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We consider the (kinetic) continuum limit for a class of stochastic interacting particle systems. 
We prove propagation of chaos and convergence to macroscopic equations of the "Reaction- 
Diffusion" type. 
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equations 

Introduction 

Collective phenomena,  hydrodynamical  behavior, self organization, local equilib- 

rium and propagation of chaos are main features in the evolution of systems with 
many components. In this paper we consider a class of stochastic interacting particle 

systems where some of the above effects can be observed. In the "cont inuum limit" 
the macroscopic equations that we obtain are nonlinear  PDE's of the "React ion-  

Diffusion type". 
The main feature of the models we consider is that in such continuum limit the 

generator splits into two parts, one "much larger" than the other. As a consequence 

we can distinguish two time scales; in the first the evolution seems ruled onlY by 
the main,  larger, part of the generator; in the second, longer, time scale the effect 
of  the "smaller"  one enters into play. To make such a splitting evident it is convenient 
to describe the continuum limit in the way outlined below. Other equivalent pro- 
cedures can and are widely used, we will come back to this later on. 
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The microscopic models can be described as follows. Particles move in Z (Z a, d > 1, 

can be considered as well. For technical reasons one sometimes considers bounded 
regions with periodic boundary conditions, but here we shall not need such an 

assumption). Particles move like independent  symmetric random walks with nearest 

neighbor jumps and jump intensity equal to 1. We denote by L0 the corresponding 
generator. Besides this, particles can also be created and /or  die. 

The birth intensity at any site x is q+(~7(x)), ~7(x) being the occupation number 
at x and q+ some increasing positive polynomial.  Particles die with intensity 
q-(~l(x)), q- being also some increasing positive polynomial.  All the above events, 

i.e. births and deaths, are mutually independent,  cf. Definition 1.1. To have a well 
defined process we also assume that the degree of the polynomial q+ is smaller than 
that of q_ (it would be enough to assume that there is c < ~ so that q+(n) - q_(n) <~ c 
for any n/> 1). 

If  births and deaths were absent the process would consist of independent 
symmetric random walks. The natural macroscopic scaling for such a process (the 

same for which a single random walk converges to a Brownian motion) is to scale 
down positions by e and times by e 2. Namely  one studies the averages 
(r/([e-lr], e-2t)), i.e. the mean number  of particles at time g-2t and at site [e- l r ] ,  
([a] denotes the integer part of  a). In the limit, when e--> 0, (aT([e-lr], e-2t)) goes 
to p(r, t) which solves the equation 

Ot p 1 2 ----~Cgrp , p(r, 0 ) = p ( r ) ,  

under the assumption that (r/([e-~r], O))->p(r) (and that p(r) is smooth). Further- 

more if  at time t = 0 the particle numbers at different sites are independent (or 
"weakly dependent")  variables, then, at any t > 0, the measure becomes close to a 
product (over all sites) of Poisson distributions. 

The birth and death generator LG, which will be defined exactly by (1.1b) below, 
is infinitesimally small, when e-> 0, as compared to e-ELo: in the time it takes for 

a particle to jump,  the probability for a bir th-death event at that site typically goes 
like e 2. In such a "short time scale" therefore the presence of LG is negligible and 

the system behaves as if  it were free, so that the particle distribution in the limit 
when e--> 0 becomes again a direct product of  Poisson laws. In a finite time scale 
(when particles have typically ~ e  -2  jumps)  LG has some finite nonzero influence 

on the evolution. Such a picture is confirmed by our first result, which we give below 
after some definitions. 

Definition 1.1. q+ and q_ denote positive polynomials on the nonnegative integers 
N such that q±(0) = 0 and such that degree of q+ < degree of q_, actually it is enough 
to assume that (2.5b) below holds. 1 

As pointed out by Metivier, the natural  assumption would be that there exists c > 0 such that 

q + ( n ) - q _ ( n ) ~ c n  V n > 0 .  

Our analysis would work also in this case as well, modulo some changes in the proofs. 



C. Boldrighini et al. / Interacting particle systems 139 

Let L ~ =- e-2Lo + LG, e > 0, be the generator of the Markov process on N z, which 
acts on the cylinder functions as follows: for any 77 e N z, 

Lof ( r / )=  Y~ n(x){½f(~7""+~)+½f(nx, x -~)- f (~7)} ,  (1.1a) 
x e Z  

Lj (n)= E {q+(n(x))[f(n"+)-f(n)]+q_(n(x))[f(n~-)-f(n)]}, 
x ~ Z  

(1.1b) 

7l~,x±~(y) = rl(y ) 

~x 'x±l(x)= r l ( x ) -  l ,  

~Tx'x±~(x ± 1) = r/(x ± 1)+ 1, 

~7~+(y) = ~(y)  for y # x, 

f o r y ~ x , x ± l ,  

nx, (x) = n ( x ) ±  1. 

