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We consider a model of stochastically interacting particles on 2~, where each site 
is assumed to be empty or occupied by at most one particle. Particles jump to 
each empty neighboring site with rate 7/2 and also create new particles with rate 
1/2 at these sites. We show that as seen from the rightmost particle, this process 
has precisely one invariant distribution. The average velocity of this particle 
V(7,) then satisfies 7 ~/2V(Y)~ ~/2 as y - .  oo. This limit corresponds to that of 
the macroscopic density obtained by rescaling lengths by a factor },~/2 and letting 
y ~ oo. This density solves the reaction-diffusion equation u, = �89 + u(1-u) ,  
and under Heaviside initial data converges to a traveling wave moving at the 
same rate , f i .  

KEY WORDS: Diffusion-reaction equation. 

1. I N T R O D U C T I O N  

In  recent  years  it has  b e c o m e  poss ib le  to de r ive  inc reas ing ly  c o m p l e x  

h y d r o d y n a m i c - t y p e  e q u a t i o n s  f r o m  m i c r o s c o p i c  d y n a m i c a l  mode ls .  These  

m o d e l s  a re  genera l ly  la t t ice  sys tems  of  inf ini te ly  m a n y  i n t e r a c t i n g  par t ic les  

tha t  e v o l v e  via  s o m e  s tochas t i c  d y n a m i c s  (see D e  Mas i  et al., ~) Presu t t i ,  ~21 

Spohn ,  (3) and  F r i t z  (4t for  rev iews  of  this  work ) .  

In  this con tex t ,  D e  M a s i  et al. (5'61 used  a s tochas t i c  la t t ice-gas  m o d e l  

(each  site can  be o c c u p i e d  o r  e m p t y ) ,  e v o l v i n g  a c c o r d i n g  to a c o m b i n a t i o n  
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of exchange and Glauber dynamics, to derive general diffusion-reaction 
(DR) equations of the form 

c~u(x, t)/•t = 1 V 2 / , / ( x ,  t )+f (u(x ,  t)) (1.1) 

Here f (u)  is a polynomial in u which vanishes at u = 0  and u =  1; u(x, t) 
represents the macroscopic particle density at x~  Nd evolving on the 
macroscopic time scale t. The exact form of f i n  (1.1) is fairly arbitrary. We 
shall consider the simplest example of such an f, f ( u ) = u ( 1 - u ) .  This is 
representative of the class f ( 0 ) = f ( 1 ) = 0 ,  f ( u ) > 0 ,  f ' (O)>f ' (u) ,  for 
0 <  u < 1; then (1.1) corresponds to an equation first studied by Fisher (7) 
and Kolmogoroff eta/. C9) as a model for the spread of certain genetic traits 
through a population. It was later studied by others in a variety of 
contexts. (8-1~ An important feature of this type of DR equation is that 
they admit traveling front solutions: u(x, t)= ~ ( x - c t ) ,  x c  ~, where 4;,(Y) 
satisfies the equation 

r + c(Y,.(y) + f((~,.) = 0 
(1.2) 

lim ~b,(y)=l,  lira ~b,(y)=0 
) , ~  - - ~  ) ' 4  +:T_ 

which (for suitable f ' s )  has solutions for all speeds c~> c*. (There are, of 
course, also fronts traveling in the opposite direction.) The marginal speed 
c* = [2f ' (0)]  1/2--which equals , , ~  for the case f (u)  = u(l - u)--is singled 
out in the sense that all positive data Uo(X ) such that Uo(X ) ~ 1 as x ~ - ~ ,  
Uo(X)=0 for x > R ,  converge as t ~  ov to ~ * ( x - m ( t ) )  for appropriate 
m(t), where ~b*= 4~. and m(t)/t--* c*. 

