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Abstract This paper is a follow-up of the work initiated in (Arab J Math, 2014), where
we investigated the hydrodynamic limit of symmetric independent random walkers with
birth at the origin and death at the rightmost occupied site. Here we obtain two further
results: first we characterize the stationary states on the hydrodynamic time scale as a family
of linear macroscopic profiles parameterized by their mass. Then we prove that beyond
hydrodynamics there exists a longer time scale where the evolution becomes random. On
such a super-hydrodynamic scale the particle system is at each time close to the stationary
state with same mass and the mass fluctuates performing a Brownian motion reflected at the
origin.

1 Introduction

In this paper we continue the analysis of the stochastic process introduced in [3]. This is
a particle process in the interval �ε := [0, ε−1] ∩ Z, ε−1 a positive integer. The space of
particles configurations is N

�ε , ξ = (ξ(x))x∈�ε ∈ N
�ε and the component ξ(x) ∈ N is

interpreted as the number of particles at site x . The generator of the Markov process is
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G. Carinci et al.

L = L0 + Lb + La (1.1)

(dependence on ε is not made explicit). L0 is the generator of the independent random walks
process with reflecting boundary conditions,

L0 f (ξ) = 1

2

ε−1−1∑

x=0

ξ(x)
[

f (ξ x,x+1)− f (ξ)
] + ξ(x + 1)

[
f (ξ x+1,x )− f (ξ)

]
(1.2)

where ξ x,y denotes the configuration obtained from ξ by removing one particle from site x
and putting it at site y. The operator Lb describes the action of creating a particle at the origin
at rate ε j , j > 0:

Lb f (ξ) = jε
[

f (ξ+)− f (ξ)
]
, ξ+(x) = ξ(x)+ 1x=0 . (1.3)

Instead La removes particles:

La f (ξ) = jε
[

f (ξ−)− f (ξ)
]
, ξ−(x) = ξ(x)− 1x=Rξ (1.4)

namely a particle is taken out from the edge Rξ of the configuration ξ :

Rξ = max
{

y : ξ(y) > 0
}

(1.5)

La f (ξ) = 0 if Rξ does not exist, i.e. if ξ ≡ 0. The removal mechanism is therefore of
topological nature, since the determination of the rightmost occupied site requires a knowl-
edge of the entire configuration. Topological interactions appears in field as diverse as crowd
dynamics [7] or swarm dynamics [1].

The independent random walkers process {ξ0
t }, i.e. the process with generator L0 and

reflecting boundary conditions at 0 and ε−1, can be thought as the evolution of an “isolated”
system. The invariant measure for this process (when the total number n of particles is given)
is a product of uniform distributions, i.e. each of the n particles occupy each of the ε−1+1 sites
with probability 1/(ε−1+1). Moreover each particle equilibrates on times ε−2t (convergence
being exponentially fast in ε−2t).

The hydrodynamic limit for such an isolated system describes the behavior of the parti-
cles when ε → 0: the total number of particles is taken proportional to ε−1, times are scaled
by ε−2 while space is scaled down by ε (so that the macroscopic space is [0, 1] ⊂ R). It
is well known [10] that the limit behavior (under suitable conditions on the initial con-
figuration) is then given by the linear heat equation on [0, 1] with Neumann boundary
conditions

∂ρ

∂t
= 1

2

∂2ρ

∂r2 ,
∂ρ

∂r

∣∣∣
0

= ∂ρ

∂r

∣∣∣
1

= 0 (1.6)

whose solution is ρt (r) = Gneum
t ∗ ρ0(r) = ∫

Gneum
t (r, r ′)ρ0(r ′)dr ′ where Gneum

t (r, r ′),
r, r ′ ∈ [0, 1], is the Green function of the heat Eq. (1.6) with Neumann boundary
conditions:

Gneum
t (r, r ′) =

∑

k

Gt (r, r
′
k), Gt (r, r

′) = e−(r−r ′)2/2t

√
2π t

(1.7)

the points r ′
k being the images of r ′ ∈ [0, 1] under repeated reflections of the interval [0, 1] to

its right and left, namely r ′
k belongs to the set {2n + r ′, 2n − r ′, n ∈ Z}. The solution of (1.6)

converges as t → ∞ exponentially fast to the uniform distribution. Thus the hydrodynamic
behavior given by (1.6) truly describes the behavior of the particles not only on times of
order ε−2 (on which (1.6) is derived) but at all times as well: there is only one time scale

123

Author's personal copy



Super-Hydrodynamic Limit

in the isolated system. Our system is instead “open”, namely in contact with “the outside”,
with particles created and killed and, as a consequence there will be, after hydrodynamics, a
second time scale.

