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Introduction

Robotics is concerned with the study of those machines that can replace hu-
man beings in the execution of a task, as regards both physical activity and
decision making. The goal of the introductory chapter is to point out the
problems related to the use of robots in industrial applications, as well as the
perspectives offered by advanced robotics. A classification of the most common
mechanical structures of robot manipulators and mobile robots is presented.
Topics of modelling, planning and control are introduced which will be ex-
amined in the following chapters. The chapter ends with a list of references
dealing with subjects both of specific interest and of related interest to those
covered by this textbook.

1.1 Robotics

Robotics has profound cultural roots. Over the course of centuries, human be-
ings have constantly attempted to seek substitutes that would be able to mimic
their behaviour in the various instances of interaction with the surrounding
environment. Several motivations have inspired this continuous search refer-
ring to philosophical, economic, social and scientific principles.

One of human beings’ greatest ambitions has been to give life to their
artifacts. The legend of the Titan Prometheus, who molded humankind from
clay, as well as that of the giant Talus, the bronze slave forged by Hephaestus,
testify how Greek mythology was influenced by that ambition, which has been
revisited in the tale of Frankenstein in modern times.

Just as the giant Talus was entrusted with the task of protecting the
island of Crete from invaders, in the Industrial Age a mechanical creature
(automaton) has been entrusted with the task of substituting a human being
in subordinate labor duties. This concept was introduced by the Czech play-
wright Karel Capek who wrote the play Rossum’s Universal Robots (R.U.R.)
in 1920. On that occasion he coined the term robot — derived from the term
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robota that means executive labour in Slav languages — to denote the au-
tomaton built by Rossum who ends up by rising up against humankind in the
science fiction tale.

In the subsequent years, in view of the development of science fiction, the
behaviour conceived for the robot has often been conditioned by feelings. This
has contributed to rendering the robot more and more similar to its creator.

It is worth noticing how Rossum’s robots were represented as creatures
made with organic material. The image of the robot as a mechanical artifact
starts in the 1940s when the Russian Isaac Asimov, the well-known science
fiction writer, conceived the robot as an automaton of human appearance but
devoid of feelings. Its behaviour was dictated by a “positronic” brain pro-
grammed by a human being in such a way as to satisfy certain rules of ethical
conduct. The term robotics was then introduced by Asimov as the science
devoted to the study of robots which was based on the three fundamental
laws:

1. A robot may not injure a human being or, through inaction, allow a human
being to come to harm.

2. A robot must obey the orders given by human beings, except when such
orders would conflict with the first law.

3. A robot must protect its own existence, as long as such protection does
not conflict with the first or second law.

These laws established rules of behaviour to consider as specifications for
the design of a robot, which since then has attained the connotation of an
industrial product designed by engineers or specialized technicians.

Science fiction has influenced the man and the woman in the street that
continue to imagine the robot as a humanoid who can speak, walk, see, and
hear, with an appearance very much like that presented by the robots of the
movie Metropolis, a precursor of modern cinematography on robots, with Star
Wars and more recently with I, Robot inspired by Asimov’s novels.

According to a scientific interpretation of the science-fiction scenario, the
robot is seen as a machine that, independently of its exterior, is able to modify
the environment in which it operates. This is accomplished by carrying out
actions that are conditioned by certain rules of behaviour intrinsic in the
machine as well as by some data the robot acquires on its status and on the
environment. In fact, robotics is commonly defined as the science studying the
intelligent connection between perception and action.

With reference to this definition, a robotic system is in reality a complex
system, functionally represented by multiple subsystems (Fig. 1.1).

The essential component of a robot is the mechanical system endowed, in
general, with a locomotion apparatus (wheels, crawlers, mechanical legs) and
a manipulation apparatus (mechanical arms, end-effectors, artificial hands).
As an example, the mechanical system in Fig. 1.1 consists of two mechanical
arms (manipulation apparatus), each of which is carried by a mobile vehicle
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Fig. 1.1. Components of a robotic system

(locomotion apparatus). The realization of such a system refers to the context
of design of articulated mechanical systems and choice of materials.

The capability to exert an action, both locomotion and manipulation, is
provided by an actuation system which animates the mechanical components
of the robot. The concept of such a system refers to the context of motion
control, dealing with servomotors, drives and transmissions.

The capability for perception is entrusted to a sensory system which can
acquire data on the internal status of the mechanical system (proprioceptive
sensors, such as position transducers) as well as on the external status of
the environment (exteroceptive sensors, such as force sensors and cameras).
The realization of such a system refers to the context of materials properties,
signal conditioning, data processing, and information retrieval.

The capability for connecting action to perception in an intelligent fash-
ion is provided by a control system which can command the execution of the
action in respect to the goals set by a task planning technique, as well as
of the constraints imposed by the robot and the environment. The realiza-
tion of such a system follows the same feedback principle devoted to control
of human body functions, possibly exploiting the description of the robotic
system’s components (modelling). The context is that of cybernetics, dealing
with control and supervision of robot motions, artificial intelligence and expert
systems, the computational architecture and programming environment.

Therefore, it can be recognized that robotics is an interdisciplinary subject
concerning the cultural areas of mechanics, control, computers, and electron-
ics.

1.2 Robot Mechanical Structure

The key feature of a robot is its mechanical structure. Robots can be classified
as those with a fixed base, robot manipulators, and those with a mobile base,
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mobile robots. In the following, the geometrical features of the two classes are
presented.

1.2.1 Robot Manipulators

The mechanical structure of a robot manipulator consists of a sequence of rigid
bodies (links) interconnected by means of articulations (joints); a manipulator
is characterized by an arm that ensures mobility, a wrist that confers dexterity,
and an end-effector that performs the task required of the robot.

The fundamental structure of a manipulator is the serial or open kinematic
chain. From a topological viewpoint, a kinematic chain is termed open when
there is only one sequence of links connecting the two ends of the chain. Al-
ternatively, a manipulator contains a closed kinematic chain when a sequence
of links forms a loop.

A manipulator’s mobility is ensured by the presence of joints. The artic-
ulation between two consecutive links can be realized by means of either a
prismatic or a revolute joint. In an open kinematic chain, each prismatic or
revolute joint provides the structure with a single degree of freedom (DOF). A
prismatic joint creates a relative translational motion between the two links,
whereas a revolute joint creates a relative rotational motion between the two
links. Revolute joints are usually preferred to prismatic joints in view of their
compactness and reliability. On the other hand, in a closed kinematic chain,
the number of DOF's is less than the number of joints in view of the constraints
imposed by the loop.

The degrees of freedom should be properly distributed along the mechan-
ical structure in order to have a sufficient number to execute a given task.
In the most general case of a task consisting of arbitrarily positioning and
orienting an object in three-dimensional (3D) space, sizx DOFs are required,
three for positioning a point on the object and three for orienting the object
with respect to a reference coordinate frame. If more DOFs than task vari-
ables are available, the manipulator is said to be redundant from a kinematic
viewpoint.

The workspace represents that portion of the environment the manipula-
tor’s end-effector can access. Its shape and volume depend on the manipulator
structure as well as on the presence of mechanical joint limits.

The task required of the arm is to position the wrist which then is required
to orient the end-effector. The type and sequence of the arm’s DOFs, start-
ing from the base joint, allows a classification of manipulators as Cartesian,
cylindrical, spherical, SCARA, and anthropomorphic.

Cartesian geometry is realized by three prismatic joints whose axes typ-
ically are mutually orthogonal (Fig. 1.2). In view of the simple geometry,
each DOF corresponds to a Cartesian space variable and thus it is natu-
ral to perform straight motions in space. The Cartesian structure offers very
good mechanical stiffness. Wrist positioning accuracy is constant everywhere
in the workspace. This is the volume enclosed by a rectangular parallel-piped
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Fig. 1.2. Cartesian manipulator and its workspace

Fig. 1.3. Gantry manipulator

(Fig. 1.2). As opposed to high accuracy, the structure has low dexterity since
all the joints are prismatic. The direction of approach in order to manipu-
late an object is from the side. On the other hand, if it is desired to ap-
proach an object from the top, the Cartesian manipulator can be realized by
a gantry structure as illustrated in Fig. 1.3. Such a structure makes available
a workspace with a large volume and enables the manipulation of objects of
large dimensions and heavy weight. Cartesian manipulators are employed for
material handling and assembly. The motors actuating the joints of a Carte-
sian manipulator are typically electric and occasionally pneumatic.
Cylindrical geometry differs from Cartesian in that the first prismatic joint
is replaced with a revolute joint (Fig. 1.4). If the task is described in cylindri-
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\.

-
§\\

D

Fig. 1.4. Cylindrical manipulator and its workspace

Fig. 1.5. Spherical manipulator and its workspace

cal coordinates, in this case each DOF also corresponds to a Cartesian space
variable. The cylindrical structure offers good mechanical stiffness. Wrist posi-
tioning accuracy decreases as the horizontal stroke increases. The workspace is
a portion of a hollow cylinder (Fig. 1.4). The horizontal prismatic joint makes
the wrist of a cylindrical manipulator suitable to access horizontal cavities.
Cylindrical manipulators are mainly employed for carrying objects even of
large dimensions; in such a case the use of hydraulic motors is to be preferred
to that of electric motors.

Spherical geometry differs from cylindrical in that the second prismatic
joint is replaced with a revolute joint (Fig. 1.5). Each DOF corresponds to a
Cartesian space variable provided that the task is described in spherical coor-
dinates. Mechanical stiffness is lower than the above two geometries and me-
chanical construction is more complex. Wrist positioning accuracy decreases
as the radial stroke increases. The workspace is a portion of a hollow sphere
(Fig. 1.5); it can also include the supporting base of the manipulator and thus
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Fig. 1.7. Anthropomorphic manipulator and its workspace

it can allow manipulation of objects on the floor. Spherical manipulators are
mainly employed for machining. Electric motors are typically used to actuate
the joints.

A special geometry is SCARA geometry that can be realized by disposing
two revolute joints and one prismatic joint in such a way that all the axes
of motion are parallel (Fig. 1.6). The acronym SCARA stands for Selective
Compliance Assembly Robot Arm and characterizes the mechanical features
of a structure offering high stiffness to vertical loads and compliance to hori-
zontal loads. As such, the SCARA structure is well-suited to vertical assembly
tasks. The correspondence between the DOFs and Cartesian space variables
is maintained only for the vertical component of a task described in Carte-
sian coordinates. Wrist positioning accuracy decreases as the distance of the
wrist from the first joint axis increases. The typical workspace is illustrated
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Fig. 1.9. Parallel manipulator

in Fig. 1.6. The SCARA manipulator is suitable for manipulation of small
objects; joints are actuated by electric motors.

Anthropomorphic geometry is realized by three revolute joints; the revolute
axis of the first joint is orthogonal to the axes of the other two which are
parallel (Fig. 1.7). By virtue of its similarity with the human arm, the second
joint is called the shoulder joint and the third joint the elbow joint since
it connects the “arm” with the “forearm.” The anthropomorphic structure
is the most dexterous one, since all the joints are revolute. On the other
hand, the correspondence between the DOFs and the Cartesian space variables
is lost, and wrist positioning accuracy varies inside the workspace. This is
approximately a portion of a sphere (Fig. 1.7) and its volume is large compared
to manipulator encumbrance. Joints are typically actuated by electric motors.
The range of industrial applications of anthropomorphic manipulators is wide.

1.2 Robot Mechanical Structure 9

Fig. 1.10. Hybrid parallel-serial manipulator

According to the latest report by the International Federation of Robotics
(IFR), up to 2005, 59% of installed robot manipulators worldwide has an-
thropomorphic geometry, 20% has Cartesian geometry, 12% has cylindrical
geometry, and 8% has SCARA geometry.

All the previous manipulators have an open kinematic chain. Whenever
larger payloads are required, the mechanical structure will have higher stiffness
to guarantee comparable positioning accuracy. In such a case, resorting to
a closed kinematic chain is advised. For instance, for an anthropomorphic
structure, parallelogram geometry between the shoulder and elbow joints can
be adopted, so as to create a closed kinematic chain (Fig. 1.8).

An interesting closed-chain geometry is parallel geometry (Fig. 1.9) which
has multiple kinematic chains connecting the base to the end-effector. The
fundamental advantage is seen in the high structural stiffness, with respect to
open-chain manipulators, and thus the possibility to achieve high operational
speeds; the drawback is that of having a reduced workspace.

The geometry illustrated in Fig. 1.10 is of hybrid type, since it consists
of a parallel arm and a serial kinematic chain. This structure is suitable for
the execution of manipulation tasks requiring large values of force along the
vertical direction.

The manipulator structures presented above are required to position the
wrist which is then required to orient the manipulator’s end-effector. If arbi-
trary orientation in 3D space is desired, the wrist must possess at least three
DOFs provided by revolute joints. Since the wrist constitutes the terminal
part of the manipulator, it has to be compact; this often complicates its me-
chanical design. Without entering into construction details, the realization
endowing the wrist with the highest dexterity is one where the three revolute
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Fig. 1.11. Spherical wrist

axes intersect at a single point. In such a case, the wrist is called a spherical
wrist, as represented in Fig. 1.11. The key feature of a spherical wrist is the
decoupling between position and orientation of the end-effector; the arm is en-
trusted with the task of positioning the above point of intersection, whereas
the wrist determines the end-effector orientation. Those realizations where the
wrist is not spherical are simpler from a mechanical viewpoint, but position
and orientation are coupled, and this complicates the coordination between
the motion of the arm and that of the wrist to perform a given task.

The end-effector is specified according to the task the robot should ex-
ecute. For material handling tasks, the end-effector consists of a gripper
of proper shape and dimensions determined by the object to be grasped
(Fig. 1.11). For machining and assembly tasks, the end-effector is a tool or
a specialized device, e.g., a welding torch, a spray gun, a mill, a drill, or a
screwdriver.

The versatility and flexibility of a robot manipulator should not induce
the conviction that all mechanical structures are equivalent for the execution
of a given task. The choice of a robot is indeed conditioned by the application
which sets constraints on the workspace dimensions and shape, the maximum
payload, positioning accuracy, and dynamic performance of the manipulator.

1.2.2 Mobile Robots

The main feature of mobile robots is the presence of a mobile base which
allows the robot to move freely in the environment. Unlike manipulators, such
robots are mostly used in service applications, where extensive, autonomous
motion capabilities are required. From a mechanical viewpoint, a mobile robot
consists of one or more rigid bodies equipped with a locomotion system. This
description includes the following two main classes of mobile robots:!

e  Wheeled mobile robots typically consist of a rigid body (base or chassis)
and a system of wheels which provide motion with respect to the ground.

! Other types of mechanical locomotion systems are not considered here. Among
these, it is worth mentioning tracked locomotion, very effective on uneven terrain,
and undulatory locomotion, inspired by snake gaits, which can be achieved with-
out specific devices. There also exist types of locomotion that are not constrained
to the ground, such as flying and navigation.
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Fig. 1.12. The three types of conventional wheels with their respective icons

Other rigid bodies (trailers), also equipped with wheels, may be connected
to the base by means of revolute joints.

e Legged mobile robots are made of multiple rigid bodies, interconnected by
prismatic joints or, more often, by revolute joints. Some of these bodies
form lower limbs, whose extremities (feet) periodically come in contact
with the ground to realize locomotion. There is a large variety of mechan-
ical structures in this class, whose design is often inspired by the study of
living organisms (biomimetic robotics): they range from biped humanoids
to hexapod robots aimed at replicating the biomechanical efficiency of
insects.

Only wheeled vehicles are considered in the following, as they represent
the vast majority of mobile robots actually used in applications. The basic
mechanical element of such robots is indeed the wheel. Three types of con-
ventional wheels exist, which are shown in Fig. 1.12 together with the icons
that will be used to represent them:

e The fized wheel can rotate about an axis that goes through the center
of the wheel and is orthogonal to the wheel plane. The wheel is rigidly
attached to the chassis, whose orientation with respect to the wheel is
therefore constant.

e The steerable wheel has two axes of rotation. The first is the same as a
fixed wheel, while the second is vertical and goes through the center of the
wheel. This allows the wheel to change its orientation with respect to the
chassis.

e The caster wheel has two axes of rotation, but the vertical axis does not
pass through the center of the wheel, from which it is displaced by a con-
stant offset. Such an arrangement causes the wheel to swivel automatically,
rapidly aligning with the direction of motion of the chassis. This type of
wheel is therefore introduced to provide a supporting point for static bal-
ance without affecting the mobility of the base; for instance, caster wheels
are commonly used in shopping carts as well as in chairs with wheels.
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Fig. 1.13. A differential-drive mobile robot
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Fig. 1.14. A synchro-drive mobile robot

The variety of kinematic structures that can be obtained by combining
the three conventional wheels is wide. In the following, the most relevant
arrangements are briefly examined.

In a differential-drive vehicle there are two fixed wheels with a common
axis of rotation, and one or more caster wheels, typically smaller, whose func-
tion is to keep the robot statically balanced (Fig. 1.13). The two fixed wheels
are separately controlled, in that different values of angular velocity may be
arbitrarily imposed, while the caster wheel is passive. Such a robot can rotate
on the spot (i.e., without moving the midpoint between the wheels), provided
that the angular velocities of the two wheels are equal and opposite.

A vehicle with similar mobility is obtained using a synchro-drive kinematic
arrangement (Fig. 1.14). This robot has three aligned steerable wheels which
are synchronously driven by only two motors through a mechanical coupling,
e.g., a chain or a transmission belt. The first motor controls the rotation of the
wheels around the horizontal axis, thus providing the driving force (traction)
to the vehicle. The second motor controls the rotation of the wheels around
the vertical axis, hence affecting their orientation. Note that the heading of
the chassis does not change during the motion. Often, a third motor is used
in this type of robot to rotate independently the upper part of the chassis (a
turret) with respect to the lower part. This may be useful to orient arbitrarily
a directional sensor (e.g., a camera) or in any case to recover an orientation
€rror.

In a tricycle vehicle (Fig. 1.15) there are two fixed wheels mounted on a
rear axle and a steerable wheel in front. The fixed wheels are driven by a single
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Fig. 1.16. A car-like mobile robot

motor which controls their traction,? while the steerable wheel is driven by
another motor which changes its orientation, acting then as a steering device.
Alternatively, the two rear wheels may be passive and the front wheel may
provide traction as well as steering.

A car-like vehicle has two fixed wheels mounted on a rear axle and two
steerable wheels mounted on a front axle, as shown in Fig. 1.16. As in the
previous case, one motor provides (front or rear) traction while the other
changes the orientation of the front wheels with respect to the vehicle. It is
worth pointing out that, to avoid slippage, the two front wheels must have a
different orientation when the vehicle moves along a curve; in particular, the
internal wheel is slightly more steered with respect to the external one. This
is guaranteed by the use of a specific device called Ackermann steering.

Finally, consider the robot in Fig. 1.17, which has three caster wheels
usually arranged in a symmetric pattern. The traction velocities of the three
wheels are independently driven. Unlike the previous cases, this vehicle is om-
nidirectional: in fact, it can move instantaneously in any Cartesian direction,
as well as re-orient itself on the spot.

In addition to the above conventional wheels, there exist other special
types of wheels, among which is notably the Mecanum (or Swedish) wheel,
shown in Fig. 1.18. This is a fixed wheel with passive rollers placed along the
external rim; the axis of rotation of each roller is typically inclined by 45° with
respect to the plane of the wheel. A vehicle equipped with four such wheels
mounted in pairs on two parallel axles is also omnidirectional.

2 The distribution of the traction torque on the two wheels must take into account
the fact that in general they move with different speeds. The mechanism which
equally distributes traction is the differential.
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Fig. 1.17. An omnidirectional mobile robot with three independently driven caster
wheels

Fig. 1.18. A Mecanum (or Swedish) wheel

In the design of a wheeled robot, the mechanical balance of the structure
does not represent a problem in general. In particular, a three-wheel robot is
statically balanced as long as its center of mass falls inside the support triangle,
which is defined by the contact points between the wheels and ground. Robots
with more than three wheels have a support polygon, and thus it is typically
easier to guarantee the above balance condition. It should be noted, however,
that when the robot moves on uneven terrain a suspension system is needed
to maintain the contact between each wheel and the ground.

Uunlike the case of manipulators, the workspace of a mobile robot (defined
as the portion of the surrounding environment that the robot can access) is po-
tentially unlimited. Nevertheless, the local mobility of a non-omnidirectional
mobile robot is always reduced; for instance, the tricycle robot in Fig. 1.15
cannot move instantaneously in a direction parallel to the rear wheel axle.
Despite this fact, the tricycle can be manoeuvered so as to obtain, at the end
of the motion, a net displacement in that direction. In other words, many
mobile robots are subject to constraints on the admissible instantaneous mo-
tions, without actually preventing the possibility of attaining any position and
orientation in the workspace. This also implies that the number of DOFs of
the robot (meant as the number of admissible instantaneous motions) is lower
than the number of its configuration variables.

It is obviously possible to merge the mechanical structure of a manipulator
with that of a mobile vehicle by mounting the former on the latter. Such
a robot is called a mobile manipulator and combines the dexterity of the
articulated arm with the unlimited mobility of the base. An example of such
a mechanical structure is shown in Fig. 1.19. However, the design of a mobile
manipulator involves additional difficulties related, for instance, to the static
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Fig. 1.19. A mobile manipulator obtained by mounting an anthropomorphic arm
on a differential-drive vehicle

and dynamic mechanical balance of the robot, as well as to the actuation of
the two systems.

1.3 Industrial Robotics

Industrial robotics is the discipline concerning robot design, control and ap-
plications in industry, and its products have by now reached the level of a
mature technology. The connotation of a robot for industrial applications is
that of operating in a structured environment whose geometrical or physical
characteristics are mostly known a priori. Hence, limited autonomy is required.

The early industrial robots were developed in the 1960s, at the confluence
of two technologies: numerical control machines for precise manufacturing,
and teleoperators for remote radioactive material handling. Compared to its
precursors, the first robot manipulators were characterized by:

e versatility, in view of the employment of different end-effectors at the tip
of the manipulator,
adaptability to a priori unknown situations, in view of the use of sensors,
positioning accuracy, in view of the adoption of feedback control tech-
niques,

e execution repeatability, in view of the programmability of various opera-
tions.

During the subsequent decades, industrial robots have gained a wide popu-
larity as essential components for the realization of automated manufacturing
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Fig. 1.20. Yearly installations of industrial robots worldwide

systems. The main factors having determined the spread of robotics tech-
nology in an increasingly wider range of applications in the manufacturing
industry are reduction of manufacturing costs, increase of productivity, im-
provement of product quality standards and, last but not least, the possibility
of eliminating harmful or off-putting tasks for the human operator in a man-
ufacturing system.

By its usual meaning, the term automation denotes a technology aimed at
replacing human beings with machines in a manufacturing process, as regards
not only the execution of physical operations but also the intelligent processing
of information on the status of the process. Automation is then the synthesis
of industrial technologies typical of the manufacturing process and computer
technology allowing information management. The three levels of automation
one may refer to are rigid automation, programmable automation, and flexible
automation.

Rigid automation deals with a factory context oriented to the mass manu-
facture of products of the same type. The need to manufacture large numbers
of parts with high productivity and quality standards demands the use of
fixed operational sequences to be executed on the workpiece by special pur-
pose machines.

Programmable automation deals with a factory context oriented to the
manufacture of low-to-medium batches of products of different types. A pro-
grammable automated system permits changing easy the sequence of opera-
tions to be executed on the workpieces in order to vary the range of products.
The machines employed are more versatile and are capable of manufacturing
different objects belonging to the same group technology. The majority of the
products available on the market today are manufactured by programmable
automated systems.
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Fig. 1.21. Yearly supply of industrial robots by main industries

Flexible automation represents the evolution of programmable automation.
Its goal is to allow manufacturing of variable batches of different products by
minimizing the time lost for reprogramming the sequence of operations and
the machines employed to pass from one batch to the next. The realization of a
flexible manufacturing system (FMS) demands strong integration of computer
technology with industrial technology.

The industrial robot is a machine with significant characteristics of versa-
tility and flexibility. According to the widely accepted definition of the Robot
Institute of America, a robot is a reprogrammable multifunctional manipulator
designed to move materials, parts, tools or specialized devices through variable
programmed motions for the performance of a variety of tasks. Such a defini-
tion, dating back to 1980, reflects the current status of robotics technology.

By virtue of its programmability, the industrial robot is a typical com-
ponent of programmable automated systems. Nonetheless, robots can be en-
trusted with tasks in both rigid and flexible automated systems.

According to the above-mentioned IFR report, up to 2006 nearly one mil-
lion industrial robots are in use worldwide, half of which are in Asia, one third
in Europe, and 16% in North America. The four countries with the largest
number of robots are Japan, Germany, United States and Italy. The figures
for robot installations in the last 15 years are summarized in the graph in
Fig. 1.20; by the end of 2007, an increase of 10% in sales with respect to the
previous year is foreseen, with milder increase rates in the following years,
reaching a worldwide figure of 1,200,000 units at work by the end of 2010.

In the same report it is shown how the average service life of an industrial
robot is about 12 years, which may increase to 15 in a few years from now.
An interesting statistic is robot density based on the total number of persons
employed: this ranges from 349 robots in operation per 10,000 workers to
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Fig. 1.22. Examples of AGVs for material handling (courtesy of E&K Automation
GmbH)

187 in Korea, 186 in Germany, and 13 in Italy. The United States has just
99 robots per 10,000 workers. The average cost of a 6-axis industrial robot,
including the control unit and development software, ranges from 20,000 to
60,000 euros, depending on the size and applications.

The automotive industry is still the predominant user of industrial robots.
The graph in Fig. 1.21 referring to 2005 and 2006, however, reveals how both
the chemical industry and the electrical/electronics industry are gaining in im-
portance, and new industrial applications, such as metal products, constitute
an area with a high potential investment.

Industrial robots present three fundamental capacities that make them
useful for a manufacturing process: material handling, manipulation, and mea-
surement.

In a manufacturing process, each object has to be transferred from one
location in the factory to another in order to be stored, manufactured, assem-
bled, and packed. During transfer, the physical characteristics of the object do
not undergo any alteration. The robot’s capability to pick up an object, move
it in space on predefined paths and release it makes the robot itself an ideal
candidate for material handling operations. Typical applications include:

palletizing (placing objects on a pallet in an ordered way),
warehouse loading and unloading,

mill and machine tool tending,

part sorting,

packaging.

In these applications, besides robots, Automated Guided Vehicles (AGV)
are utilized which ensure handling of parts and tools around the shop floor
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from one manufacturing cell to the next (Fig. 1.22). As compared to the tra-
ditional fixed guide paths for vehicles (inductive guide wire, magnetic tape,
or optical visible line), modern AGVs utilize high-tech systems with onboard
microprocessors and sensors (laser, odometry, GPS) which allow their local-
ization within the plant layout, and manage their work flow and functions,
allowing their complete integration in the FMS. The mobile robots employed
in advanced applications can be considered as the natural evolution of the
AGV systems, as far as enhanced autonomy is concerned.

Manufacturing consists of transforming objects from raw material into
finished products; during this process, the part either changes its own physical
characteristics as a result of machining, or loses its identity as a result of an
assembly of more parts. The robot’s capability to manipulate both objects and
tools make it suitable to be employed in manufacturing. Typical applications
include:

arc and spot welding,

painting and coating,

gluing and sealing,

laser and water jet cutting,

milling and drilling,

casting and die spraying,

deburring and grinding,

screwing, wiring and fastening,

assembly of mechanical and electrical groups,
assembly of electronic boards.
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Fig. 1.24. The AdeptOne XL robot (courtesy of Adept Technology Inc)

Besides material handling and manipulation, in a manufacturing process
it is necessary to perform measurements to test product quality. The robot’s
capability to explore 3D space together with the availability of measurements
on the manipulator’s status allow a robot to be used as a measuring device.
Typical applications include:

e object inspection,
e contour finding,
e detection of manufacturing imperfections.

The graph in Fig. 1.23 reports the number of robots employed in Europe
in 2005 and 2006 for various operations, which reveals how material handling
requires twice as many robots employed for welding, whereas a limited number
of robots is still employed for assembly.

In the following some industrial robots are illustrated in terms of their
features and application fields.

The AdeptOne XL robot in Fig. 1.24 has a four-joint SCARA structure.
Direct drive motors are employed. The maximum reach is 800 mm, with a
repeatability of 0.025mm horizontally and 0.038 mm vertically. Maximum
speeds are 1200 mm/s for the prismatic joint, while they range from to 650
to 3300 deg/s for the three revolute joints. The maximum payload?® is 12kg.
Typical industrial applications include small-parts material handling, assem-
bly and packaging.

3 Repeatability and payload are classical parameters found in industrial robot data
sheets. The former gives a measure of the manipulator’s ability to return to a
previously reached position, while the latter indicates the average load to be
carried at the robot’s end-effector.
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Fig. 1.26. The ABB IRB 4400 robot (courtesy of ABB Robotics)

The Comau SMART NS robot in Fig. 1.25 has a six-joint anthropomorphic
structure with spherical wrist. In its four versions, the outreach ranges from
1650 and 1850 mm horizontally, with a repeatability of 0.05 mm. Maximum
speeds range from 155 to 170deg/s for the inner three joints, and from 350
to 550 deg/s for the outer three joints. The maximum payload is 16kg. Both
floor and ceiling mounting positions are allowed. Typical industrial applica-
tions include arc welding, light handling, assembly and technological processes.

The ABB IRB 4400 robot in Fig. 1.26 also has a six-joint anthropomor-
phic structure, but unlike the previous open-chain structure, it possesses a
closed chain of parallelogram type between the shoulder and elbow joints.
The outreach ranges from 1960 to 2550 mm for the various versions, with a
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Fig. 1.27. The KUKA KR 60 Jet robot (courtesy of KUKA Roboter GmbH)

repeatability from 0.07 to 0.1 mm. The maximum speed at the end-effector
is 2200mm/s. The maximum payload is 60kg. Floor or shelf-mounting is
available. Typical industrial applications include material handling, machine
tending, grinding, gluing, casting, die spraying and assembly.

The KUKA KR 60 Jet robot in Fig. 1.27 is composed of a five-axis struc-
ture, mounted on a sliding track with a gantry-type installation; the upright
installation is also available. The linear unit has a stroke from a minimum
of 400 mm to a maximum of 20 m (depending on customer’s request), and a
maximum speed of 3200 mm/s. On the other hand, the robot has a payload
of 60kg, an outreach of 820mm and a repeatability of 0.15 mm. Maximum
speeds are 120deg/s and 166 deg/s for the first two joints, while they range
from 260 to 322 deg/s for the outer three joints. Typical industrial applications
include machine tending, arc welding, deburring, coating, sealing, plasma and
waterjet cutting.

The ABB IRB340 FlexPicker robot in Fig. 1.28 adopts a parallel geometry
with four axes; in view of its reduced weight and floor mounting, the robot
can transport 150 objects a minute (cycle time of just 0.4s), reaching record
speeds of 10m/s and accelerations of 100m/s?, for a payload of 1kg, with
a repeatability of 0.1 mm. In its ‘clean’ aluminum version, it is particularly
suitable for packaging in the food and pharmaceutical industries.

The Fanuc M-16iB robot in Fig. 1.29 has a six-joint anthropomorphic
structure with a spherical wrist. In its two versions, the outreach varies
from 1667 to 1885 mm horizontally, with a repeatability of 0.1 mm. Maximum
speeds range from 165 to 175deg/s for the inner three joints, and from 340
to 520deg/s for the outer three joints. Payload varies from 10 to 20kg. The
peculiarity of this robot consists of the integrated sensors in the control unit,
including a servoing system based on 3D vision and a six-axis force sensor.
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Fig. 1.29. The Fanuc M-16iB robot (courtesy of Fanuc Ltd)

The robot is utilized for handling arbitrarily located objects, deburring, seal-
ing and waterjet cutting.

The Light Weight Robot (LWR) in Fig. 1.30 with a seven-axis structure
was introduced in 2006 as the outcome of technology transfer from DLR (the
German Aerospace Agency) to KUKA. In view of the adoption of lightweight
materials, as well as the adoption of torque sensors at the joints, the robot
can manipulate a payload of 7 to 14 kg, in the face of a weight of the structure
of just 15kg. The horizontal outreach is 868 mm, with joint speeds ranging
from 110 to 210 deg/s. On the other hand, the presence of the seventh axis of
motion confers kinematic redundancy to the robot, which can then be recon-
figured into more dexterous postures for the execution of given tasks. Such
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Fig. 1.30. The KUKA LWR robot (courtesy of KUKA Roboter GmbH)

a manipulator represents one of the most advanced industrial products and,
in view of its lightweight feature, it offers interesting performance for interac-
tion with the environment, ensuring an inherent safety in case of contact with
human beings.

In most industrial applications requiring object manipulation, typical grip-
pers are utilized as end-effectors. Nevertheless, whenever enhanced manipula-
bility and dexterity is desired, multifingered robot hands are available.

The BarrettHand (Fig. 1.31), endowed with a fixed finger and two mobile
fingers around the base of the palm, allows the manipulation of objects of
different dimension, shape and orientation.

The SCHUNK Antropomorphic Hand (SAH) in Fig. 1.32 is the outcome
of technology transfer from DLR and Harbin Institute of Technology (China)
to SCHUNK. Characterized by three independent aligned fingers and an op-
posing finger which is analogous to the human thumb. The finger joints are
endowed with magnetic angular sensors and torque sensors. This hand offers
good dexterity and approaches the characteristics of the human hand.

LWR technology has been employed for the realization of the two arms
of Justin, a humanoid manipulator made by DLR, composed of a three-joint
torso with an anthropomorphic structure, two seven-axis arms and a sen-
sorized head. The robot is illustrated in Fig. 1.33 in the execution of a biman-
ual manipulation task; the hands employed are previous versions of the SAH
anthropomorphic hand.

The applications listed describe the current employment of robots as com-
ponents of industrial automation systems. They all refer to strongly structured
working environments and thus do not exhaust all the possible utilizations of
robots for industrial applications. Whenever it is desired to tackle problems
requiring the adaptation of the robot to a changeable working environment,
the fall-out of advanced robotics products are of concern. In this regard, the
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Fig. 1.31

Fig. 1.32. The SCHUNK Anthropomorphic Hand (courtesy of SCHUNK Intec Ltd)

lightweight robot, the hands and the humanoid manipulator presented above
are to be considered at the transition from traditional industrial robotics sys-
tems toward those innovative systems of advanced robotics.

1.4 Advanced Robotics

The expression advanced robotics usually refers to the science studying robots
with marked characteristics of autonomy, operating in scarcely structured
or unstructured environments, whose geometrical or physical characteristics
would not be known a priori.

Nowadays, advanced robotics is still in its youth. It has indeed featured
the realization of prototypes only, because the associated technology is not
yet mature. There are many motivations which strongly encourage advances
in knowledge within this field. They range from the need for automata when-
ever human operators are not available or are not safe (field robots), to the
opportunity of developing products for potentially wide markets which are
aimed at improving quality of life (service robots).

