
University of L’Aquila
Computer Science Department

eXtensible Markup Language (XML)
Basic Concepts

Giuseppe Della Penna

Università degli Studi di L’Aquila

dellapenna@univaq.it

http://www.di.univaq.it/gdellape

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900,
Mountain View, California, 94041, USA.

University of L’Aquila
Computer Science Department

Notes to the English Version

These slides contain an English translation of the

didactic material used in the Web Engineering course

at University of L’Aquila, Italy.

The slides were initially written in Italian, and the

current translation is the first result of a long and

eXtensible Markup LanguageeXtensible Markup Language

current translation is the first result of a long and

complex adaptation work.

Therefore, the slides may still contain some errors,

typos and poorly readable statements.

I’ll do my best to refine the language, but it takes time.

Suggestions are always appreciated!

2

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Origins of XML

� XML is a metalanguage, i.e., a language that is used to create
other languages.

� In particular, XML defines the basic rules for creating markup
languages, i.e., languages whose content (text) is structured by
special delimiters called tags.

3

special delimiters called tags.

� XML derives from SGML, another well metalanguage used mainly
in professional settings (e.g., publishing).

� Compared to SGML, XML has been greatly simplified and small
extensions have been added to make it more user friendly.

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

The Family of XML

SGMLSGML

HTMLHTML

XHTMLXHTML

WMLWML

DTDDTD

XML SchemaXML Schema

XMIXMI

4

XMLXML

SGMLSGMLWMLWML

SOAPSOAP MathMLMathML

WSDLWSDL

XMIXMI

XSLXSL

XSLXSL--FOFO

SVGSVG

VMLVML

CMLCML

XML SignatureXML Signature

VoiceMLVoiceML

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

XML Pros

� XML allows developers to easily create ad-hoc languages to contain
structured information.

� XML is completely text-based, so it is humanreadable and can be easily
hand-edited. It Supports UNICODE, so it is suitable for all types of languages.

� The structures defined with XML are useful for creating platform-
independent and self-descriptive data structures.

5

independent and self-descriptive data structures.

� The automatic processing of an XML language is particularly simple and
efficient. The strict syntactic rules of XML-based languages make them very
suitable for automatic processing.

� Since XML is actually written as plain text, XML data can be easily and safely
transported using the HTTP protocol through firewalls (SOAP, web
services).

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

XML Cons

� XML documents, because of their textual structure and
tags, tend to be much more large than the
corresponding binary format.

� XML manipulation libraries are not as fast as the ad-
hoc parsers written for specific formats, especially the

6

hoc parsers written for specific formats, especially the
binary ones.

� In general, therefore, the use of XML is more expensive
in terms of necessary resources (network, memory and
CPU time required for decoding it, etc..)

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

XML Applications

� Despite the (few) disadvantages seen, the use of XML is
widespread and growing:

� Web Services

• SOAP, WSDL, …
� Science

• MathML, CML,…

7

• MathML, CML,…
� Web and Publishing

• XHTML, WML, VoiceML, XSL, XSL-FO, …
� Multimedia

• SMIL, SVG,…
� Definition of formal structures

• XMLSchema, XMI,…
� Security

• XML Encryption, XML Signature

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

An XML Document
<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<meta http-equiv="Content-Language" content="it"/>
<title>Sito Ufficiale dei Corsi di Laurea in Informatica – Università dell'Aquila ::
<?php echo $pageTitle; ?>
</title>
<link rel="stylesheet" media="print" href="css/stile_stampa.css" type="text/css"/>
<link rel=“stylesheet" media="screen" href="css/stile_grafico.css" type="text/css" title="deep blue"/>

8

<link rel=“stylesheet" media="screen" href="css/stile_grafico.css" type="text/css" title="deep blue"/>
<!--[if lte IE 6]>
<link rel="stylesheet" media="all" type="text/css" href="css/ie6_hacks.css" />
<![endif]-->
<link rel="SHORTCUT ICON" href="favicon.ico" type="image/x-icon"/>
<script type="text/javascript">
//<![CDATA[
...
//]]></script>
<link rel="alternate" type="application/rss+xml" title="RSS Feed" href="..."/>

</head>
<body>
...
</body>

</html>

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

The Structure of an XML document

� An XML document consists of a prologue and a body

� The body of the document may contain:

� text,

� tags (element delimiters),

9

� annotations (comments)

� processing instructions (instructions for external automatic
processors)

� entities (similar to macros)

� In addition, tags may contain attributes and namespaces.

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Prologue: XML Declaration

� The first line of the prologue is the XML declaration, which is mandatory and
must appear at the very beginning of the document.

� The expression "<?xml" is called the opening tag of the XML declaration. The
statement is closed by the symbol "?>".

� Within the statement, there are two expressions of the form name = "value".

<?xml version="1.0" encoding="ISO-8859-1"?>

10

� Within the statement, there are two expressions of the form name = "value".
This type of notation is used to define an attribute contained in the tag. An
attribute refines or extends the meaning of a tag, and it is widely used in
XML.

� The attributes of the XML declaration are:
� version: (required) indicates the version of XML used.