This "selection principle" was investigated from a physical point of 
view by Langer and co-workers. (12) The interest in this problem stems from 
a desire to understand pattern selection principles for physical phenomena 
described by complex equations, e.g., dendritic growth of a solid front into 
a melt. For an up-to-date review see the articles by Langer (18) and 
Eckman.(19) 

In this note we investigate certain one-dimensional microscopic 
models leading to the moving front solutions of the DR equations (1.1) 
wi thf(u)  = u(1 - u ) .  We show that, as seen from the rightmost particle, this 
process has precisely one invariant distribution (Theorem 1) and that the 
average velocity V(7) of this particle satisfies ~-l/2v(7)----~N~ as 7--' oe 
(Theorem 2). The significance of this result for other pattern selection 
problems is not clear. We note, however, that this stochastic microscopic 
system has been employed independently as a model for flame front 
propagation by Kerstein, (13) where occupied sites represent burned regions. 
His work was the direct motivation for our analysis. 
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The outline of this paper is as follows. In Section 2 we describe the 
microscopic model that leads to the desired DR equations and prove their 
basic properties. In Section 3 we prove the main result. In Section 4 we dis- 
cuss some extensions of the results. 

2. T H E  M O D E L  

The microscopic models we consider are Markov processes with state 
space f2 = {0, l }~. One can think of particles that can either jump to or 
create new particles at nearest neighbor empty sites on Z. A particle on the 
site i waits an exponential random time with mean (1 + 7) 1. At this time it 
jumps to the position j if it is empty, with probability 7(1 +7)  ~p(j- i ) ,  
p ( - l ) =  p (1)=  1/2, p(k) = 0 if Ikl # 1, and with probability 
(1 +7)  1 p( j_  i), it creates a new particle at the s i te j  if it is empty. If the 
site j is occupied, nothing happens. 

Before we give a formal definition of this process, we introduce some 
notation: 

Elements of f2 (configurations) will be represented by symbols such as 
~, ~,~. 

Given q ~(2 and ie  Z, r/(i)e {0, 1 } is the projection of r/ at the site i. 
{0, 1} is endowed with the discrete topology and f2 with the 

corresponding product topology and a-field Z. Probability distributions on 
(•, Z) will be represented by symbols like g, v. 

r/] is defined by 

r/J(i) = {~(i) if i # j  
if i= j  

r/~'k is defined by 

U.~(i) = 
t r/(i) if i r  

r/(j) if i =  k 

t/(k) if i= j  

For any cylindrical function f: f2 -~ R the generator L of the process is 
defined by 

(Lf)(tl) = (7/2) ~, p(j-- i)Ef(t( " / ) - f ( t / ) ]  
i , /~ 

+ ~, p( j - - i )[ f (q  ]) f(tl)] tl(i) 

This generator defines a unique Markov process. <~4/ Let (~', t ~> 0) be the 
process starting at time zero from a random configuration distributed 
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according to #. If g is the point  mass  on a single configurat ion r/, we write 

Next  we describe the relat ions between the macroscopic  equat ion  (1.1) 
and the microscopic  system. Let/1 ~ be a family of initial measures  satisfying 
condit ions (i)-(iii) of Definit ion 2.2 in Ref. 6; for example,  one may  think of 
#~ as a sequence of Bernoulli measures  such that  y ( r / ( x ) = l ) =  
m((1/ , , /7)  x), where m is a smooth  function R--* [0, 1]. Under  these con- 
ditions, it was p roved  in Ref. 6 that  for any t ~> 0 and x e R, 

E(~,/(.,/~ xl) - , ,~,  .(x, f) (2.1) 

where u(x, t) is the solution of (1.1) with f ( u ) =  u ( 1 - u )  and initial data  
u(x, O) = m(x) .  (In fact, a lmost  sure convergence for suitable functions was 
proved.)  

We remark  that  it follows f rom the p roof  in Ref. 6 that  one can also 
consider as initial measure  ~t ~' a point  mass  concentra ted  on the con- 
figuration ~/ ; r/ ( j ) =  1 i f j ~ < 0  and ~/ ( j ) = 0  if j > 0 .  In this case (2.1) 
holds for any t > 0 and x E R and the corresponding initial da ta  m(x )  for 
u(x, t) is the Heavis ide profile, i.e., m(x )  = 1 if x ~< 0 and m(x)  = 0 if x > 0. 

We will be interested in the case in which the initial microscopic  con- 
f iguration has a r ightmost  particle. In this case there will be at all times a 
r ightmost  particle. It  will be useful then to look at the system from this first 
particle. To  do so, we set 

~ = {t/~s q ( O ) = l , ~ l ( j ) = O i f j > O }  

For  r/~f2, i c Y ,  let r / - i  denote  the configurat ion defined by 
(~l - i)( j)  = rl(i + j). 

