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In this paper, we consider a family of interacting particle systems on [−N,N] that arises as a natural
model for current reservoirs and Fick’s law. We study the exponential rate of convergence to the stationary
measure, which we prove to be of the order N−2.
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1. Introduction

In this paper, we study a family of interacting particle systems whose state space is {0,1}[−N,N ].
For each N , the dynamics is a Markov process with generator L = L0 + Lb , L0 the generator of
the stirring process (see (2.1) below), Lb the generator of a birth-death process whose events are
localized in a neighborhood of the end-points; see (3.1).

In particular, we focus on the case when around N there are only births while around −N

there are only deaths. The system is then “unbalanced” and in the stationary measure μst
N there is

a non-zero steady current of particles flowing from right to left. This system is designed to model
the Fick’s law which relates the current to the density gradient.

In statistical mechanics, non-equilibrium is not as well understood as equilibrium, hence
the interest, from a physical viewpoint, to look at systems which are stationary yet in non-
equilibrium: in our case, the stationary process is in fact non-reversible and the stationary mea-
sure μst

N not Gibbsian.
There is a huge literature on stationary non-equilibrium measures, in particular, on their

large deviations, as they are related to “out of equilibrium thermodynamics” (see, for instance,
[1–3,8]). Our goal is to study the exponential rate at which the dynamics converges to the sta-
tionary measure, and how it depends on the system size. Spectral gaps have been well studied
in the reversible or Gibbsian set-up, both for stirring and for more general interacting particle
systems (see, for instance, [10]). The techniques used in those situations, however, do not seem
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to apply to our non-equilibrium model. We shall rather rely on stochastic inequalities and cou-
pling methods, thus reducing the problem to that of bounding the extinction time of the set of
discrepancies between two coupled evolutions. The case of a single discrepancy can be regarded
as an environment dependent random walk with death rate which also depends on the environ-
ment. Its extinction time has been studied in [7] and, as we shall see here, is closely related to
the exponential rate of convergence in our model.

The main part of this paper refers to the case of “current reservoirs” (where Lb should
have a factor 1/N ). Much simpler is the case when Lb fixes the different densities at the
boundaries, whose analysis is carried out sketchily in the next section simply as an introduc-
tion.

2. Density reservoirs

We consider in this section the Markov process on {0,1}[−N,N ] with generator L = L0 + L′,
where denoting by η the elements of {0,1}[−N,N ],

L0f (η) := 1

2

N−1∑
x=−N

[
f

(
η(x,x+1)

) − f (η)
]

(2.1)

with η(x,x+1)(x) = η(x + 1), η(x,x+1)(x + 1) = η(x) and η(x,x+1)(·) = η(·) elsewhere

L′f (η) = ρ+
[
f

(
η(+,N)

) − f (η)
] + (1 − ρ+)

[
f

(
η(−,N)

) − f (η)
]

+ ρ−
[
f

(
η(+,−N)

) − f (η)
] + (1 − ρ−)

[
f

(
η(−,−N)

) − f (η)
]
,

where 1 ≥ ρ+ > ρ− ≥ 0 and η+,x(x) = 1, η+,x(y) = η(y), y �= x; analogously, η−,x(x) = 0,
η−,x(y) = η(y), y �= x.

The process corresponding to L′ alone leaves unchanged the occupations at |x| < N while
the equilibrium probabilities of occupation at ±N are equal to ρ±. Since ρ+ > ρ−, this cre-
ates a density gradient and the full process with generator L = L0 + L′ describes the parti-
cles flux determined by the density gradient. The process is uniformly Döblin, in particular,
there is a unique stationary measure μst

N to which the process converges exponentially fast.
The averages μst

N [η(x)] describe a linear density profile in agreement with Fick’s law. Fluctu-
ations in the stationary regime are well characterized ([11], and the large deviations as well,
[8]).