For what follows we need to define the polynomials 

p ( k , z ) = r l ( z ) ( r l ( z ) - l ) ' ' ' ( r l ( z ) - k + l ) ,  z ~ Z ,  

(1.2a) 

(1.2b) 

k~ N. (1.3) 

By z = ( z l , . . . ,  Zk) w e  shall denote an element of Z k, k i> 1. F u r t h e r m o r e  w e  set 

p ( k , z ) =  I-I p ( ~ ,  zi) (1.3a) 
i= l,... ,m 

where m is the number of distinct elements of z ~ Z k, and ki is the multiplicity of 
each single element z~ e Z. Note that i f /z ,  is a product of Poisson distributions each 
having density p, then vp(p(k,  x ) ) =  pk. 

/~ ~ denotes a family of probability measures on N z such that for any L > 0, k >/1, 
(x~, . . . , Xk) ~ Z k mutually distinct 

lim sup, /z~( 1-I 7 / ( x i ) ) -  1-I p(exi)  = 0  (1.4) 
e ~ O  ]xi[~e-  L i = l  . . . . .  k i = 1  . . . . .  k 

where p(r )  is assumed 2 to be uniformly bounded and C 2. Furthermore we assume 
that there exists Co such that for any k t> 1 and all ( x ~ , . . . ,  Xk) ~ 7/k (not necessarily 
distinct), 

(1.5) 

We are now ready to state the following. 

T h e o r e m  1.2. For each e > 0 consider the Markov  process with generator L ~ and initial 

measure ix ~, as in Definition 1.1. Then for  all r ~ R  and t>>-O, 

lim/z~[ v?([ e- l r ] ,  t)] = p(r, t) (1.6) 
e - -*0  

2 We do not need to assume convergence o f / z  ~ to a product of Poisson distributions, we only need 
convergence of the first moments in the sense of equation (1.4). In this way equations (1.4) [and (1.5)] 
can be satisfied by fami l i e s /~  with support on configurations for which ~(x)  is uniformly bounded. 
This remark might be useful for numerical simulation of such models. In fact our conditions in Definition 
1.1 are not optimal, and can be weakened; we shall not discuss further this point. 



140 C. Boldrighini et aL / Interacting particle systems 

where 

1 2 O,P =iOrP-- V'(p), p(r, O)= p(r), (1.7) 

V'(p) = - { v + ( p ) - v _ ( p ) } ,  v±[p] = ~,p[q±(r/(0))], (1.8) 

~, being the Poisson measure with parameter p. 
Furthermore let tz ~ denote the law of the process at time t, then propagation of chaos 

holds at all times t, namely 

{ tZ ~ - x~Z ~,o( ~x., ) } --> O (weakly). 

In the proof of Theorem 1.2 we derive bounds on the moments of the occupation 
numbers which for any finite time interval are uniform in e. From this and Theorem 
1.2 we get the following 

Corollary 1.3. Let L ~ and tz ~ be as in Definition 1.1. Then for any q~ ~ SO(R) (Le. the 
Schwartz space of  rapidly decreasing functions on R) the "'density field" 

X~(~p) = e ~ ~p(ex)rl(X, t) (1.9) 

converges in law to 

f dr~o(r)p(r, t) (1.10) 

where p(r, t) solves (1.7). 

Bibliographical notes 

The above results, Theorem 1.2 and Corollary 1.3, were proven by Dittrich [7], for 
q + - 0 .  Microscopic models for the Reaction-Diffusion equations are discussed in 
[21] and [9] for instance. 

A mathematically rigorous derivation of the Reaction-Diffusion equation, (1.7), 
and the analysis of the fluctuations of the density fields (1.9) around their averages 
are contained in [1], [2], [20] and [10] for some "mean field" versions of the model, 
cf. also [12]. Translated into our language these results correspond to replacing 

q+(rl(x)) by 

v~_(eV ~, rl(x))  
]y-xl<e-v/2 

(cf. (1.8) for notation) where y is some positive number less than one. That is one 
divides the lattice into intervals (cells) of length e -v, each cell being then a point 
in a new lattice (which we will still denote by 77, and the occupation numbers by 
7/(x)). Typically therefore ~/(x) ~ e-L The new jump intensity is e -2(1-v), reflecting 
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the fact that the original lengths are now scaled differently. The new birth-death 

process has intensity e-~v±(eY~7(x)) and the density field becomes 

= Z t)] 

which, for a suitable choice of y and of the initial conditions, is proven to converge 
(at least when the system is on a torus of length e-aL) to a deterministic field which 
solves (1.7) (as in our Corollary 1.3). 

