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Abstract. We consider the symmetric simple exclusion with open boundaries that are in contact with particle reservoirs at different
densities. The reservoir densities changes at a slower time scale with respect to the natural time scale the system reaches the stationary
state.This gives rise to the quasi static hydrodynamic limit proven in (Journal of Statistical Physics 161 (5) (2015) 1037–1058). We
study here the large deviations with respect to this limit for the particle density field and the total current. We identify explicitely the
large deviation functional and prove that it satisfies a fluctuation relation.

Résumé. Nous considérons l’exclusion simple symétrique avec des frontières ouvertes en contact avec des réservoirs de particules à
différentes densités. Les densités des réservoirs changent plus lentement par rapport à l’échelle de temps naturelle où le système atteint
l’état stationnaire. Cela donne lieu à la limite hydrodynamique quasi-statique. Nous étudions ici les grandes déviations par rapport
à cette limite pour le champ de densité de particules et le courant total. Nous identifions explicitement le fonctionnelle de grandes
déviations et nous prouvons qu’il satisfait une relation de fluctuation.
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1. Introduction

In usual hydrodynamic limits it is studied the macroscopic evolution of the conserved quantities of a large microscopic
system, under a space-time scaling such that the time scale is the typical one where the system reaches equilibrium. When
the system is open and connected to thermal or particle reservoirs, the parameters of these reservoirs give the boundary
conditions for the partial differential equations which describe the macroscopic evolution of the conserved quantities.

In this paper we consider the case in which the parameters of the boundary reservoirs (for example the particle den-
sity or the temperature) are not constant but change in time on a slower scale than that of relaxation at equilibrium.
Rescaling the time at this slower scale give a quasi static macroscopic evolution for the conserved quantities: at each
macroscopic time the profile of the conserved quantity is equal to the stationary one corresponding to the given boundary
condition at that time. When these stationary profiles are of equilibrium, this limit models the thermodynamic quasi static
transformations, where the Clausius equality holds, i.e. the work is done by the boundaries.

In [4,15] and [14], quasi static transformations are obtained from a time rescaling of the macroscopic diffusive equa-
tion.

In [9] we studied, for various stochastic particle systems whose macroscopic evolution is described by a diffusive
equation, the direct hydrodynamic quasi static limit by rescaling properly space and time in the microscopic dynamics,

We study here the large deviation for one of these models, the symmetric simple exclusion process.
The system we consider is composed by 2N + 1 sites (denoted by −N, . . . ,N ) where particles move like symmetric

random walks with exclusion. We add birth and death processes at the left and right boundaries that describe the inter-
action with reservoirs. These reservoirs have densities ρ−(t) on the left and ρ+(t) on the right, that are time dependent.
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The time scale at which these density ρ± change defines the macroscopic time scale. If the particles jump and are created
and destroyed at rate N2, the macroscopic density profile evolves following a linear diffusive equation with boundary
conditions ρ±(t). This is the usual hydrodynamic limit and for ρ± constant this result is known since the ’80’s, [11].

In the quasi static limit particles jump (or are created and destroyed at the boundaries) with rate on order N2+α with
α > 0. As proved in [9], at each time t , the empirical density converges, as N → ∞, to the solution of the stationary heat
equation with boundary conditions ρ±(t):

ρ̄(t, y) = 1

2

[
ρ+(t) − ρ−(t)

]
y + 1

2

[
ρ+(t) + ρ−(t)

]
, y ∈ [−1,1], (1.1)

and the total current through any bond will converge to

J̄ (t) = −
∫ t

0

1

2

[
ρ+(s) − ρ−(s)

]
ds. (1.2)

Thus the quasi-static limit gives the evolution of macroscopic profile, completely driven by the boundary conditions.
In [9] it is also proven that the distribution of the process is close to a product Bernoulli measure with parameter

ρ̄(t, y). Stronger results are proved by controlling the correlation functions with the same techniques used in [10]. First
order corrections have been studied in [8].

Observe that if ρ+(t) = ρ−(t) then the above result says that the stochastic process at any macroscopic time is close
to equilibrium but the order parameter changes in time thus performing a quasi static transformation.

We study in this article the joint large deviations of the density and the current with respect to this quasi-static limit.
We prove that the probability to observe a density profile ρ(t, y) that satisfies the boundary conditions ρ±(t) and a total
current J (t) is asymptotically P(ρ, J ) ∼ e−N1+αI (J,ρ) where

I (J,ρ) = 1

4

∫ T

0

∫ 1

−1

(J ′(t) + ∂yρ(t, y))2

ρ(t, y)[1 − ρ(t, y)] dy dt. (1.3)

See Section 4 for a precise statement. Notice that J (t) is space constant: in the quasi static limit the total current must be
homogeneous in space. Notice also that I does not depend on the initial configuration.

We also prove that I statisfies the fluctuation relation

I (J,ρ) − I (−J,ρ) =
∫ T

0
J ′(t)

(
z+(t) − z−(t)

)
dt, (1.4)

where z±(t) = log ρ±(t)
1−ρ±(t)

. There are two interesting consequences of (1.4): the first one is that the difference I (J,ρ) −
I (−J,ρ) does not depend on ρ (as long as ρ satisfy the boundary conditions). The other is that, since I (J̄ , ρ̄) = 0,

I (−J̄ , ρ̄) =
∫ T

0

1

2

[
ρ+(t) − ρ−(t)

](
z+(t) − z−(t)

)
dt

= 1

2

∫ T

0

[
H
(
ρ+(t), ρ−(t)

)+H
(
ρ−(t), ρ+(t)

)]
dt,

where H(ρ, ν) = ρ log ρ
ν

+ (1 − ρ) log 1−ρ
1−ν

. Thus the cost to invert the Fick’s law is explicetely computable in terms of
the boundary conditions.

The formula (1.3) looks similar to the fundamental formula of the Macroscopic Fluctuation Theory [1,3], but differs
in some important points. In the usual hydrodynamic scaling, i.e. for α = 0, the probability to observe a density profile
ρ(t, y) (satisfying the boundary conditions ρ(t,±1) = ρ±(t)) and a current field J (t, y), which must be related by the
conservation law ∂tρ(t, y) = −∂y∂tJ (t, y), behaves like e−NI0(J,ρ) with

I0(J,ρ) = 1

4

∫ T

0

∫ 1

−1

(∂tJ (t, y) + ∂yρ(t, y))2

ρ(t, y)[1 − ρ(t, y)] dy dt +
∫ 1

−1
H
(
ρ(0, y), ν0(y)

)
dy. (1.5)

The second term on the right hand side of (1.5) is due to the large deviations of the initial profile, if the initial distribu-
tion of the process is an inhomodeneous Bernoulli distribution with ν0(y) as macroscopic profile of density.
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Formula (1.5) appears first in [1], while a time homogeneous version was previously introduced in [6]. More pre-
cisely, in the case ρ± constant in time and α = 0, the probability to observe a total and time averaged current
Q(T )

T
= 1

T

∫ 1
−1 J (T , y) dy = 2q behaves like e−NT IBD(q) with

IBD(q,ρ+, ρ−) = inf
ρ(·):ρ(±1)=ρ±

1

4

∫ 1

−1

(q + ρ′(y))2

ρ(y)[1 − ρ(y)] dy (1.6)

In [6] such large deviations behaviour is obtained under the assumption that the optimal density profile to obtain the total
current q is independent of time. This is true in the symmetric simple exclusion case but not in all dynamics, and the
existence of time dependent optimal profile is related to the existence of dynamical phase transitions (cf. [2,7]). Notice
that if we look at the large deviation such that ∂tJ (t, y) = 2q (for all t and y), then the minimizing density must satisfy
the continuity equation and consequently it is constant in time. For these space-homogeneous deviations of the current
field, IBD gives the right rate function.