The graph in Fig. 1.34 reports the number of robots in stock for non-
industrial applications at the end of 2006 and the forecast to 2010. Such
applications are characterized by the complexity level, the uncertainty and
variability of the environment with which the robot interacts, as shown in the
following examples.
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Fig. 1.33. The Justin humanoid robot manipulator (courtesy of DLR)

1.4.1 Field Robots

The context is that of deploying robots in areas where human beings could
not survive or be exposed to unsustainable risks. Such robots should carry
out exploration tasks and report useful data on the environment to a remote
operator, using suitable onboard sensors. Typical scenarios are the explo-
ration of a volcano, the intervention in areas contaminated by poisonous gas
or radiation, or the exploration of the deep ocean or space. As is well known,
NASA succeeded in delivering some mobile robots (rovers) to Mars (Fig. 1.35)
which navigated on the Martian soil, across rocks, hills and crevasses. Such
rovers were partially teleoperated from earth and have successfully explored
the environment with sufficient autonomy. Some mini-robots were deployed
on September 11, 2001 at Ground Zero after the collapse of the Twin Towers
in New York, to penetrate the debris in the search for survivors.

A similar scenario is that of disasters caused by fires in tunnels or earth-
quakes; in such occurrences, there is a danger of further explosions, escape of
harmful gases or collapse, and thus human rescue teams may cooperate with
robot rescue teams. Also in the military field, unmanned autonomous aircrafts
and missiles are utilized, as well as teleoperated robots with onboard cameras
to explore buildings. The ‘Grand Challenge’ of October 2005 (Fig. 1.36) was
financially supported by the US Department of Defense (DARPA) with the
goal of developing autonomous vehicles to carry weapons and sensors, thus
reducing soldier employment.
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Fig. 1.35. The Sojourner rover was deployed by the Pathfinder lander and explored
250 m? of Martian soil in 1997 (courtesy of NASA)

1.4.2 Service Robots

Autonomous vehicles are also employed for civil applications, i.e., for mass
transit systems (Fig. 1.37), thus contributing to the reduction of pollution
levels. Such vehicles are part of the so-called Intelligent Transportation Sys-
tems (ITS) devoted to traffic management in urban areas. Another feasible
application where the adoption of mobile robots offers potential advantages
is museum guided tours (Fig. 1.38).

Many countries are investing in establishing the new market of service
robots which will co-habitat with human beings in everyday life. According
to the above-mentioned IFR report, up to 2005 1.9 million service robots for
domestic applications (Fig. 1.39) and 1 million toy robots have been sold.

Technology is ready to transform into commercial products the prototypes
of robotic aids to enhance elderly and impaired people’s autonomy in everyday
life; autonomous wheelchairs, mobility aid lifters, feeding aids and rehabilita-
tion robots allowing tetraplegics to perform manual labor tasks are examples
of such service devices. In perspective, other than an all-purpose robot waiter,
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Fig. 1.36. The unmanned car Stanley autonomously completed a path of 132 miles
in the record time of 6 h and 53 min (courtesy of DARPA)

Fig. 1.37. The Cycab is an electrically-driven vehicle for autonomous transportation
in urban environments (courtesy of INRIA)

assistance, and healthcare systems integrating robotic and telematic modules
will be developed for home service management (domotics).

Several robotic systems are employed for medical applications. Surgery
assistance systems exploit a robot’s high accuracy to position a tool, i.e., for
hip prosthesis implant. Yet, in minimally-invasive surgery, i.e., cardiac surgery,
the surgeon operates while seated comfortably at a console viewing a 3D image
of the surgical field, and operating the surgical instruments remotely by means
of a haptic interface (Fig. 1.40).

Further, in diagnostic and endoscopic surgery systems, small teleoperated
robots travels through the cavities of human body, i.e., in the gastrointestinal
system, bringing live images or intervening in situ for biopsy, dispensing drugs
or removing neoplasms.
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Fig. 1.38. Rhino, employing the synchro-drive mobile base B21 by Real World
Interface, was one of the first robots for museum guided tours (courtesy of Deutsches
Museum Bonn)
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Fig. 1.39. The vacuum robot Roomba, employing a differential-drive kinematics,
autonomously sweeps and cleans floors (courtesy of I-Robot Corp)

Finally, in motor rehabilitation systems, a hemiplegic patient wears an
exoskeleton, which actively interacts, sustains and corrects the movements
according to the physiotherapist’s programmed plan.

Another wide market segment comes from entertainment, where robots
are used as toy companions for children, and life companions for the elderly,
such as humanoid robots (Fig. 1.41) and the pet robots (Fig. 1.42) being
developed in Japan. It is reasonable to predict that service robots will be
naturally integrated into our society. Tomorrow, robots will be as pervasive
and personal as today’s personal computers, or just as TV sets in the homes
of 20 years ago. Robotics will then become ubiquitous, a challenge under
discussion within the scientific community.

1.5 Robot Modelling, Planning and Control

In all robot applications, completion of a generic task requires the execution
of a specific motion prescribed to the robot. The correct execution of such
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Fig. 1.40. The da Vinci robotic system for laparoscopic surgery (courtesy of Intu-
itive Surgical Inc)

motion is entrusted to the control system which should provide the robot’s
actuators with the commands consistent with the desired motion. Motion
control demands an accurate analysis of the characteristics of the mechanical
structure, actuators, and sensors. The goal of such analysis is the derivation
of the mathematical models describing the input/output relationship charac-
terizing the robot components. Modelling a robot manipulator is therefore a
necessary premise to finding motion control strategies.

Significant topics in the study of modelling, planning and control of robots
which constitute the subject of subsequent chapters are illustrated below.

1.5.1 Modelling

Kinematic analysis of the mechanical structure of a robot concerns the de-
scription of the motion with respect to a fixed reference Cartesian frame
by ignoring the forces and moments that cause motion of the structure. It
is meaningful to distinguish between kinematics and differential kinematics.
With reference to a robot manipulator, kinematics describes the analytical
relationship between the joint positions and the end-effector position and ori-
entation. Differential kinematics describes the analytical relationship between
the joint motion and the end-effector motion in terms of velocities, through
the manipulator Jacobiann.

The formulation of the kinematics relationship allows the study of two
key problems of robotics, namely, the direct kinematics problem and the in-
verse kinematics problem. The former concerns the determination of a sys-
tematic, general method to describe the end-effector motion as a function of
the joint motion by means of linear algebra tools. The latter concerns the
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Fig. 1.41. The Asimo humanoid robot, launched in 1996, has been endowed with
even more natural locomotion and human-robot interaction skills (courtesy of Honda
Motor Company Ltd)

Fig. 1.42. The AIBO dog had been the most widely diffused entertainment robot
in the recent years (courtesy of Sony Corp)

inverse problem; its solution is of fundamental importance to transform the
desired motion, naturally prescribed to the end-effector in the workspace, into
the corresponding joint motion.

The availability of a manipulator’s kinematic model is also useful to de-
termine the relationship between the forces and torques applied to the joints
and the forces and moments applied to the end-effector in static equilibrium
configurations.

Chapter 2 is dedicated to the study of kinematics. Chapter 3 is dedicated to
the study of differential kinematics and statics, whereas Appendix A provides
a useful brush-up on linear algebra.

Kinematics of a manipulator represents the basis of a systematic, general
derivation of its dynamics, i.e., the equations of motion of the manipulator
as a function of the forces and moments acting on it. The availability of the
dynamic model is very useful for mechanical design of the structure, choice
of actuators, determination of control strategies, and computer simulation of
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manipulator motion. Chapter 7 is dedicated to the study of dynamics, whereas
Appendix B recalls some fundamentals on rigid body mechanics.

Modelling of mobile robots requires a preliminary analysis of the kinematic
constraints imposed by the presence of wheels. Depending on the mechanical
structure, such constraints can be integrable or not; this has direct conse-
quence on a robot’s mobility. The kinematic model of a mobile robot is es-
sentially the description of the admissible instantaneous motions in respect
of the constraints. On the other hand, the dynamic model accounts for the
reaction forces and describes the relationship between the above motions and
the generalized forces acting on the robot. These models can be expressed
in a canonical form which is convenient for design of planning and control
techniques. Kinematic and dynamic analysis of mobile robots is developed
in Chap. 11, while Appendix D contains some useful concepts of differential
geometry.

1.5.2 Planning

With reference to the tasks assigned to a manipulator, the issue is whether
to specify the motion at the joints or directly at the end-effector. In material
handling tasks, it is sufficient to assign only the pick-up and release locations
of an object (point-to-point motion), whereas, in machining tasks, the end-
effector has to follow a desired trajectory (path motion). The goal of trajectory
planning is to generate the timing laws for the relevant variables (joint or end-
effector) starting from a concise description of the desired motion. Chapter 4
is dedicated to trajectory planning for robot manipulators.

The motion planning problem for a mobile robot concerns the generation
of trajectories to take the vehicle from a given initial configuration to a desired
final configuration. Such a problem is more complex than that of robot ma-
nipulators, since trajectories have to be generated in respect of the kinematic
constraints imposed by the wheels. Some solution techniques are presented in
Chap. 11, which exploit the specific differential structure of the mobile robots’
kinematic models.

Whenever obstacles are present in a mobile robot’s workspace, the planned
motions must be safe, so as to avoid collisions. Such a problem, known as
motion planning, can be formulated in an effective fashion for both robot ma-
nipulators and mobile robots utilizing the configuration space concept. The
solution techniques are essentially of algorithmic nature and include exact,
probabilistic and heuristic methods. Chapter 12 is dedicated to motion plan-
ning problem, while Appendix E provides some basic concepts on graph search
algorithms.

1.5.3 Control

Realization of the motion specified by the control law requires the employment
of actuators and sensors. The functional characteristics of the most commonly
used actuators and sensors for robots are described in Chap. 5.
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Chapter 6 is concerned with the hardware/software architecture of a
robot’s control system which is in charge of implementation of control laws as
well as of interface with the operator.

The trajectories generated constitute the reference inputs to the motion
control system of the mechanical structure. The problem of robot manipulator
control is to find the time behaviour of the forces and torques to be delivered
by the joint actuators so as to ensure the execution of the reference trajec-
tories. This problem is quite complex, since a manipulator is an articulated
system and, as such, the motion of one link influences the motion of the oth-
ers. Manipulator equations of motion indeed reveal the presence of coupling
dynamic effects among the joints, except in the case of a Cartesian structure
with mutually orthogonal axes. The synthesis of the joint forces and torques
cannot be made on the basis of the sole knowledge of the dynamic model,
since this does not completely describe the real structure. Therefore, manip-
ulator control is entrusted to the closure of feedback loops; by computing the
deviation between the reference inputs and the data provided by the propri-
oceptive sensors, a feedback control system is capable of satisfying accuracy
requirements on the execution of the prescribed trajectories.

Chapter 8 is dedicated to the presentation of motion control techniques,
whereas Appendix C illustrates the basic principles of feedback control.

Control of a mobile robot substantially differs from the analogous problem
for robot manipulators. This is due, in turn, to the availability of fewer control
inputs than the robot has configuration variables. An important consequence
is that the structure of a controller allowing a robot to follow a trajectory
(tracking problem) is unavoidably different from that of a controller aimed at
taking the robot to a given configuration (regulation problem). Further, since
a mobile robot’s proprioceptive sensors do not yield any data on the vehicle’s
configuration, it is necessary to develop localization methods for the robot
in the environment. The control design problem for wheeled mobile robots is
treated in Chap. 11.

If a manipulation task requires interaction between the robot and the en-
vironment, the control problem should account for the data provided by the
exteroceptive sensors; the forces exchanged at the contact with the environ-
ment, and the objects’ position as detected by suitable cameras. Chapter 9 is
dedicated to force control techniques for robot manipulators, while Chap. 10
presents wvisual control techniques.
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Kinematics

A manipulator can be schematically represented from a mechanical viewpoint
as a kinematic chain of rigid bodies (links) connected by means of revolute
or prismatic joints. One end of the chain is constrained to a base, while an
end-effector is mounted to the other end. The resulting motion of the struc-
ture is obtained by composition of the elementary motions of each link with
respect to the previous one. Therefore, in order to manipulate an object in
space, it is necessary to describe the end-effector position and orientation.
This chapter is dedicated to the derivation of the direct kinematics equation
through a systematic, general approach based on linear algebra. This allows
the end-effector position and orientation (pose) to be expressed as a function
of the joint variables of the mechanical structure with respect to a reference
frame. Both open-chain and closed-chain kinematic structures are considered.
With reference to a minimal representation of orientation, the concept of
operational space is introduced and its relationship with the joint space is es-
tablished. Furthermore, a calibration technique of the manipulator kinematic
parameters is presented. The chapter ends with the derivation of solutions to
the inverse kinematics problem, which consists of the determination of the
joint variables corresponding to a given end-effector pose.

2.1 Pose of a Rigid Body

A rigid body is completely described in space by its position and orientation
(in brief pose) with respect to a reference frame. As shown in Fig. 2.1, let
O-zyz be the orthonormal reference frame and x, y, z be the unit vectors of
the frame axes.

The position of a point O’ on the rigid body with respect to the coordinate
frame O—zyz is expressed by the relation

;7 / /
0 =0,T+ 0,y +0.%2,
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Fig. 2.1. Position and orientation of a rigid body

where 0], 0}, o/, denote the components of the vector o’ € IR? along the frame
axes; the position of O’ can be compactly written as the (3 x 1) vector

/
x
0y (2.1)
o,
Vector o' is a bound vector since its line of application and point of application
are both prescribed, in addition to its direction and norm.

In order to describe the rigid body orientation, it is convenient to consider
an orthonormal frame attached to the body and express its unit vectors with
respect to the reference frame. Let then O'—2'y’2’ be such a frame with origin
in O’ and ', y’, 2’ be the unit vectors of the frame axes. These vectors are
expressed with respect to the reference frame O—zyz by the equations:

x' = alx+ryy +alz
Y =y Yy tylz (2.2)
2=zt Yyt 2z

The components of each unit vector are the direction cosines of the axes of
frame O'—x'y’z’ with respect to the reference frame O—zyz.

2.2 Rotation Matrix

By adopting a compact notation, the three unit vectors in (2.2) describing the
body orientation with respect to the reference frame can be combined in the
(3 x 3) matrix

/ / / T 1T 1T
Ty Yp 2z ' y'x z'x
_ / / / _ / / / _ T T T
R= |2 y 2| =2, y, z | ="y y'y 2"y|, (23
,z y/z Z; :B/TZ y/Tz /Tz
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which is termed rotation matriz.
It is worth noting that the column vectors of matrix R are mutually or-
thogonal since they represent the unit vectors of an orthonormal frame, i.e.,

Also, they have unit norm

T =1 yTy =1 22 =1

As a consequence, R is an orthogonal matrix meaning that
R'R=1; (2.4)

where I3 denotes the (3 x 3) identity matrix.
If both sides of (2.4) are postmultiplied by the inverse matrix R, the
useful result is obtained:
RT =R, (2.5)

that is, the transpose of the rotation matrix is equal to its inverse. Further,
observe that det(R) = 1 if the frame is right-handed, while det(R) = —1 if
the frame is left-handed.

The above-defined rotation matrix belongs to the special orthonormal
group SO(m) of the real (m X m) matrices with othonormal columns and
determinant equal to 1; in the case of spatial rotations it is m = 3, whereas
in the case of planar rotations it is m = 2.

2.2.1 Elementary Rotations

Consider the frames that can be obtained via elementary rotations of the
reference frame about one of the coordinate axes. These rotations are positive
if they are made counter-clockwise about the relative axis.

Suppose that the reference frame O—zryz is rotated by an angle o about
axis z (Fig. 2.2), and let O—z'y'z’ be the rotated frame. The unit vectors of
the new frame can be described in terms of their components with respect
to the reference frame. Consider the frames that can be obtained via elemen-
tary rotations of the reference frame about one of the coordinate axes. These
rotations are positive if they are made counter-clockwise about the relative
axis.

Suppose that the reference frame O-zyz is rotated by an angle o about
axis z (Fig. 2.2), and let O-z'y'z’ be the rotated frame. The unit vectors of
the new frame can be described in terms of their components with respect to
the reference frame, i.e.,

cos o —sin « 0
' = |sina y' = | cosa Z=10
0 0 1

42 2 Kinematics

Fig. 2.2. Rotation of frame O—zyz by an angle o about axis z

Hence, the rotation matrix of frame O-x'y’2" with respect to frame O-zyz is

cosa —sina 0]
R.(a) = |sina cosa 0]. (2.6)
0 0 1)

In a similar manner, it can be shown that the rotations by an angle 3
about axis y and by an angle v about axis x are respectively given by

cosB 0 sinB]

R,B)=| 0 1 0 (2.7)
—sing 0 cosf |
1 0 0

R,(y)= 1|0 cosy —sinvy|. (2.8)

0 siny cosy |

These matrices will be useful to describe rotations about an arbitrary axis in
space.

It is easy to verify that for the elementary rotation matrices in (2.6)—(2.8)
the following property holds:

Ry(—V) = RT(9) k=uxvy,z. (2.9)

In view of (2.6)—(2.8), the rotation matrix can be attributed a geometrical
meaning; namely, the matrix R describes the rotation about an axis in space
needed to align the axes of the reference frame with the corresponding axes
of the body frame.

2.2.2 Representation of a Vector

In order to understand a further geometrical meaning of a rotation matrix,
consider the case when the origin of the body frame coincides with the origin
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Fig. 2.3. Representation of a point P in two different coordinate frames

of the reference frame (Fig. 2.3); it follows that o’ = 0, where 0 denotes the
(3 x 1) null vector. A point P in space can be represented either as

Pz
P= | Py
Pz
with respect to frame O-zyz, or as
P
P =|p,
I

with respect to frame O—z'y’2’.
Since p and p’ are representations of the same point P, it is

/ / !/ /

p=p +py +p.2 = |2 oy Z|p

and, accounting for (2.3), it is
p=Rp'. (2.10)

The rotation matrix R represents the transformation matriz of the vector
coordinates in frame O-zy’z’ into the coordinates of the same vector in frame
O-zyz. In view of the orthogonality property (2.4), the inverse transformation
is simply given by

p' = R™p. (2.11)
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z 2 B,

Fig. 2.4. Representation of a point P in rotated frames

Example 2.1

Consider two frames with common origin mutually rotated by an angle « about
the axis z. Let p and p’ be the vectors of the coordinates of a point P, expressed
in the frames O-zyz and O-z'y’2’, respectively (Fig. 2.4). On the basis of simple
geometry, the relationship between the coordinates of P in the two frames is

Pe = p'zcosoe—p'ysina
/ . /
Py = Pz Sina + p, cosa
p= = pi-
Therefore, the matrix (2.6) represents not only the orientation of a frame with

respect to another frame, but it also describes the transformation of a vector from
a frame to another frame with the same origin.

2.2.3 Rotation of a Vector

A rotation matrix can be also interpreted as the matrix operator allowing
rotation of a vector by a given angle about an arbitrary axis in space. In fact,
let p’ be a vector in the reference frame O-zyz; in view of orthogonality of the
matrix R, the product Rp’ yields a vector p with the same norm as that of p’
but rotated with respect to p’ according to the matrix R. The norm equality
can be proved by observing that p”p = p’" R Rp’ and applying (2.4). This
interpretation of the rotation matrix will be revisited later.
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yel

Fig. 2.5. Rotation of a vector

Example 2.2

Consider the vector p which is obtained by rotating a vector p’ in the plane xy by
an angle «a about axis z of the reference frame (Fig. 2.5). Let (p},py,p%) be the
coordinates of the vector p’. The vector p has components

Pz = Pl COS QX 7p; sin «
/ . /
Py = D SINQ + Py COS
ps = P
It is easy to recognize that p can be expressed as
pP= RZ (a)p/r

where R.(«) is the same rotation matrix as in (2.6).

In sum, a rotation matrix attains three equivalent geometrical meanings:

e It describes the mutual orientation between two coordinate frames; its
column vectors are the direction cosines of the axes of the rotated frame
with respect to the original frame.

e It represents the coordinate transformation between the coordinates of a
point expressed in two different frames (with common origin).

e It is the operator that allows the rotation of a vector in the same coordinate
frame.

2.3 Composition of Rotation Matrices

In order to derive composition rules of rotation matrices, it is useful to consider
the expression of a vector in two different reference frames. Let then O—zyo2o,
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O—-x1y121, O—22y222 be three frames with common origin O. The vector p
describing the position of a generic point in space can be expressed in each
of the above frames; let p°, p!, p? denote the expressions of p in the three
frames.!

At first, consider the relationship between the expression p? of the vector
p in Frame 2 and the expression p! of the same vector in Frame 1. If R’
denotes the rotation matrix of Frame i with respect to Frame j, it is

p' = Ryp*. (2.12)
Similarly, it turns out that

P’ = Rip' (2.13)

p’ = Ryp*. (2.14)

On the other hand, substituting (2.12) in (2.13) and using (2.14) gives
R) = R'R}. (2.15)

The relationship in (2.15) can be interpreted as the composition of successive
rotations. Consider a frame initially aligned with the frame O—zgyozo. The
rotation expressed by matrix Rg can be regarded as obtained in two steps:

e First rotate the given frame according to R(l], so as to align it with frame
O-z13121-

e Then rotate the frame, now aligned with frame O—-x1y;21, according to
R%, so as to align it with frame O—xoys25.

Notice that the overall rotation can be expressed as a sequence of partial
rotations; each rotation is defined with respect to the preceding one. The
frame with respect to which the rotation occurs is termed current frame.
Composition of successive rotations is then obtained by postmultiplication of
the rotation matrices following the given order of rotations, as in (2.15). With
the adopted notation, in view of (2.5), it is

R} = (R))™' = (R)". (2.16)

Successive rotations can be also specified by constantly referring them
to the initial frame; in this case, the rotations are made with respect to a
fized frame. Let R(lj be the rotation matrix of frame O—zqy;2; with respect
to the fixed frame O-xgypzo. Let then Rg denote the matrix characterizing
frame O—xoy222 with respect to Frame 0, which is obtained as a rotation of
Frame 1 according to the matrix R;. Since (2.15) gives a composition rule of
successive rotations about the axes of the current frame, the overall rotation
can be regarded as obtained in the following steps:

! Hereafter, the superscript of a vector or a matrix denotes the frame in which its
components are expressed.
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e First realign Frame 1 with Frame 0 by means of rotation R(l).
Then make the rotation expressed by R; with respect to the current frame.
Finally compensate for the rotation made for the realignment by means of
the inverse rotation RY.

Since the above rotations are described with respect to the current frame, the
application of the composition rule (2.15) yields

R) = ROR\RR!.

In view of (2.16), it is
Ry = RyR} (2.17)

where the resulting Rg is different from the matrix R in (2.15). Hence, it
can be stated that composition of successive rotations with respect to a fixed
frame is obtained by premultiplication of the single rotation matrices in the
order of the given sequence of rotations.

By recalling the meaning of a rotation matrix in terms of the orientation
of a current frame with respect to a fixed frame, it can be recognized that its
columns are the direction cosines of the axes of the current frame with respect
to the fixed frame, while its rows (columns of its transpose and inverse) are
the direction cosines of the axes of the fixed frame with respect to the current
frame.

An important issue of composition of rotations is that the matrix product
is not commutative. In view of this, it can be concluded that two rotations
in general do not commute and its composition depends on the order of the
single rotations.

Example 2.3

Consider an object and a frame attached to it. Figure 2.6 shows the effects of two
successive rotations of the object with respect to the current frame by changing the
order of rotations. It is evident that the final object orientation is different in the two
cases. Also in the case of rotations made with respect to the current frame, the final
orientations differ (Fig. 2.7). It is interesting to note that the effects of the sequence
of rotations with respect to the fixed frame are interchanged with the effects of the
sequence of rotations with respect to the current frame. This can be explained by
observing that the order of rotations in the fixed frame commutes with respect to
the order of rotations in the current frame.
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Fig. 2.7. Successive rotations of an object about axes of fixed frame

2.4 Euler Angles

Rotation matrices give a redundant description of frame orientation; in fact,
they are characterized by nine elements which are not independent but related
by six constraints due to the orthogonality conditions given in (2.4). This im-
plies that three parameters are sufficient to describe orientation of a rigid body
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Fig. 2.8. Representation of Euler angles ZYZ

in space. A representation of orientation in terms of three independent param-
eters constitutes a minimal representation. In fact, a minimal representation
of the special orthonormal group SO(m) requires m(m — 1)/2 parameters;
thus, three parameters are needed to parameterize SO(3), whereas only one
parameter is needed for a planar rotation SO(2).

A minimal representation of orientation can be obtained by using a set
of three angles ¢ = [¢ ¢ w]T. Consider the rotation matrix expressing
the elementary rotation about one of the coordinate axes as a function of a
single angle. Then, a generic rotation matrix can be obtained by composing a
suitable sequence of three elementary rotations while guaranteeing that two
successive rotations are not made about parallel axes. This implies that 12
distinct sets of angles are allowed out of all 27 possible combinations; each
set represents a triplet of Fuler angles. In the following, two sets of Euler
angles are analyzed; namely, the ZYZ angles and the ZYX (or Roll-Pitch—
Yaw) angles.

2.4.1 ZYZ Angles

The rotation described by ZYZ angles is obtained as composition of the fol-
lowing elementary rotations (Fig. 2.8):

e Rotate the reference frame by the angle ¢ about axis z; this rotation is
described by the matrix R,(¢) which is formally defined in (2.6).

e Rotate the current frame by the angle ¥ about axis g’; this rotation is
described by the matrix R,/ () which is formally defined in (2.7).

e Rotate the current frame by the angle 1) about axis z”’; this rotation is
described by the matrix R.~(v) which is again formally defined in (2.6).
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The resulting frame orientation is obtained by composition of rotations
with respect to current frames, and then it can be computed via postmulti-
plication of the matrices of elementary rotation, i.e.,?

R(¢) = R.(¢)Ry ()R (¥) (2.18)
CpCYCh — SpSyy  —CpCySyy — SuCyy  CpSY
= | SpCyCy + CupSy  —SpCySy + CuCy  SpSy
—SY9Cyp S9Sq Cy

It is useful to solve the inverse problem, that is to determine the set of
Euler angles corresponding to a given rotation matrix

™11 Ti2 T13
R= |73 T7T22 T23
31 T32 T33

Compare this expression with that of R(¢) in (2.18). By considering the
elements [1,3] and [2, 3], under the assumption that r;3 # 0 and 733 # 0, it
follows that

©w = Atan2(7’23, 7’13)
where Atan2(y, r) is the arctangent function of two arguments®. Then, squar-
ing and summing the elements [1,3] and [2,3] and using the element [3, 3]

yields
9= Atan2<\/r%3 + T%g,’l”gg) .

The choice of the positive sign for the term \/r2; + r3, limits the range of
feasible values of ¢ to (0,7). On this assumption, considering the elements
[3,1] and [3,2] gives

’l/) = Atan2(r32, —7‘31).

In sum, the requested solution is

p = AtanQ(rgg, 7’13)

= Atan2<\/rf3 + rgg,r33> (2.19)

’l/} = AAtal'l2(7“327 —7“31).

It is possible to derive another solution which produces the same effects as
solution (2.19). Choosing ¥ in the range (—m,0) leads to

© = Atan2(—ra3, —713)

2 The notations ¢, and s¢ are the abbreviations for cos ¢ and sin ¢, respectively;
short-hand notations of this kind will be adopted often throughout the text.

3 The function Atan2(y, ) computes the arctangent of the ratio y/z but utilizes the
sign of each argument to determine which quadrant the resulting angle belongs
to; this allows the correct determination of an angle in a range of 2.
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Fig. 2.9. Representation of Roll-Pitch—Yaw angles

9= Atan2(—\/r%3 + 7'53,7'33) (2.20)

’l/) = Atan2(—r32, 1“31).

Solutions (2.19), (2.20) degenerate when sy = 0; in this case, it is possible
to determine only the sum or difference of ¢ and . In fact, if 9 = 0,
the successive rotations of ¢ and 1 are made about axes of current frames
which are parallel, thus giving equivalent contributions to the rotation; see
Problem 2.2.4

2.4.2 RPY Angles

Another set of Euler angles originates from a representation of orientation in
the (aero)nautical field. These are the ZYX angles, also called Roll-Pitch—
Yaw angles, to denote the typical changes of attitude of an (air)craft. In this
case, the angles ¢ = [ 0 w]T represent rotations defined with respect to
a fixed frame attached to the centre of mass of the craft (Fig. 2.9).

The rotation resulting from Roll-Pitch-Yaw angles can be obtained as
follows:

e Rotate the reference frame by the angle 1 about axis = (yaw); this rotation
is described by the matrix R;(t) which is formally defined in (2.8).

e Rotate the reference frame by the angle ¢ about axis y (pitch); this rotation
is described by the matrix R, (9)) which is formally defined in (2.7).

e Rotate the reference frame by the angle ¢ about axis z (roll); this rotation
is described by the matrix R, () which is formally defined in (2.6).

4 In the following chapter, it will be seen that these configurations characterize the
so-called representation singularities of the Euler angles.
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The resulting frame orientation is obtained by composition of rotations with
respect to the fized frame, and then it can be computed via premultiplication
of the matrices of elementary rotation, i.e.,”

R(¢) = R.(¢) Ry (V) Ru () (2:21)
CoCy  CpSY9Sy — SpCyp  CpSYCyp + SpSy

SpCY  SpSYSy T CpCy  SpSYCayh — CypSyp

—Sy CY Sy CYCyp

As for the Euler angles ZYZ, the inverse solution to a given rotation matrix

11 Ti2 Ti13
R= |13 722 T3],
31 T32 T33

can be obtained by comparing it with the expression of R(¢) in (2.21). The
solution for ¢ in the range (—7/2,7/2) is

© = Atan2(rqg1,711)

¥ = Atan2 (—7"31, \/r2, + rgg) (2.22)

w = AtanQ(T‘gg, 7"33).
The other equivalent solution for ¢ in the range (7/2,37/2) is

p = AtanQ(—rgl, —7“11)

¥ = Atan2 <fr31, —1/T3 + r§5> (2.23)

¢ = Atan2(—r32, —7“33).

Solutions (2.22), (2.23) degenerate when ¢y = 0; in this case, it is possible to
determine only the sum or difference of ¢ and .

2.5 Angle and Axis

A nonminimal representation of orientation can be obtained by resorting to
four parameters expressing a rotation of a given angle about an axis in space.
This can be advantageous in the problem of trajectory planning for a manip-
ulator’s end-effector orientation.

Let r = [r, 7, 7.]7 be the unit vector of a rotation axis with respect
to the reference frame O—zyz. In order to derive the rotation matrix R(¥,r)
expressing the rotation of an angle ¥ about azxis 7, it is convenient to compose

5 The ordered sequence of rotations XYZ about axes of the fixed frame is equivalent
to the sequence ZYX about axes of the current frame.
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Fig. 2.10. Rotation of an angle about an axis

elementary rotations about the coordinate axes of the reference frame. The
angle is taken to be positive if the rotation is made counter-clockwise about
axis 7.

As shown in Fig. 2.10, a possible solution is to rotate first r by the angles
necessary to align it with axis z, then to rotate by i about z and finally
to rotate by the angles necessary to align the unit vector with the initial
direction. In detail, the sequence of rotations, to be made always with respect
to axes of fixed frame, is the following:

e Align r with z, which is obtained as the sequence of a rotation by —«
about z and a rotation by —( about y.
Rotate by ¢ about z.
Realign with the initial direction of r, which is obtained as the sequence
of a rotation by 3 about y and a rotation by « about z.

In sum, the resulting rotation matrix is
R(Y,r) = R.(a)R,(B)R.(V)Ry(—F)R.(—cv). (2.24)

From the components of the unit vector 7 it is possible to extract the tran-
scendental functions needed to compute the rotation matrix in (2.24), so as
to eliminate the dependence from « and (; in fact, it is

. Ty Tz
sinag = —2— cosq = ————
[r2 1 2 [r2 1 2
rm—&—ry Tm—&—ry

sin 8 = /72 + 72 cosfB=r,.
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Then, it can be found that the rotation matrix corresponding to a given angle
and axis is — see Problem 2.4 —
7"326(1 —cy)+cy rary(l —cy) — 289 Tor.(1—cy) +1ysy
R(0,r)=|rory(1 —cy) +r.s9  ro(l—co)+co  ryro(1—cy) —rasy |
rers(L—cg) —rysy ryra(L—cp) +resy  1r2(1—cy) +ep
(2.25)
For this matrix, the following property holds:

R(—Y,—r) = R(Y,r), (2.26)

i.e., a rotation by — about —r cannot be distinguished from a rotation by ¢
about 7; hence, such representation is not unique.

If it is desired to solve the inverse problem to compute the axis and angle
corresponding to a given rotation matrix

11 Ti2 Ti3
R= |7 792 723,
T31 T32 T33

the following result is useful:

-1
¥ =cos ! (TH + T222+ 133 ) (2.27)
1 T32 — T23
r = 2511119 T13 — T31 5 (228)
721 — T12

for sin¥ # 0. Notice that the expressions (2.27), (2.28) describe the rotation
in terms of four parameters; namely, the angle and the three components of
the axis unit vector. However, it can be observed that the three components
of r are not independent but are constrained by the condition

ra s =1 (2.29)

If sin®¥ = 0, the expressions (2.27), (2.28) become meaningless. To solve the
inverse problem, it is necessary to directly refer to the particular expressions
attained by the rotation matrix R and find the solving formulae in the two
cases ¥ = 0 and ¥ = 7. Notice that, when ¥ = 0 (null rotation), the unit
vector r is arbitrary (singularity). See also Problem 2.5.

2.6 Unit Quaternion

The drawbacks of the angle/axis representation can be overcome by a dif-
ferent four-parameter representation; namely, the unit quaternion, viz. Euler
parameters, defined as Q = {7, €} where:

U
0= cosg (2.30)
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9
€ = sin 57 (2.31)

7 is called the scalar part of the quaternion while € = [¢, ¢, ¢,]7 is called
the vector part of the quaternion. They are constrained by the condition

4+ ezzl +e2 =1, (2.32)
hence, the name unit quaternion. It is worth remarking that, unlike the an-
gle/axis representation, a rotation by — about —r gives the same quater-
nion as that associated with a rotation by ¢ about »; this solves the above
nonuniqueness problem. In view of (2.25), (2.30), (2.31), (2.32), the rotation
matrix corresponding to a given quaternion takes on the form — see Prob-
lem 2.6 —

2(772 + 63) =1 2(eqey —mes)  2(exer +1ey)
R(n,€) = | 2(exey +1mez) 20" +€) =1 2(eyez —nes) | - (2.33)
2eze: —mey)  2eyez +mea) 2P +ed) — 1
If it is desired to solve the inverse problem to compute the quaternion
corresponding to a given rotation matrix

11 Ti2 Ti3
R= |71y 17T22 7T23|,
31 T32 T33

the following result is useful:

n= %\/7'11 +rog + 733 + 1 (2.34)
. sgn (rsz — r23)V/T11 — T22 — 33 + 1
€=3 sgn (ri3 — 731)V/ree —rs3 —ri1 +1 |, (2.35)
sgn (ro1 — r12)v/T33 —T11 — o2 + 1
where conventionally sgn (z) = 1 for z > 0 and sgn () = —1 for « < 0. Notice

that in (2.34) it has been implicitly assumed 7 > 0; this corresponds to an
angle ¥ € [—m, 7], and thus any rotation can be described. Also, compared to
the inverse solution in (2.27), (2.28) for the angle and axis representation, no
singularity occurs for (2.34), (2.35). See also Problem 2.8.

