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We consider a Ginzburg-Landau equation in the interval [— E- K , E - k ] , E>0,
K>1, with Neumann boundary conditions, perturbed by an additive white noise
of strength SE, We prove that if the initial datum is close to an "instanton" then,
in the limit E -> 0 + , the solution stays close to some instanton for times that may
grow as fast as any inverse power of E, as long as "the center of the instanton is
far from the endpoints of the interval". We prove that the center of the instanton,
suitably normalized, converges to a Brownian motion. Moreover, given any two
initial data, each one close to an instanton, we construct a coupling of the corre-
sponding processes so that in the limit E-> 0+ the time of success of the coupling
(suitably normalized) converges in law to the first encounter of two Brownian
paths starting from the centers of the instantons that approximate the initial data.

KEY WORDS: Stochastic PDEs; Interface dynamics; invariance principle;
coupling of infinite dimensional processes.

1. INTRODUCTION

In this paper we study the Ginzburg-Landau equation perturbed by an
additive white noise a of strength SE,
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where E > 0 is a small parameter that eventually goes to 0 and V(m),m E R,
is a symmetric double well potential, with minima at m = ± 1. We consider
this equation in the interval TE,K = [ - E - K , E - K ] , K>1 with Neumann
boundary conditions (N.b.c.).

We call pure phases the two constant functions m(x)= + 1, x E TE,K

and we study the interface dynamics, that is the evolution of profiles that
are close to the two pure phases to the left and to the right of some point,
say X0. The deterministic Ginzburg-Landau equation (i.e., setting E = 0 in
(1.1) and considering the equation in the whole R) has a stationary solu-
tion m(x) = tanh x, x E R that we call "instanton". The solution m is a
wavefront with speed 0, that connects the two pure phases. The set of all
the translates of m is stable, that is if the initial datum is close to m(x — x0),
for some "center" x0, then the solution of the deterministic Ginzburg-
Landau converges to an instanton with center x'0 close to x0.

Here we prove a similar stability result for the stochastic Ginzburg-
Landau equation, showing that the solution of (1.1) with initial condition
close to the restriction of some instanton to TE,K, remains close to the set
of translate of m(x — x0), for times of the order of any inverse power of E,
and that its center, suitably normalized, converges to a Brownian motion.

Our motivation for studying this problem comes from the physics of
the spinodal decomposition. This is the phenomenon that appears in a
quenching experiment. In a quenching experiment a system is in thermo-
dynamic equilibrium with a reservoir whose temperature is suddenly varied
from above to below the critical temperature of the system. This process is
in general so fast that we may suppose the state of the system unchanged
at the end of the cooling, but no longer in equilibrium with the reservoir.
The state is still stationary, but unstable. What happens next is called
"phase separation". At a very early stage the interaction with the environ-
ment (usually modeled by a small random perturbation) is dominant
because the system without perturbations would stay in its initial station-
ary state. As soon as the state changes, the deterministic forces internal to
the system take over and drive it quickly away from the initial unstable
equilibrium, see De Masi et al.(9) and references therein for a mathematical
analysis of the phenomenon. In general equilibrium is not yet reached at
this stage, at least when the system is spatially extended. In each subregion,
in fact, the state will approach a stable thermodynamic phase, but since
several ones are equally accessible (as the temperature is below its critical
value) there is no reason why the equilibria of far away regions should be
coincide. The typical picture is thus a collection of phases with interfaces
in between and the next regime of phase separation describes the competition
between phases. For nonconservative evolutions (that we consider here) the
larger clusters grow at the expenses of the smaller ones and typically the
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interfaces move by mean curvature. Once the clusters become very large
(i.e., the curvature very small) this process becomes extremely slow and
new effects arise, in particular stochastic forces may again be dominant. As
a matter of fact there are examples involving deterministic evolutions where
the phase separation even stops and the system fails to reach the true equi-
librium, being stuck in some locally stable but spurious equilibrium, see
Friesecke and McLeod.( 14) These effects are more frequent in one dimen-
sion, therefore our equation is a good model for studying these problems.

Fusco and Hale,(15) and Carr and Pego,(6) have studied the deter-
ministic Ginzburg-Landau equation in the finite interval TE,K with
Neumann b.c. and with initial datum close to the two pure phases to the
right and to the left of some point x0 respectively. They prove that the solu-
tion relaxes in a short time to an almost stationary state which represents
a front connecting the two stable phases, m= ± 1. This front is very close
to the "instanton" mx0(x) = m(x — x0) restricted to the finite interval (In the
literature it is usual to call instanton the space derivative m' of m). As
already mentioned the front which has been formed in TE,K is not truly
stationary, in fact it moves but extremely slowly, with speed = e - c l , c a
positive "slowly varying" factor, l the distance of the center from the
boundary of TE,K. During this motion the front keeps almost the same
shape.

If we take into account the stochastic term, the picture initially does
not change much: except for small deviations we still have a short relaxa-
tion time and the formation of a profile very close to a front. However,
under the action of the noise, the front moves at times dramatically shorter
than in the deterministic case. At times tl = t E-a, 0<a<1/3, t>0, the
shape is still the same but the center x0 has moved by = SEtE and on this
scale it is a Brownian motion.(3) At times tl= =t E-1, t>0, the displace-
ment is now finite and the motion of the center converges as E -> 0+ to a
Brownian motion bt, as shown by Brassesco et al.(5) when K = 1 . The
motion is still Brownian also at times tE = tE-1-G, t > 0, G > 0 small enough,
as shown by Funaki,(16) in a somewhat different setup. At much longer
times the picture may in principle change, for instance the system could
pick up some drift, as it happens when the potential V is nonsymmetric, as
shown by Brassesco and Butta.(4) In this paper we prove that in the sym-
metric case there is no drift for times that grow as any inverse power of E:
roughly speaking we prove that the process m, is close to m x 0 + S b l (in the
sense that the sup norm of the difference vanishes as E->0+ ) with bt a
Brownian motion with diffusion D = 3/4. Convergence is proved by
suitably scaling space and times and before "extinction", i.e., when one of
the two phases disappears and only one remains. Many problems are left
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out of our analysis as for instance a precise estimate of the extinction time.
We have only estimates on the first time T when one of the two phases
shrinks to cover TE,K except an interval of size proportional to E-1 close to
one of the endpoints of TE,K. We show that as E -> 0+, T has the same law
as a stopping time defined in terms of bt. We could improve (with a lot of
work) the result till intervals of the order of c log E-1, with c>0 large
enough. But for a critical value of c the Fusco-Hale drift should become
dominant with the minority phase shrinking deterministically still extinc-
tion. Since the time (after T) when all this happens should be significantly
smaller than T itself, T would become a good estimate for the extinction
time. The one phase regime, however, is not yet the true equilibrium, as,
at much longer times, tunnelling phenomena become important, see Faris
and Lasinio,(11) and Cassandro et al.(7) for the analysis of these aspects
in finite volumes and, respectively, in intervals that grow logarithmically
with E-1.

The convergence to a one-dimensional process described by a simple
Brownian motion holds in a much stronger sense than one might suspect
from this presentation. In fact by extending the work of Mueller,(17), to the
present case (his stable point being replaced by our one-dimensional
manifold of equilibria, i.e., the translates of the instanton) we construct, in
the limit as E -> 0+, a coupling of two processes starting from two different
data, m and m', where the time of success of the coupling (i.e., when mt and
m't become almost everywhere equal) has the same law as the first encounter
of two independent Brownian motions in d= 1 that start from the centers
of the instantons associated to m and m'. We refer to the next section for
the precise statements. In Section 2, we prove some properties of the deter-
ministic equation. In Section 3, we extend the results to the case with noise.
In Section 4, we prove convergence to the Brownian motion and in Section 5
we construct the coupling which proves the loss of memory of the initial
datum. A brief outline of the main ideas of the proof is given in Section 3
after the proof of Theorem 1.