In the quasistatic case, α > 0, the current field J (t, y) has to be constant in y: we cannot have large deviations where
the intensity of the current is not constant in space, see (2.10). Consequently there is no continuity equation to be satisfied
between J (t) and ρ(t, y).

This gives a direct connection with the Bodineau–Derrida functional IBD: minimising the rate function I (J,ρ) defined
in (1.3) over ρ(t, y) in order to obtain the large deviation in the quasistatic limit of the current J we have (cf. (3.28) at
the end of Section 3)

I (J ) =
∫ T

0
IBD

(
J ′(t), ρ+(t), ρ−(t)

)
dt. (1.7)

For simplicity we have restricted our attention to the symmetric simple exclusion, but in principle the result can be
extended to other dynamics (like weakly asymmetric exclusion, zero range, KMP models etc.). Since in the symmetric
simple exclusion IBD(J ) is convex, we do not expect in the quasi static case the existence of dynamical phase transitions
(cf. [1,2]). In the other dynamics this remain an interesting question to be investigated.

The main scheme of the proof goes along the lines of [13] and [5], but with the further feature of controlling also the
deviations of the current. Using a variational characterization of I , for deviations such that I (J,ρ) < +∞, it is possible to
find suitable regular approximations Jε and ρε such that I (Jε, ρε) → I (J,ρ). For regular J , ρ, it is possible to construct
the weakly asymmetric exclusion dynamics as described above such that the corresponding quasi-static limit is given by
J and ρ and whose relative entropy with respect to the original process converges to I (J,ρ). This takes care of the lower
bound. For the upper bound we use suitable exponential martingales that control also the current, and a superexponential
estimate adapted from the original idea in [13].

2. Simple exclusion with boundaries

We consider the exclusion process in {0,1}�N , �N := {−N, . . . ,N} with reservoirs at the boundaries with density
ρ±(t) ∈ [a,1 − a] for some a > 0. We assume that ρ±(t) ∈ C1.

Denoting by η(x) ∈ {0,1} the occupation number at x ∈ �N we define the dynamics via the generator

LN,t = N2+α[Lexc + Lb,t ], t ≥ 0, α > 0 (2.1)

where for a given γ > 0,

Lexcf (η) = γ

N−1∑
x=−N

(
f
(
η(x,x+1)

)− f (η)
)=:

N−1∑
x=−N

∇x,x+1f (η) (2.2)

η(x,y) is the configuration obtained from η by exchanging the occupation numbers at x and y, and

Lb,tf (η) =
∑
j=±

ρj (t)
1−η(jN)

(
1 − ρj (t)

)η(jN)[
f
(
ηjN

)− f (η)
]

(2.3)

where ηx(x) = 1 − η(x), and ηx(y) = η(y) for x 	= y.
We recall the quasi-static hydrodynamic limit proven in [9]:
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Theorem 2.1. For any α > 0 and for any macroscopic time t > 0 the following holds. For any initial configuration η0,
for any y ∈ [−1,1] and for any local function ϕ

lim
N→∞Eη0

(
θ[Ny]ϕ(ηt )

)= 〈
ϕ(η)

〉
ρ̄(y,t)

=: ϕ̂(ρ̄(y, t)
)

(2.4)

where [·] denotes integer part, θ is the shift operator, 〈·〉ρ is the expectation with respect to the product Bernoulli measure
of density ρ, and

ρ̄(y, t) = 1

2

[
ρ+(t) − ρ−(t)

]
y + 1

2

[
ρ+(t) + ρ−(t)

]
, y ∈ [−1,1] (2.5)

is the quasi-static profile of density at time t . In particular for any t > 0 and any y ∈ [−1,1]
lim

N→∞ Eη0

[
ηt

([Ny])]= ρ̄(y, t) (2.6)

In the following we will use the notation

φ(ρ) = ρ(1 − ρ). (2.7)

Define the following counting processes: for x = −N − 1, . . . ,N

h+(t, x) = {number of jumps x → x + 1 up to time t},
h−(t, x) = {number of jumps x + 1 → x up to time t},
h(t, x) = h+(t, x) − h−(t, x)

(2.8)

When x = −N − 1 the corresponding h+(t,−N − 1) is the number of particles that enters on the left boundary, and
h+(t,N) is the number of particles that exit at the right boundary.

The conservation law is microscopically given by the relation

ηt (x) − η0(x) = h(t, x − 1) − h(t, x), x = −N, . . . ,N (2.9)

Furthermore we have that for x = −N, . . . ,N − 1:

h(t, x) = γN2+α

∫ t

0

(
ηs(x) − ηs(x + 1)

)
ds + M(t),

where M(t) is a martingale.
For y ∈ [−1,1], define

hN(t, y) = 1

N1+α
h
(
t, [Ny]).

Notice that, for any x, x′ ∈ {−N, . . . ,N}, by (2.9) we must have |h(t, x) − h(t, x′)| ≤ 2N , that implies

∣∣hN(t, y) − hN

(
t, y′)∣∣≤ 2

Nα
, ∀y, y′ ∈ [−1,1]. (2.10)

It follows that

1

N1+α
Eη0

(
h(t, x)

)= 1

N1+α

1

2N
Eη0

(
N−1∑

x′=−N

h
(
t, x′))+ O

(
N−α

)

= 1

N1+α

1

2N
Eη0

(
γN2+α

∫ t

0

N−1∑
x′=−N

(
ηs

(
x′)− ηs

(
x′ + 1

)))+ O
(
N−α

)

= γ

2
Eη0

(∫ t

0

(
ηs(−N) − ηs(N)

)
ds

)
+ O

(
N−α

)
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Thus from (2.6)

lim
N→∞Eη0

(
hN(t, y)

) = h̄(t) := −γ

2

∫ t

0

[
ρ+(s) − ρ−(s)

]
ds. (2.11)

Observe that the total current depends on γ while the quasi-static profile does not. In the sequel we will set γ = 1.