The type of open systems most studied in the literature is that with “density reservoirs” [8]
which impose an average density ρ+ and ρ− at the boundary sites (respectively 0 and ε−1)
via creation and annihilation of particles at both sides. By suitably defining such birth-death
processes, a system of independent walkers reaches a stationary measure which is a product of
Poisson distributions with average density which interpolates linearly the boundary densities
ρ±, see [5] for the finite size correction and also [9] where the result is proved for a class of
zero range processes. In this case the hydrodynamic equation reads

∂ρ

∂t
= 1

2

∂2ρ

∂r2 , ρ(0) = ρ+, ρ(1) = ρ− (1.8)

and the stationary profile is given by the linear profile in [0, 1] which interpolates between
ρ±. Again, also in the t → ∞ limit, there is complete agreement between the hydrodynamic
equations and the particles process. The system has still only one time scale.

The density reservoirs creates a non-equilibrium state with a current flowing through the
system. By the continuity equation such macroscopic current is given by − 1

2
∂ρ
∂r and in the

stationary solution of Eq. (1.8) one recovers Fick’s law

−1

2

∂ρ

∂r
= ρ+ − ρ−

2
.

At the microscopic level, the current generated by the density reservoirs is the difference
between the average number of particles crossing a bond (x, x + 1) from the left and the
average number of particles crossing it from the right. Thus it is equal to

E[ξ(x)] − E[ξ(x + 1)]
2

≈ ε
ρ+ − ρ−

2

(denoting here by E expectation with respect to the stationary measure and recalling that
a particle jumps from x to x + 1 and viceversa at rate 1/2). Thus the micro-current is
proportional to ε.

Another option to create a non-equilibrium state in an open system is to consider “current
reservoirs” (see also [11–14]). They are constructed in such a way to get directly a current
ε j just by throwing in particles from the left at rate ε j and removing them from the right at
same rate, without fixing the densities at the boundaries. This is obtained by the action of Lb

in (1.3) and La in (1.4), which is to add from the left and respectively remove from the right
particles at rate ε j . As a result, the “current reservoirs” directly impose a current ε j .

To better appreciate the role of current reservoirs in a non-equilibrium context it is useful
to draw a parallelism with the problem of fixing a macroscopic quantity in equilibrium, for
instance the magnetization in the Ising model. In that case one has two possibilities: either one
introduces an external magnetic field which selects a macroscopic state with the desired mag-
netization or one can choose from the very beginning to restrict the statistical average to the
microscopic configurations compatible with the desired magnetization (canonical ensemble).
In a similar manner, to impose a given current in non-equilibrium system satisfying Fourier
law, we can either fix the densities at the boundary (using density reservoirs) or, alternatively,
restrict the system evolution to those trajectories with a prescribed current. This is precisely
what the current reservoirs do.

In [3] the hydrodynamic limit of a system of symmetric independent walkers with current
reservoirs, namely the process with generator (1.1), has been studied. The result established
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in that paper is the existence and continuity of the macroscopic profile when the microscopic
process is started from a sufficiently nice initial configuration. The hydrodynamic scaling
limit is characterized as the separating elements of upper and lower barriers (we give in Sect.
2 a brief account of the results in [3]).

In the present paper we further investigate the macroscopic properties of the system. As
a first result we compute the stationary macroscopic profiles in the hydrodynamic limit. We
prove they are given by linear functions with slope −2 j . Since here the boundary densities
are not fixed we are in a situation with infinitely many such profiles. The one that is selected
by the system is dictated by the total mass, which is a conserved quantity on the time scale
ε−2t . However, on a longer time scale over which fluctuations of the total mass are allowed,
there is not anymore a privileged profile and indeed the system will explore different profiles.
Fluctuations of the total mass will occur on a super-hydrodynamic time scale. More precisely
the super-hydrodynamic scaling is obtained by taking ε → 0 when the initial number of
particles is taken proportional to ε−1, times are scaled by ε−3 while space is scaled down by
ε. We prove that given any t > 0 the particle system at time ε−3t is close to the the linear
profile with slope −2 j and same rescaled mass; as t varies the latter performs a Brownian
motion reflected at the origin.