Denote by μN the initial distribution and by μNSt the distribution at time t (i.e., the law
at time t of the process with generator L starting from μN ). Then, since the process is uni-
formly Döblin, for any positive integer N there are strictly positive constants cN and bN so
that ∥∥μNSt − μst

N

∥∥ ≤ cNe−bN t for any μN and t > 0, (2.2)
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where for any signed measure λ on {0,1}[−N,N ]

‖λ‖ =
∑
η

∣∣λ(η)
∣∣. (2.3)

We now prove the following.

Theorem 2.1. There are c and b > 0 independent of N so that for any initial measure μN and
all t > 0 ∥∥μNSt − μst

N

∥∥ ≤ cNe−bN−2t . (2.4)

Proof. Let

XN = {
η = (

η(1), η(2)
) ∈ ({0,1} × {0,1})[−N,N ] :η �=(x) := η(1)(x) − η(2)(x) ≥ 0,∀x

}
, (2.5)

and, for f :XN →R,

L0f (η) := 1

2

N−1∑
x=−N

[
f

(
η(x,x+1)

) − f (η)
]
,

L′f (η) = ρ+
[
f

(
η(+,N)

) − f (η)
] + (1 − ρ+)

[
f

(
η(−,N)

) − f (η)
]

+ ρ−
[
f

(
η(+,−N)

) − f (η)
] + (1 − ρ−)

[
f

(
η(−,−N)

) − f (η)
]
,

where η(+,x)(x) = (1,1), η(−,x)(x) = (0,0), and coincide with η elsewhere, x = ±N .
It is easy to see that L0 and L′ define Markov generators on XN . Moreover, when acting on

functions that depend on only one of the two entries, η(1) or η(2), of η, we see that L0 + L′
coincide with L, and so it defines a coupling between the processes with generator L starting
from two comparable configurations η(1) and η(2) (η(1)(x) ≥ η(2)(x) for all x), showing that the
L-evolution is attractive in the sense of [9] (i.e., preserves order). In particular, we may take
η(1) ≡ 1 and η(2) ≡ 0 the configurations that are identically 1 and, respectively, 0. Moreover,
L0 leaves unchanged the number of discrepancies which instead may decrease under the action
of L′. Write P for the law of the process starting from η(1) ≡ 1 and η(2) ≡ 0 and call π(x, t) =
P[η�=(x, t) = 1]. We then have, recalling that π(x,0) = 1 for all x,

π(x, t) = 1 −
∫ t

0

(
ps(x,N)π(N, t − s) + ps(x,−N)π(−N, t − s)

)
ds, (2.6)

where ps(x, y) is the probability under the stirring process (with only one particle) of going
from x to y in a time s; this is the same as the probability of a simple random walk whose
jumps outside [−N,N ] are suppressed. Indeed, (2.6) follows at once from the integration by
parts formula for the semigroup St generated by L0 + L′, with S0

t the semigroup generated by
L0, and recalling that the effect of L′ is to kill discrepancies at N and −N with rate 1:

St (f ) = S0
t (f ) +

∫ t

0
St−s

(
L′S0

s f
)

ds,
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where f :XN →R. From (2.6), we see that

π(x, t) = Ex

[
e−T ∗(t)],

where Ex is the expectation of the process with transition probabilities ps(x, y) and

T ∗(t) =
∫ t

0
(1xs=N + 1xs=−N)ds

is the time spent at {−N,N} during [0, t]. Indeed,

Ex

[
e−T ∗(t)] =

∞∑
n=0

(−1)n

n!
∫ t

0
· · ·

∫ t

0
ds1 · · · dsnEx

[
n∏

i=1

{1xsi
=N + 1xsi

=−N }
]

which is the same series which is obtained by iterating (2.6).
We shall prove that

Ex

[
e−T ∗(t)] ≤ ce−bN−2t (2.7)

which will then imply

N∑
x=−N

P
[
η�=(x, t) = 1

] ≤ Nce−bN−2t

and so (2.4), because μNSt and μst
N are squeezed in between the laws of the marginals of the

coupled process.
Proof of (2.7). By an iterative argument, it is enough to show that

sup
x∈[−N,N ]

