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We consider a class of stochastic evolution models for particles diffusing on a lattice and interacting by 

creation-annihilation processes. The particle number at each site is unbounded. We prove that in the 

macroscopic (continuum) limit the particle density satisfies a reaction-diffusion PDE, and that micro- 

scopic fluctuations around the average are described by a generalized Omstein-Uhlenbeck process, for 

which the covariance kernel is explicitely exhibited. 
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Introduction 

In recent years considerable attention has been devoted to the derivation of reaction- 

diffusion (r.d.) equations from discrete particle models with stochastic dynamics 

[l, 2,3,7,8,11, 12, 171. Reaction-diffusion equations arise in different fields of 

science, and may describe very different phenomena, such as chemical reactions, 

population dynamics, economic processes, etc. The stochastic evolution of point 

particles with local interaction can be, in general no more than a rough caricature 

of the ‘physical’ or ‘real’ evolution. Nevertheless it appears that the collective 

behavior that is relevant in the macroscopic continuum limit (‘hydrodynamic’, 
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‘kinetic’, or other) depends only on very general features of the evolution, and the 

stochastic evolution models give actually a very good account of the physical 

phenomena. 

Perhaps the most natural models leading to r.d. equations are those in which 

particles perform independent identically distributed random walks on a lattice, 

and are subject to some local interaction producing particle creation or annihilation. 

The continuum limit in which the r.d. equation holds is obtained as the lattice 

constant F goes to 0, and the random walk is speeded up by a factor F-‘, as in the 

usual diffusive scaling, while the creation and annihilation rates are kept constant. 

Models of this type have been studied in recent years by several authors (see 

[ 1,2,3, 1 I] and references therein). In the present paper we consider essentially the 

same model as in the paper [3]. It can be described as follows. On the lattice Z 

particles perform independent random walks. The jump times are independently 

distributed with Poisson distribution of intensity em*, where E + 0 is the parameter 

that controls the macroscopic continuum limit. In addition, at each site x E Z particles 

are created and destroyed with rates q+( q(x)), q_( v,(x)), depending on the occupa- 

tion numbers v,(x). For simplicity it is assumed that the functions q+, q_ are 

nonnegative polynomials in the occupation number, such that the degree of the 

annihilation rate q- is larger than that of the creation rate q_+. A condition of this 

type is needed to ensure that the average occupation number is bounded. (For large 

particle densities annihilation will dominate over creation.) 

In the paper [3] it was proved that as F + 0 the process approximates, in a suitable 

sense, the solution of the r.d. equation 

where V’(u) is a function depending on q+, q_. In the present paper we give another 

proof of this result, and in addition we study the space-time behavior of the 

fluctuation field. The main difference with [3] is that we consider here processes 

defined on a periodic lattice Z, with E ~’ sites. We prove that the limiting fluctuation 

field is a generalized Ornstein-Uhlenbeck process, and that the covariance kernel 

is given by the solution of a linear equation with coefficients depending on the 

particle density p,(r). 

Though the process that we consider here is intuitively simple, one has to face 

the technical difficulty that there is no a priori bound on the occupation numbers 

v,(x). This gives serious trouble in dealing with fluctuations, in spite of the fact 

that the average values are bounded for all times. So the program sketched in [3], 

to push the methods developed there to obtain the fluctuation theory, is apparently 

very hard to carry out, if one looks for results valid for any finite time interval. 

In the present paper we use a new technical tool, a class of suitable correlation 

functions called the v-functions, which, roughly speaking measure the distance of 

the distribution from an independent Poisson distribution. The v-functions, together 

with an iteration scheme, have been used in [lo] for a model in which the occupation 
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numbers are bounded. We modify the iteration procedure to deal with unbounded 

occupation numbers. 

The idea consists in proving propagation of chaos in the following way. The 

evolution is decomposed into steps, each step corresponding to a time interval long 

enough for the random motion to smooth out the initial data, and at the same time 

so short that the occupation numbers T,(X) cannot grow very much, with overwhelm- 

ing probability. On such intermediate time scale we can prove that if the v-functions 

are initially small, they stay small, i.e. the distribution remains close to an indepen- 

dent Poisson distribution, provided that one throws away a ‘bad set’ at each step. 

One then gets control on the whole process by proving that the total probability of 

the ‘bad sets’ goes to 0 fast enough as F + 0. 

A similar use of the v-functions for a related class of models with no a priori 

bound is made in the paper [5]. 

For particle evolution models in which the particle number is preserved the 

nonequilibrium fluctuation theory has been carried out only in a few examples, as 

the symmetric zero range [13] and the weakly asymmetric exclusion process [lo]. 

The main ingredient is the proof of the following principle, first understood and 

proven in equilibrium situations by Brox and Rost [4]: the fluctuation fields of 

nonconserved quantities change on a time scale much faster than the conserved 

ones. The principle can hold in the ‘kinetic’-limit also for models with no conservation 

laws, as it was proved, for instance in the papers [7,8] for a bounded spin model. 

Our proof is modelled on that of [7,8], with due account with the fact that we have 

to deal with unbounded variables. The essential feature in the proof is that the 

interaction changes the occupation numbers at a very slow rate with respect to 

diffusion, which conserves the particle number, and drives the system towards local 

equilibrium. One can say that on the time scale that is relevant for the principle the 

particle number is preserved. 

In a recent paper, using different techniques, Dittrich [ 121 could prove convergence 

of the fluctuation field to the limiting O.U. process for small times and bounded 

volumes, in a particular model, the main feature of which is that only annihilation 

of particles takes place. This allows simple upper bounds on the correlation functions. 

The paper is organized as follows: in Section 2 we state our results, the proofs 

are given in Section 3 and 4. 

2. Definitions and results 

The configuration space is X, = NZ*, with Z, = Z (mod 2K + l), where Z is the set 

of the integers and K = [C’] ([ . ] d enotes integer part). A point of X, is a periodic 

sequence n = {q(x), x E Z,}, T(X) E N is the occupation number at the site x E Z,. 

The symbol 5 will denote fixed configurations, independent of E with finite support 

E = E(t) - {x: e(x) > O}. The cardinality of 6, or total particle number is denoted 

by ]51= ILL, e(x). Sometimes it is convenient to consider 5 not as a function over 
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Z, but as a collection of particles, that is, as a collection of sites XEZ, with 

multiplicity c(x) (i.e. X, is identified with Uk ((Z,)“),, where (.)s denotes sym- 

metrization). One can then speak of subsets of 5, which are again elements of X,, 

and the meaning of notation like x E 6, 5’~ 6 is clear. 