While in this paper we deal with independent random walkers we conjecture the phenom-
enon of the existence of a super-hydrodynamic scale in interacting particle systems coupled
to current reservoirs to be quite universal. More precisely we claim the same phenomenon is
to be expected for all systems (exclusion walkers, zero-range process, inclusion walkers, ...)
which in the hydrodynamic limit scale to the free boundary problem given by

∂ρ

∂t
= 1

2

∂2ρ

∂r2 + j D0 − j DR(t) (1.9)

where R(t) is the macroscopic counterpart of the edge introduced in (1.5), D0 denotes a
Dirac delta at the origin corresponding to creation of particles, DR(t) denotes a Dirac delta at
R(t) corresponding to removal of the rightmost particles. This free boundary problem will
be studied in [4] (see also [6,16]). The two-time scales observed in our system is reminiscent
of what is found in the context of processes with a localized schock, see for instance [2]. The
peculiar and maybe surprising aspect of the super-hydrodynamic limit is the fact that on the
time scale ε−3t the system show persistent randomness, while on the hydrodynamic scale
ε−2t the system follows a deterministic evolution.

The paper is organized as follows. In Sect. 2, after recalling the concept of partial order
in the sense of mass transport and the construction of barriers introduced in [3], we state
our main results: Theorem 2.3 which states that the hydrodynamic stationary profiles are
the linear ones; Theorem 2.4 describing the profiles that in the course of time are attracted
to the linear ones; Theorem 2.5 dealing with the super-hydrodynamic limit. In Sect. 3 we
prove Theorem 2.3: we need to perform a separate analysis for the case with a non-trivial
edge (R(∞) := R < 1) and the case where the support of the stationary linear profile
coincides with [0, 1] (R = 1). In Sect. 4 we prove the remaining results. The convergence to
linear profiles (Theorem 2.4) is obtained by introducing a coupling between two processes
and showing that the number of discrepancies vanishes on the hydrodynamic scale; the
evolution of profiles on the hydrodynamic time scale is proved by exploiting the convergence
of the law of the mass density to the law of a Brownian motion on R

+ reflected at the
origin.
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Super-Hydrodynamic Limit

2 Definitions and Main Results

We consider initial configurations that approximate a macroscopic profile in the following
sense. We first define the local empirical averages of a configuration ξ ∈ N

�ε and of a profile
ρ ∈ L∞([0, 1],R+) as follows. Given any integer � and x ∈ [0, ε−1 − �+ 1], the empirical
averages are

A�(x, ξ) := 1

�

x+�−1∑

y=x

ξ(y) and A′
�(x, ρ) = 1

ε�

ε(x+�)∫

εx

ρ(r)dr (2.1)

Definition 2.1 (Assumptions on the initial conditions.) We suppose ρinit ∈ C([0, 1],R+)
and, if it exists, we call R(0) = min{r : ρinit(r ′) = 0 ∀r ′ ∈ [r, 1]}, the “edge” of ρinit . We
fix b < 1 suitably close to 1 and a > 0 suitably small, we then denote by � the integer part
of ε−b and suppose that for any ε > 0 the initial configuration ξ verifies

max
x∈[0,ε−1−�+1]

∣∣∣A�(x, ξ)− A′
�(x, ρinit)

∣∣∣ ≤ εa . (2.2)

We suppose moreover that, if ρinit has an edge R(0), then

|εRξ − R(0)| ≤ εa (2.3)

with Rξ defined in (1.5). We shall denote by P(ε)ξ the law of the process with generator L
given in (1.1) supported at time 0 by a configuration ξ as above.

Hydrodynamic Limit

The following Theorem has been proved in [3].