1.1. Definitions and Main Results

We consider the Ginzburg-Landau one-dimensional stochastic partial
differential equation
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with Neumann boundary conditions (N.b.c.). The noise A = A ( x , t ) is a
standard space-time white noise (see Walsh(19) for a precise definition) and
E is a small positive parameter that will eventually go to zero. Let us denote
by H ( e )

t the Green operator for the heat equation with N.b.c. in TE,K, and
by H(E)

t(x, y) the corresponding kernel. The standard way to give a precise
meaning to (1 .2) is to consider the integral equation that results of formally
applying H(E)

t on both sides of (1.2). For a given continuous function m0

defined in TE,K and satisfying N.b.c., we then get

where Z,(x) is the Gaussian process defined by the stochastic integral in
the sense of Walsh.(19)

The process Z t ( x ) can be seen to be continuous in both variables
[Walsh(19)], and its follows as in Faris Lasinio(11) that (1.3) has a unique
continuous solution m,, which we will call the Ginzburg-Landau process.

Since we are interested in studying the evolution of m, when the initial
datum is close to an instanton, and to use the stability of the instanton
under the dynamics in the whole line, it will be convenient in the sequel to
consider the integrals in R instead of TE,K as in Ref. 5. To this end, given
a continuous function f defined in TE,K, call f it extension to R given by
successive reflections around ( 2 n + 1 ) E - k , n E Z, and define the space of
functions so obtained

CE,k( R) = {f: f E C0(R), f is invariant by reflections

around the points (2n + 1) E-K, n E Z}

Consider then

where Ht is the heat operator in R, and the last term Zt is really the exten-
sion to R of the process Zl defined by (1.4). As it follows for instance from
Doering,(10) Eq. (1.5) has a unique continuous solution mt if the initial
datum m0 is bounded and continuous. We set
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for the solution mt of (1.5). As proved by Brassesco et al.(5) in Prop. 2.3,
given m0 defined in TE,K and satisfying N.b.c., mt is a solution of (1.3) if and
only if its extension to R, mt solves (1.5), with initial condition and noise
being the respective extensions of m0 and Zt. In case m0 E CE,K(R), by an
abuse of notation we will also refer to T t(m0; SE Z) as the Ginzburg-
Landau process (in TE,K with N.b.c.). We thus have two ways of repre-
senting the same process, one in TE,K with H(E)

t and the other in R with Ht

and we will switch from one to the other according to which one is more
convenient in the specific application.

We leave for a while the discussion on the Ginzburg-Landau process
turning to the deterministic case, i.e., E = 0, and the Eq. (1.2) considered in
R; we denote by T t (m) = T t ( m , 0 ) the corresponding flow. Since
m(x) = tanh (x) verifies the identity

it is a stationary point of the flow, namely m = T t (m) for any t>0. The
function m(x) is what we call "instanton" and 0 is "its center". Its translate
by x0ER,

is also stationary and will be called "instanton centered at x0" (thus
m = m0), Fife and McLeod,(12,13) have proved that the manifold

is locally attractive under the deterministic flow Tt( •). More precisely, let
|| • || denote the sup norm in R, and, for d > 0, define

Then, there exists D* >0 and a real valued function £(m) defined on J(s*,
such that

in sup norm and exponentially fast. Thus Ms* is foliated by the sub-
manifolds (transversal to Jl\.



which are space translated of each other. C,(m) will be called the "true
center" of m e MD*. In practice it will be more convenient to work with an
approximate center, the "linear center", but for expository reasons in this
section we refer to the true center.

When we restrict to Te,K we evidently loose the notion of instanton
and the reader may ask why to consider Te,K instead of the whole R. The
reason is technical, the price would be having to deal with an unbounded
process. Essentially the same problems arise in intervals which grow
exponentially with e-1, hence the restriction to Te,K. With the choice of the
Neumann boundary conditions in Te,K we have the advantage of recovering
to some extent the instanton structure present in R, as proved by Carr and
Pego,(6) and Fusco and Hale,(15) and explained in the introduction, see also
the introduction in Brassesco et al.(5) The choice of Neumann boundary
conditions is important here, periodic b.c., for instance, would give rise to
two fronts while Dirichlet b.c. would force the unstable m = 0 phase at the
boundary with extra complications that our choice of N.b.c. avoids.

Our analysis will extensively exploit the stability properties of the
instantons and in this respect we will take great advantage of the represen-
tation (1.5) where the only memory of the boundary conditions is in the
"small perturbation" S E Z, and in the initial state. The Eq. (1.5) is thus
well suited for a perturbative analysis of data close to instantons. However
even if m e C e , K ( R ) is very close to an instanton in T e , K , it is not close to
any instanton in the sup norm in R. We overcome this point by using
barrier lemmas that allow to modify the function away from Te,K without
changing too much evolution in Te,K. The modified function can then be
taken in a neighborhood of M and we can adapt the results of Fife and
McLeod about the convergence to an instanton. The noise will counteract
this trend by preventing the orbit from getting too close to the instanton
and the process will live in a small neighborhood of M, whose size
depends on the strength of the noise and vanishes as e->0+ , see
Theorem 1 later. At the same time, however, these small deviations caused
by the noise have the important effect of changing the center of the deter-
ministic evolution. Their cumulative effect will be in the end responsible for
the Brownian motion on M that describes the limit process, see Theorem 2
later.

As explained before, the first step was to modify the functions in
C e , K (R ) , outside Te,K so that they are in a small neighborhood of an instan-
ton. With this in mind, given m e C 0 ( R ) , we define me,K = m when
m E C e , K ( R ) setting in the other case
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We then define

Given mt a solution of (1.5) we set

and for any 0 < l < 1 we define the stopping time

and the stopped process { m t } t > 0 ,

where a A b stands for the minimum between a and b.
Finally we denote by Pe the probability on the space where the noise

SE a., and consequently all the processes we consider, are constructed.
Es denotes the corresponding expectation.

Theorem 1. There is De(0, D* /2] , D* as in (1.11), and for any K>1,
h > 0, a e (0, 1/4) and l e (0, 1) there are c> 0 and p > 0 so that the following
holds. Let m0eMD and |Ce ,K(m0)| < E - K -l E-1, and m, as in (1.6). Then

Our next result states that before being stopped the process £t con-
verges as E -> 0 + to a Brownian motion with diffusion coefficient D = 3/4.

Theorem 2 (Convergence to Brownian Motion). In the same contest
as in Theorem 1, given any R±e[ —I , +I] we suppose that the initial
data m0 is such that

Then for any t* >0 the process eh/2(£e-h-\, — £e'K(m0)) converges weakly on
C([0, t*]) to a Brownian motion with diffusion coefficient D, starting from
0 and stopped at R ±.

Theorem 1 thus states that the Ginzburg-Landau process is locally
attracted by the manifold M (when the center is sufficiently far from the
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endpoints of TE,K) and Theorem 2 that it performs a Brownian motion
on M. We also have sharper results, see Proposition 4 and Corollary 1, on
the small deviations of the process transversally to M.

Our last result refers to couplings:

Theorem 3 (Couplings). Let m0 and m'0 be in CE,k, let both verify
the assumptions of Theorem 2 with respectively R± and R'± and, calling
x0= C(m0), x0 = C(m0), suppose

Then there is a realization on the same space of the two Ginzburg-Landau
processes mt and m't that start from m0 and, respectively m'0 so that, if

then Eh +1Z converges in law to the distribution of a variable S defined as
follows. Let bt and b't be independent Brownians with diffusion D starting
from 0 and stopped respectively at R+ and R'±. Then S is the first time
when bt — bt = r*, provided S occurs before any of the Brownians is stopped,
in that case S= +I.

2. THE DETERMINISTIC FLOW

As proved by Fife and McLeod, T t (m) , m EMD*, is attracted by M,
see (1.11), so that it is eventually very close to an instanton. (This will also
be true with large probability when the noise is present, if E > 0 is small
enough.) The flow Tt is thus well approximated (after a relaxation time) by
its linearization around an instanton. It is then possible, see Theorem 5
later, to estimate the true center £(m) in terms of the (easier to handle)
"linear center £(m)", defined as the center of the instanton that attracts the
linearized flow, a condition equivalent to that in Definition 1. These are the
main issues discussed in this section.