Another  microscopic model for the Reaction-Diffusion equations has been intro- 

duced in [5]; ef. also [7] for a further analysis of such system. Our techniques are 
closer to those in [5], as noticed by Herbert Spohn who actually proposed to use 

them also in the present context. 
In our proofs we use a perturbative approach relating the actual semigroup with 

generator L e to that with generator e - 2 L o  . We then obtain a hierarchy of equations 

as it typically occurs in the kinetic Boltzmann-Grad limit. In particular our strategy 
was inspired by the analysis in [16]. 

The analogy with the Bol tzmann-Grad limit is in fact quite strict. The latter, for 
a gas of  hard spheres, is a limit when the radius R (e) of each sphere vanishes when 

e ~ 0. Things are arranged so that, typically, each sphere has finitely many collisions 

per unit t ime (in the time-scale for which the Boltzmann equation holds). One can 
perform the Bol tzmann-Grad limit keeping finite the initial interparticle distances, 

as we are doing here. In this case one has to increase velocities by a factor e -~ 
(hence the radius R(e) is determined so that the typical number  of collisions per 
unit t ime R(e)a-~e -~ - 1, where d is the number of dimensions of the space where 
particles move). Therefore the free part of the Liouville generator is multiplied by 
a factor e -1 (in our case by e -2 because we consider diffusions without drift) and 

it is much larger, when ~ ~ 0, than the collision generator. 
To underl ine the analogy we shall call "kinetic" the continuum limit we consider 

here, to distinguish it from the "hydrodynamical  limit" where only the initial 
distribution is scaled (as well as the time), while the generator is kept fixed. 

In Section 2 and 3 we give the proof of Theorem 1.2. Section 4 is a "remarks 

section", which sketches some possible future research. 

Section 2 

In this section we shall derive e-uniform a priori bounds on the t > 0 averages 
of polynomials  of the occupation numbers. In particular we shall prove that the 

function (r, t) ~ (~[e- l r ] )~  (i.e. the average value at time t of the occupation number 
at site [e-lr] in the process with generator L e) is equicontinuous and uniformly 
bounded [on the compact sets of R x R+), so that it converges by subsequences. 

In the next section we shall identify its limits as the unique solution of (1.6). This 
will come together with the proof of the factorization property stated in Theorem 
1.2, hence Theorem 1.2 will then be proved. For the polynomials p(k, z) defined in 



142 C Boldrighini et al. / Interacting particle systems 

(1.3) the following "duality" formula holds 3 (its proof is sketched below): 

(p(k, x)), = ~  7r,(x-->z)(p(k,z))o (2.1) 
z 

where (.)o and (.) ,  denote averaging w.r.t, an initial measure/Zo on N z and to the 
measure /x~ which gives the measure at time t when /z °=/Zo for the evolution 
semigroup generated by Lo, respectively. 7r,(x--> z) are the transition probabilities 
of k independent random walks starting at x. Equation (2.1) states that the "k-body 
correlation functions (p(k, x))t" obey closed equations [the set of equations involving 
all the correlation functions is called the "BBGKY hierarchy", which, in the present 
case, is decoupled]. 

Equation (2.1) can be proven by checking the following identity: 

Lop(k, x) = ½ F. A,p( k, x) 
i 

where Ai is the discrete Laplacian acting on the variable xi, i= 1 , . . . ,  k. A similar 
formula was used in [ 11 ]. 

For the full evolution generated by L ~ the "BBGKY hierarchy" is no longer 
decoupled. We have in fact, by "the integration by parts formula" (see for instance 
the proof of Proposition VIII, 1.7 in [17]): 

Io (p (k ,x ) )~=~  1r~(x-->z)(p(k,z));+ ds~, ~r~(x-->z)(LGp(k,z))t-s (2.2) 

where (-)~ denotes averaging w.r.t, the measure /z~, obtained from /z~ by the 
evolution semigroup generated by L ", and 7r~(x--> z) are the transition rates of the 
speeded up random walk, i.e. with generator e-2Lo. For notational simplicity we 
assume that q+(~(z)) =p(k± ,  z), k_> k+. 