3. The rate function

We denote by M = {ρ(t, y)measurable, t ∈ [0, T ], y ∈ [−1,1],0 ≤ ρ(t, y) ≤ 1}. We endow M of the weak topology,
i.e. for any continuous function G ∈ C([0, T ]× [−1,1]), ρ �→ ∫ T

0 dt
∫ 1
−1 dyρ(t, y)G(t, y) is continuous on M. Note that

M is compact under this topology.
Let ρ(t, y) ∈M and J (t) ∈D([0, T ],R), with J (0) = 0. The rate function is defined by:

I (J,ρ) = sup
H∈C1,2([0,T ]×[−1,1]),

H(·,−1)=0

{
L(H ;J,ρ) −

∫ T

0
dt

∫ 1

−1
dy

(
∂yH(t, y)

)2
φ
(
ρ(t, y)

)}
(3.1)

where

L(H ;J,ρ) := H(1, T )J (T ) +
∫ T

0
dt

(
−∂tH(t,1)J (t) −

∫ 1

−1
∂yyH(t, y)ρ(t, y) dy

+ (
∂yH(t,1)ρ+(t) − ∂yH(t,−1)ρ−(t)

))
(3.2)

Observe that if ∂yρ and J ′ exist and are regular enough and ρ(t,±1) = ρ±(t), then I (J,ρ) is given by

I (J,ρ) = 1

4

∫ T

0

∫ 1

−1

(J ′(t) + ∂yρ(t, y))2

φ(ρ(t, y))
dy dt, (3.3)

and the maximum is reached on the function

H̄ (t, y) = 1

2

∫ y

−1

J ′(t) + ∂yρ(t, y′)
φ(ρ(t, y′))

dy′. (3.4)

Define

H+ = clos

{
H(t, y) ∈ C1,2([0, T ] × [−1,1]),H(·,−1) = 0 :

‖H‖2
ρ,+ =

∫ T

0
dt

∫ 1

−1
dy

(
∂yH(t, y)

)2
φ
(
ρ(t, y)

)
< +∞

}
.

and the dual space

H− = clos

{
H(t, y) ∈ C1,2([0, T ] × [−1,1]) :

‖H‖2
ρ,− =

∫ T

0
dt

∫ 1

−1
dy

(
∂yH(t, y)

)2
φ
(
ρ(t, y)

)−1
< +∞

}
.

Proposition 3.1. If I (J,ρ) < ∞ then the weak derivatives J ′(t) and ∂yρ(t, y) exists in H− and ρ(t,±1) = ρ±(t),
furthermore

I (J,ρ) = 1

4

∫ T

0

∫ 1

−1

(J ′(t) + ∂yρ(t, y))2

φ(ρ(t, y))
dy dt. (3.5)
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Proof. Choose H(t, y) = z(t)(1 + y) for a given smooth function z(t) on [0, T ] in the variational formula (3.1). Then
defining

Q(J,ρ) = sup
z∈C1([0,T ])

{
2z(T )J (T ) −

∫ T

0

(
2z′(t)J (t) dt + z(t)

(
ρ+(t) − ρ−(t)

))

−
∫ T

0
z(t)2

∫ 1

−1
φ
(
ρ(t, y)

)
dy

}

:= sup
z

{
L̃(J, z) −

∫ T

0
dtz(t)2

∫ 1

−1
φ
(
ρ(t, y)

)
dy

}
(3.6)

we have that Q(J,ρ) ≤ I (J,ρ) < +∞. It follows that

∣∣L̃(J, z)
∣∣2 ≤ 4Q(J,ρ)

∫ T

0
dtz(t)2

∫ 1

−1
φ
(
ρ(t, y)

)
dy.

This means that z → L̃(J, z) is a bounded linear functional on the Hilbert space N+, where

N± = clos

{
z ∈ C1([0, T ]) : ‖z‖2 =

∫ T

0
z(t)2φ̄(t)±1 dt

}
,

where φ̄(t) = ∫ 1
−1 φ(ρ(t, y)) dy. Applying Riesz representation theorem, there exists a function g(t) ∈N+ such that

L̃(J, z) =
∫ T

0
g(t)z(t)φ̄(t) dt.

This implies the existence of the weak derivative J ′(t) such that 2J ′(t)+ (ρ+(t)−ρ−(t)) ∈N−. Furthermore g(t)φ̄(t) =
2J ′(t) + (ρ+(t) − ρ−(t)) and

Q(J,ρ) = 1

4

∫ T

0

[
2J ′(t) + (

ρ+(t) − ρ−(t)
)]2

φ̄(t)−1 dt. (3.7)

The linear functional L(H ;J,ρ) defined in (3.2) is bounded by

∣∣L(H ;J,ρ)
∣∣2 ≤ 4I (J,ρ)

∫ T

0
dt

∫ 1

−1
dy

(
∂yH(t, y)

)2
φ
(
ρ(t, y)

)
, (3.8)

and it can be extended to a bounded linear functional on H+. By Riesz representation there exists a function G ∈ H+
such that

L(H ;J,ρ) =
∫ T

0
dt

∫ 1

−1
dy∂yH(t, y)∂yG(t, y)φ

(
ρ(t, y)

)
. (3.9)

Since we have already proven that I (J,ρ) < +∞ implies the existence of the weak derivative J ′(t) ∈ N−, we can
rewrite the variational formula (3.1) as

I (J,ρ) = +∞ if J (t) is not differentiable.

I (J,ρ) = sup
H∈C1,2([0,T ]×[−1,1]),

H(·,−1)=0

{∫ T

0
dtH(t,1)J ′(t)

+
∫ T

0
dt
(
∂yH(t,1)ρ+(t) − ∂yH(t,−1)ρ−(t)

)

−
∫ T

0
dt

∫ 1

−1
dy

[
∂yyH(t, y)ρ(t, y) + (

∂yH(t, y)
)2

φ
(
ρ(t, y)

)]}

= sup
H

{
L(H ;J,ρ) −

∫ T

0
dt

∫ 1

−1
dy

(
∂yH(t, y)

)2
φ
(
ρ(t, y)

)}
.

(3.10)
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Notice that we can rewrite

L(H ;J,ρ) = −
∫ T

0
dt

[∫ 1

−1
∂yyH(t, y)

(
J ′(t)y + ρ(t, y)

)
dy

+ ∂yH(t,1)
(
ρ+(t) + J ′(t)

)− ∂yH(t,−1)
(
ρ−(t) − J ′(t)

)]

Let us first show that I (J,ρ) < ∞ implies that ρ(t,±1) = ρ±(t), in the sense that, for any continuous function g(t) on
[0, T ],

lim
δ→0

1

δ

∫ T

0
dt

∫ −1+δ

−1
dyρ(t, y)g(t) =

∫ T

0
ρ−(t)g(t) dt,

lim
δ→0

1

δ

∫ T

0
dt

∫ 1

1−δ

dyρ(t, y)g(t) =
∫ T

0
ρ+(t)g(t) dt.

