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We consider a random walk with death in [−N,N] moving in a time dependent environment. The environ-
ment is a system of particles which describes a current flux from N to −N . Its evolution is influenced by the
presence of the random walk and in turn it affects the jump rates of the random walk in a neighborhood of
the endpoints, determining also the rate for the random walk to die. We prove an upper bound (uniform in
N ) for the survival probability up to time t which goes as c exp{−bN−2t}, with c and b positive constants.
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1. Introduction

We consider a random walk on the discrete interval �N := [−N,N ] of Z which eventually dies
by jumping to a final state ∅ (where it stays thereafter). Let z ∈ �N ∪ {∅} denote the state of the
random walk, of which we say to be alive when z ∈ �N and dead when z = ∅. When z is alive
and |z| ≤ N − 2, it moves as a simple random walk: after an exponential time of mean 1 it jumps
to its right or left neighbor with probability 1/2. When z ∈ I , I = I+ ∪ I−, I+ = {N − 1,N},
I− = {−N,−N + 1} then, besides moving, the walk z may also die. The jump and death rates
depend on the environment.

The environment is a particle configuration η on �N \ {z}, z the state of the random walk
(i.e., if z = ∅ then η ∈ {0,1}�N , otherwise η ∈ {0,1}�N\{z}). The evolution of the environment
is influenced by the motion of the random walk: it consists of jumps of the particles (as second
class symmetric exclusion particles with z being first class) plus birth-death events localized in I .
The precise formulation is given in the next section. We just mention here that the birth-deaths
events are “rare” as their intensity is proportional to 1/N and we are interested in the case of
large N .

When z =∅, the environment evolves as in [3] with K = 2 there (K refers to the cardinality of
I+ and I−). Namely, it is the simple symmetric exclusion process (SSEP, see [10,11]) in �N plus
injection of particles into I+ and removal from I−, from now on referred as the DPTV process:
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at rate j/(2N), one tries to inject a particle at the rightmost empty site in I+ and at the same rate
there is an attempt to remove the leftmost particle in I−, the corresponding action being aborted
if I+ is full or I− is empty. When z ∈ �N , the evolution of (z, η) corresponds to a coupling of
two realizations of the DPTV process that differ at z and undergo the same “attempts” to create
or to remove particles. Here, j > 0 is a fixed parameter, while we are interested in large N . Thus,
when the random walk is dead, the η process describes a flux of particles from right to left and
it models how currents can be induced by “current reservoirs”, represented here by the injection
and removal processes at I+ and, respectively, I−. With respect to [3], we now take K = 2 for
simplicity. It will be clear that the arguments extend to any fixed K , the role of current reservoirs
being more closely achieved as K grows.

The presence of the random walk changes the picture and the purpose of this paper is to
study how long does such an influence persist: we shall prove that the survival probability of the
random walk decreases exponentially in time, being bounded above by c exp{−bN−2t}, c, b > 0
independent of t and N . In a companion paper [6] we use the techniques and results developed
here to bound the extinction time in the case of several random walks. These random walks
correspond to the positions of discrepancies between two configurations that evolve according to
the DPTV process mentioned before. By stochastic inequalities, the result yields a lower bound
of the form bN−2 for the spectral gap in this process, which is the motivation for our study here.

2. Model and results

The evolution of (z, η) (random walk plus environment) is a Markov process determined by a
generator L which is the sum of the generators defined below, in (2.1)–(2.8). Letting the value
η(x) = 1 (η(x) = 0) indicate the presence (absence) of a particle at x, we may for convenience
always take η ∈ {0,1}�N by requesting that η(z) = 0 whenever z �=∅.

We first suppose z �=∅ and write

L0
envf (z, η) = 1

2

{
z−2∑

x=−N

+
N−1∑

x=z+1

}[
f

(
z, η(x,x+1)

) − f (z, η)
]
, (2.1)

L0
zf (z, η) = 1

2

{
1z<N

[
f

(
z + 1, η(z,z+1)

) − f (z, η)
]

(2.2)
+ 1z>−N

[
f

(
z − 1, η(z−1,z)

) − f (z, η)
]}

,

where η(x,x+1) is obtained from η by interchanging the occupation values at x and x + 1, and
1z∈A refers to the indicator function.

Denoting by η(+,x) (η(−,x)), the configuration which has the value 1 (0, resp.) at x and other-
wise coincides with η

L+
envf (z, η) = j

2N

{
1z<N

(
1 − η(N)

)[
f

(
z, η(+,N)

) − f (z, η)
]

(2.3)
+ 1z<N−1

(
1 − η(N − 1)

)
η(N)

[
f

(
z, η(+,N−1)

) − f (z, η)
]}

,
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L−
envf (z, η) = j

2N

{
1z>−Nη(−N)

[
f

(
z, η(−,−N)

) − f (z, η)
]

(2.4)+ 1z>−N+1η(−N + 1)
(
1 − η(−N)

)[
f

(
z, η(−,−N+1)

) − f (z, η)
]}

,

L+
deathf (z, η) = j

2N

{
1z=Nη(N − 1)

[
f

(
∅, η(+,N)

) − f (z, η)
]

(2.5)+ 1z=N−1η(N)
[
f

(
∅, η(+,N−1)

) − f (z, η)
]}

,

L−
deathf (z, η) = j

2N

{
1z=−N

(
1 − η(−N + 1)

)[
f (∅, η) − f (z, η)

]
(2.6)+ 1z=−N+1

(
1 − η(−N)

)[
f (∅, η) − f (z, η)

]}
,

L+
z f (z, η) = j

2N
1z=N

(
1 − η(N − 1)

)[
f

(
N − 1, η(+,N)

) − f (z, η)
]
, (2.7)

L−
z f (z, η) = j

2N
1z=−Nη(−N + 1)

[
f

(−N + 1, η(−,−N+1)
) − f (z, η)

]
. (2.8)

When z = ∅, the generator L is the sum of only those in (2.1), (2.3) and (2.4) after replacing
the indicator functions by 1 and putting z = ∅. It is the one considered in [3] in the special case
when the sets I± consist of only two sites.

