
characteristic equation also remains invariant under any linear transformation.
To make this point clear, suppose we are given a linear, time-invariant system
x = Ax + Bu and we transform this system using a linear transformation x = Pz
so that the transformed system is z = P~' APz + P~' Bu. Then, the eigenvalucs
of matrix A and those of P'AP are identical. Interested readers may verify this
statement by working out the details.

—_If Ajisan eigenvalue of the square matrix A, then any vector x that satisfies the
equation

Ax = Aix (5.199)

is called the eigenvector corresponding to the eigenvalue A;. In other words, every
cigenvalue will have an associated eigenvector. Returning to the above example,

1 17[x] [x]
PE-ol] e

2, +x2=0 (5.201)

or

4x,+2x, =0 (5.202)

Note that the two equations are identical, stating that the eigenvector is not unique
and depends on our choice of one of the two variables. Let x; = 1 sothat x; = —1/2.
The eigenvector corresponding to A = —1 is [—1/2 1J7. Here, the superscript “T™”
denotes the matrix transpose. It can be shown that the eigenvector obtained by
choosing any other value for x; would be a scalar multiple of this eigenvector.
Similarly, the eigenvector corresponding to A; =3 is [1 2]7.

To understand the physical meaning of eigenvalues and eigenvectors, consider
a system with two first-order, coupled linear differential equations

Xy =x1+x3 (5.203)
iz = 4X| + x3 (5204)
— At — M'
we get
Aupet = ujer 4 uje (5.205)
Vs oM — Aus o aht L g A (5.206)
ne)c il b T e \J LUy

Because e > 0 for all ¢ > 0, we can write
Aup =uy) +uy (5.207)
Auy = 4uy +uy (5.208)

512 PERFORMANCE, STABILITY, DYNAMICS, AND CONTROL

k] e

which is of the form Au = Au. This equation is of the same form as Eq. (5.199)
with A as the eigenvalue of the matrix A. Furthermore, we recognize that the above
matrix A is the same as matrix A in Eq. (5.196), which has the eigenvalues of
—1 and 3 and eigenvectors of [—1/2 1]7 and [1 2]”. This means, with A = —1,

uy = —1/2, and uy = 1, we get the first solution as

or

xy=—le™" x =" (5.210)

and, with A = 3, u; = 1, and u, = 2, we get the second solution as
x=e*  x;=2e" (5.211)
Therefore, the general solution is given by
=~ +e’  xm=e 42" (5:212)

Thus, we observe that the eigenvalues determine the nature of the transient
response and the eigenvectors determine the amplitude of this response.

5.10.4 Controllability and Observability

The concept of controllability is linked to the question of whether the input u
affects or controls the variation of each one of the state variables x;. If it does,
then we say that the given system is controllable. On the other hand, if any of
the state variables are not influenced by the input u, then the system is said to be
uncontrollable. Alternatively, if we can take the system from a given initial state
x(0) to a specified final state x(¢;) using the available control u, then the system
is said to be conirollable. If not, the system is unconiroilable.

The given nth order linear, time-invariant system

%= Ax+ Bu (5.213)
y=Cx (5.214)

1s said {0 be controliabile 1 € matnx

Q.={B AB A’B A"'B] (5.215)
is nonsingular or has full rank n. The matrix Q. is called the controllability
matrix.'-3 _
The concept of observability is related to the question whether each one of the
state variables affects or controls the variation of the output y. If the answer t0

this question is yes, then the system is said to be observable. If not, the system is
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unobservable. Thus, for an unobservable system, the input does not affect some or
all of the output variables.
A given linear, time-invariant system in the state-space form is said to be ob-
servable if the matrix
c |

CA

2
Qo = ca (5.216)

| cam! ]

is nonsingular or has the full rank n. The matrix Qg is called the observability
matrix,!™

5.10.5 Phase-Variable Form
Let us suppose that we have a state-space representation in the form
X = Ax + Bu
where
x;]
X2

x=|" (5.218)

[=JN =]

S O
S - O
- O O
(=R = =]

(=]

A= ’ (5.219)

| —ap —a1 —az - - —ap.]
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form is that there is a minimum amount of coupling between the state variables.
For example, given all the initial conditions, x,(0), x2(0),.. ., x,(0), we can first
solve x,(0) = x2(0) and obtain x;(At) by an integration over a small time step
At. Similarly, we can get xz(At), x3(At),. .., x,(At) by successively solving the

other equations.