Equations (2.2) and (1.7) are very close to each other. Take (2.2) with k = 1 and 
consider the expression (LGp(1, Z)) ~-s = (q+(r/(z)) -- q_(77 (z))) ~_s. Assume that when 
e --> 0 such average becomes close to a Poisson average with some parameter p,_s(ez) 
and that (rl(z))~_~-p,_~(ez) vanishes when e-->0. Then, formally, (2.2) with k =  1 
converges to (1.7) in integral form. 

Our strategy will be to prove that the functions (p(k, x))~ are uniformly bounded 
(Proposition 2.1) and equicontinuous (Proposition 2.2), so that they converge by 
subsequences. In Section 3 we shall prove the factorization property (Proposition 
3.1) and the above heuristic argument will be made rigorous. 

Proposition 2.1. Let i.t ~ be as in Definition 1.1, and T >  O. Then for any 0 << - t<~ Tand  
k >~ 1 there is a function f (  e, k, t) such that for any k >  1 

l imf(e,  k, T ) = 0  (2.3a) 
e--~0 

3 An analogous formula holds for asymmetric independent random walks (in the dual process particles 
move with opposite drift). It was noticed by Claude Kipnis that in such case also another duality formula 
holds, corresponding to the existence of spacially nonhomogeneous invariant reversible measures. 
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and 

(p(k,  z))7 < (coeC') k + f(e ,  k, t) 

where Co is the constant appearing in (1.5) and c is such that 

q ÷ ( n ) -  q_(n) <- c Vn >t O. 

Proof.  We have  

m 

LGP( k, z) = E k ,{q+(r l (z , ) -q-(~7(z , ) )[r l (z , ) -k ,+ 1]} 
i = l  

where ~_(n)  = (n - 1)(n - 2 )  • • • (n - k_+  1). Clearly,  for all h -> 1, 

m a x ( q + ( n ) - ~ _ ( n ) ( n -  h + 1) )=  c~, < oo. 
hEN 

We set 

(2.3b) 

(2.4) 

(2.5a) 

(2.5b) 

Ck(t) = sup sup (p(k,x))~.  (2.6) 
h ~ k  xEZh,s~t,g>O 

We shall first of  all derive a rough estimate for  (p(k ,  z))~ which will be af terwards  

improved to obtain (2.3b). By the hypotheses on the initial state and by (2.5) there 

are cons tants  Ck SO that  

Io ~k(t)~ck+ck dS~k_l(S) (¢o=  1). (2.7) 

By (2.7) we get that  for  any k ~  > 1 and  t ~  > 0 there is Ck(t)<oO (and nondecreas ing 

with k and  t) such that  

¢k( t )<~Ck( t )<~,  t ~ R .  (2.8) 

By the same relat ion (2.5), if z --- (zl ,  z2, . . . ,  Zk) ~ 7- k and the zi's are all distinct, we 

have 

(LGp(k,  z))~ <~ ck4ok_~(s) (2.9) 

where c is defined in (2.4). 
On the o ther  hand  f rom (2.5a) using (2.5b), (2.6) and (2.8) we get that  there exists 

g*(k,  t) (nondecreas ing  in t) such that,  for all s <~ t and z ~ 7/k, 

(Lcp (k ,  z))~ <~ g*(k, t). (2.10) 

We denote  by ,X" the sum over  {z -= ( z ~ , . . . ,  Zk): Zi = Zj for some i # j} .  We then have 

that  for  any  k > 1 there is c~ so that  

z) c' e / . / s  
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for any s > 0. We get 

f 0 d s  1r~(x--> z)(Lop(k,  z)),_s 2,, <~ ec'~ ds s-1/2g*(k, t) 

<<-ec~2x/tg*(k, t ) -  eg(k, t). 

Putting together (2.9) and (2.11) we get 

q~k(t)~(co)k+ck dSq~k_l(s)+eg(k, r ) ,  

which gives (2.3b) with f =  eg(k, T) e ~r. 

(2.11) 

(2.12) 

Proposition 2.2. Let i~ ~ be as in Definition 1.1. Then for any T and L positive and 
k >>- 1 the following relation holds 

lim lim sup(kT'8)[(p(k, x) ) ; , - (p (k ,  y));I =0,  (2.13) 
8 ~ 0  e ~ 0  

where sup (L'r'a) denotes the supremum over all x, y ~ Z k, t, t' ~ [0, T], such that Ixl ~< 
e-lL, lYl~< ~-'L, Ix-y[<~ e-~8, I t -  t'l <~ & 

Proof. For simplicity we give the proof only for k = 1. The extension to the case 
k > 1 can be done using similar arguments. 