Theorem 2.1 (Existence of hydrodynamic limit) Let ρinit and ξ be as in Definition 2.1. Then
there exists a function ρt (r) ≥ 0, t ≥ 0, r ∈ [0, 1], equal to ρinit at time t = 0, continuous
in (r, t) and such that for all T > 0, ζ > 0 and t ∈ [0, T ] the following holds

lim
ε→0

P(ε)ξ

[
max

x∈[0,ε−1]
|εFε(x; ξε−2t )− F(εx; ρt )| ≤ ζ

]
= 1 (2.4)

where

F(r; u) =
1∫

r

u(r ′) dr ′, Fε(x; ξ) :=
ε−1∑

y=x

ξ(y) . (2.5)

In particular for all smooth φ and for all ζ > 0 one has

lim
ε→0

P(ε)ξ

⎡

⎣
∣∣∣ε

∑

x

ξε−2t (x)φ(x)−
1∫

0

φ(r)ρt (r)dr
∣∣∣ ≤ ζ

⎤

⎦ = 1 .

In [3] we have also proved that the limit profile ρt can be identified as the separating
element between barriers, with the barriers defined as solutions of discrete free boundary
problems. To explain this result, calling D0 the Dirac delta at 0, we preliminary define the
sets

U :=
{

u = cD0 + ρ : c ≥ 0, ρ ∈ L∞([0, 1],R+)
}

Uδ :=
{

u = cD0 + ρ :
∫
ρ > jδ, c ≥ 0, ρ ∈ L∞([0, 1],R+)

}
(2.6)
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and the cut-and-paste operator K (δ) : Uδ → U

K (δ)u = jδD0 + 1
r∈[0,R(δ)u ]u, R(δ)u :

1∫

R(δ)u

u(r)dr = jδ . (2.7)

Definition 2.2 (Barriers) Given u ∈ L∞([0, 1],R+) with
∫

u > 0 we define, for all δ small

enough so that u ∈ Uδ , the “barriers” S(δ,±)nδ (u), n ∈ N, as follows: we set S(δ,±)0 (u) = u,
and, for n ≥ 1,

S(δ,−)nδ (u) = K (δ)Gneum
δ ∗ S(δ,−)(n−1)δ(u) (2.8)

S(δ,+)nδ (u) = Gneum
δ ∗ K (δ)S(δ,+)(n−1)δ(u)

where Gneum
t (r, r ′), r, r ′ ∈ [0, 1], t ≥ 0 is the Green function of the linear heat equation on

[0, 1] with Neumann boundary conditions defined in (1.7).

The functions S(δ,±)nδ are obtained by alternating the map Gneum
δ (i.e. the heat kernel) and

the cut and paste map K (δ) (which takes out a mass jδ from the right and put it back at the
origin, the macroscopic counterpart of Lb+La). It can be easily seen that, unlike the true
process (ξt )t≥0, the evolutions S(δ,±)nδ conserve the total mass, that S(δ,+)nδ maps Uδ into L∞

while S(δ,−)nδ has a singular component ( jδD0) plus a L∞ component.

The evolutions S(δ,±)nδ define barriers in the sense of the following partial order.

Definition 2.3 (Partial order) For u and v in the set U we define

u ≤ v iff F(r; u) ≤ F(r; v) for all r ∈ [0, 1]. (2.9)

where F(r; ·) is defined in (2.5).

In [3] we have proved the following Theorem.

Theorem 2.2 (Hydrodynamic limit via barriers) Let ρt be the function of Theorem 2.1. Then
ρt is the unique separating element between the barriers {S(δ,−)nδ (ρinit)} and {S(δ,+)nδ (ρinit)},
namely for any t > 0, any r ∈ [0, 1] and any n ∈ N:

S(t2
−n ,−)

t (ρinit) ≤ ρt ≤ S(t2
−n ,+)

t (ρinit) (2.10)

in the sense of (2.9). Furthermore the lower bound is a non decreasing function of n, the
upper bound a non increasing function of n and

lim
n→∞ sup

r∈[0,1]
∣∣F(r; S(t2

−n ,±)
t (ρinit))− F(r; ρt )

∣∣ = 0 (2.11)

Stationary Profiles in the Hydrodynamic Time Scale

Our first result will be a full characterization of the stationary macroscopic states in the
hydrodynamic limit, that is all ρinit such that ρt = ρinit for all t ≥ 0, ρt as in Theorem 2.1.