As in paper [3] an important tool in dealing with the dynamics are the polynomials 

Q(&, 7) defined by the relation 

(2.la) 

where 

Qk(n)~n(n-l)...(n-k+l), n,k~N, risk. (2.lb) 

The dynamics is defined via its generator. Given F > 0 we define the operator 

L’= c2L,+ Lc (2.2a) 

which acts on the cylinder functions g on X, as follows: 

Ldv)=tC q(x)rg(77"'"+')+g(?7x,5-')-2g(77)l, 
X 

Log(rl) =c {Qk+(rl(x))MTx’+) -drl)l 

(2.2b) 

+ Qk-(T)(x)M77X~-) -g(rl)ll, 

where k,, k_ are nonegative integers, k, < k_, and 

I 

77(Y) ifY#x,x*l, 

77 ‘@‘(y)= n(x)-1 ifY=x, 

n(x)+1 ifY=x*l, 

(2.2c) 

(2.3a) 

V*‘*(Y) = l 77(Y) if y # x, 

n(x)*1 if y=x. 
(2.3b) 

That is, our choice is q+ = Qlr+, q_ = Qk . W e could as well take a linear combination 

of Qk, k=O,..., k, (k = 0,. . , k_) for q+ (q-), the proofs will be the same, except 

for heavier notation. The evolution is defined for any initial measure. We shall prove 

that if the initial measure is suitably close to a Poisson measure, the measure that 

describes the system at a later time is also close to a Poisson measure. Observe that 

the class of Poisson measures is invariant under the dynamics with generator Lo 

(by Doob’s theorem, since L, corresponds to independent random walks). 

The path space is denoted by 

fl= B([O, a), X) (2.4a) 

and a path (or trajectory) in 0 by 

~+?L”, VEX=. (2.4b) 

For any 5, c’, /cl = /.$‘I = n, v;(.$+ 5’) set ~ZL~‘(& 5’) denotes the ‘free’ transition 

probability, corresponding to independent random walks. If rr:(x + y), x, Y E Z”, is 
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the usual single particle transition probability for the random walk, g:(<+ 5’) can 

be written as 

(2.5) 

where (. )s denotes symmetrization, more precisely average with equal weights over 

all possible choices of the one-to-one maps x-+y(x) between 5 and 5’. 

Note that for e small enough, 

n$(x+y)<24Js. (2.6) 

For any initial measure v we consider the function 

.A(51 u) = E(Q(5, rl,)), (2.7) 

where E, denotes expectation with respect to the measure on path space correspond- 

ing to the initial measure Y. In particular for an atomic initial measure Y = 6, we 

write A(51 rl). 
Given a function p : Z,++R we define the ‘centered’ polynomials (see (2.1)) 

V‘S rl; P) = c 9(5’, n)(-1)‘“‘5” n P(X). (2.8) 
F’S5 XE5\5’ 

The centering functions which we consider are solutions of the discrete integral 

equation 

PA% 8) = c S(x + y)g(y) 

(2.9) 

where g:Z,HR+ is the initial data. 

Given an initial measure v and a solution pI of (2.9), the functions 

&(5, Pt I VI = E”( V(& 771; P,)) (2.10) 

(hereafter to be called v-functions) give a measure of how far the distribution of 

7, is from the independent Poisson distribution with parameter P,. We are interested 

in the v-functions for Y = 6,, and centered around the solution p,(x; 7) of (2.9) 

with initial data g(x) = r)(x), for a ‘typical’ 77 E X,. They will be denoted by v,( 4 1 r]). 

The initial data of the limiting partial differential equation and the initial family 

of measures are related as follows. 

Definition 2.1. The initial data of the limiting (continuous) problem is a bounded 

function pO( r) E C’(W), po( r) 2 0, r E R. 

Let H(r) be a C” function with values in [0, l] with support in (-1, 1) and such 

that H(r)=1 for r~[-l+a,l-a], O<a<l. The function pf’(r)=po(r)H(c2r) 

can be extended to a periodic C*-function with period ce2. The initial family of 
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measures {pF, E > 0} is a family of probability measures on X, such that E,,(na(x)) = 

p;(x) = ~c’( sx), and, for some positive function c and any fixed k > 1, 

,;,=P_ l&i, P; lk’)I < c(kkr’k+‘)‘2’. 

In what follows p: will denote the solution of 

the evolution of the initial measure p’ associated 

by f.‘. We also write u,(<\~~) for u,(<, p: (p*). 

(2.11) 

(2.9) with initial data &, and p: 

to the Markov process generated 

Next we define the density field and the density fluctuation field. 

Definition 2.2. For #J E Y(R) (the Schwartz space of rapidly decreasing functions), 

we define for any t 2 0 the density field 

X:(4) = c c #(=)77,(x). (2.12) 
x 

We consider X:(d), t 2 0, 4 E Y(R), as a stochastic process on g([O, OO), Y’(R)) 

with the distribution induced by the process {q,, t ?=O} for initial measure pF of 

Definition 2.1. 

The fluctuation field Y:(4), t 2 0, C#I E Y(R), is the stochastic process on g([O, CO), 

Y’(R)) defined by 

K(4) =J?E ~(&X)[77,(X)--~~(77,(X))l. (2.13) 

We denote by P’ the law of the fluctuation field in g([O, CO), Y’(R)). 

Observe that if t = 0 by the law of large numbers we have 

(2.14) 

and the fluctuation for small F is known to be Gaussian with S-like correlations. 

The results of the present paper can be summarized in the following two theorems, 

which hold under the hypotheses on the initial measure & and the initial datum 

p. listed in Definition 2.1 and 2.2. 

Theorem 1. Let {p ‘, E > 0} be as in Dejinition 2.1. Then for any C#I E Y, 

lim X:(4)= dr4(r)p(r, t) 

c-0 J (2.15) 

where p (. , . ) is the solution of the following reaction-dijiision equation 

d,p = $35 - V’(P), 

p(r, 0) = PO(r), 
(2.16) 

where V’(p) = pk- - pk+. Moreover if 1;(,.,,) denotes the product of Poisson measures 

with parameters p(ex, t), x E Z, then the difSerence )(L; - uoCF.,,, tends to 0 as F + 0, in 

any metric corresponding to weak convergence on X,. 
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By (2.15) we mean that the distribution of XF( .) converges weakly in 

g( [0, CO), sP(R)) to the degenerate law with support on the right-hand side of (2.15). 

A similar statement was made in Corollary 1.3 of [3]. A simplified version of the 

proof (which corrects some infinite volume estimates of [3]), is given in [9]. 

Theorem 1 follows from Lemma 1 below. A short sketch of the proof is given at 

the end of this section. 

Our main result is the following: 

Theorem 2. The law P’ of thefluctuationfield converges weakly to the law of the mean 

zero generalized Ornstein- Uhlenbeck process with covariance kernel C&(r’, r) given 

by the solution of the equation 

a,CT,+S(r’, r) =XC&+Jr’, r)- V”(p(r, t+s))CT,+Ar’, r), 

C$(r’, r) = C,(r’, r)+ 6(r- r’)p(r, t), 

where C,(r), r) satisjies the equation 

(2.17a) 

(2.17b) 

a,C,(r’, r) =S(afC,+aSC,)-[V”(p(r, t))+ vII(p(r’, t))]C,(r’, r) 

+6(r-r’)2[k+p(r, t)“+-(k_-l)p(r, t)km] (2.18) 

with initial condition C,,( r’, r) = 0. Here v” is the derivative of V’, given in the statement 

of Theorem 1 and p is the solution of (2.16). 

The proof of Theorem 2 is given in Section 3. For the proof we need to control 

the v-functions, which is done by the following fundamental lemma. 