l. A l nt ok

PS antage
auvaill lﬂs t e

er
e characteristic eq auon

nhaca_wvasiabkla facen af raceacantatian hao

'Thc puaac-vauaulc UL VUL IBPICBCIIMLIUII nad>
ments of the last row constitute the coefficients of
follows:

an
anvu

('|>

AS)=5"4+au_15" '+ +ays+ap=0 (5.221)

This property is useful in the design of compensators using the pole-placement

—l‘d

Equation (5.217) with matrices A and B given by Egs. (5.219) and (5.220) is called
the phase-variable form of state Eq. (5.171). The advantage of the phase-variable

method, which we will discuss a little later.

5.10.6 Conversion of Differential Equations to
Phase-Variable Form

Let the given dynamical system be represented by the following linear differ-
ential equation:

d"y dn—ly

d
o @ 4 agy = u(t) (5.222)

dr" dt

Let us select a set of state variables such that each subsequent state variable is
defined as the derivative of the previous state variable. That is,

. a-ly
xyp=y X2 ==Y =Xy, Xp = T = Xp—1 (5.223)
Then,
X1 =X (5.224)
X2 = X3 (5.225)
Xp = —QgX; — G1Xp — AX3 — -~ — Ay _1 Xy + u(2) (5.226)
Or, in matrix form,
| x = Ax + Bu (5.227)
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where
X
X2
X3
X = (5.228)
L Xn_|
-~ s ~ ~ ~ 1
0 i 0 O 0
0 0 1 0 0
A=| 0 O 0 1.0 (5.229)
L—do —ay —a - -+ —ap_y|
0
0
B= 0 (5.230)
h-l—d
The output is given by
[x1
X2
y=Cx=[1 0 .- 01| (5.231)
| Xn_]

Thus, by choosing each successive state variable to be the derivative of the previous

one. we are able to express the given differential equa ationin tha ctate_cnace nhace.
Onc, wWe al€ ait (O CXPITSS Ui given Gladrinua: Squausn in uil swail-5pacy, paasc

variable form.

516 PERFORMANCE, STABILITY, DYNAMICS, AND CONTROL

be the given plant, which is not in phase-variable form. We assume that this system
is controllable. Furthermore, let us assume that there exists a matrix P, which is
defined as

z=Px (5.234)

which transforms the given system into phase-variable form,

—. - — - . -

5.10.7 Conversion of General State-Space Representation to

Phase-Variabie Form

A system given in a general state-space form can be expressed in the phase-
variable form if the system is controllable. Let

%= Ax + Bu (5.232)

y=Cx (5.233)

2 1 0 O 0 Z 07
22 0 1 0 0 22 0
23 - 0 0 1 g 23 + 0 “ (5.235)
0
| 2] | —ap —ay *+ + - =Gu_1| | Zn] 1.1
The transformation matrix P has the form
pu1 P12 - - Pin’| P,
Pn pn - - - Do p,
P = Pt P22 -+ * DPan - Py (5.236)
L.Pnl Pn2 ° * - DPnnd ...Pll..
We have
z1 = Pix (5.237)
so that
= PAx + P,Bu (5.238)
Because this transformed cquauuu is sup Scd to be in p nase- Vﬁl‘iabic form, we
must have 2; = z,. This gives z; = Ax and PyB = 0. From Eq. (5.234),

we have z; = P;x. Therefore, P, = PlA. Continuing this further, we find that
23 = PiA%x, PLAB =0, P; = P)A%,..., 2,1 = PiA""1x, PLA* 2B = 0,
and P,_; = P,A"2, Finally, we have

zn = PiA"x + PiA" " 'Bu (5.239)

Comparing this with Eq. (5.235), we find that P; A® !B = 1. With this, we can
construct the following matrix:

[PnB PIAB PA’B - PA™'B]=[0 0 O - 1]  (5.240)
or

=[0 0 0 - 1J[B AB A?B - A*~ipJ! (5.241)

=[0 0 0 - 1Q! (5.242)
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Because we have assumed that the given system is controllable, the controllability
matrix Q. is nonsingular and Q7! exists. Once P, is known, then Py, P;, ..., P,
can be calculated using the relations derived above. Then, the phase-variable form
of the given system is

7=(PAP )z + (PB)u (5.243)

5.10.8 Conversion of Transfer Function Form to
Phase-Variable Form

Suppose the relation between the input and output of a system is given in the
form of a tmnsfer funcnon, we can convert thls to state—space phase—vanable repre—

based on decomposmon of the transfer funcnon To 111ustrate the method consider
the S:y'Sf.ﬁﬁ'i shown in Fi ig. 541a.