If me C0(R) then m(x, t) = T t ( m ) ( x ) , t>0, is in C2(R), it is differen-
tiable with respect to t, see Fife and McLeod,(12) and it satisfies the
Ginzburg-Landau equation

860/11/1-3
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The instantons mx0, x0e R, are stationary solutions of (2.1). The linearized
flow around mx0 is the linear semigroup g t , X 0 on C0(R) whose generator LX0

acts on f E C2(R) as

Denote by m ' x ( x ) the derivative w.r.t. x of m x 0 ( x ) . From (1.7), LX( )m'X0 = 0,
(for any x0e R). Denoting by < .,. > the scalar product in L 2 (R) we set for
any x0 e R,

so 0 is an eigenvalue of LX0, and m'X0 is the corresponding unitary eigen-
vector in L2(R). The operator LX0 has a spectral gap:

Theorem 4. There are a and c positive so that for any f E C0(R) and
X0 E R

A proof of Theorem 4 in a L2 setting may be found in Ref. 12, the
proof with sup-norms is similar to that in Section 4 of Ref. 8 and it is omitted.

We will exploit Theorem 4 by observing that m(x, t) = T t ( m ) ( x ) solves
for t > 0 the equation:

We next define the "linear center" of a function f e C0(R). This notion was
introduced by Brassesco et al.,(5) where it was called simply "center".

Definition 1. The point x0 e R is a linear center of m e C0(R) if

Existence and uniqueness of the linear center are stated in the next
lemma. The proof, being essentially the same as that of Brassesco et al.,(5)

[Prop. 3.2] is omitted:
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Lemma 1. There is D0 > 0 so that any m e MD0 has a unique linear
center £(m). Moreover there is c 0>0 so that if m e C0(R), y0 ER and

then the linear center x0 of m is such that

Let m and m be in MD0, x0 and x0, their respective linear centers and
||m — m|| <D0. Then

In the sequel we take (for notational simplicity) D0< 1 and D0<D*,
D* as in (1.11), so that if m E MD0 both £,(m) and £ (m) are well defined.
Theorem 5 is the main result in this section.

Theorem 5. There are B>0, c>0 and D1 E(0, D0], so that for any
m e MD1

Moreover T t ( m ) e MD0 for all t>0 and, setting £t = £ ( T t ( m ) ) ,

The relevant parameter in Theorem 5 is thus ||m — m f ( m ) | | , which
controls the difference between the linear and the true center, see (2,10),
and the convergence of T t (m) to the instanton, see the first relation in
(2.11). We start by proving that the first relation in (2.11) follows from the
second one and (2.10), we will then complete the proof of Theorem 5 after
a preliminary lemma, Lemma 2.
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Proof of the first inequality in (2.11). Since m' <1,

hence, by the second inequality in (2.11),

Recalling that £(m) = £ ( T t ( m ) ) and Zt = £(Tt(m)), by (2.10),

which using again the second inequality in (2.11) completes the proof of
the first one. D

Lemma 2. There is c1>0 so that for any L e(0, 1], x 0 e R and
v e C(R) such that ||N||< 1 and <m'x0, N> =0 the following holds. Let

and c, a as in Theorem 4. Then for all 0<t<TL

Proof. Let ut= T t (m) —mx 0 , u0 = LN. By (2.5) and Theorem 4 there is
c2 > 0 so that

Call T the first time such that ||UT|| =2cL, and suppose that T<tL . Then
by (2.15)

which does not hold when A is small enough, say L<L0, L0e(0, 1],
But (2.14) follows from (2.15) when Le(L0, 1], since ||us|| is bounded

for all s>0, by the maximum principle. For L<L0, we have seen that
T>tL so ||ut|| <2cL for all t < t L . With this bound on the right-hand side
of (2.15) we obtain (2.14), completing the proof of the Lemma. D
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Proof of Theorem 5. We use the same notation as in Lemmas 1
and 2. We take D1 >0 (other conditions on D1 will be specified later) so
that for any L e(0, D1]

Let m e MD1 and call x0 = £(m). If m=m X 0 , then the theorem follows since
mX0 is stationary for Tt. By writing

we can apply Lemma 2 with L = ||m — mx0|| and, by Lemma 1, (2.14) and
(2.16), the linear center £ ( T t ( m ) ) is well defined for t < t L , and, setting
m* = T t L (m) there is a constant c2 > 0 so that,

We will prove that there is a constant c3 > 0 so that

Proof of (2.10). Since l^(m) = ̂ T!(m)), £(m) = C(m*). Then by (2.18)
and (2.17)

Recalling that m' < 1 and using the inequalities in (2.17)

(2.10) is proved, conditioned on the validity of (2.18).

Proof of (2.18). We further specify D1 by requiring that for all
Le(0,D1]
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By (2.19) and (2.14), (2.20) implies

thus enforcing the initial conditions also at time tL.
We define T so that T < TL0 (where L0 is defined later) and also that

We require that D1 is such that for all Le(0, Dt]

and

By iteration we then define for n > 1

We have from (2.23)

Since x(n) -> C(m ( 0 )) as n-> +I this proves (2.18) (recall that m*=m(0)).

Proof of (2.12) and of the second inequality in (2.11). The second
inequality in (2.11) has been previously proved at the times m. For
t e (nt, (n + 1) t) we have:
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In the last inequality we have used Lemma 1. The second inequality in
(2.11) then follows from Lemma 2.

To prove (2.12) we write

The last term is bounded using (2.10). For the other one observe that by
(2.9) for any t>0

which by (2.11) proves the first inequality in (2.12). The second one follows
from the first one and (2.11), and the proof of Theorem 5 is finished. D

3. THE STOCHASTIC FLOW

In this section we prove Theorem 1 and some of the key estimates that
will be used in Sections 4 and 5 to prove the other theorems of Section 1.
We start with Proposition 1 where we derive the basic bounds on the
Gaussian process Zt. The proposition is proved in Ref. 5 for K = 1 . Its
extension to K > 1 is not difficult and for completeness we report it in the
Appendix.

Proposition 1. Let k>1, E>0 Zt as defined in (1.4), and
Tt(m, ,Se Z) the solution of (1.5) starting from m. Then there are positive
constants b0 and b1 such that, if we set tE = (log E)2 and

the, for any p > 0 and E>0,

and for all m e C 0 (R) with ||m|| < 1 + 10 -2 , any S>tE and any E>0 small
enough,
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Note that (3.3) implies that, for any N>0, the process remains
uniformly bounded up to times E-N with probability close to 1 exponen-
tially in E-1,

Let m E C0(R), set mt = Tt(m; SE Z), t>0, then, for any x 0 e R ,
ut = mt — mx0 solved the following integral version of the Ginzburg-Landau
stochastic equation (also considered in Ref. 5)

The operator gt, x0 was defined in the beginning of Section 2 and

Zt,Xo is also given by the stochastic integral (see Ref. 5)

where

and g t , X 0 ( . , . ) stands for the kernel corresponding to the operator gt,x0. An
estimate analogous to that given by Proposition 1 follows for Zt,X0:

Proposition 2. Let Zt,x0 as before. Then there are positive constant b0

and b1 such that, if we set te = (log e)2 and

then, for any p > 0 and E > 0,

Proof. It is a consequence of (3.2), (3.5) and (A.30). D
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Recall from Lemma 1 that £(m) is the linear center of m (see (2.6)),
and that there is D0 so that if me MD0 then £(m) is uniquely defined. In
analogy with (1.14), given any k> 1, we set

and, given any l e (0, 1) and D e (0, D0],

By (2.10), Theorem 1 follows from the analogous statement with the true
center replaced by the linear center. Theorem 1 will then be a consequence
of the following Proposition.