Denote by (zt , ηt )t≥0 the Markov process with the above generator and by Pz,η its law starting
from (z, η). We now state the main result to be proven in the next sections.

Theorem 2.1. There exist c and b positive and independent of N so that for any initial datum
(z0, η0), z0 �=∅ and any t > 0

Pz0,η0[zt �=∅] ≤ ce−bN−2t . (2.9)

3. The auxiliary process

It will be useful to consider an auxiliary process (z̃t )t≥0. This will be a time-inhomogeneous
Markov process whose jump intensities at time t are obtained by averaging those of the origi-
nal process over the environment conditioned on the state of the random walk at that time. The
explicit expression of the time dependent generator Lt is given below in (3.6) after introduc-
ing some definitions and notation. We fix hereafter arbitrarily the initial condition (z0, η0) at
time 0, z0 �= ∅, and denote by P̃z0 and Ẽz0 the law of the auxiliary process and corresponding
expectation. We shall prove that for any bounded measurable function φ(z, η) = f (z):

Ez0,η0

[
φ(zt , ηt )

] = Ẽz0

[
f (z̃t )

]
. (3.1)

By taking f (z) = 1z �=∅, (3.1) shows that the distributions of the extinction time for the true and
the auxiliary processes are the same. The proof of (3.1) follows from the equality

d

dt
Ez0,η0

[
φ(zt , ηt )

] = Ez0,η0

[
Lt f (zt )

]
, (3.2)

which we shall prove next.
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We obviously have L±
envφ = 0 and, for z �=∅, L0

zφ = L0f with L0 the generator of the simple
random walk on [−N,N ] with jumps outside [−N,N ] suppressed (as in the definition of L0

z).
Recalling (2.5)–(2.6)

L+
deathφ = j

2N

{
1z=Nη(N − 1)

[
f (∅) − f (N)

] + 1z=N−1η(N)
[
f (∅) − f (N − 1)

]}
,

L−
deathφ = j

2N

{
1z=−N

(
1 − η(−N + 1)

)[
f (∅) − f (−N)

]
+ 1z=−N+1

(
1 − η(−N)

)[
f (∅) − f (−N + 1)

]}
.

By (2.7) and (2.8),

L+
z φ = j

2N
1z=N

(
1 − η(N − 1)

)[
f (N − 1) − f (N)

]
,

L−
z φ = j

2N
1z=−Nη(−N + 1)

[
f (−N + 1) − f (−N)

]
.

Thus, we define

d(N, t) = j

2N
Ez0,η0

[
ηt (N − 1)|zt = N

]
,

d(N − 1, t) = j

2N
Ez0,η0

[
ηt (N)|zt = N − 1

]
,

(3.3)

d(−N, t) = j

2N
Ez0,η0

[(
1 − ηt (−N + 1)

)|zt = −N
]
,

d(−N + 1, t) = j

2N
Ez0,η0

[(
1 − ηt (−N)

)|zt = −N + 1
]

set d(z, t) = 0 if |z| < N − 1, and let

a(N, t) = j

2N
Ez0,η0

[(
1 − ηt (N − 1)

)|zt = N
]
,

(3.4)

a(−N, t) = j

2N
Ez0,η0

[
ηt (−N + 1)|zt = −N

]
.

Given t ≥ 0, define

La
t f (z) = 1z �=∅L0f (z) + 1z=Na(N, t)

[
f (N − 1) − f (N)

]
(3.5)

+ 1z=−Na(−N, t)
[
f (−N + 1) − f (−N)

]
and

Lt f (z) = La
t f (z) + d(z, t)

[
f (∅) − f (z)

]
, (3.6)

so that we get (3.2), and hence (3.1) at once.
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The auxiliary process z̃t is thus the Markov process with time dependent generator Lt . It is
a simple random walk with extra jumps N → N − 1 and −N → −N + 1 which occur with
intensities a(±N, t) and death rates (z →∅) given by d(z, t). Calling Pz0 the law of the process
z̃t with time dependent generator La

t (same fixed η0 and the same initial condition z0 at time 0)
and denoting by Ez0 the corresponding expectation, one sees that (see [1], Chapter III),

Pz0,η0[zt �=∅] = P̃z0[z̃t �=∅] = Ez0

[
exp

{
−

∫ t

0
d(z̃s, s)ds

}]
(3.7)

≤ Ez0

[
exp

{
−

∫ t

0
d(N, s)1z̃s=N ds

}]
,

where the last inequality is not really necessary, brings some loss, but is just to simplify.
The proof of Theorem 2.1 follows from (3.7) and the following two statements which will be

proved in the next sections.

• There are δ∗ > 0 and κ > 0 so that for all t ≥ T2 = κN2:

d(N, t) ≥ jδ∗

N
. (3.8)

• There exists a positive constant b so that calling T ∗(t) the total time spent at N by z̃s ,0 ≤ t :

Ez0

[
e−jδ∗N−1T ∗(t)] ≤ e−bN−2t , t ≥ T2 = κN2. (3.9)

4. Proof of (3.9)

Throughout the rest of the paper we shall write ε ≡ N−1. With the notation introduced above
and writing Et,z̃ for the conditional distribution (under Pz0 ) of (z̃s , s ≥ t) given z̃t = z̃, we prove:
Given any δ > 0 there is p < 1 so that uniformly in ε and for all non negative integers n:

Etn,z̃tn

[
e−X

] ≤ p, X := εδ

∫ tn+1

tn

1z̃s=N ds, tn = 2ε−2n. (4.1)

We see that (3.9) follows at once from (4.1): taking δ = jδ∗ in the latter and using the Markov
property the left-hand side of (3.9) is bounded from above by p[t/(2N2)], compatible with its
right-hand side. Now, the key point in proving (4.1) is the following.