Let the open-loop transfer function of a system be given by
k(sz +a1s + az)
$3 + b1s2 + bys + by

The first step is to decompose the given system into two blocks, one for the
denominator with transfer function G(s) and the other for the numerator with
transfer function G,(s) as shown in Fig. 5.41b. Let the output of the first block be
denoted as x;(s). Then, for the first block,

%1(s) _ k

G(s) =

(5.244)
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Let x, = X1 and x3 = % = %; so that

X =x; (5.248)
xz = X3 (5-249)
X.3 = —b|X3 —_— b2X2 — b3X] + kr(t) (5250)

In matrix form,

[«] [o 1 o]fx] [o]

Xy =l 0 0 1 x| +]0|kr@®) (5.251)

Gy(s) = = 5.245
1(s) Fs) $3+bis?2+byis+by ¢ )
so that
%1(s)(s> + bys® + bas + b3) = kF(s) (5.246)
Taking the inverse Laplace transforms,
d*x, d? dx
o +b d;‘ +br ot +baxy = kr(t) (5.247)
7(s) k(2 +as+ay) | T
G(")=a=‘+bga’+b,a+b3 >
a)
7(s) 2, (s) ()
e Gl(s) G-,(s) p——tp=
b)

Fig. 5.41 Decomposition of a given control system in phase-variable form.

Lis| |=bs —by —bu||x]| |1

r
G

which is the required phasc-variable rcpresentation

Consider the second block. This block glVCS the Oulpl.l( mairix. We have

¥(s) = (s* + a1s + a)ki(s) (5.252)
Taking the inverse Laplace transform, we get
y@) =% +ax + 20 (5.253)
= x3 +ar1x2 + axx; (5.254)
X1
=[a a 1}]x (5.255)
X3

5.10.9 Pole-Placement Method

The root-locus method discussed earlier is essentially a pole-placement method
in frequency-domain analyses. The term pole refers to the poles of the closed-loop
transfer function. When we consider higher order systems greater than two, the
classical PD or P1 type of controllers will not be able to place all the poles as desired
because there are only two free variables at our disposal in PD or PI controilers.
Therefore, for higher order systems, the pole-placement method of the state-space
approach becomes very attractive because it can place all the closed-loop poles

arl-uh'anlv hut enhioect tn the nanditinne that all tha ctatac ara availahla far feedhanl

@z UL um..:, Uut 5uUjli LU W0 CURGIATIILS Uldl Qii Uiv Swalts alt avaliauas A0 avvllaia

and the given plant satisfies the controllability condition.

~onsider 1 L in state-snace £ ven |

x = Ax + Bu (5.256)

y=Cx (5.257)

With full-state feedback, 4 = r(t) — K x, where r(t) is the m x 1 input vector and
K is an m x n matrix of feedback gains. Then,

% =(A—BK)x+ Br(?) (5.258)
y=Cx (5.259)
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+ u(t) ' %

y(t)

x
B ‘f. — c ——

Fig. 542 Schenmatic diagram of pole-placement method:

The block diagram implementation of the full-state feedback control system is
shown in Fig. 5.42.

For simplicity, consider a system with single input, which means X is of dimen-
sion 1 x n. Then, the design procedure is as follows.

1) Renrecent the aivan nlant in nhace-variahla form
1, REPICSCNL i given piani In paase-vanaocae 10im.