Definition 2.4 (Linear profiles) We denote by M “the manifold” of density profiles whose
elements are either of the form (i) ρ(r) = −2 j (r − R)1r≤R , R ∈ (0, 1); or (ii) ρ(r) =

123

Author's personal copy



Super-Hydrodynamic Limit

−2 jr + c, c ≥ 2 j . They are conveniently parameterized as ρ(M), M ≥ 0, where M is
defined so that:

1∫

0

ρ(M)(r)dr = M, ρ(0) ≡ 0 (2.12)

In particular case (i) corresponds to M < j and case (ii) to M > j .

Theorem 2.3 (Stationary profiles) If ρinit ∈ M then ρt = ρinit for all t ≥ 0, thus all profiles
in M are stationary.

We shall next prove that any stationary profile is in M and that M is “stable”:

Theorem 2.4 (Convergence to the stationary profiles) If
1∫

0
ρinit(r)dr = M then ρt → ρ(M)

in the sense that
lim

t→∞ sup
r∈[0,1]

∣∣∣F(r; ρt )− F(r; ρ(M))
∣∣∣ = 0 (2.13)

Super-Hydrodynamic Limit

As a consequence of (2.13) and if ξ and ρinit are as in Definition 2.1 then for any ζ > 0

lim
t→∞ lim

ε→0
P(ε)ξ

[
max

x∈[0,ε−1]
|εFε(x; ξε−2t )− F(εx; ρ(M))|≥ ζ

]
= 0 (2.14)

where M = F(0; ρinit). (2.14) shows convergence in the hydrodynamic time scale to the
invariant profiles of the limit evolution, which means that we first take the limit ε → 0 and
then the limit t → ∞. The true long time behavior of the particle system requires instead
the study of the process ξε−2tε where tε → ∞ as ε → 0. If in this limit we obtain something
different than (2.14) then we say that there are other scales than the hydrodynamical one,
that we call super-hydrodynamic.

Theorem 2.5 (Super-hydrodynamic limit) Let ξ (ε) be a sequence such that ε|ξ (ε)| → m > 0
as ε → 0. Let tε be an increasing, divergent sequence, then the process ξε−2tε has two regimes:

• Subcritical. Suppose εtε → 0, then

lim
ε→0

P(ε)
ξ (ε)

[
max

x∈[0,ε−1]
|εFε(x; ξε−2tε )− F(εx; ρ(m))| ≤ ζ

]
= 1 (2.15)

• Critical. Let tε = tε−1 then

lim
ε→0

P(ε)
ξ (ε)

[
max

x∈[0,ε−1]
|εFε(x; ξε−3t )− F(εx; ρ(M(ε)

t ))| ≤ ζ

]
= 1 (2.16)

where M (ε)
t := ε|ξ (ε)

ε−3t
| converges in law as ε → 0 to B jt , where (Bt )t≥0, B0 = m, is the

Brownian motion on R+ reflected at the origin.

Thus on a first time scale, i.e. the subcritical regime, the process behaves deterministically,
it is attracted by the manifold M and equilibrates to one of the invariant profiles for the limit
evolution, the one with the same mass. However on longer times of the order ε−3t it starts
moving stochastically on the manifold M where it performs a Brownian motion. The reason
is pretty simple because the total number |ξt | of particles at time t performs a symmetric
random walk reflected at the origin:
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Theorem 2.6 (Distribution of the particles’ number) |ξt | = ∑ε−1

x=0 ξt (x) has the law of a
continuous time random walk on N which jumps with equal probability by ±1 after an
exponential time of parameter 2 jε, the jumps leading to −1 being suppressed.

3 Stationary Macroscopic Profiles

In this section we shall study the fixed point of S(δ,−)δ (see Definition 2.2) and their limits as
δ → 0. We will show that the stationary profiles are linear in this limit.

3.1 The Case R < 1

We first analyze the case when the total mass is less than j that yields profiles with support
in [0, R] with R < 1.