Lemma 4.1. For any 0 < c− < c, there is p < 1 (as given in (4.4) below) so that the following
holds. Let (�,μ) be a probability space, E the expectation and F the set of all measurable
functions f ≥ 0 such that E[f ] ≥ c− and E[f 2] ≤ c2. Then E[e−f ] ≤ p for any f ∈ F .

Proof. Let f ∈F , ζ := c−/2, γ := μ[f > ζ ]. Then

c− ≤ E[f ] = E[f ;f ≤ ζ ] + E[f ;f > ζ ] ≤ ζ(1 − γ ) + cγ 1/2. (4.2)
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Call a = γ 1/2, then (4.2) yields ζ(1 − a2) + ca − c− ≥ 0, so that a− < a < a+ where a± are the
roots of the corresponding equation with equality:

ζa2 − ca + c− − ζ = 0, that is, 2ζa = c ±
√

c2 − 4ζ(c− − ζ ) = c ±
√

c2 − c2−.

Thus,

2ζa− = c − c

√
1 − c2−

c2
≥ c − c

(
1 − 1

2

c2−
c2

)
= c2−

2c

so that (since μ[f > ζ ] = a2 and a ≥ a−)

μ[f > ζ ] ≥
(

c−
2c

)2

(4.3)

and

E
[
e−f

] ≤ e−ζ μ[f > ζ ] + 1 − μ[f > ζ ]
(4.4)

= 1 − μ[f > ζ ](1 − e−ζ
) ≤ 1 −

(
c−
2c

)2(
1 − e−c−/2) =: p. �

To apply the lemma, we need to prove the existence of constants 0 < c− < c so that for any ε,
any n and z̃tn ,

c− ≤ Etn,z̃tn
[X], Etn,z̃tn

[
X2] ≤ c2. (4.5)

Proof that Etn,z̃tn
[X] ≥ c−. We claim that under Ptn,z̃tn

the time spent at N by the process
(z̃t ) during the time interval [tn, tn+1] is stochastically larger than the time spent at N during the
interval [0,2N2] by a simple random walk (xt ) in Z that starts at time 0 from z̃tn . Since a(N, t) <

1/2, the intensity with which the process (z̃t ) jumps from N to N − 1 is smaller than one, which
is the jump rate of (xt ). It is then easy to construct a coupling of both processes for which
|xt−tn − N | ≥ |z̃t − N | for all t . This is done by constructing a suitable time inhomogeneous
Markov process for the pair evolution. Here are the details of the coupling, setting the jump rates
at time t when (xt−tn = x, z̃t = z̃) with the property that |z̃ − N | ≤ |x − N |:

• Let x = z̃ = N , the pair (x, z̃) moves to (N −1,N −1) with intensity 1/2; it moves to (N +
1,N) with intensity 1/2 − a(N, t), and with intensity a(N, t) it moves to (N + 1,N − 1).

• Let z̃ = N and x �= N . From (x,N), the pair moves to (x,N − 1) with intensity 1/2 +
a(N, t); with intensity 1/2 it moves to (x − 1,N) and with intensity 1/2 it moves to (x +
1,N).

• Let z̃ �= ±N and x : |z̃−N | ≤ |x −N |. With intensity 1/2 both coordinates move by 1 away
from N , and with intensity 1/2 both move by 1 toward N .

• Let z̃ = −N and x : |z̃ − N | ≤ |x − N |. With intensity 1/2 x moves by 1 toward N and z̃

moves to −N + 1; with intensity a(−N, t), x moves by 1 away from N and z moves to
−N + 1; with intensity 1/2 − a(−N, t), x moves by 1 away from N and z̃ stays put.
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Observe that this gives a coupling of the processes and that all the jumps preserve the inequal-
ity |z̃ − N | ≤ |x − N |.

Proof that Etn,z̃tn
[X2] ≤ c2. Since Etn,z̃tn

[X2] ≤ Etn,N [X2], we just need to prove the inequality
when z̃tn = N . A simple construction, similar to the previous one, allows to couple (z̃t ) and (xt )

a simple random walk that moves in [0,N ], that is, the jumps to −1 and N + 1 are suppressed,
starting at N at time 0, in such a way that z̃t ≤ xt−tn for all t ∈ [tn, tn+1]. The details are quite
simple and, therefore, omitted. As a consequence, the time spent at N by (z̃t ) during [tn, tn+1] is
stochastically smaller than that spent at N during [0,2N2] by this simple random walk (xt ).

The process (xt ) can be realized on the unit rate symmetric simple random walk (yt ) on Z

(jumps ±1 with rate 1/2 each) by identifying sites on Z modulo repeated reflections around
N + 1/2 and −1/2, that is, reflections that identify N + 1 with N , and −1 with 0 (see, e.g., [3],
Proposition 4.1). Thus, calling Ni the images of N under the above reflections, we have to bound

2
∫ t1

0
ds

∫ t1

s

ds′ ∑
i,k

EN [1ys=Ni
1ys′=Nk

]. (4.6)

By the local central limit theorem as in [9] (see also Theorem 3 in [3]), this can be bounded in
terms of Gaussian integrals, from which (4.5) is proved. Details are omitted.

5. Proof of (3.8)

We continue to write ε := N−1, and set the following notation:

π(x, t) := Pz0,η0[zt = x] = P̃z0 [z̃t = x], B(x, t) := (jε)−1d(x, t)π(x, t),

so that (3.8) is implied by

B(N, t) ≥ δ∗π(N, t), t ≥ T2 = κε−2. (5.1)

Having defined

T1 = ε−(1−a), T0 = T1 − ε−(1−a)/2, T2 = κε−2, a > 0 small enough (5.2)

and

pt (x, y) = transition probability of the simple random walk on �N (5.3)

(the jumps to ±(N + 1) being suppressed), we postpone the proof of the following three bounds,
for t ≥ T2:

• There are b1 > 0 and, for any n, cn so that

B(N, t) ≥ b1

∑
z

pT1(N, z)π(z, t − T1) − cnε
nP̃z0[z̃t−T2 �=∅]. (5.4)
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• There are b2 > 0, and for any n, cn so that

π(N, t) ≤ b2

∑
z

pT1(N, z)π(z, t − T1) + cnε
nP̃z0 [z̃t−T2 �=∅]. (5.5)

• There is b3 > 0 so that

π(N, t) ≥ b3ε
3P̃z0 [z̃t−T2 �= ∅]. (5.6)

Claim. (5.1) follows from (5.4), (5.5), (5.6).