= Apz+ Byu (5.260)
2) Feed back each state variable to the input of the plant with gains &; so that
B 0 1 0 0 - 0 7
0 0 1 0 - 0
0 0 o1 - 0
A, — B, K =
_—(ao + ki) —(a1 +k2) ~(@n—1 + k)
(5.261)

3) Write down the characteristic equation for the plant as follows:

Is] —(Ap = BpK)| ="+ (an—1 + ka)s" "' 4 + (a1 + k)5
+(@o+ ki) =0 (5.262)

S"Hdy 18"t dis+dy=0 (5.263)
QY Ennnta ~anaffiniante nftha turn nharantaricotin ansintinne
<) Lﬂual& WUCLILVIVIIW UL LI LWU viidlauviciioue bquauuua

odiv=ay+ky,dy =ap + Ky (5.264)

ky=dy—ao,kp=dy—ay,....kn =dy_1 —a,_ (5.265)
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and
=k ko - - ki) (5.266)
The full-state feedback law in the transformed z-space is given by
u=-—Kz4r() (5.267)
or, in the original state-space,
u=—KPx+r(t) (5.268)

so that the given system with full-state feedback is given by

x = Ax + Bu (5.269)
= (A—KPx)x + Br(t) (5.270)

6) Perform a simulation to verify the design.

The advantages of expressing the given plant in the phase-variable form is that
equations for the gains k; are uncoupled and k; can be easily obtained as given
in Eq. (5.265). However, if the plant is not controllable, then it is not possible to
represent it in the phase-variable form. For such a case, the above design procedure
remains same except for the fact the equations for k; will be coupled. Then the
gains k; have to be obtained by solving the n coupled algebraic equations.

5.10.10 Dual Phase-Variable Form
The state-space representation, which is in the form,

% =Ax+BU (5.271)
where
x1] —apy 1 0 0 - 0] 0]
x 2 01 0 - 0 0
=2 a=| | p=|° (5.272)
. —da; O 0 - 1 O - .
B
| Xn_| | —aqp . . . . ] _1_

_____ al L aelals Voo s al

lb bdlu io DC ll’l umu plldbC-le'ldUlC lUml blmlldl' 10 e pndbe-vandme IOl'ﬂl, mc
elements of the first column of the matrix A in dual phase-variable form constitute

the coefficients of the characteristic eqguation as followe-
e coencients of e cnaracterisiic equation as 10iIows:

CS"dap " a2t ays+ay =0 (5.273)

Furthermore, this form of representation of the system matrix A is very useful in
the design of state observers, which we will be discussing a little later.
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5.10.11 Conversion of Transfer Function Form to Dual
Phase-Variable Form

521

We will illustrate this method with the help of an example. Consider once again

the system (see Fig. 5.41) given by

k(s> 4+ a15s + ap)

G(s) = S b1 b B (5279
Rewrite this in the following form:
: + ¢:|21 4 Gk agl
G(s) = P (5.275)
1 s 3 +2
_ 36
= (5.276)
or
b1 bo k agk \
y(s)\l + + >+ 3) = F(s )\— — + —S—a—) (5.277)
Then,
1
y(s) = - [*bﬁ(S) +kF(s) + " ([f(S)kan — bay(s)]
1
+ ;[kazf(S) - bs?(S)])] (5.278)
Let
sX3(s) = kayF(s) — b3y(s) (5.279)
5X(s) = ka7 (s) — by y(s) + X5(s) (5.280)
sX1(s) = —by(5) + X2(s) + k7 (s) (5.281)
so that
¥(s) = X1(s) (5.282)

Taking the inverse Laplace transforms, we obtain the desired dual phase-variable

form as follows:

I .’fﬂ e
o_| 5l |

y@®) = x1(t)

1
v ke
N |
I
|
5
S O -
hy
N

and

(5.284)
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5.10.12 Observer Design

The pole-placement design method requires that all the state variables are accu-
rately measured and are available for feedback. If this requirement is met and the
system is controllable, then a complete control over all the eigenvalues is possible.
A problem arises if some or all of the states are not actually measured or are not
available for state feedback. An obvious solution would be to add more sensors that
can measure the missing states. However, this approach may not always be feasible
and often can be quite expensive. The other option is to estimate the unavailable
states using a subsyslem called a state observer. An observer that estimates all the
Bl.dlcb, ;uuuuiug uiose u‘dl aic as.uuuly luca)uu:u, ;b baucu a fuu—maw UU)CI VCI,
and one that estimates only thosc states that are not mcasurcd is called a reduced-

observer

The design of an observer is based on the knowledge of a mathematical model
of the plant, input(s), and output(s). The basic idea is to make the estimated states
as close to the actual states as possible, but the problem is that all the actual states
are not available for comparison. However, we do know the output of the given
plant, and we can compare it with the estimated output of the observer. The design
objective is then to drive the error between the actual and estimated outputs to zero
as rapidly as possible so that, in the limit, the estimated states approach the actual
states. The schematic diagram of such a full-state observer is shown in Fig. 5.43.