The quaternion extracted from R™! = R” is denoted as Q~1, and can be
computed as

Q7! ={n,—€}. (2.36)

Let Q1 = {m, €1} and Qo = {12, €2} denote the quaternions corresponding
to the rotation matrices Ry and Ry, respectively. The quaternion correspond-
ing to the product Ry Rs is given by

Q1 % Qo = {mn2 — elTeg,meg + 1261 + €1 X €2} (2.37)

where the quaternion product operator “x” has been formally introduced. It is
easy to see that if Qy = Q7! then the quaternion {1, 0} is obtained from (2.37)
which is the identity element for the product. See also Problem 2.9.
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Fig. 2.11. Representation of a point P in different coordinate frames

2.7 Homogeneous Transformations

As illustrated at the beginning of the chapter, the position of a rigid body in
space is expressed in terms of the position of a suitable point on the body with
respect to a reference frame (translation), while its orientation is expressed in
terms of the components of the unit vectors of a frame attached to the body
— with origin in the above point — with respect to the same reference frame
(rotation).

As shown in Fig. 2.11, consider an arbitrary point P in space. Let p°
be the vector of coordinates of P with respect to the reference frame Og—
ZoYozo- Consider then another frame in space O1—x1y121. Let 0(1] be the vector
describing the origin of Frame 1 with respect to Frame 0, and R(l) be the
rotation matrix of Frame 1 with respect to Frame 0. Let also p' be the vector
of coordinates of P with respect to Frame 1. On the basis of simple geometry,
the position of point P with respect to the reference frame can be expressed
as

p’ = o} + Rip". (2.38)

Hence, (2.38) represents the coordinate transformation (translation + rota-
tion) of a bound vector between two frames.

The inverse transformation can be obtained by premultiplying both sides
of (2.38) by RJT; in view of(2.4), it follows that

p'=—Ri"o] + R"p" (2.39)
which, via (2.16), can be written as
p' = —Rj0? + Ryp°. (2.40)

In order to achieve a compact representation of the relationship between
the coordinates of the same point in two different frames, the homogeneous
representation of a generic vector p can be introduced as the vector p formed
by adding a fourth unit component, i.e.,
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p=|P|. (2.41)

By adopting this representation for the vectors p® and p' in (2.38), the coor-
dinate transformation can be written in terms of the (4 x 4) matrix

0 0
A0—| Bioa (2.42)
o7 1

which, according to (2.41), is termed homogeneous transformation matriz.
Since 09 € R* ¢ R} € SO(3), this matrix belongs to the special Euclidean
group SE(3) = R? x SO(3).

As can be easily seen from (2.42), the transformation of a vector from
Frame 1 to Frame 0 is expressed by a single matrix containing the rotation
matrix of Frame 1 with respect to Frame 0 and the translation vector from
the origin of Frame 0 to the origin of Frame 1.6 Therefore, the coordinate
transformation (2.38) can be compactly rewritten as

p’ =A% (2.43)

The coordinate transformation between Frame 0 and Frame 1 is described
by the homogeneous transformation matrix A(lJ which satisfies the equation

p'=alp’ = (a) B (2.44)
This matrix is expressed in a block-partitioned form as
A(l) _ R(l)T _R(I)To(l) — R(l) _R(lJo(l) (2.45)
0" 1 o’ 1

which gives the homogeneous representation form of the result already estab-
lished by (2.39), (2.40) — see Problem 2.10.

Notice that for the homogeneous transformation matrix the orthogonality
property does not hold; hence, in general,

A1 AT (2.46)

In sum, a homogeneous transformation matrix expresses the coordinate
transformation between two frames in a compact form. If the frames have the

5 It can be shown that in (2.42) non-null values of the first three elements of the
fourth row of A produce a perspective effect, while values other than unity for
the fourth element give a scaling effect.
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Fig. 2.12. Conventional representations of joints

same origin, it reduces to the rotation matrix previously defined. Instead, if
the frames have distinct origins, it allows the notation with superscripts and
subscripts to be kept which directly characterize the current frame and the
fixed frame.

Analogously to what presented for the rotation matrices, it is easy to
verify that a sequence of coordinate transformations can be composed by the
product

p’=A%AL . Arip” (2.47)

where Aﬁ_l denotes the homogeneous transformation relating the description
of a point in Frame i to the description of the same point in Frame i — 1.

2.8 Direct Kinematics

A manipulator consists of a series of rigid bodies (links) connected by means of
kinematic pairs or joints. Joints can be essentially of two types: revolute and
prismatic; conventional representations of the two types of joints are sketched
in Fig. 2.12. The whole structure forms a kinematic chain. One end of the
chain is constrained to a base. An end-effector (gripper, tool) is connected to
the other end allowing manipulation of objects in space.

From a topological viewpoint, the kinematic chain is termed open when
there is only one sequence of links connecting the two ends of the chain. Al-
ternatively, a manipulator contains a closed kinematic chain when a sequence
of links forms a loop.

The mechanical structure of a manipulator is characterized by a number of
degrees of freedom (DOFs) which uniquely determine its posture.” Each DOF
is typically associated with a joint articulation and constitutes a joint variable.
The aim of direct kinematics is to compute the pose of the end-effector as a
function of the joint variables.

7 The term posture of a kinematic chain denotes the pose of all the rigid bodies
composing the chain. Whenever the kinematic chain reduces to a single rigid
body, then the posture coincides with the pose of the body.
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Fig. 2.13. Description of the position and orientation of the end-effector frame

It was previously illustrated that the pose of a body with respect to a
reference frame is described by the position vector of the origin and the unit
vectors of a frame attached to the body. Hence, with respect to a reference
frame Op—xpyp2p, the direct kinematics function is expressed by the homoge-
neous transformation matrix

Th(q) = | @) sc(@) aila) pl(a) (2.48)

0 0 0 1

where g is the (n x 1) vector of joint variables, n., S, a. are the unit vectors
of a frame attached to the end-effector, and p, is the position vector of the
origin of such a frame with respect to the origin of the base frame Op—xyyp2p
(Fig. 2.13). Note that n., s., a. and p, are a function of g.

The frame Op—zpyp2p is termed base frame. The frame attached to the end-
effector is termed end-effector frame and is conveniently chosen according to
the particular task geometry. If the end-effector is a gripper, the origin of the
end-effector frame is located at the centre of the gripper, the unit vector a.
is chosen in the approach direction to the object, the unit vector s, is chosen
normal to a. in the sliding plane of the jaws, and the unit vector n. is chosen
normal to the other two so that the frame (n, s¢, a.) is right-handed.

A first way to compute direct kinematics is offered by a geometric analysis
of the structure of the given manipulator.
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Fig. 2.14. Two-link planar arm

Example 2.4

Consider the two-link planar arm in Fig. 2.14. On the basis of simple trigonometry,
the choice of the joint variables, the base frame, and the end-effector frame leads
to®

s s b 0  s12 ci2 aic +azci2
Th(q)= | ™ S¢ @ Pe| _ (1) —(6)12 5(1)2 aisi -5a2512 (2.49)
0 0 0 1 0 0 0 1

It is not difficult to infer that the effectiveness of a geometric approach
to the direct kinematics problem is based first on a convenient choice of the
relevant quantities and then on the ability and geometric intuition of the prob-
lem solver. Whenever the manipulator structure is complex and the number of
joints increases, it is preferable to adopt a less direct solution, which, though,
is based on a systematic, general procedure. The problem becomes even more
complex when the manipulator contains one or more closed kinematic chains.
In such a case, as it will be discussed later, there is no guarantee to obtain an
analytical expression for the direct kinematics function in (2.48).

2.8.1 Open Chain

Consider an open-chain manipulator constituted by n + 1 links connected by
n joints, where Link 0 is conventionally fixed to the ground. It is assumed that
each joint provides the mechanical structure with a single DOF, corresponding
to the joint variable.

The construction of an operating procedure for the computation of di-
rect kinematics is naturally derived from the typical open kinematic chain of
the manipulator structure. In fact, since each joint connects two consecutive

8 The notations s;.. j, c;...; denote respectively sin (g; + ... 4 q;), cos (gi + . ..+ q;)-
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Fig. 2.15. Coordinate transformations in an open kinematic chain

links, it is reasonable to consider first the description of kinematic relationship
between consecutive links and then to obtain the overall description of manip-
ulator kinematics in a recursive fashion. To this purpose, it is worth defining
a coordinate frame attached to each link, from Link 0 to Link n. Then, the
coordinate transformation describing the position and orientation of Frame n
with respect to Frame 0 (Fig. 2.15) is given by

T (q) = AY(q1)Ad(a2) - .- AL (an). (2.50)

As requested, the computation of the direct kinematics function is recursive
and is obtained in a systematic manner by simple products of the homogeneous
transformation matrices A~ *(g;) (fori = 1,...,n), each of which is a function
of a single joint variable.

With reference to the direct kinematics equation in (2.49), the actual co-
ordinate transformation describing the position and orientation of the end-
effector frame with respect to the base frame can be obtained as

T.(q) = T¢Tp(@)T" (2.51)

where Tg and T are two (typically) constant homogeneous transformations
describing the position and orientation of Frame 0 with respect to the base
frame, and of the end-effector frame with respect to Frame n, respectively.

2.8.2 Denavit—Hartenberg Convention

In order to compute the direct kinematics equation for an open-chain manip-
ulator according to the recursive expression in (2.50), a systematic, general
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JOINT 21 JOINT 1 JOINT 2+1

Fig. 2.16. Denavit—Hartenberg kinematic parameters

method is to be derived to define the relative position and orientation of two
consecutive links; the problem is that to determine two frames attached to
the two links and compute the coordinate transformations between them. In
general, the frames can be arbitrarily chosen as long as they are attached to
the link they are referred to. Nevertheless, it is convenient to set some rules
also for the definition of the link frames.

With reference to Fig. 2.16, let Axis ¢ denote the axis of the joint connect-
ing Link ¢ — 1 to Link ¢; the so-called Denavit—Hartenberg convention (DH) is
adopted to define link Frame i:

Choose axis z; along the axis of Joint i + 1.
Locate the origin O; at the intersection of axis z; with the common normal®
to axes z;_1 and z;. Also, locate O; at the intersection of the common
normal with axis z;_1.

e Choose axis x; along the common normal to axes z;_1 and z; with direction
from Joint ¢ to Joint i + 1.

e Choose axis y; so as to complete a right-handed frame.

The Denavit-Hartenberg convention gives a nonunique definition of the link
frame in the following cases:

e For Frame 0, only the direction of axis zg is specified; then Op and xg can
be arbitrarily chosen.

e For Frame n, since there is no Joint n+ 1, z,, is not uniquely defined while
z,, has to be normal to axis z,_1. Typically, Joint n is revolute, and thus
Zn i to be aligned with the direction of z, 1.

9 The common normal between two lines is the line containing the minimum dis-

tance segment between the two lines.
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e  When two consecutive axes are parallel, the common normal between them
is not uniquely defined.
When two consecutive axes intersect, the direction of x; is arbitrary.
When Joint ¢ is prismatic, the direction of z;_; is arbitrary.

In all such cases, the indeterminacy can be exploited to simplify the procedure;
for instance, the axes of consecutive frames can be made parallel.

Once the link frames have been established, the position and orientation of
Frame i with respect to Frame i — 1 are completely specified by the following
parameters:

a; distance between O; and Oy,

d; coordinate of O; along z;_1,

«; angle between axes z;—; and z; about axis x; to be taken positive when
rotation is made counter-clockwise,

¥; angle between axes x;_1 and x; about axis z;_; to be taken positive when
rotation is made counter-clockwise.

Two of the four parameters (a; and «;) are always constant and depend
only on the geometry of connection between consecutive joints established
by Link 7. Of the remaining two parameters, only one is variable depending
on the type of joint that connects Link ¢ — 1 to Link 4. In particular:

e if Joint ¢ is revolute the variable is ¥;,
e if Joint ¢ is prismatic the variable is d;.

At this point, it is possible to express the coordinate transformation between
Frame ¢ and Frame ¢ — 1 according to the following steps:

e Choose a frame aligned with Frame i — 1.

e Translate the chosen frame by d; along axis z;_; and rotate it by ©¢; about
axis z;_1; this sequence aligns the current frame with Frame 4’ and is
described by the homogeneous transformation matrix

Cy,; —89; 0 0
i-1_ | S9, <¢c9;, 0 O
Ai' o 0 0 1 d;
0 0 0 1

e Translate the frame aligned with Frame i’ by a; along axis z;; and rotate
it by «; about axis x;; this sequence aligns the current frame with Frame 4
and is described by the homogeneous transformation matrix

0 0 a;
Coy —Sa; O

1
0
0 Sa; €o; O
0 0 0 1
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e The resulting coordinate transformation is obtained by postmultiplication
of the single transformations as

CyY; —S59,;Cay; S9;Sa a;Cy,
i i1 a4 S9. C9,Ca.  —CY.Sq, G;Sy,
Al 1 ) = Al 1A2» — i i o i i 2.52
i (ql) i’ i 0 Sa; Car; dz ( )
0 0 0 1

Notice that the transformation matrix from Frame i to Frame i—1 is a function
only of the joint variable ¢;, that is, ; for a revolute joint or d; for a prismatic
joint.

To summarize, the Denavit—Hartenberg convention allows the construction
of the direct kinematics function by composition of the individual coordinate
transformations expressed by (2.52) into one homogeneous transformation
matrix as in (2.50). The procedure can be applied to any open kinematic
chain and can be easily rewritten in an operating form as follows.

1. Find and number consecutively the joint axes; set the directions of axes
2053 Bn—1-

2. Choose Frame 0 by locating the origin on axis zg; axes xg and yo are
chosen so as to obtain a right-handed frame. If feasible, it is worth choosing
Frame 0 to coincide with the base frame.

Execute steps from 3 to 5 fori =1,...,n — 1:

3. Locate the origin O; at the intersection of z; with the common normal to
axes z;_1 and z;. If axes z;_1 and z; are parallel and Joint 7 is revolute,
then locate O; so that d; = 0; if Joint 7 is prismatic, locate O; at a reference
position for the joint range, e.g., a mechanical limit.

4. Choose axis z; along the common normal to axes z;_1 and z; with direction
from Joint i to Joint i + 1.

5. Choose axis y; so as to obtain a right-handed frame.

To complete:

6. Choose Frame n; if Joint n is revolute, then align z,, with z,_1, otherwise,
if Joint n is prismatic, then choose z, arbitrarily. Axis z,, is set according

to step 4.

7. For i =1,...,n, form the table of parameters a;, d;, c;, ;.

8. On the basis of the parameters in 7, compute the homogeneous transfor-
mation matrices A" (g;) fori =1,...,n.

9. Compute the homogeneous transformation T9(q) = AY...A""! that
yields the position and orientation of Frame n with respect to Frame 0.
10.Given T% and T, compute the direct kinematics function as T%(q) =

THTOT" that yields the position and orientation of the end-effector frame
with respect to the base frame.
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JOINT i+1'

JOINT 2

JOINT 1+1"

Fig. 2.17. Connection of a single link in the chain with two links

For what concerns the computational aspects of direct kinematics, it can be
recognized that the heaviest load derives from the evaluation of transcenden-
tal functions. On the other hand, by suitably factorizing the transformation
equations and introducing local variables, the number of flops (additions +
multiplications) can be reduced. Finally, for computation of orientation it is
convenient to evaluate the two unit vectors of the end-effector frame of sim-
plest expression and derive the third one by vector product of the first two.

2.8.3 Closed Chain

The above direct kinematics method based on the DH convention exploits
the inherently recursive feature of an open-chain manipulator. Nevertheless,
the method can be extended to the case of manipulators containing closed
kinematic chains according to the technique illustrated below.

Consider a closed-chain manipulator constituted by n + 1 links. Because
of the presence of a loop, the number of joints [ must be greater than n; in
particular, it can be understood that the number of closed loops is equal to
l—n.

With reference to Fig. 2.17, Links 0 through ¢ are connected successively
through the first ¢ joints as in an open kinematic chain. Then, Joint i + 1/
connects Link ¢ with Link 7 + 1’ while Joint ¢ + 1” connects Link ¢ with
Link ¢ 4+ 1”; the axes of Joints ¢ + 1’ and 7 + 1” are assumed to be aligned.
Although not represented in the figure, Links 7 + 1’ and ¢ + 1” are members
of the closed kinematic chain. In particular, Link ¢ + 1’ is further connected
to Link i + 2’ via Joint 7 + 2’ and so forth, until Link j via Joint j. Likewise,
Link ¢ + 1” is further connected to Link ¢ + 2" via Joint ¢ + 2" and so forth,
until Link £ via Joint k. Finally, Links j and k are connected together at
Joint j + 1 to form a closed chain. In general, j # k.

In order to attach frames to the various links and apply DH convention,
one closed kinematic chain is taken into account. The closed chain can be
virtually cut open at Joint j 4 1, i.e., the joint between Link j and Link k.
An equivalent tree-structured open kinematic chain is obtained, and thus link
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Fig. 2.18. Coordinate transformations in a closed kinematic chain

frames can be defined as in Fig. 2.18. Since Links 0 through ¢ occur before
the two branches of the tree, they are left out of the analysis. For the same
reason, Links j + 1 through n are left out as well. Notice that Frame i is to
be chosen with axis z; aligned with the axes of Joints ¢ + 1’ and i 4+ 1”.

It follows that the position and orientation of Frame j with respect to
Frame ¢ can be expressed by composing the homogeneous transformations as

Al(q) = Al (i) - AT (g)) (2.53)
where ¢ = [¢it1r ... ¢ }T. Likewise, the position and orientation of
Frame k with respect to Frame i is given by

A(q") = Af i (gigr) - AL Haw) (2.54)
where ¢ = [qis1r ... qr] -

Since Links j and k are connected to each other through Joint j + 1,
it is worth analyzing the mutual position and orientation between Frames j
and k, as illustrated in Fig. 2.19. Notice that, since Links j and k are connected
to form a closed chain, axes z; and z; are aligned. Therefore, the following
orientation constraint has to be imposed between Frames j and k:

z3(d') = zi.(d"), (2.55)
where the unit vectors of the two axes have been conveniently referred to
Frame 1.

Moreover, if Joint j 41 is prismatic, the angle ¥;;, between axes x; and z,
is fixed; hence, in addition to (2.55), the following constraint is obtained:

méT(q’)w};(q”) = cos V. (2.56)

Obviously, there is no need to impose a similar constraint on axes y; and yj
since that would be redundant.



2.8 Direct Kinematics 67

Fig. 2.19. Coordinate transformation at the cut joint

Regarding the position constraint between Frames j and k, let p;'- and
p.. respectively denote the positions of the origins of Frames j and k, when
referred to Frame i. By projecting on Frame j the distance vector of the origin
of Frame k from Frame j, the following constraint has to be imposed:

Ri(d) (pi(d) —pi(@") =10 0 dj]" (2.57)

where R{ = R;-T denotes the orientation of Frame ¢ with respect to Frame j.
At this point, if Joint j + 1 is revolute, then d;;, is a fixed offset along axis z;;
hence, the three equalities of (2.57) fully describe the position constraint. If,
however, Joint j 4 1 is prismatic, then d;j, varies. Consequently, only the first

two equalities of (2.57) describe the position constraint, i.e.,

J 7 ! 7 1 _
i p;\q)—prq)) = 2.58
| @) —pita) = [} (25%)
where R} = [z} y! 2!].

In summary, if Joint j + 1 is revolute the constraints are

R](¢) (P(a) —pi(a")) =10 0 d]"
i( o i (! (2'59)
zj(q ) = zk(q )a
whereas if Joint j + 1 is prismatic the constraints are
()] : 0
s [}
J
(2.60)

z(q') = 2j.(q")
zi" (q') ) (q") = cos V.
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In either case, there are six equalities that must be satisfied. Those should be
solved for a reduced number of independent joint variables to be keenly chosen
among the components of ¢’ and ¢” which characterize the DOFs of the closed
chain. These are the natural candidates to be the actuated joints, while the
other joints in the chain (including the cut joint) are typically not actuated.
Such independent variables, together with the remaining joint variables not
involved in the above analysis, constitute the joint vector q that allows the
direct kinematics equation to be computed as

0 0 pt j

where the sequence of successive transformations after the closure of the chain
has been conventionally resumed from Frame j.

In general, there is no guarantee to solve the constraints in closed form
unless the manipulator has a simple kinematic structure. In other words, for
a given manipulator with a specific geometry, e.g., a planar structure, some of
the above equalities may become dependent. Hence, the number of indepen-
dent equalities is less than six and it should likely be easier to solve them.

To conclude, it is worth sketching the operating form of the procedure to
compute the direct kinematics function for a closed-chain manipulator using
the Denavit—Hartenberg convention.

1. In the closed chain, select one joint that is not actuated. Assume that the
joint is cut open so as to obtain an open chain in a tree structure.
Compute the homogeneous transformations according to DH convention.
Find the equality constraints for the two frames connected by the cut joint.
Solve the constraints for a reduced number of joint variables.

Express the homogeneous transformations in terms of the above joint vari-
ables and compute the direct kinematics function by composing the various
transformations from the base frame to the end-effector frame.

ANl e

2.9 Kinematics of Typical Manipulator Structures

This section contains several examples of computation of the direct kinemat-
ics function for typical manipulator structures that are often encountered in
industrial robots.

With reference to the schematic representation of the kinematic chain,
manipulators are usually illustrated in postures where the joint variables, de-
fined according to the DH convention, are different from zero; such values
might differ from the null references utilized for robot manipulator program-
ming. Hence, it will be necessary to sum constant contributions (offsets) to
the values of the joint variables measured by the robot sensory system, so as
to match the references.
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Fig. 2.20. Three-link planar arm

2.9.1 Three-link Planar Arm

Consider the three-link planar arm in Fig. 2.20, where the link frames have
been illustrated. Since the revolute axes are all parallel, the simplest choice
was made for all axes z; along the direction of the relative links (the direction
of xg is arbitrary) and all lying in the plane (zg,%). In this way, all the
parameters d; are null and the angles between the axes x; directly provide the
joint variables. The DH parameters are specified in Table 2.1.

Table 2.1. DH parameters for the three-link planar arm

Link a; a; d; i
1 ay 0 0 191
2 a2 0 0 Vo
3 as 0 0 U3

Since all joints are revolute, the homogeneous transformation matrix de-
fined in (2.52) has the same structure for each joint, i.e.,

C; —S8; 0 a;C;
i1iqy_ | S ¢ 0 ais; -
Ay =0 a D i=1,2,3. (2.62)
0 0 0 1
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Fig. 2.21. Parallelogram arm

Computation of the direct kinematics function as in (2.50) yields

c123 —s123 0 ajc; +ascia +ascias
0 0 2 s123  c123 0 a1s1+ ass12 + assias
0 0 0 1

where ¢ = [9; 92 93] Notice that the unit vector 23 of Frame 3 is aligned
with zg = [0 0 1]7, in view of the fact that all revolute joints are parallel
to axis zg. Obviously, p, = 0 and all three joints concur to determine the
end-effector position in the plane of the structure. It is worth pointing out
that Frame 3 does not coincide with the end-effector frame (Fig. 2.13), since
the resulting approach unit vector is aligned with 23 and not with 29. Thus,
assuming that the two frames have the same origin, the constant transforma-
tion

0 010
s 0o 100
To=1_1 00 0
0 00 1

is needed, having taken n aligned with zg.

2.9.2 Parallelogram Arm

Consider the parallelogram arm in Fig. 2.21. A closed chain occurs where the
first two joints connect Link 1’ and Link 1” to Link 0, respectively. Joint 4 was
selected as the cut joint, and the link frames have been established accordingly.
The DH parameters are specified in Table 2.2, where a1 = a3 and ag = ay»
in view of the parallelogram structure.

Notice that the parameters for Link 4 are all constant. Since the joints
are revolute, the homogeneous transformation matrix defined in (2.52) has
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Table 2.2. DH parameters for the parallelogram arm

Link a; (e 77 di '191
1’ ay’ 0 0 191’
2, as/ 0 0 192’
3/ ag 0 0 N
1” ayr 0 0 Yy
4 a4 0 0 0

the same structure for each joint, i.e., as in (2.62) for Joints 1/, 2, 3’ and 1”.
Therefore, the coordinate transformations for the two branches of the tree are
respectively:

croy  —syyzy 0 avcy +aycro + azcros

! / S1/9/3/ C1/2/3" 0 aiyr8y/ —+ aor 81797 +a 18119/37

A (q)=A0 AL A2 = 0 3 0 3 . 0 31o12s
0 0 0 1

where q' = [191/ 192/ 193/ }T, and

Cl” —51// 0 a,ll/Cl//

0 S Cim O a1 8q1
Ar@ =1%o 1 o
0 0 0 1

where ¢” = ¥1. To complete, the constant homogeneous transformation for
the last link is

100 ay
y (010 0
=100 1 0

000 1

With reference to (2.59), the position constraints are (ds1» = 0)

0
RY (d) (p%(q") — Y (d")) = 8

while the orientation constraints are satisfied independently of ¢’ and ¢”. Since
a1’ = az and ay = ay~, two independent constraints can be extracted, i.e.,

ay (c1 + cras) + ayr(crar — cyrr)

=0
all(sl/ + 31/2/3/) + (],1//(51/2/ — 51//) = 0
In order to satisfy them for any choice of ay, and ay, it must be

’192/ = ’191!/ — '191/
193/ :71'7192/ :7('—’[91// +191/
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Therefore, the vector of joint variables is ¢ = [0+ ¥1+]". These joints are
natural candidates to be the actuated joints.!® Substituting the expressions
of ¥, and J3 into the homogeneous transformation Ag, and computing the
direct kinematics function as in (2.61) yields

—Cq/ S/ 0 QqrCrrr — Q4qCyr
0/ \ _ A0 3 | —=sv —cir 0 ayrsin —aqsy
Ti(g) = Az (@)A1 = | o 1 0 (2.64)
0 0 0 1

A comparison between (2.64) and (2.49) reveals that the parallelogram arm is
kinematically equivalent to a two-link planar arm. The noticeable difference,
though, is that the two actuated joints — providing the DOFs of the structure
— are located at the base. This will greatly simplify the dynamic model of
the structure, as will be seen in Sect. 7.3.3.

2.9.3 Spherical Arm

Consider the spherical arm in Fig. 2.22, where the link frames have been
illustrated. Notice that the origin of Frame 0 was located at the intersection
of zg with z; so that d; = 0; analogously, the origin of Frame 2 was located
at the intersection between z; and z;. The DH parameters are specified in
Table 2.3.

Table 2.3. DH parameters for the spherical arm

Link a; a; d; ¥s
1 0 *TI'/Q 0 ’191
2 0 w/2 da ¥
3 0 0 ds 0

The homogeneous transformation matrices defined in (2.52) are for the
single joints:

cc 0 —s1 07 ca 0 s 0
0 _ S1 0 C1 0 1 _ S9 0 —Cy 0
Ai (V) = 0 -1 0 0 Ay (d2) = 0 1 0 ds
0 0 0 1] 00 0 1

1T 0 0 0

2 ;v |0 1 0 0

Az(ds) = 0 0 1 ds

L0 0 0 1

10 Notice that it is not possible to solve (2.64) for ¥, and ¥ since they are con-
strained by the condition ¥y + ¥3 = 7.
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23

Fig. 2.22. Spherical arm

Computation of the direct kinematics function as in (2.50) yields

C1C2 —S81 C182 6152d3 — Sldg
0 _ A0 41 42 _ | S1€C2 C1 5183 s152d3 +c1da
T3(q) = A1Ay A5 = sy 0 e eods (2.65)
0 0 0 1

where ¢ = [¢¥; 92 d3]T. Notice that the third joint does not obviously
influence the rotation matrix. Further, the orientation of the unit vector y
is uniquely determined by the first joint, since the revolute axis of the second
joint z; is parallel to axis ys. Different from the previous structures, in this

case Frame 3 can represent an end-effector frame of unit vectors (n., s, @),
ie, T2 =1,

2.9.4 Anthropomorphic Arm

Consider the anthropomorphic arm in Fig. 2.23. Notice how this arm corre-
sponds to a two-link planar arm with an additional rotation about an axis
of the plane. In this respect, the parallelogram arm could be used in lieu of
the two-link planar arm, as found in some industrial robots with an anthro-
pomorphic structure.

The link frames have been illustrated in the figure. As for the previous
structure, the origin of Frame 0 was chosen at the intersection of zy with z;
(dy = 0); further, z; and z2 are parallel and the choice of axes z; and xo
was made as for the two-link planar arm. The DH parameters are specified in
Table 2.4.
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Fig. 2.23. Anthropomorphic arm

Table 2.4. DH parameters for the anthropomorphic arm

Link a; (677 di 79L
1 0 /2 0 01
2 as 0 0 )
3 as 0 0 ’193

The homogeneous transformation matrices defined in (2.52) are for the
single joints:

C1 0 S1 0
0 st 0 —c1 O
A =149 1 o o
0o 0 0 1
C; —S8; 0 a;C;
i— S; C; 0 ;S5 .
A; 1(19i): 0 0 1 0 1=2,3.
0 0O 0 1

Computation of the direct kinematics function as in (2.50) yields

C1C23 —C1523 S1 01(a202+a3023)

0 _ A0 41 42 _ | S1€23 —S1823 —C1 81(a262 + 03023)
Tsla) = Az 45 = 523 C23 0 asss + azsas (2.66)
0 0 0 1

where ¢ =91 92 U3 ]T. Since z3 is aligned with z5, Frame 3 does not coin-
cide with a possible end-effector frame as in Fig. 2.13, and a proper constant
transformation would be needed.
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Fig. 2.24. Spherical wrist

2.9.5 Spherical Wrist

Consider a particular type of structure consisting just of the wrist of Fig. 2.24.
Joint variables were numbered progressively starting from 4, since such a
wrist is typically thought of as mounted on a three-DOF arm of a six-DOF
manipulator. It is worth noticing that the wrist is spherical since all revolute
axes intersect at a single point. Once z3, z4, 25 have been established, and =3
has been chosen, there is an indeterminacy on the directions of x4 and x5.
With reference to the frames indicated in Fig. 2.24, the DH parameters are
specified in Table 2.5.

Table 2.5. DH parameters for the spherical wrist

Link a; (677 dz 791
4 0 —m/2 0 Vg
5 0 /2 0 s
6 0 0 ds Yo

The homogeneous transformation matrices defined in (2.52) are for the
single joints:

cg 0 —s4 O cs 0 s5 0
S 0 C 0 S5 0 —Cs 0
0 0 0 1 0 0 0 1
Cg —S6 0 0
5 _ Sg Cg 0 0
Al =10 0 1 d
0 0 0 1
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Fig. 2.25. Stanford manipulator

Computation of the direct kinematics function as in (2.50) yields

C4C5Ce — S4S6 —C4C586 — S4Cg C4S55 C4S5d6
84C5C6 + C486 —84C586 + C4Cg  S4S5 84S5d6
—S85Cq 5556 Cs C5d6
0 0 0 1

Ti(q) = ATAAG =

(2.67)
where g = [94 ¥5 U6]T. Notice that, as a consequence of the choice made
for the coordinate frames, the block matrix R} that can be extracted from T
coincides with the rotation matrix of Euler angles (2.18) previously derived,
that is, ¥4, ¥5, ¥4 constitute the set of ZYZ angles with respect to the reference
frame Oz—x3y323. Moreover, the unit vectors of Frame 6 coincide with the unit
vectors of a possible end-effector frame according to Fig. 2.13.

2.9.6 Stanford Manipulator

The so-called Stanford manipulator is composed of a spherical arm and a
spherical wrist (Fig. 2.25). Since Frame 3 of the spherical arm coincides with
Frame 3 of the spherical wrist, the direct kinematics function can be obtained
via simple composition of the transformation matrices (2.65), (2.67) of the
previous examples, i.e.,

T="1iri=|" ° ¢ P

0o 0 0 1
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Carrying out the products yields

c182d3 — s1da + (01(020455 + sac5) — 515455)d6
pg = 8182d3 + Cld2 —+ (81(020485 + 8205) + 618485)d6 (268)
Czdg -+ (*820485 + CQCS)dG
for the end-effector position, and

[c; (02(040506 — 848¢) — 828566) — s1(s4c506 + €456)
ng = | s1 (02(040506 — 845¢) — 828506) + c1(s4c506 + €456)

—82(040566 — 8486) — C2S85C¢q
C1 (702 (040586 + S4C6) + 825586) — 81(*840586 + C4Cﬁ)
S = | 851 (*02(040586 + s4¢6) + 828586) + c1(—sacs56 + cace) | (2.69)
s2(cacss6 + Sac6) + Ca8586

c1(cacass 4 s52¢c5) — 515455
ag = | s1(cacass + sac5) + 18455
—82C485 + C20C5

for the end-effector orientation.

A comparison of the vector pd in (2.68) with the vector pJ in (2.65) relative
to the sole spherical arm reveals the presence of additional contributions due
to the choice of the origin of the end-effector frame at a distance dg from
the origin of Frame 3 along the direction of a. In other words, if it were
de = 0, the position vector would be the same. This feature is of fundamental
importance for the solution of the inverse kinematics for this manipulator, as
will be seen later.

2.9.7 Anthropomorphic Arm with Spherical Wrist

A comparison between Fig. 2.23 and Fig. 2.24 reveals that the direct kinemat-
ics function cannot be obtained by multiplying the transformation matrices
T and T, since Frame 3 of the anthropomorphic arm cannot coincide with
Frame 3 of the spherical wrist.

Direct kinematics of the entire structure can be obtained in two ways.
One consists of interposing a constant transformation matrix between T and
T3 which allows the alignment of the two frames. The other refers to the
Denavit—-Hartenberg operating procedure with the frame assignment for the
entire structure illustrated in Fig. 2.26. The DH parameters are specified in
Table 2.6.