Ex

[
e−τ

] ≤ p < 1, τ := T ∗(N2).
But

inf
x∈[−N,N ]Px[τ ≥ 1] ≥ δ > 0 (2.8)

as the probability of reaching {−N,N} by time N2 − 1 is bounded from below uniformly in the
starting point and the probability of not moving for a unit time interval is also bounded away
from 0. By (2.8),

Ex

[
e−τ

] = Ex

[
e−τ ; τ < 1

] + Ex

[
e−τ ; τ ≥ 1

]
≤ 1 − Px[τ ≥ 1] + Px[τ ≥ 1]e−1 ≤ 1 − δ

(
1 − e−1). �

3. Main result

In this paper, we study the process with generator L = L0 + Lb , L0 as in (2.1), Lb = Lb,+ +
Lb,− describes births and deaths near the boundaries. Namely, denoting by η the elements of
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{0,1}[−N,N ] and by f functions on {0,1}[−N,N ],

Lb,±f (η) := j

2N

∑
x∈I±

D±η(x)
[
f

(
η(x)

) − f (η)
]
,

D+η(x) = (
1 − η(x)

)
η(x + 1) · · ·η(N), (3.1)

D−η(x) = η(x)
(
1 − η(x − 1)

) · · · (1 − η(−N)
)
,

where j > 0 is a parameter of the model, I+ = {N − 1,N} and I− = {−N,−N + 1} (in [4–6]
I± consist of K sites, here we restrict to K = 2 only for notational simplicity). Thus Lb,+ adds
a particle at rate j

2N
in the last empty site (if any) in I+ while at the same rate Lb,− takes out the

first particle (if any) in I−.
Motivations for this model can be found in previous papers, [4–6], where we have studied the

hydrodynamic behavior of the system and the profile of the stationary measure as N → ∞. The
analysis in the above papers does not say what happens for the process after the hydrodynamical
regime, that is, at times longer than N2. This is the aim of the current paper where we study the
time scale for reaching the stationary regime.

We use the same notation as in the previous section with St = eLt and μNSt , t ≥ 0, the law at
time t of the process with generator L starting from μN :

μNSt [f ] = μN

[
eLtf

] = μN

[
St (f )

]
. (3.2)

If j = 0, that is, L = L0 the sets {∑η(x) = M}, 0 ≤ M ≤ 2N + 1, are invariant so that
the process is not even ergodic. However, the presence of Lb, even if “small” due to the rate
j/2N , changes drastically the long time behavior of the system and it is therefore crucial in the
computation of the spectral gap. Our process, like the one in the previous section, is uniformly
Döblin; there is therefore a unique stationary measure μst

N and (2.2) holds in the present context
as well. We prove the analogue of Theorem 2.1.

Theorem 3.1. There are c and b > 0 independent of N so that

∥∥μNSt − μst
N

∥∥ ≤ cNe−bN−2t , for all initial measures μN and all t > 0.

Theorem 3.1 is the main result in this paper and it will be proved in the next sections.
The rate N−2 in the exponent in (3.3) cannot be improved, as can be easily seen by bound-

ing from below the probability that an initially existing discrepancy does not disappear by the
time N2.

The result is in several respects surprising: the spectral gap in fact scales as N−2 just like in the
stirring process (i.e., with j = 0) restricted to any of the invariant subspaces {η :

∑
η(x) = M}.

The result says that in a time of the same order the full process manages to equilibrate among
all the above subsets according to μst

N ; also, the time for this to happen scales in the same way
as for the process of the previous section, where however the birth-death events are not scaled
down with N as in Theorem 3.1.
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We do not have sharp information on μst
N . In [6], we have proved that the set M of all prob-

ability measures on {0,1}[−N,N ] shrinks after a time of order N2 to a smaller set MN but we
have no information on the way it further shrinks at later times. All measures in MN are close
to a product measure γN , meaning that the expectation of products η(x1) · · ·η(xn) are close (the
accuracy increasing with N ) to those of γN , for all n-tuples of distinct sites xi ; n is given, but it
can be taken larger and larger as N increases. We also know that the expectations γN [η(x)] are
close to ρst(x/N), where ρst(r), r ∈ [−1,1], is the stationary solution of the limit hydrodynamic
equation; it is an increasing linear function and ρst(−1) = 1 − ρst(1) > 0.