Suppose the dynamics of the plant and output are given by

X =Ax+ Bu (5.285)
y=Cx (5.286)
Let the observer dynamics and the output be given by
Z=AX+Bu+L(y—39) (5.287)
y=Cz2 (5.288)
so that
y—y=Ckx—2%) (5.289)
A A
u(t) Y i a yit) _ vyt
» 5 | j —» <
+Rt

Fig. 5.43 Schematic diagram of full-state observer.
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Here, % is the estimated state vector, and j is the estimated output. Lete, = x — %
be the error between the actual states and the estimated states and e, = y — J be
the error between the measured and estimated outputs. Then,

br=k—f=Ax—-3)—-Ly—79) (5.290)
=(A—-LC)x - %) (5.291)
ey = C(x — %) (5.292)

The objective of the design is to choose the observer gain matrix L such that the
errors e, and ey approach zero as rapidly as possible. In other words, we choose
the observer gain matrix L so that the closed-loop eigenvalues produce the desired

£

forim. Suppose that the given piant A 1s

—md e di o - —

Plant given in dual phase-variable
in dual phase-variable form

—a,.; 1 0 0 0
—a. o~ 0 1 0 n
Gnz 0 1 O 0
A= |3 0 01 0 (5.293)
S |
| —ap 0 0 0 - O]
Then, let us assume that the matrix A — LC has the following form
(a1 +5h) 1 0 0 - 0]
~@u2+0) 0 1 0 - 0
A—LC=| @tk 0 0 1 -0 (5.294)
~@ by o
| —(@o+1) 0 0 0 - O]

The characteristic equation of the observer system is then given by

S"+ @ut + )" T @ F )" (@0 + 1) =0 (5.295)
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Plant not given in dual phase-variable form. Suppose the given plant

x=Ax+ BU . (5.298)

y=Cx (5.299)

is not in dual phase-variable form. Then we assume that there exi

where x = Pz that transforms this plant into a dual phase-variable form as given
by

z=A; 2+ Byu (5.300)

y=Cyz (5.301)

Let the charactenistic equation that gives the desired transient response of the
observer be given by

$"ddy " b dy 5"+ dg =0 (5.296)

Equating the coefficients of like powers of 5, we obtain
| | . | S | _ 1 A . Ie
il =dn—1 —Up—~1,82 =Up—-2 " 0Up-2y.-.5tp == 4 — W (J.

Here, 11, ,, ..., I, are the elements of the feedback gain matrix to achieve the
desired performance of the full-state observer.

where A, = P~'AP, B, = P~'B, and C, = CP. The observability matrix of the
original system is given by

- o
CA
Qox = ca? (5.302)
| cA™! |
and that of the transformed system in phase-variable form is given by
C o T
CA
Qo= Céz P (5.303)
| can-!
so that
P = 05100, (5.304)
Lei
e,=2—-12 (5.305)
Then,
€, =(A; — L,Cpe, (5.306)
y—y=Cee (5.307)

where Z and § are the estimated state and the output vectors in the transformed
system. Thus, the design procedure is as follows: 1) design the observer in the
transformed space and obtain the gain matrix L, and 2) transform back to the
original system to get the corresponding gain matrix L, as follows.
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Wehavez =P lx,2=P '3,;sothate, =z—% =P (x—%) = P"'e; and
é, = P~'é,. Then,
ér =(A— Lye (5.308)
y— =Ce, (5.309)
where
L, = PL, (5.310)

Here, L, is the gain matrix of the full-state observer corresponding to the given
system.
Now one question that remains to be answered is how to construct the trans-

characteristic equation or the eigenvalues of the given system. This approach is
fancihla hananoca wea hava enftuwara tanle lilka MATYT AR that ara ay ailahla Wa w,ill

i2asivie 0ECaUsSe W nave SCiware t00iS 1iKC Vinx 1,415 Ular al't avaliasoie, ywe Wiii

illustrate this method in a later example.

Example 5.14

1 2 1|[x 0
x=1{3 5 2||x|+]|0]u
4 0 3 X3 1

Convert it to the phase-variable form.