In fact assume that these boundary conditions are not satisfied, and choose the functions H(s, y) such that

∂yH(t, y) = A

(
1 − 1 − y

δ

)
1[1−δ,1](y)g(t)

This function is not smooth, but it can smoothened up by some convolution without changing the argument. On this
function we have

L(H ;J,ρ) = −A

δ

∫ T

0
dtg(t)

∫ 1

1−δ

dy
(
J ′(t)y + ρ(t, y)

)+ A

∫ T

0
g(t)

(
ρ+(t) + J ′(t)

)
dt

= 1

2
Aδ

∫ T

0
g(t)J ′(t) dt − A

∫ T

0
dtg(t)

(
δ−1

∫ 1

1−δ

dyρ(t, y) − ρ+(t)

)

while we have∫ T

0
dt

∫ 1

−1
dy

(
∂yH(t, y)

)2
φ
(
ρ(t, y)

)

= A2
∫ T

0
dtg(t)2

∫ 1

1−δ

dy

(
1 − 1 − y

δ

)2

φ
(
ρ(t, y)

)
≤ CA2T δ. (3.11)

Then if the boundary condition in y = 1 is not satisfied, one can construct a sequence of functions H such that I (J,ρ) =
+∞. The other side is treated in a similar way.

Thus I (J,ρ) < ∞ implies that the boundary conditions must be satisfied and that there exist the weak derivative
∂xρ(t, x) and from (3.9) we can identify ∂xG(t, x)φ(ρ(t, x)) = J ′(t) + ∂xρ(t, x).

Notice that, from this identification we can rewrite I as

I (J,ρ) = 1

4

∫ T

0

∫ 1

−1

J ′(t)2 + ∂yρ(t, y)2

φ(ρ(t, y))
dy dt

+ 1

2

∫ T

0
J ′(t) log

(
ρ+(t)(1 − ρ−(t))

ρ−(t)(1 − ρ+(t))

)
dt (3.12)

that proves that J and ρ are in H−, since ρ±(t) are assumed bounded away from 0 and 1. �

Proposition 3.2. If I (J,ρ) < ∞, there exists an approximation by bounded functions Jε(t) and x-smooth ρε(t, x) of J

and ρ, such that ρε(t,±1) = ρ±(t) and

lim
ε→0

I (Jε, ρε) = I (J,ρ). (3.13)
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Proof. We follow a similar argument used in [5].
We proceed in two steps. We first define an approximation ρ̃ε(t, x) bounded away from 0 and 1 such that φ(ρ̃ε(t, x)) ≥

Cε2 and I (J, ρ̃ε) −→ I (J,ρ). Then assuming that φ(ρ(t, x)) ≥ a > 0, we construct a smooth approximation ρε(t, x)

such that I (J,ρε) −→ I (J,ρ). The conclusion follows then by a diagonal argument.
For the first step, define (recall (2.5))

ρ̃ε(t, x) = (1 − ε)ρ(t, x) + ερ̄(t, x). (3.14)

Notice that ρ̃ε(t,±1) = ρ±(t) and

φ
(
ρ̃ε(t, x)

)≥ ε2(ρ−(t) ∧ ρ+(t)
)(

1 − (
ρ−(t) ∨ ρ+(t)

))
.

I (J,ρ) is convex and lower semicontinuous in ρ since it is a sup of continuous and convex functions of ρ. Consequently
we have

I (J, ρ̃ε) ≤ (1 − ε)I (J,ρ) + εI (J, ρ̄) −→
ε→0

I (J,ρ), (3.15)

while by lower semicontinuity

lim inf
ε→0

I (J, ρ̃ε) ≥ I (J,ρ), (3.16)

that concludes the first approximation step.
Now assuming that φ(ρ(t, x)) ≥ φ(a) > 0, i.e. a < ρ(t, x) < 1 − a, we construct a smooth approximation ρε(t, x)

such that

ρε(t, x) −→
ε→0

ρ(t, y), ρε(t,±1) = ρ±(t)

and such that I (J,ρε) −→ I (J,ρ).
Let �D be the laplacian on [−1,1] with Dirichlet boundary conditions, and

RD
ε (x, y) = (I − ε�D)−1(x, y).

Then define

ρε(t, x) = ρ̄(t, x) +
∫ 1

−1
RD

ε (x, y)
(
ρ(t, y) − ρ̄(t, y)

)
dy. (3.17)

We next prove that there exist a∗ > 0 such that

φ
(
ρε(t, x)

)≥ φ(a∗). (3.18)

In fact notice that 0 ≤ ρ̄(t, x) − ∫ 1
−1 RD

ε (x, y)ρ̄(t, y) dy ≤ 1, that implies

ρε(t, x) ≥
∫ 1

−1
RD

ε (x, y)ρ(t, y) dy ≥ a

∫ 1

−1
RD

ε (x, y) dy ≥ a′,

for some positive a′ < a.
Similarly we have

1 − ρε(t, x) = 1 − ρ̄(t, x) −
∫ 1

−1
RD

ε (x, y)(1 − ρ̄(t, y) dy +
∫ 1

−1
RD

ε (x, y)
(
1 − ρ(t, y)

)
dy

≥
∫ 1

−1
RD

ε (x, y)
(
1 − ρ(t, y)

)
dy ≥ (1 − a)

∫ 1

−1
RD

ε (x, y) dy ≥ (
1 − a′′).

Then choosing a∗ = a′ ∧ a′′ we obtain (3.18).
Since ρε is smooth, by (3.5), we have:

I (J,ρε) = 1

4

∫ T

0
dt

∫ 1

−1
dy

(
J ′(t) + ∂yρε(t, y)

)2
φ
(
ρε(t, y)

)−1 (3.19)
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Let RN
ε (x, y) = (I − ε�N)−1(x, y) the resolvent for the laplacian with Neumann boundary conditions, then we have

the property that

∂xR
D
ε (x, y) = −∂yR

N
ε (x, y), (3.20)

that implies

∂xρε(t, x) =
∫ 1

−1
RN

ε (x, y)∂yρ(t, y) dy := (
RN

ε ∂yρ
)
(t, x), (3.21)

because RN
ε (x, y) is a probability kernel:

∫ 1
−1 RN

ε (x, y) dy = 1.
Since RN

ε (x, y) ≤ 1 and symmetric, by convexity we have

(
J ′(t) + ∂yρε(t, y)

)2 ≤
∫ 1

−1
RN

ε (x, y)
(
J ′(t) + ∂xρ(t, x)

)2
dx

≤
∫ 1

−1

(
J ′(t) + ∂xρ(t, x)

)2
dx ≤ I (J,ρ) (3.22)

Then we have

(J ′(t) + ∂yρε(t, y))2

φ(ρε(t, y))
≤ 1

φ(a∗)
I (J,ρ) (3.23)

Then by dominated convergence we have

lim
ε→0

I(J,ρε) = I(J,ρ).