Proof. By (5.6), we get from (5.5)[
1 − cn

b3
εn−3

]
π(N, t) ≤ b2

∑
z

pT1(N, z)π(z, t − T1), (5.7)

and from (5.4)

B(N, t) ≥ b1

∑
z

pT1(N, z)π(z, t − T1) − cn

b3
εn−3π(N, t). (5.8)

Using (5.7) and (5.8), we have

B(N, t) ≥ b1

b2

[
1 − cn

b3
εn−3

]
π(N, t) − cn

b3
εn−3π(N, t), (5.9)

which for a fixed n large enough and all ε small enough proves (5.1). �

Proof of (5.4). We need a lower bound for B(N, t) = 1
2Ez0,η0 [1zt=Nηt (N − 1)]. We condition

on Ft−T1 (the canonical filtration) and denote by Ez̄,η̄,t−T1 the conditional expectation given
(z̄, η̄), z̄ �= ∅, the configuration at time t − T1. The realizations where zt−T1 = ∅ evidently do
not contribute to B(N, t).

Let D denote the event where the rate εj/2 clocks at ±N (attempts to create or remove a
particle) never ring in the time interval [t − T1, t], and by P(D) its probability. Then

Ez̄,η̄,t−T1

[
1zt=Nηt (N − 1)

] ≥ Ez̄,η̄,t−T1

[
1D1zt=Nηt (N − 1)

]
= P [D]

∑
y

qT1

(
X, (z̄, y)

)
η̄(y) (5.10)

= e−εaj
∑
y

qT1

(
X, (z̄, y)

)
η̄(y),

where X = (N,N − 1), Y = (y1, y2) and qs(X,Y ) is the probability under the stirring process
(SSEP) on �N of going from X to Y in a time s; the first equality follows because the process
conditioned on D has the law of the stirring process and the second because P [D] = e−εjT1 =
e−εaj .
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Writing Y = (z̄, y), Z = (z1, z2), Z0 = (z0
1, z

0
2), zi ∈ �N , z0

i ∈ �N , i = 1,2:

qT1(X,Y ) =
∑
Z,Z0

QT0

(
X,X;Z,Z0)qT1−T0(Z,Y ),

where T0 is defined in (5.2) and Q refers to the law of the coupling between two stirring
(z1(s), z2(s)) and two independent (z0

1(s), z
0
2(s)) particles as defined in [4] (see Definitions 1

and 4 there in the particular case of two particles), with QT (·, ·) denoting the corresponding
transition probabilities in time T . The coupling is such that z1(s) = z0

1(s) for all s ≥ 0, and z2(s)

makes the same jumps as z0
2(s) unless |z1(s) − z2(s)| = 1 or one of the involved particles (inde-

pendent and stirring) is at the boundary of �N and the other is not. In particular, if starting at the
same pair, independent and stirring particles move together while |z1(·) − z2(·)| ≥ 2. Moreover,
given any ζ > 0, the following estimate is contained in Theorem 4.5 of [4]: for any n there is cn

so that ∑
(Z,Z0)∈Ac

QT0

(
X,X;Z,Z0) ≤ cnε

n, (5.11)

where

A= {(
Z,Z0) : z1 = z0

1;
∣∣z2 − z0

2

∣∣ ≤ ε−(1−a)/4−ζ
}
. (5.12)

Remark. For the case of particles moving in Z, this type of estimate has been proven and used
since long ago (see Section 6.6 in [2]; also Section 3 in [7] or references therein): its rough
content is that a pair of stirring particles can be coupled to a pair of independent random walks in
a way that the first components coincide, and at time s the second components differ by at most
s1/4+δ , except for a set of probability at most cks

−k , as described above, for any given δ > 0.
The restriction to �N brings in extra nuisance, as treated in the proof of Theorem 4.5 of [4].

Let

B = {
Z0 : ∣∣z0

1 − z0
2

∣∣ ≥ ε−(1−a)/2+ζ
}

(5.13)

so that

qT1(X,Y ) ≥
∑

(Z,Z0)∈A,Z0∈B
QT0

(
X,X;Z,Z0)qT1−T0(Z,Y ). (5.14)

We write (see (5.3))∑
y

qT1−T0

(
Z, (z̄, y)

)
η̄(y) = pT1−T0(z1, z̄)

∑
y

pT1−T0(z2, y)η̄(y) + R(Z), (5.15)

where

R(Z) =
∑
y

[
qT1−T0

(
Z, (z̄, y)

) − pT1−T0(z1, z̄)pT1−T0(z2, y)
]
η̄(y). (5.16)
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But if (Z,Z0) ∈ A and Z0 ∈ B, then Z ∈ B′ := {Z: |z1 − z2| ≥ 1
2ε−(1−a)/2+ζ } for all small ε.

Also observe that if we let

C =
{

sup
0≤s≤T1−T0

∣∣zi(s) − zi

∣∣ ≤ (T1 − T0)
1/2ε−ζ , i = 1,2

}

then whenever Z ∈ B′ and Z(·) ∈ C, we have for ε, a, ζ small enough∣∣z1(s) − z2(s)
∣∣ ≥ 1

2ε−(1−a)/2+ζ − 2ε−(1−a)/4−ζ ≥ 2, 0 ≤ s ≤ T1 − T0.