AL

Given the plam.,

Solution. For the given system, the controllability matrix is given by

0 4 28
Q.=[B AB A’Bl=]|1 9 69
2 6 34

The rank of this matrix is three because all the columns are linearly independent.
The inverse of this matrix exists and is given by

—-135 04 0.3

Q;'=1] 130 -07 035 |.
| -0.15 0.10 —0.05 |
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Similarly,
Py = PA
=[-0.05 020 —0.10]
Py = P A®
= [0.15 0.90 0.05]
so that

—-0.15 0.10 -0.05

Then,

p=[0 0 1][B AB A%B]™

[-135 04 03
130 -0.7 035
| -0.15 0.10 —0.05 |

=[-0.15 0.10 -0.05]

=[0 0 1]

F=1-00 020 -0.10
[0.15 0.90 o.osJ

0 1 0
PAP'=|0 0 1]
-7 -13 9|
0
PB=|0
1

Then, the phase-variable form of the given system is given by

21 0 1 0]la 0
i=1|0 0 1|{z2|+|0|u
23 -7 =13 9] Lza 1
where z = Px.
Example 5.15
For the plant,
25(s +2)
G(s) =
() +1Ds+3)E+S5)

1) Represent the plant in phase-variable, state-space form.

2) Degion a nhage-variable full-state feedback controller to \nJ 159% gvershoot

L] ASTSIHAR G PRIGLVT VARLAAULVY AW TOMWAW Avvavara ViU Vi A 70 UVOASIL

with a settling time of 1 s.

Solution. For 15% overshoot, from Eq. (5.75), we find that ¢ =0.5169. Then,
w, =4/ =T7.7384, wy =m_./1 — r2=6.6245, and o = x w, =4.0. Therefore,
the dominant poles are at —4% Jj6. 6245. Because the given system is a third-order
system, we must choose one more pole. Let this pole be located at —2.1 so that it

nearly cancels the zero at —2 justifying the second-order approximation.
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Therefore, the characteristic equation that gives the desired response is given
by
(s +4 — j6.6245)(s +4 4 j6.6245)(s +2.1) =0

or

311012
T AU,

‘176 Re
[ sV A VALY

1. 198 7842 . N
N T AL IITT = U

o
N

The next step is to express the given plant in state-space, phase-variable form.
For this purpose, let us decompose the transfer function into two blocks (one for
the numerator and another for the denominator) in cascade as schematically shown
earlier in Fig. 5.41b.

For the first block,
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05 T T T ? T T

0.45

04}

0.35

e
W

Amplitude
[~}
I
(4,

x1(s)

Gi(s) = 76)

1
TG+ DE+3)+5)
1
T 5349524235+ 15

or
(53 + 952 4+ 235 + 15)%,(s) = 7(5)
Taking the inverse Laplace transform,
d3xl 9d2X1 23dX1
i + e + a + 15x1 =r(1)
Let %; = x, and X, = x3 so that

X1 0 1 0 X1 0
ARl

Consider the second block. Following a similar procedure,

[x17]

y()=[50 25 0]

Xa
| S o §

The phase-variable form with full-state feedback system is given by
X1 0 1 0 x| 0
W[ o 1)+
|3ng I_ —(15+k) —(3+4+k) —-0O+ I@)J L J

The characteristic equation of the given system is given by

S+ O+k)s?+ @23+ k)s +(15+k) =0

o2t
0.5
01
0.05
o ; ; i : ; ;

Fig. 5.44 Unit-step response of full-state feedback design of Example 5.15.

Comparing the coefficients of the above characteristic equation with that of the
desired characteristic equation, we get k; = 110.7543, k, = 53.6, and k3 = 1.10.
Thus, the given system with full-state feedback is given by

Xy 0 1 0 X1 0
Xy | = 0 0 1 x2|+10]r()
X3 —125.7543 -76.6 -10.10| Lx3 1

Now, we venfy the design by simulating a response to a unit-step input using
MATLAB.* The results of the simulation are shown in Fig. 5.44. It can be observed
that the design requirements have been met.