Since Rows 3 and 4 differ from the corresponding rows of the tables for
the two single structures, the relative homogeneous transformation matrices
A3 and A3 have to be modified into

cs 0 s3 O Cq 0 —s4 O

2 _ | s3 0 —C3 0 3 2 0 Cyq 0
As()=1g 1 o o Al =14 1 dy
00 0 1 0o 0 o0 1
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Fig. 2.26. Anthropomorphic arm with spherical wrist

Table 2.6. DH parameters for the anthropomorphic arm with spherical wrist

Link a; ; d; Yy
1 0 /2 0 1
2 az 0 U ’192
3 0 w/2 0 U3
4 0 —7/2 dy N
5 0 /2 0 s
6 0 0 de e

while the other transformation matrices remain the same. Computation of the
direct kinematics function leads to expressing the position and orientation of
the end-effector frame as:

azc1cy + dacisaz + dg(c1(cagcass + s23¢5) + 515455)
pg = | agsico + dgS1823 + dg (81(6230485 + 82305) - 018485) (270)
az52 — dycas + d(s23¢455 — Ca3C5)

and

[ 1 (023(040506 — 5456) — 5238506) + s1(sac5c6 + €456)

Ng = | S1 (023(040506 - 5456) - 8235506) - 01(840506 + 0486)

sa3(cacsce — 5456) + C2355C6

[c1 (—023(646586 + s4c6) + 5238556) + 51(—54¢556 + cace)

0

S¢ = | 51 (—023(040556 + s4¢6) + 5235586) — c1(—s4c586 + cace) | (2.71)
—s93(cacss6 + 54C6) — C235556

c1(c23c485 + 523C5) + 515455

ag = | s1(C23C455 + 523C5) — €15455

523C485 — C23Cs
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Fig. 2.27. DLR manipulator

By setting dg = 0, the position of the wrist axes intersection is obtained. In
that case, the vector p° in (2.70) corresponds to the vector pg for the sole
anthropomorphic arm in (2.66), because d4 gives the length of the forearm
(ag) and axis 3 in Fig. 2.26 is rotated by 7/2 with respect to axis 3 in
Fig. 2.23.

2.9.8 DLR Manipulator

Consider the DLR manipulator, whose development is at the basis of the real-
ization of the robot in Fig. 1.30; it is characterized by seven DOF's and as such
it is inherently redundant. This manipulator has two possible configurations
for the outer three joints (wrist). With reference to a spherical wrist similar to
that introduced in Sect. 2.9.5, the resulting kinematic structure is illustrated
in Fig. 2.27, where the frames attached to the links are evidenced.

As in the case of the spherical arm, notice that the origin of Frame 0 has
been chosen so as to zero d;. The DH parameters are specified in Table 2.7.

Table 2.7. DH parameters for the DLR manipulator

Link a; Q5 d7 197
1 0 71'/2 0 191
2 0 /2 0 s
3 0 /2 ds U3
4 0 /2 0 04
5 0 /2 ds Js
6 0 /2 0 96
7 0 0 dr V7
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The generic homogeneous transformation matrix defined in (2.52) is (o; =

/2)

C; 0 S; 0
, i 0 —¢ O .
ATl = f) X Oc . i=1,...,6 (2.72)
0 0 0 1
while, since a7 = 0, it is
cr  —S87 0 0
St Cr 0 0
AS = 0 0 1 d (2.73)
0 0 0 1

The direct kinematics function, computed as in (2.50), leads to the following
expressions for the end-effector frame

dgde + d5.7;d5 + d7$d7
p) = | dsya, + dsya, + drya, (2.74)
d3z4; + dszay + drzq,

with
Tgy = C152
Tgy = c1(CaC384 — S2C4) + S18384
Td, = C1 (Cgkl + 52]()2) + Slkg
Yds = 5152
Ya; = s1(CaC384 — $2C4) — C15354
Yd, = s1(cok1 + s2ka) — c1ks
Rdy = —C2
Zds = C2C4 + S2C354
24, = Sa(c3(cacsse — 54c6) + 535556) — Caka,
where

k1 = c3(cacss6 — s4c6) + 535556
ko = s4c556 + cace

k’g = 83(640586 — 8466) — C35586-
Furthermore, the end-effector frame orientation can be derived as
((waCs + xcS5)C6 + TpSe) 7 + (TaS5 — TeCs)S7

= | ((aCs + YcS5)C6 + Yu56)cr + (YaS5 — YcCs5)57
(zaC6 + 2cS6)C7 + 2bS7

ng
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—((zqcs + TeS5)C6 + TpS6)S7 + (TaS5 — TeCs)Cr
s7 = | —((yaCs + Yess)c6 + Yvs6)s7 + (YaSs — Yels)Cr (2.75)
—(2aC6 + 2c56)S7 + 2pC7
(TaCs + Tc55)56 — TpCo
a7 = | (YaC5 + YeS5)S6 — YbCo | »
ZaS6 — 2cCe

where

Tq = (010203 + 8183)64 + c15954
xp = (c102¢3 + 5153)84 — C182C4
e = C1C283 — S1C3

Yo = (81023 — €183)cq + 515284
Y = (516263 - 0153)54 — 5182C4
Ye = 81C283 +c1C3

Za = (82C3C4 — C284)C5 + $28385
2p = (820384 + C2€4)S5 — S283C5
Ze = 8§9C384 + Cacy.

(2.76)

As in the case of the anthropomorphic arm with spherical wrist, it occurs
that Frame 4 cannot coincide with the base frame of the wrist.

Finally, consider the possibility to mount a different type of spherical wrist,
where Joint 7 is so that a7 = 7/2. In such a case, the computation of the
direct kinematics function changes, since the seventh row of the kinematic
parameters table changes. In particular, notice that, since d; = 0, a; # 0,
then

Cr 0 St arCr
6 S7 0 —C7 arst

AS = ) 2.
7 0 0 1 0 (2.77)

0 0 O 1

It follows, however, that Frame 7 does not coincide with the end-effector
frame, as already discussed for the three-link planar arm, since the approach

unit vector a is aligned with x7.

2.9.9 Humanoid Manipulator

The term humanoid refers to a robot showing a kinematic structure similar to
that of the human body. It is commonly thought that the most relevant fea-
ture of humanoid robots is biped locomotion. However, in detail, a humanoid
manipulator refers to an articulated structure with a kinematics analogous to
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Fig. 2.28. Humanoid manipulator

that of the human body upper part: torso, arms, end-effectors similar to hu-
man hands and a ‘head’ which, eventually, includes an artificial vision system
— see Chap. 10.

For the humanoid manipulator in Fig. 1.33, it is worth noticing the pres-
ence of two end-effectors (where the ‘hands’ are mounted), while the arms
consist of two DLR manipulators, introduced in the previous section, each
with seven DOFs. In particular, consider the configuration where the last
joint is so that a7 = m/2.

To simplify, the kinematic structure allowing the articulation of the robot’s
head in Fig. 1.33. The torso can be modelled as an anthropomorphic arm
(three DOFs), for a total of seventeen DOFs.

Further, a connecting device exists between the end-effector of the anthro-
pomorphic torso and the base frames of the two manipulators. Such device
permits keeping the ‘chest’ of the humanoid manipulator always orthogonal to
the ground. With reference to Fig. 2.28, this device is represented by a further
joint, located at the end of the torso. Hence, the corresponding parameter 1,
does not constitute a DOF, yet it varies so as to compensate Joints 2 and 3
rotations of the anthropomorphic torso.

To compute the direct kinematics function, it is possible to resort to a DH
parameters table for each of the two tree kinematic structures, which can be
identified from the base of the manipulator to each of the two end-effectors.
Similarly to the case of mounting a spherical wrist onto an anthropomorphic
arm, this implies the change of some rows of the transformation matrices of
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those manipulators, described in the previous sections, constituting the torso
and the arms.

Alternatively, it is possible to consider intermediate transformation matri-
ces between the relevant structures. In detail, as illustrated in Fig. 2.28, if ¢
denotes the frame attached to the torso, r and [ the base frames, respectively,
of the right arm and the left arm, and rh and [h the frames attached to the
two hands (end-effectors), it is possible to compute for the right arm and the
left arm, respectively:

T?h = Tg T? Tﬁ rh (2.78)
T}, =TS T} T;Ty, (2.79)
where the matrix T describes the transformation imposed by the motion of

Joint 4 (dashed line in Fig. 2.28), located at the end-effector of the torso.
Frame 4 coincides with Frame ¢ in Fig. 2.27. In view of the property of pa-

rameter ¥4, it is ¥4 = —99 — J3, and thus
C23 S93 0 0
3 | —s23 c23 0 O
T; = 0 0 1 0
0 0 0 1

The matrix T is given by (2.66), whereas the matrices T". and T relating
the torso end-effector frame to the base frames of the two manipulators have
constant values. With reference to Fig. 2.28, the elements of these matrices
depend on the angle § and on the distances between the origin of Frame ¢
and the origins of Frames r and [. Finally, the expressions of the matrices T",,
and T%h must be computed by considering the change in the seventh row of
the DH parameters table of the DLR manipulator, so as to account for the
different kinematic structure of the wrist (see Problem 2.14).

2.10 Joint Space and Operational Space

As described in the previous sections, the direct kinematics equation of a
manipulator allows the position and orientation of the end-effector frame to
be expressed as a function of the joint variables with respect to the base frame.

If a task is to be specified for the end-effector, it is necessary to assign the
end-effector position and orientation, eventually as a function of time (tra-
jectory). This is quite easy for the position. On the other hand, specifying
the orientation through the unit vector triplet (e, s, a,e)11 is quite difficult,
since their nine components must be guaranteed to satisfy the orthonormal-
ity constraints imposed by (2.4) at each time instant. This problem will be
resumed in Chap. 4.

1 To simplify, the indication of the reference frame in the superscript is omitted.
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The problem of describing end-effector orientation admits a natural so-
lution if one of the above minimal representations is adopted. In this case,
indeed, a motion trajectory can be assigned to the set of angles chosen to
represent orientation.

Therefore, the position can be given by a minimal number of coordinates
with regard to the geometry of the structure, and the orientation can be
specified in terms of a minimal representation (Euler angles) describing the
rotation of the end-effector frame with respect to the base frame. In this way,
it is possible to describe the end-effector pose by means of the (m x 1) vector,
with m < n,

_ | Pe
T, { ¢J (2.80)
where p, describes the end-effector position and ¢, its orientation.

This representation of position and orientation allows the description of an
end-effector task in terms of a number of inherently independent parameters.
The vector x. is defined in the space in which the manipulator task is specified;
hence, this space is typically called operational space. On the other hand, the
joint space (configuration space) denotes the space in which the (n x 1) vector
of joint variables

q1
q=1 1, (2.81)
qn
is defined; it is ¢; = 1; for a revolute joint and ¢; = d; for a prismatic

joint. Accounting for the dependence of position and orientation from the
joint variables, the direct kinematics equation can be written in a form other
than (2.50), i.e.,

z. = k(q). (2.82)

The (m x 1) vector function k(-) — nonlinear in general — allows computa-
tion of the operational space variables from the knowledge of the joint space
variables.

It is worth noticing that the dependence of the orientation components
of the function k(q) in (2.82) on the joint variables is not easy to express
except for simple cases. In fact, in the most general case of a six-dimensional
operational space (m = 6), the computation of the three components of the
function ¢,.(q) cannot be performed in closed form but goes through the
computation of the elements of the rotation matrix, i.e., n.(q), s.(q), a.(q).
The equations that allow the determination of the Euler angles from the triplet
of unit vectors me., Sse, a. were given in Sect. 2.4.
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Example 2.5

Consider again the three-link planar arm in Fig. 2.20. The geometry of the structure
suggests that the end-effector position is determined by the two coordinates p, and
Py, while its orientation is determined by the angle ¢ formed by the end-effector with
the axis zo. Expressing these operational variables as a function of the joint variables,
the two position coordinates are given by the first two elements of the fourth column
of the homogeneous transformation matrix (2.63), while the orientation angle is
simply given by the sum of joint variables. In sum, the direct kinematics equation
can be written in the form

Pz
Te = |:py:| = k(q) =
¢

This expression shows that three joint space variables allow specification of at most
three independent operational space variables. On the other hand, if orientation is
of no concern, it is . = [ps py]T and there is kinematic redundancy of DOFs
with respect to a pure positioning end-effector task; this concept will be dealt with
in detail afterwards.

(2.83)

a181 + a2812 + azsiz3

Y1+ Y2 + U3

aic1 + azci2 + ascias }

2.10.1 Workspace

With reference to the operational space, an index of robot performance is
the so-called workspace; this is the region described by the origin of the end-
effector frame when all the manipulator joints execute all possible motions. It
is often customary to distinguish between reachable workspace and dexterous
workspace. The latter is the region that the origin of the end-effector frame
can describe while attaining different orientations, while the former is the
region that the origin of the end-effector frame can reach with at least one
orientation. Obviously, the dexterous workspace is a subspace of the reachable
workspace. A manipulator with less than six DOFs cannot take any arbitrary
position and orientation in space.

The workspace is characterized by the manipulator geometry and the me-
chanical joint limits. For an n-DOF manipulator, the reachable workspace is
the geometric locus of the points that can be achieved by considering the
direct kinematics equation for the sole position part, i.e.,

p. =P.(q) Gim <@ <g¢gm t=1,....n,

where @ (ginr) denotes the minimum (maximum) limit at Joint . This vol-
ume is finite, closed, connected — p,(q) is a continuous function — and thus
is defined by its bordering surface. Since the joints are revolute or prismatic,
it is easy to recognize that this surface is constituted by surface elements of
planar, spherical, toroidal and cylindrical type. The manipulator workspace
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Fig. 2.29. Region of admissible configurations for a two-link arm

(without end-effector) is reported in the data sheet given by the robot manu-
facturer in terms of a top view and a side view. It represents a basic element
to evaluate robot performance for a desired application.

Example 2.6

Consider the simple two-link planar arm. If the mechanical joint limits are known,
the arm can attain all the joint space configurations corresponding to the points in
the rectangle in Fig. 2.29.

The reachable workspace can be derived via a graphical construction of the
image of the rectangle perimeter in the plane of the arm. To this purpose, it is
worth considering the images of the segments ab, bc, cd, da, ae, ef, fd. Along the
segments ab, be, cd, ae, ef, fd a loss of mobility occurs due to a joint limit; a
loss of mobility occurs also along the segment ad because the arm and forearm are
aligned.'? Further, a change of the arm posture occurs at points a and d: for gz > 0
the elbow-down posture is obtained, while for g2 < 0 the arm is in the elbow-up
posture.

In the plane of the arm, start drawing the arm in configuration A corresponding
to ¢im and g2 = 0 (a); then, the segment ab describing motion from ¢ = 0 to
qam generates the arc AB; the subsequent arcs BC, CD, DA, AE, EF, FD are
generated in a similar way (Fig. 2.30). The external contour of the area CDAEFHC
delimits the requested workspace. Further, the area BCDAB is relative to elbow-
down postures while the area DAFEF'D is relative to elbow-up postures; hence, the
points in the area BADH B are reachable by the end-effector with both postures.

12 Tn the following chapter, it will be seen that this configuration characterizes a
kinematic singularity of the arm.
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Fig. 2.30. Workspace of a two-link planar arm

In a real manipulator, for a given set of joint variables, the actual val-
ues of the operational space variables deviate from those computed via direct
kinematics. The direct kinematics equation has indeed a dependence from the
DH parameters which is not explicit in (2.82). If the mechanical dimensions
of the structure differ from the corresponding parameter of the table because
of mechanical tolerances, a deviation arises between the position reached in
the assigned posture and the position computed via direct kinematics. Such a
deviation is defined accuracy; this parameter attains typical values below one
millimeter and depends on the structure as well as on manipulator dimen-
sions. Accuracy varies with the end-effector position in the workspace and it
is a relevant parameter when robot programming oriented environments are
adopted, as will be seen in the last chapter.

Another parameter that is usually listed in the performance data sheet of
an industrial robot is repeatability which gives a measure of the manipulator’s
ability to return to a previously reached position; this parameter is relevant
for programming an industrial robot by the teaching—by—showing technique
which will be presented in Chap. 6. Repeatability depends not only on the
characteristics of the mechanical structure but also on the transducers and
controller; it is expressed in metric units and is typically smaller than accuracy.
For instance, for a manipulator with a maximum reach of 1.5m, accuracy
varies from 0.2 to 1 mm in the workspace, while repeatability varies from 0.02
to 0.2 mm.

2.10.2 Kinematic Redundancy

A manipulator is termed kinematically redundant when it has a number of
DOFs which is greater than the number of variables that are necessary to
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describe a given task. With reference to the above-defined spaces, a manipu-
lator is intrinsically redundant when the dimension of the operational space is
smaller than the dimension of the joint space (m < n). Redundancy is, any-
how, a concept relative to the task assigned to the manipulator; a manipulator
can be redundant with respect to a task and nonredundant with respect to
another. Even in the case of m = n, a manipulator can be functionally redun-
dant when only a number of r components of operational space are of concern
for the specific task, with r < m.

Consider again the three-DOF planar arm of Sect. 2.9.1. If only the end-
effector position (in the plane) is specified, that structure presents a functional
redundancy (n = m = 3, r = 2); this is lost when also the end-effector
orientation in the plane is specified (n = m = r = 3). On the other hand, a
four-DOF planar arm is intrinsically redundant (n =4, m = 3).

Yet, take the typical industrial robot with six DOFs; such manipulator
is not intrinsically redundant (n = m = 6), but it can become functionally
redundant with regard to the task to execute. Thus, for instance, in a laser-
cutting task a functional redundancy will occur since the end-effector rotation
about the approach direction is irrelevant to completion of the task (r = 5).

At this point, a question should arise spontaneously: Why to intentionally
utilize a redundant manipulator? The answer is to recognize that redundancy
can provide the manipulator with dexterity and versatility in its motion. The
typical example is constituted by the human arm that has seven DOF's: three
in the shoulder, one in the elbow and three in the wrist, without considering
the DOFs in the fingers. This manipulator is intrinsically redundant; in fact,
if the base and the hand position and orientation are both fixed — requiring
six DOFs — the elbow can be moved, thanks to the additional available DOF.
Then, for instance, it is possible to avoid obstacles in the workspace. Further,
if a joint of a redundant manipulator reaches its mechanical limit, there might
be other joints that allow execution of the prescribed end-effector motion.

A formal treatment of redundancy will be presented in the following chap-
ter.

2.11 Kinematic Calibration

The Denavit—Hartenberg parameters for direct kinematics need to be com-
puted as precisely as possible in order to improve manipulator accuracy. Kine-
matic calibration techniques are devoted to finding accurate estimates of DH
parameters from a series of measurements on the manipulator’s end-effector
pose. Hence, they do not allow direct measurement of the geometric parame-
ters of the structure.

Consider the direct kinematics equation in (2.82) which can be rewritten
by emphasizing the dependence of the operational space variables on the fixed

DH parameters, besides the joint variables. Let @ = [a; ... a,]T, a =



2.11 Kinematic Calibration 89

[ar ... )T, d=1[dy ... dp,]",and ¥ = [6; ... 0,]7 denote the
vectors of DH parameters for the whole structure; then (2.82) becomes

z. =k(a,o,d, V). (2.84)

The manipulator’s end-effector pose should be measured with high precision
for the effectiveness of the kinematic calibration procedure. To this purpose
a mechanical apparatus can be used that allows the end-effector to be con-
strained at given poses with a priori known precision. Alternatively, direct
measurement systems of object position and orientation in the Cartesian space
can be used which employ triangulation techniques.

Let @, be the measured pose and @, the nominal pose that can be com-
puted via (2.84) with the nominal values of the parameters a, «, d, ¥. The
nominal values of the fixed parameters are set equal to the design data of the
mechanical structure, whereas the nominal values of the joint variables are set
equal to the data provided by the position transducers at the given manipula-
tor posture. The deviation Ax = x,,, — x,, gives a measure of accuracy at the
given posture. On the assumption of small deviations, at first approximation,
it is possible to derive the following relation from (2.84):

Ax = %Aa + S—ZAOL + %Ad + g—gAﬂ (2.85)
where Aa, Aa, Ad, A9 denote the deviations between the values of the
parameters of the real structure and the nominal ones. Moreover, dk/da,
Ok/Oa, Ok/0d, Ok /0Y denote the (m x n) matrices whose elements are the
partial derivatives of the components of the direct kinematics function with
respect to the single parameters.!?

Group the parameters in the (4n x 1) vector ¢ = [aT o dT 977,
Let AC = ¢,,,—¢,, denote the parameter variations with respect to the nominal
values, and @ = [0k/Ja OJk/0a 0Ok/Od Ok/0VY] the (m x 4n) kinematic
calibration matriz computed for the nominal values of the parameters ¢,.
Then (2.85) can be compactly rewritten as

Az = B(C,)AC. (2.86)

It is desired to compute A( starting from the knowledge of ¢,,, z,, and the
measurement of x,,. Since (2.86) constitutes a system of m equations into
4n unknowns with m < 4n, a sufficient number of end-effector pose measure-
ments has to be performed so as to obtain a system of at least 4n equations.
Therefore, if measurements are made for a number of [ poses, (2.86) yields

A:I?l @1
Az =| @ | =] | AC=PACL. (2.87)
A(I}l @l

13 These matrices are the Jacobians of the transformations between the parameter
space and the operational space.
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As regards the nominal values of the parameters needed for the computation
of the matrices @;, it should be observed that the geometric parameters are
constant whereas the joint variables depend on the manipulator configuration
at pose 1.

In order to avoid ill-conditioning of matrix @, it is advisable to choose [
so that Im > 4n and then solve (2.87) with a least-squares technique; in this
case the solution is of the form

A¢=(3"®)'¢" Az (2.88)
where (@Té)_léT is the left pseudo-inverse matrix of @.'* By computing &

with the nominal values of the parameters (,,, the first parameter estimate is
given by

n’

¢ =¢, + AC (2.89)

This is a nonlinear parameter estimate problem and, as such, the procedure
should be iterated until A converges within a given threshold. At each itera-
tion, the calibration matrix @ is to be updated with the parameter estimates
¢’ obtained via (2.89) at the previous iteration. In a similar manner, the de-
viation AZ is to be computed as the difference between the measured values
for the ! end-effector poses and the corresponding poses computed by the di-
rect kinematics function with the values of the parameters at the previous
iteration. As a result of the kinematic calibration procedure, more accurate
estimates of the real manipulator geometric parameters as well as possible
corrections to make on the joint transducers measurements are obtained.

Kinematic calibration is an operation that is performed by the robot manu-
facturer to guarantee the accuracy reported in the data sheet. There is another
kind of calibration that is performed by the robot user which is needed for the
measurement system start-up to guarantee that the position transducers data
are consistent with the attained manipulator posture. For instance, in the
case of incremental (nonabsolute) position transducers, such calibration con-
sists of taking the mechanical structure into a given reference posture (home)
and initializing the position transducers with the values at that posture.

2.12 Inverse Kinematics Problem

The direct kinematics equation, either in the form (2.50) or in the form (2.82),
establishes the functional relationship between the joint variables and the end-
effector position and orientation. The inverse kinematics problem consists of
the determination of the joint variables corresponding to a given end-effector
position and orientation. The solution to this problem is of fundamental im-
portance in order to transform the motion specifications, assigned to the end-
effector in the operational space, into the corresponding joint space motions
that allow execution of the desired motion.

14 See Sect. A.7 for the definition of the pseudo-inverse of a matrix.
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As regards the direct kinematics equation in (2.50), the end-effector po-
sition and rotation matrix are computed in a unique manner, once the joint
variables are known'®. On the other hand, the inverse kinematics problem is
much more complex for the following reasons:

e The equations to solve are in general nonlinear, and thus it is not always
possible to find a closed-form solution.
Multiple solutions may exist.
Infinite solutions may exist, e.g., in the case of a kinematically redundant
manipulator.

e There might be no admissible solutions, in view of the manipulator kine-
matic structure.

The existence of solutions is guaranteed only if the given end-effector position
and orientation belong to the manipulator dexterous workspace.

On the other hand, the problem of multiple solutions depends not only on
the number of DOFs but also on the number of non-null DH parameters; in
general, the greater the number of non-null parameters, the greater the num-
ber of admissible solutions. For a six-DOF manipulator without mechanical
joint limits, there are in general up to 16 admissible solutions. Such occur-
rence demands some criterion to choose among admissible solutions (e.g., the
elbow-up/elbow-down case of Example 2.6). The existence of mechanical joint
limits may eventually reduce the number of admissible multiple solutions for
the real structure.

Computation of closed-form solutions requires either algebraic intuition to
find those significant equations containing the unknowns or geometric intu-
ition to find those significant points on the structure with respect to which
it is convenient to express position and/or orientation as a function of a re-
duced number of unknowns. The following examples will point out the ability
required to an inverse kinematics problem solver. On the other hand, in all
those cases when there are no — or it is difficult to find — closed-form so-
lutions, it might be appropriate to resort to numerical solution techniques;
these clearly have the advantage of being applicable to any kinematic struc-
ture, but in general they do not allow computation of all admissible solutions.
In the following chapter, it will be shown how suitable algorithms utilizing
the manipulator Jacobian can be employed to solve the inverse kinematics
problem.

2.12.1 Solution of Three-link Planar Arm

Consider the arm shown in Fig. 2.20 whose direct kinematics was given
in (2.63). It is desired to find the joint variables ¥, ¥5, ¥3 corresponding
to a given end-effector position and orientation.

15 In general, this cannot be said for (2.82) too, since the Euler angles are not
uniquely defined.
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As already pointed out, it is convenient to specify position and orientation
in terms of a minimal number of parameters: the two coordinates p,, p, and
the angle ¢ with axis g, in this case. Hence, it is possible to refer to the direct
kinematics equation in the form (2.83).

A first algebraic solution technique is illustrated below. Having specified
the orientation, the relation

¢ =11+ + 73 (2.90)

is one of the equations of the system to solvel®. From (2.63) the following
equations can be obtained:

PWa = Pz — A3C¢ = A1C1 + G2C12 (2.91)
PWy = Py — A3S¢p = G151 + G2512 2.92)

which describe the position of point W i.e., the origin of Frame 2; this depends
only on the first two angles ¥; and 5. Squaring and summing (2.91), (2.92)
yields

Piva + Py, = i + a3 + 2a1a2c;
from which ) ) 5 )
_ Pw +pWy —ay — a3

2a1a9

C2

The existence of a solution obviously imposes that —1 < ¢y < 1, otherwise
the given point would be outside the arm reachable workspace. Then, set

So ==+ 176%,

where the positive sign is relative to the elbow-down posture and the negative
sign to the elbow-up posture. Hence, the angle ¥ can be computed as

P9 = Atan2(sg, c2).

Having determined 95, the angle 99, can be found as follows. Substituting
Y2 into (2.91), (2.92) yields an algebraic system of two equations in the two
unknowns s; and ¢;, whose solution is

(a1 + a2C2)PWy — A252PWx

S1= 2 2
Py +pWy
o — (a1 + azca)pwa + azsapwy
1= 2 2 :
Py +pWy

In analogy to the above, it is
191 = Atan2(sl, Cl).

16 If ¢ is not specified, then the arm is redundant and there exist infinite solutions
to the inverse kinematics problem.
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0

Fig. 2.31. Admissible postures for a two-link planar arm

In the case when s; = 0, it is obviously ¥ = 0,7; as will be shown in the
following, in such a posture the manipulator is at a kinematic singularity. Yet,
the angle ¢; can be determined uniquely, unless a; = a2 and it is required
Pwa = Pwy = 0.

Finally, the angle ¥3 is found from (2.90) as

U3 =¢ — 01— Vs

An alternative geometric solution technique is presented below. As above,
the orientation angle is given as in (2.90) and the coordinates of the origin
of Frame 2 are computed as in (2.91), (2.92). The application of the cosine
theorem to the triangle formed by links a1, a2 and the segment connecting
points W and O gives

p%,vm +p€vy =a? +a% — 20105 cos (1 — 9,);
the two admissible configurations of the triangle are shown in Fig. 2.31. Ob-
serving that cos (m — ¥2) = —cos ¥5 leads to
_ DPiye + Py, —af — a3
2&1@2 '

C2

For the existence of the triangle, it must be ,/p%Vz —l—p%vy < a1 + ay. This

condition is not satisfied when the given point is outside the arm reachable
workspace. Then, under the assumption of admissible solutions, it is

¥ = Fcos ~1(c2);

the elbow-up posture is obtained for ¥ € (—m,0) while the elbow-down pos-
ture is obtained for ¥4 € (0, 7).

To find 1, consider the angles a and 3 in Fig. 2.31. Notice that the deter-
mination of a depends on the sign of pyw, and pw,; then, it is necessary to
compute « as

a = Atan2(pwy, pwa)-
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To compute [, applying again the cosine theorem yields

7/ Py + Py, = a1 + azca

and resorting to the expression of ¢y given above leads to

2 2 2_ 2
1 [ Pwa TPy T 01 — a3

2a1\/PYy, + Py,

with 3 € (0,7) so as to preserve the existence of triangles. Then, it is

B = cos ™

191:ai67

where the positive sign holds for ¥ < 0 and the negative sign for ¥ > 0.
Finally, ¥5 is computed from (2.90).

It is worth noticing that, in view of the substantial equivalence between
the two-link planar arm and the parallelogram arm, the above techniques can
be formally applied to solve the inverse kinematics of the arm in Sect. 2.9.2.

2.12.2 Solution of Manipulators with Spherical Wrist

Most of the existing manipulators are kinematically simple, since they are
typically formed by an arm, of the kind presented above, and a spherical wrist;
see the manipulators in Sects. 2.9.6-2.9.8. This choice is partly motivated by
the difficulty to find solutions to the inverse kinematics problem in the general
case. In particular, a siz-DOF kinematic structure has closed-form inverse
kinematics solutions if:

e three consecutive revolute joint axes intersect at a common point, like for
the spherical wrist;
e three consecutive revolute joint axes are parallel.

In any case, algebraic or geometric intuition is required to obtain closed-form
solutions.

Inspired by the previous solution to a three-link planar arm, a suitable
point along the structure can be found whose position can be expressed both as
a function of the given end-effector position and orientation and as a function
of a reduced number of joint variables. This is equivalent to articulating the
inverse kinematics problem into two subproblems, since the solution for the
position is decoupled from that for the orientation.

For a manipulator with spherical wrist, the natural choice is to locate such
point W at the intersection of the three terminal revolute axes (Fig. 2.32). In
fact, once the end-effector position and orientation are specified in terms of
p, and R, =[n. S. a.], the wrist position can be found as

Pw =P, — dsac (2.93)
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Fig. 2.32. Manipulator with spherical wrist

which is a function of the sole joint variables that determine the arm posi-
tion'”. Hence, in the case of a (nonredundant) three-DOF arm, the inverse
kinematics can be solved according to the following steps:

Compute the wrist position py, (1,42, ¢3) as in (2.93).
Solve inverse kinematics for (g1, gz, ¢3)-

Compute R3(q1,42,q3)-

Compute R (94,95,9) = R3T R.

Solve inverse kinematics for orientation (U4, 95, Ys).

Therefore, on the basis of this kinematic decoupling, it is possible to solve
the inverse kinematics for the arm separately from the inverse kinematics
for the spherical wrist. Below are presented the solutions for two typical arms
(spherical and anthropomorphic) as well as the solution for the spherical wrist.

2.12.3 Solution of Spherical Arm

Consider the spherical arm shown in Fig. 2.22, whose direct kinematics was
given in (2.65). It is desired to find the joint variables 91, 2, d3 corresponding
to a given end-effector position py .

In order to separate the variables on which py;, depends, it is convenient to
express the position of py;, with respect to Frame 1; then, consider the matrix
equation

(AY) TS = A4},

17 Note that the same reasoning was implicitly adopted in Sect. 2.12.1 for the three-
link planar arm; py;, described the one-DOF wrist position for the two-DOF arm
obtained by considering only the first two links.
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Equating the first three elements of the fourth columns of the matrices on
both sides yields

PwazC1 + PwyS1 d3so
p%/v = —Pwz = 7d3€2 (294)
—PwaS1 + PwyCl dy

which depends only on ¥ and d3. To solve this equation, set

U1
t = tan —
2
so that
1—t2 2t
C1 S1

R I
Substituting this equation in the third component on the left-hand side
of (2.94) gives

(da + pwy)t* + 2pwat + da — pwy = 0,

—pwa £ \/ Dy, + PRy, — d5
t= .
d2 +pWy

The two solutions correspond to two different postures. Hence, it is

9 = 2Atan2(—pww +. /P +p%vy —d2, do +pWy) .

Once ¥, is known, squaring and summing the first two components of (2.94)
yields

whose solution is

d3 = \/(mecl + pwys1)? + p¥ .,

where only the solution with ds > 0 has been considered. Note that the same
value of d3 corresponds to both solutions for ¢;. Finally, if d3 # 0, from the
first two components of (2.94) it is

PWwzCl + PwyS1 _ d3S2

b
—Pwz —dsc

from which
Uy = AtanZ(prcl +pWy311pWZ)'

Notice that, if d3 = 0, then ¥ cannot be uniquely determined.

2.12.4 Solution of Anthropomorphic Arm

Consider the anthropomorphic arm shown in Fig. 2.23. It is desired to find
the joint variables ¥, 2, U3 corresponding to a given end-effector position
Py - Notice that the direct kinematics for py, is expressed by (2.66) which can
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be obtained from (2.70) by setting d¢ = 0, dy = a3 and replacing 3 with the
angle ¥3 + /2 because of the misalignment of the Frames 3 for the structures
in Fig. 2.23 and in Fig. 2.26, respectively. Hence, it follows

pwz = c1(azcz + azcasz) (2.95)
pwy = s1(azca + azcas) (2.96)
PWz = G282 + a3523. (2.97)

Proceeding as in the case of the two-link planar arm, it is worth squaring
and summing (2.95)—(2.97) yielding

Pive + Pivy + Py, = a5 + a3 + 2aza3c3

from which 5 ) ) ) )
_ Pwe +pWy + Py, —az —aj

2&2&3

(2.98)

C3

where the admissibility of the solution obviously requires that —1 < ¢3 < 1,

or equivalently |az —as| < \/ P, + p%vy + p?,, < az+as, otherwise the wrist
point is outside the reachable workspace of the manipulator. Hence it is

s3=44/1—c2 (2.99)

193 = Atan2(537 63)

and thus

giving the two solutions, according to the sign of s3,

Y31 € [—7, 7] (2.100)
Y311 = —V3,1. (2.101)

Having determined ¢3, it is possible to compute 95 as follows. Squaring
and summing (2.95), (2.96) gives

Pive + Divy = (a2c2 + azcas)?

azca + azcaz = £/ Py, + iy (2.102)

The system of the two Egs. (2.102), (2.97), for each of the solutions (2.100),
(2.101), admits the solutions:

+1\/Piye er%/vy(ﬂm + azcz) + pw2a3s3 (2.109)

from which

Cco =
2 a? + a3 + 2asazcs
pw=(az + ascs) F \/p%/vm +P%Vya383
$9 = . (2.104)

a% + a3 + 2azazcs
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From (2.103), (2.104) it follows
Yo = Atan2(ss, c2)

which gives the four solutions for ¥, according to the sign of s in (2.99):

U21 = Atan2 ((02 + aze3)pw. — azsg /Dy, + Py
(a2 + a303)\/p‘2;vw +p%vy + agsg'pWZ
Yo 11 = Atan2 ((ag + azes)pws + azsy /i, er%}vy7
—(az + azcz)\ /Py, + iy, + agsngZ) (2.106)

corresponding to s}' = \/q> and

¥o 111 = Atan2 <(az + ages)pws — GSSQ\/Pa/Z +P%Vy,
(CLQ —+ agcg)\/m + GBS?TPWZ
Ja1v = Atan2 ((az + aszc3)pw= + aszsy /Py, + p%/vyv
—(az + azes)\ /Py, + Py, + a33§PWZ) (2.108)

corresponding to s3 = —y/1 — c2.
Finally, to compute 91, it is sufficient to rewrite (2.95), (2.96), using

(2.102), as
pwa = £c1y/ Py, + Piyy,
pwy = £514/ Py, + Py,

which, once solved, gives the two solutions:

191,1 = AtanQ(pWyvaz) (2109)
Y11 = Atan2(—pwy, —Pwaz)- (2.110)

Notice that (2.110) gives'®

(2.105)

SN—

(2.107)

N———

{AtanQ(pwy,sz) -7 Pwy =0
Vi1 =
Atan2(pwy, pwe) + 7 pwy < 0.