By assumption (1.4) it follows that we can find an L,--> ~ as e ~ 0 such that 

lim sup, I<~(z)>g-p(~z)l=0. 

Hence we get 

sup (t'T) E ~rt(y--> z) ( (71(z) ) ; -p(ez))  
z 

~<sup (L'T) Z , 

z:lz--yl~e- L~ 

+2Co Z , 1r~(y-->z)-->O, 
z: lz-yl>e- L. 

where sup (L'r) denotes the supremum over lY[ ~< e-lL,  t <~ T. 
We first prove relation (2.13) for t ' =  t. We have 

sup , [Z (TrT(x->z)-~rT(y-z))l<~c*8/~/s 
Ix-yl<~e - 8 

for some constant c*>  0 and any s > 0. Hence 

o :ds Z (~(x--> zl-Tr~(y--> z))(L~p(1,  z))~-s 

The other terms can be written as 

sup(L'r)lE ~;(y--> z ) (p (e ( z+  w ) - p ( e z ) )  , 
I -  

(2.14) 

2c*x/TSg*(1, T). 
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where w = x - y .  We can find c81'oo 

suplxl<c~/rlp'(x) [ such that lims_,o c~8 = 0. 
If  lY - z[ < ( c d 2 ) e - l x / T  we have 

Since 

as 8-> 0 and 

Ip(e(z+w))-p(ez) l<-c '88->O as 8-->0. 

correspondingly c~= 

(2.15) 

lim lira ~ ~r~(y -> z) = 0, 
B ~ 0  e ~ 0  lY_Zl>(Cs/2)e-lx/T 

relation (2.13) is proved for t = t'. 

Suppose now that t' > t, t' - t < 8. Using (2.2) and taking t as initial time, we have 

l ip ( l ,  y ) )7 , - (p(1 ,  y))7-Z~rT,_,(y-> z)((p(1, z ) ) , -  (p(1, y))DI ~ g*(1, T)8 

where g*(1, T) is defined in (2.10). Now, since 1(~7(z)),[<~ c0+g(1, T)T, and 

lim lim ~ I 7r~,_t(y--> z) = 0, 
8--,0 e--,0 l Y - z l > ~ -  8 

the result follows from the relation 

l i m l i m  sup, Y~ ~ 7rt~,_,(y-->z)l(p(1, z ) )~- (p(1 ,  y)>~l=o, 
,s--,O e-~O lyl~<e - L l y - z l < e -  

which is a consequence of the previous result for equal times. 

Remark 2.3. As a consequence of Propositions 2.1 and 2.2 one can find a continuous 
extension to R k of  (p(k,  x))~, p~(x, t) such that the family of functions p~k(eX, t) is 

uniformly bounded and equicontinuous in any bounded set. 

Section 3 

If p,(r) denotes the solution of (1.7), then 

p* = sup p,(r) < oo, (3.1a) 
r,t 

as a consequence of the assumption sup po(r) < oo (see [3]). From now on we assume 

that the constant Co of (1.5) is such that 

Co> p*. (3.1b) 

The proof of Theorem 1.2 is a corollary of Proposition 3.1 below. 

Proposition 3.1. Let p ( r) be as in Definition 1.1, and let I,t ~ be any family of  probabilities 
such that (i) and (ii) below hold: 

(i) For any L > O, k >i 1, 

l imsup  (L) /z~[P(k,x)]  - I-I p(ex~) = 0  (3.2) 
e~O ! = 1  
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where x = (xl , .  • •, Xk), sup <L) is the sup over all x ~ ~k such that Ix, I ~ e-a L and x~ # x~ 
whenever i ~ j;  

(ii) For any k>~ l, T > 0 ,  0<~ t<~ T , f ( e ,  k, t) exists such that 

l imf(e,  k, T ) = 0  (3.3a) 
£ "--~'0 

and, for some Co > O, 

sup p.~[p(k,x)]<~(coeCt) k + f (e ,  k, T). 

Let ¢ > 0 be such that 

(1 - e-a~)3Co eC~ < 1 

where c is defined in (2.4). Then, for any L > 0 and k >>- 1, 

limsup~l")]tz~[P(k,x)]- 1-I p~(exi)l=O 
e ~ O  i =  l , . . . , k  

where p, solves (1.7) with initial value p. 