Lemma 1. {pf, e 0) be in Dejnition Then for T 2 and k 2, 

lim ,zupT. ,~~$VW)I (2.19) 
EGO < 

and moreover there is a constant c(T) such that 

,ssuP~Iv~(SI~~)(<~(T)F. (2.20) 
I, 

The proof of Lemma 1 is technically complicated, and will be given in Section 4. 

Proof of Theorem 1. It is not hard to prove that in our hypotheses the solution of 

the discrete equation (2.9) with initial data g =ph computed at the lattice point 

[e-‘r], p,([s-‘r]), pi) converges, as E +O, uniformly in any compact set of r ElR, 

to the unique solution of (2.16). Theorem 1 then follows from inequality (2.20) of 

Lemma 1. q 

3. Proof of Theorem 2 

In this section we assume Lemma 1 and we prove the Gaussian structure of the 

fluctuation field. 
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We follow closely the proofs given in [13] where the Holley and Stroock theory 

[ 14, 15, 161, for generalized Ornstein-Uhlenbeck processes is used. 

Theorem 2 is a consequence of the following three statements. 

Sl. The family _Y’ = { Y;(d), t 2 0, 4 E 9(R)} is tight in D([O, a), 9’(R)) and any 

limiting point has support in C”([O, Co), Y’(R)). 

S2. Any limiting point _Y of _Y’ satisjies the following ‘martingale equation’. For any 

4 E 9’(R) and any FE C,“(R), 

F( Y,(4)) - J ’ ds F’( Y,(4)) Ys(As4)- 
0 J ’ ds .“( Y~W)~Il&#d2 (3.1) 

0 

is a martingale with respect to the canonicalfiltration in C”([O, CO), 9”(R)). 

In (3.1), F’ and F” denote the jirst and the second derivative of the function F, 

while the operators A, and B, are given by 

(A,@)(r) =$fd - Vp(r, s))&(r), (3.2a) 

VQ) = k+ph+P’-k_ph~~‘, (3.2b) 

I/B,N= j‘ dr{d’(r)*p(r, s)+4(r)‘Mr, s)“*+p(r, s)“-II, (3.3) 
-CY 

and p is the solution of (2.16). 

S3. The law of -Y, (i.e., the law of the limiting process at t = 0) is Gaussian with 

covariance kernel C$(r, r’) given by (2.17b) for t = 0. 0 

Statement S3 is an imediate consequence of the properties of the initial measure 

p’. Statements Sl and S2 can be proven as follows. 

First notice that the expression 

F( Y:(4)) - J ’ ds [L’F( Y:(cb))+a,F( Yb(4))l (3.4) 
0 

is a martingale. In (3.4) L’ is the generator defined by (2.2), and a, is the derivative 

computed by taking into account only the dependence on s through the average 

values. 

We have L’F = E-*L,F+ L,F hence 

sP2L0F( Y;(4)) = E ‘1 ;v,,(x)[F( Yf(~)“~“+‘) 

+F( YJ(4)“.“-‘)-2F( YT(4)>1, (3Sa) 

Lc$‘( Y:(4)) =C {Qk,(rl,(x))[F( Y:(+)“+) - F( Y:(4))] 

+ Q~(rl.\(x))[F( Y:;(4)“‘-) - F( Y:(4))1)> (3.5b) 
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where F( Y:( 4) x,x*‘) and F( Y:(4)“‘) are computed as follows. First observe that 

F( Y:(4)“J*‘) 

+44(Ex)(%(x) - 1 -_(%(X))) 

+~(~(X+1))(7),(X~l1)+1-(~l,(X*~)))l > 

= F( y:(4))+fi F’( y:(d))[4(&(X* 1)) -+(=)I 

+W( y:(4))[4(E(x* 1)) - 44412 

+ RX&, x, s) 

where ( .) denotes averaging. Notice that 

(3.6) 

E-’ C rls(x)R;(&, x, s) 
Y I I 

c E-2E3’2~[~(E(X*l))-~(EX)]3~,(X)~ 
1 

s E3’2E c l#+x)~3~,(x) (3.7) 

and by Theorem 1 the right-hand side of (3.7) goes to zero as F + 0. 

From (3Sa) and (3.6) it follows that 

&_‘L”F( Y:(4)) 

(3.8) 

Therefore using (3.7) and the fact that 4 E P’(R), we have 

E~‘&,F( Y:(4)) = F’( Y:(4))hc &f”‘(=)%(X) 
I 

+$“( Y:(4))E 1 +‘(EX)277.~(X)+ R,(E) (3.9a) 

where 

lim R,(E) =O. 
F-O 

(3.9b) 
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Next we compute 

F( Y:(4)“,“) = F ~2 C ~(&~)[rl,(y)-(17(~))1 
,“_ x 

+~mxh(x)* l-(%(x))1 > 

= F( Y:(4)) * F’( Y:(d))fi4(=) 

+tF"(Y:(~))s~(&x)*fR:(~, x, s) (3.10a) 

where by Lemma 1, 

c Qk*(%(X))R;(% x, s) 
X I I 

s& F c 4(FX)3Qk*(T],(X)) +o. (3.10b) 
.Y 

Moreover we have that 

&F((Y:(4)) = -F’(( Y:;(4))&C ~(g~)EL~((&-*Lo+Lc;)‘l~(x)). (3.11) 

Therefore from (3.4), (3.5), (3.9), (3.10) and (3.11) we get that 

F(Y:(+))- 
i 

rdsF’(Y:(+))y;(s, $)- ‘ds:W%$))r;(s, 4)+R, (3.12) 
0 

is a martingale and 

limR,=O 9 (3.13) 
‘+O 

YT(S, 4)- y:(%“)+z:(4), (3.14) 

Z:(ti)=Ac ~(&X)rQk,(77,(X))--EL~(Qk,(rl(X))) 

- (Qk (dx)) - EL4Ok (%(X))))l, (3.15) 

YZ(S, 4)= a c ~‘(aX)*n,(x)+a c ~(&X)Z[Q~,(17,(X))+Q1~(77,(X))1. 
T Y 

(3.16) 

From Lemma 1 it follows that (cf. (3.3)) 

F_; Y;(s, 4) = dr [4’(r)*p(r, s)‘+ti(r)‘(p(r, ~)~++pp(r, s)“-)] 

= IlB,4112. (3.17) 

From the above calculations we expect that the term yi(s, 4) defined in (3.14) is 

close to ~‘,(A,,c$) (cf. (3.1) and (3.2)). The problem here is Z,:(d): this is the 

fluctuation field of a quantity which is not a density field. Using arguments introduced 

in [13] (see also in [7] and [lo]), we show that it is close to a density fluctuation 

field in the following sense. 
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Proposition 3.1. For any choice of 4 E Y(R), to such that t, > 0, the following holds: 

F2T.t: 
lim lim sup EL? [Z(4) - Y:(- V”(P:(. I)411 ds =o. (3.18) 
l--as c-0 o< t<to f 

We postpone the proof of Proposition 3.1 to the end of this section. We first prove 

that from (3.12) and (3.18) statements Sl and S2 follow easily. 