It remains to prove the J ′ approximation by bounded functions. Let us define

Jk(t) =
∫ t

0
J ′(s) ∧ k ∨ (−k) ds (3.24)

and let us assume that ρ(t, x) is smooth in x and bounded away from 0 and 1. Then it is clear that

(J ′(t) ∧ k ∨ (−k) + ∂yρ(t, y))2

φ(ρ(t, y))

is not decreasing in k for k large enough. Then by monotone convergence I (Jk, ρ) → I (J,ρ). �

Notice that the minimum of I (J,ρ) is correctly achieved for J ′(t) = J̄ ′(t) = − 1
2 [ρ+(t)−ρ−(t)] and ρ(t, y) = ρ̄(t, y).

Furthermore, from (3.12), we have that for any given ρ, I (J,ρ) is a quadratic function of J ′. In particular we have the
following Gallavotti–Cohen type of symmetry:

I (−J,ρ) = I (J,ρ) −
∫ T

0
J ′(t) log

ρ+(t)(1 − ρ−(t))

ρ−(t)(1 − ρ+(t))
dt. (3.25)

The rate function for hN alone is obtained, by contraction principle (cf. [16]), minimizing over all possible ρ satisfying
the given boundary conditions:

I (J ) = inf
ρ(t,y):ρ(t,±1)=ρ±(t)

I (J,ρ), (3.26)

and also satisfy the symmetry relation

I (−J ) = I (J ) −
∫ T

0
J ′(t) log

ρ+(t)(1 − ρ−(t))

ρ−(t)(1 − ρ+(t))
dt. (3.27)
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Since in (3.12) there is no relation between J (t) and ρ(t, y), it is possible to exchange the infρ with the time integral
and obtain

I (J ) =
∫ T

0
dt inf

ρ(y):ρ(±1)=ρ±(t)

∫ 1

−1

(J ′(t) + ρ′(y))2

φ(ρ(y))
dy, (3.28)

that proves (1.7).

4. The large deviation theorem

Let us define the empirical density profile

πN(t, y) =
N−1∑

x=−N

ηx(t)1[x,x+1)(Ny), y ∈ [−1,1] (4.1)

that has values on M, so that the couple (hN(1),πN) has values on � =D([0, T ],R) ×M.

Theorem 4.1. Under the dynamics generated by (2.1), starting with an arbitrary configuration η, the couple (hN(1),πN)

satisfy a large deviation principle with rate function I (J,ρ), i.e.

• For any closed set C ⊂ �

lim sup
N→∞

1

N1+α
logPη

((
hN(1),πN

) ∈ C
)≤ − inf

(J,ρ)∈C
I (J,ρ), (4.2)

• For any open set O ⊂ �

lim inf
N→∞

1

N1+α
logPη

((
hN(1),πN

) ∈ O
)≥ − inf

(J,ρ)∈O
I (J,ρ). (4.3)

5. The superexponential estimate

One of the main steps in the proof of Theorem 4.1 is a super-exponential estimate which allows the replacement of local
functions by functionals of the empirical density. Define

VN,ε(t, η) =
N−1∑

x=−N

G(t, x/N)
(
η(x)

(
1 − η(x + 1)

)− φ
(
η̄N,ε(x/N)

))
(5.1)

The local averages are defined in the bulk as

η̄N,ε(x/N) = 1

2Nε + 1

∑
|x′−x|≤εN

η
(
x′), |x| < N(1 − ε), (5.2)

and at the boundaries as

η̄N,ε(x/N) = ρ+(t) x ≥ N(1 − ε),

η̄N,ε(x/N) = ρ−(t) x ≤ −N(1 − ε).
(5.3)

Notice that VN,ε(t, η) depends on t not only by the function G(t, y) but also by the special definition (5.3).
In the following we use as reference measures the inhomogeneous product measures

μt(η) =
N∏

x=−N

ρ̄

(
x

N
, t

)η(x)[
1 − ρ̄

(
x

N
, t

)]1−η(x)

. (5.4)

Observe that, since ρ±(t) are uniformly away from 0 and 1, there is C > 0 so that

sup
t

sup
η

μt (η) ≥ e−CN . (5.5)
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Proposition 5.1. For any δ > 0 and initial configuration η

lim
ε→0

lim sup
N→∞

1

N1+α
logPη

(∣∣∣∣
∫ T

0
VN,ε(t, ηt ) dt

∣∣∣∣≥ Nδ

)
= −∞. (5.6)

Proof. By (5.5), it is enough to prove (5.6) for the dynamics with initial distribution given by μ0. By exponential Tcheby-
chev inequality we have for any a > 0:

Pμ0

(∣∣∣∣
∫ T

0
VN,ε(t, ηt ) dt

∣∣∣∣≥ Nδ

)
≤ e−N1+αδa

Eμ0

(
eaNα |∫ T

0 VN,ε(t,ηt ) dt |)
By using that e|x| ≤ ex + e−x , all we need to prove is that there exists K < +∞ such that for all a ∈R

lim sup
ε→0

lim sup
N→∞

1

N1+α
logEμ0

(
eNα

∫ T
0 aVN,ε(t,ηt ) dt

)≤ KT

To simplify notations, denote Ṽ (t, η) = NαaVN,ε(t, η). Consider the equation

∂su(η, s) = LN,T −su(η, s) + Ṽ (T − s, η)u(η, s), u(η,0) = 1,0 ≤ s ≤ T . (5.7)

By Feynman–Kac formula

u(η,T ) = Eη

(
e
∫ T

0 Ṽ (s,ηs) ds
)

(5.8)

Then

d

ds

1

2

∑
η

u(η, s)2μT −s(η) = 1

2

∑
η

u(η, s)2 dμT −s(η)

ds

+
∑
η

(
u(η, s)LN,T −su(η, s) + Ṽ (T − s, η)u2(η, s)

)
μT −s(η) (5.9)

and, since | dμT −s (η)
ds

| ≤ CNμT −s(η), this is bounded by

≤ (
CN + �(s)

)∑
η

u(η, s)2μT −s(η),

where, setting ‖f ‖2
s =∑

η f (η)2μT −s(η),

�(s) = sup
f,‖f ‖s=1

{∑
η

Ṽ (T − s, η)f 2(η)μT −s(η) +
∑
η

f (η)LN,T −sf (η)μT −s(η)

}
. (5.10)

By Gronwall inequality and (5.9) we have∑
η

u(η,T )2μ0(η) ≤ e2
∫ T

0 �(s) ds+TCN
∑
η

u(η,0)2μT (η) = e2
∫ T

0 �(t) dt+TCN . (5.11)

Then using Schwarz inequality we get

Eμ0

(
e
∫ T

0 Ṽ (η(t)) dt
)≤ e

∫ T
0 �(t) dt+TCN . (5.12)

The Dirichlet forms associated to the generator are

Dx,t,ρ(f ) = 1

2

∑
η

ρ1−η(x)(1 − ρ)η(x)
[
f
(
ηx
)− f (η)

]2
μt(η), x = ±N

Dex,t (f ) = 1

2

∑
η

N−1∑
x=−N

(∇x,x+1f (η)
)2

μt(η)

(5.13)
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and we define

Dt (f ) =D−N,t,ρ−(t)(f ) +DN,t,ρ+(t)(f ) +Dex,t (f ).