We thus know that μst
N is close (in the above sense) to the product measure γN , but that is all,

which does not seem detailed enough to apply the usual techniques for the investigation of the
spectral gap using equilibrium estimates. We proceed differently, and our proof of Theorem 3.1
follows along the lines of the much simpler Theorem 2.1. It relies on a careful analysis of the
time evolution, exploiting stochastic inequalities, as in the previous section. We thus consider a
coupled process on XN (see (2.5)), which again starts from η(1)(x,0) = 1 and η(2)(x,0) = 0 for
all x ∈ [−N,N ]. The process is defined in such a way that the marginal distributions of η(1) and
η(2) have the law of process with generator L. By the definition of XN , η(1) ≥ η(2) at all times
(order is preserved) and the proof of Theorem 3.1 follows from an estimate on the extinction
time of the “discrepancy configuration” η�= = η(1) − η(2). We shall in fact prove that there are c

and b > 0 independent of N so that

N∑
x=−N

P
[
η�=(x, t) = 1

] ≤ cNe−bN−2t . (3.3)

4. The coupled process

Throughout the sequel, we shall use the following.

Notation. ε := N−1; for η = (η(1), η(2)) ∈ XN as defined in (2.5), and x ∈ [−N,N ],

η�=(x) = η(1)(x) − η(2)(x),

η1(x) = η(1)(x)η(2)(x), (4.1)

η0(x) = (
1 − η(1)(x)

)(
1 − η(2)(x)

)
,

η �=, η1, η0 are all in {0,1}[−N,N ] and η �= + η1 + η0 ≡ 1. Thus, (4.1) establishes a one-to-one
correspondence between XN and {�=,1,0}[−N,N ]. By an abuse of notation, we shall denote again
by η the elements of {�=,1,0}[−N,N ], thinking of η �=, η1, η0 as functions of η. We may then say
that a �=, 1 or 0-particle is at x according to the value of η(x).

Definition. Call L′
0 the stirring generator acting on functions on XN (defined as in (2.1) with η

replaced by η) and let Lc = L′
0 + j

2N
L1, L1 = Lr + Ll , be the generator acting on functions on
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XN , where Lrf is defined as

Lrf (η) =
N∑

i=N−1

D(η, i)
[
f

(
η �=,1,i

) − f (η)
]

(4.2)

+ A(η,N)
[
f

(
η �=,1,N;0,�=,N−1) − f (η)

] +
N∑

i=N−1

B(η, i)
[
f

(
η0,1,i

) − f (η)
]

and where ηa,b,i changes from a to b the value of η at site i if η(i) = a, and ηa,b,i = η otherwise,

and η �=,1,N;0,�=,N−1 = (η �=,1,N )0,�=,N−1,

D(η,N) = η �=(N)
[
1 − η0(N − 1)

]
, D(η,N − 1) = η �=(N − 1)η1(N),

A(η,N) = η �=(N)η0(N − 1),

B(η,N) = η0(N), B(η,N − 1) = η0(N − 1)η1(N).

Thus, Lr describes three types of events all occurring in I+:

• D-events: a �=-particle becomes a 1-particle.
• A events: a �=-particle becomes a 1-particle and simultaneously a 0-particle becomes a �=-

particle.
• B-events: a 0-particle becomes a 1-particle.

Ll is defined analogously by changing I+ into I− and η0 with η1. One can easily check that

Lcf = Lg, whenever f (η) = g
(
η(i)

)
, i = 1,2, (4.3)

L the generator in Section 3. Thus, the process generated by Lc is a coupling of two processes
both with generator L and L preserves order (this is just the standard basic coupling, as in [9];
see also Proposition 3.1 of [6]).

5. Graphical construction

Following the so-called Harris graphical construction, we realize the coupled process in a prob-
ability space (
,F,P ) where several independent Poisson processes are defined.