Proof of Sl. We have to prove tightness in the space g([O, m), Y’(R)). To this 

purpose, following Theorem 2.3 of [13], we observe the following. Although the 

functions F(r) = Y and F(r) = rz are not bounded, it is easy to see that relation 

(3.12) holds, i.e. the quantities 

Mf(ti) = Y:(4)- 
I 

’ yl(s, 4) h-t R;(t) (3.19) 
0 

and 

N;(4)=A4;(4)*- ‘y;(s,&ds+R;(t) 
I 0 

(3.20) 

are martingales. The functions yF(s, +), i = 1,2, are defined in (3.14) and (3.16) 

while Rr( t), i = 1, 2, are easily recovered from the calculations and go to 0 as E -+ 0. 

Then, as stated in Theorem 2.3 of [13], and proven in [18], in order to prove Sl 

we only need to prove the following relations. For any 4 E sP(R), and to> 0, 

(9 sup sup E;e( Y:(4)‘) < 03, 
F o<t<r, 

sup sup E~~(y~(t,~)2)<co, i=l,2, 
E O<,<I, 

(ii) there is some a(&,, q5, E) such that lim,,Oa(to, 4, E) = 0 and 

(3.21) 

(3.22) 

lim P” sup 1 Y;,(4) - Jx$J)l~ s(h, 4. E) = 0. (3.23) 
f-0 OS I’= 10 

Equations (3.21) and (3.22) are easy consequences of Lemma 1 and Proposition 

3.1, and (3.23) follows from the fact that the probability that there is more than one 

jump in a small time interval goes to zero faster than the length of the interval. 

(This is the main estimate in the proof of the existence of the process, cf. Notes to 

Chapter 4 of [9].) q 

Proof of S2. Once (3.18) is established the fact that any limiting point Y or Y’ 

satisfies the martingale equation (3.1) is easy, we refer to [6] for details. 0 

Proof of Proposition 3.1. This part is also standard and is similar to the corresponding 

proof in Theorem 0.4 of [13] and Theorem 4 in [7]. Therefore we only sketch the 

various steps. 
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The first step is to rewrite the fluctuation field Z: as a sum of fluctuation fields 

for the single site V-functions V,(v(x), p:(x)), defined as follows (cf. (2.8)): 

k 
Vk(rl, U)’ ; Q,(n)k’(-l)“_’ , 

I = 0 0 

The field for k = 1 cancels Y: (- V”(p: ( . ) 

A, we find 

)@), and using Proposition A.1 of Appendix 

VC(@)=ZF(4)- YF(-v”(PF( . I)41 

=Ac 4(&X) kk2 cA(P;(x>) 

X(V,(~~,(X),~:(X))-EL,(V,(~~,(X), P:(X)))) (3.24) 

where the c,‘s are polynomially bounded functions. In (3.24) the expected value 

EL,( V,(q(x), p:(x)) is a u-function with )[I = ka2. Hence, by Lemma 1, it is G’(F) 

and gives no contribution to the limit (3.18). Therefore in order to achieve the proof 

of (3.18) we have to estimate the following function A, (k, k’), k, k’E (2,. . , k-}, 

A(k k’)=& 
i. 

F27 +, 

d.s-& J 
rzr+t-, ds’ e C 4(&x) C 4(&z) 0 Y x E,Z~(V,(rl,(x), ~:(x))Vd~,+,~(z), P:+,,(z))). (3.25) 

We can write the expectation in (3.25) as 

EL*r Vk(%(X), P:(x))E:~(V,,(77,+,,(2), P:+,,(z))1 %)I. (3.26) 

Using the integration by parts formula ((A.18), in Appendix A) for the expectation 

inside (3.26), we obtain 

Jq*( VkXrl,+S,(z), PXZ))l%) 

=$ G5(z)+5’)V(5’, 77,; P6)+w&2~ ‘1 (3.27) 

where e(z) denotes by abuse of notation the configuration at the site z and y is a 

positive number less than 1. The term O(E ‘-‘) in the right-hand side of (3.27) gives 

a vanishing contribution, and, using (3.26) and (3.27) we get 

IA, -A l.‘i’+‘d& I,““” x,z ds’ 8 C +(=)4(&z) c G5(~)-)5’) 5 

X EL* ( V&?,(X), P.:(X)) V(& 77, ; PC)) + 0. (3.28) 

If k’= 15’) = k, the sum for [‘- t’(x), i.e. for the configurations 5’ which are made 

of k copies of x, is bounded by (cf. (2.6)), 

1 cL-f++r FzTtl-.! 
const. __ J E’T , J 0 

d\‘$ C ~:,(z+x)~(Fx)~(Ez) 
x.2 

1 F~T+I e’T+,-r 

s const. F- J EAT , 
d.& J 0 

ds’ & = “‘$’ . (3.29) 
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For XE 5’, observe that V~(S(X), P:) V(5’, r), ; PZ) = V(t(x) u 5’, vs ; P:) and 15(x) u 
[‘I> 2. Therefore since by Lemma 1, lEL?( Vk(n,(x), P(x)) V([‘, qF; p:))l= O(F), it 

follows 

E XE, rC(S(z) -+ S’)~(&x)~(&z)EL~(V,(77,(x), P:(X)) V(5’, rl, ; ~3) + 0. 
> . . 

Finally if 5’ = t’(x) u 4” with 0 < I,$“1 < I[‘), then 

Vk(%(X), P:) V(5’, 77% ; P:) 

k+g’(.x) 
= V(5”, 77%; P3 c chb:(x))vh(%(xL P:(x)), 

h=O 

and 

F ;z $ T:, (t(z)- S’M(=M(=)E:+( V~,(n(x), P:(X)) V(t”, 7, ; ~3) 

Performing the integration as above (cf. (3.29)) relation (3.18) follows. 0 

4. Proof of Lemma 1 

The proof of the fundamental Lemma 1 will be made in several steps. It is essentially 

based on a control of the behavior of the system for a short time T = cp, p > 0. In 

this section A’ will denote the measure on the path space 0, T is a fixed time and 

tk = kT, 0s ks[T/T]. 

The first step is a simple lemma. 

Lemma 4.1. For any choice of y E (0, p), and of the positive integers n,, p, one can 

jind a set a,= a,(-y)c 0, h&(0,)> 1 --Ed such thatfor ~={~r},30~ 0, thefollowing 

inequalities hold for E small enough: 

sup PAX; 77,&) < &-y, (4.la) 
,acl 

max sup fi(51 T,~) < E-‘~, (4.lb) 
M=n ~t[%Tl 

where p,(x; qt) is the solution of (2.9) for with initial data T,~. 

Proof. By a result of [3] we know that 

maxf,(&IpE)GC(n, T), 0~ t6 T, 
/5l=n 

so that by the Chebyshev inequality (of power m), 

h”(~,,>~~‘)<c’(rn, T)E’” 

(4.2) 
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for 5 < y and any m 2 0. Taking m > (4+p)/l and setting 

h’(d)> 1 -&p+‘, (4.3) 

whence (4.la) follows by the maximum principle for the solution of (2.9) with initial 

data v,, 

By formula (2.2) of [3], 

By the previous result the first term on the right-hand side is bounded by &P5n for 

77 E fi. For the other term we have 

ll 

t 

0 
ds F TP-7 (5+ S,W(&Q(S,, rls) 1 rlr,) 

s J 
i ds C nT-r (5+ 5,) iWL&(S~, rlc) 1 rlrr)i = R(5). 0 6 

Using again (4.2) and the Chebyshev inequality for some power N > 0, we have for 

~smallenoughh’(R([)>l)S~ a”~‘( n, N), and the result follows by taking N large 

enough and 0, = fi n {max,, lSISnoR (5) < 1). 0 

Proposition 4.1. On the same set a,, for any n G no and any 6’~ 6 = 

(1/(2/c - l))(f -a@), the following inequalities hold for E small enough: 

;“” /%(&I 71& < ES’n, 5-s ts27, (4.4) 

for all k = 0:. . . , [T/7]. 