Therefore independent and stirring particles starting from Z can be coupled to evolve together
while in C, yielding

EZ[1Z(T1−T0)=Y 1C] = E
0
Z[1Z0(T1−T0)=Y 1C], Z ∈ B′,

where EZ and E
0
Z (PZ and P

0
Z) denote the expectation (law) relative to the stirring and the

independent processes both starting from Z. It follows at once from this and (5.16) that for
Z ∈ B′:∣∣R(Z)

∣∣ ≤ PZ

[
Cc

] + P
0
Z

[
Cc

] ≤ 4 sup
z∈�N

P0
z

[
sup

0≤s≤T1−T0

∣∣z(s) − z
∣∣ > (T1 − T0)

1/2ε−ζ
]
,

where at the last inequality we use that under PZ or P0
Z , the components perform simple random

walks in �N , whose law is written as P0. We then easily see that for each n there exists cn

positive constant so that ∣∣R(Z)
∣∣ ≤ cnε

n. (5.17)

From (5.10), (5.14) and (5.17), we then get1

Ez̄,η̄,t−T1

[
1zt=Nηt (N − 1)

] ≥ e−εaj
∑

(Z,Z0)∈A,Z0∈B
QT0

(
X,X;Z,Z0)

(5.18)
× pT1−T0(z1, z̄)

∑
y �=z̄

pT1−T0(z2, y)η̄(y) − cnε
n.

Letting

G =
{
(z̄, η̄) : z̄ �=∅, inf

x

∑
y �=z̄

pT1−T0(x, y)η̄(y) ≥ δ∗
}
, (5.19)

we can thus write for z̃ �=∅,

Ez̄,η̄,t−T1

[
1zt=Nηt (N − 1)

]
(5.20)

≥ e−εaj δ∗1G(z̄, η̄)
∑

(Z,Z0)∈A,Z0∈B
QT0

(
X,X;Z,Z0)pT1−T0(z1, z̄) − cnε

n.

1Changing the constants cn.
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But ∑
(Z,Z0)∈A,Z0∈B

QT0

(
X,X;Z,Z0)pT1−T0(z1, z̄)

≥ −QT0

(
X,X;Ac

) +
∑

|z0
1−z0

2|≥ε−(1−a)/2+ζ

pT0

(
N,z0

1

)
pT0

(
N − 1, z0

2

)
pT1−T0

(
z0

1, z̄
)
,

and for any z0
1 and small ε

∑
z0

2:|z0
1−z0

2|≥ε−(1−a)/2+ζ

pT0

(
N − 1, z0

2

) ≥ 1

2
,

so that by (5.11)

∑
Z,Z0∈A,Z0∈B

QT0

(
X,X;Z,Z0)pT1−T0(z1, z̄) ≥ 1

2
pT1(N, z̄) − cnε

n.

Recalling the definition of B(N, t) and taking the expectation in (5.20) we have

B(N, t) ≥ e−εaj δ∗

4

∑
z �=∅

pT1(N, z)π(z, t − T1)

− e−εaj δ∗

2
Pz0,η0

[
Gc ∩ {zt−T1 �=∅}] − cnε

nPz0,η0[zt−T1 �=∅].

In Section 6, we shall prove that

Pz0,η0

[
Gc ∩ {zt−T1 �=∅}] ≤ cnε

nPz0,η0[zt−T2 �=∅] (5.21)

which will then complete the proof of (5.4). �

Proof of (5.5). (The proof given below uses that the cardinality K of I± is 2, for K > 2 the
proof is similar but more complex.) By conditioning on z̃t−T1 , we get

Pz0,η0[zt = N ] = P̃z0 [z̃t = N ] = Ẽz0

[
1z̃t−T1 �=∅P̃t−T1,z̃t−T1

[z̃t = N ]], (5.22)

where P̃t−T1,z
′ is the law of the auxiliary Markov process2 z̃s , s ≥ t − T1 which starts at time

t − T1 from z′ �= ∅. Denoting as before by P and E the law and expectation of the auxiliary
process with generator La

t , that is, when the death part of the generator is dropped, we have
by (3.7),

P̃t−T1,z
′ [z̃t = N ] ≤ Pt−T1,z

′ [z̃t = N ]. (5.23)

2Fixed z0, η0 at time 0 as before.
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By the integration by parts formula,

Pt−T1,z
′ [z̃t = N ] ≤ P0

T1

(
z′,N

) +
∫ t

t−T1

P0
t−s(N − 1,N)

εj

2
Pt−T1,z

′ [z̃s = N ]ds + ckε
k,

where ckε
k bounds the contribution of trajectories that visit I− and reach N within time T1 and

we used that the rates a(N, s) of extra jumps are bounded by εj/2; see (3.4). The random walk
probabilities P0

T1
(z′,N) and P0

t−s(N − 1,N) can be computed with the time reverted, yielding

Pt−T1,z
′ [z̃t = N ] ≤ pT1

(
N,z′) +

∫ t

t−T1

pt−s(N,N − 1)
εj

2
Pt−T1,z

′ [z̃s = N ]ds + ckε
k.

Iterating (and writing s0 = t )

Pt−T1,z
′ [zT1 = N ]

≤
∞∑

n=0

(
εj

2

)n ∫ t

t−T1

ds1

∫ s1

t−T1

ds2 · · ·
∫ sn−1

t−T1

dsn (5.24)

pt−s1(N,N − 1)ps1−s2(N,N − 1) · · · (psn−(t−T1)

(
N,z′) + ckε

k
)
.

We write the nth term of the series as Rn + R′
n where Rn is the term with sn ≤ t − 1 and R′

n the
one with sn > t − 1. We start by bounding R′

n. After a change of variables (si → t − si ), calling
s = (s1, . . . , sn) and s0 ≡ 0,

R′
n :=

(
εj

2

)n ∫
[0,T1]n,sn<1

{
n∏

i=1

1si≥si−1psi−si−1(N,N − 1)

}(
pT1−sn

(
N,z′) + ckε

k
)

ds

≤
(

εj

2

)n ∫
[0,1]n

{
n∏

i=1

1si≥si−1

}(
pT1−sn

(
N,z′) + ckε

k
)

ds (5.25)

≤ 1

n!
(

εj

2

)n(
epT1

(
N,z′) + ckε

k
)
.