Example 5.16
_ Given the system
[#] [-5 2 or=] [o]
nl=l1 =3 1 |]|x|[+]|0]|uw
X3 0 1 -1 X3 1
L4 L - = |
_
y= [l 0 0] X2
|_X3_|
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1) Express the given plant in dual phase-variable form. 2) Design a full-state
observer so that the closed-loop characteristic equation is given by 53 + 100s? +
1500s + 40,000 = 0. 3) Verify the design for u(t) = 25t assuming x;(0) = 5,
XZ(O) = 1.5, and X3(0) =

Solution. We have the given system

X = Ax+ Bu
y=Cx

where

|"-5 2 0 '| [o]
A=|1 -3 1 B=1]0
I. 0 1 —1_] llJ
It is convenient to use MATLAB* to compute the observability matrix, which for
this system is found to be

)
i
—=
oy
<
bmd

1 0 0
QO,x =|-5 2 0
27 -16 2

Using MATLAB,* we find that this system has full rank of three; hence the system
is observable. Furthermore,

1 0 0
=125 05 0
|65 40 05|

Next step is to express the given plant in the dual phase-variable form. We know that
the elements of the first column of the matrix in dual phase-variable form are the
coefficients of the characteristic equation. Conversely, given the coefficients of the
characteristic equation, we can directly write down the dual phase-variabie form
of matrix A

However, expanding the determinant in the characteristic equation is simple if it
is of an order lower than three. However, for determinants of orders greater than
three, this is a tedious job. For this purpose, MATLAB* comes out very handy.
Using MATLAB,* we get the characteristic equation

s +95s24+20s+8=0
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Then, the dual phase-variable form of the given system is

-9 1 0
A, =1]-20 0 1
-8 00
Furthermore, we assume that
C;=[1 0 0]
Then,
- c. .]
QOz = CzAz
_CZAg_l
1 0 o0
=|-9 1 0
| 61 -9 1
and
P = Q;lQO:
1 0 0
=1-2 05 0O
1 -05 05

Now let us design the full-state observer for the system transformed in dual
phase-variable form. We have

[-0+u) 1 0]
A, —L,C,=|—-(20+15) 0 1
—-8+6L) 0 O

The characteristic equation of the observer is given by

SHO+N?+ Q0+ L)s+8+5=0

—Thedesired characteristic equation is
s + 100s” + 150Cs + 40,000 = 0

Comparmg the coefficients of like powers of s, we get l| =91, l; = 1480, an
iem is obtaine

. Lanlo
111 1> OULAlIl

- Wik Ji - gy oy ali o _c____ __._a&

I3 = 39,992. Then, the gain matrix corresponding to the given syste
by transforming back as

[=V=W

91
Ly=PL,=]| 558
19,347
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5 l_ T T T T T T T Ll

autput

Fig. 545 Response of full-state observer of Example 5.16.

The performance of the observer for the given initial conditions of x;(0) = 5,
x2(0) = 1.5, and x3(0) = 0.25 and to the input r(#) = 25¢ is shown in Fig. 5.45
using MATLAB.* We note that the observer performs as expected.

5.11 Summary

In this chapter, we have reviewed the basic principles of linear systems and
illustrated the theory with a number of solved examples. This background wili be
useful in the study of aircraft dynamics and control. We will derive longitudinal
and lateral-directional transfer functions and study the free response of the aircraft.
We will also use the design methods we have learned here for the design of stability

augmentation systems and automatic flight control systems of the aircraft to obtain

the desired handling qualmes It was not possnble togoi into all the details of linear

information on control

systems may refer elsewhere.!~
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Problems
5.1 Sketch the Bode plot for the open-loop systems with

@ Glo)= s(sd-‘i‘- 5)
25(s +2)

42V L SYe L)
..',.: 2RSS T )

() G@)=

5.2 Using Routh’s criterion, examine the stability of the closed-loop system with

a characteristic polynomial given by
@ s*+55°+3s2+5+2=0
(b) s*+25>+0.001s? +3s +4=0
() s*+4s34+7s+2=0

[Answer: (a) Two sign changes, unstable; (b) Two sign changes, unstable; and
(c) Two sign changes, unstable.]

5.3 Sketch the root-locus for a unity feedback system with

. k(s+3)
@ 6O = G De+d
_ k(s + 1)
® G6) = e e 77

Determine the value of the gain k when the closed-loop system in (b) becomes
unstable.

5.4 Sketch the root-locus for a unity feedback system with

Gls) k(s +3)s+T7)
T sts+1)

Find the value of the gain k so that the closed-loop system is stable and is operating
with a damping ratio of 0.7.