Definition. The probability space (
,F,P ). The elements ω ∈ 
 have the form

ω = (
t (x), x ∈ [−N,N − 1]; t (A,±N)t(D,±N); t (D,±(N−1)); t (B,±N); t (B,±(N−1))

)
,

where each entry is a sequence in R+ whose elements are interpreted as times. Under P , the
entries are independent Poisson processes: each one of the t (x) has intensity 1/2, and all the
others have each intensity εj/2.

With probability 1, all times are different from each other and there are finitely many events
in a compact. For any such ω ∈ 
, we construct piecewise constant functions η1(x, t;ω),
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η0(x, t;ω), η�=(x, t;ω), as follows. The jump times are a subset of the events in the above Pois-
son processes, more specifically at the times t = t

(x)
n we exchange the content of the sites x and

x + 1 (i.e., we do a stirring at (x, x + 1)); the other jumps are:

• At the times t = t
(A,±N)
n , the configuration is updated only if η�=(±N, t−) = 1, η0(±(N −

1), t−) = 1 and the new configuration has η�=(±(N − 1), t+) = 1 and η1(±N, t+) = 1; the
values at other sites remain unchanged.

• At the times t = t
(D,±N)
n , the configuration is updated only if η�=(±N, t−) = 1 and

η0(±(N − 1), t−) = 0, the new configuration has η1(±N, t+) = 1; the values at other sites
unchanged.

• At the times t = t
(D,±(N−1))
n , the configuration is updated only if η�=(±(N − 1), t−) = 1

and η1(±N, t−) = 1; the new configuration has η1(±(N − 1), t+) = 1; the values at other
sites unchanged.

• At the times t = t
(B,±N)
n , the configuration is updated only if η0(±N, t−) = 1; the new

configuration has η1(±N, t+) = 1; the values at other sites unchanged.
• At the times t = t

(B,±(N−1))
n , the configuration is updated only if η1(N, t−) = 1 and

η0(±(N − 1), t−) = 1; the new configuration has η1(±(N − 1), t+) = 1; the values at other
sites unchanged.

We take initially η �=(x,0) = 1 for all x, then the variables η(x, t;ω) defined as above on
(
,P ) have the law of the coupled process defined in Section 4.

Definition. Labeling the discrepancies. By realizing the process in the space (
,F,P ), we can
actually follow the discrepancies in time. Indeed consider the discrepancy initially at a site z ∈
[−N,N ]. Then the discrepancy will move following the marks of ω. Namely, it moves at the
stirring times, that is, it jumps from x to x +1 (or from x +1 to x) at the times t ∈ t (x). Moreover,
it jumps from N to N − 1 at the times in t (A,N) (if η0(N − 1) = 1) and analogously from −N to
−N + 1 at the times in t (A,−N) (if η1(−N + 1) = 1). Finally, we say that the discrepancy dies
(and goes to the state ∅) at the times t (D,±N), t (D,±(N−1)) (if the conditions for the event are
satisfied, as explained in the previous paragraphs).

We thus label the initial discrepancies by assigning with uniform probability a label in
{1, . . . ,2N + 1} to each site in [−N,N ] and call (z1, . . . , z2N+1) the sites corresponding to
the labels 1, . . . ,2N + 1. This is done independently of ω and by an abuse of notation we still
denote by P the joint law of ω and the labeling. Since initially all sites are occupied by dis-
crepancies, we may interpret zi as the position at time 0 of the discrepancy with label i. In
particular at time 0, the probability that zi = x is equal to 1/(2N + 1). Given ω ∈ 
, we follow
the motion of the labeled discrepancies as described above and define accordingly the variables
zi(t,ω) which take values in {[−N,N ] ∪∅}. Thus, the set Z(t,ω) of all zi(t,ω) �=∅ is equal to
{x :η �=(x, t;ω) = 1}, so that