18 Tt is easy to show that Atan2(—y, —z) = —Atan2(y, —z) and

m — Atan2(y, x) y>0

Atan2(y, —z) = { —m — Atan2(y,z)  y <0.
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Fig. 2.33. The four configurations of an anthropomorphic arm compatible with a
given wrist position

As can be recognized, there exist four solutions according to the values of
J3 in (2.100), (2.101), 95 in (2.105)—(2.108) and ¥; in (2.109), (2.110):

(191,17 192,17 793,1) (ﬂl,la 192,1111 793,11) (191,11, 192,117 793,1) (191,11, 192,1\/7 193,11)7

which are illustrated in Fig. 2.33: shoulder-right /elbow—up, shoulder—left /elbow—

up, shoulder-right /elbow—down, shoulder—left/elbow—down; obviously, the fore-
arm orientation is different for the two pairs of solutions.
Notice finally how it is possible to find the solutions only if at least

pwa # 0 or pwy # 0.

In the case pw, = pwy = 0, an infinity of solutions is obtained, since it is
possible to determine the joint variables 5 and 93 independently of the value
of ¥1; in the following, it will be seen that the arm in such configuration is
kinematically singular (see Problem 2.18).

2.12.5 Solution of Spherical Wrist

Consider the spherical wrist shown in Fig. 2.24, whose direct kinematics was
given in (2.67). It is desired to find the joint variables ¥4, 95, ¥g corresponding
to a given end-effector orientation RS. As previously pointed out, these angles
constitute a set of Euler angles ZYZ with respect to Frame 3. Hence, having
computed the rotation matrix

ny sy @
3_ |3 3 43
Ry=|n, s, ay]|,

n; o si o4
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from its expression in terms of the joint variables in (2.67), it is possible to
compute the solutions directly as in (2.19), (2.20), i.e

¥4 = Atan2(a? a,, al)
95 = Atan2(,/ (a3)? + (ad)?, Z) (2.111)
96 = Atan2(s®, —n?)
for ¥5 € (0, ), and
¥4 = Atan2(—a3, —a?)
s _Atan2( ,/ a3)? + (a3)2,a ) (2.112)

Y6 = Atan2(—s>,n3)

Z

for 95 € (—,0).
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Problems

2.1. Find the rotation matrix corresponding to the set of Euler angles ZXZ.

2.2. Discuss the inverse solution for the Euler angles ZYZ in the case sy = 0.
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Fig. 2.34. Four-link closed-chain planar arm with prismatic joint

2.3. Discuss the inverse solution for the Roll-Pitch—Yaw angles in the case
Cy = 0.

2.4. Verify that the rotation matrix corresponding to the rotation by an angle
about an arbitrary axis is given by (2.25).

2.5. Prove that the angle and the unit vector of the axis corresponding to a
rotation matrix are given by (2.27), (2.28). Find inverse formulae in the case
of sind = 0.

2.6. Verify that the rotation matrix corresponding to the unit quaternion is
given by (2.33).

2.7. Prove that the unit quaternion is invariant with respect to the rotation
matrix and its transpose, i.e., R(1, €)e = RT (1, €)e = e.

2.8. Prove that the unit quaternion corresponding to a rotation matrix is
given by (2.34), (2.35).

2.9. Prove that the quaternion product is expressed by (2.37).

2.10. By applying the rules for inverting a block-partitioned matrix, prove
that matrix Ag is given by (2.45).

2.11. Find the direct kinematics equation of the four-link closed-chain planar
arm in Fig. 2.34, where the two links connected by the prismatic joint are
orthogonal to each other

2.12. Find the direct kinematics equation for the cylindrical arm in Fig. 2.35.

2.13. Find the direct kinematics equation for the SCARA manipulator in
Fig. 2.36.

2.14. Find the complete direct kinematics equation for the humanoid manip-
ulator in Fig. 2.28.
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Fig. 2.35. Cylindrical arm

2.15. For the set of minimal representations of orientation ¢, define the sum
operation in terms of the composition of rotations. By means of an example,
show that the commutative property does not hold for that operation.

2.16. Consider the elementary rotations about coordinate axes given by in-
finitesimal angles. Show that the rotation resulting from any two elementary
rotations does not depend on the order of rotations. [Hint: for an infinitesimal
angle d¢, approximate cos (d¢) ~ 1 and sin (d¢) ~ d¢ ...]. Further, define
R(d¢,,doy,dd.) = Ry(doy)Ry(dpy)R.(d¢,); show that

R(dy, doy, dp.)R(ddy,, dd),, dd.) = R(dey + ddy, dy + dd),, dp. + dg.).

2.17. Draw the workspace of the three-link planar arm in Fig. 2.20 with the
data:
a; = 0.5 as = 0.3 asz = 0.2

—m/3<q <7/3 —2m/3 < g2 <27m/3 —7/2<gqs <m/2.

2.18. With reference to the inverse kinematics of the anthropomorphic arm
in Sect. 2.12.4, discuss the number of solutions in the singular cases of s3 =0

and pwa = pwy = 0.
2.19. Solve the inverse kinematics for the cylindrical arm in Fig. 2.35.

2.20. Solve the inverse kinematics for the SCARA manipulator in Fig. 2.36.
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3

Differential Kinematics and Statics

In the previous chapter, direct and inverse kinematics equations establishing
the relationship between the joint variables and the end-effector pose were
derived. In this chapter, differential kinematics is presented which gives the
relationship between the joint velocities and the corresponding end-effector
linear and angular velocity. This mapping is described by a matrix, termed
geometric Jacobian, which depends on the manipulator configuration. Alter-
natively, if the end-effector pose is expressed with reference to a minimal
representation in the operational space, it is possible to compute the Jaco-
bian matrix via differentiation of the direct kinematics function with respect
to the joint variables. The resulting Jacobian, termed analytical Jacobian, in
general differs from the geometric one. The Jacobian constitutes one of the
most important tools for manipulator characterization; in fact, it is useful for
finding singularities, analyzing redundancy, determining inverse kinematics
algorithms, describing the mapping between forces applied to the end-effector
and resulting torques at the joints (statics) and, as will be seen in the follow-
ing chapters, deriving dynamic equations of motion and designing operational
space control schemes. Finally, the kineto-statics duality concept is illustrated,
which is at the basis of the definition of velocity and force manipulability el-
lipsoids.

3.1 Geometric Jacobian

Consider an n-DOF manipulator. The direct kinematics equation can be writ-
ten in the form

T.(q) = R.(q)  pc(a) 3.1)
o” 1
where ¢ = [q1 ... ¢n]7T is the vector of joint variables. Both end-effector

position and orientation vary as g varies.
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The goal of the differential kinematics is to find the relationship between
the joint velocities and the end-effector linear and angular velocities. In other
words, it is desired to express the end-effector linear velocity p, and angular
velocity w, as a function of the joint velocities ¢. As will be seen afterwards,
the sought relations are both linear in the joint velocities, i.e.,

p. = Jr(a)d (3.2)

we = Jo(q)q. (3:3)

In (3.2) Jp is the (3 X n) matrix relating the contribution of the joint veloc-
ities ¢ to the end-effector linear velocity p,, while in (3.3) Jo is the (3 x n)
matrix relating the contribution of the joint velocities ¢ to the end-effector
angular velocity w,. In compact form, (3.2), (3.3) can be written as

v.= | 2] = st (3.9
e

which represents the manipulator differential kinematics equation. The (6 xn)

matrix J is the manipulator geometric Jacobian

g Hﬂ , (3.5)

which in general is a function of the joint variables.

In order to compute the geometric Jacobian, it is worth recalling a number
of properties of rotation matrices and some important results of rigid body
kinematics.

3.1.1 Derivative of a Rotation Matrix

The manipulator direct kinematics equation in (3.1) describes the end-effector
pose, as a function of the joint variables, in terms of a position vector and a
rotation matrix. Since the aim is to characterize the end-effector linear and
angular velocities, it is worth considering first the derivative of a rotation
matrixz with respect to time.

Consider a time-varying rotation matrix R = R(t). In view of the orthog-
onality of R, one has the relation

RORT(t) =1
which, differentiated with respect to time, gives the identity
. T

RHRT(t)+ R(H)R (t) = O.

Set
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the (3 x 3) matrix S is skew-symmetric since
St)+ 8Tt = 0. (3.7)
Postmultiplying both sides of (3.6) by R(t) gives
R(t) = S(t)R(t) (3.8)

that allows the time derivative of R(t) to be expressed as a function of R(t)
itself.

Equation (3.8) relates the rotation matrix R to its derivative by means
of the skew-symmetric operator S and has a meaningful physical interpreta-
tion. Consider a constant vector p’ and the vector p(t) = R(t)p’. The time
derivative of p(t) is )

p(t) = R(t)p',

which, in view of (3.8), can be written as

If the vector w(t) denotes the angular velocity of frame R(t) with respect to
the reference frame at time ¢, it is known from mechanics that

p(t) = w(t) x R(t)p'.

Therefore, the matrix operator S(t) describes the vector product between the
vector w and the vector R(¢)p’. The matrix S(t) is so that its symmetric
elements with respect to the main diagonal represent the components of the

vector w(t) = [wy wy, w,]7T in the form
0 —w, Wy
S=|w 0 —w]|, (3.9)
—Wwy Wy 0

which justifies the expression S(t) = S(w(t)). Hence, (3.8) can be rewritten
as
R = S(w)R. (3.10)

Furthermore, if R denotes a rotation matrix, it can be shown that the
following relation holds:

RS(w)R" = S(Rw) (3.11)

which will be useful later (see Problem 3.1).
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Example 3.1

Consider the elementary rotation matrix about axis z given in (2.6). If « is a function
of time, by computing the time derivative of R («a(t)), (3.6) becomes

—asina —acosa 0 cosa sina 0
S(t):[dcosa —asina 0} {sina cosa 0}
0 0 0 0 0 1
0 —& 0
= [d 0 0:| = S(w(t)).
0o 0 O

According to (3.9), it is
w=[0 0 &

that expresses the angular velocity of the frame about axis z.

With reference to Fig. 2.11, consider the coordinate transformation of a
point P from Frame 1 to Frame 0; in view of (2.38), this is given by

p’ = o} + Rip'. (3.12)
Differentiating (3.12) with respect to time gives

P =6’ + R%' + Rp"; (3.13)

utilizing the expression of the derivative of a rotation matrix (3.8) and speci-
fying the dependence on the angular velocity gives

P’ =0} + Rip' + S(w))Rip".
Further, denoting the vector R(l)p1 by r9, it is
-0

P’ =06+ Rip' + wl x 79 (3.14)

which is the known form of the velocity composition rule.
Notice that, if p' is fired in Frame 1, then it is

P’ =09+ ¥ x ¥ (3.15)

since p' = 0.

3.1.2 Link Velocities

Consider the generic Link ¢ of a manipulator with an open kinematic chain.
According to the Denavit—Hartenberg convention adopted in the previous
chapter, Link ¢ connects Joints ¢ and ¢ 4+ 1; Frame ¢ is attached to Link 1
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Fig. 3.1. Characterization of generic Link i of a manipulator

and has origin along Joint ¢+ 1 axis, while Frame ¢ — 1 has origin along Joint ¢
axis (Fig. 3.1).

Let p,_; and p; be the position vectors of the origins of Frames i —1 and 3,
respectively. Also, let Tij,i denote the position of the origin of Frame i with
respect to Frame i — 1 expressed in Frame ¢ — 1. According to the coordinate

transformation (3.10), one can write!

_ il
P, =P+ Ricari "1

Then, by virtue of (3.14), it is

. . i1 i1 .
D, =P+ R twia X Riar Ty, =P Hvici twicn XPis1y

(3.16)
which gives the expression of the linear velocity of Link ¢ as a function of the
translational and rotational velocities of Link i — 1. Note that v;_;; denotes
the velocity of the origin of Frame ¢ with respect to the origin of Frame i — 1.

Concerning link angular velocity, it is worth starting from the rotation
composition _
R, =R, \R%;
from (3.8), its time derivative can be written as
S(U.M)RZ = S(w7,1)R7 + Rl,ls(wjjyl)Rfl (317)

where wﬁ:}’i denotes the angular velocity of Frame ¢ with respect to Frame
i — 1 expressed in Frame i — 1. From (2.4), the second term on the right-hand
side of (3.17) can be rewritten as

Ri_1S(wi] )R ' =R, 1 S(wi | )R] {Ri_1R";

i—1,7

! Hereafter, the indication of superscript ‘0’ is omitted for quantities referred to
Frame 0. Also, without loss of generality, Frame 0 and Frame n are taken as the
base frame and the end-effector frame, respectively.
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in view of property (3.11), it is
R1_1S(w2:i2)R;71 = S(Ri_lw?_l )Rz

1—1,1

Then, (3.17) becomes
S(wi)R; = S(wi—1)R; + S(Ri_1w/_} ;) R;

1—1,2

leading to the result

w; =w;_1+ Ri—lwz:ii =w;_1twi_1;, (3.18)

which gives the expression of the angular velocity of Link 7 as a function of
the angular velocities of Link ¢ — 1 and of Link ¢ with respect to Link ¢ — 1.

The relations (3.16), (3.18) attain different expressions depending on the
type of Joint i (prismatic or revolute).

Prismatic joint

Since orientation of Frame i with respect to Frame ¢ — 1 does not vary by
moving Joint ¢, it is

Wi—1,i = 0. (319)
Further, the linear velocity is

Vo1 = diziy (3.20)

where z;_1 is the unit vector of Joint 7 axis. Hence, the expressions of angular
velocity (3.18) and linear velocity (3.16) respectively become

P =1 +dizio1 +w; x Ti—1,i (3.22)

where the relation w; = w;_1 has been exploited to derive (3.22).

Revolute joint
For the angular velocity it is obviously
Wi—1,i = 'léizv',fh (3~23)
while for the linear velocity it is
Vi—1,; = Wi—1,4 X Ti—1; (3-24)

due to the rotation of Frame i with respect to Frame i — 1 induced by the
motion of Joint ¢. Hence, the expressions of angular velocity (3.18) and linear
velocity (3.16) respectively become

W; = Ww;_1 + 19izi_1 (325)
1'91' == 1'71',1 + w; X Ti—1,iy (326)
where (3.18) has been exploited to derive (3.26).
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Lo

Fig. 3.2. Representation of vectors needed for the computation of the velocity
contribution of a revolute joint to the end-effector linear velocity

3.1.3 Jacobian Computation

In order to compute the Jacobian, it is convenient to proceed separately for
the linear velocity and the angular velocity.
For the contribution to the linear velocity, the time derivative of p,(q) can

be written as
n n

. Ip. . .
p. = Z Gq: 4 = JIpidi- (3.27)
1

=1 i=

This expression shows how p, can be obtained as the sum of the terms ¢;7p;-
Each term represents the contribution of the velocity of single Joint i to the
end-effector linear velocity when all the other joints are still.

Therefore, by distinguishing the case of a prismatic joint (¢; = d;) from
the case of a revolute joint (¢; = ¥;), it is:

e If Joint ¢ is prismatic, from (3.20) it is
didpi = dizi

and then
Jpi = Zi-1-
e If Joint 7 is revolute, observing that the contribution to the linear velocity
is to be computed with reference to the origin of the end-effector frame
(Fig. 3.2), it is

GiJp; = Wi—1,i X Ti—1,e = Vizi_1 X (Pe —pi_l)

and then
Ipi = Zi-1 % (Pe = Pi_1)-
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For the contribution to the angular velocity, in view of (3.18), it is

We = Wy = Zwi—l,i = ZJOiq.iv (3~28)
i=1 i=1

where (3.19) and (3.23) have been utilized to characterize the terms ¢;30;,
and thus in detail:

e If Joint i is prismatic, from (3.19) it is
4iJoi =0
and then
Joi = 0.

o If Joint ¢ is revolute, from (3.23) it is

GiJoi = 191'21‘—1
and then
Joi = Zi-1-

In summary, the Jacobian in (3.5) can be partitioned into the (3 x 1)
column vectors 7p; and jp; as

Jp1 Jpn
J = , (3.29)

Jo1 Jon

where
{231] for a prismatic joint
BP%} = (3.30)
o {zi_l % ipe B pi*l)} for a revolute joint.
i—1

The expressions in (3.30) allow Jacobian computation in a simple, systematic
way on the basis of direct kinematics relations. In fact, the vectors z;_1, p,
and p,_; are all functions of the joint variables. In particular:

e z; 1 is given by the third column of the rotation matrix R?_l, ie.,

Zi—1 = R?(ql) NN Ré:%(qi_l)ZO (331)

(3

where zg = [0 0 1]7 allows the selection of the third column.

e p, is given by the first three elements of the fourth column of the trans-
formation matrix TY, i.e., by expressing p, in the (4 x 1) homogeneous
form

b= A%ar) .. AL (a)o (3.32)

where p, =[0 0 0 1]7 allows the selection of the fourth column.
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e p,_; is given by the first three elements of the fourth column of the trans-
formation matrix T9 |, i.e., it can be extracted from

P =AYq) .. A3 (qi—1)Po- (3.33)

The above equations can be conveniently used to compute the translational
and rotational velocities of any point along the manipulator structure, as long
as the direct kinematics functions relative to that point are known.

Finally, notice that the Jacobian matrix depends on the frame in which
the end-effector velocity is expressed. The above equations allow computation
of the geometric Jacobian with respect to the base frame. If it is desired to
represent the Jacobian in a different Frame wu, it is sufficient to know the
relative rotation matrix R“. The relationship between velocities in the two

frames is
p.| _|R" O||p.
w1 O RY||wel’

e

which, substituted in (3.4), gives

] _[R* O7,.
KINPAR

e

and then

(3.34)

. [R* O
J‘{o R“}J’

where J“ denotes the geometric Jacobian in Frame u, which has been assumed
to be time-invariant.

3.2 Jacobian of Typical Manipulator Structures

In the following, the Jacobian is computed for some of the typical manipulator
structures presented in the previous chapter.

3.2.1 Three-link Planar Arm

In this case, from (3.30) the Jacobian is

Jq) = | (Ps —pPy) 21X (P3—p1) 22 % (P3—py)
zZ0 zZ1 z9

Computation of the position vectors of the various links gives

0 aicy aicy + ascia
po=|0 P = | a151 Py = | G151 + 2512
0 0 0
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aicy + azciz + ascias
Ps = | a151 + a2812 + assias
0

while computation of the unit vectors of revolute joint axes gives

0

o

Zog =21 =29 =
1

since they are all parallel to axis zg. From (3.29) it is

—a181 — G2812 — (35123 —0A2812 — A35123 —A3S5123

ajci + azciz + asciag azc12 + aszcios asc123
0 0 0
J= 0 0 o . (3.35)
0 0 0
1 1 1

In the Jacobian (3.35), only the three non-null rows are relevant (the rank of
the matrix is at most 3); these refer to the two components of linear velocity
along axes xg, yo and the component of angular velocity about axis zg. This
result can be derived by observing that three DOF's allow specification of at
most three end-effector variables; v, w,, w, are always null for this kinematic
structure. If orientation is of no concern, the (2x3) Jacobian for the positional
part can be derived by considering just the first two rows, i.e.,

_ | —a181 —a2812 — a3S123 —A2812 — A35123 —A35123
Jp = . (3.36)
ajcy + azci2 + ascias azc12 + ascias a3C123

3.2.2 Anthropomorphic Arm

In this case, from (3.30) the Jacobian is

J— | 70X (Ps —Po) 21 % (Ps—P1) 22 X% (P3—DP2)
20 z1 2o ’

Computation of the position vectors of the various links gives

0 a9C1Co
Po=p1 =10 Dy = | a251C2
0 asS9

ci(azcy + azcas)
P; = | s1(asce + azcas)
a2S2 + agso3
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while computation of the unit vectors of revolute joint axes gives

0 S1
zZo = 0 Z1 = Z9 = —C1
1 0
From (3.29) it is
—s1(azca +ascaz) —ci(azse + aszses) —azcises
01(0262 + (13023) —81(0252 + 03523) —a351523
J— 0 asca + azca3 asca3 (3.37)
0 S1 S1
0 —C1 —C1
1 0 0

Only three of the six rows of the Jacobian (3.37) are linearly independent.
Having 3 DOF's only, it is worth considering the upper (3 x 3) block of the
Jacobian

—si(agca + ascas)  —ci(azsy + assas)  —ascisas
Jp=| ci(azc2 +aszca3)  —si(azs2 +azses) —azsisas (3.38)
0 azC2 + azcas asCa3

that describes the relationship between the joint velocities and the end-effector
linear velocity. This structure does not allow an arbitrary angular velocity w
to be obtained; in fact, the two components w, and w, are not independent
(s1wy = —c1wy).

3.2.3 Stanford Manipulator

In this case, from (3.30) it is

g [#0x (s —Po) 21 x(Pe—p1) 22

Z0 zZ1 0
23 X (pg —P3) 24 X (P —Py) 25 X (P — P5)
zZ3 zZy4 Z5 .

Computation of the position vectors of the various links gives

0 0152d3 — 51d2
Po=p1 = |0 P3 =Py =P5 = | s152d3 + c1do
0 ngg

c182d3 — s1da + (01(626485 + s2¢5) — 515455)d6
Pe = | s152d3 + c1da + (s1(cacass + s2c5) + c18485)dg |
cads + (—s2c485 + cacs)ds
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while computation of the unit vectors of joint axes gives

0 —S1 C1S89
zZo = 0 zZ1 = (&1 Z9 = Z3 = | 8182
1 0 i Co
—C1C254 — S1¢4 c1(cac485 + 52¢5) — 515455
Z4 = | —S1C284 + C1C4 z5 = | s1(cacass + sacs) + €15455
5254 L —52C485 + C2C5

The sought Jacobian can be obtained by developing the computations as
in (3.29), leading to expressing end-effector linear and angular velocity as
a function of joint velocities.

3.3 Kinematic Singularities

The Jacobian in the differential kinematics equation of a manipulator defines
a linear mapping

ve =J(q)d (3.39)

between the vector g of joint velocities and the vector v, = [pL  w?'|T of end-
effector velocity. The Jacobian is, in general, a function of the configuration
q; those configurations at which J is rank-deficient are termed kinematic
singularities. To find the singularities of a manipulator is of great interest for

the following reasons:

a) Singularities represent configurations at which mobility of the structure
is reduced, i.e., it is not possible to impose an arbitrary motion to the
end-effector.

b) When the structure is at a singularity, infinite solutions to the inverse
kinematics problem may exist.

c) In the neighbourhood of a singularity, small velocities in the operational
space may cause large velocities in the joint space.

Singularities can be classified into:

e Boundary singularities that occur when the manipulator is either out-
stretched or retracted. It may be understood that these singularities do
not represent a true drawback, since they can be avoided on condition that
the manipulator is not driven to the boundaries of its reachable workspace.

e Internal singularities that occur inside the reachable workspace and are
generally caused by the alignment of two or more axes of motion, or else by
the attainment of particular end-effector configurations. Unlike the above,
these singularities constitute a serious problem, as they can be encountered
anywhere in the reachable workspace for a planned path in the operational
space.
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Fig. 3.3. Two-link planar arm at a boundary singularity

Example 3.2

To illustrate the behaviour of a manipulator at a singularity, consider a two-link
planar arm. In this case, it is worth considering only the components p, and p, of
the linear velocity in the plane. Thus, the Jacobian is the (2 x 2) matrix

J= —ais1 —azs12  —a2812 . (340)

aici + az2c12 azCi12
To analyze matrix rank, consider its determinant given by
det(J) = aiaz2s2. (3.41)
For ai,az # 0, it is easy to find that the determinant in (3.41) vanishes whenever
Y2 =0 Yo =,

Y1 being irrelevant for the determination of singular configurations. These occur
when the arm tip is located either on the outer (92 = 0) or on the inner (J2 = =)
boundary of the reachable workspace. Figure 3.3 illustrates the arm posture for
92 = 0.

By analyzing the differential motion of the structure in such configuration, it
can be observed that the two column vectors [—(ai +az2)si (a1 +a2)er]T and
[—azs1  azc1]T of the Jacobian become parallel, and thus the Jacobian rank be-
comes one; this means that the tip velocity components are not independent (see
point a) above).

3.3.1 Singularity Decoupling

Computation of internal singularities via the Jacobian determinant may be
tedious and of no easy solution for complex structures. For manipulators hav-
ing a spherical wrist, by analogy with what has already been seen for inverse
kinematics, it is possible to split the problem of singularity computation into
two separate problems:
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[ q95:0

<5
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Fig. 3.4. Spherical wrist at a singularity

e computation of arm singularities resulting from the motion of the first 3
or more links,

e computation of wrist singularities resulting from the motion of the wrist
joints.

For the sake of simplicity, consider the case n = 6; the Jacobian can be
partitioned into (3 x 3) blocks as follows:

Jll J12
J = 3.42
[ng ng} (342)

where, since the outer 3 joints are all revolute, the expressions of the two right
blocks are respectively

Jio=[z3 % (p, —p3) zax (. —Ps) 25 % (P —P5)]

J222[23 zZ4 Z5]. (343)

As singularities are typical of the mechanical structure and do not depend on
the frames chosen to describe kinematics, it is convenient to choose the origin
of the end-effector frame at the intersection of the wrist axes (see Fig. 2.32).
The choice p = py, leads to

Ji2=[0 0 0],

since all vectors py, — p; are parallel to the unit vectors z;, for ¢ = 3,4, 5, no
matter how Frames 3,4,5 are chosen according to DH convention. In view of
this choice, the overall Jacobian becomes a block lower-triangular matrix. In
this case, computation of the determinant is greatly simplified, as this is given
by the product of the determinants of the two blocks on the diagonal, i.e.,

det(J) = det(J11)det(J22). (3.44)
In turn, a true singularity decoupling has been achieved; the condition

det(Jll) =0
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Fig. 3.5. Anthropomorphic arm at an elbow singularity

leads to determining the arm singularities, while the condition
det(JQQ) =0

leads to determining the wrist singularities.

Notice, however, that this form of Jacobian does not provide the relation-
ship between the joint velocities and the end-effector velocity, but it leads to
simplifying singularity computation. Below the two types of singularities are
analyzed in detail.

3.3.2 Wrist Singularities

On the basis of the above singularity decoupling, wrist singularities can be
determined by inspecting the block Js in (3.43). It can be recognized that the
wrist is at a singular configuration whenever the unit vectors zs, z4, z5 are
linearly dependent. The wrist kinematic structure reveals that a singularity
occurs when z3 and zj5 are aligned, i.e., whenever

’195:0 195:7'(.

Taking into consideration only the first configuration (Fig. 3.4), the loss of
mobility is caused by the fact that rotations of equal magnitude about opposite
directions on 94 and ¢ do not produce any end-effector rotation. Further, the
wrist is not allowed to rotate about the axis orthogonal to z4 and z3, (see
point a) above). This singularity is naturally described in the joint space and
can be encountered anywhere inside the manipulator reachable workspace; as
a consequence, special care is to be taken in programming an end-effector
motion.

3.3.3 Arm Singularities

Arm singularities are characteristic of a specific manipulator structure; to
illustrate their determination, consider the anthropomorphic arm (Fig. 2.23),
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Fig. 3.6. Anthropomorphic arm at a shoulder singularity

whose Jacobian for the linear velocity part is given by (3.38). Its determinant
is
det(Jp) = —a2a383(a262 + a3623)‘
Like in the case of the planar arm of Example 3.2, the determinant does not
depend on the first joint variable.
For as, a3 # 0, the determinant vanishes if s3 = 0 and/or (agco +agca3) =
0. The first situation occurs whenever

19320 193:7T

meaning that the elbow is outstretched (Fig. 3.5) or retracted, and is termed
elbow singularity. Notice that this type of singularity is conceptually equiva-
lent to the singularity found for the two-link planar arm.

By recalling the direct kinematics equation in (2.66), it can be observed
that the second situation occurs when the wrist point lies on axis zy (Fig. 3.6);
it is thus characterized by

Pz = Py = 0

and is termed shoulder singularity.

Notice that the whole axis zy describes a continuum of singular configu-
rations; a rotation of ¢; does not cause any translation of the wrist position
(the first column of Jp is always null at a shoulder singularity), and then
the kinematics equation admits infinite solutions; moreover, motions starting
from the singular configuration that take the wrist along the z; direction are
not allowed (see point b) above).

If a spherical wrist is connected to an anthropomorphic arm (Fig. 2.26),
the arm direct kinematics is different. In this case the Jacobian to consider
represents the block J1; of the Jacobian in (3.42) with p = py,. Analyzing its
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determinant leads to finding the same singular configurations, which are rela-
tive to different values of the third joint variables, though — compare (2.66)
and (2.70).

Finally, it is important to remark that, unlike the wrist singularities, the
arm singularities are well identified in the operational space, and thus they
can be suitably avoided in the end-effector trajectory planning stage.

3.4 Analysis of Redundancy

The concept of kinematic redundancy has been introduced in Sect. 2.10.2;
redundancy is related to the number n of DOF's of the structure, the number m
of operational space variables, and the number r of operational space variables
necessary to specify a given task.

In order to perform a systematic analysis of redundancy, it is worth con-
sidering differential kinematics in lieu of direct kinematics (2.82). To this end,
(3.39) is to be interpreted as the differential kinematics mapping relating the
n components of the joint velocity vector to the » < m components of the ve-
locity vector v, of concern for the specific task. To clarify this point, consider
the case of a 3-link planar arm; that is not intrinsically redundant (n = m = 3)
and its Jacobian (3.35) has 3 null rows accordingly. If the task does not spec-
ify w, (r = 2), the arm becomes functionally redundant and the Jacobian to
consider for redundancy analysis is the one in (3.36).

A different case is that of the anthropomorphic arm for which only posi-
tion variables are of concern (n = m = 3). The relevant Jacobian is the one
in (3.38). The arm is neither intrinsically redundant nor can become function-
ally redundant if it is assigned a planar task; in that case, indeed, the task
would set constraints on the 3 components of end-effector linear velocity.

Therefore, the differential kinematics equation to consider can be formally
written as in (3.39), i.e.,

v. = J(@)a, (3.45)

where now v, is meant to be the (r x 1) vector of end-effector velocity of
concern for the specific task and J is the corresponding (r x n) Jacobian
matrix that can be extracted from the geometric Jacobian; ¢ is the (n x 1)
vector of joint velocities. If » < n, the manipulator is kinematically redundant
and there exist (n —r) redundant DOFs.

The Jacobian describes the linear mapping from the joint velocity space to
the end-effector velocity space. In general, it is a function of the configuration.
In the context of differential kinematics, however, the Jacobian has to be
regarded as a constant matrix, since the instantaneous velocity mapping is
of interest for a given posture. The mapping is schematically illustrated in
Fig. 3.7 with a typical notation from set theory.
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g<R”™

,'

Fig. 3.7. Mapping between the joint velocity space and the end-effector velocity
space

The differential kinematics equation in (3.45) can be characterized in terms
of the range and null spaces of the mapping:? specifically, one has that:

e The range space of J is the subspace R(J) in IR" of the end-effector veloc-
ities that can be generated by the joint velocities, in the given manipulator
posture.

e The null space of J is the subspace N'(J) in IR™ of joint velocities that do
not produce any end-effector velocity, in the given manipulator posture.

If the Jacobian has full rank, one has
dim(R(J)) =r dim(N(J)) =n—r

and the range of J spans the entire space IR". Instead, if the Jacobian degen-
erates at a singularity, the dimension of the range space decreases while the
dimension of the null space increases, since the following relation holds:

dim(R(J)) + dim(N'(J)) =n

independently of the rank of the matrix J.

The existence of a subspace N (J) # 0 for a redundant manipulator allows
determination of systematic techniques for handling redundant DOF's. To this
end, if ¢* denotes a solution to (3.45) and P is an (n X n) matrix so that

R(P) = N(J),

the joint velocity vector

qg=4q" + Pq,, (3.46)
with arbitrary ¢, is also a solution to (3.45). In fact, premultiplying both
sides of (3.46) by J yields

Jg=Jg + JPg, = J§" = v,

2 See Sect. A.4 for the linear mappings.
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since JPg, = 0 for any q,. This result is of fundamental importance for
redundancy resolution; a solution of the kind (3.46) points out the possibility
of choosing the vector of arbitrary joint velocities g, so as to exploit advanta-
geously the redundant DOFs. In fact, the effect of g is to generate internal
motions of the structure that do not change the end-effector position and ori-
entation but may allow, for instance, manipulator reconfiguration into more
dexterous postures for execution of a given task.

3.5 Inverse Differential Kinematics

In Sect. 2.12 it was shown how the inverse kinematics problem admits closed-
form solutions only for manipulators having a simple kinematic structure.
Problems arise whenever the end-effector attains a particular position and/or
orientation in the operational space, or the structure is complex and it is not
possible to relate the end-effector pose to different sets of joint variables, or
else the manipulator is redundant. These limitations are caused by the highly
nonlinear relationship between joint space variables and operational space
variables.

On the other hand, the differential kinematics equation represents a linear
mapping between the joint velocity space and the operational velocity space,
although it varies with the current configuration. This fact suggests the pos-
sibility to utilize the differential kinematics equation to tackle the inverse
kinematics problem.

Suppose that a motion trajectory is assigned to the end-effector in terms
of v, and the initial conditions on position and orientation. The aim is to
determine a feasible joint trajectory (q(t),q(t)) that reproduces the given
trajectory.

By considering (3.45) with n = r, the joint velocities can be obtained via
simple inversion of the Jacobian matrix

qa=J (q)v.. (3.47)

If the initial manipulator posture g(0) is known, joint positions can be com-
puted by integrating velocities over time, i.e.,

q(t) = / a()ds + g(0).