Observe that

∑
η

f (η)(LN,tf )(η)μt (η) = −1

2
N2+α

∑
η

N−1∑
x=−N

∇x,x+1f (η)∇x,x+1(f μt )(η)

− N2+α
(
DN,t,ρ+(t)(f ) +D−N,t,ρ−(t)(f )

)
(5.14)

and

∑
η

N−1∑
x=−N

∇x,x+1f (η)∇x,x+1(f μt )(η) =
∑
η

N−1∑
x=−N

(∇x,x+1f )2μt(η)

+
∑
η

N−1∑
x=−N

f
(
ηx,x+1)∇x,x+1f (η)∇x,x+1μt(η)

= 2Dex,t (f ) + 1

N
B̃N(t) + O

(
N−1) (5.15)

where

B̃N (t) =
∑
η

N−1∑
x=−N

f
(
ηx,x+1)∇x,x+1f (η)

(
η(x) − η(x + 1)

)
B

(
x

N
, t

)
μt(η)

and

B

(
x

N
, t

)
= ρ̄ ′( x

N
, t)

ρ̄( x
N

, t)(1 − ρ̄( x
N

, t))
, ‖B‖∞ ≤ c

∥∥ρ′∥∥∞ (5.16)

where c > 0 since ρ±(t) are uniformly away from 0 and 1. By an elementary inequality we have:

∣∣B̃N (t)
∣∣ ≤ N

2
Dex,t (f ) + 2

2N

∑
η

N−1∑
x=−N

f
(
ηx,x+1)2(

η(x) − η(x + 1)
)2

B

(
x

N
, t

)2

μt(η)

≤ N

2
Dex,t (f ) + 1

N

N−1∑
x=−N

B

(
x

N
, t

)2 ∑
η

f 2(η)μt

(
ηx,x+1)

Since μt(η
x,x+1) = F(x, t)μt (η) with F(x, t) a uniformly bounded function of ρ̄( x

N
, t) and ρ̄( x+1

N
, t) and η, using (5.16)

we get

∣∣B̃N (t)
∣∣≤ N

2
Dex(f ) + C ≤ N

2
Dt (f ) + C (5.17)

From (5.14), (5.15) and (5.17) we get

�(s) ≤ sup
f

{
Nαa

∑
η

VN,ε(T − s, η)f 2(η)μT −s(η) − N2+α 1

2
DT −s(f )

}
+ N1+αC

≤ N1+α sup
f

{
a

N

∑
η

VN,ε(T − s, η)f 2(η)μT −s(η) − N
1

2
DT −s(f )

}
+ N1+αC (5.18)

Then we are left to prove that for any a and any t > 0:

lim sup
ε→0

lim sup
N→∞

sup
f

{
1

N

∑
η

aVN,ε(t, η)f 2(η)μt (η) − N

2
Dt (f )

}
≤ C′ (5.19)
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This follows by proving that, for a suitable constant C

lim sup
ε→0

lim sup
N→∞

sup
Dt (f )≤CN−1

1

N

∑
η

VN,ε(t, η)f 2(η)μt (η) ≤ 0 (5.20)

The rest of the proof is identical as in theorem 3.1 in [9] (see pages 1051–1052). �

With a similar argument follows also the super-exponential control of the densities at the boundaries:

Proposition 5.2. For any δ > 0 we have

lim sup
ε→0

lim sup
N→∞

1

N1+α
logPη

(∫ T

0

∣∣∣∣∣ 1

εN

±N(1∓ε)∑
x=±N

ηt (x) − ρ±(t)

∣∣∣∣∣≥ δ

)
= −∞ (5.21)

6. The exponential martingales

We use the following notations: for x = −N, . . . ,N − 1

φ−(η, x) = η(x + 1)
(
1 − η(x)

)
, φ+(η, x) = η(x)

(
1 − η(x + 1)

)
, (6.1)

and at the boundaries

φ−(η,−N − 1, t) := (
1 − ρ−(t)

)
η(−N)

φ+(η,−N − 1, t) := ρ−(t))
(
1 − η(−N)

)
φ−(η,N, t) := ρ+(t)

(
1 − η(N)

)
φ+(η,N, t) := (

1 − ρ+(t)
)
η(N).

(6.2)

Given two functions z±(t, y), we associate the following exponential martingales, for x = −N − 1, . . . ,N

E±(z±, x, T )

= exp

{∫ T

0
z±(t, x/N)dh±(t, x) −

∫ T

0
N2+α

(
ez±(t,x/N) − 1

)
φ±(ηt , x) dt

}

= exp

{
z±(T , x/N)h±(T , x)

−
∫ T

0

[
∂t z±(t, x/N)h±(t, x) + N2+α

(
ez±(t,x/N) − 1

)
φ±(ηt , x)

]
dt

}
(6.3)

We now choose a smooth function H(t, y), y ∈ [−1,1] such that H(t,−1) = 0 and we set

z+(t, y) = H(t, y + 1/N) − H(t, y) = −z−(t, y), −1 ≤ y ≤ 1 − 1/N (6.4)

and at the boundaries

z+(t,−1 − 1/N) := 1

N
∂yH(t,−1), z+(t,1) := 1

N
∂yH(t,1). (6.5)
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The martingales defined by (6.3) are orthogonal, consequently taking the product we still have an exponential martin-
gale equal to

N∏
x=−N−1

∏
σ=±

Eσ (zσ , x, T )

= exp

{
N∑

x=−N−1

[
z+(T , x/N)h(T , x) −

∫ T

0
∂t z+(t, x/N)h(t, x) dt

− N2+α

∫ T

0

((
ez+(t,x/N) − 1

)
φ+(ηt , x) + (

e−z+(t,x/N) − 1
)
φ−(ηt , x)

)
dt

]}
(6.6)

For large N we use Taylor approximation, for x = −N, . . . ,N − 1,(
ez+(t,x/N) − 1

)
φ+(ηt , x) + (

e−z+(t,x/N) − 1
)
φ−(ηt , x)

= −z+(t, x/N)
(
ηt (x + 1) − ηt (x)

)
+ 1

2
z+(t, x/N)2(φ+(ηt , x) + φ−(ηt , x)

)+ O
(
z+(t, x/N)3)

and on the boundaries(
ez+(t,−1−1/N) − 1

)
φ+(ηt ,−N − 1, t) + (

e−z+(t,−1−1/N) − 1
)
φ−(ηt ,−N − 1, t)

= −z+(t,−1 − 1/N)
(
ηt (−N) − ρ−(t)

)
+ 1

2
z+(t,−1 − 1/N)2(φ+(ηt ,−N − 1, t) + φ−(ηt ,−N − 1, t)

)+ O
(
z+(t,−1 − 1/N)3).