5.5 For the following unity feedback systems, sketch the Nyquist plot.

@ 66 = s
) }
® )= k(s+2)

(s—3)(s—4)
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For the system in (b), determine the value of the gain for which the closed-loop
system becomes unstable.

5.6 Using the Nyquist plot, determine the gai.n and phase margins of the system
given by
k(s —2)(s—3)

OO = 56 79

5.7 For the system in Exercise 5.6, use Bode plots to obtain the gain and phase

T S

lllalsllln

5.8 For aunity feedback system with

k
E+2)s+4
design a PI controller to reduce the steady-state error to zero for a unit-step input.
Assume that the system is operating with a damping ratio of 0.6. Plot the unit-step

response to verify your design. Compare the values of T; and 7, for the basic and
compensated systems.

G(s) =

5.9 For the system given in Example 5.8, design a lag compensator to reduce the
steady-state error by a factor of 15.

5.10 For the unity feedback system given by

k
o= i De+ 26+
(a) Determine the value of the gain k for 15% overshoot. Determine the corre-
sponding values of T, and T),.
(b) Design a PD controller for reducing T, by a factor of 2 and T by 50%, while
operating at 15% overshoot in both cases.

5.11 Given the unity feedback system with
k

Gis)= ——M——

© = TG

determine the vaiue of gam k for the system o operaie wxm a aampmg ratioof 0.51.
Fmd the correspondmg locauons of closed—loop polcs Ifa lead compensa(or isto

zero placed at—2. 5 ﬁnd the compensator po]e locauon How does the performance
of the compensated system compare with that of the basic system?

5.12 For the unity feedback system with
k

L 1\We L )
\" + W T )

G(s) =

(a) show that the system cannot be made to operate with time for peak amplitude
of 2.0 s and 23.38% overshoot by simple gain adjustment and (b) design a suitable
compensator to achieve this performance.
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5.13 For the unity feedback system with

k
C+DE+DE+T)

design a PID controller that will give time for peak amplitude of 1.2 s and 15%

overshoot with zero steady-state error for a umt-step input. Plot the unit-step
response for the basic and PID-compensated systems.

G(s) =

5.14 For the system shown in Fig. P5.14, determine the values of gain k; and
k so that the minor loop operates with a damping ratio of 0.707 and the entire
closed-loop system has 15% overshoot.

I(s) +.o . tox 1 yis)
b (s+1) {3+2) (3+3) bl

k,.s

Fig. P5.14 Control system for Exercises 5.14 and 5.15.

5.15 Determine the rate gyro gain k, for the system shown in Fig. P5.14 so that
the compensated system operates at one-third the settling time compared to the
basic system while continuing to have the same 15% overshoot.

5.16 Given the linear time-invariant system

i(t) = Ax(t) + Bu(t)

find (a) eigenvalues‘ of the matrix A, (b) the state transition matrix ®(¢), and (c)
state vector x(t) for the following cases:

o a=[5a] =[] o

r. 7 r .M ra
1 -1 0 Y 2
i) A=,;0 1 1 B=|0 x(0) 1
0 0 -1 | 1 0
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5.17 Given the state equation

Xy 1 2 1 Xy 1
X2l =143 5§ 2| |x2{+]|2]|u@®
X3 4 0 3 X3 3
X1
y=[1 0 0] X2
X3

Can this system be transformed into phase-variable form? If so, find the transfor-

phase-variable form.

5.18 Represent the following system in state-space, phase-variable form:
dx + 2d2%x + 3dx + 5% = u(t)
de?  dr2 T dr =

5.19 Given the state equation

Xy 1 2 -1 X1 0
X l=11 2 =3||x2|+]0|ul)
X3 1 0 2| Lxs 1
X1
Y=[1 0 0] X7
X3

Can this system be transformed to dual-phase variable form? If so, find the trans-
formation z = Px such that the transformed system 7 = A,z + B,u(t), y = C,z
is in dual phase-variable form.

5.20 Design a phase-variable, full-state feedback controller for the plant given
by
10(s + 0.8)

AWVRS T

G+ +3)s+5)

G(s) =

o yield a 15% overshoot with a settling time ot 0.8 s.

5.21 Design a full-state feedback observer for the plant