For  # concent ra ted  on ~ ,  define 

X ~ ' = s u p { i e Z :  ~ ; ( i ) = 1 }  

Set 

(~7, t ~> 0) is a process with states on f2. A basic result abou t  this process is 
the following: 

T h e o r e m  1. The family {(~7, t>~0), ~ l e ~ }  has a unique invar iant  
measure  v, which is concent ra ted  on 

~ 0 = { q e ~ :  q ( i ) = l i f i < M ,  f o r s o m e M > - o o }  

Proof. Ex#tence.  (~,, t~>0) is a Feller process. This fact can be 
proven in a way analogous  to Propos i t ion  (1.4) of Chap te r  I of Ref. 15 
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(p. 15). The only difference is that here the process is seen from the perspec- 
tive of the first particle, but since the movement of this particle is bounded 
by appropriate Poisson processes, this is not a problem. (One should 
observe that the situation is completely different for systems in which par- 
ticles can die(16~; in that case the process seen from the first particle is not 
in general Feller, since this first particle can make unbounded jumps in a 
very short time interval.) Existence follows now from well-known results, 
since s is compact. (See Proposition 1.8 of Chapter I of Ref. 14.) 

Uniquenoss. Assume that v is invariant. Then since particles are 
created and not destroyed, v must be concentrated on configurations in 
with infinitely many particles. These configurations are completely specified 
by the random variables R~, R2 ..... where R~ =0,  

Ri+j=sup{x<Ri: ~/(x) = 1 }, i=1,2 .... 

The basic point is that v is concentrated on ~0, i.e., that with 
v-probability one, R i -  Ri+ ~ > 1 for only a finite number of indices i. Uni- 
queness then follows, since due to the countability of ~0, ~-, is equivalent to 
an irreducible Markov chain and hence cannot have more than one 
invariant probability measure. Now R,, jumps one unit (up or down) when 
either the first or the nth particle in r jumps. It jumps up at least one unit 
when a particle is created to the right of the nth and the left of the first par- 
ticle in ~'/and it does not decrease when a particle is created to the right of 
the first particle. So, with respect to (~'/), chosen from the stationary 
measure v, 

t / ,=o  

>~--~---~7 7v{R, , -R, ,§  

+27v{ei R2>I}+7v{R,,  , - R , , > I }  

#l 1 

+ Z v{R,. R i + , > l }  (2.2) 
i 1 

Since v is invariant, the left-hand side must be zero. Therefore, for any n, 

s l -  I 

v{R,-  Ri+, > I } < 7< oo 
i 1 

By the Borel-Cantelli Lemma, v (~o)=  1, as desired. II 

The process ~',' represents a microscopic propagating front. Indeed, the 
position of the first particle X~' is a process with stationary increments and, 
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as seen from this particle, the system is in a stationary state. There are 
various different (but equivalent) ways to define the microscopic velocity of 
propagation for this system. For instance: 

1. Since (X~/, t/> 0) has stationary increments, 

t 1EX;= V(~) 

where V(7) is a constant the velocity of the first particle. 

2. For/~ concentrated on s the random variables 

Y~ = number of particles created in the process 
( ~ )  from time 0 to t 

are well defined and finite. Clearly ( Y',', t >~ 0) has stationary increments and 
therefore 

t IEY~ ~= V(7) 

where 9(7) is a constant the rate of creation of particles. 
It is easy to see that V(7)= ~'(7). Indeed, let 

H,= ~ El-~';(;)] 
i <~ X'  I 

and H ) =  rain(H, K,). Notice that H, increases by one if the first particle 
jumps to the right, and decreases by one if the first particle jumps to the 
left or there is a creation to the left of the first particle. Then, with respect 
to the invariant measure v: 

EH, _7 d K 7 { H , < K } - ~  ,=o=SV v { ~ ( - 1 ) = 0 ,  H , < K }  

v{((i) (1 ( ( i+  1)), H<.K}.  
i < 0  

The left-hand side above is zero by the invariance of v. Since 7{H, < K} T 1, 
by Dominate Convergence Theorem, the right-hand side converges as 
K ~  oo to V(7)-  V(7). Note that 

dEY ~, 1 
= ~  P(~'(i)  = 1, ~'( i+ 1)=0)  

dt 

1 
+ 5 .~ P(~'(i) = 1, ~'(i - 1 ) = O) 