(
ez+(t,1) − 1

)
φ+(ηt ,N) + (

e−z+(t,1) − 1
)
φ−(ηt ,N)

= −z+(t,1)
(
ρ+(t) − η(t,N)

)+ 1

2
z+(t,1)2(φ+(ηt ,N) + φ−(ηt ,N)

)+ O
(
z+(t,1)3).

We can rewrite the exponential martingale (6.6) as

N∏
x=−N−1

∏
σ=±

Eσ (zσ , x, T )

= exp

{
N∑

x=−N−1

[
z+(T , x/N)h(T , x) −

∫ T

0
∂t z+(t, x/N)h(t, x) dt

]

+ N2+α

∫ T

0

N∑
x=−N−1

[
z+(t, x/N)

(
ηt (x + 1) − ηt (x)

)

− 1

2
z+(t, x/N)2(φ+(ηt , x) + φ−(ηt , x)

)]
dt + O

(
Nα

)}
(6.7)

where in the above expression we set the convention ηt (N + 1) := ρ+(t) and ηt (−N − 1) := ρ−(t).
After a summation by parts we have

exp

{
N∑

x=−N−1

[
z+(T , x/N)h(T , x) −

∫ T

0
∂t z+(t, x/N)h(t, x) dt

]

+ N2+α

∫ T

0

N∑
x=−N

[(
z+
(

t,
x − 1

N

)
− z+

(
t,

x

N

))
ηt (x)
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− 1

2
z+(t, x/N)2(φ+(ηt , x) + φ−(ηt , x)

)]
dt

+ N2+α

∫ T

0

(
z+(t,1)ρ+(t) − z+(t,−1 − 1/N)ρ−(t)

)
dt + O

(
Nα

)}
(6.8)

Using (2.9) and the special expression for z+, we have for the logarithm of (6.8)

N∑
x=−N

H(T ,x/N)
[
ηT (x) − η0(x)

]

+
[
H(T ,1) + 1

N
∂yH(t,1)

]
h(T ,N) + 1

N
∂yH(T ,−1)h(T ,−N − 1)

−
∫ T

0

N∑
x=−N

∂tH(t, x/N)
[
ηt (x) − η0(x)

]
dt

−
∫ T

0

([
∂tH(t,1) + 1

N
∂t∂yH(t,1)

]
h(t,N) + 1

N
∂t∂yH(t,−1)h(t,−N − 1)

)
dt

− Nα

∫ T

0

(
N∑

x=−N−1

[
∂yyH

(
t,

x

N

)
ηt (x) + 1

2

(
∂yH

(
t,

x

N

))2(
φ+(ηt , x) + φ−(ηt , x)

)]

+ N
[
∂yH(t,1)ρ+(t) − ∂yH(t,−1)ρ−(t)

])
dt + O

(
Nα

)

Since we are interested only in the terms that have order N1+α , we can forget all terms of order N in the above expression,
and the exponential martingale has the form:

exp

[
N1+α

{
H(T ,1)hN(T ,1) −

∫ T

0
∂tH(t,1)hN(t,1) dt

−
∫ T

0

(
1

N

N∑
x=−N−1

∂yyH

(
t,

x

N

)
ηt (x) + ∂yH(t,1)ρ+(t) − ∂yH(t,−1)ρ−(t)

+ 1

2N

N∑
x=−N−1

(
∂yH

(
t,

x

N

))2(
φ+(ηt , x) + φ−(ηt , x)

))
dt + O

(
N−(α∧1)

)}]
. (6.9)

After the superexponential estimate proved in the previous section, that also fix the densities at the boundaries, it
follows the variational formula for the rate function given by (3.1).

7. The upper bound

7.1. Exponential tightness

The following proposition uses standard arguments and we give a proof for completeness in the Appendix:

Proposition 7.1. There exist a sequence of compact sets KL in D([0, T ],R) such that

lim
L→∞ lim

N→∞
1

N1+α
logPη

(
hN(1) ∈ Kc

L

)= −∞. (7.1)
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7.2. Proof of the upper bound

By (6.9) we can rewrite the exponential martingale defined by (6.7) as

MH
N = exp

[
N1+α

{
H(T ,1)hN(T ,1) −

∫ T

0
∂tH(t,1)hN(t,1) dt

−
∫ T

0

(∫ 1

−1
πN(t, y)∂yyH(t, y) dy + ∂yH(t,1)ρ+(t) − ∂yH(t,−1)ρ−(t)

+ 1

2N

N∑
x=−N−1

(
∂yH

(
t,

x

N

))2(
φ+(ηt , x) + φ−(ηt , x)

))
dt + O

(
N−(α∧1)

)}]
, (7.2)

where

lim
N→∞E

Pη
(
O
(
N−(α∧1)

))= 0.

After applying the superexponential estimates of Section 5, we have

MH
N = exp

[
N1+α

{
H(T ,1)hN(T ,1) −

∫ T

0
∂tH(t,1)hN(t,1) dt

−
∫ T

0

(∫ 1

−1
πN(t, y)∂yyH(t, y) dy + ∂yH(t,1)ρ+(t) − ∂yH(t,−1)ρ−(t)

+
∫ 1

−1

(
∂yH(t, y)

)2
φ
(
η̄N,ε(t, y)

)
dy

)
dt + Oε,N + O

(
N−(α∧1)

)}]
.

Then for every set A ⊂ � we have

1 = E
Pη
(
MH

N

)≥ eN1+α supH inf(J,ρ)∈A I (H,J,ρ)
Pη

((
hN(1),πN

) ∈ A
)

where

I (H,J,ρ) = H(T ,1)J (T ) −
∫ T

0
∂tH(t,1)J (t) dt

−
∫ T

0

(∫ 1

−1
ρ(t, y)∂yyH(t, y) dy + ∂yH(t,1)ρ+(t) − ∂yH(t,−1)ρ−(t)

+
∫ 1

−1

(
∂yH(t, y)

)2
φ
(
ρ(t, y)

)
dy

)
dt.