(3.3b) 

(3.4) 

(3.5) 

Remark 3.2. Since the initial family/z ~ in Definition 1.1 satisfies condition (i) and 
(ii) Proposition 3.1 gives convergence to the Reaction-Diffusion equation in the 
first time interval (0, z], where ~" is a fixed number satisfying 3.4. We now want to 
iterate our procedure. Condition (i) of Proposition 3.1 holds for the initial measure 
/z~ as well, because of (3.5), but condition (3.3b) holds with Co changed into Co e ~, 
which would give a smaller interval. In the next lemma we prove that, because of 
inequality (3.1), condition (3.3 b) holds for/~ ~ with the same constant Co and perhaps 
a different function f. 

Lemma 3.3. Let v ~ be a family of  probability measures satisfying (i) of  Proposition 
3.1 and the following condition. For any k>~ 1 and T >  O, two positive functions d( t) 
and g( e, k, t) exist, nondecreasing in t and such that 

sup v~[p(k , x ) ]<~(d( t ) ) k+g(e ,K ,  T), t ~  < T, (3.6a) 
x 

lim g(e, k, T)=0. (3.6b) 
e--~0 

Then for ~,~ inequality (3.3 b) holds for some f which satisfies relation (3.3 a). 

ProoL We proceed like in the proof of Proposition 2.1. We therefore get 

(P(k,x))~ <<- ~ ~, ( t" /n!)cnk%r~(sup[exi l (e)[L,L+l])  
L ~ O  n = O , . . . , k  

x m i n { d ( t ) k - , ,  [ p . k - ,  + h(e, k, L)]}+ h*(e, k, t) (3.7) 

for suitable h and h*, as we are going to explain below. 
The index n in (3.7) counts the number of iterations of the "integration by parts 

formula" (2.2). ~r ~ denotes the law of k independent random walks speeded up by 
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- 2  e . After n iterations we are left with a polynomial of degree k - n ,  cf. the proof 
of Proposition 2.1. We then use either (i) or (3.6a) according to which gives the 
better estimate and we get the term with the min in (3.7), for suitable h(e, k, L) 
(which is infinitesimal in e). The contribution of the cases when more particles are 
at the same site is taken into account by h*, which is also infinitesimal with e, as 
in the proof of Proposition 2.1. 

Since the sum of L is uniformly convergent in e, by Lebesgue theorem the Lemma 
is proven. 

Proof of Proposition 3.1. The proof of (3.5) goes as follows. By Proposition 2.2 and 
Remark 2.3 we can choose a subsequence en such that for any k, ( r t , . . ,  rk)e R k, 
t ~ [0, z], the limit of (p(k;  [e - l r l ] , . . . ,  [e-lrk]))~ exists along the given subsequence 
and we call it V (k, r~, . . . ,  rk, t). Now choose any k/> 1, (Xl, • . . ,  Xk) e Z k and t <~ ~'. 
We use the integration by parts formula for the semigroup U~ w.r.t. V~ e-3ks 
where k is the same k as above and V~ is the semigroup generated by e-ELo (see 
(1.1a)). The extra factor e -3k~ will be useful for controlling the combinatorics 
involved in the iteration of the formula. We have 

(p(k, X))~=e3k' ~'z ~r~(x--> z)(p(k, z))~ + I ds 3k e -3~ 

x{~Tr~(x-->x)l(z,~zjVi~j)k-l E 3 -1 Y~ d(/3) 
i = 1  .. . . .  k / 3 ~ { - 1 , 0 , 1 }  

x (p(k  + h(fl)); z , , . . . ,  Zk, zh(a))~-~} + R(e; x; t) (3.8) 

where ~r~(x --> z) is the probability that k independent standard random walks starting 
from x are at z at time e-2t; 

d(fl) = fl + 3 1{/3 =0}, (3.9) 

h (+ l )  = degree q ± -  1, (3.10a) 

h(0) =0,  (3.10b) 

z~ (a> is zi repeated h(fl) times. 
R is the remaining contribution, which, by (3.3), is such that 

lim sup sup R(e; x; t) = O. 
~-*0 t~ 

(We have used that the probability that two random walks are at the same site after 
time e-2s goes like es-i/2.) 

We shall now take the limit when e--> 0 along the subsequence chosen at the 
beginning of the proof. So we get, by Lebesque's dominated convergence (which 
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can be applied because of (3.3)) 

V (IC, r l , . . . ,  rk; t) = e -3kt f 1rt(dbl" • • dbk)V( /q  r l , . . . ,  rk; O) 

I f  1 + d s 3 k e  -3k~ ~rs (db l ' "dbk) -~Y~l~ ,d ( f l )  
i /3 

x V(k+h( f l ) ;  r l , . . . ,  rk, rhea); S) (3.11) 

where b l " ' "  bk are  independent standard Brownian motions starting respectively 

from rl,  •. •, rk and It, is their law at time t. (3.5) will be obtained by iteration of (3.11). 