Proposition 3. There is D2 € ( 0 , D 1 ] (D1 as in Theorem 5) so that the
following holds. Let a e (0, 1/2), l e (0, 1), K >1, d e (0, D2] and p e (0, a/2).
Then there are positive constants b0, b1 and c so that for any e>0 small
enough and for any meME

K,l,D, if mt = T t(m; SE Z), l'=l — ec(D v
e1/2-a), and te = (log e)2,

P e (m t EM E
K , l , c D for all t<t e ,m t E eM E

K , l , E
1 / 2 - a )>1-b 0 e - b 1 E - P (3.11)

Proof. Let m be as in the statement and consider first the case
m e MD1 . We study mt = T t ( m ; S e Z) as a perturbation of m0

t = T t(m). Let

By Theorem 5 there is a constant c = c(D 1 ) so that for all t>0

Next, we write the integral equation for mt — m0
t in terms of the operator

g t , X o . Recalling that V ' ( m t ) - V ' ( m 0
t ) = ( m t - m 0

t ) [ 3 ( m 0
t )

2 - 1 + 3m-2
Xo-3m2

X0]
+ 3m0

t(mt-m
0

t)
2 + (m t-m0

t)
3, we obtain
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where Zt,x0 was defined in (3.5). By (2.12) ||m0
t-mX0|| < ||u0

0||. Then, by
(3.12) and (A.30) we get that in Bp,E,x0 (which, by (3.8), has probability
greater than 1 -b 0 e - b 1 E - P ) ,

for some positive constant c3. By (3.13) and (3.3), Dt<4 for all t<E-2

with probability exponentially (in E-p) close to 1. By (3.14) and the
Gronwall's Lemma, in Bp,E,x0 intersected with the set in (3.3), we have

Calling t * = p ( c 3 ( | | u 0
0 | | + 1 0 0 ) ) - 1 | l o g e|, for any e>0 small enough we

have that

By (3.13) there is be(0, 1/2-2p), so that calling y 0=£(m 0
1 * ) , for any e>0

small enough,

Then

Hence for £ > 0 small enough the linear center x* = c , (m t * ) of mt* exists and
by Lemma 1 |x* — y0|<c02Eb. Then

where c is the constant in the second inequality in (3.13). Thus by (3.17)
and (3.18) mt* e M e

K , l 1 , D , l 1 = l - E c ' and D = 2Eb.
Moreover, recalling that m' < 1,

We next consider mt = T t(m t *; sE Z). We call m 0
t = T t ( m t * ) and

Dt= ||mt — m0
t||. Again in B P , E , X 0 , (3.14) holds in this setup, but now, by

(3.19), | |u 0
0 | |<(1 +c0)2eb. Hence, by considering Z = in f{ t>0 : Dt>

cE1 / 2 - p}, it follows from (3.14) that z>te for some convenient c<I so
that D-t< cE 1 / 2 - p for all t < t e .



Interface Fluctuations and Couplings in the D = 1 Ginzburg-Landau Equation with Noise 43

By the same argument used earlier we then complete the proof of
the Proposition under the additional assumption that m e MD1 and con-
sider next the case m e M e

K , l , D I C E , K ( R ) with De(0, D1/(1 + c0)], c0 as in
Lemma 1. Then m e , K e MD and | £ e , K ( m ) | < e - K - L e - 1 and hence (3.11)
holds for T t (m e , K ; SE Z). Let Bp,e be the set in (3.1). Then there are con-
stants c' and V positive so that setting Ls = e - K — Vte

(3.20) is proved in Proposition 5.3 of Ref. 5 (Barrier Lemma) for K = 1 , but
the proof is also valid for K> 1. Let next x e [ L e , E - K ] (the proof for
xe[ — s - K , —L e ] , is similar). Since m e , Ke MD with | £ ( m e , K ) | < E-K — lE-1,
using (2.8) and recalling that m(x) = tanh (x), we have, for any e> 0 small
enough,

Then, since m(x) = m E , K ( x ) for any x e [ L e , E - K ] and D<D 1 / (1 +c0) with
D1<1, there is a constant c e(0, 1) so that, for any E>0 small enough,

Recalling that m E CE,K(R), we define m e C ( R ) as

Using again the Barrier Lemma there is c>0 so that in BP,e

Since m ( . ) = 1 is stable (see the proof of Lemma A.2 in the Appendix) there
is a constant c> 0 so that in Bp,e for any t e [0, te]

By (3.20), (3.23), and (3.24) there is c>0 so that ( T t ( m ; SE Z ) ) e , k is in
McD for all t< te and in Mce1/2-A at time te.
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It remains to control the position of the center. From (3.20), (3.11),
and (3.24), there is a constant c>0 so that

By choosing D 2 e ( 0 , D 1 ( 1 + c0)] so small that cD2<D0, D0 as in Lemma 1
we conclude that, for any D e(0, D2],

Since |£(T t (m e , K ; S E Z))| < e - k -e - 1 l ' similar conclusion (with l'
replaced by l' -E(c0cD)) holds for £ ( ( T t ( m ; Se Z ) ) E , K ) , and Proposition 3
is proved. D

Proof of Theorem 1. By iterating (3.11) and recalling that by (2.10)
the true and the linear centers are close we conclude the proof of
Theorem 1. D

3.1. Main Ideas of the Proofs

The proof of Theorem 1 is a (simple) perturbative argument that
relates T t(m;SE Z) and Tt(m); convergence to a Brownian motion is a
quite different game, its proof much more delicate.

When times are scaled as E-1t, t in a compact of R, the argument used
in Ref. 5 applies. It is based on the bound

which holds if m e ME
K,l,e

1/2-a and c>0 a suitable constant. The bound
follows easily from the integral representation (3.4) using the estimates of
Section 2. The idea then is to split the time into intervals of length te (a dif-
ferent value of te is actually used in Ref. 5) and to replace at the beginning
of each interval the true process by the one which starts from the instanton
with the same linear center. One can see that if a is small the sum of all
errors, bounded using (3.27), vanishes when E->0+ so that we can con-
sider a process that at each interval starts from an instanton. Then except
for the (negligible) influence of the boundaries, the increments of the linear
center are mutually independent and convergence to a Brownian motion is
easily proved.

If times are proportional to E-h, h large, the sum of the errors is no
longer negligible and this approach fails even though the bound (3.27) is
optimal. We find a way out exploiting the fact that we can prove a much
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better bound (that goes even like cnen for any given n) provided we con-
struct the two processes in a more refined way than taking just the same
noise in the whole interval [0, te]. But the most important point is that we
only compare the processes modulo translations. We can then conclude
that after a time delay te the two processes, suitably shifted, are in law very
close to each other. The successive increments of the linear centers are inde-
pendent of the shift (except for the influence of the boundary, controlled by
using the Barrier Lemma) so that they are in law very close to each other.

The crucial bound involving cne
n is proved later, see Proposition 4

and Corollary 1; its application to the convergence to a Brownian motion
in Section 4.

To investigate the process modulo translation, i.e., the deviations
transversal to M (neglecting the localization along M), it is convenient to
introduce a function De(m, m*) which is a substitute for a distance between
m and m*.

Definition 2. Let f e C ( R ) , E > 0, x and y e R, we set

For m and m* in C(R), we then define De(m, m*) by

x0 = £ e , K (m) , x0* = £ e , K ( m * ) (see (3.9) for notation) and a v b stands for the
maximum between a and b.

In general De(m, m*) =£De(m*, m). By its definition for any D e ( 0 , 1),
D e (m ,m*)<D if and only if m e , K , ( m * ) e , K E Me1/2-a and there is C such that
|C-(x0*-x0)| <D and ||m-tcm*||e,x0<d.

We next prove a contraction property of the evolution with respect
to De.

Proposition 4. Let K>1, le(0, 1), a e(0, 1/2), n>1, b>0 and
G e (0, 1/2 —a). Then there are p > 0 and c> 0 such that for all 0 < e < 1 the
following holds. For all pairs m and m* e C(R) so that De(m, m*) <eb, we
can construct the processes mt and m*t, solutions of (1.1) with initial data
m and m* respectively in the same probability space and such that, if we
set te = (log e)2, then
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Proof. Notion: for simplicity we consider the case n = l. Let
x0 = E e , K ( m ) , x*0=Ee , K(m*), D=x*0-x0, L = e1 / 2 - a , D = Eb,

By assumption there is C, |C — D|<D, so that (recall that m' < 1)

We divide the proof into several steps.