Proof. The basic tool in the proof is the iteration formula for the u-functions ((A. 18) 

of Appendix A): 

J 
s 

+ ds’ C ~iTg-s,(t + 5,) 
0 El 

XC c/,(&(x,), P,,(x, 1 n,J)~,(&(xr 2 h)l nJ (4.5) 
x,tc, h=-k-+1 

where 5(x, h) is obtained by adding to .$ h - 1 ‘copies’ of x (actually subtracting if 

h - 1< 0). 
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We substitute for u,([,(x,, h) 1 ql) in the right-hand side of (4.5) its expression 

given by the same (4.5) and iterate the procedure N times, obtaining 

(4.6) 

where C,(s, t), RNtl(s, 5) denote the Zth integral obtained in the iteration and the 

Nth residual term. We shall prove that for any positive integer N, 

;ax IRN(t, [)I < c,(n, N)E’~-~(*~-+“‘~))~, 74 1G27, (4.7) 
n 

Proof of (4.7). Inequality (4.7) follows immediately from (4.lb) and formula 

(4.5), which imply (on the good set 0,) 

lRN(f, 5)l <const. E PNE-y(Zk_+nlN)N 

where the notation Cz,, 1 s i s I - 1, denotes that we exclude the term corresponding 

to the case in which all particles are at x, and disappear, i.e. &(xi, hi) = 0, or 

h, - 1+ l[i_r(X,_r, hi_,)\ = 0 (they are included in the term C,), and we dropped the 

arguments of the functions cl,, for shortness. 

The coefficients c,,(m, u) have the following properties as shown in Proposition 

A.2 of Appendix A: 

c,(m, u) =0 unless m 3 m(h) 

where 

m(h) = 
1, hsl, 

max(2, -h + l), h G 0. 

That is, particles can disappear at x only if there are at least two particles, and no 

more particles can disappear than there are at x before interaction. 
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It is convenient to rewrite the integration function in expression (4.9) by inverting 

the sums 

=c 3 c rF(5-, ‘9x(5’(x) 2 m(h))le’(x)lc, 
XFZ, I,=-k +I <’ 

where x denotes the indicator function and I* denotes as before that we exclude 

the case -h + 1 = ),$I. 

Using (A.9) for the coefficients q,, and Lemma 4.1, we find that the contribution 

of the sum in expression (4.9) for fixed choices of the interaction times S, , . . , s,, 

of the interaction sites x,, . . , x,, and of the ‘generation numbers’ h,, . . . , h,, is 

bounded by 

const. smy’km 1 x(5,(x) > ‘ml L,, ) cc- (1) 
t1 

x <F, d,(b(x,, h) + &+,)I V(5/+1, 111, ; %,)I. (4.10) 

For each interaction time S, the configuration before interaction can be decomposed 

as 5 = {x,}~I u [:, and the configuration arising after interaction as &‘,,“,’ = {x,}“’ u t:, 

where {x}“’ is the configuration made of m copies of x, and p, = mi + h, - 1 is the 

number of the particles at x, after interaction. lf we fix the subset 5”‘~ 5 that goes 

into {x,}~I the first sum in expression (4.10) reduces to 

The next transition probability rr~1_,2({xI}p~ u .$ + &), where & = {x~}“‘~ u &, is a 

sum of products of transition probabilities for all possible choices of the subset of 

{x,}“l and of the subset ti2c [I that go into {x~}~z. Let 5”’ denote the subset of 

c\[“’ that go into [i2, and set ST2 = .$\ci2, n = /[i2) s rn2. By summing over &2, [;I 

we obtain the composition of the corresponding transition probabilities (r’s), SO 

that the contribution of the first two sums in expression (4.10), for fixed choices of 
[(I), ,$“’ and n, is 

GJ@‘)+ {x,l”%--s2(P + {x~}m~)(~~,_~,({x,}“~~” + {x*}“2~“)) 



C. Roldrighini et al. / Fluctuations in reaction-dif/usion 17 

One then goes on, specifying for each interaction site xi the ‘birthplace’ of the 

particles that go into {x,}~,, and ends up by specifying the birthplace of the final 

particles &+, . As a result expression (4.10), is split into a finite sum of terms, each 

term corresponding to a different choice of the numbers of the bonds connecting 

the interaction and the final sites. The total number of terms is bounded by some 

combinatorial factor depending on 1, 161, and on the generation numbers h,. Since 

(Proposition A.l) V(& 77; 77) = 0 if t(x) = 1 for some x, and moreover 

(U&77; rl)l s const. (t-n:; ri(x))‘C’i’+‘121, 

it follows that each term of the sum is bounded by 

const. E -y(lk_+[(M+lV’l)r 
I;.\ ,,..., ,,(5; XI, . . . , 4; 5,+1) (4.11) 

where r denotes the sum of transition probabilities (T’S), and M = )&,+,( is the 

number of the final particles. 

The term r can be represented by a graph with vertices at the points (t, x), x E 5 

(initial vertices), (0, z), z E &+, (final vertices), and (s,, xi), i = 1,. . . , 1 (interaction 

vertices). Each bond {(s, x), (s’, x’)}, s > s’ corresponds to a factor 71:-,.(x + x’), the 

usual random walk transition probability. 

Since the number of bonds connecting any pair of vertices of the graph is specified 

the function r in expression (4.11) is a function of the positions x, , . . , x,, z, , . . . , z, 

of the interaction and of the final vertices. The main point in the proof of (4.7) is 

the estimate of the sum 

A,(sr,...,s,)= C c r,;,,,. .,,,(5; Xl, . . . , XI ; 21, . , . , z,). (4.12) 
Y I,..., X, _I,.. .z, 

In Appendix B we prove, using graph techniques that 

(4.13) 

where 6 = (1/(2k_))($-i/3). 

The final result is obtained by summing up the contributions of all graphs with 

given h, , . . . , h, (which is a finite number). Since no more than k- particles can be 

produced at each interaction, M = (&,+,I c ItI+ lk_, therefore inequality (4.13) and 

(4.11) implies that expression (4.9) is bounded by 

const ~IC/(S-YI aI(P-2k-7) 

(We take of course p and y such that 8 > /3 > 2k_y.) Summing from I= 0 up to 

I = N we get inequality (4.8). 

The proposition now follows by taking N so large that p > &r/N + 

y(2k_+ n/ N). q 

Before going to the proof of Lemma 1 we need a result on the smoothing properties 

of the free dynamics (with generator 15,) which produces the fact that the various 
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P,_,~(x; ns) are close to p:(x), where p:(x) is the solution of (2.9) with initial data 

pi(x) = EJr],(x)) (cf. Definition 2.2). This of course will be true only on a large 

set and when t is a bit larger than tk for the smoothing property to apply. 