To prove the last inequality, we have written

pT1−sn

(
N,z′) = psn(N,N)

psn(N,N)
pT1−sn

(
N,z′) ≤ pT1(N, z′)

psn(N,N)

and used psn(N,N) > e−1.
To bound Rn, we do the same change of variables as above and use the inequality

psi−si−1(N,N − 1) ≤ c√
si − si−1

.
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Then

Rn ≤
(

εj

2

)n ∫
[0,T1]n

1sn≥1f (s)
(
pT1−sn

(
N,z′) + ckε

k
)

ds,

where

f (s) = 10≡s0≤s1≤s2≤···≤sn≤T1

n∏
i=1

c√
si − si−1

.

Since psn(N,N) > b/
√

sn (recall that sn ≥ 1) we get

Rn ≤
(

εj

2

)n ∫
[0,T1]n,sn≥1

f (s)

(
psn(N,N)

psn(N,N)
pT1−sn

(
N,z′) + ckε

k

)
ds

≤
(

εj

2

)n(
b−1pT1

(
N,z′) + ckε

k
)∫

[0,T1]n,sn≥1
f (s)

√
sn ds.

We change variables: si → T1si and get, using Lemma 5.2 of [3],∫
[0,T1]n,sn≥1

f (s)
√

sn ds ≤ T
(n+1)/2
1

∫
[0,1]n

f (s)
√

sn ds

≤ T
(n+1)/2
1

∫
[0,1]n

f (s)ds

≤ Cne−(n/2)[log(n/2)−1]ε−(1/2)(n+1)+(a/2)(n+1).

Thus,

Rn ≤
(

Cj

2

)n

e−(n/2)[log(n/2)−1]ε(1/2)(n−1)+(a/2)(n+1)
(
b−1pT1

(
N,z′) + ckε

k
)
. (5.26)

Putting together the estimates (5.25) and (5.26), we can bound the sum of Rn + R′
n over n in

(5.24) (by convergent series). It follows that positive constants c̃ and ck can be found so that for
all z′ ∈ �N and all k

Pt−T1,z
′ [z̃t = N ] ≤ c̃pT1

(
N,z′) + ckε

k

for all ε small. Now combining this into (5.22), and since P̃z0[z̃t−T1 �= ∅] ≤ P̃z0[z̃t−T2 �= ∅] we
have (5.5). �

Proof of (5.6). Let t ≥ T2 := κε−2, then analogously to (3.7),

π(N, t) ≡ P̃z0 [z̃t = N ] = Ẽz0

[
1z̃t−T2 �=∅Et−T2,z̃t−T2

[
e
− ∫ t

t−T2
d(zs ,s)ds1zt=N

]]
(5.27)

with Et,x as defined in the beginning of Section 4.
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We denote by E ′
N the expectation with respect to the time-backward process, z′

s , s ∈ [0, T2],
which starts at time 0 from N and is a simple random walk with additional jump intensity
a(±N, t − s) for the jump ±(N − 1) → ±N at time s. We then have

π(N, t) = E ′
N

[
π

(
z′
T2

, t − T2
)

exp

{
−

∫ T2

0
d
(
z′
s , t − s

)
ds

}]

≥ e−εjE ′
N

[
π

(
z′
T2

, t − T2
)

exp

{
−

∫ T2−1

1
d
(
z′
s , t − s

)
ds

}]

≥ e−εjE ′
N

[
π

(
z′
T2

, t − T2
)
1z′

1=N−2 exp

{
−

∫ T2−1

1
d
(
z′
s , t − s

)
ds

}]
(5.28)

≥ e−εjα
∑

|x|≤N−2

π(x, t − T2)α
′P0

N−2

[
xT2−2 = x, sup

s∈[0,T2−2]
|xs | < N − 1

]

+ e−εjα
∑

σ=±,x∈Iσ

π(x, t − T2)α
′′P0

N−2

[
xT2−2 = σ(N − 2), sup

s∈[0,T2−2]
|xs | < N − 1

]
,

where P0
x is the law of the random walk xs with no extra jumps (just a simple random walk on

�N starting at x) and

α = P ′
N

[
z′

1 = N − 2
]
> 0, α′ = min|x|≤N−2

P0
N [xT2−1 = x|xT2−2 = x] > 0,

α′′ = min
σ∈{−1,1} min

x∈{N−1,N}P
′
N

[
z′
T2

= σx|z′
T2−1 = σ(N − 2)

]
> 0.

We thus need to bound from below the probability of the event {xT2−2 = x, |xs | ≤ N − 2, s ∈
[0, T2 − 2]} uniformly in |x| ≤ N − 2. The basic idea is to reduce to a single time estimate;
indeed, the condition |xs | ≤ N − 2, s ∈ [0, T2 − 2] can be dropped provided we study the process
on the whole Z and take as initial condition the antisymmetric datum, which is obtained by
assigning a weight ±1 to the images of x under reflections around ±(N − 1). The details are
given in the Appendix. To have control of the plus and minus contributions, it is convenient to
reduce to small time intervals; moreover, the analysis will distinguish the case where x is “close”
to ±N and when it is not. Closeness here means that N − |x| ≤ N/100 (the choice 1/100 is just
for the sake of concreteness, any “small” number would work as well).