Theorem 3.1 For any R ∈ (0, 1) and any δ > 0 small enough there is a unique, continuous
function ρ ≥ 0, hereafter called “stationary profile”, with support in [0, R], R < 1, and
such that

S(δ,−)δ ( jδD0 + ρ) = jδD0 + ρ (3.1)

Moreover ρ is an increasing function of R.

Proof By (2.8)

S(δ,−)δ (u) = jδD0 + Gneum
δ ∗ u · 1r∈[0,x], x = R(δ)Gneum

δ ∗u

If u is a fixed point of S(δ,−)δ , i.e. S(δ,−)δ (u) = u, then u = jδD0 + ρ with the support of
ρ = Gneum

δ ∗ u being the interval [0, x]. As we look for solutions with support in [0, R] we
must take x = R and thus get for ρ the equation

ρ(r) = jδGneum
δ (0, r)+

R∫

0

dr ′Gneum
δ (r ′, r)ρ(r ′), r ∈ [0, R] (3.2)

The last condition in (2.7) (with x → R) becomes:

1∫

R

dr ′
R∫

0

drGneum
δ (r ′, r)[ρ(r)+ jδD0(r)] = jδ (3.3)

However (3.3) is not an extra condition as it is automatically satisfied if ρ satisfies (3.2):

1∫

R

dr ′
R∫

0

drGneum
δ (r ′, r)[ρ(r)+ jδD0(r)]

=
1∫

0

dr ′
R∫

0

drGneum
δ (r ′, r)[ρ(r)+ jδD0(r)] −

R∫

0

dr ′
R∫

0

drGneum
δ (r ′, r)[ρ(r)+ jδD0(r)]

= jδ +
R∫

0

ρ −
R∫

0

ρ

The proof of the theorem is then a consequence of the following lemma. ��
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Lemma 3.2 Call

g0
δ (r, r

′) = 1r,r ′∈[0,R]Gneum
δ (r, r ′), g0

nδ = g0
δ ∗ · · · ∗ g0

δ , (n times) (3.4)

Then the series
jδ

∑

n≥0

g0
(n+1)δ(0, r) =: ρ(r), r ∈ [0, R] (3.5)

is uniformly convergent in r and δ. Moreover the function ρ defined by (3.5) is the unique
solution of (3.2), it is continuous in [0, R] and increasing in R.

Proof To prove convergence we observe that there is a positive constant a such that

sup
r∈[0,R]

∫
g0
δNδ (r, r

′)dr ′ ≤ 1 − a, Nδ ∈ N : δ(Nδ − 1) < 1 ≤ δNδ (3.6)

(a can be taken as the sup of the probability that a Brownian motion on R which starts at
r ∈ [0, R] is in (R, 1) at time δNδ). We have

g0
nδ(r, r

′) ≤ c√
nδ
, for all n

Then

jδ
Nδ∑

n=0

g0
(n+1)δ(0, r) ≤ c′

It follows from (3.6) that

g0
nδ(r, r

′) ≤ (1 − a)k−1 sup
r ′′

g0
δ(m+Nδ)(r

′′, r ′), n = k Nδ + m, k ≥ 1, 0 ≤ m < Nδ (3.7)

with g0
δ(m+Nδ)

(r ′′, r ′) ≤ c′′. Thus

jδ
∑

n>Nδ

g0
(n+1)δ(0, r) ≤ jδ

∑

k≥1

∑

m<Nδ

c′′(1 − a)k−1 ≤ c′′′

Continuity of ρ follows from (3.5); by (3.4) g0
δ is an increasing function of R, hence using

the representation (3.5) also ρ increases with R. ��

In the sequel we shall often use the following expression of the Green function in terms of
Brownian motion, see for instance [15] for details. Let Pr be the law of the Brownian motion
(Bs)s≥0 on R which starts from r ∈ [0, R], then

∫

I

g0
nδ(r, r

′)dr ′ = Pr

[
Bnδ ∈ I ∗, Bkδ /∈ J ∗, k ≤ n

]
(3.8)

where I = [a, a′] is an interval in [0, R], J = [R, 1] and I ∗ and J ∗ are images of I and J ,
the images of x ∈ [0, 1] being the set {2n + x, 2n − x, n ∈ Z}.