From now on we always intend that 6 = (1/(2k_))($-$) and p and y such that 

2k_y</3<6. 

Proposition 4.2. If S’ is chosen as in Proposition 4.1, then for any choice qf S” < 6’ - p 

and of p > 0 one can find a set .R,, h’(L$) > 1 - E’ such that for 7 e 0, 

sup max IP,-,,(x; n,,) -p:(x)1 < c’“. 
r,+,--r-T ‘I 

(4.14) 

for all k=O, 1,. . . ,[T/r]. 

Proof. We first estimate 

Adt, xl = dx; rlo) -P;(X). 

Since both p,-,,(x; vri) and p:(x) are solutions of (2.9) we have 

A(t, x) = C n;(x + Y)$,(Y) 

I 
, + ds C L,(x+Y) ? ~,~M(Y))(&(s, Y))“, 

0 J h-l 

(4.15) 

where 

and ij=v-Er]. 

Let m,=max,E(nO(x)). By the maximum principle ~:(x)~max(m,, l), and in 

R, (cf. Lemma 4.1) the integration function in (4.15) does not exceed in absolute 

value MOcmyk-, MO = K,(max( m,, l))‘m, where K, is an absolute constant. Hence 

for t = so= E”< E’ the integral in (4.15) is bounded by A40~“-yk-. 

To estimate the first term 

we take the 2Nth moment 

(4.16) 

The product n,,, i”(x) coincides with V(.$, 7”; EQ) if all particles of 5 are at 

different sites. If some sites coincide, the expected value of the product of GO does 

not have to be small, and we have to rely, as usual, on the fact that the probability 

of having coincidences is small. The relation between products of +j and V-functions 
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is given by the following formula, obtained after simple algebraic manipulations. 

If g : Z, + R, is a nonnegative function, and G(x) = v(x) -g(x), 

(4.17) 

where .$ is the subset of the elements of 5 that are repeated more than once, and d 

has the properties 

d(& 03; g) = 1, 0s d(5,5’; g)sd(kh (ma, gix))i. 
x 

We use this and insert (4.17) into (4.16), for g(x) = E(T~(x)) = pi(x). Observe that 

in performing the sum over 5 for a fixed value of ([‘I = r, we can extract at least 

[$(r+ l)] factors E/J& (cf. (2.6)), and we find 

ET2 N 2N 2Nfi* 
0 GCNrnO E ) (4.18) 

where 6*=min(6’,+-1 ’ q8 ) and cN is an absolute constant. By the Chebyshev 

inequality p.F (I Fol > es*-‘) S ep+’ for any 5 > 0, iV large enough and E small enough. 

Hence for any 6, < 6” max,(AO(sO, x)1 < ~‘1, on the proper set. 

Clearly by (4.14) A,(t, x) is continuous in t. Let i= sup{t 3 s,,: max,\A,(t, x)( < 1). 

Until time ?, IA,(t, x)( is bounded by the solution of the integral equation 

5 

f 

y(t) = ES,+ M,, dsy(s) 

so 

i.e. v(t) = ~‘1 exp(M,( f -so)). Hence for E small enough iz so+ (6, log E-~)/I&> T, 

and we find 

max\A,( r, x)1 G E61eMoT, so< t s T, (4.19) 

which implies 

maxsupp,(xl~O)~mO+~E~exp(M,,T)=m,. 
X ,>SO 

We then repeat the procedure for 

(4.20) 

Ak(t, x) = P,-rk(x; 77fk) -P,-,k_,(X; 7)k-1). 

For k = 1, we have, in analogy with (4.15), 

Ar(t, x)=C ~~-,,(x~Y)(~~,,(Y)-P,,(Y; ~0)) 
4’ 

I 

I 

+ dsC -~r:L(x-,y) 5 G(P,(Y; T,J)W,(~,Y))~. (4.21) 
fl Y h=l 

Using (4.20), for t = t, +s,, the integral on the right-hand side is bounded 

by M,F”-~~- with M, = K,((max(m,, l))k-. To estimate the other term, denoted by 

Y,, observe that, by (4.17), we have 
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Using Proposition 4.1, and repeating the arguments that lead to (4.18), we find, for 

no in the good set a,, 

E,,,(.Y,)‘N s cN.s2N’*mfN. 

By the Chebyshev inequality, we get, as above, that on the proper set 

max(A,(r,x)(<s’lexp(M,T), t,+.s,~ ts T, 
X 

and we can take M, d K,(max(m,, l))k-. 

In repeating the procedure for AZ, . . . , we have only to check that the constants 
m, (and hence Mi- K,(max(m,, l))hm) are bounded. Setting &, = mj-m,, b, = 

max(1, mi) we find the recursive inequality 

A 
m;+, c riij + F’IA~:-, 

where A = e KIT. 

Let j, = max{ j: Gr, < m,}. Then, for j c jO, 6, s a,, where a, is the solution of the 

recursive equation 

a,+l 
= aj+ cS,B, B = ,@“n(2m,,,l)&, 

with a, = 0. Hence j, 2 const. E-‘I > TE-” if E is small enough 

We get finally 

j=O 

where K2, K, are absolute constants. 

redefining p. 0 

Proof of Lemma 1. Let 7, E 0, n a2 = fin. 

t k+,sf~tk+2, 

P,,, V(& 77r; Pal 

Proposition 4.2 then follows, maybe by 

We have, by Propositions 4.1 and 4.2, for 

=<zc I~Pl,(T’I 771A)l Jc, I(P:(x)-P,-,,(x; rltr)l 

< (ES’+ E”“)15’ (4.22) 

Since V(& 7,; pr) is in L’ and A’ (fir) < sp, if p is chosen large enough we get from 

(4.22) and the Chebyshev inequality, maybe by redefining a”, 

sup max lv,([/ pLF)J < E”‘~. 
EP,,cT t: 15l=n 

(4.23) 

For t G E’, (4.23) is obtained in the same way as in Proposition 4.1. 
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Let k,=[2/6”]+1. By (4.23) jv,(~lpF)I=o(~) for ]t]ZkO. Observe that, since 

IS”<& k,> 5. Take 5 such that (,$I= k, - 1. By iterating the recursive integral equation 

for the v-functions, we find, by the properties of the initial measure p”“, 

The sum for h > 1 gives O(E) by the definition of kO. For h = 0 we get an integral 

of Q(.$‘] pL,) with I[‘( = k0 - 2, which is bounded by const .E&E(~~~-*)~” = O(E). Similarly 

the integral of the term with h = -1 is a( E ‘+(k -3)a”) = O(F). The terms for h < -1 ” 

are nonzero only if 5,(x,)>3, and the corresponding integral is bounded by 

const.( E ‘+a + E* J:l+-( l/ t) dt) = O(F). 

We get therefore, for y, = max,]u,( 51 pF)] the inequality 

y, s O(E) + const. 
I 

I 

Y, ds, (4.24) 
0 

which implies I_+(,$] pu,) = O(E). We can then repeat exactly the above arguments for 

k,- 2, with ko- 1 playing the role of k,, and the result follows for ]&]a 3. 