Let us now be more specific. We split T2 − 2 = mτε−2, m an integer and τ > 0 small enough,
and write

P0
N−2

[
xmε−2τ = x; sup

s∈[0,T2−2]
|xs | < N − 1

]

≥ P0
N−2

[
m−1⋂
i=1

{
sup

s∈[i−1,i]ε−2τ

|xs | < N − 1; |xiε−2τ | ≤ N/100
}

∩
{

sup
s∈[m−1,m]ε−2τ

|xs | < N − 1;xmε−2τ = x
}]

.
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In the Appendix, we shall prove that for τ small enough there is c so that for all ε (N = ε−1), the
following bounds hold:

P0
N−2

[
|xε−2τ | ≤ N/100; sup

s∈[0,ε−2τ ]
|xs | < N − 1

]
≥ cε, (5.29)

inf|x|≤N/100
P0

x

[
|xε−2τ | ≤ N/100; sup

s∈[0,ε−2τ ]
|xs | < N − 1

]
≥ c, (5.30)

inf|x|≤N/100
inf

|x′|≤N99/100
P0

x

[
xε−2τ = x′; sup

s∈[0,ε−2τ ]
|xs | < N − 1

]
≥ cε, (5.31)

inf|x|≤N/100
inf

N99/100≤|x′|≤N−2
P0

x

[
xε−2τ = x′; sup

s∈[0,ε−2τ ]
|xs | < N − 1

]
≥ cε2. (5.32)

The above bounds together with (5.28) prove (5.6). �

6. Proof of (5.21)

For any (z, η), we define the configurations η(1) and η(2) in {0,1}�N as follows: If z �= ∅, then
η(1)(x) = η(2)(x) = η(x) for any x ∈ �N \ z, and η(1)(z) = 1, η(2)(z) = 0. If z = ∅, then η(1) =
η(2) = η.

If (zt , ηt )t≥0 is the process defined in Section 2, we can see that (η
(2)
t )t≥0 has the law of the

process introduced in [3] that we are here calling DPTV for simplicity (as well as (η
(1)
t )t≥0,

though such a property will not be used in the following). Details can be found in [6].
For any x ∈ �N , we introduce the function Ax(η), η ∈ {0,1}�N , by setting

Ax(η) :=
∑
y

pT1−T0(x, y)η(y), η ∈ {0,1}�N . (6.1)

Then, recalling that G has been defined in (5.19) and writing τ := t − T1, the left-hand side of
(5.21) is equal to

Pz0,η0

[
zτ �=∅, inf

x
Ax

(
η(2)

τ

) ≤ δ∗] ≤ Ez0,η0

[
1zt−T2 �=∅Pzt−T2 ,ηt−T2

[
inf
x

Ax

(
η(2)

τ

) ≤ δ∗]]
which is bounded from above by

P̃z0 [z̃t−T2 �=∅] sup
η∈{0,1}�N

Pη

[
inf
x

Ax(ηT2−T1) < δ∗],
where Pη is the law of the DPTV process starting from η at time 0. We thus need to prove that

sup
η∈{0,1}�N

Pη

[
inf
x

Ax(ηT2−T1) < δ∗] ≤ cnε
n.
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Since the evolution preserves the coordinate-wise order in {0,1}�N (see [4]) and infx Ax(η) is a
non-decreasing function of η, it suffices to show that

P0

[
inf
x

Ax(ηT2−T1) < δ∗] ≤ cnε
n, (6.2)

with 0 the configuration with η(x) = 0 for all x.
In [4], it is proved that there is τ ∗ > 0 (independent of N ) so that if t ∈ [N2, τ ∗N2 logN ] then

for any n there is cn so that

P0

[
inf
x

∣∣Ax(ηt ) − Ax

(
γ (·, t))∣∣ ≥ ε1/4

]
≤ cnε

n, (6.3)

where γ (y, t) = ρ(εy, ε2t) and ρ(r, t), r ∈ [−1,1], t ≥ 0, is the solution of the hydrodynamic
equation for the DPTV system starting from ρ(r,0) ≡ 0. In [5], it is proved that

lim
t→∞ sup

|r|≤1

∣∣ρ(r, t) − ρst(r)
∣∣ = 0 (6.4)

and that ρst(r) is an increasing function (linear with positive slope) with ρst(−1) > 0. Thus, there
is κ > 0 independent of N so that for all N large enough

P0

[
inf
x

Ax(ηs) ≥ ρst(−1)

2

]
≥ 1 − cnε

n,
κ

2
N2 ≤ s ≤ κN2 (6.5)

which implies (6.2), provided δ∗ < ρst(−1)/2 and T2 = κN2.

Appendix

We now prove the bounds (5.29)–(5.32). The key point is the identity below for the transition
probabilities for the simple random walk in an interval, absorbed at the boundaries. (The proof
follows the same argument as that given for the Brownian motion case; see, e.g., Proposition 8.10
in Chapter 2 of [8].) Let L = N − 1 ≥ 2,

P0
x

[
xt = y; |xs | < L,∀s ∈ [

0, ε−2τ
]]

(A.1)
=

∑
k∈Z

[
pt(4kL + y − x) − pt (4kL − 2L − y − x)

]
,

where x and y in (A.1) are in [−L + 1,L − 1], and pt (z) is the probability for a simple random
walk on Z starting from 0 to be at z at time t , for z ∈ Z.

Writing z = L − y and w = L − x, rearranging the sum, and using the symmetry of pt (·), we
rewrite (A.1) as

P0
x

[
xt = y; |xs | < L,∀s ∈ [

0, ε−2τ
]]

= pt (z − w) − pt(z + w) +
∞∑

k=1

([
pt (4kL − z + w) − pt (4kL − z − w)

]
(A.2)

− [
pt(4kL + z + w) − pt(4kL + z − w)

])
.
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To prove (5.29) (where x = N − 2), we take w = 1 in (A.2) and get (recall L = N − 1):

P0
N−2

[
xt = L − z; |xs | < N − 1,∀s ∈ [0, t]]

≥ pt(z − 1) − pt(z + 1)
(A.3)

−
∑

1≤k≤ε−b

∑
σ=±1

∣∣pt (4kL + σz − 1) − pt (4kL + σz + 1)
∣∣

− 2
∑

|u|≥Nε−b/2

pt(u),

b > 0 a small constant.
Given b and τ positive constants (independent of ε), since t = τε−2 there is c > 0 so that for

all ε small enough (and, say, all τ ∈ (0,1])∑
|u|≥Nε−b/2

pt(u) ≤ e−cε−2b

, (A.4)

by simple tail estimate for the random walk on Z.
We prove that pt(z − 1) − pt(z + 1) is bounded from below proportionally to ε2, so that the

last sum in (A.3) will be negligible with respect to the first. The other terms on the right-hand
side of (A.3) are bounded in the following proposition, and using the smallness of τ we see that
their sum over 1 ≤ k ≤ ε−b is a small fraction of the first term on the right-hand side of (A.3),
from which (5.29) will follow.