Theorem 3.3 Let ρ(δ,−) := jδD0 + ρ, ρ as in Theorem 3.1, then

lim
δ→0

ρ(δ,−)(r) = 2 j (R − r), r ∈ [0, R] (3.9)
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Proof The proof is in two steps: in the first one we prove that the series in (3.5) converges
as δ → 0 (it is, approximately, a Riemann sum of an integral) while in the second step we
recognize the limit to be the linear function in (3.9). We proceed by proving lower and upper
bounds which in the limit δ → 0 will coincide.
Lower bound. Let I = [a, a′] ⊂ [0, R], then by (3.8)

a′∫

a

g0
t (r, r

′)dr ′ ≥ Pr

[
Bt ∈ {[a, a′] ∪ [−a′,−a]}, sup

s≤t
|Bs | ≤ R

]
, t = nδ (3.10)

Thus denoting by GDir
t (r, r ′) the Green function of the heat equation ut = 1

2 urr in [−R, R]
with Dirichlet boundary conditions u(±R) = 0:

ρ(δ,−)(r) ≥ jδ
∑

n≥0

(
GDir
(n+1)δ(0, r)+ GDir

(n+1)δ(0,−r)
)

(3.11)

The right hand side is the Riemann sum of the corresponding integral and due to the uniform
convergence of the series proved earlier we have

lim inf
δ→0

ρ(δ,−)(r) ≥ j

∞∫

0

(
GDir

t (0, r)+ GDir
t (0,−r)

)
dt (3.12)

Let v(s, r) be the resolvent of the heat equation with Dirichlet boundary conditions in
[−R, R], then v verifies the resolvent equation 1

2vrr + D0 = sv. Hence the integral
∞∫

0
GDir

t (0, r) = v(0, r) := v0(r) is the weak solution of the problem 1
2vrr + D0 = 0,

v(±R) = 0, namely v0(r) = R − |r |, r ∈ [−R, R]. Then, from (3.12),

lim inf
δ→0

ρ(δ,−)(r) ≥ 2 jv0(r) = 2 j (R − |r |) (3.13)

this proves that the lower bound agrees with (3.9).
Upper bound. We first observe that there are positive constants α and β so that for all δ small
enough:

P0

[
sup
s≤δ

|Bs | ≥ δ1/2−α] ≤ e−βδ−2α
(3.14)

and get from (3.8) with Rδ := R + δ1/2−α

a′∫

a

g0
nδ(r, r

′)dr ′ ≤ Pr

[
Bnδ ∈ {[a, a′] ∪ [−a′,−a]}), |Bs | ≤ Rδ, s ≤ nδ

]
+ ne−βδ−2α

(3.15)
We use (3.15) for n ≤ δ−2 and get, recalling (3.7),

ρ(δ,−)(r) ≤ jδ
( δ−2∑

n=0

[GDir,Rδ
(n+1)δ(0, r)+ GDir,Rδ

(n+1)δ(0,−r)] + 2δ−4e−βδ−2α
)

+ c(1 − a)δ
−1+ jδD0

(3.16)

where GDir,Rδ is the Green function with Dirichlet boundary conditions in [−Rδ, Rδ] and c
is a suitable constant. By letting δ → 0 we recover the lower bound, we omit the details. ��
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3.2 The Case R = 1

The analysis so far covers cases where the limit profile is a piecewise linear function with
slope −2 j in [0, R], R < 1, and equal to 0 in [R, 1]. The mass is therefore j R2, hence the
analysis does not apply to cases where the mass is > j . As we shall see a posteriori this
corresponds to stationary solutions for the (δ,−) evolution having support of the form [0, R],
with R = 1 − Aδ. We are going to prove that the analogue of Theorem 3.1 holds as well
when R = 1 − Aδ, A > 0 and δ small enough.

Equations (3.2)–(3.5) hold unchanged but (3.6) needs a new proof. Calling Pr the law of
the Brownian motion Bt on R which starts from r∈ [0, R], we have:

∫
g0
δNδ (r, r

′)dr ′ = Pr

[
Bnδ /∈ J ∗, n = 1, .., Nδ

]
(3.17)

where J = [1 − Aδ, 1] and J ∗ is the union of all reflections of J .