The integration can be performed in discrete time by resorting to numerical
techniques. The simplest technique is based on the Euler integration method;
given an integration interval At, if the joint positions and velocities at time
ty, are known, the joint positions at time tx1 =ty + At can be computed as

q(tey1) = q(t) + q(tr) At. (3.48)
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This technique for inverting kinematics is independent of the solvability
of the kinematic structure. Nonetheless, it is necessary that the Jacobian be
square and of full rank; this demands further insight into the cases of redun-
dant manipulators and kinematic singularity occurrence.

3.5.1 Redundant Manipulators

When the manipulator is redundant (r < n), the Jacobian matrix has more
columns than rows and infinite solutions exist to (3.45). A viable solution
method is to formulate the problem as a constrained linear optimization prob-
lem.

In detail, once the end-effector velocity v, and Jacobian J are given (for
a given configuration q), it is desired to find the solutions ¢ that satisfy the
linear equation in (3.45) and minimize the quadratic cost functional of joint
velocities® )

9(a) = 54" W4

where W is a suitable (n x n) symmetric positive definite weighting matrix.
This problem can be solved with the method of Lagrange multipliers. Con-
sider the modified cost functional

. 1. .
9(q,\) = §qTWq + X (we — J4),

where A is an (r x 1) vector of unknown multipliers that allows the incorpo-
ration of the constraint (3.45) in the functional to minimize. The requested
solution has to satisfy the necessary conditions:

a9\" _ 0\ _,
oq) ox)
From the first one, it is W¢q — JTA = 0 and thus
g=w1JTx (3.49)

where the inverse of W exists. Notice that the solution (3.49) is a minimum,
since 9%g/ d¢*> = W is positive definite. From the second condition above, the
constraint

v =Jq

is recovered. Combining the two conditions gives
ve =JW LT

under the assumption that J has full rank, JW~'J% is an (r x r) square
matrix of rank r and thus can be inverted. Solving for A yields

A= (W g1y,

3 Quadratic forms and the relative operations are recalled in Sect. A.6.
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which, substituted into (3.49), gives the sought optimal solution
g=w gt awgh1e,. (3.50)

Premultiplying both sides of (3.50) by J, it is easy to verify that this solution
satisfies the differential kinematics equation in (3.45).

A particular case occurs when the weighting matrix W is the identity
matrix I and the solution simplifies into

g=J.; (3.51)

the matrix
Jh=Jgtggh! (3.52)

is the right pseudo-inverse of J.* The obtained solution locally minimizes the
norm of joint velocities.

It was pointed out above that if ¢* is a solution to (3.45), ¢* + Pgq, is also a
solution, where g, is a vector of arbitrary joint velocities and P is a projector
in the null space of J. Therefore, in view of the presence of redundant DOFs,
the solution (3.51) can be modified by the introduction of another term of
the kind Pgq,. In particular, g, can be specified so as to satisfy an additional
constraint to the problem.

In that case, it is necessary to consider a new cost functional in the form

J@) = 34— a0)"(a — ao):

this choice is aimed at minimizing the norm of vector ¢ — q,; in other words,
solutions are sought which satisfy the constraint (3.45) and are as close as pos-
sible to ¢,. In this way, the objective specified through ¢, becomes unavoid-
ably a secondary objective to satisfy with respect to the primary objective
specified by the constraint (3.45).

Proceeding in a way similar to the above yields

J@N) = (@ a0)" (@ o) + X (ve ~ Ja)
from the first necessary condition it is
a=J"x+q, (3.53)
which, substituted into (3.45), gives
A= (JI") Yw. — Jq,).
Finally, substituting A back in (3.53) gives
q=Jw.+ (I, —J'J)q,. (3.54)

4 See Sect. A.7 for the definition of the pseudo-inverse of a matrix.
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As can be easily recognized, the obtained solution is composed of two terms.
The first is relative to minimum norm joint velocities. The second, termed
homogeneous solution, attempts to satisfy the additional constraint to specify
via o;® the matrix (I — J'.J) is one of those matrices P introduced in (3.46)
which allows the projection of the vector g, in the null space of J, so as
not to violate the constraint (3.45). A direct consequence is that, in the case
v, = 0, is is possible to generate internal motions described by (I — JTJ)q0
that reconfigure the manipulator structure without changing the end-effector
position and orientation.

Finally, it is worth discussing the way to specify the vector ¢, for a con-
venient utilization of redundant DOFs. A typical choice is

o = ko (&gflq))T (3.55)

where kg > 0 and w(q) is a (secondary) objective function of the joint vari-
ables. Since the solution moves along the direction of the gradient of the ob-
jective function, it attempts to mazimize it locally compatible to the primary
objective (kinematic constraint). Typical objective functions are:

e The manipulability measure, defined as

w(q) = \/det(J(q) T (q)) (3.56)

which vanishes at a singular configuration; thus, by maximizing this mea-
sure, redundancy is exploited to move away from singularities.®
e The distance from mechanical joint limits, defined as

w(q) = : i<w>2 (3.57)

2n iz q4iM — Qim

where ¢;ps (Gim) denotes the maximum (minimum) joint limit and g; the
middle value of the joint range; thus, by maximizing this distance, redun-
dancy is exploited to keep the joint variables as close as possible to the
centre of their ranges.

e The distance from an obstacle, defined as

w(q) = min|[p(q) - of (3.58)

where o is the position vector of a suitable point on the obstacle (its
centre, for instance, if the obstacle is modelled as a sphere) and p is the

5 It should be recalled that the additional constraint has secondary priority with
respect to the primary kinematic constraint.

5 The manipulability measure is given by the product of the singular values of the
Jacobian (see Problem 3.8).
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position vector of a generic point along the structure; thus, by maximizing
this distance, redundancy is exploited to avoid collision of the manipulator
with an obstacle (see also Problem 3.9).7

3.5.2 Kinematic Singularities

Both solutions (3.47) and (3.51) can be computed only when the Jacobian
has full rank. Hence, they become meaningless when the manipulator is at a
singular configuration; in such a case, the system v, = J¢q contains linearly
dependent equations.

It is possible to find a solution g by extracting all the linearly independent
equations only if v, € R(J). The occurrence of this situation means that the
assigned path is physically executable by the manipulator, even though it is
at a singular configuration. If instead v, ¢ R(J), the system of equations has
no solution; this means that the operational space path cannot be executed
by the manipulator at the given posture.

It is important to underline that the inversion of the Jacobian can represent
a serious inconvenience not only at a singularity but also in the neighbourhood
of a singularity. For instance, for the Jacobian inverse it is well known that its
computation requires the computation of the determinant; in the neighbour-
hood of a singularity, the determinant takes on a relatively small value which
can cause large joint velocities (see point c) in Sect. 3.3). Consider again the
above example of the shoulder singularity for the anthropomorphic arm. If a
path is assigned to the end-effector which passes nearby the base rotation axis
(geometric locus of singular configurations), the base joint is forced to make
a rotation of about 7 in a relatively short time to allow the end-effector to
keep tracking the imposed trajectory.

A more rigorous analysis of the solution features in the neighbourhood of
singular configurations can be developed by resorting to the singular value
decomposition (SVD) of matrix J.8

An alternative solution overcoming the problem of inverting differential
kinematics in the neighbourhood of a singularity is provided by the so-called
damped least-squares (DLS) inverse

J=JNgJ" + B! (3.59)

where k is a damping factor that renders the inversion better conditioned
from a numerical viewpoint. It can be shown that such a solution can be

7 If an obstacle occurs along the end-effector path, it is opportune to invert the
order of priority between the kinematic constraint and the additional constraint;
in this way the obstacle may be avoided, but one gives up tracking the desired
path.

8 See Sect. A.8.
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obtained by reformulating the problem in terms of the minimization of the
cost functional

1 . N
9"(@) = 5(ve = J@)" (ve = T @) + Sk*q" 4,

where the introduction of the first term allows a finite inversion error to be
tolerated, with the advantage of norm-bounded velocities. The factor k es-
tablishes the relative weight between the two objectives, and there exist tech-
niques for selecting optimal values for the damping factor (see Problem 3.10).

3.6 Analytical Jacobian

The above sections have shown the way to compute the end-effector velocity
in terms of the velocity of the end-effector frame. The Jacobian is computed
according to a geometric technique in which the contributions of each joint
velocity to the components of end-effector linear and angular velocity are
determined.

If the end-effector pose is specified in terms of a minimal number of pa-
rameters in the operational space as in (2.80), it is natural to ask whether
it is possible to compute the Jacobian via differentiation of the direct kine-
matics function with respect to the joint variables. To this end, an analytical
technique is presented below to compute the Jacobian, and the existing rela-
tionship between the two Jacobians is found.

The translational velocity of the end-effector frame can be expressed as
the time derivative of vector p,, representing the origin of the end-effector
frame with respect to the base frame, i.e.,

Pe= 5,97 Jr(q)q. (3.60)

For what concerns the rotational velocity of the end-effector frame, the
minimal representation of orientation in terms of three variables ¢, can be
considered. Its time derivative (i&e in general differs from the angular velocity
vector defined above. In any case, once the function ¢,.(q) is known, it is
formally correct to consider the Jacobian obtained as

b = 7= J4(9)g. (3.61)

Computing the Jacobian Jy(q) as d¢,/0q is not straightforward, since the
function ¢, (q) is not usually available in direct form, but requires computation
of the elements of the relative rotation matrix.

Upon these premises, the differential kinematics equation can be obtained
as the time derivative of the direct kinematics equation in (2.82), i.e.,

o Y R IR
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Fig. 3.9. Composition of elementary rotational velocities for computing angular
velocity

where the analytical Jacobian

9k(q)
Ta@) = 5 (3.63)
is different from the geometric Jacobian J, since the end-effector angular
velocity w,. with respect to the base frame is not given by ¢,.

It is possible to find the relationship between the angular velocity w. and
the rotational velocity (f)e for a given set of orientation angles. For instance,
consider the Euler angles ZYZ defined in Sect. 2.4.1; in Fig. 3.8, the vectors
corresponding to the rotational velocities ¢, 19, zZ) have been represented with
reference to the current frame. Figure 3.9 illustrates how to compute the
contributions of each rotational velocity to the components of angular velocity
about the axes of the reference frame:

e asaresult of ¢: [w, w, w.]f=¢[0 0 1]F
e asaresult of V1 [w, wy, w,|T =9[-s, ¢, 0]F
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e asaresult of ¥:  [w, w, w.]T =t[cess ses0 colT,

and then the equation relating the angular velocity w, to the time derivative
of the Euler angles ¢, is®

we =T(¢,)., (3.64)
where, in this case,
0 —s, cpsy
T = 0 C<p 3@/)519
1 0 cy

The determinant of matrix T is —sy, which implies that the relationship
cannot be inverted for © = 0, 7. This means that, even though all rotational
velocities of the end-effector frame can be expressed by means of a suitable
angular velocity vector w., there exist angular velocities which cannot be
expressed by means of qbe when the orientation of the end-effector frame causes
sy = 0.10 In fact, in this situation, the angular velocities that can be described
by ¢, should have linearly dependent components in the directions orthogonal
to axis z (w? + wi = 9¥?). An orientation for which the determinant of the
transformation matrix vanishes is termed representation singularity of ¢,.
From a physical viewpoint, the meaning of w, is more intuitive than that
of (i)e. The three components of w, represent the components of angular veloc-
ity with respect to the base frame. Instead, the three elements of (be represent
nonorthogonal components of angular velocity defined with respect to the
axes of a frame that varies as the end-effector orientation varies. On the other
hand, while the integral of ¢, over time gives ¢,, the integral of w,. does not
admit a clear physical interpretation, as can be seen in the following example.

Example 3.3

Consider an object whose orientation with respect to a reference frame is known at
time ¢ = 0. Assign the following time profiles to w:
o w=[r/2 0 0]T 0<t<1 w=[0 7/2 0]T 1<t<2,
e w=[0 n/2 0]T 0<t<1 w=[n/2 0 0] 1<t<2
The integral of w gives the same result in the two cases

/2wdt:[7r/2 /2 0]F

but the final object orientation corresponding to the second timing law is clearly
different from the one obtained with the first timing law (Fig. 3.10).

9 This relation can also be obtained from the rotation matrix associated with the
three angles (see Problem 3.11).

10 In Sect. 2.4.1, it was shown that for this orientation the inverse solution of the
Euler angles degenerates.
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Fig. 3.10. Nonuniqueness of orientation computed as the integral of angular velocity

Once the transformation T' between w. and (jbe is given, the analytical
Jacobian can be related to the geometric Jacobian as

=l o | E = Ta@. (3.69)

which, in view of (3.4), (3.62), yields
J=T4s(d)J a. (3.66)

This relationship shows that J and J 4, in general, differ. Regarding the use
of either one or the other in all those problems where the influence of the
Jacobian matters, it is anticipated that the geometric Jacobian will be adopted
whenever it is necessary to refer to quantities of clear physical meaning, while
the analytical Jacobian will be adopted whenever it is necessary to refer to
differential quantities of variables defined in the operational space.

For certain manipulator geometries, it is possible to establish a substantial
equivalence between J and J 4. In fact, when the DOFs cause rotations of
the end-effector all about the same fixed axis in space, the two Jacobians
are essentially the same. This is the case of the above three-link planar arm.
Its geometric Jacobian (3.35) reveals that only rotations about axis zy are
permitted. The (3 x 3) analytical Jacobian that can be derived by considering
the end-effector position components in the plane of the structure and defining
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the end-effector orientation as ¢ = ¥; + 9 + ¥3 coincides with the matrix
that is obtained by eliminating the three null rows of the geometric Jacobian.

3.7 Inverse Kinematics Algorithms

In Sect. 3.5 it was shown how to invert kinematics by using the differential
kinematics equation. In the numerical implementation of (3.48), computation
of joint velocities is obtained by using the inverse of the Jacobian evaluated
with the joint variables at the previous instant of time

a(ti1) = q(te) + T (q(tr))ve(tr) At.

It follows that the computed joint velocities g do not coincide with those
satisfying (3.47) in the continuous time. Therefore, reconstruction of joint
variables q is entrusted to a numerical integration which involves drift phe-
nomena of the solution; as a consequence, the end-effector pose corresponding
to the computed joint variables differs from the desired one.

This inconvenience can be overcome by resorting to a solution scheme that
accounts for the operational space error between the desired and the actual
end-effector position and orientation. Let

e=xy— T, (3.67)

be the expression of such error.
Consider the time derivative of (3.67), i.e.,

e=1xq— T, (3.68)
which, according to differential kinematics (3.62), can be written as
é=dq— Jal@)d (3.69)

Notice in (3.69) that the use of operational space quantities has naturally
lead to using the analytical Jacobian in lieu of the geometric Jacobian. For
this equation to lead to an inverse kinematics algorithm, it is worth relating
the computed joint velocity vector ¢ to the error e so that (3.69) gives a
differential equation describing error evolution over time. Nonetheless, it is
necessary to choose a relationship between ¢ and e that ensures convergence
of the error to zero.

Having formulated inverse kinematics in algorithmic terms implies that
the joint variables g corresponding to a given end-effector pose x; are ac-
curately computed only when the error x4 — k(q) is reduced within a given
threshold; such settling time depends on the dynamic characteristics of the
error differential equation. The choice of ¢ as a function of e permits finding
inverse kinematics algorithms with different features.
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Fig. 3.11. Inverse kinematics algorithm with Jacobian inverse

3.7.1 Jacobian (Pseudo-)inverse
On the assumption that matrix J 4 is square and nonsingular, the choice
q=J,"(q)(&a+ Ke) (3.70)
leads to the equivalent linear system
e+ Ke=0. (3.71)

If K is a positive definite (usually diagonal) matrix, the system (3.71) is
asymptotically stable. The error tends to zero along the trajectory with a
convergence rate that depends on the eigenvalues of matrix K;'! the larger
the eigenvalues, the faster the convergence. Since the scheme is practically
implemented as a discrete-time system, it is reasonable to predict that an
upper bound exists on the eigenvalues; depending on the sampling time, there
will be a limit for the maximum eigenvalue of K under which asymptotic
stability of the error system is guaranteed.

The block scheme corresponding to the inverse kinematics algorithm
in (3.70) is illustrated in Fig. 3.11, where k() indicates the direct kinematics
function in (2.82). This scheme can be revisited in terms of the usual feedback
control schemes. Specifically, it can observed that the nonlinear block k(-) is
needed to compute ® and thus the tracking error e, while the block J gl(q)
has been introduced to compensate for J 4(g) and making the system linear.
The block scheme shows the presence of a string of integrators on the forward
loop and then, for a constant reference (&4 = 0), guarantees a null steady-
state error. Further, the feedforward action provided by @4 for a time-varying
reference ensures that the error is kept to zero (in the case e(0) = 0) along
the whole trajectory, independently of the type of desired reference x4(t).

Finally, notice that (3.70), for 4 = 0, corresponds to the Newton method
for solving a system of nonlinear equations. Given a constant end-effector
pose x4, the algorithm can be keenly applied to compute one of the admissible

11 See Sect. A.5.
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Fig. 3.12. Block scheme of the inverse kinematics algorithm with Jacobian trans-
pose

solutions to the inverse kinematics problem, whenever that does not admit
closed-form solutions, as discussed in Sect. 2.12. Such a method is also useful
in practice at the start-up of the manipulator for a given task, to compute the
corresponding joint configuration.
In the case of a redundant manipulator, solution (3.70) can be generalized
into
q=J\(@q+ Ke) + (I, — I, J 4)do, (3.72)

which represents the algorithmic version of solution (3.54).

The structure of the inverse kinematics algorithm can be conceptually
adopted for a simple robot control technique, known under the name of kine-
matic control. As will be seen in Chap. 7, a manipulator is actually an electro-
mechanical system actuated by motor torques, while in Chaps. 8-10 dynamic
control techniques will be presented which will properly account for the non-
linear and coupling effects of the dynamic model.

At first approximation, however, it is possible to consider a kinematic
command as system input, typically a velocity. This is possible in view of
the presence of a low-level control loop, which ‘ideally’ imposes any specified
reference velocity. On the other hand, such a loop already exists in a ‘closed’
control unit, where the user can also intervene with kinematic commands.
In other words, the scheme in Fig. 3.11 can implement a kinematic control,
provided that the integrator is regarded as a simplified model of the robot,
thanks to the presence of single joint local servos, which ensure a more or
less accurate reproduction of the velocity commands. Nevertheless, it is worth
underlining that such a kinematic control technique yields satisfactory perfor-
mance only when one does not require too fast motions or rapid accelerations.
The performance of the independent joint control will be analyzed in Sect. 8.3.

3.7.2 Jacobian Transpose

A computationally simpler algorithm can be derived by finding a relationship
between g and e that ensures error convergence to zero, without requiring
linearization of (3.69). As a consequence, the error dynamics is governed by a
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nonlinear differential equation. The Lyapunov direct method can be utilized
to determine a dependence g(e) that ensures asymptotic stability of the error
system. Choose as Lyapunov function candidate the positive definite quadratic
form'2

Vie) = %eTKe, (3.73)
where K is a symmetric positive definite matrix. This function is so that
V(e)>0 Ve#0, V(0)=0.
Differentiating (3.73) with respect to time and accounting for (3.68) gives
V=e'Ki;—e'Ki,. (3.74)
In view of (3.62), it is
V=e'Ki;—e"'KJi(q)q. (3.75)
At this point, the choice of joint velocities as
qg=J4(q)Ke (3.76)

leads to ]
V=e"Ki,—e"KJ(q)J(q)Ke. (3.77)

Consider the case of a constant reference (€4 = 0). The function in (3.77) is
negative definite, under the assumption of full rank for J 4(q). The condition
V < 0 with V > 0 implies that the system trajectories uniformly converge
to e = 0, i.e., the system is asymptotically stable. When N'(J%) # 0, the
function in (3.77) is only negative semi-definite, since V = 0 for e # 0 with
Ke e N(J%). In this case, the algorithm can get stuck at ¢ = 0 with e # 0.
However, the example that follows will show that this situation occurs only if
the assigned end-effector position is not actually reachable from the current
configuration.

The resulting block scheme is illustrated in Fig. 3.12, which shows the no-
table feature of the algorithm to require computation only of direct kinematics
functions k(q), J4(q).

It can be recognized that (3.76) corresponds to the gradient method for
the solution of a system on nonlinear equations. As in the case of the Jaco-
bian inverse solution, for a given constant end-effector pose x4, the Jacobian
transpose algorithm can be keenly employed to solve the inverse kinemat-
ics problem, or more simply to initialize the values of the manipulator joint
variables.

The case when x4 is a time-varying function (&4 # 0) deserves a separate
analysis. In order to obtain V < 0 also in this case, it would be sufficient to
choose a ¢ that depends on the (pseudo-)inverse of the Jacobian as in (3.70),

12 See Sect. C.3 for the presentation of the Lyapunov direct method.
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Fig. 3.13. Characterization of the anthropomorphic arm at a shoulder singularity
for the admissible solutions of the Jacobian transpose algorithm

recovering the asymptotic stability result derived above.!® For the inversion
scheme based on the transpose, the first term on the right-hand side of (3.77)
is not cancelled any more and nothing can be said about its sign. This im-
plies that asymptotic stability along the trajectory cannot be achieved. The
tracking error e(t) is, anyhow, norm-bounded; the larger the norm of K, the
smaller the norm of e.!* In practice, since the inversion scheme is to be im-
plemented in discrete-time, there is an upper bound on the norm of K with
reference to the adopted sampling time.

Example 3.4

Consider the anthropomorphic arm; a shoulder singularity occurs whenever azca +
asgce3 = 0 (Fig. 3.6). In this configuration, the transpose of the Jacobian in (3.38) is

0 0 0
T
Jp = | —ci(azs2 + asszs) —s1(azs2 + azs2s) 0
—ascC1523 —a351523 a3C23

By computing the null space of J5, if v, v, and v, denote the components of vector
v along the axes of the base frame, one has the result

Vy _ 1

Vz:07

ve  tanth

3 Notice that, anyhow, in case of kinematic singularities, it is necessary to resort

to an inverse kinematics scheme that does not require inversion of the Jacobian.

14 Notice that the negative definite term is a quadratic function of the error, while

the other term is a linear function of the error. Therefore, for an error of very

small norm, the linear term prevails over the quadratic term, and the norm of K
should be increased to reduce the norm of e as much as possible.
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implying that the direction of N'(J%) coincides with the direction orthogonal to the
plane of the structure (Fig. 3.13). The Jacobian transpose algorithm gets stuck if,
with K diagonal and having all equal elements, the desired position is along the line
normal to the plane of the structure at the intersection with the wrist point. On the
other hand, the end-effector cannot physically move from the singular configuration
along such a line. Instead, if the prescribed path has a non-null component in the
plane of the structure at the singularity, algorithm convergence is ensured, since in
that case Ke ¢ N(JF).

In summary, the algorithm based on the computation of the Jacobian
transpose provides a computationally efficient inverse kinematics method that
can be utilized also for paths crossing kinematic singularities.

3.7.3 Orientation Error

The inverse kinematics algorithms presented in the above sections utilize the
analytical Jacobian since they operate on error variables (position and orien-
tation) that are defined in the operational space.
For what concerns the position error, it is obvious that its expression is
given by
ep =py—P.(q) (3.78)

where p,; and p, denote respectively the desired and computed end-effector
positions. Further, its time derivative is

ép =Py — D (3.79)

On the other hand, for what concerns the orientation error, its expression
depends on the particular representation of end-effector orientation, namely,
Fuler angles, angle and axis, and unit quaternion.

Euler angles

The orientation error is chosen according to an expression formally analogous
to (3.78), i.e.,
eo = ¢, — ¢.(q) (3.80)

where ¢, and ¢, denote respectively the desired and computed set of Euler
angles. Further, its time derivative is

€0 =4~ P.. (3.81)

Therefore, assuming that neither kinematic nor representation singularities
occur, the Jacobian inverse solution for a nonredundant manipulator is derived
from (3.70), i.e.,
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Pyt Kpep } (3.82)

q:JZI(q) |:¢)d+KOeO

where K p and K are positive definite matrices.

As already pointed out in Sect. 2.10 for computation of the direct kinemat-
ics function in the form (2.82), the determination of the orientation variables
from the joint variables is not easy except for simple cases (see Example 2.5).
To this end, it is worth recalling that computation of the angles ¢,, in a
minimal representation of orientation, requires computation of the rotation
matrix R, = [n. S. a.];in fact, only the dependence of R, on ¢ is known
in closed form, but not that of ¢, on g. Further, the use of inverse func-
tions (Atan2) in (2.19), (2.22) involves a non-negligible complexity in the
computation of the analytical Jacobian, and the occurrence of representation
singularities constitutes another drawback for the orientation error based on
Fuler angles.

Different kinds of remarks are to be made about the way to assign a time
profile for the reference variables ¢, chosen to represent end-effector orienta-
tion. The most intuitive way to specify end-effector orientation is to refer to
the orientation of the end-effector frame (ng4, s4, aq) with respect to the base
frame. Given the limitations pointed out in Sect. 2.10 about guaranteeing or-
thonormality of the unit vectors along time, it is necessary first to compute
the Euler angles corresponding to the initial and final orientation of the end-
effector frame via (2.19), (2.22); only then a time evolution can be generated.
Such solutions will be presented in Chap. 4.

A radical simplification of the problem at issue can be obtained for manip-
ulators having a spherical wrist. Section 2.12.2 pointed out the possibility to
solve the inverse kinematics problem for the position part separately from that
for the orientation part. This result also has an impact at algorithmic level. In
fact, the implementation of an inverse kinematics algorithm for determining
the joint variables influencing the wrist position allows the computation of
the time evolution of the wrist frame Ry (t). Hence, once the desired time
evolution of the end-effector frame R, (t) is given, it is sufficient to compute
the Euler angles ZYZ from the matrix R%;,Rd by applying (2.19). As shown
in Sect. 2.12.5, these angles are directly the joint variables of the spherical
wrist. See also Problem 3.14.

The above considerations show that the inverse kinematics algorithms
based on the analytical Jacobian are effective for kinematic structures having
a spherical wrist which are of significant interest. For manipulator structures
which cannot be reduced to that class, it may be appropriate to reformulate
the inverse kinematics problem on the basis of a different definition of the
orientation error.
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Angle and axis

If Ry =[ng S84 ag] denotes the desired rotation matrix of the end-effector
frame and R, = [n. S, a.]| the rotation matrix that can be computed
from the joint variables, the orientation error between the two frames can be
expressed as

eo = rsind (3.83)

where ¢ and r identify the angle and azis of the equivalent rotation that can
be deduced from the matrix

R(ﬁa T) = RdRZ(q)a (384)

describing the rotation needed to align R with R,4. Notice that (3.83) gives a
unique relationship for —7/2 < ¢ < w/2. The angle ¥ represents the magni-
tude of an orientation error, and thus the above limitation is not restrictive
since the tracking error is typically small for an inverse kinematics algorithm.

By comparing the off-diagonal terms of the expression of R(J,7) in (2.25)
with the corresponding terms resulting on the right-hand side of (3.84), it can
be found that a functional expression of the orientation error in (3.83) is (see
Problem 3.16)

€0 = 3 (me(g) x ma+ 5(a)  sa+ ac(q) x au); (3.85)

the limitation on ¥ is transformed in the condition nZng > 0, sl'sy > 0,
alay; > 0.

Differentiating (3.85) with respect to time and accounting for the expres-
sion of the columns of the derivative of a rotation matrix in (3.8) gives (see
Problem 3.19)

éo=L"wy - Lw, (3.86)

where

L= —% (S(na)S(ne) + S(sa)S(s.) + S(aa)S(a.)). (3.87)

At this point, by exploiting the relations (3.2), (3.3) of the geometric Jacobian
expressing p, and w, as a function of ¢, (3.79), (3.86) become

o feo] el - L] Lo oo

The expression in (3.88) suggests the possibility of devising inverse kinematics
algorithms analogous to the ones derived above, but using the geometric Ja-
cobian in place of the analytical Jacobian. For instance, the Jacobian inverse
solution for a nonredundant nonsingular manipulator is

q=J"(q) (3.89)

pq+ Kpep
L (Lde + Koeo) ’
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It is worth remarking that the inverse kinematics solution based on (3.89)
is expected to perform better than the solution based on (3.82) since it uses
the geometric Jacobian in lieu of the analytical Jacobian, thus avoiding the
occurrence of representation singularities.

Unit quaternion

In order to devise an inverse kinematics algorithm based on the unit quater-
nion, a suitable orientation error should be defined. Let Q4 = {n4, €4} and
Q. = {7e, €.} represent the quaternions associated with R, and R., re-
spectively. The orientation error can be described by the rotation matrix
R,R! and, in view of (2.37), can be expressed in terms of the quaternion
AQ = {An, Ae} where

AQ =0+ Q7" (3.90)

It can be recognized that AQ = {1,0} if and only if R, and R, are aligned.
Hence, it is sufficient to define the orientation error as

eo = Ae = n.(q)es — na€e(q) — S(€q)ec(q), (3.91)

where the skew-symmetric operator S(-) has been used. Notice, however, that
the explicit computation of 7. and €. from the joint variables is not possible
but it requires the intermediate computation of the rotation matrix R, that
is available from the manipulator direct kinematics; then, the quaternion can
be extracted using (2.34).

At this point, a Jacobian inverse solution can be computed as

| P, + Kpep
q=J '(q) Ld JrKoeo} (3.92)

where noticeably the geometric Jacobian has been used. Substituting (3.92)
into (3.4) gives (3.79) and

wyg —we +Kpep =0. (3.93)

It should be observed that now the orientation error equation is nonlinear
in ep since it contains the end-effector angular velocity error instead of the
time derivative of the orientation error. To this end, it is worth considering
the relationship between the time derivative of the quaternion Q. and the
angular velocity w,. This can be found to be (see Problem 3.19)

1
Me = —5€ we (3.94)
1
€. = 3 (nels — S(€e)) we (3.95)

which is the so-called quaternion propagation. A similar relationship holds
between the time derivative of Q4 and wy.
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To study stability of system (3.93), consider the positive definite Lyapunov
function candidate

V= (na—1e)* + (€2 — €)" (€4 — €c). (3.96)

In view of (3.94), (3.95), differentiating (3.96) with respect to time and ac-
counting for (3.93) yields (see Problem 3.20)

V =—-ebKopeo (3.97)

which is negative definite, implying that ep converges to zero.
In summary, the inverse kinematics solution based on (3.92) uses the geo-
metric Jacobian as the solution based on (3.89) but is computationally lighter.

3.7.4 Second-order Algorithms

The above inverse kinematics algorithms can be defined as first-order algo-
rithms, in that they allow the inversion of a motion trajectory, specified at
the end-effector in terms of of position and orientation, into the equivalent
joint positions and velocities.

Nevertheless, as will be seen in Chap. 8, for control purposes it may be
necessary to invert a motion trajectory specified in terms of position, velocity
and acceleration. On the other hand, the manipulator is inherently a second-
order mechanical system, as will be revealed by the dynamic model to be
derived in Chap. 7.

The time differentiation of the differential kinematics equation (3.62) leads
to

ie=Jal@)g+Ja(g,4)q (3.98)

which gives the relationship between the joint space accelerations and the
operational space accelerations.

Under the assumption of a square and non-singular matrix J 4, the second-
order differential kinematics (3.98) can be inverted in terms of the joint ac-
celerations

i=J3"@) (&~ Tala,a)a). (3.99)

The numerical integration of (3.99) to reconstruct the joint velocities and
positions would unavoidably lead to a drift of the solution; therefore, similarly
to the inverse kinematics algorithm with the Jacobian inverse, it is worth
considering the error defined in (3.68) along with its derivative

6 =iy — . (3.100)
which, in view of (3.98), yields

é=iq—Jalq)qg—Jalq,q)q. (3.101)
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Fig. 3.14. Block scheme of the second-order inverse kinematics algorithm with
Jacobian inverse

At this point, it is advisable to choose the joint acceleration vector as
i =J3"(a) (#a+ Kpé+ Kpe —J a(q,d)d) (3.102)

where Kp and K p are positive definite (typically diagonal) matrices. Sub-
stituting (3.102) into (3.101) leads to the equivalent linear error system

é+KDé+Kp€:0 (3103)

which is asymptotically stable: the error tends to zero along the trajectory with
a convergence speed depending on the choice of the matrices Kp e Kp. The
second-order inverse kinematics algorithm is illustrated in the block scheme
of Fig. 3.14.

In the case of a redundant manipulator, the generalization of (3.102) leads
to an algorithmic solution based on the Jacobian pseudo-inverse of the kind

q=Ji (ﬁ':d + Kpe+ Kpe—Jalq, q)q) (L, —JhI0d,  (3.104)

where the vector g, represents arbitrary joint accelerations which can be cho-
sen so as to (locally) optimize an objective function like those considered in
Sect. 3.5.1.

As for the first-order inverse kinematics algorithms, it is possible to con-
sider other expressions for the orientation error which, unlike the Euler angles,
refer to an angle and axis description, else to the unit quaternion.
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3.7.5 Comparison Among Inverse Kinematics Algorithms

In order to make a comparison of performance among the inverse kinematics
algorithms presented above, consider the 3-link planar arm in Fig. 2.20 whose
link lengths are a1 = as = az = 0.5m. The direct kinematics for this arm is
given by (2.83), while its Jacobian can be found from (3.35) by considering
the 3 non-null rows of interest for the operational space.

Let the arm be at the initial posture ¢ = [x —7/2 —7/2]T rad, corre-
sponding to the end-effector pose: p = [0 0.5]T m, ¢ = Orad. A circular path
of radius 0.25m and centre at (0.25,0.5) m is assigned to the end-effector. Let
the motion trajectory be

0.25(17cos7rt)} 0<t< 4

py(t) = [0.25(2 +sinnt)

i.e., the end-effector has to make two complete circles in a time of 2s per
circle. As regards end-effector orientation, initially it is required to follow the
trajectory -

¢a(t) = sin 2475 0<t<4;
i.e., the end-effector has to attain a different orientation (¢4 = 0.5rad) at the
end of the two circles.

The inverse kinematics algorithms were implemented on a computer by
adopting the Euler numerical integration scheme (3.48) with an integration
time At = 1 ms.

At first, the inverse kinematics along the given trajectory has been per-
formed by using (3.47). The results obtained in Fig. 3.15 show that the norm
of the position error along the whole trajectory is bounded; at steady state,
after ¢ = 4, the error sets to a constant value in view of the typical drift of
open-loop schemes. A similar drift can be observed for the orientation error.

Next, the inverse kinematics algorithm based on (3.70) using the Jacobian
inverse has been used, with the matrix gain K = diag{500,500,100}. The
resulting joint positions and velocities as well as the tracking errors are shown
in Fig. 3.16. The norm of the position error is radically decreased and con-
verges to zero at steady state, thanks to the closed-loop feature of the scheme;
the orientation error, too, is decreased and tends to zero at steady state.