I E Z  

= E  ,~z ~( i ) [1  - ~,~(i + 1)] 2 
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One can consider the velocity of the ith particle or of the ith hole, etc., 
and get an equivalent definition for the velocity. It is also possible to define 
the velocity in terms of the "middle position" M, specified by 

y~ ~,"(i)= y [ 1 - ~ ' ( i ) ]  

Here M~ ~= M~ + Y~, as one can verify by induction. The movement of this 
middle point is therefore governed by the creation of particles, even if # r v. 
(See Ref. 12 for some simulation results.) Our main result is the following: 

Theo rem 2. l i m ~  ?-I/2v(~))~---%~. 
This corresponds to l im,~ 7_ t a m ( t ) = . , ~  for the solution u(x, t) of 

1.1) and (2.1) under Heaviside initial data. 
Note that this is the limit one obtains for the asymptotic velocity of 

the rightmost particle of one-dimensional branching Brownian 
motion, t11"17/ What Theorem2 asserts, then, is that the differences in 
behavior for the two processes, including the saturation exhibited by our 
lattice model, do not give rise to different asymptotic velocities for the 
rightmost particles. 

We prove Theorem 2 in the next section. The asymptotics of V(7) for 7 
small are considerably easier to derive, which we shall do now. Clearly 

N(t) - -  Ml(t  ) ~< ](~'~< N(t) + M2(t ) 

for appropriate Poisson processes N(t), Mj(t), and Mz(t), where N(I) has 
rate 1/2 and corresponds to creation of particles and Mi(t), i =  1, 2, have 
rates 7/2 and correspond to jumps. So 

1/2 - 7/2 ~< V(7) ~< 1/2 + 7/2 (2.4) 

and V(7) --* 1/2 as 7 ~ 0. 
It is moreover true that 

(7/2)[ V(7 ) -  �89 --* 1 as 7 -~0  (2.5) 

i.e., V(7) = 1/2 + "//2 + o(7). To see this, use the notation introduced in the 
proof of the uniqueness of v. We have 

V(7)= I / 2 - � 8 9  > 1 } +7/2 
(2.6) 

= 1 /2+ lyv{R ~ - R 2 =  1 } 
But from (2.2) 

0 =  d ~ ~ ~ dtER~>~ - ~ - ~  v~^~- ~ > l} + e / +  1)v{R~- R~ > 1} 

> ~ - 7 + ( 7 + I ) v { R I - R 2 > I }  
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Hence 
l} <'#(7+ 1) 

and therefore 

From (2.4) and (2.6) 

v{R 1 - R  2= 1}/> 1/( 7q- 1) 

1 y 1 7 
2 -t 2(7+ 1 ~  < v(7)<2+~ 

from which (2.5) follows. 

3. P R O O F  O F  T H E O R E M  2 

We break up the proof of Theorem 2 into two parts, corresponding to 
finding a lower bound and an upper bound on 7-~/2V(7). We use the 
definitions 1 and 2 of V(7) in the different parts. Miraculously, both 
bounds converge to ~ as 7 ~ oe. 

Par t  1 : 
lim inf 7 ~/2V(7)>~,f2 

7 ~ o O  

Proof. We use the abbreviations (, = 47 , X, = 2 7 ,  ?, = Y7 �9 

L e m m a  1. For  any ~ / ~ o ,  Y7 is stochastically greater than ?,.  In 
particular, EY 7 >1 E?,. 

Proof. We start by defining a partial order on ~o. For r/~ ~o recall 
the definition of Ri, i = 1, 2,..., which we now denote by Rift/). Write t/' ~> r/ 
if R,(rl')-Ri+l(Vl')>~Ri(rl)-R,+l(~l) for i =  1, 2 ..... 

The basic argument involves a coupling, which can be most easily 
described in the following informal way: suppose that the particles that 
define r/ and r/ are white. The particles created in (,  after time 0 will be 
blue, whereas the particles created in ~,~ will be either blue or red; the 
coupling will be such that to each blue particle in ~, there will correspond a 
blue particle in r Then Y, = number of blue particles at time t ~< number 
of blue and red particles at time t = YT- 

To construct this coupling, we do the following. Up to the time of the 
first attempt at creation T~ we couple the ith particle of 37 (counted from 
right to left) with the ith particle of (,: they attempt to jump or create a 
particle to the right or left together. Then the order ~7/> (, is maintained up 
to T1. At T1 there are three possibilities: 

(a) No particle is created in either system. We can then proceed as 
before until the time T 2 of the second attempt at creation. 
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(b) A particle is created in both systems. In this case, color both the 
new particles blue. We renumber the particles (without distinguishing 
between white and blue) and continue with the same rule as before up to 
time T2. 