� encoding: (optional) is the name of the character encoding used in the document
(default: UTF-8 or 16, that is, 8 or 16-bit Unicode, ISO-8859-1 is the most suitable for
western European characters)

� Standalone: (optional) if true yes indicates that the file does not refer to other external
files. (Default: no)

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Prologue: DOCTYPE Declaration

� XML documents can (and should) be associated to a formal
specification that defines the language used in the document
and its syntax rules.

� The default XML way to create this specification is the
document type definition (DTD)

� If a document has an associated DTD, you must include a
DOCTYPE declaration in the prologue that declares the

11

� If a document has an associated DTD, you must include a
DOCTYPE declaration in the prologue that declares the
association. This statement inherits the syntax of the
corresponding SGML one.

� However, there are other formalisms for the definition of XML
languages, such as schemas, which use different association
methods.

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Prologue: DOCTYPE Declaration

� The declaration begins with the tag "<!DOCTYPE" and is
closed by the symbol ">". Inside there are the following:

� RootElement (mandatory) is the document root element
name, i.e., the name of the tag that will contain the entire

<!DOCTYPE RootElement ExternalDTDReference [InternalDTDSubset]>

12

name, i.e., the name of the tag that will contain the entire
document.

� ExternalDTDReference (optional) points to a file that
contains the DTD itself, and may be:

� SYSTEM "uri", an uri which identifies an external file.
� PUBLIC "pubid" "uri," where pubid is a unique identifier for the
DTD and uri points to a file that contains it.

� InternalDTDSubset (optional) is a DTD, or a DTD fragment,
which can be specified directly within the document.

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Elements

� Elements are the base of the structure of XML
documents.

� An element is a piece of data, limited and identified
(by name) by a tag.

13

� The content of an element is anything that appears
between its opening tag and its closing tag.

� Elements can be nested, i.e., elements may be part of
the contents of an outer element.

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Elements

<head>

<meta/>
“meta”
Element

“head”

14

<title>

</head>

Sito ufficiale…
“title”
Element

“head”

Element

</title>

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Elements: Basic Rules

� Element names are case-sensitive.

� Each element must be closed, that is, its closing tag
must appear before the end of the document.

� In the case of nested elements, end tags must appear

15

In the case of nested elements, end tags must appear
in reverse order of opening, i.e., the element
contents cannot "overlap".

� Every XML document must have a unique "root“
element, where all the others are nested.

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Elements: Syntax

� The opening tag of an element
has the form shown in (1),
where name is the name of the
element. The corresponding
closing tag is shown in (2)

<name>
…

</name>

<name/>

1

2

3

16

� Finally, some elements may be
empty: in this case you can
omit the closing tag writing
the opening in the abbreviated
form shown in (3).

<a>

<c>
Text
<d>
<e/>

</d>
</c>

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Hierarchy of Elements

� Nested elements create the tree
structure of XML documents.

� Within this structure it is possible to
define some useful “relationships”:

� a is the root node
� b and c are the children of a, the text is

<a>

Text

17

� b and c are the children of a, the text is
the child of b, d is the child of c

� c is the father of d, b is the father of the
text, a is the father of b and c

� b and c are brothers
� b, c, d and the text are descendants of a, d
is a descendant of c, the text is a
descendant of b

� a is a ancestor of b, c, d and text, b is an
ancestor of the text, c is an ancestor of d.

<c>

</c>

<d/>

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Attributes

� Attributes allow you to specify properties of the
elements, modifying or better defining their meaning.

� Attributes are inserted within the opening tag of the
elements.

18

� The order in which attributes appear in the opening
tag is not significant.

� The value of an attribute should be simple: otherwise
it is better to use a nested element to contain it.

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Attributes: Basic Rules

� Attribute names are case-sensitive.

� The same element cannot contain two attributes with
the same name.

� Attributes with no value (only name) are not allowed.

19

Attributes with no value (only name) are not allowed.

� The attribute value must be specified between single
or double quotes.

� The value may contain entity references, but no other
structure (XML elements, processing instructions,
etc.).

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

<name attribute=‘ “value” ’>

<name attr1=“val1” attr2=“val2”>

<name attribute=“value”>

Attributes: Syntax

� The basic syntax for an
attribute inserted in the
opening tag of an element is
shown in (1)

� To specify multiple attributes

1

3

2

20

� To specify multiple attributes
it is enough to separate them
with one or more spaces as
shown in (2)

� To include quotation marks in
an attribute value, you must
use quate different from the
one used to surround the value
itself (3)

<c> Text
<d>
<e z=“abc123”/>

</d>
</c>

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Namespaces

� Namespaces are used to declare membership of
elements and attributes to a particular XML
language, providing a semantics.

� They are particularly useful if multiple languages are
mixed in the same document, with possible name

21

mixed in the same document, with possible name
collisions.

� The namespace declarations are inserted in the
opening tags, similar to an attribute, and are valid
within the element and its contents.

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Namespaces: Syntax

� The explicit namespace declaration (1),
inserted into an opening tag, indicates
that all the elements whose name is
prefixed by "prf" (namespace prefix) will
be considered as belonging to the
namespace identified by uri.