Step 1. Construction of the coupling. Starting from a white noise
process a, consider the processes Zt and Zt,x0 as defined in (1.4) and (3.5),
(or (3.6)) respectively.

Next, take a second white noise a independent of a and set

(1A denotes the characteristic function of the set A). It is easy to check (by
comparing covariances) that the process Z*t and Zt have the same law.
Using them, we construct the Ginzburg-Landau processes by setting

Define

We also call v t
( e ,K) = ( m t )

e , K - m X 0 and u t
( e , K ) = (m*t)e

K-mx0*.

Step 2. The good sets. Let p e (0, a/2), e >0, c>0 and
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where Zt,x0 is given by (3.5), and Z*t,x0 is given by (3.5), with Zt* (given by
(3.33)) in the place of Zt and x*0 in the place of x0. That is,

We will prove that there is c>0 so that

Since De(m, m*) <Eb < 1, both m and m* are in Me
1/2-a. Then by (3.8) and

the proof of Proposition 3 there is a constant c so that

A similar bound holds for the probability of B(i)
E, i = 2, 3. (See Lemma A.5

of the Appendix and recall that p < 1/2).

Step 3. Bounds close to the center. Let G e(0, 1/2— a) and b>0,
G e(G, 1/2 —a) and M a positive integer such that b + G < M ( 1 / 2 — a). It
follows that there exists E0 so that for e < e0

We will prove that there are c and p positive so that for e < e0, in the
set Be,p,

Proof of (3.43). We set

For x, y and h in R and t > 0

hence, for any function f e C 0 (R) ,
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Writing the integral equation (3.4) for vt and ut (the former with g t , X 0 , the
latter with gt ,X0*) we get

where

For any k = 0,..., M we define

We next prove that there are c1 > 0, c2 > 0 and for any n there is c'n > 0 so
that in Be,p

To prove (3.51) we first notice that by (3.36) and (3.40) there is c>0 so
that in Be,p

Furthermore from (3.38) and (3.40) it follows that for any n there is cn so
that

By (3.45),
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We then use (3.32), that | |u| |<2e 1 / 2 - a and (A.31) to conclude that for any
k = 0,...,M

Furthermore by Theorem 4 and the Appendix, see (A.30) and (A.32), for
any n there is cn > 0 so that for all k = 0,..., M

so (3.51) follows from (3.47), (3.52), (3.53), (3.55), and (3.56).
By Theorem 4

By (3.47), (3.57), and (3.52) we have that, in the set Be,p

Therefore by iterating (3.51) we get

By the choice of M and since D 0 , s M<e 1 / 2 - a we conclude the proof of
Step 3.

Step 4. Bounds away from the center. We prove that there are c,
p and e0 positive so that if e> e0 and the processes mt and m*t are in Be,p,
then

We set

860/11/1-4
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and consider the case x — x 0 e[r e , M , 2e - 1 / 1 0 ] . The analysis of the other
interval involved in the sup in (3.58) is similar and omitted. Given V>0
we define

and complete the definition of m+ in the missing intervals by linear inter-
polation. m+ is defined similarly with m replaced by m* and x0 by x0.

We set

We choose V in (3.59) as the parameter entering in the Barrier Lemma
(Ref. 5, Prop. 5.3). Then there is c>0 so that in Be,p for all t < t e ,

The same bound holds for m*(x) — m +
t ( x ) when x0 is replaced by x*0. We

define

It is not difficult to prove the following a priori bound for v+
t and u+

t: for
p<a there is c>0 so that

We consider next the versions of vt
+ and ut

+ given by the corresponding
solutions of the equations:
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where

for a and a as in Step 1. We call

From (3.62), we get that there is a constant c' > 0 such that

But Vt — TD V*t is a Gaussian process, and it is not difficult to see that the
proof of (3.40) is still valid for a set like (3.37) with || Vt-TD V*t ||e,X0

instead of ||Zt — tdZ*t || . Then by (3.64) there is c>0 so that

Since

from (3.65) and (3.60), we get that

Step 5. Conclusion. By (3.43) and (3.58) there are c and E0 so that
if e <e0 and the processes mt and m*t e Be,p, then
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We then observe that from Lemma 1 it follows that in Be,p,

so that from (3.67) it follows that

By Lemma 1

By (3.68) and the exponential decay at infinity of m' f (mte) there is c>0 so
that

Since G> G, we have thus proven that in Be,p with p small enough,

Proposition 4 is proved. D

As a corollary of the previous proposition we have a fast decay trans-
versally to M, as we are going to see. We define

Note that we omit in the expression of C the explicit dependence on E
and K.

Corollary 1. Let K>1, le(0, 1), Ae(0,1/2), m, m* e Me
k,l,e

1/2-a.
Then we can construct mt and m*t, solutions of (1.5) with initial datum m0

and m* respectively, in the same probability space (but with different
noises), and such that, for any positive integer N there are c> 0, and p > 0
so that

where we set
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Proof. Let Ge (0, 1/2 — a), n>1, mt and mt* constructed as in
Proposition 4. By iterating (3.30) n times we get (for a constant c possibly
different from that in (3.30))

Then, by the comment after Definition 2, there is C such that (recall
e 1 / 2 - a <1)

where D=x*0 — x0, with x0 = £(me,K
te) and x* = £ , ( ( m f c ) e , K ) . We note that

In the Appendix, see Lemma A.3, we prove the following property of the
Ginzburg-Landau process. For any D>0, <Ae(0, 1/2) there is a constant
c>0 so that for any e small enough

Applying the previous inequality to m*t, we obtain

By (3.75), (3.76), and (3.78), and choosing n such that EnG/4<EN we then
derive (3.73). Corollary 1 is proved. D

Remark. Corollary 1 proves that two processes that start from
different data become almost equal modulo translations, with probability
going to 1 as e —> 0+ as fast as in (3.73). We improve this result in the next
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proposition in the sense that we have a similar statement without transla-
tions. The price we pay is twofold. The processes must start from data with
linear centers close to each other and, more importantly, the rate of
convergence is not as fast as before. In particular it is not fast enough for
what needed in Section 4, where we prove Theorem 2. In that case we use
Corollary 1 as we can reduce the analysis to events invariant under transla-
tions. This is no longer possible when proving Theorem 3, where however
we need only convergence in probability, without bounds on the rate of
convergence: for this Proposition 5 next will suffice.

Proposition 5. Let a e (0,1/2), b>1— a, Ge (0, 1/2 —a) , m and m
both in M* K , l , e

1 / 2 - a and

Then we can construct the Ginzburg-Landau processes {m t } t > 0 and
{m t} t > 0 starting respectively from m and m in the same probability space
and so that

Proof. We set D = Eb and L = e1/2-a.
We consider first the case when m and m are not in Ce ,K(R). Let

x0 = £(m), x0 = £,(m) and t* = Eqte, q>0 will be specified later. Let {ej
(e)}j>1

be an orthonormal basis of L 2 ( T e , K ) , such that e(e) = S D e m ' X 0 on TE,K De

the normalization constant, (Ds -> D = 3/4 as e -> 0+ ). Set

Let {bj(t)}j>0 be a family of standard independent Brownian motions, and
consider the Gaussian process

where
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and g(E)
t-s,x0 was defined in (3.7). By comparing covariances, it is easy to

check that Z(1)
t,x0 has the same law of the process Zt,X0 defined in (3.6). We

will construct another Gaussian process Z(2)
t,x0 with the same law. Consider,

for y0 that will be conveniently chosen later, the process

where

The process b1(t) is a Brownian motion, independent of {bj(t)}j>2.
Finally, let

Write the integral equations (3.4) for mt and mt as in the statement of the
proposition, using the Gaussian processes Z(1)

t,x0 and Z(2)
t,x0 respectively.