Using the lower semicontinuity of I (J,ρ) and a standard argument (see [16], lemma 11.3 or [12] lemma A2.3.3) we have
for a compact set C ⊂ �:

lim sup
N→∞

1

N1+α
logPη

((
hN(1),πN

) ∈ C
)≤ − inf

(J,ρ)∈C
I (J,ρ).

The extension to closed set follows from the exponential compactness proved in (7.1), see [12] page 271.

8. The lower bound

The proof of the lower bound follows a standard argument, consequently we will only sketch it here, since all the ingre-
dients are already proven. It is enough to prove that given (J,ρ) ∈ � such that I (J,ρ) < ∞, then for any open neighbor
O of it we have

lim inf
N→∞

1

N1+α
logPη

((
hN(1),μN

) ∈O
) ≥ −I (J,ρ). (8.1)
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By proposition 3.2, we can assume J and ρ such that J ′(t) exists and is bounded, ρ bounded away from 0 and 1, and
∂yρ(t, y) exists and is bounded. Then we consider the weakly asymmetric exclusion dynamics with drift given by

∂yH̄ (t, y) = 1

2

J ′(t) + ∂yρ(t, y)

φ(ρ(t, y))
, (8.2)

more precisely, recalling the definition of z(t, y) given by (6.4) and (6.5), the jump rate from x to x + 1 at time t is taken
to be N2+αez(t,x/N), and from x + 1 to x is given by N2+αe−z(t,x/N), while at the boundaries the birth rates are given by

N2+αe
1
N

∂yH(t,±1) and the death rates by N2+αe− 1
N

∂yH(t,±1).
We call QN the law of this weakly asymmetric process that start with the same initial condition η. The Radon–Nykodyn

derivative dQN

dPη
is given by (6.6).

The quasi static limit for this process is the following:

Proposition 8.1. Let Q̃N the law on � of (hN(1),πN) under QN , then

Q̃N −→ δ(J,ρ) (8.3)

Proof of proposition 8.1. By (A.1) we can extend the superexponential estimates contained in Section 5 to QN . In fact
we have that

E
Pη

((
dQN

dPη

)2)1/2

≤ ecN1+α

and by Schwarz inequality

QN(AN,ε) ≤ Pη(AN,ε)e
cN1+α

where AN,ε = {∫ T

0 VN,ε(t, ηt ) dt ≥ Nδ}, and (5.6) extends immediately to QN . At this point the proof of the quasi-static
hydrodynamic limit follows similar to the one in [9]. �

We then write

Pη

((
hN(1),πN

) ∈O
)= E

QN

(
dPη

dQN

1(hN ,πN )∈O
)

Since O contains (J,ρ), by Proposition 8.1, under QN the probability of the event (hN(1),πN) ∈ O is close to one. By
Jensen inequality

1

N1+α
logPη

((
hN(1),πN

) ∈O
) ≥ −E

QN

(
1

N1+α
log

dQN

dPη

)
= − 1

N1+α
H(QN |Pη)

where H(QN |Pη) is the relative entropy of QN with respect to Pη.
The lower bound is then a consequence of the following Proposition.

Proposition 8.2. Let H(QN |Pη) = E
QN (log dQN

dPη
) the relative entropy of QN with respect to Pη . Then

lim
N→∞

1

N1+α
H(QN |Pη) = I (J,ρ), (8.4)

The proof of proposition 8.2 is a direct consequence of (6.6) and of Proposition 8.1.

Appendix: The exponential tightness

We prove here Proposition 7.1. The arguments used here are just slight variations of the standard ones (e.g. Section 10.4
in [12]). SInce M is compact, we have only to control that the distribution of hN(1, t) is exponentially tight. This is
consequence of the following 2 propositions.
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Proposition A.1.

lim
L→∞ lim

N→∞
1

N1+α
logPη

(
sup

0≤t≤T

∣∣hN(t,1)
∣∣≥ L

)
= −∞. (A.1)

Proposition A.2. For any ε > 0:

lim
δ→0

lim
N→∞

1

N1+α
logPη

(
sup

|t−s|≤δ

∣∣hN(t,1) − hN(s,1)
∣∣≥ ε

)
= −∞. (A.2)

Proof of Proposition A.1. Since the difference between hN(t,1) and h̄N(t) := 1
2N

∑
x hN(t, x/N) is uniformly small, we

have just to prove it for h̄N(t). For β ∈ R, consider the exponential martingale (6.6) with z+(t, x) = β
N

, x = −N, . . . ,N −
1 and z+(t,−N − 1) = 0. This is given by

Mt = exp
{
N1+α

(
βh̄N(t) − AN(β, t)

)}
AN(β, t) = N

∫ t

0

N−1∑
x=−N

((
eβ/N − 1

)
φ+(ηs, x) + (

e−β/N − 1
)
φ−(ηs, x)

)
ds

Notice that, by expanding the exponentials and using the explicit form of φ±, we have that 0 ≤ AN(β, t) ≤ CT (|β| +β2)

for some constant C. Then for any β > 0 we have, by Doob’s inequality,

Pη

(
sup

0≤t≤T

∣∣h̄N(t)
∣∣≥ L

)
≤ Pη

(
sup

0≤t≤T

| logMt | ≥ N1+α
(
βL − CT

(
β + β2)))

≤ Pη

(
sup

0≤t≤T

logMt ≥ N1+α
(
βL − CT

(
β + β2)))

= Pη

(
sup

0≤t≤T

Mt ≥ eN1+α(βL−CT (β+β2))
)

≤ e−N1+α(βL−CT (β+β2)), (A.3)

that concludes the proof. �

Proof of Proposition A.2. Since

{
sup

|t−s|≤δ

∣∣h̄N(t) − h̄N(s)
∣∣≥ ε

}
⊂

[T δ−1]⋃
k=0

{
sup

kδ≤t≤(k+1)δ

∣∣h̄N(t) − h̄N(kδ)
∣∣≥ ε/4

}

Since

logPη

(
sup

|t−s|≤δ

∣∣h̄N(t) − h̄N(s)
∣∣≥ ε

)
≤ max

k
logPη

(
sup

kδ≤t≤(k+1)δ

∣∣h̄N(t) − h̄N(kδ)
∣∣≥ ε/4

)

+ log
([

T δ−1])
By the same estimate made in (A.3) we have

logPη

(
sup

kδ≤t≤(k+1)δ

∣∣h̄N(t) − h̄N(kδ)
∣∣≥ ε/4

)
≤ −N1+α

(
βε/4 − Cδ

(
β + β2))

and with a proper choice of β we get the following bound with a constant C′ independent of k:

1

N1+α
logPη

(
sup

kδ≤t≤(k+1)δ

∣∣h̄N(t) − h̄N(kδ)
∣∣≥ ε/4

)
≤ −C′ε2

δ
. �
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