(c) A particle is created in ~7, but not in ~,. The particle created in 
the first system is then colored red. The red particles will not be considered 
in the enumeration of the particles and will not be coupled to any other. 

The same rules are employed at the other times when either a white or 
blue particle attempts to reproduce. Red particles, on the other hand, 
produce red particles. Moreover, for red particles, the following extra rules 
are applied (red particles can be thought of as second-class particles): 

1. If a red particle tries to create a particle in the position of a white, 
blue, or red particle, nothing happens. 

2. If a white or blue particle in r tries to create a particle in the 
position of a red particle and creation also occurs in the other system, then 
this red particle becomes blue and will be coupled with a particle in the 
other system as in (b). 

3. If a red particle tries to jump to the position of a white or blue 
particle, nothing happens. 

4. If a white or blue particle tries to jump to the position of a red 
particle, they exchange positions. 

Let ~7 be the process defined by the white and blue particles in the 
system started from q. Proceeding by induction as above, then for all t 

Therefore, whenever a blue particle is created in (,,  a corresponding one is 
created in ~7- | 

From the definition of the velocity V(7) in terms of the rate of creation 
(see Section 2.2) and from Lemma 1 we have that for any t > 0  

~/- 1/2 V(]))= ~)1/2 t IE(y) ')  ~ ~ ) I /2t- IE(yI)  (3.1) 

Furthermore, by (2.3) we obtain that 

,32, 
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Let al ,  a2 ~ ~, a~ > a 2. By (2.1) and Lemma (3.5) in Ref. 2 it follows that 
for all s > 0 

[7 l'2al ] 
lim ~/ ~,,'2 

7 ~  i = [ 7  12a2] 
E((.,(j)[1 - (~( j+  1)]) 

= dxu(x, s ) [1 -u (x , s ) ]  (3.3) 
2 

where u(x,s) is the solution of (1.1) with initial data u(x, 0 ) = l ,  x~<0; 
u(x, 0) = 0, x > 0 .  

As mentioned in the introduction, it is known (see Ref. 10, theorem 
(K.P.P.) p. 34, and Ref. l l )  that as t---*oo, u(x+m(t) , t )  converges 
uniformly in x to ~b*(x), the traveling front solution satisfying (1.2) with 
f(~b,.)=~b,.(1-~bc) and c=x/-2,  where m(t) is the median of u 
[u(t, m ) =  1/2]. 

Hence, for any positive b, b < +0% 

~ b + m ( s )  

dx u(x, s)[1 - u(x, s)] lim , h + mls) 

eb 
= j  hdx(~*(x)[1 "~b*(x)]  (3.4) 

Taking supremum over b and using (1.2) finishes the proof. 

Part 2: 

lira sup7 1/2V(7)<-qx/2 
y ~ C  

Proof. The basic strategy is to again compare the process starting at 
v with the process starting at q . Instead of Y'i, we now use X',' to compute 
the velocity V(7). 

The first step is to realize that 

E(x~') ~< E(~,) (3.5) 

This follows by coupling ~',' and ~, so that whenever a particle of ~',' and of 
(, occupy the same site, they attempt to jump and to reproduce at the same 
random times. It is easy to see that for this coupling ~)' = ( , ;  (3.5) therefore 
holds. Now, for any y, 

~? 1 / 2 V ( 7 ) = 7 - ' / 2 t  1E(X~)~<T 1/2t 1E(Xt ) 

<~y+E(7 ~/2t 1X,;X,>>-7~/2tY) (3.6) 
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But 1)7,1 is bounded by an appropriate Poisson random variable with mean 
(7 + 1 ) t. Therefore, 

E(~) . .<  (7 + 1) t +  (7 + 1)2 t 2 (3.7) 

Using the Schwarz inequality, it follows from (3.7) that 

E(7 -l/2t 1Xt; Xt > ~21/2ty) 