Then,

where A X 0 [ f ] = 3mX0f2 + f3, vt = m t-mx0, ut = mt-mX0. We multiply
both sides by m'x0 and integrate over R. We get, in {T<t*}:

where
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Choosing now y0 = <m' X 0 , m>(Se < a e , e ( e ) > e , K ) - 1 , from the definition of T
we then get

By standard results on Brownian motions and since lime->0+ <a e ,e ( e )> e , K

= SD, there is c>0 so that

By choosing q < 1 — 2a,

The set

has, by Propositions 3, probability that goes to 1 as £ -> 0+ . There is c2 > 0
so that in G

Let G e (G, 1/2 — a), then in {T<t*} I G and for all s > 0 small enough

By Lemma 1 there is c3 > 0 so that in the same set

Finally, using the integral Eq. (3.4) in the time interval [t, t*], by (3.91)
and (3.92), there is c4>0 so that in { T < t * } I G

We next consider the time interval [t*, te]. Let x*=(m t e * ) . We set, for
any t e[0, te], te = ( 1 - e q ) t e ,
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We write (3.4) for vt and ut relatively to mxe*. Setting D* =x*e — £(mte*),

Then Theorem 4 (3.94) and (A.31) imply that there are c5 and c6 so that

Using (3.97) and the integral equations for v*t and u*t we get, for some
constant c7,

By (3.98), using Lemma 1, we have also, for some constant c8,

and so, since G>G, by (3.98) and (3.99) we finally obtain

This proves the proposition for m, mBC e , K (R) . By using conveniently the
Barrier Lemma, one easily extends the result to the general case. We omit
the details. D

When proving Theorem 3 we will consider the case when at some time
T we have two data, mT and mT, both in C e , k(R) and in Me

K,l,e1/2-a, and
such that £ e , K ( m T ) = £ s , K (m T ) , see the end of Section 5. This case is not
directly covered by Proposition 5, but we will see in the following lemma
that if we construct with the same noise the two processes then after a time
te they will verify with great probability the conditions of Proposition 5.

Lemma 3. Let m and m both in M e
K , l , e 1 / 2 - a , a e (0,1/4), with

x0 = £,e , K(m) = £ e , K ( m ) and let p e(0, a). Then for any W E (2a, 1/2) and any
e small enough, in Bp,e,x0 the following estimate holds:
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Proof. Writing the integral equation (3.4) around mx0 for the two
processes one obtains an equation for the difference like (3.47) but with the
same center and noises. Then the estimate follows easily. D

We conclude the section with two lemmas consequence of general
properties of the Ginzburg-Landau process. For any ae(0, 1/2) and any
C E Me1/2-a, let us denote by EE the expectation with respect to the
Ginzburg-Landau process starting from C. We indicate with mt the coor-
dinate map on C(R+ ; C(R)) and let Ct = C e , K ( m t ) . We also recall that C ( m )
is defined in (3.72).

Lemma 4. For any t, s>0,

Proof. Consider the symmetry transformation R: C(R) -> C(R)
defined by (RC)(x)= — C ( — x ) . We want first to prove that starting from
m the laws of C(ms) and R ( C ( m s ) ) are identical. In fact for any m e Me1/2-a,
we have that T t(m, SEZ} = R T t(Rm, Se RZ) for all t>0. Since m = Rm,
for any bounded functional F on C(R+ ;C(R)) , E e

m[f]=E e
m[RF]. By

choosing F = f ( C ( m s ) ) with f any bounded continuous function in R we
prove that claimed, that is that the law of C (m s ) and R(C(ms)) are the
same. Therefore

On the other hand, by symmetry, if £(m) = 0 then Ee
m[£t] = -E

e
Rm[Et].

The lemma is proved. D

Lemma 5. Let a e (0, 1/4) and m e Me
1/2-a such that £,(m) = 0. Then

Proof. Given p e (0, a) let Dp be the nice set where sup0<t<tz || Se Zt,0||
<E1/2-p. By (2.8), for small E, in this set m +S e Zte,0 has a unique linear
center £Z and furthermore

On the other hand, looking at the integral version (3.4) of the Ginzburg-
Landau equation, since m is orthogonal to m', one easily obtains that,
in Dp,
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and then, by Lemma 1,

In the proof of Theorem 6 we will use the following consequence of (3.106);
in Dp one has

where Ete = £(T t e(m,Sez)).
Since P £ (D p ) converge to 1 as E -> 0+ faster than any power of e, from

(3.104) and (3.106),

But one easily computes

where e (s) is defined in the proof of Proposition 5 (here it is considered as
an element of Ce K ( R ) ) . The Lemma follows from (3.108) and (3.109) since
lime->0+ <m-1, e(E)> = 1/SD = S 4/3. T

4. CONVERGENCE TO A BROWNIAN MOTION

In this section we prove that the linear center £(m t), suitably nor-
malized, converges to a Brownian motion.

Let a e(0, 1/2), k>1, e>0, and

As in the previous section, set te = (log e)2. We consider an auxiliary
Markov chain (xn, C n ) n e N with state space R x X. We denote by Pe

(xn,Cn)

its transition probabilities, given by:

If instead Cn e Xe,a we define,
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Then, for any given B and A Borel sets in R and C 0 ( R ) respectively

We next introduce some stopping times: for r > 0 we set

and for e > 0 and a e (0, 1/2)

Finally, the stopping time Se ,K(C), e>0, K>1, C>0 is defined on
([R x X e , a ) N x C ( [ R + , R), i.e. the product of the Markov chain and the
Ginzburg-Landau process:

The seminorm ||. ||e is defined in (3.28). In these definitions the stopping
times are set equal to +I if the sets on the right hand side are empty.

In the next proposition we indeed construct the original Ginzburg-
Landau process and the auxiliary Markov chain in the same probability
space, and prove lower bounds on S e , K ( £ ) thus showing that the two
processes are close to each other.

Proposition 6. Let l e(0, 1), a e (0,1/2), K>1, h>0, q>0. Then
there is c>0 so that the following holds. Let e>0, m e C 0 ( R ) with
m e , K e M e

1 / 2 - a ,

Then we can construct the Ginzburg-Landau process mt (that starts from m)
and the Markov chain (that starts from ( x 0 , c 0 ) ) in the same probability
space so that

Proof. The proof follows by applying iteratively Corollary 1 together
with (2.9) and Proposition 4. D

We next study the Markov chain ( x n , C n ) and prove convergence to
a Brownian motion. We set z0 = 0 and for n> 1
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We then define

and given N (eventually we let N = N(c) and N(e) -> +I)

We finally extend X(t) to t eR + by linear interpolation.

Theorem 6. Let h > 0, x0 e R , a e (0, 1/4) and C0 eXe,a. Let Pe be the
law on C(R + ) of the process X(t) induced via (4.9) with N = [ e - h ] by
the Markov chain that starts from (x0, C 0 ) . Then PE converges weakly
on the compacts to P as e -> 0+, where P is the law of a Brownian motion
starting from 0 with diffusion equal to 3/4.

Proof. Without loss of generality we may restrict to t e [0, 1]. Tight-
ness on C([0, 1]) follows from the existence of c>0 for which

see Billingsley.(2)

We first prove (4.10) and (4.11), then a martingale relation for the
limit laws that will identify the law P of the theorem.

We call Tn, n e N, the Z-algebra generated by the coordinates ( x i , C i ) ,
0<i<n, of the Markov chain and denote by Ee

n, ne N, the conditional
expectation given Fn (sometimes we write more explicitly E e

( x n , c n )) . We set

We then have for n >1
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where

Observe that M*n and Mn are Fn-martingales. The usual semimartingale
representation for Zn in terms of the compensators G1,i and Mn is not
useful in the present context: the time delay in the definition of the compen-
sators G*1,i allows in fact to exploit the relaxation properties of the
Ginzburg-Landau process stated in Corollary 1.