� The special standard namespace

<name xmlns:prf="uri">1

22

� The special standard namespace
declaration (2) indicates the namespace
of all the elements with no explicit
namespace prefix.

� In each element it is possible to declare
multiple explicit namespace prefixes,
but only ane default namespace (3)

� URI used in such declarations are only

conventional identifiers associated with

different namespaces, and do not point

to any particular internet resource.

<name xmlns="uri" xmlns:prf="uri">

<name xmlns="uri">

3

2

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Namespaces: Examples

� Understanding namespaces is
important in order to manage complex
XML documents and their semantics.

� In this example:

� The namespace "ns1" contains the
elements a, b, d, e.

<html:p><html:b>testo</html:b>

23

� The namespace "ns2" contains
elements html:p, html:b.

� The namespace "ns3" contains the
elements c and d.

� The namespace "ns4" contains the
xsl:attr attribute and the xsl:f element

� Note that there are two elements d in
the document, belonging to different
namepsaces!

<html:p><html:b>testo</html:b>
<c xmlns=“ns3”><d/></c>
<d/>
<e xmlns:xsl=“ns4” xsl:attr=“val”>
<xsl:f>testo</xsl:f>

</e>
</html:p>

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Entities

� In XML parlance documents are composed by a set of
entities.

� Each character is a character entity, each tag is an entity
and the document itself is an entity.

� Each entity, except for the document and the external

24

� Each entity, except for the document and the external
DTD, has a name.

� The entities are divided into parsed and unparsed:
� Each parsed entity has a corresponding textual value. The
XML parser replaces the entity with its value when it parses
the document.

� An unparsed entity, however, is not replaced by the parser,
and can have even a binary value, accessible via the
notations.

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Entities (parsed): Syntax

� General entities, which can
represent any string, are defined
in the DTD and the XML document
refers to them using the syntax
(1), where name is the name of
the entity.

&#xnumber;

&#number;

&name;1

3

2

25

the entity.

� Character entities, which
represent single UNICODE
characters, are referred with the
syntax (2), where number is the
decimal code for the Unicode
character, or with the syntax (3),
where number is the hexadecimal
code for the Unicode character.

> � >
< � <
" � “
& � &
 � [space]
 � [space]

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Entities: Use

� Parsed entities are a handy way to insert strings in the
document referring to an external definition, instead
of writing them explicitly.

� They are useful if there are characters that cannot
directly typed, or to expand strings used frequently,

26

directly typed, or to expand strings used frequently,
or to write characters that are not explicitly allowed
in a context, such as quatation marks or the '<' and '>'
symbols.

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Text

� The text that can be inserted in XML documents
includes all the characters defined in UNICODE.

� You can insert special or reserved characters using
character entities.

27

� You can insert predefined strings using general
entities.

� You can not explicitly use the characters '>', '<' and
'&', for which you should always use the corresponding
character entities.

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

CDATA sections

� CDATA sections explicitly
define areas where there is
only text.

� within CDATA sections the
parser does not look for <![CDATA[

28

parser does not look for
elements, attributes, entities,
and other XML structures

� The opening tag of a CDATA
section is the string
"<![CDATA[", while the closing
tag of "]]>", which obviously
can not appear in the content.

<![CDATA[

<< &goofy;

Text only!<

>>

]]>

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Processing Instructions

� The Processing Instructions (PIs) are used to pass extra information to
programs that manipulate the XML file and can appear anywhere in the
document.

� The general form of a PI has an opening tag like £<? target” where target
identifies which application will process the instruction, and a closing tag

<?target data ?>

29

identifies which application will process the instruction, and a closing tag
"?>". Note that the XML declaration is nothing more than a processing
instruction!

� Inside the tag you can write any type of textual data. The only rule is that
the data cannot contain the sequence "?>". The two examples below are
respectively (1) the PI that associates an XSL style sheet to a document and
(2) a PHP script.

<?xml-stylesheet type="text/xsl" href="sms_pdf.xslt"?>
<?php echo “hello” ?>

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Comments

� Comments are useful to humans, and are ignored by XML
manipulation programs.

� Comments may appear anywhere except within the value of an
attribute.

<!-- This is a XML (and SGML) comment -->

30

attribute.

� The comments follow the syntax of SGML, and are identical to
those used, for example, in HTML.

� The opening tag of a comment is the sequence "<!--", and the
closing tag is the sequence "-->"

� The content of the comment is generic text, which should not
contain the closing sequence.

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

Validation of XML Documents

� An XML document is well formed if it respects the
general syntax rules seen in the previous slides.

� An XML document is well formed and valid if it meets
the syntactic and semantic rules contained in the
associated DTD. A document with no DTD is never

31

associated DTD. A document with no DTD is never
valid.

� There are validating and not validating parsers. The
latter may ignore any DTD, except for the definition
of general entities.

University of L’Aquila
Computer Science Department eXtensible Markup LanguageeXtensible Markup Language

References

� XML specification from the W3C

32

� XML specification from the W3C
http://www.w3c.org/TR/XML//