We notice that (3.11) has a nice probabilistic interpretation in terms of  branching 

processes, as observed in [5]. Such interpretation is closely connected to the approach 

of  McKean (cf. [18] and [4]), who in fact introduced branching processes to study 

the travelling wave solutions of  some Reaction-Diffusion equations. 

The r.h.s of  (3.11) can be thought of as the expectation w.r.t, the following 
branching process: k independent Brownian motions start from r l , . . . ,  rk, and each 

one, after an exponential time of  mean 1, branches. A value of fl ~ { -  1, 0, 1} is then 

chosen with probability I ,  and h (fl) indicates how many new particles are generated. 

Such new particles are created at the same place where the generating particle was. 

Denote by dP[b(1)  • • • b(k) ,  t (1) .  • • t (k ) , /$ (1) -  • • f l (k)]  the law of such branch- 

ing, where t(i) is the collection of branching times for the descendants of  particle 

i, f l(i)  are the corresponding branching parameters and b(i, s) the positions of  the 
particles of  the i-th family a t  time s. Obviously the law of V factorizes w.r.t, the 

different families of  branching. 
By iterating (3.11) and letting N, = the total number of branching times before t, 

we have, for any finite M, 

V(k; r , , . . . ,  rk; t) 

=E I , , M  dP[b(1) . . . b(k), t(1) . . . t(k), f l ( k ) ) l {N ,=  n} 

x I-I [l-l~')d(flj(i))]F(b(1) " '"  b ( k ) , t ( 1 ) . . ,  t ( k ) , f l ( 1 ) . . ,  f l (k))  
i=l, . . . ,k 

+ R(M,  k, r~ , . . . ,  rk; t) (3.12) 

where H ~i) is the product over all flj(i) for j such that b(i) ~< t. 
F(b(1)  • • • b(k), t(1) • • • t (k) ,  fl(1) • • • IS(k)) is a product of p ( . )  (remind that 

by (3.1), V(/c, r ~ , . . . ,  rk; O) = Hp(ri)) which contains at most 

k + [degree q_ - 1]M (3.13) 

factors. R(M,  k, r~ , . . . ,  rk; t) takes into account the remainder. Such last term can 

be bounded as follows 

R(M,  k, r l , . . . ,  rk; t) < PINt >I M][co eCt]{k+ [degree q _ -  1 ] (M + 1)}. 

(3.14) 
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Since (cf. (A.21) of [5]) 

P[ Nt >~ M] ~ d[1-e-3t]MkM k/2-1 (3.15) 

where k is the initial number of particles and d is a suitable constant, the remainder 
term vanishes when M--> oo if t <~ ~-. Furthermore the corresponding series in (3.12) 
is absolutely convergent. As a consequence, since everything factorizes, 

V(/c, r~, . . . ,  rk; t) =I'IV(1; r,; t), 

hence (3.12) for V(1; r, t) is the Reaction-Diffusion equation (1.7) in integral form. 
We have therefore proven (3.5). 

Section 4 

Convergence to macroscopic equations is just a first step. The long time behaviour 
is the next one, the question being how much about it can be inferred from the 
macroscopic equations. For instance are stability or instability of the microscopic 
orbits consequence of the corresponding properties of the macroscopic equations? 
A step in this direction, as proposed in [5], comes from the analysis of the covariance 
structure of the density fluctuation fields. The density fluctuation fields Y~(0) are 
defined, as the "fluctuations" of the density fields X~(0),  cf. (1.9), namely 

= 4 e  E  o(ex)(n(x, t)-(,7(x, t)y) (4.1) 

where ~0 e S°(R) and (.)" is the average w.r.t, the process with generator L ". 
The covariance of Y~(~O) is a natural estimate for the stability of the deterministic 

orbits. On the other hand, in the limit when e --> 0 if the limiting law of the fluctuation 
fields converges to a generalized Ornstein-Uhlenbeck process, then it is believed in 
such case that it is possible to relate at least to some extent the parameters of the 
O.U. to those entering in the macroscopic equations, more precisely to its lineariz- 
ation, as predicted by the Fluctuations Dissipation theorem. 

We believe that the techniques introduced in Sections 2 and 3 can be modified 
to deal with such problems as we hope to report in a future paper. 

The analysis of the fluctuation fields is in a sense a linear theory, it studies small 
fluctuations around the deterministic equation which are, supposedly, governed by 
the linearized macroscopic equation. 