For I.$= 2 the only change is that the integral of the term with h = -1 is now 

Q(E), which gives, in general v,([] p,) = 0’(g). For I&]= 1, the integration by parts 

formula allows us to reduce the estimate to the one for (,$I= 2. We omit the details. 

Lemma 1 is proved. 0 

Appendix A: Some algebra 

For FEZ, we denote by E(t) = {x: e(x)>O} the support of 5. 

Proposition A.1 (Properties of the V-functions). The following properties hold. 

(i) (Factorization). For any function p : Z, + R, we have 

V(& 7); P) = n V&?7(x), P(X)) (A.11 
XC E(5) 

with 

(ii) V(& 7; 7) = 0 if&(x) = 1 for some x, and in general 

(A.21 

(A.31 
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k+m 

(iii) Vk(n, u)V,(n, u)= c c,(k, m; u)V,(n, U) (A.4) 
r=” 

with 

Ic,(k, m; u)l s c(k, m)(max(lul, l))k+m. (A.5) 

Proof. Property (i) holds for a single site and in general it can be proven by iteration. 

The first assertion of (ii) follows immediately from property (i). It follows also 

that the second assertion is a consequence of the following inequality 

1 Vk(n, n)j d const. nt(h+“‘21. (A.6) 

The proof of (A.6) goes as follows. Clearly there are coefficients d,,(Z) for which 

Q,(n)= 1 d,,(Z)n”, d”=l, (A.7) 
h=O 

and substituting into (A.2) for u = n, inverting the summation order (with the 

convention dh (1) = 0 for h 2 I), 

k-1 k 

Vk(n,n)= 1 1 n k-h(-1)k-f :> dh(l). (A.81 
h=O I-0 

It is easy to see that d,,(l) is a polynomial in 1 of degree at most 211, hence it can 

be written as a linear combination of @(I), Y= 0, . . . ,2h, with coefficients c,(h). 

Substituting into (A.8) we see that the coefficient of nkmh is 

and is zero if 2h <k, which proves assertion (ii). 

To prove assertion (iii) observe that the relation 

Qk(n)%z(n) =mi;i;’ (:> (7)-i! Ok+m,-,tn) (A.9) 

holds for m = 0, and is proved in general by iteration, using the recursion relation 

n&(n) = Ok+,(n)+ k&(n). It follows that 

h(n,u)K(n, U)’ i f k ( >( ” (-u,k+“-‘~-‘~Qj,(n)Q,2(U) 
II=0 jz=O Jl 12 > 

=,io j:;i” c”I) (1) (-l)k+m-il-j2 

XC 

_A 

( )( ) 

j2 i!Oj,+,l-l(n). 
11 1 

(A.lO) 

To transform the right-hand side of (A.lO) into a linear combination of V-functions, 

we introduce a linear mapping 5 of the vector space spanned by the polynomials 

(in n) Qk into the vector space of the usual polynomials in ZE R, by setting 
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9( Qk) = Zk. Clearly 9 is a vector space isomorphism. A simple check shows that 

9( V,(n, u)) = (z - u)“. Applying 9 to the right-hand side of (A.lO), and writing zk 

as (z-u+u)~, one finds 

(A.1 1) 

Transforming back by 9-l one finds that (A.4) holds with 

Proposition A.2. For any solution of (2.9) p,, and any measure v such thatfr(&/ Y) < ~0 

for any 5, the following relation holds 

2 u,(5, P, I v) = C 446 P, I v) tx;, ,;k+, G(~(x), ~hr(S(~‘~), P, 1~) (A.12) 
xc< 

where A, is the discrete Laplacian 

4f(5)=~(f(~+~“)+f(5-‘“)-2f(5)), 

5(Y) ify#x,x+l, 

5’.“(y) = 5(x) - 1 ify=x, 

[(x+1)+1 ify=x*l, 

and 

mch(m, u) = C m(m-l)...(rn-r) 
rr, :, I = h 

-6,,,,,(uk+-u’m), m-l+haO, 

s,(m, u) =O, m-l+h<O 

((i)=Oforn>korn<O). 

(A.12’) 

(A.129 

Proof. We have 

= Jc(‘L”‘V(5, 7,; P,)+‘LG’v(5, 77,; Pl)) (A.13) 
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with 

‘L”‘V(5, 77; P,) 

=c WC”’ (~“0(5’, 7)) rI P,(X) 
i xc C” 

+9(5’, 77) C A,P,(x) Fl (A.14) 
Xi.?” YcE”\Iri 

‘L’V(S, rl; PI) 

=c (-1F” J&9(5’, 77) rI P,(X) 1 * i f” 
+w, 7) c (P:+(X)-P:-(X)) r1 

xi: t” .,‘EE”;{ rl 
(A.149 

One can easily show that 

and that 

For the second term observe that 

= r,;(,CI a&l-,, 77)S(X){Qk+(77(X))QE()-I(rl(X)) 

- Q~_(~(x))OE(.~,-,(~~(X) - 111 (A.19 

where LJ~~, is the restriction of .$ to E(~)\(x). Therefore 

‘L’V(5, q; P) = c v(&x,, 77; PYL3’V,,.,(77(X), P(X)) (A.16) 
XC E 

with 

‘~G’Vm(~, u) 

m m = z( > P=o P 
(-l)“+{L,Qp(n)u”-P 

+ OJn)(m -P)U m-P-yUk+_ &)} 

= (-l)m~PLCQp(n)~m~p-mV,~,(n, u)(u’+-ukm). (A.17) 
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Using relations (A.9) and (A.15) one finds 

L&(n) = k{Q/c+(n)Qk~,(fi)- Q~(n)Qk-,(n - 1)) 

= . (k-j)Q,+,+-l-i(n) 

-,co (“, ‘) k(k- 1) ’ . * (k-j)Q/c+,_m,+j(n). 

Substituting into the first term of the second line of (A.17) and applying the mapping 

5 introduced in the proof of Proposition A.l, we get a first term 

k+ k, d’” =xc ) Zk+ - 
r=O r 

dz’+, (z-u)” 

=r~“(~)(~~)Ui+-‘m(m-l). . . (m-r)(Z-u)m-rm’+j 

and a corresponding term 

-6,(“-~l)(“~)~k~~‘-(--l). . . (rn-r)(Z-u)*mr-‘+‘. 
J 

Transforming back by F’ and substituting into (A.17) we find 

‘L,‘V,(n, u) = i mch(m, u) Vm-,+dn, u) 
/,=-k-+1 

which implies the result. q 

Remark A.1. As a consequence of Proposition A.2 the following ‘integration by 

parts’ formula holds. 

where v is any initial measure and pr is a solution of (2.9). 

Appendix B: Proof of (4.13) 

The term r in (4.12) can be represented by a graph with vertices at the points 

(t, x), x E 5 (initial vertices), (0, y), y E &+, (final vertices), and (si, Xi), i = 1, . . . , I 
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(interaction vertices). Each bond {(s, x), (s’, x’)}, s > s’ corresponds to a factor 

.TT:_,~(x + x’). s -s’ is the ‘length’ of the bond. A bond is incoming (outgoing) at 

(s, x) if the other endpoint (s’, x’) has a higher (lower) time coordinate s’. 