On the other hand, if the end-effector orientation is not constrained, the
operational space becomes two-dimensional and is characterized by the first
two rows of the direct kinematics in (2.83) as well as by the Jacobian in (3.36);
a redundant DOF is then available. Hence, the inverse kinematics algorithm
based on (3.72) using the Jacobian pseudo-inverse has been used with K =
diag{500, 500}. If redundancy is not exploited (¢, = 0), the results in Fig. 3.17
reveal that position tracking remains satisfactory and, of course, the end-
effector orientation freely varies along the given trajectory.

With reference to the previous situation, the use of the Jacobian transpose
algorithm based on (3.76) with K = diag{500,500} gives rise to a tracking
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Fig. 3.15. Time history of the norm of end-effector position error and orientation
error with the open-loop inverse Jacobian algorithm
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Fig. 3.16. Time history of the joint positions and velocities, and of the norm of end-

effector position error and orientation error with the closed-loop inverse Jacobian
algorithm

error (Fig. 3.18) which is anyhow bounded and rapidly tends to zero at steady
state.

In order to show the capability of handling the degree of redundancy, the
algorithm based on (3.72) with ¢, # 0 has been used; two types of constraints
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with the Jacobian pseudo-inverse algorithm
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Fig. 3.18. Time history of the norm of end-effector position error and orientation
with the Jacobian transpose algorithm

have been considered concerning an objective function to locally maximize
according to the choice (3.55). The first function is

1
=(s3 + s3)

’LU(’L?Q, ’193) = B

that provides a manipulability measure. Notice that such a function is compu-
tationally simpler than the function in (3.56), but it still describes a distance
from kinematic singularities in an effective way. The gain in (3.55)) has been
set to ko = 50. In Fig. 3.19, the joint trajectories are reported for the two
cases with and without (ko = 0) constraint. The addition of the constraint
leads to having coincident trajectories for Joints 2 and 3. The manipulability
measure in the constrained case (continuous line) attains larger values along
the trajectory compared to the unconstrained case (dashed line). It is worth
underlining that the tracking position error is practically the same in the two
cases (Fig. 3.17), since the additional joint velocity contribution is projected
in the null space of the Jacobian so as not to alter the performance of the
end-effector position task.

Finally, it is worth noticing that in the constrained case the resulting joint
trajectories are cyclic, i.e., they take on the same values after a period of



146 3 Differential Kinematics and Statics

joint pos joint pos
5 5
N ) A~
W e T —————
2 3
-5 =5
0 1 2 3 4 5 0 1 2 3 4 5
[s] [s]
x10° Ppos error norm
5 1
4
0.95}
— 3 = !
£ g \
2 - \
097
Vo
1 \
W
0 0.85
0 1 2 3 4 5 1 2 3 4 5

[s] [s]

Fig. 3.19. Time history of the joint positions, the norm of end-effector position
error, and the manipulability measure with the Jacobian pseudo-inverse algorithm
and manipulability constraint; upper left: with the unconstrained solution, upper
right: with the constrained solution

the circular path. This does not happen for the unconstrained case, since the
internal motion of the structure causes the arm to be in a different posture
after one circle.

The second objective function considered is the distance from mechanical
joint limits in (3.57). Specifically, it is assumed what follows: the first joint
does not have limits (g1, = —2m, g1as = 27), the second joint has limits ga,, =
—m/2, gapr = m/2, and the third joint has limits ¢z, = —37/2, gspr = —7/2.
It is not difficult to verify that, in the unconstrained case, the trajectories of
Joints 2 and 3 in Fig. 3.19 violate the respective limits. The gain in (3.55)
has been set to kg = 250. The results in Fig. 3.20 show the effectiveness of
the technique with utilization of redundancy, since both Joints 2 and 3 tend
to invert their motion — with respect to the unconstrained trajectories in
Fig. 3.19 — and keep far from the minimum limit for Joint 2 and the maximum
limit for Joint 3, respectively. Such an effort does not appreciably affect the
position tracking error, whose norm is bounded anyhow within acceptable
values.
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Fig. 3.20. Time history of the joint positions and the norm of end-effector position
error with the Jacobian pseudo-inverse algorithm and joint limit constraint (joint
limits are denoted by dashed lines)

3.8 Statics

The goal of statics is to determine the relationship between the generalized
forces applied to the end-effector and the generalized forces applied to the
joints — forces for prismatic joints, torques for revolute joints — with the
manipulator at an equilibrium configuration.

Let 7 denote the (n x 1) vector of joint torques and ~ the (r x 1) vector
of end-effector forces'® where r is the dimension of the operational space of
interest.

The application of the principle of virtual work allows the determination
of the required relationship. The mechanical manipulators considered are sys-
tems with time-invariant, holonomic constraints, and thus their configurations
depend only on the joint variables g and not explicitly on time. This implies
that virtual displacements coincide with elementary displacements.

Consider the elementary works performed by the two force systems. As for
the joint torques, the elementary work associated with them is

dw, = t1dq. (3.105)

5 Hereafter, generalized forces at the joints are often called torques, while general-

ized forces at the end-effector are often called forces.



148 3 Differential Kinematics and Statics

As for the end-effector forces =, if the force contributions f, are separated by
the moment contributions p,, the elementary work associated with them is

AW, = fldp, + plw.dt, (3.106)

where dp, is the linear displacement and w.dt is the angular displacement'®
By accounting for the differential kinematics relationship in (3.4), (3.5),

the relation (3.106) can be rewritten as

AW, = fi Jp(q)dq + pl Jo(q)dg (3.107)
=7.J(q)dq
wherey, = [f7 ul]T. Since virtual and elementary displacements coincide,
the virtual works associated with the two force systems are
oW, = 11éq (3.108)
oW, — ~T T (q)3q, (3.109)

where ¢ is the usual symbol to indicate virtual quantities.
According to the principle of virtual work, the manipulator is at static
equilibrium if and only if

W, =6W,  Vigq, (3.110)

i.e., the difference between the virtual work of the joint torques and the virtual
work of the end-effector forces must be null for all joint displacements.

From (3.109), notice that the virtual work of the end-effector forces is
null for any displacement in the null space of J. This implies that the joint
torques associated with such displacements must be null at static equilibrium.
Substituting (3.108), (3.109) into (3.110) leads to the notable result

=" (9, (3.111)

stating that the relationship between the end-effector forces and the joint
torques is established by the transpose of the manipulator geometric Jacobian.

3.8.1 Kineto-Statics Duality

The statics relationship in (3.111), combined with the differential kinematics
equation in (3.45), points out a property of kineto-statics duality. In fact, by
adopting a representation similar to that of Fig. 3.7 for differential kinematics,
one has that (Fig. 3.21):

e The range space of J7 is the subspace R(JT) in IR™ of the joint torques
that can balance the end-effector forces, in the given manipulator posture.

16 The angular displacement has been indicated by w.dt in view of the problems of
integrability of w. discussed in Sect. 3.6.
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Fig. 3.21. Mapping between the end-effector force space and the joint torque space

e Thenull space of J” is the subspace A'(JT) in IR” of the end-effector forces
that do not require any balancing joint torques, in the given manipulator
posture.

It is worth remarking that the end-effector forces v, € N'(J T) are entirely
absorbed by the structure in that the mechanical constraint reaction forces
can balance them exactly. Hence, a manipulator at a singular configuration
remains in the given posture whatever end-effector force v, is applied so that
~v. € N(JIT).

The relations between the two subspaces are established by

N(J) =R+JT) R(J) = NHIT)

and then, once the manipulator Jacobian is known, it is possible to charac-
terize completely differential kinematics and statics in terms of the range and
null spaces of the Jacobian and its transpose.

On the basis of the above duality, the inverse kinematics scheme with the
Jacobian transpose in Fig. 3.12 admits an interesting physical interpretation.
Consider a manipulator with ideal dynamics 7 = ¢ (null masses and unit
viscous friction coefficients); the algorithm update law ¢ = J T Ke plays the
role of a generalized spring of stiffness constant K generating a force Ke that
pulls the end-effector towards the desired posture in the operational space.
If this manipulator is allowed to move, e.g., in the case Ke ¢ N(J7), the
end-effector attains the desired posture and the corresponding joint variables
are determined.

3.8.2 Velocity and Force Transformation

The kineto-statics duality concept presented above can be useful to character-
ize the transformation of velocities and forces between two coordinate frames.

Consider a reference coordinate frame Op—z¢yopzo and a rigid body moving
with respect to such a frame. Then let O1—x1y121 and Os—x2y222 be two
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Lo

Fig. 3.22. Representation of linear and angular velocities in different coordinate
frames on the same rigid body

coordinate frames attached to the body (Fig. 3.22). The relationships between
translational and rotational velocities of the two frames with respect to the
reference frame are given by

Wo = W

Py =Py w1 X712
By exploiting the skew-symmetric operator S(-) in (3.9), the above relations
can be compactly written as

[522} - {(I) _Sgrm)} [zﬂ : (3.112)

All vectors in (3.112) are meant to be referred to the reference frame Op—
ToYozo- On the other hand, if vectors are referred to their own frames, it
is
T2 = Rl"’%g
and also
. .1 L .2 1.2
P, = Ripy Py = Rop; = Ri1Ryp5
w1 = le% wo = ngg = RlRéwg.
Accounting for (3.112) and (3.11) gives
RiRyp; = Rip] — RiS(riy) R{ Riw)
R Rlw2 = Riw!.
Eliminating the dependence on R;, which is premultiplied to each term on
both sides of the previous relations, yields'”

D) _ R —RiS(rly)] [pi
w3 o R} wi
7 Recall that RTR = I, as in (2.4).

(3.113)
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giving the sought general relationship of velocity transformation between two
frames.

It may be observed that the transformation matrix in (3.113) plays the
role of a true Jacobian, since it characterizes a velocity transformation, and
thus (3.113) may be shortly written as

vi = Jivi. (3.114)

At this point, by virtue of the kineto-statics duality, the force transformation
between two frames can be directly derived in the form

ST LY (3.115)

which can be detailed into'8

fi}_{ R} OHfﬁ} 3116
{u% ~LS(riy)Ry Ry w3 (3.116)

Finally, notice that the above analysis is instantaneous in that, if a coordinate
frame varies with respect to the other, it is necessary to recompute the Jaco-

bian of the transformation through the computation of the related rotation
matrix of one frame with respect to the other.

3.8.3 Closed Chain

As discussed in Sect. 2.8.3, whenever the manipulator contains a closed chain,
there is a functional relationship between the joint variables. In particular,
the closed chain structure is transformed into a tree-structured open chain by
virtually cutting the loop at a joint. It is worth choosing such a cut joint as
one of the unactuated joints. Then, the constraints (2.59) or (2.60) should be
solved for a reduced number of joint variables, corresponding to the DOFs of
the chain. Therefore, it is reasonable to assume that at least such independent
joints are actuated, while the others may or may not be actuated. Let q, =
[qT qZ]T denote the vector of joint variables of the tree-structured open
chain, where g, and g, are the vectors of actuated and unactuated joint
variables, respectively. Assume that from the above constraints it is possible
to determine a functional expression

q, = q,(q,)- (3.117)

Time differentiation of (3.117) gives the relationship between joint velocities
in the form

a, =74, (3.118)
where
I
Y =|0dq, (3.119)
dq,

18 The skew-symmetry property S + ST = O is utilized.
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is the transformation matrix between the two vectors of joint velocities, which
in turn plays the role of a Jacobian.

At this point, according to an intuitive kineto-statics duality concept, it is
possible to describe the transformation between the corresponding vectors of
joint torques in the form

. =21, (3.120)
where 7, = [7T 77"

w |, with obvious meaning of the quantities.

Example 3.5

Consider the parallelogram arm of Sect. 2.9.2. On the assumption to actuate the
two Joints 1’ and 1” at the base, it is q, = [91r 91+]T and q, = [9s Vs ]7.
Then, using (2.64), the transformation matrix in (3.119) is

1 0
0 1
T= -1 1
1 -1

Hence, in view of (3.120), the torque vector of the actuated joints is

T/ — Tor + T3t
a= 3.121
T |:7'1// +7'2/*T3/:| ( )

while obviously 7, = [0 0] in agreement with the fact that both Joints 2’ and 3’
are unactuated.

3.9 Manipulability Ellipsoids

The differential kinematics equation in (3.45) and the statics equation in
(3.111), together with the duality property, allow the definition of indices for
the evaluation of manipulator performance. Such indices can be helpful both
for mechanical manipulator design and for determining suitable manipulator
postures to execute a given task in the current configuration.

First, it is desired to represent the attitude of a manipulator to arbitrarily
change end-effector position and orientation. This capability is described in
an effective manner by the wvelocity manipulability ellipsoid.

Consider the set of joint velocities of constant (unit) norm

¢lg=1, (3.122)

this equation describes the points on the surface of a sphere in the joint ve-
locity space. It is desired to describe the operational space velocities that can
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be generated by the given set of joint velocities, with the manipulator in a
given posture. To this end, one can utilize the differential kinematics equation
in (3.45) solved for the joint velocities; in the general case of a redundant ma-
nipulator (r < n) at a nonsingular configuration, the minimum-norm solution
q = J'(q)v. can be considered which, substituted into (3.122), yields

ve (I (@) (q))ve = 1.
Accounting for the expression of the pseudo-inverse of J in (3.52) gives

oI (J(@) T (q)) Tve =1, (3.123)
which is the equation of the points on the surface of an ellipsoid in the end-
effector velocity space.

The choice of the minimum-norm solution rules out the presence of internal
motions for the redundant structure. If the general solution (3.54) is used for
g, the points satisfying (3.122) are mapped into points inside the ellipsoid
whose surface is described by (3.123).

For a nonredundant manipulator, the differential kinematics solution (3.47)
is used to derive (3.123); in this case the points on the surface of the sphere in
the joint velocity space are mapped into points on the surface of the ellipsoid
in the end-effector velocity space.

Along the direction of the major axis of the ellipsoid, the end-effector can
move at large velocity, while along the direction of the minor axis small end-
effector velocities are obtained. Further, the closer the ellipsoid is to a sphere
— unit eccentricity — the better the end-effector can move isotropically along
all directions of the operational space. Hence, it can be understood why this
ellipsoid is an index characterizing manipulation ability of the structure in
terms of velocities.

As can be recognized from (3.123), the shape and orientation of the ellip-
soid are determined by the core of its quadratic form and then by the matrix
JJT which is in general a function of the manipulator configuration. The
directions of the principal axes of the ellipsoid are determined by the eigen-
vectors u;, for i = 1,...,r, of the matrix JJT, while the dimensions of the

axes are given by the singular values of J, o; = )\i(JJT), fori=1,...,r,

where \;(JJ7T) denotes the generic eigenvalue of JJ7.
A global representative measure of manipulation ability can be obtained
by considering the volume of the ellipsoid. This volume is proportional to the

quantity
w(q) = y/det(J(a)J" (q))

which is the manipulability measure already introduced in (3.56). In the case
of a nonredundant manipulator (r = n), w reduces to

w(q) = |det(J(q))]. (3.124)
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Fig. 3.23. Velocity manipulability ellipses for a two-link planar arm in different
postures

It is easy to recognize that it is always w > 0, except for a manipulator at a
singular configuration when w = 0. For this reason, this measure is usually
adopted as a distance of the manipulator from singular configurations.

Example 3.6

Consider the two-link planar arm. From the expression in (3.41), the manipulability
measure is in this case

w = |det(J)| = araz2]|s2|.
Therefore, as a function of the arm postures, the manipulability is maximum for
¥2 = £m/2. On the other hand, for a given constant reach a1 + a2, the structure
offering the maximum manipulability, independently of 91 and 2, is the one with
al = az.

These results have a biomimetic interpretation in the human arm, if that is
regarded as a two-link arm (arm + forearm). The condition a1 = a is satisfied with
good approximation. Further, the elbow angle ¥}2 is usually in the neighbourhood of
/2 in the execution of several tasks, such as that of writing. Hence, the human being
tends to dispose the arm in the most dexterous configuration from a manipulability
viewpoint.

Figure 3.23 illustrates the velocity manipulability ellipses for a certain number of
postures with the tip along the horizontal axis and a; = a2 = 1. It can be seen that
when the arm is outstretched the ellipsoid is very thin along the vertical direction.
Hence, one recovers the result anticipated in the study of singularities that the arm
in this posture can generate tip velocities preferably along the vertical direction. In
Fig. 3.24, moreover, the behaviour of the minimum and maximum singular values of
the matrix J is illustrated as a function of tip position along axis z; it can be verified
that the minimum singular value is null when the manipulator is at a singularity
(retracted or outstretched).

Therefore, with reference to the postures, manipulability has a maximum for
¥2 = +m/2. On the other hand, for a given total extension ai + a2, the structure
which, independently of ¥; and ¥, offers the largest manipulability is that with
a1 = asz.
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Fig. 3.24. Minimum and maximum singular values of J for a two-link planar arm
as a function of the arm posture
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Fig. 3.25. Force manipulability ellipses for a two-link planar arm in different pos-
tures

The manipulability measure w has the advantage of being easy to compute,
through the determinant of matrix JJ”. However, its numerical value does
not constitute an absolute measure of the actual closeness of the manipulator
to a singularity. It is enough to consider the above example and take two
arms of identical structure, one with links of 1 m and the other with links of
1cm. Two different values of manipulability are obtained which differ by four
orders of magnitude. Hence, in that case it is convenient to consider only |ss]
— eventually |J2] — as the manipulability measure. In more general cases
when it is not easy to find a simple, meaningful index, one can consider the
ratio between the minimum and maximum singular values of the Jacobian
o, /o1 which is equivalent to the inverse of the condition number of matrix J.
This ratio gives not only a measure of the distance from a singularity (o, = 0),
but also a direct measure of eccentricity of the ellipsoid. The disadvantage in
utilizing this index is its computational complexity; it is practically impossible
to compute it in symbolic form, i.e., as a function of the joint configuration,
except for matrices of reduced dimension.

On the basis of the existing duality between differential kinematics and
statics, it is possible to describe the manipulability of a structure not only
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with reference to velocities, but also with reference to forces. To be specific,
one can consider the sphere in the space of joint torques

T T=1 (3.125)

which, accounting for (3.111), is mapped into the ellipsoid in the space of
end-effector forces

v (T(@) T (@)v. =1 (3.126)

which is defined as the force manipulability ellipsoid. This ellipsoid character-
izes the end-effector forces that can be generated with the given set of joint
torques, with the manipulator in a given posture.

As can be easily recognized from (3.126), the core of the quadratic form is
constituted by the inverse of the matrix core of the velocity ellipsoid in (3.123).
This feature leads to the notable result that the principal axes of the force
manipulability ellipsoid coincide with the principal axes of the velocity manip-
ulability ellipsoid, while the dimensions of the respective axes are in inverse
proportion. Therefore, according to the concept of force/velocity duality, a
direction along which good velocity manipulability is obtained is a direction
along which poor force manipulability is obtained, and vice versa.

In Fig. 3.25, the manipulability ellipses for the same postures as those
of the example in Fig. 3.23 are illustrated. A comparison of the shape and
orientation of the ellipses confirms the force/velocity duality effect on the
manipulability along different directions.

It is worth pointing out that these manipulability ellipsoids can be repre-
sented geometrically in all cases of an operational space of dimension at most
3. Therefore, if it is desired to analyze manipulability in a space of greater
dimension, it is worth separating the components of linear velocity (force)
from those of angular velocity (moment), also avoiding problems due to non-
homogeneous dimensions of the relevant quantities (e.g., m/s vs rad/s). For
instance, for a manipulator with a spherical wrist, the manipulability analysis
is naturally prone to a decoupling between arm and wrist.

An effective interpretation of the above results can be achieved by regard-
ing the manipulator as a mechanical transformer of velocities and forces from
the joint space to the operational space. Conservation of energy dictates that
an amplification in the velocity transformation is necessarily accompanied by
a reduction in the force transformation, and vice versa. The transformation
ratio along a given direction is determined by the intersection of the vector
along that direction with the surface of the ellipsoid. Once a unit vector u
along a direction has been assigned, it is possible to compute the transforma-
tion ratio for the force manipulability ellipsoid as

-1/2
alg) = (uTJ<q>JT<q>u) (3.127)
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Fig. 3.26. Velocity and force manipulability ellipses for a 3-link planar arm in a
typical configuration for a task of controlling force and velocity

and for the velocity manipulability ellipsoid as

~1/2
B(q) = (uT(J<q>JT<q>)‘1u) . (3.128)

The manipulability ellipsoids can be conveniently utilized not only for an-
alyzing manipulability of the structure along different directions of the opera-
tional space, but also for determining compatibility of the structure to execute
a task assigned along a direction. To this end, it is useful to distinguish be-
tween actuation tasks and control tasks of velocity and force. In terms of the
relative ellipsoid, the task of actuating a velocity (force) requires preferably
a large transformation ratio along the task direction, since for a given set of
joint velocities (forces) at the joints it is possible to generate a large velocity
(force) at the end-effector. On the other hand, for a control task it is impor-
tant to have a small transformation ratio so as to gain good sensitivity to
errors that may occur along the given direction.

Revisiting once again the duality between velocity manipulability ellipsoid
and force manipulability ellipsoid, it can be found that an optimal direction to
actuate a velocity is also an optimal direction to control a force. Analogously,
a good direction to actuate a force is also a good direction to control a velocity.

To have a tangible example of the above concept, consider the typical task
of writing on a horizontal surface for the human arm; this time, the arm is re-
garded as a 3-link planar arm: arm + forearm + hand. Restricting the analysis
to a two-dimensional task space (the direction vertical to the surface and the
direction of the line of writing), one has to achieve fine control of the vertical
force (the pressure of the pen on the paper) and of the horizontal velocity (to
write in good calligraphy). As a consequence, the force manipulability ellipse
tends to be oriented horizontally for correct task execution. Correspondingly,
the velocity manipulability ellipse tends to be oriented vertically in perfect
agreement with the task requirement. In this case, from Fig. 3.26 the typical
configuration of the human arm when writing can be recognized.
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force

velocity
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Fig. 3.27. Velocity and force manipulability ellipses for a 3-link planar arm in a
typical configuration for a task of actuating force and velocity

An opposite example to the previous one is that of the human arm when
throwing a weight in the horizontal direction. In fact, now it is necessary to
actuate a large vertical force (to sustain the weight) and a large horizontal
velocity (to throw the load for a considerable distance). Unlike the above, the
force (velocity) manipulability ellipse tends to be oriented vertically (horizon-
tally) to successfully execute the task. The relative configuration in Fig. 3.27
is representative of the typical attitude of the human arm when, for instance,
releasing the ball in a bowling game.

In the above two examples, it is worth pointing out that the presence of a
two-dimensional operational space is certainly advantageous to try reconfig-
uring the structure in the best configuration compatible with the given task.
In fact, the transformation ratios defined in (3.127) and (3.128) are scalar
functions of the manipulator configurations that can be optimized locally ac-
cording to the technique for exploiting redundant DOF's previously illustrated.
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Problems

3.1. Prove (3.11).

3.2. Compute the Jacobian of the cylindrical arm in Fig. 2.35.

3.3. Compute the Jacobian of the SCARA manipulator in Fig. 2.36.
3.4. Find the singularities of the 3-link planar arm in Fig. 2.20.

3.5. Find the singularities of the spherical arm in Fig. 2.22.

3.6. Find the singularities of the cylindrical arm in Fig. 2.35.

3.7. Find the singularities of the SCARA manipulator in Fig. 2.36.

3.8. Show that the manipulability measure defined in (3.56) is given by the
product of the singular values of the Jacobian matrix.

3.9. For the 3-link planar arm in Fig. 2.20, find an expression of the distance
of the arm from a circular obstacle of given radius and coordinates.

3.10. Find the solution to the differential kinematics equation with the
damped least-square inverse in (3.59).

3.11. Prove (3.64) in an alternative way, i.e., by computing S(w,) as in (3.6)
starting from R(¢) in (2.18).

3.12. With reference to (3.64), find the transformation matrix T'(¢,) in the
case of RPY angles.

3.13. With reference to (3.64), find the triplet of Euler angles for which
T0)=1I.

3.14. Show how the inverse kinematics scheme of Fig. 3.11 can be simplified
in the case of a manipulator having a spherical wrist.
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3.15. Find an expression of the upper bound on the norm of e for the solu-
tion (3.76) in the case &4 # 0.

3.16. Prove (3.81).
3.17. Prove (3.86), (3.87).

3.18. Prove that the equation relating the angular velocity to the time deriva-
tive of the quaternion is given by

w = 2S(€)€ + 2né — 2ne.

[Hint: Start by showing that (2.33) can be rewritten as R(n,€) = (2n?> —1)I +
2ee”’ +2nS(e)).

3.19. Prove (3.94), (3.95).

3.20. Prove that the time derivative of the Lyapunov function in (3.96) is
given by (3.97).

3.21. Consider the 3-link planar arm in Fig. 2.20, whose link lengths are
respectively 0.5m, 0.3m, 0.3 m. Perform a computer implementation of the
inverse kinematics algorithm using the Jacobian pseudo-inverse along the op-
erational space path given by a straight line connecting the points of coordi-
nates (0.8,0.2) m and (0.8, —0.2) m. Add a constraint aimed at avoiding link
collision with a circular object located at ¢ = [0.3 0]7 m of radius 0.1 m. The
initial arm configuration is chosen so that p,(0) = p,(0). The final time is
2s. Use sinusoidal motion timing laws. Adopt the Euler numerical integration
scheme (3.48) with an integration time At = 1ms.

3.22. Consider the SCARA manipulator in Fig. 2.36, whose links both have a
length of 0.5m and are located at a height of 1 m from the supporting plane.
Perform a computer implementation of the inverse kinematics algorithms with
both Jacobian inverse and Jacobian transpose along the operational space
path whose position is given by a straight line connecting the points of co-
ordinates (0.7,0,0) m and (0,0.8,0.5) m, and whose orientation is given by
a rotation from Orad to m/2rad. The initial arm configuration is chosen so
that x.(0) = x4(0). The final time is 2s. Use sinusoidal motion timing laws.
Adopt the Euler numerical integration scheme (3.48) with an integration time
At = 1ms.

3.23. Prove that the directions of the principal axes of the force and velocity
manipulability ellipsoids coincide while their dimensions are in inverse pro-
portion.

4

Trajectory Planning

For the execution of a specific robot task, it is worth considering the main
features of motion planning algorithms. The goal of trajectory planning is to
generate the reference inputs to the motion control system which ensures that
the manipulator executes the planned trajectories. The user typically specifies
a number of parameters to describe the desired trajectory. Planning consists of
generating a time sequence of the values attained by an interpolating function
(typically a polynomial) of the desired trajectory. This chapter presents some
techniques for trajectory generation, both in the case when the initial and
final point of the path are assigned (point-to-point motion), and in the case
when a finite sequence of points are assigned along the path (motion through
a sequence of points). First, the problem of trajectory planning in the joint
space is considered, and then the basic concepts of trajectory planning in
the operational space are illustrated. The treatment of the motion planning
problem for mobile robots is deferred to Chap. 12.

4.1 Path and Trajectory

The minimal requirement for a manipulator is the capability to move from
an initial posture to a final assigned posture. The transition should be char-
acterized by motion laws requiring the actuators to exert joint generalized
forces which do not violate the saturation limits and do not excite the typi-
cally modelled resonant modes of the structure. It is then necessary to devise
planning algorithms that generate suitably smooth trajectories.

In order to avoid confusion between terms often used as synonyms, the
difference between a path and a trajectory is to be explained. A path denotes
the locus of points in the joint space, or in the operational space, which the
manipulator has to follow in the execution of the assigned motion; a path is
then a pure geometric description of motion. On the other hand, a trajectory
is a path on which a timing law is specified, for instance in terms of velocities
and/or accelerations at each point.
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In principle, it can be conceived that the inputs to a trajectory planning
algorithm are the path description, the path constraints, and the constraints
imposed by manipulator dynamics, whereas the outputs are the end-effector
trajectories in terms of a time sequence of the values attained by position,
velocity and acceleration.

A geometric path cannot be fully specified by the user for obvious com-
plexity reasons. Typically, a reduced number of parameters is specified such
as extremal points, possible intermediate points, and geometric primitives in-
terpolating the points. Also, the motion timing law is not typically specified
at each point of the geometric path, but rather it regards the total trajectory
time, the constraints on the maximum velocities and accelerations, and even-
tually the assignment of velocity and acceleration at points of particular inter-
est. On the basis of the above information, the trajectory planning algorithm
generates a time sequence of variables that describe end-effector position and
orientation over time in respect of the imposed constraints. Since the control
action on the manipulator is carried out in the joint space, a suitable inverse
kinematics algorithm is to be used to reconstruct the time sequence of joint
variables corresponding to the above sequence in the operational space.

Trajectory planning in the operational space naturally allows the presence
of path constraints to be accounted; these are due to regions of workspace
which are forbidden to the manipulator, e.g., due to the presence of obstacles.
In fact, such constraints are typically better described in the operational space,
since their corresponding points in the joint space are difficult to compute.

With regard to motion in the neighbourhood of singular configurations and
presence of redundant DOFs, trajectory planning in the operational space may
involve problems difficult to solve. In such cases, it may be advisable to specify
the path in the joint space, still in terms of a reduced number of parameters.
Hence, a time sequence of joint variables has to be generated which satisfy
the constraints imposed on the trajectory.

For the sake of clarity, in the following, the case of joint space trajectory
planning is treated first. The results will then be extended to the case of
trajectories in the operational space.

4.2 Joint Space Trajectories

A manipulator motion is typically assigned in the operational space in terms
of trajectory parameters such as the initial and final end-effector pose, possi-
ble intermediate poses, and travelling time along particular geometric paths.
If it is desired to plan a trajectory in the joint space, the values of the joint
variables have to be determined first from the end-effector position and ori-
entation specified by the user. It is then necessary to resort to an inverse
kinematics algorithm, if planning is done off-line, or to directly measure the
above variables, if planning is done by the teaching-by-showing technique (see
Chap. 6).
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The planning algorithm generates a function g(¢) interpolating the given
vectors of joint variables at each point, in respect of the imposed constraints.

In general, a joint space trajectory planning algorithm is required to have
the following features:

e the generated trajectories should be not very demanding from a compu-
tational viewpoint,

e the joint positions and velocities should be continuous functions of time
(continuity of accelerations may be imposed, too),

e undesirable effects should be minimized, e.g., nonsmooth trajectories in-
terpolating a sequence of points on a path.

At first, the case is examined when only the initial and final points on
the path and the traveling time are specified (point-to-point); the results are
then generalized to the case when also intermediate points along the path are
specified (motion through a sequence of points). Without loss of generality,
the single joint variable ¢(t) is considered.

4.2.1 Point-to-Point Motion

In point-to-point motion, the manipulator has to move from an initial to a
final joint configuration in a given time ¢;. In this case, the actual end-effector
path is of no concern. The algorithm should generate a trajectory which, in
respect to the above general requirements, is also capable of optimizing some
performance index when the joint is moved from one position to another.

A suggestion for choosing the motion primitive may stem from the analysis
of an incremental motion problem. Let I be the moment of inertia of a rigid
body about its rotation axis. It is required to take the angle ¢ from an initial
value ¢; to a final value ¢y in a time ;. It is obvious that infinite solutions
exist to this problem. Assumed that rotation is executed through a torque 7
supplied by a motor, a solution can be found which minimizes the energy dis-
sipated in the motor. This optimization problem can be formalized as follows.
Having set ¢ = w, determine the solution to the differential equation

Iwo=rT1

subject to the condition
ty
/ w(t)dt =qr — ¢;
o
so as to minimize the performance index

/0 tf7'2(t)dt.

It can be shown that the resulting solution is of the type

w(t) = at® + bt +c.
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Even though the joint dynamics cannot be described in the above simple
manner,! the choice of a third-order polynomial function to generate a joint
trajectory represents a valid solution for the problem at issue.

Therefore, to determine a joint motion, the cubic polynomial

q(t) = ast® + ast® + art + ag (4.1)
can be chosen, resulting into a parabolic velocity profile
G(t) = 3ast® + 2ast + a;
and a linear acceleration profile
4(t) = 6ast + 2as.

Since four coefficients are available, it is possible to impose, besides the initial
and final joint position values ¢; and gy, also the initial and final joint velocity
values ¢; and ¢y which are usually set to zero. Determination of a specific
trajectory is given by the solution to the following system of equations:

Ao = ¢i

ap = ¢

CL3t?c + agt? + a1ty +ap = gy
3a3t?c + 2asty + a1 = gy,

that allows the computation of the coefficients of the polynomial in (4.1).2
Figure 4.1 illustrates the timing law obtained with the following data: ¢; = 0,
qgf =7, ty =1, and ¢; = ¢r = 0. As anticipated, velocity has a parabolic pro-
file, while acceleration has a linear profile with initial and final discontinuity.

If it is desired to assign also the initial and final values of acceleration, six
constraints have to be satisfied and then a polynomial of at least fifth order
is needed. The motion timing law for the generic joint is then given by

q(t) = a5t5 + a4t4 + a3t3 + a2t2 + a1t + aop, (4~2)

whose coefficients can be computed, as for the previous case, by imposing the
conditions for ¢ = 0 and ¢ = t; on the joint variable ¢(¢) and on its first
two derivatives. With the choice (4.2), one obviously gives up minimizing the
above performance index.

An alternative approach with timing laws of blended polynomial type is
frequently adopted in industrial practice, which allows a direct verification

!In fact, recall that the moment of inertia about the joint axis is a function of
manipulator configuration.

2 Notice that it is possible to normalize the computation of the coefficients, so as
to be independent both on the final time ¢y and on the path length |gr — gi|.
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Fig. 4.1. Time history of position, velocity and acceleration with a cubic polynomial
timing law

of whether the resulting velocities and accelerations can be supported by the
physical mechanical manipulator.

In this case, a trapezoidal velocity profile is assigned, which imposes a
constant acceleration in the start phase, a cruise velocity, and a constant
deceleration in the arrival phase. The resulting trajectory is formed by a linear
segment connected by two parabolic segments to the initial and final positions.

In the following, the problem is formulated by assuming that the final time
of trajectory duration has been assigned. However, in industrial practice, the
user is offered the option to specify the velocity percentage with respect to the
maximum allowable velocity; this choice is aimed at avoiding occurrences when
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Fig. 4.2. Characterization of a timing law with trapezoidal velocity profile in terms
of position, velocity and acceleration

the specification of a much too short motion duration would involve much too
large values of velocities and/or accelerations, beyond those achievable by the
manipulator.

As can be seen from the velocity profiles in Fig. 4.2, it is assumed that both
initial and final velocities are null and the segments with constant accelerations
have the same time duration; this implies an equal magnitude . in the two
segments. Notice also that the above choice leads to a symmetric trajectory
with respect to the average point ¢, = (¢ + ¢;)/2 at t,, = ty/2.