P

[∑
x

η �=(x, t) > 0

]
= P

[
there is i : zi(t,ω) �=∅

] ≤
∑

i

P
[
zi(t,ω) �=∅

]
(5.1)= (2N + 1)P

[
z1(t,ω) �=∅

]
,

the last equality by symmetry.
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Obviously, P [z1(t,ω) �= ∅] does not depend on the labels of the other z-particles so that
we may and shall describe the system in terms of a random walk zt = z1(t,ω) in a random
environment ηt ∈ {�=,0,1}[−N,N ]\zt when zt �= ∅ (i.e., it is alive); when zt = ∅ then ηt ∈ {�=,

0,1}[−N,N ], but since we want to study P [z1(t,ω) �=∅] what happens after the death of z is not
relevant.

We have reduced the problem to the analysis of the extinction time of a random walk in a
random environment: the problem looks now very similar to the one considered in [7], the only
difference being that the environment has a more complex structure with three rather than two
states per site. But the procedure is essentially the same as we briefly sketch in the sequel.

6. The auxiliary random walk process

Once the initial condition (z, η∗) has been fixed, we can consider an auxiliary time dependent
Markov process (z̃t ) as in [7], whose extinction time has the same law as that of the true process
(z1(t)) of the previous section. The transition rates for z̃t are given by the conditional expectation
of the transition rates of (z1(·)) conditioned on z1(t). Thus, they depend on the law of the full
process, and hence on the initial datum (z, η∗). This time dependent generator Lt is given in (6.3)
below, and satisfies

Ẽz

[
Lt f (z̃t )

] = Ez,η∗
[
Lφ

(
z1(t), ηt

)] = d

dt
Ez,η∗

[
φ
(
z1(t), ηt

)]
,

where φ(z, η) = f (z) and f :N ∪∅→ R.
Since

Lrφ = j

2N

{
1z=N

(
1 − η0(N − 1)

)[
f (∅) − f (N)

]
+ 1z=N−1η1(N)

[
f (∅) − f (N − 1)

]}
+ j

2N
1z=Nη0(N − 1)

[
f (N − 1) − f (N)

]
,

Llφ = j

2N

{
1z=−N

(
1 − η1(−N + 1)

)[
f (∅) − f (−N)

]
+ 1z=−N+1η0(−N)

[
f (∅) − f (−N + 1)

]}
+ j

2N
1z=−Nη1(−N + 1)

[
f (−N + 1) − f (−N)

]
,

we set

d(N, t) = j

2N
Ez0,η

∗
[
1 − η0(N − 1, t)|zt = N

]
,

d(N − 1, t) = j

2N
Ez0,η

∗
[
η1(N, t)|zt = N − 1

]
,
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d(−N, t) = j

2N
Ez0,η

∗
[(

1 − η1(−N + 1, t)
)|zt = −N

]
,

d(−N + 1, t) = j

2N
Ez0,η0

[
η0(−N, t)|zt = −N + 1

]
, (6.1)

a(N, t) = j

2N
Ez0,η

∗
[
η0(N − 1, t)|zt = N

]
,

a(−N, t) = j

2N
Ez0,η

∗
[
η1(−N + 1, t)|zt = −N

]
, (6.2)

and d(z, t) = 0 if |z| < N − 1. Thus, for t ≥ 0, we have

Lt f (z) = L0f (z) + d(z, t)
[
f (∅) − f (z)

] + 1z=Na(N, t)
[
f (N − 1) − f (N)

]
(6.3)

+ 1z=−Na(−N, t)
[
f (−N + 1) − f (−N)

]
.

The process z̃t is a simple random walk with extra jumps from N to N − 1 and −N to −N + 1
with time-dependent intensity a(±N, t); moreover, it has death rate d(z, t) (rate to go to ∅).
Observe that

d(z, t) ≥ j

2N
Ez0,η

∗
[
η1(N − 1, t)|zt = N

]
1z=N,

and the analysis becomes very similar to the case treated in [7]. From the same argument leading
to Theorem 1 therein, we have that for any initial configuration η∗ and z0:

P
[
z1(t) �=∅

] ≤ ce−bN−2t ,

which completes the proof.
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