In [7] a case was studied in which the macroscopic profile is stationary but not 
stable. It was then proved that after an initial time layer T(e) (which suitably 
diverges with e) the state of the system becomes (close to) a nontrivial superposition 
of the extremal equilibrium states (for the free generator) and the law of the mixture 
is a statistical solution of the macroscopic equation. Several restrictions of technical 
origin had to be imposed in [7] among them the assumption that the system was 
in a macroscopically bounded region. 
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Presumably the models considered here are simpler to treat and for them it is 

conceivably possible to improve the results in [7], at least this has been one of  the 
motivations for our analysis. 

In Definition 1.1 we have considered models with only one species of particles. 

More naturally, in chemical reaction equations, one has several species and conserva- 

tion laws, for instance when one particle of a species dies a particle of another is 

created. I f  different species have different mechanical properties the situation gets 

quite complicated. 

The techniques we used so far are inadequate: the analysis of  Section 3 goes 

through, what  we miss are the a priori estimates of Section 2, which were based on 

bounding the birth with the death intensity. 

We describe below two models whose kinetic continuum limit should yield the 

Carlemann and the Broadwell equations respectively. These are Boltzmann equations 

with discrete velocities, hence, such result confirms that the continuum limit we are 
considering in this paper  is in a sense a "kinetic continuum limit". 

Before introducing the models we briefly sketch their main features. We start with 

the one related to the Carleman equation, the other will be discussed only briefly. 

We consider two types of particles, distinguished by a spin which has values +1. 
Particles move in 7/ in a way which depends on their spins. Spin = +1 simulates 

particles with velocity +1, in fact particles with spin +1 after an exponential time 

of  mean 1 jump to their right. Particles with spin - 1  jump with the same intensity 

to their left (~negat ive velocity). Such process, whose generator is denoted by L0 
(warning: we are using the same symbols as before, but in the present context they 

have different meanings) is speeded up by a factor e -1 (and not e -2 because here 

we have a drift and not a diffusion). Furthermore the spin of a particle can change, 

the intensity for such event is proportional to the number of pairs of particles with 

the same spin sitting at the same site. 

Let L " =  e - I L o + L o  be the corresponding generator. The initial measure is a 
family, /x ~, e > 0, of product measures on N z x N z such that, for all r e R, 

lim/z~[ 7?+([e-lr])] = p±(r) (4.2) 

where p± are C 2 nonnegative uniformly bounded functions. As in Definition 1.1 we 

also assume that there exists Co < oo so that for all k and Xl,. • •, Xk mutually distinct 

I ~ [ I-I rl(xi) <~c~. (4.3) 
L i=l,. . . ,k 

We then have the following. 

Conjecture 4.2. Let L ~ and I~ ~ be as above. Then for  any r ~ R and t > 0 

l im/z ~[ ~7±([ e-1 r])] = p±(r) 

where 

(4.4) 

a,p±+a,p+=-(p~-p2), p±(r, O) = p±(r). (4.5) 
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The Carleman equation has been studied in the "hydrodynamical limit" by Kurtz 
[14], McKean [19], and Palczewski [22]. That is, one considers (4.7) with a parameter 

- 1  e which multiplies Orp.,- and e -2 in front of the collision term _ ( p 2 _  p2). In the 
limit when e --> 0 it is proven that p+ = p_ = p and that p solves the diffusion equation: 

Otp = 1 / 2 0 ~ ( 1 / p d , p ) .  (4.6) 

We think it would be very interesting to obtain such limiting behaviour directly 
from the original microscopic system. 

The particle system leading to the Broadwell equation is analogous to the previous 
one: we only give a brief description of it. We have four component spins correspond- 
ing to four velocities. Particles move in Z 2 and they jump up or down, left or right 
according to their spin (hence hereafter called velocity) with exponential waiting 
times of mean 1. Such processes are speeded up by e -1 as in the Carleman model. 

Particles with horizontal velocities (say positive along the x-axis) and at a given 
site may change velocity which then becomes vertical (up or down with equal 
probability) with intensity proportional to the number of particles at that site which 
have negative horizontal velocity. Such process simulates elastic collisions between 
particles and leads in the macroscopic equation to that part of the collision kernel 
which contains the product of the local densities of particles with opposite horizontal 
velocity. Collisions among particles with opposite vertical velocities are defined 
analogously. 

The interesting point in the Brodwell case is that the limiting hydrodynamical 
equation has still an Euler structure in contrast to what happens for the Carlemann 
equation. 
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