~< 7 - ' /2~- 11-E(J?,~) ] 1/2 I-P(X, > 7 ~/2o')3 ~/2 

~< [7-~(I  + 7 ) 2 +  (1 + 7 - ' )  t-I]1/2[p(x,)7'/20')]~/2 (3.8) 

Part 2 will thus follow from (3.6) and (3.8), if we show that for any y > x ~ ,  
there exist p, c > 0, and 7o = 7o(Y) such that for any 7 > Yo 

p({~  >~71/2ty})<~C7t2e a, (3.9) 

The proof of (3.9) is long, so we shall break it into several steps. The basic 
idea is to apply the exponential Chebyshev inequality to a system of 
branching random walks {, which dominates (,. We begin by constructing 

Step 1. Construction of ~,. 
Particles are assumed to reproduce and to jump to neighboring sites. 
As in (, ,  particles give birth to new particles at each nearest neighbor 

site independently at rate 1/2; here, however, more than one particle is 
allowed per site. 

Particles are assumed to move according to the following scheme. For 
each site at which there is more than one particle, select one of them, e.g., 
choose the first one to arrive at a given site. Associate with these particles a 
stirring substructure. 1~5~ That is, at each occupied site i, the corresponding 
particle jumps to i + 1 (resp. i -  1) at rate 7/2, at which time the particle at 
i + 1 (resp. i -  1 ), if present, is required to jump to i. Particles at occupied 
pairs of sites thus exchange positions at rate 7. When there is more than 
one particle at a given site, the particles that have not been selected jump 
to neighboring sites at rate 7/2. 

Denote by ~,(i) the number of particles at site i for this process under 
c~ o = r/ . It is not difficult to check that 

(,(i)<~,(i) for i e Z  (3.10) 

Step 2. Structure of ~,. 
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We shall denote by (~,  t ~> 0) the progeny in ((,, t ~> 0) of the particle 
starting at time zero at the site - n .  Also denote by z,(t) the position of the 
members of ~7 that are furthest to the right, and set 

z(t) = max(z,(t)) (3.11) 
n >~O 

From (3.10) it follows that for any y > 0, 

P(X, >~ 7 '/2Y t) <~ P(z(t) >~ ? I/2Y t) 

<~ ~ P(z,(t)>~71/2yt) (3.12) 
I t  = 0 

In order to obtain bounds on z,,(t), we need to introduce some 
notation for the branches of the process (~'. Let J(cr) denote the branch 
associated with the sequence a = (a~, a2,...) of O's and l's in the following 
way. At time zero start following the particle originally at the site - n .  
When this particle first reproduces, we continue to follow it if crl =0 ,  
whereas we follow its offspring if al = 1; let T{ denote this reproduction 
time. Continue to follow this particle until time T~, its next reproduction 
time. If a 2 = 0, continue to follow the parent, whereas if a2 = 1, follow its 
offspring. Proceeding in this manner, one can inductively define the branch 
J(a) and the reproduction times T~., k = 1, 2 ..... For  convenience, let T~ = 0. 
Also, set 

L7 = max{k: T~<<.t} 

and define x~(t) as the position of the branch JOy) at time t. Then 

- -  o- cr X . o -  o ~,-x (T,)-~ (T,-0) 

is the jump that J(cr) undergoes at time T 7. (A i=0  if a i = 0 ,  and A~= + l  
otherwise.) 

Step 3. Behavior along branches. It is easy to check that 

x~(t)= x~ + [ x ~ ( T ~ - O ) -  x~ + dt] + ... 

+ [x~(t)--x~(Tc)+Ac] 

where L = L•. Consequently, 
o- 

L s 

x~(s) - ~ A~+n, O<.s<~t (3.13) 
i ~ l  

is a random walk W(s) with rate 7 and W(0)= 0. To control the total effect 
up to time t of reproduction, i.e., Z~L71 A~, we introduce the event 

A(M~, t ) =  {V~, U[ <.G M,  t - 1 }  
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A(Mn, t) is the event that by time t no branch of~ ' /has more than M , , t -  1 
births. 