The number of the incoming bonds, m, and of the outgoing bonds, p, at an 

interaction vertex depend on the interaction parameter h, and we distinguish vertices 

of the following types: 

h=l, m = 1, P = 1 (type (o)), 
h> 1, m=l, p = h (type (i) creation), 

h =O, m = 2, p = 1 (type (ii) destruction of 1 particle), 

hs-1, m=-h+l, p = 0 (type (iii) destruction of -h + 1 particles). 

The interaction vertices are graphically represented in Figure 1. A typical graph is 

shown in Figure 2. 

(0) (i) (il) (111) 

Fig. 1. 

Since the initial vertices are kept fixed, we shall always consider that we have as 

many distinct initial vertices as there are particles in 5, even though the positions 

of the particles may coincide (in which case one may think of drawing them on the 

graph as ‘close’ points). 

Clearly the sum (4.12) decomposes into a product of factors corresponding to 

the connected subgraphs. Hence it is enough to consider any connected graphs (i.e. 

graphs for which any two vertices can be connected by a sequence of bonds belonging 

to the graph). 

The estimate is done in two steps. The first step consists in eliminating the vertices 

of type (o), and then the vertices of type (ii) and (iii), which prescribe multiplicities 

m, > 1. The sum (4.12) is then estimated by a corresponding sum which involves a 

simpler (‘reduced’) graph F which has an interaction vertices only a subset of the 

vertices of type (i) of lY The final step is the estimate of the contribution of the 

reduced graph. 

Step 1. Reduced graphs. We first sum expression (4.12) over the positions of the 

vertices of type (0). If (s, x) is such a vertex, h = 1 and 5(x, h) = t(x). Summing 

over x we obtain by the composition rule 



C. Boldrighini et al. / Fluctuations in reaction-diffusion 27 

Fig. 2. A graph. 

s=o 

Here (s, x) = (si, x,) for some i, and 0 4 j < i < k < I+ 1 (for j = 0, s0 = t, x0 E 5, and 

forj=l+l-s ,+, = 0, xltl E &+,). The result is then expressed as a sum over vertices 

of a new graph which is obtained from r by canceling the vertex (s, x) and sub- 

stituting the two bonds {(sj, Xi), (s, x)} and {(s, x), (sk, xk)} with the single bond 

{tsj, x,)~ Cs!f, xk)l. 

Next we estimate the sum over the positions of the vertices of type (ii) (hi = 0: 

two incoming and one outgoing bond). Let (s*, x*) be the one with lowest value 

of s. We estimate the factor ~T:,_,*(x~ + x*) corresponding to the incoming bond of 

minimal length (to one of the two if they have equal length) by 2.5/m. The 

product of the two r’s that is left is summed over x* using the composition rule. 

The graph is modified by removing the bond {(si, x,), (s*, x*)} and joining the two 

bonds at (s”, x*) that survive into a single one, as before. The vertex at the other 

end (si, xi) of a bond that is canceled can be either an initial vertex, or a vertex of 

type (i) or (ii). In the first case by canceling the bond we cancel a particle from the 

initial configuration 5. If it is a vertex of type (i), and by canceling the bond it 

becomes of type (o), we get rid of it by summing over the position xi as described 

before. If (si, xi) has more than two outgoing bonds it remains a vertex of type (i) 
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with one less outgoing bond. Finally if (sir xi) is a vertex of type (ii) then it becomes 

a vertex of type (iii). We then repeat the procedure for the vertices of type (ii) that 

are left (in the modified graph), in order of increasing s, each time modifying the 

graph as described. 

Finally we consider the vertices of type (iii) in the graph thus obtained. Let (6 x^) 

be the one with lowest s value. We estimate the factor corresponding to one of the 

bonds with minimal length by 2s/G, and estimate the sum over the vertex 

position x^ of the remaining product of n-‘s by 1. The graph is modified by canceling 

all the bonds going into ($2). Each time that a bond is canceled the vertex at the 

other end is treated as described in the discussion for vertices of type (ii) above. 

We then proceed with the vertices of type (iii) that are left in order of increasing s. 

The net result is given by the following inequality: 

(B.1) 

with 

A,(S;r...,S;Z)= c c r,,,; ,...,. &‘; x:, . . > x[; ZI > . . . 3 zr) (B.2) 
r;,... ” ,112 = I,.... -, 

where I, is the total number of vertices of type (ii) and (iii), {.s,~}~~, are their time 

coordinates, s,,_,, - si! is the length of the bonds corresponding to the 7~ factors that 

have been estimated, I, is the number of vertices oftype (i) that survived, {(x:l, .s:)}~~=, 

are their coordinates, and zl,. . . , z, are the positions of the final vertices. 

Figure 3 shows the reduced graph r corresponding to the graph r of Figure 2. 

Step 2. Estimate of reduced graphs. The following inequality holds: 

A,(s;‘, . . . ) .s;Z)G (2E/A)mt”+‘)‘2’ (B.3) 

Proof of (B.3). We divide the bonds of r into three types: the type I bonds are 

the bonds of length t (noninteracting particles), the type II bonds are the bonds 

connecting interaction vertices to final vertices, and the type III bonds are those 

connecting initial and interaction vertices. 

In estimating the contribution of r a crucial role is played by the fact that all 

final vertices have at least two incoming bonds, otherwise the V functions are zero. 

The final vertices are also divided into two types. The type (a) vertices with I-bonds 

only, the type (b) vertices with at least one II-bond. 

r is not necessarily connected if r is connected. Clearly the sum in (B.3) 

decomposes into a product of factors corresponding to the connected components. 

Therefore we carry out the estimate only for connected graphs r 

Since each III-bond has its own distinct initial vertex, either r has a single 

(a)-vertex or it has no (a)-vertex. Let k denote the number of I-bonds in f 

Case A: a single (a)-vertex. Let z denote its position. We write (2~/&)‘~’ for 

the product of k - 1 - r factors, and sum over z the r that is left, i.e. the contribution 

of the graph is bounded by (2e/&)k-‘. 
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Fig. 3. The reduced graph corresponding to the graph of Figure 

29 

s=t 

s=o 

Case B: no (a)-vertex. We estimate each I-bond by 2.5/J?, obtaining a factor 

(2~/&)~. The sum over positions of all interaction and final vertices of the x factors 

corresponding to II- and III-bonds is clearly bounded by 1. 

Inequality (B.3) is proved. 

Proof of (4.13). We set si=+j=l,..., I,, and $, = s,,_,!. By inequalities (B.l) 

and (B.3), 

(B-4) 

We extend the integration up to time t in all variables. By integrating first over the 

variables sj , we get factors 2( S, A”2+ (t - $)“2) s 4Ji. Performing the integration over 

the remaining I- I, variables, we obtain that the right-hand side of (B.4), for t s E’, 
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is bounded by 

L(lS’l+Iv2l+t, 
_Fconst ~Ptg(l~P12)([(l~‘l+1)/21+t,) 

(B-5) 

Since 1[‘(+Z,k_~151, b ecause no more than k_ particles can disappear at each 

interaction, we see that expression (B.5) is bounded by the right-hand side of 

inequality (4.13). 0 
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