The trajectory has to satisfy some constraints to ensure the transition
from ¢; to g in a time t;. The velocity at the end of the parabolic segment
must be equal to the (constant) velocity of the linear segment, i.e.,

dm — 4c

4.3
— (4.3)

Gete =
where q. is the value attained by the joint variable at the end of the parabolic
segment at time t. with constant acceleration §. (recall that ¢(0) = 0). It is
then

1.
qc = ¢qi + 5‘]ct§~ (4'4)
Combining (4.3), (4.4) gives
Get? — Getpte +qp —qi = 0. (4.5)
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Usually, ¢, is specified with the constraint that sgn . = sgn (g5 — ¢;); hence,
for given t¢, ¢; and ¢y, the solution for ¢, is computed from (4.5) as (t, < t5/2)

t?fijc - 4(qf - Qi)

t 4.6
‘ e (4.6)
Acceleration is then subject to the constraint
o Yap —ail
il = =5 (4.7)
F

When the acceleration §. is chosen so as to satisfy (4.7) with the equality
sign, the resulting trajectory does not feature the constant velocity segment
any more and has only the acceleration and deceleration segments (triangular
profile).

Given g;, ¢ and ty, and thus also an average transition velocity, the con-
straint in (4.7) allows the imposition of a value of acceleration consistent with
the trajectory. Then, t. is computed from (4.6), and the following sequence of
polynomials is generated:

¢ + 3Get? 0<t<t.
q(t) = q @i +Gcte(t —tc/2)  te<t<tr—t (4.8)
a5 — 3Ge(ty —t)? by —te <t <ty
Figure 4.3 illustrates a representation of the motion timing law obtained by
imposing the data: ¢; =0, g5 =, t; =1, and |G| = 6.
Specifying acceleration in the parabolic segment is not the only way to

determine trajectories with trapezoidal velocity profile. Besides ¢;, ¢f and ty,
one can specify also the cruise velocity ¢. which is subject to the constraint

‘qf qz' < |QC‘ < |qf (I'Ll. (49)
tr tr
By recognizing that ¢. = §ctc, (4.5) allows the computation of ¢, as
L . t
f= BTGl (4.10)
dc
and thus the resulting acceleration is
-2
. gz
o= ———. 4.11
© g —ap ety (4.11)

The computed values of ¢, and . as in (4.10), (4.11) allow the generation of
the sequence of polynomials expressed by (4.8).

The adoption of a trapezoidal velocity profile results in a worse perfor-
mance index compared to the cubic polynomial. The decrease is, however,
limited; the term fotf 72dt increases by 12.5% with respect to the optimal
case.
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Fig. 4.3. Time history of position, velocity and acceleration with a trapezoidal
velocity profile timing law

4.2.2 Motion Through a Sequence of Points

In several applications, the path is described in terms of a number of points
greater than two. For instance, even for the simple point-to-point motion
of a pick-and-place task, it may be worth assigning two intermediate points
between the initial point and the final point; suitable positions can be set for
lifting off and setting down the object, so that reduced velocities are obtained
with respect to direct transfer of the object. For more complex applications,
it may be convenient to assign a sequence of points so as to guarantee better
monitoring on the executed trajectories; the points are to be specified more
densely in those segments of the path where obstacles have to be avoided
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Fig. 4.4. Characterization of a trajectory on a given path obtained through inter-
polating polynomials

or a high path curvature is expected. It should not be forgotten that the
corresponding joint variables have to be computed from the operational space
poses.

Therefore, the problem is to generate a trajectory when N points, termed
path points, are specified and have to be reached by the manipulator at certain
instants of time. For each joint variable there are IV constraints, and then one
might want to use an (/N — 1)-order polynomial. This choice, however, has the
following disadvantages:

It is not possible to assign the initial and final velocities.

As the order of a polynomial increases, its oscillatory behaviour increases,

and this may lead to trajectories which are not natural for the manipulator.
e Numerical accuracy for computation of polynomial coefficients decreases

as order increases.

The resulting system of constraint equations is heavy to solve.

Polynomial coefficients depend on all the assigned points; thus, if it is

desired to change a point, all of them have to be recomputed.

These drawbacks can be overcome if a suitable number of low-order inter-
polating polynomials, continuous at the path points, are considered in place
of a single high-order polynomial.

According to the previous section, the interpolating polynomial of lowest
order is the cubic polynomial, since it allows the imposition of continuity of
velocities at the path points. With reference to the single joint variable, a
function ¢(t) is sought, formed by a sequence of N — 1 cubic polynomials
Iy (t), for k=1,...,N — 1, continuous with continuous first derivatives. The
function ¢(t) attains the values gy for t = tx (k = 1,...,N), and ¢1 = ¢;,
ti =0, gv = qf, tn = ty; the qi’s represent the path points describing
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the desired trajectory at t = t; (Fig. 4.4). The following situations can be
considered:

Arbitrary values of ¢(t) are imposed at the path points.
The values of ¢(t) at the path points are assigned according to a certain
criterion.

e The acceleration ¢(t) has to be continuous at the path points.

To simplify the problem, it is also possible to find interpolating polynomials
of order less than three which determine trajectories passing nearby the path
points at the given instants of time.

Interpolating polynomials with imposed velocities at path points

This solution requires the user to be able to specify the desired velocity at
each path point; the solution does not possess any novelty with respect to the
above concepts.

The system of equations allowing computation of the coefficients of the
N — 1 cubic polynomials interpolating the N path points is obtained by im-
posing the following conditions on the generic polynomial 7y (t) interpolating
qr and qgy1, for k=1,...,N — 1

=
M (th1) = qur

1 (t) = dw
I (trs1) = it

The result is N — 1 systems of four equations in the four unknown coefficients
of the generic polynomial; these can be solved one independently of the other.
The initial and final velocities of the trajectory are typically set to zero (¢; =
gy = 0) and continuity of velocity at the path points is ensured by setting

1y, (th41) = ch+1(tk+1)

fork=1,...,N —2.

Figure 4.5 illustrates the time history of position, velocity and acceleration
obtained with the data: ¢ =0, g2 =27, g3 =7/2, qu =7, t1 =0,t0 =2, t3 =
3,t4 =5,41 =0, o =m, g3 = —m, g4 = 0. Notice the resulting discontinuity
on the acceleration, since only continuity of velocity is guaranteed.

Interpolating polynomials with computed velocities at path points

In this case, the joint velocity at a path point has to be computed according
to a certain criterion. By interpolating the path points with linear segments,
the relative velocities can be computed according to the following rules:
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Fig. 4.5. Time history of position, velocity and acceleration with a timing law of
interpolating polynomials with velocity constraints at path points

0

0 sgn (vy) 7 sgn (Ve+1)
S0k +vkg1)  sgn(vx) = sgn (Vks1)
0,

(4.12)

where vy = (qr — qx—1)/(tr — ti—1) gives the slope of the segment in the
time interval [tg_1,tx]. With the above settings, the determination of the
interpolating polynomials is reduced to the previous case.

Figure 4.6 illustrates the time history of position, velocity and acceleration
obtained with the following data: ¢; = 0, g2 = 27, g5 = 7/2, qu = 7, t1 =0,
to=2,1t3=3,t,=05,¢ =0, g4 = 0. It is easy to recognize that the imposed
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Fig. 4.6. Time history of position, velocity and acceleration with a timing law of
interpolating polynomials with computed velocities at path points

sequence of path points leads to having zero velocity at the intermediate
points.

Interpolating polynomials with continuous accelerations at path
points (splines)

Both the above two solutions do not ensure continuity of accelerations at
the path points. Given a sequence of N path points, the acceleration is also
continuous at each t if four constraints are imposed, namely, two position
constraints for each of the adjacent cubics and two constraints guaranteeing
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continuity of velocity and acceleration. The following equations have then to
be satisfied:

1 (t) = q

Iy (t) = g (ty)
J;Ik,l(tk) = I?k(tk)
I (ty) = i (tg)-

The resulting system for the N path points, including the initial and final
points, cannot be solved. In fact, it is formed by 4(N — 2) equations for the
intermediate points and 6 equations for the extremal points; the position
constraints for the polynomials IIy(t1) = ¢; and IIn(tf) = gy have to be
excluded since they are not defined. Also, I1y(t1), ITo(t1), ITn(tf), IIn(ts) do
not have to be counted as polynomials since they are just the imposed values
of initial and final velocities and accelerations. In summary, one has 4N — 2
equations in 4(N — 1) unknowns.

The system can be solved only if one eliminates the two equations which
allow the arbitrary assignment of the initial and final acceleration values.
Fourth-order polynomials should be used to include this possibility for the
first and last segment.

On the other hand, if only third-order polynomials are to be used, the fol-
lowing deception can be operated. Two virtual points are introduced for which
continuity constraints on position, velocity and acceleration can be imposed,
without specifying the actual positions, though. It is worth remarking that the
effective location of these points is irrelevant, since their position constraints
regard continuity only. Hence, the introduction of two virtual points implies
the determination of N + 1 cubic polynomials.

Consider N +2 time instants ¢, where t5 and ¢y 11 conventionally refer to
the virtual points. The system of equations for determining the N + 1 cubic
polynomials can be found by taking the 4(N — 2) equations:

M1 (t) = a (4.13)
M1 (t) = i () (4.14)
I, (tr) = 1I(t) (4.15)
Iy 1 (ty) = I (ts) (4.16)

for k=3,..., N, written for the N — 2 intermediate path points, the 6 equa-
tions:

I (t1) = qi (4.17)
I (t) = s (4.18)
I, (ty) = Gi, (4.19)

Hnyi(tnse) = g5 (4.20)
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Iy (tns2) = df (4.21)
IIni1(tnye) = df (4.22)

written for the initial and final points, and the 6 equations:

Iy (t) = I(tr) (4.23)
Iy (ty) = I (ty) (4.24)
Ty (t) = I (ty,) (4.25)

for £k = 2, N + 1, written for the two virtual points. The resulting system
has 4(N + 1) equations in 4(N + 1) unknowns, that are the coefficients of the
N + 1 cubic polynomials.

The solution to the system is computationally demanding, even for low
values of N. Nonetheless, the problem can be cast in a suitable form so as
to solve the resulting system of equations with a computationally efficient
algorithm. Since the generic polynomial IT(¢) is a cubic, its second derivative
must be a linear function of time which then can be written as

_ I, (ty) T (th41)

i
k(®) Aty Aty

(thyr —t) + (t—t) k=1,...,N+1, (4.26)

where Aty = tx41 — t indicates the time interval to reach gqr41 from gi. By
integrating (4.26) twice over time, the generic polynomial can be written as

II,(t) = g’ﬁ:) (tes1 —1)% + %@:1)“ — 1)’ (4.27)
My (tes1)  Atdl(tgsr)
+< At: - : + )(ttk)

(Hz(ti’“) - Atklé’“(tk)) (thir —t)  k=1,...,N+1,
which depends on the 4 unknowns: Iy (t), Ik (tk+1), I"]k(tk)7 ﬁk(tk+1).

Notice that the N variables g for k # 2, N + 1 are given via (4.13), while
continuity is imposed for go and gqn41 via (4.23). By using (4.14), (4.17),
(4.20), the unknowns in the N + 1 equations in (4.27) reduce to 2(N + 2).
By observing that the equations in (4.18), (4.21) depend on g2 and gy 1, and
that ¢; and ¢y are given, g2 and g1 can be computed as a function of I (t1)
and IT ~N+1(tNt2), respectively. Thus, a number of 2(N + 1) unknowns are left.

By accounting for (4.16), (4.25), and noticing that in ((4.19), (4.22) §; and
Gy are given, the unknowns reduce to N.

At this point, (4.15), (4.24) can be utilized to write the system of N
equations in N unknowns:

II)(t2) = II5(t2)
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Iy (tns1) = Hng1(tysr)-

Time-differentiation of (4.27) gives both ﬂk(tk+1) and Hk+1(tk+1) for k =
1,..., N, and thus it is possible to write a system of linear equations of the
kind ) ) .

A[Ily(ts) ... Hyy1(tns+1)] =0 (4.28)
which presents a vector b of known terms and a nonsingular coefficient matrix

A; the solution to this system always exists and is unique. It can be shown
that the matrix A has a tridiagonal band structure of the type

a1; a2 ... 0 0
a21 QA22 ... 0 0
A= : ,
0 0 ... av—1N-1 aGN_IN
0 0o ... aN,N—1 anNnN

which simplifies the solution to the system (see Problem 4.4). This matrix
is the same for all joints, since it depends only on the time intervals At
specified.

An efficient solution algorithm exists for the above system which is given
by a forward computation followed by a backward computation. From the
first equation, IT5(fs) can be computed as a function of IT3(t3) and then
substituted in the second equation, which then becomes an equation in the
unknowns IT5(t3) and ITy(t,). This is carried out forward by transforming all
the equations in equations with two unknowns, except the last one which will
have ITy41(tn41) only as unknown. At this point, all the unknowns can be
determined step by step through a backward computation.

The above sequence of cubic polynomials is termed spline to indicate
smooth functions that interpolate a sequence of given points ensuring con-
tinuity of the function and its derivatives.

Figure 4.7 illustrates the time history of position, velocity and acceleration
obtained with the data: ¢; = 0, g3 = 2m, g4 = 7/2, g¢ = 7, t1 = 0, t3 = 2,
ty = 3,16 =5, ¢g1 =0, g6 = 0. Two different pairs of virtual points were
considered at the time instants: to = 0.5, t5 = 4.5 (solid line in the figure),
and t2 = 1.5, t; = 3.5 (dashed line in the figure), respectively. Notice the
parabolic velocity profile and the linear acceleration profile. Further, for the
second pair, larger values of acceleration are obtained, since the relative time
instants are closer to those of the two intermediate points.

Interpolating linear polynomials with parabolic blends

A simplification in trajectory planning can be achieved as follows. Consider
the case when it is desired to interpolate N path points qi,...,qn at time
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Fig. 4.7. Time history of position, velocity and acceleration with a timing law of
cubic splines for two different pairs of virtual points

instants ¢1,...,ty with linear segments. To avoid discontinuity problems on
the first derivative at the time instants tg, the function ¢(¢) must have a
parabolic profile (blend) around tx; as a consequence, the entire trajectory is
composed of a sequence of linear and quadratic polynomials, which in turn
implies that a discontinuity on §(¢) is tolerated.

Then let Aty = ti41 — tx be the time distance between g and g+1, and
Aty k41 be the time interval during which the trajectory interpolating ¢; and
Qr+1 is a linear function of time. Also let ¢x 41 be the constant velocity and
gr be the acceleration in the parabolic blend whose duration is Atj. The
resulting trajectory is illustrated in Fig. 4.8. The values of g, Aty, and At}
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Fig. 4.8. Characterization of a trajectory with interpolating linear polynomials with
parabolic blends

are assumed to be given. Velocity and acceleration for the intermediate points
are computed as

. dk — qk—1
A= 4.29
Ak—1,k Al ( )
G = dk,k+1 — qk—l,k; (4.30)

At

these equations are straightforward.

The first and last segments deserve special care. In fact, if it is desired to
maintain the coincidence of the trajectory with the first and last segments,
at least for a portion of time, the resulting trajectory has a longer duration
given by tn —t1 + (A] + Aty) /2, where Go.1 = ¢, n+1 = 0 has been imposed
for computing initial and final accelerations.

Notice that ¢(t) reaches none of the path points g but passes nearby
(Fig. 4.8). In this situation, the path points are more appropriately termed
via points; the larger the blending acceleration, the closer the passage to a via
point.

On the basis of the given g, At, and At), the values of gy_1 % and G
are computed via (4.29), (4.30) and a sequence of linear polynomials with
parabolic blends is generated. Their expressions as a function of time are not
derived here to avoid further loading of the analytic presentation.

Figure 4.9 illustrates the time history of position, velocity and acceleration
obtained with the data: ¢ = 0, g2 = 2w, g3 = 7/2, g4 = 7, t1 = 0, to = 2,
t3=3,t4, =5, ¢1 =0, ¢4 = 0. Two different values for the blend times have
been considered: At), = 0.2 (solid line in the figure) and At} = 0.6 (dashed
line in the figure), for kK = 1,...,4, respectively. Notice that in the first case
the passage of ¢(t) is closer to the via points, though at the expense of higher
acceleration values.
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Fig. 4.9. Time history of position, velocity and acceleration with a timing law of
interpolating linear polynomials with parabolic blends

The technique presented above turns out to be an application of the trape-
zoidal velocity profile law to the interpolation problem. If one gives up a tra-
jectory passing near a via point at a prescribed instant of time, the use of
trapezoidal velocity profiles allows the development of a trajectory planning
algorithm which is attractive for its simplicity.

In particular, consider the case of one intermediate point only, and suppose
that trapezoidal velocity profiles are considered as motion primitives with
the possibility to specify the initial and final point and the duration of the
motion only; it is assumed that ¢; = ¢y = 0. If two segments with trapezoidal
velocity profiles were generated, the manipulator joint would certainly reach
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the intermediate point, but it would be forced to stop there, before continuing
the motion towards the final point. A keen alternative is to start generating
the second segment ahead of time with respect to the end of the first segment,
using the sum of velocities (or positions) as a reference. In this way, the joint
is guaranteed to reach the final position; crossing of the intermediate point at
the specified instant of time is not guaranteed, though.

Figure 4.10 illustrates the time history of position, velocity and accelera-
tion obtained with the data: ¢; = 0, ¢ = 37/2, t; = 0, t; = 2. The interme-
diate point is located at ¢ = m with ¢ = 1, the maximum acceleration values
in the two segments are respectively || = 67 and |G| = 37, and the time
anticipation is 0.18. As predicted, with time anticipation, the assigned inter-
mediate position becomes a via point with the advantage of an overall shorter
time duration. Notice, also, that velocity does not vanish at the intermediate
point.

4.3 Operational Space Trajectories

A joint space trajectory planning algorithm generates a time sequence of val-
ues for the joint variables g(¢) so that the manipulator is taken from the
initial to the final configuration, eventually by moving through a sequence of
intermediate configurations. The resulting end-effector motion is not easily
predictable, in view of the nonlinear effects introduced by direct kinematics.
Whenever it is desired that the end-effector motion follows a geometrically
specified path in the operational space, it is necessary to plan trajectory exe-
cution directly in the same space. Planning can be done either by interpolating
a sequence of prescribed path points or by generating the analytical motion
primitive and the relative trajectory in a punctual way.

In both cases, the time sequence of the values attained by the operational
space variables is utilized in real time to obtain the corresponding sequence
of values of the joint space variables, via an inverse kinematics algorithm. In
this regard, the computational complexity induced by trajectory generation
in the operational space and related kinematic inversion sets an upper limit
on the maximum sampling rate to generate the above sequences. Since these
sequences constitute the reference inputs to the motion control system, a
linear microinterpolation is typically carried out. In this way, the frequency
at which reference inputs are updated is increased so as to enhance dynamic
performance of the system.

Whenever the path is not to be followed exactly, its characterization can
be performed through the assignment of N points specifying the values of the
variables x. chosen to describe the end-effector pose in the operational space
at given time instants tg, for £ = 1,..., N. Similar to what was presented
in the above sections, the trajectory is generated by determining a smooth
interpolating vector function between the various path points. Such a function
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Fig. 4.10. Time history of position, velocity and acceleration with a timing law of
interpolating linear polynomials with parabolic blends obtained by anticipating the
generation of the second segment of trajectory

can be computed by applying to each component of x. any of the interpolation
techniques illustrated in Sect. 4.2.2 for the single joint variable.

Therefore, for given path (or via) points @.(x), the corresponding com-
ponents x;(ty), for ¢ = 1,...r (where r is the dimension of the operational
space of interest) can be interpolated with a sequence of cubic polynomials, a
sequence of linear polynomials with parabolic blends, and so on.

On the other hand, if the end-effector motion has to follow a prescribed
trajectory of motion, this must be expressed analytically. It is then necessary
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to refer to motion primitives defining the geometric features of the path and
time primitives defining the timing law on the path itself.

4.3.1 Path Primitives

For the definition of path primitives it is convenient to refer to the parametric
description of paths in space. Then let p be a (3 x 1) vector and f(o) a con-
tinuous vector function defined in the interval [o;, 0y]. Consider the equation

p = f(o); (4.31)

with reference to its geometric description, the sequence of values of p with
o varying in [0, 0] is termed path in space. The equation in (4.31) defines
the parametric representation of the path I' and the scalar o is called pa-
rameter. As o increases, the point p moves on the path in a given direction.
This direction is said to be the direction induced on I' by the parametric
representation (4.31). A path is closed when p(c¢) = p(0;); otherwise it is
open.

Let p; be a point on the open path I" on which a direction has been fixed.
The arc length s of the generic point p is the length of the arc of I' with
extremes p and p; if p follows p;, the opposite of this length if p precedes p;.
The point p; is said to be the origin of the arc length (s = 0).

From the above presentation it follows that to each value of s a well-
determined path point corresponds, and then the arc length can be used as a
parameter in a different parametric representation of the path I

p = f(s); (4.32)

the range of variation of the parameter s will be the sequence of arc lengths
associated with the points of I'.

Consider a path I' represented by (4.32). Let p be a point corresponding
to the arc length s. Except for special cases, p allows the definition of three
unit vectors characterizing the path. The orientation of such vectors depends
exclusively on the path geometry, while their direction depends also on the
direction induced by (4.32) on the path.

The first of such unit vectors is the tangent unit vector denoted by ¢. This
vector is oriented along the direction induced on the path by s.

The second unit vector is the normal unit vector denoted by n. This vector
is oriented along the line intersecting p at a right angle with ¢ and lies in the
so-called osculating plane O (Fig. 4.11); such plane is the limit position of the
plane containing the unit vector ¢ and a point p’ € I when p’ tends to p along
the path. The direction of n is so that the path I", in the neighbourhood of p
with respect to the plane containing ¢ and normal to n, lies on the same side
of n.

The third unit vector is the binormal unit vector denoted by b. This vector
is so that the frame (¢, n, b) is right-handed (Fig. 4.11). Notice that it is not
always possible to define uniquely such a frame.



182 4 Trajectory Planning

x
Fig. 4.11. Parametric representation of a path in space
It can be shown that the above three unit vectors are related by simple

relations to the path representation I' as a function of the arc length. In
particular, it is

dp
t=—
ds
1 d%p
|
b=txn.

Typical path parametric representations are reported below which are useful
for trajectory generation in the operational space.

Rectilinear path

Consider the linear segment connecting point p; to point p;. The parametric
representation of this path is

p(s) = (P —pi)- (4.34)

s

" ey — il

Notice that p(0) = p; and p(||p; — p;||) = p;. Hence, the direction induced

on I' by the parametric representation (4.34) is that going from p, to p;.
Differentiating (4.34) with respect to s gives

dp 1

— =——(p; —p; 4.35

ds ||Pf —p;l / ) ( )
d*p
— =0. 4.
ds? (4.36)

In this case it is not possible to define the frame (¢, n,b) uniquely.
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x

Fig. 4.12. Parametric representation of a circle in space

Circular path

Consider a circle I' in space. Before deriving its parametric representation, it
is necessary to introduce its significant parameters. Suppose that the circle is
specified by assigning (Fig. 4.12):

the unit vector of the circle axis r,
the position vector d of a point along the circle axis,
the position vector p; of a point on the circle.

With these parameters, the position vector ¢ of the centre of the circle can
be found. Let § = p, — d; for p, not to be on the axis, i.e., for the circle not
to degenerate into a point, it must be

67| < o]l;

in this case it is
c=d+(8"r)r. (4.37)

It is now desired to find a parametric representation of the circle as a function
of the arc length. Notice that this representation is very simple for a suitable
choice of the reference frame. To see this, consider the frame O'-x'y’2’, where
O’ coincides with the centre of the circle, axis 2’ is oriented along the direction
of the vector p, — ¢, axis 2’ is oriented along r and axis ¢’ is chosen so as to
complete a right-handed frame. When expressed in this reference frame, the
parametric representation of the circle is

pcos (s/p)
p'(s) = psinéS/p) ; (4.38)
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where p = ||p; — c|| is the radius of the circle and the point p, has been
assumed as the origin of the arc length. For a different reference frame, the
path representation becomes

p(s) =c+ Rp'(s), (4.39)

where ¢ is expressed in the frame O-zyz and R is the rotation matrix of
frame O'— 2'y’2’ with respect to frame O-xyz which, in view of (2.3), can be
written as

R=[ y =

', y', 2’ indicate the unit vectors of the frame expressed in the frame O-zyz.
Differentiating (4.39) with respect to s gives

—sin (s/p)
(fl—z =R | cos(s/p) (4.40)
0
. —cos (s/p)/p
TP _ R | —sinis/n)p |- (4.41)
0

4.3.2 Position

Let x. be the vector of operational space variables expressing the pose of
the manipulator’s end-effector as in (2.80). Generating a trajectory in the
operational space means to determine a function x.(t) taking the end-effector
frame from the initial to the final pose in a time t; along a given path with a
specific motion timing law. First, consider end-effector position. Orientation
will follow.

Let p, = f(s) be the (3 x 1) vector of the parametric representation of the
path I" as a function of the arc length s; the origin of the end-effector frame
moves from p; to p; in a time ;. For simplicity, suppose that the origin of
the arc length is at p, and the direction induced on I is that going from p;
to p;. The arc length then goes from the value s = 0 at ¢ = 0 to the value
s = sy (path length) at ¢ = t;. The timing law along the path is described by
the function s(t).

In order to find an analytic expression for s(t), any of the above techniques
for joint trajectory generation can be employed. In particular, either a cubic
polynomial or a sequence of linear segments with parabolic blends can be
chosen for s(t).

It is worth making some remarks on the time evolution of p, on I, for a
given timing law s(t). The velocity of point p, is given by the time derivative
of p,

. .dp,
=S
Pe ds

= it,
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where t is the tangent vector to the path at point p in (4.33). Then, $ rep-
resents the magnitude of the velocity vector relative to point p, taken with
the positive or negative sign depending on the direction of p along t. The
magnitude of p starts from zero at ¢t = 0, then it varies with a parabolic or
trapezoidal profile as per either of the above choices for s(t), and finally it
returns to zero at t = ty.

As a first example, consider the segment connecting point p; with point p.
The parametric representation of this path is given by (4.34). Velocity and ac-
celeration of p, can be easily computed by recalling the rule of differentiation
of compound functions, i.e.,

s
||Pf -l
g

P, = (Pf —p;) =6t (4.42)

De = (Pf —p;) = 8t (4.43)

[F2 F Dl

As a further example, consider a circle I' in space. From the parametric
representation derived above, in view of (4.40), (4.41), velocity and accelera-
tion of point p, on the circle are

—$sin (s/p)
p. =R | scos(s/p) (4.44)
0
—§%cos (s/p)/p — §sin (s/p)
P, = R | —$%sin(s/p)/p+ 5cos (s/p) | - (4.45)
0

Notice that the velocity vector is aligned with ¢, and the acceleration vector
is given by two contributions: the first is aligned with nm and represents the
centripetal acceleration, while the second is aligned with ¢ and represents the
tangential acceleration.

Finally, consider the path consisting of a sequence of N + 1 points,
PosP1,---, Py, connected by N segments. A feasible parametric representa-
tion of the overall path is the following:

5.
Pe =Po + Z —L——(p; —p; 1), (4.46)
with j = 1,...,N. In (4.46) s; is the arc length associated with the j-th

segment of the path, connecting point p;_; to point p;, defined as

0 0<t< tj—1
Sj(t) = 89 (t) tj,1 <t< tj (447)
Hpj—Pj_1|| tj <t <y,
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where tg = 0 and ty = t; are respectively the initial and final time instants of
the trajectory, t; is the time instant corresponding to point p; and s’ (¢) can
be an analytical function of cubic polynomial type, linear type with parabolic
blends, and so forth, which varies continuously from the value 8; = 0 at
t =t;_1 to the value s} = [[p; —p;_1[| at t = ¢;.

The velocity and acceleration of p, can be easily found by differentiat-
ing (4.46):

N . N

. 55 .

Pe=) P — I (P —Pj1) = )it (4.48)
j=1 p] p]*l j=1

_— 3 N

P, = Z (P~ Ppj_1) = Zsjtjv (4.49)
=1 Hpj pj—l” =1

where t; is the tangent unit vector of the j-th segment.

Because of the discontinuity of the first derivative at the path points be-
tween two non-aligned segments, the manipulator will have to stop and then
go along the direction of the following segment. Assumed a relaxation of the
constraint to pass through the path points, it is possible to avoid a manipu-
lator stop by connecting the segments near the above points, which will then
be named operational space via points so as to guarantee, at least, continuity
of the first derivative.

As already illustrated for planning of interpolating linear polynomials with
parabolic blends passing by the via points in the joint space, the use of trape-
zoidal velocity profiles for the arc lengths allows the development of a rather
simple planning algorithm

In detail, it will be sufficient to properly anticipate the generation of the
single segments, before the preceding segment has been completed. This leads
to modifying (4.47) as follows:

0 OStSt]'_l—Atj
sj(t) = S;- (t =+ At]‘) tj,1 — Atj <t< tj — Atj (450)
Ip; —pjall 8 — Aty <t <ty— Ay,

where At; is the time advance at which the j-th segment is generated, which
can be recursively evaluated as

Aty = Atj_l + dt;,

with j = 1,..., N e Aty = 0. Notice that this time advance is given by the
sum of two contributions: the former, At;_;, accounts for the sum of the time
advances at which the preceding segments have been generated, while the
latter, dt;, is the time advance at which the generation of the current segment
starts.
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4.3.3 Orientation

Consider now end-effector orientation. Typically, this is specified in terms of
the rotation matrix of the (time-varying) end-effector frame with respect to
the base frame. As is well known, the three columns of the rotation matrix
represent the three unit vectors of the end-effector frame with respect to the
base frame. To generate a trajectory, however, a linear interpolation on the
unit vectors m., S., a. describing the initial and final orientation does not
guarantee orthonormality of the above vectors at each instant of time.

Euler angles

In view of the above difficulty, for trajectory generation purposes, orientation
is often described in terms of the Euler angles triplet ¢, = (¢, ¥, ¥) for which
a timing law can be specified. Usually, ¢, moves along the segment connecting
its initial value ¢; to its final value ¢,. Also in this case, it is convenient to
choose a cubic polynomial or a linear segment with parabolic blends timing
law. In this way, in fact, the angular velocity w, of the time-varying frame,
which is related to ¢F by the linear relationship (3.64), will have continuous
magnitude.

Therefore, for given ¢, and ¢, and timing law, the position, velocity and
acceleration profiles are

S

P = ¢ + m(ﬁbf - ¢;)

. $

. = m(‘lﬁ - ;) (4.51)
. = m(¢f - 9,);

where the timing law for s(t) has to be specified. The three unit vectors of the
end-effector frame can be computed — with reference to Euler angles ZYZ
— as in (2.18), the end-effector frame angular velocity as in (3.64), and the
angular acceleration by differentiating (3.64) itself.

Angle and axis

An alternative way to generate a trajectory for orientation of clearer inter-
pretation in the Cartesian space can be derived by resorting to the the angle
and axis description presented in Sect. 2.5. Given two coordinate frames in
the Cartesian space with the same origin and different orientation, it is always
possible to determine a unit vector so that the second frame can be obtained
from the first frame by a rotation of a proper angle about the axis of such
unit vector.
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Let R; and Ry denote respectively the rotation matrices of the initial
frame O;x;y;2; and the final frame Oy—x;yszy, both with respect to the
base frame. The rotation matrix between the two frames can be computed by
recalling that Ry = RiRéc; the expression in (2.5) leads to

) - i1 T2 T13

=R, Ry= |ra ro2 T3

31 T32 733
If the matrix R(t) is defined to describe the transition from R; to Ry, it
must be R'(0) = I and R'(ty) = RY;. Hence, the matrix R} can be expressed

as the rotation matrix about a fixed axis in space; the unit vector r? of the
axis and the angle of rotation ¥; can be computed by using (2.27):

-1
9y = cos (Tu * T222+ 133 ) (4.52)
1 732 — T23
- a — s 4.
T 2sindy 13 =731 (4.53)
T21 —T12

for sinvy # 0.

The matrix R'(t) can be interpreted as a matrix R’ (d(t), r?) and computed
via (2.25); it is then sufficient to assign a timing law to ¢, of the type of those
presented for the single joint with ¥(0) = 0 and J(tf) = ¥¢, and compute the
components of ¢ from (4.52). Since r? is constant, the resulting velocity and
acceleration are respectively

W=7 (4.54)
Wl = (4.55)

Finally, in order to characterize the end-effector orientation trajectory with
respect to the base frame, the following transformations are needed:

R.(t) = R;R'(t)
we(t) = Riw'(t)
we(t) = Riw'(t).
Once a path and a trajectory have been specified in the operational space

in terms of p, (¢) and ¢,(t) or R.(t), inverse kinematics techniques can be
used to find the corresponding trajectories in the joint space g(t).
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works in the field of robotics [178]. The formulation of the interpolation prob-
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The generation of motion trajectories through sequences of points in the
joint space using splines is due to [131]. Alternative formulations for this
problem are found in [56]. For a complete treatment of splines, including
geometric properties and computational aspects, see [54]. In [155] a survey
on the functions employed for trajectory planning of a single motion axis
is given, which accounts for performance indices and effects of unmodelled
flexible dynamics.

Cartesian space trajectory planning and the associated motion control
problem have been originally treated in [179]. The systematic management
of the motion by the via points using interpolating linear polynomials with
parabolic blends has been proposed in [229]. A detailed presentation of the
general aspects of the geometric primitives that can be utilized in robotics to
define Cartesian space paths can be found in the computer graphics text [73].

Problems

4.1. Compute the joint trajectory from ¢(0) =1 to ¢(2) = 4 with null initial
and final velocities and accelerations.

4.2. Compute the timing law ¢(t) for a joint trajectory with velocity profile
of the type ¢(t) = k(1 — cos (at)) from ¢(0) = 0 to ¢(2) = 3.

4.3. Given the values for the joint variable: ¢(0) = 0, ¢(2) = 2, and ¢(4) = 3,
compute the two fifth-order interpolating polynomials with continuous veloc-
ities and accelerations.

4.4. Show that the matrix A in (4.28) has a tridiagonal band structure.

4.5. Given the values for the joint variable: ¢(0) = 0, ¢(2) = 2, and ¢(4) = 3,
compute the cubic interpolating spline with null initial and final velocities and
accelerations.

4.6. Given the values for the joint variable: ¢(0) = 0, ¢(2) = 2, and ¢(4) = 3,
find the interpolating polynomial with linear segments and parabolic blends
with null initial and final velocities.

4.7. Find the timing law p(¢) for a Cartesian space rectilinear path with trape-
zoidal velocity profile from p(0) = [0 0.5 0] to p(2) =[1 —-0.5 0]T.

4.8. Find the timing law p(¢) for a Cartesian space circular path with trape-
zoidal velocity profile from p(0) = [0 0.5 1]T to p(2) = [0 -0.5 1]T;
the circle is located in the plane x = 0 with centre at ¢ = [0 0 1]7 and
radius p = 0.5, and is executed clockwise for an observer aligned with x.