We now prove that for Mn large enough, 

P((A(M~, t))")~e Mo,/2 (3.14) 

To see this, first note that 

(A(M., t)) C= U ( T~M~ ~< t} (3.15) 
o ~ 

and write 
[Mnt] 

T~M,,,I= ~ (T/ - -T~ 1) 
i - - I  

Now for all a and i, ,7 = TT-TT_ 1 are independent exponential random 
times of parameter 1. We therefore obtain for all /3 > 0 the following 
exponential Chebyshev inequality: 

P(QMo,] < t) <~ [exp(/3t)] [E(exp( - fl*~))] [a~,,,~ 

= [exp(/3t)](1 +/3)-EM,,1 

Now, to check whether A(M,,, t) occurs, one has only to follow the 2 M"' 
branch segments (ol, a2,..., oM,,). Therefore, from (3.15) 

P((A(M,,  t))")<2M"'e/~'(1 +/3) EM,,3 

For/3 = 2 and M,, large enough, one obtains 

P((A(Mn, t))') ~< e M.,/2 (3.16) 

On the other hand, it follows from the definition of A(M,,, t) that for 
any o 

A(M~, t) c~ {x~(t) ~> ?'/2yt} 

< x~(t) - ~ A,+n>~y~/2yt-M~t+n (3.17) 
i = l  

One therefore obtains from (3.13) and the exponential Chebyshev 
inequality for the random walk that for any 0 > 0 

P(A(M.,  t) c~ {x'~(t) >~ 7~/2yt } ) 

<<.P(W(t)>~ y*/2yt- M~t +n) 

~< exp[ty(cosh 0 -  1)-7~/20t(y-M,,y-~/Z)-nO] (3.18) 
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Step 4. Conclusion. We are finally in a posit ion to prove  (3.10). Set 
M , , = M  for n < y t  2 and M , , = 2 1 o g n  for n>~?t 2. Then,  by (3.12), (3.14), 
and (3.18), we obta in  

+ P((A(Mn,  t)) <) 

~< i E(I~ ' I  ) exp [ - nO + OtM,, + t 7(cosh 0 - 1 - ~/l"2yO) ] 
n - -  0 

+ 7tRe J4t/2 + i n t (3.19) 
n ~ [ 7 t  2 ]  + 1 

Set 0 = 7 -  l/2y and expand  cosh 0 up to the third power. We obtain  that  the 
first te rm in the last inequali ty of (3.19) is bounded  by 

e x p { t [ - y 2 / 2  + ~ ~12My + O(y4/?)] } 

[ y t  2 ] 

x (exp t) ~ exp(- -ny /x f?)  
11 - 0 

+ exp[t(-y2/2 + O(y4/~/)] i exp(--ny/2 x/7) 
n = [T t  2 ]  + 1 

~2~12y - '  e x p { - t [ y 2 / 2  - l - 7  ~IZMy+ O(y4/?)]} (3.20) 

For  any fixed y > , ~  and M, we can find 7o, depending on y and M, such 
that  for any 7 >i 7o 

y2/2 -- 1 -- 7 -'~2My + O(y4/?) > 0 

Thus,  (3.9) follows f rom (3.19) and (3.20). II 

4. E X T E N S I O N S  

It  is na tura l  to consider the more  general class of systems on Z for 
which a particle a t t empts  to j u m p  f rom i to j according to some probabi l i ty  
p(i, j)  = p(O, j -  i) with p(0, k) = p(0, - k ) ;  and a particle at i a t tempts  to 
create ano ther  at j with probabi l i ty  q(i, j ) =  q(O, j - i ) .  One can extend 
Theorems  1 and 2 to the case where p ( . ,  .) is as before and q(0, 1 ) +  
q(0, - 1) = 1. The  proofs are then essentially the same. We can also extend 
par t  of  these results when p(- ,  - ) and q(. ,  �9 ) are irreducible and the interac- 
tions have finite range, i.e., there exists an L <  ~ such that  p(0, k ) =  
q(0, k) = 0 if Ik I > L. In this case: 
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1. 

2. 

where 
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Theorem 1 is still true. The proof  is essentially the same as before. 

The corresponding D R  equat ion is 

~u(x, t) D OZu(x, t) 
0 ~  - 2 ?~x ~ + u(x, t)[1 - u ( x ,  t ) ]  

D = ~ i2p(O, i) 
i ~ Z  

This result is not  stated in Ref. 6, but  follows using the same techniques. 
Note  that traveling fronts exist for velocities larger than or equal to 
c* = (2D) 1/2. 

3. The upper  bound  

lim sup7  1/2V(7)<~c* 
y ~ a C  

can be obtained in the same way as before. 
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