The semimartingale representation of M2
n is

where we set N0 = 0 and for n > 1

is a Fn, martingale. For (M*n)2 we have

where N'n and N"n are Fn-martingales.
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Proof of tightness. By (4.13)

Using Doob's inequality we then get

We set N = N(e)= [ e - h ] , then we obtain

Since the chain is stopped once it is not in Xe,a it follows that if CnBXe,a

then G*1,n = G2,n=G*2,n
=0 so that (4.10) holds if there is c>0 so that

We will prove next the following stronger inequalities that will be needed
later:

We will prove (4.26) later.
To prove (4.11) we use the same argument after conditioning on Fn2.

We call (x n 2 ,C n 2 ) the state of the chain at time n2, n = n3 — n2 and
n = n2 — n1. Then
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and using (4.26) we have, for a suitable constant c' >0,

having used (4.26). Equation (4.11) and tightness are proved provided that
(4.26) holds.

Let P be a limit law on C([0, 1]) of {Pe}e>0. By Levy's characteriza-
tion theorem it will be sufficient to prove that the coordinate process X(t]
in C([0, 1]) is a square integral P-martingale and that X(t)2 — 3t/4 is also
a P-martingale.

By (4.13) and (4.21)-(4.23) and Doob's inequality we get

Observe that

so that from (4.29), (4.30) and the first and third inequality in (4.26) we get

which proves that X(t) is a P-martingale.
By (4.17)



Interface Fluctuations and Couplings in the D = 1 Ginzburg-Landau Equation with Noise 65

differs from a P£-martingale by the term [Z 2
n -M 2

n ] which by (4.29)
vanishes in L1 as e -> 0+. Thus the proof that X ( t ) 2 — 3t/4 is a P-martingale
follows from

which, by Proposition 6, is implied by

Proof of (4.26) and (4.34). First of all we recall the notation Ct =
T t(C;Se Z). Let C e Xe,a we call C=Cte= T t e(C;Se Z) and we denote by
X the center of C, i.e. x=£ e , k(C); we finally let P(x) = C(x + x). By (4.12)

By Lemma 4, G*1,0(m) = 0 so that G*1,0(C) = G*1,0(C)-G*1,0(m). We apply
Corollary 1 so that we can construct the processes starting from C and m
in such a way that for any q>0 there is c>0 so that ||Cte — Cte||e <Eq with
probability larger than 1 - ceq. (Cte = Tte(m;S e Z)). Thus

By (3.71) with D = 0 and D = eq we get | G * 1 , 0 ( C ) | < c e q (for a suitable
constant c>0). The first inequality in (4.26) is thus proved.

In order to prove the second and third inequalities in (4.26), we first
observe that by symmetry G 1 , 0(m) =0, so that by (3.107)

which vanishes as e -> 0+ by the assumption a < 1/4. By (4.18)

By the previous bound the last term vanishes as E ->0+ (uniformly on Xe,a)
while the first term on the right-hand side converges to 3/4 by Lemma 5.
We have thus proved both the second inequality in (4.26) and (4.34). The
third inequality in (4.26) follows from (4.21), (4.36), and (4.37).

The proof of the theorem is complete. D

860/11/1-5
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We next relate the convergence results proved for the auxiliary
Markov chain to the Ginzburg-Landau process.

Proof of Theorem 2. We use the same notation as in Theorem 6 and
Proposition 6. We fix the initial position x0 in the Markov chain so that
eH/2x0 = r0 (which is independent of e) with |r0| <E-k+h/2. We consider the
Markov and the Ginzburg-Landau process whose initial state is related to
that of the Markov chain as in Proposition 6. We call TM(r), r e R , the suf-
fix M standing for Markov, the first time when the coordinate process X(t)
(that we here suppose starting from r0) reaches r. The analogous variable
in the Ginzburg-Landau process is denoted by TGL(r). Let l*e(0, 1) and
let l e (0 , l* ) , call r*=eh/2[e-K-l*e-1], so that (at least for E>0 small
enough) |r0| <r*. Then, by Proposition 6 with l as earlier, for any q>0
there is c>0 so that

Similar statement holds for —r*.
For any r the law of TM(r) converges as E->0+ to the law of the

stopping time at + r for the limit Brownian motion bt (starting from r0)
because the stopping time for the limit process is almost surely continuous,
see Billingsley.(2) Moreover the probability of |TM(r±D)- T M ( r ) | >CD and
C positive, vanishes as D -> 0 + , hence by (4.38) the law of the stopping time
at Eh / 2[e - K — l * e - 1 ] in the Ginzburg-Landau process converges to the law
of the stopping time for the limit Brownian motion at

This together with Theorem 6 proves Theorem 2. D

5. ASYMPTOTIC COUPLING

In this section we prove Theorem 3. By Theorem 2 and Proposition 5
we only need, as we will explain later, the following theorem.

Theorem 7. Let m, m*e C E , K ( R ) (eventually depending on e) such
that ||m||,||m*|| < 3/2 and ||m — m*||<e2+K. Then, we can construct a pair
of Ginzburg-Landau processes mt and m*t starting from m and m* respec-
tively, in the same probability space, and so that, if
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(C is defined to be infinity if the set above is empty), for any a < 1

Proof. The proof uses the coupling and the ideas introduced by
Mueller(17) to prove Theorem 1, but since V is not monotonic an extra
argument is needed to conclude (5.1). Recall that in fact, we do not prove,
as in Ref. 17 that C is finite with probability 1.

Consider the pair (m t ,m* t) introduced in Ref. 17, which satisfies

for A1 and A2 two independent space-time white noises, and with initial
conditions

Consider the case m>m*. The general case follows from this one as in
Ref. 17. If we write the equation for the difference mt — m*t and
approximate the coefficients of the noise by Lipschitz functions as in
Ref. 17, we can conclude, from Shiga(18) [Thm. 2.3], that m t>m* t VxeR,
t>0. Let Ft be the filtration generated by A1 and A2 up to time i. Next,
integrate (5.2) from 0 to t and over the interval Te,K= [ — e - K , e - K ] . Set

Proceedings as in Ref. 17, we obtain for U the equation

where M, is a martingale with respect to Ft, with compensator
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Since

we have that

for some adapted process D(t) satisfying

Take

It is not difficult to see that Lemma 3.3 of Ref. 17 also holds in our case
and, for each fixed E, C(I) = I. Then, we can define the time changed
process

which satisfies

for some Brownian motion B(s) and non-positive adapted process C(s).
Applying Ito's formula with the function f(x) = 2x1/2, we have that, as long
as X ( t ) > 0 ,

satisfies
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Now, let us prove (5.1). From (5.11) and the definition of the time change,
for any positive y

where

Now, take A<l as in the statement. From (5.13) we can write, for any
given positive a,

Using (5.8) and the a priori bound on the sup-norm of mt and m*t (see
(3.3)), if we take a = eB, for any B> 1 + A, it is not difficult to prove that
this last probability goes to zero as e->0, and so, to prove (5.1) we only
need to show that

for some B as earlier. Recall equation (5.11) for Y and consider

and the set S

Let

We shall prove that for all e small enough

Define the stopping time
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Take WeE and suppose by contradiction that, for this W, Y ( t ) > 0 for all
t<t. Then, equation (5.12) holds for Y(t) for any t<t, and so, for the W
we are considering,

If T < t0 the evaluation of the previous expression at t yields F(t)< B(T) +
2 S U(0) = 0, which is a contradiction. Then t > t0 and since WeE=>S,

which implies

and this contradicts (5.16) for small e, from the definition of T, which
finishes the proof of (5.15). To conclude, we only have to show that we
can take B>1+A such that Pe(E) -> 1 as E->0. But, if we recall that
U(0)<2e 2 , we obtain

Also, taking B < 2, it follows that

To finish, let us prove

First recall that by Proposition 1 for any B < 2
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so, from (5.8) and (5.9),

and then

Recalling C'= D, from (5.8) and the Proposition 1

for any B>0. Finally, (5.18) and (5.19) imply (5.17), and the theorem is
proved. D

Proof of Theorem 3. The coupling is constructed as follows. The two
processes mt and m't, are independent of each other till the first time T1

when E e , K (m T 1 = EE , K(m'T 1). Let a e(0, 1/4), then with probability going to 1
as e->0+, both ( m t )

e , K and (m' t)
e ,K are in Me

1/2-a, we can thus suppose that
such a condition is verified. By Lemma 3 at time T = T1 +te with great
probability we are in the hypothesis of Proposition 5. We construct the
processes in the time interval [T, T+te] using Proposition 5 with
b= 1 — W, We(2a, 1/2), so that (3.80) is verified and we can suppose that
the processes at time T + te are in the set which appears on its left-hand
side. We can thus apply again Proposition 5 with b = 1 — ( W + y and iterate
this procedure N> 1 times. Then calling S= T+ Nte:

with probability going to 1 as e -> 0+. Since by assumption m and m' are
both in C e , K ( R ) the above holds as well for the sup norm (without the
cutoff (E, K)).