Proposition A.1. Recalling that N ≡ ε−1, t ≡ ε−2τ , there are positive constants c, C and b

such that for every τ , the following holds for all ε small enough:

• When N/2 < y < 2N ,

pt(y) − pt(y + 2) ≥ ε2

√
2πτ

e−(εy)2/2τ 1

4τ
(1 − cε). (A.5)

• When N/2 < y < Nε−b ,

pt(y) − pt(y + 2) ≤ ε2

√
2πτ

e−(εy)2/2τ 8εy

τ
(1 + cε). (A.6)

Proof. We have

pt(y) = e−t
∑
n

∗(1

2

)n
tn

n!
(

n

m

)
, y = 2m − n,

where
∑∗

n means that n runs over either the odd or the even integers of Z according to whether y

is odd or, respectively, even. n is the total number of jumps, m the number of jumps to the right
so that m − (n − m) = y.



Extinction time 1841

We start by proving (A.5). For every pair y and y′ := y + 2, let m and m′ be the number of the
corresponding jumps to the right, so that m′ = m + 1. Then(

n

m

)
−

(
n

m′
)

=
(

n

m

)(
1 − n − m

m + 1

)
=

(
n

m

)
y + 1

m + 1
. (A.7)

We bound m = (n + y)/2 ≤ t , which is valid when n ≤ 2t − 2N . Thus,

pt (y) − pt(y + 2) ≥ N

2(t + 1)
e−t

∑
n≤2t−2N

(
1

2

)n
tn

n!
(

n

m

)

≥ N

4t
e−t

[∑
n≥1

(
1

2

)n
tn

n!
(

n

m

)
−

∑
n>2t−2N

(
1

2

)n
tn

n!
(

n

m

)]

and (A.5) then follows from the local limit theorem ([9], page 58, Theorem 2.5.6), after observing
that the sum over n > 2t − 2N is exponentially small in t .

To prove (A.6), we proceed similarly. Since we want an upper bound, we write m + 1 ≥ n/2,
getting

pt (y) − pt(y + 2) ≤ y + 1

t/4
e−t

∑
n≥t/2

(
1

2

)n
tn

n!
(

n

m

)
.

As before, (A.6) is again a consequence of the local limit theorem, and the large deviation esti-
mate on the number of jumps for the set n < t/2. �

Proof of (5.29). By (A.3) and (A.4), using the above proposition,

P0
N−2

[
xt = y; |xs | < L, for all s ∈ [0, t]]

≥ ε2

√
2πτ

e−(εz)2/2τ 1

4τ
(1 − cε)

− 2
∑

1≤k≤ε−b

ε2

√
2πτ

e−([4k(1−ε)−εz−ε])2/2τ 8ε(4k + 2)

τ
(1 + cε)

− 2e−cε−2b

, where z = N − 1 − y.

If τ > 0 is sufficiently small, then for all ε small enough

P0
N−2

[
xt = y; |xs | < L, for all s ∈ [0, t]] ≥ ε2

√
2πτ

e−(εz)2/2τ 1

8τ

and (5.29) is proved. �

To prove (5.30) and (5.31), we use again (A.1) and bound

P0
x

[
xt = y; sup

s∈[0,ε−2τ ]
|xs | < L

]
≥ pt (y − x) −

∑
n∈Z,n�=0

pt (yn − x) −
∑
n∈Z

pt

(
y′
n − x

)
, (A.8)
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where yn = y + 4nL and y′
n = −y − 2L + 4nL, which we may rewrite as

P0
x

[
xt = y; sup

s∈[0,ε−2τ ]
|xs | < L

]
≥ pt (ỹ0 − x) −

∑
n∈Z,n�=0

pt (ỹn − x), (A.9)

where ỹ0 = y and the points ỹn stay at distance at least aN from each other. As before, we then
may bound from below the right-hand side by

pt (y − x) −
∑

1≤|n|≤Nε−b

pt (ỹn − x) −
∑

|z|≥Nε−b

pt (z)

and (5.30) and (5.31) follow using the local limit theorem and large deviations as before.

Proof of (5.32). We use the equality

P0
x

[
xε−2τ = x′; sup

s∈[0,ε−2τ ]
|xs | < L

]
=P0

x′
[
xε−2τ = x; sup

s∈[0,ε−2τ ]
|xs | < N − 1

]
(A.10)

recalling that |x| ≤ N/100 and N99/100 ≤ |x′| ≤ N − 2; we thus need to bound from below the
right-hand side of (A.10) by cε2 with c > 0 independent of x and x′ when they vary in the above
sets.

We thus use (A.2) with x → x′ and y → x, so that on the right-hand side we must read
z = L − x and w = L − x′. Observe that N − 1 − N

100 ≤ z ≤ N − 1 + N/100 and w ∈ [1, N
100 −

1] ∪ [2N − 1 − N
100 ,2N − 3]. To have the same structure as in (A.3), we write

pt (z − w) − pt(z + w) =
w∑

i=1

[
pt(z − yi − 1) − pt(z − yi + 1)

]
,

where yi = w+(2i−1),1 ≤ i ≤ w with the analogous decomposition for pt (z
′−w)−pt(z

′+w)

with z′ = 4kL ± z. Then

P0
x′

[
xt = x; |xs | < L, for all s ∈ [

0, ε−2τ
]]

≥
w∑

i=1

([
pt(z − yi − 1) − pt(z − yi + 1)

]
(A.11)

−
∑

1≤k≤Nε−b

∑
σ=±1

∣∣pt

(
4kL − σ(z − y) − 1

) − pt

(
4kL − σ(z − y) + 1

)∣∣

− 2
∑

|u|≥Nε−b/2

pt(u)

)

and for each yi we have the same bound as before, hence (5.32). �
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