We can then apply Theorem 7 to conclude that if N is large enough
there is a coupling before T + ( N + 1 ) t e with probability going to 1 as
e->0+ (recall that te = (log e)2). Thus the time of coupling differs from the
time of first encounter of the linear centers by a term bounded by
(N+ 1) |log e|2. The law of first encounter of the linear centers converges to
that of the Brownians to which the linear centers converge, by Theorem 6.
As the difference between true and linear centers vanishes in the limit, (see
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the proof of Theorem 2 and the end of Section 4) we then obtain the proof
of Theorem 3. D

APPENDIX

In this appendix we prove Proposition 1, the inequalities (3.40) and
(3.77) and some properties of the semigroup, gt,x0 defined at the beginning
of Section 2. We start with the proof of Proposition 1, more precisely in
lemma A.1 next we prove (3.2).

Lemma A.1. Let Z t ( x ) be the process defined in Section 1. There are
positive constants b0 and b1 so that for all p > 0 and e > 0,

Proof. The process Zt is a Gaussian centered process, with bounded
and continuous paths a.e. Define

Using the explicit form of the covariance of Zt, see for instance Walsh,(20)

it is not difficult to prove that there exists a constant C1; independent of
£ such that

what yields

for some C independent of e. Then, we can apply the following inequality,
which follows through a symmetry argument from Adler,(1) [Thm. 2.1]: for
any L>Ee|||Z|||:
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To give an upper bound to Ee |||Z|||, we use Corollary 4.15 of Ref, 1: there
exists a universal constant K such that

where Ne(r) is the minimal number of balls of radius r needed to cover De,
with respect to the metric

It can be proved that there are positive constants k1 and k2 such that,

(see for example Walsh,(20), Prop. 4.2). From (A.8) and (A.9) it is easy to
check that there is a constant c such that

By (A.6) and (A. 10) it follows that there is a constant K' such that

Using (A.4) and (A.11), from inequality (A.6) with L = e-p we finally
obtain

The bound (A. 12), which is valid for e small enough, implies the estimate
(3.2) for some constants b0 and b1. The estimate can be then extended to
any e e(0, 1] simply by modifying conveniently the values of b0 and b1.

D

Lemma A.2. Let m e C0(R), ||m||< 1 + 10 -2. Then there are con-
stants c0 and ct so that, for any e>0 small enough,
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Proof. A Comparison Theorem holds for the stochastic Ginzburg-
Landau equation, see Ref. 5, Prop. 5.1. So, if ||m||< 1 + 10 - 2 , then

where m+
1 = Tt( ± (1+10 - 2 ) ;SE Z). It is then sufficient to prove (A.13)

with T t(m;S E Z) replaced by m+
t. We define 6u±(x, t) = m +

t ( x ) + 1. Then
u±(x, t) solve the equations

i.e. the integral equations

where Ht is the heat kernel (1.5), e - 2 t H t u ± (0 )= ±e-2t10-2 and

(note that e - 2 tH ( 8 )
t(x — y) is the Green function for the operator

Dt — (1/2) D2
x + 2Id). By arguing as in the proof of Lemma A.1, it is easy to

prove that for any b>0 there are constants h0 and h1 such that

Let T=inf{t>0: | | u ± ( . , t ) | | > 2(10 - 2 + b)}. We will prove that there exists
b and E0 such that for all e<e0

and
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Clearly, by definition of T and u±, sup0<t< te ||m
+

t || <2 is implied by
T> 2te if b is small enough. Moreover, in the set

from (A.16) we get

Now there exists e0>0 and b0>0 such that, for any e<e0 and b<b 0 ,
(A.21) implies | |u ± ( . , t e ) | | < 10 -2/4 and hence ||m+

te± || < 1 + 10-2/4, which
implies (A.19). To prove (A.20) we note that if sup0<t<2te || Se Vt||<b and
T < 2te then

which gives a contradiction if, for example, b< 10-2. Then, for b =
b0 A 10-2, both (A.19) and (A.20) holds. To obtain (A.13), repeat the
argument for the interval [ t e ,2 t e ] , with T t (±1 + 10-2/4); S E Z) instead
of T t ( ± ( 1 + 10 -2);S ez), and take e<e0 and c0 = h0 and c 1=h 1 . D

Proof of Proposition 1. Lemma A.1 proves (3.2). To prove (3.3) we
fix s> te and iterate the estimate (A.13) k times where k = s/ t e . D

In the next lemma we prove (3.77).

Lemma A.3. Let m e C 0 ( R ) , mt= T t(m,Se Z). For any D>0,
A e(0, 1/2) there is a constant c>0 so that for all e small enough

Proof. We first prove an analogous estimate for the Gaussian process
S e Z. We use Theorem 2.1 of Ref. 1 applied to the Gaussian process

By arguing as in the proof of Lemma A.1 we have, for D>E e [G e ] ,



76 Brassesco, Butta, De Masi, and Presutti

where

Using Corollary 4.15 of Ref. 1 as in Lemma A.1 one easily proves that
E e [ G e ] < c1 Se for some c 1 >0 . From (A.8) with A< 1/2, we obtain
Z2

e < c4e for some constant c4>0. Then by (A.25) we recover an estimate
like (A.23) for the noise S e Z. To prove (A.23) we use the integral form
(1.5) of the Ginzburg-Landau equation and write

We consider the intersection of the sets where s u p t < t e ||mt||<2 and where
the noise satisfies the bound like (A.23) with D to be fixed. In this set we
have

for any x= y such that |x|, | y | < e - K and |x — y| < 1. For D >2(2 + c5) and
D '<6/2, (A.23) follows easily. Changing c we get (A.23) for all D>0. D

Lemma A.4. Let x0 e R and let g t , X 0 ( x , y) be the fundamental solu-
tion of the equation Dtu = LX0u. Then, there exist positive constants c0, c1

and c2 such that the following holds.
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Proof. From (3.45) we can restrict ourselves to the case x0 = 0.
From the Feynman-Kac formula (A.29) follows. Equation (A.30)

follows from Theorem 4. To prove (A.31) we use the following integral
equations:

We define

From (A.38) we then have

From (A.34) the inequality (A.31) follows immediately for te(0, 1], For
t> 1 we use the semigroup property getting that f t (d ) < c0 f1(d) with c0 as
in (A.30). (A.32) is based on the estimate

which follows easily from the Feynman-Kac formula. D

Lemma A.5. Consider the set B(i)
e, i = 2,3, defined in (3.37) and

(3.38). Then, there are c0 and c1 positive constants such that



78 Brassesco, Butta, De Masi, and Presutti

Proof. Recall equations (3.5) for Zt and (3.39) for Z*t, in terms of Zt

and Z*t. Using (3.46), we obtain

We will prove next that

The bound (A.35) for i = 2 follows immediately from this inequality.
Moreover, from (A.37) and (A.34), we can estimate

Also, for A2 from (A.32), we obtain
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Then, let us prove (A.37), to conclude the proof of the lemma. Recall that

Both I1 and I2 are centered Gaussian processes, for which estimates like
(A.8) and (A.9) are valid. Moreover, recalling that

it is not difficult to prove that

Then, proceeding as in the proof of Lemmas A.1, (A.37) follows. D
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