Lemma 3.4 For any A > 0 there is a > 0 so that for any δ small enough
∫

g0
δNδ (r, r

′)dr ′ ≤ 1 − a, for all r ∈ [0, 1 − Aδ] (3.18)

Proof By (3.17)
∫

g0
δNδ (r, r

′)dr ′ = Pr

[
Bnδ /∈ J ∗, n = 1, . . . , Nδ

]
≤ Pr

[
Bnδ /∈ J, n = 1, . . . , Nδ

]

= Pr [X = 0], X :=
Nδ∑

n=1

1Bnδ∈J (3.19)

Let
pk = Pr

[
X = k

]
, Mi =

∑

k≥1

pkki , i = 0, 1, 2 (3.20)

so that Pr [X = 0] = 1 − M0. Hence, by (3.19), we can take for a in (3.18) any lower bound
for M0. We are going to show that

M0 ≥ M2
1

2(2M2 + M1)
≥ M2

1

6M2
(3.21)

We have

M2 ≥
∑

k≥k0

pkk2 ≥ k0

∑

k≥k0

pkk

We choose k0 to be the smallest integer so that

2M2

M1
≤ k0 ≤ 2M2

M1
+ 1

Then

k0

∑

k≤k0

pk ≥
∑

k≤k0

kpk = M1 −
∑

k>k0

kpk ≥ M1 − M2

k0
≥ M1

2
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Thus

M0 ≥
∑

k≤k0

pk ≥ M1

2k0
≥ M2

1

2(2M2 + M1)

(3.21) is thus proved.
We have

M1 =
Nδ∑

n=1

∫

J

e−(r−r ′)2/(2δn)
√

2πδn
dr ′

thus

M1 ≥ e−cδ√
2πδ

Nδ∑

n=Nδ/2

n−1/2 ≥ e−cδ√
2πδ

√
Nδ
2

≥ C1

where c and C1 are constant independent of r and δ (recall that N ≈ δ−1). An analogous
proof yields M1 ≤ C2, C2 a constant independent of r and δ. Moreover

M2 = M1 +
∑

1≤n1<n2≤Nδ

∫

J

dr ′
∫

J

dr ′′ e−(r−r ′)2/(2δn1)

√
2πδn1

e−(r ′−r ′′)2/(2δn2)

√
2πδn2

As before we can prove (details are omitted) that M2 ≤ C3, a constant independent of r and
δ.

Since Pr [X = 0] = 1 − M0 the above together with (3.19) proves the lemma with

a = C2
1

6C3

��
After (3.6) the proof of Theorem 3.1 extends unchanged to the present case, so that the

conclusions of Theorem 3.1 hold as well when R = 1 − Aδ. The analogue of Theorem 3.3
is:

Theorem 3.5 Denoting by ρ(δ,−) the “stationary profile” when R = 1 − Aδ, then for all
r ∈ [0, 1)

lim
δ→0

ρ(δ,−)(r) = 2 j (1 − r)+ ρ(1), ρ(1) := j

A
(3.22)

Proof The main difference with Theorem 3.3 is that now we have to deal with an interval
[R, 1] which depends on δ and which shrinks to zero as δ → 0. We can however set the
problem in such a way that the interval is the whole [0, 1] for all δ. To this end we introduce
another map T (δ,−)δ which, for a special choice of the parameters, will have the same fixed

points as S(δ,−)δ . Given a non negative function v we set

T (δ,−)δ (u) = jδD0 − v + Gneum
δ ∗ u (3.23)

If u is a fixed point, T (δ,−)δ (u) = u, then ψ := Gneum
δ ∗ u satisfies

ψ = Gneum
δ ∗ [ jδD0 − v + ψ] (3.24)
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where, as before, Gneum
t is the Green function of the linear heat equation in [0, 1] with

Neumann boundary conditions.
It is readily seen that if ρ = ρ(δ,−) = ρ(δ,−)1r /∈[1−Aδ,1] and

v(r) := 1r∈[1−Aδ,1]Gneum
δ ∗ [ jδD0 + ρ](r) (3.25)

then

ψ(r) :=
{
ρ(r) ifr ∈ [0, 1 − Aδ]
v(r) ifr ∈ [1 − Aδ, 1] (3.26)

solves (3.24).
On the other hand (3.24) can be solved by iteration getting, analogously to (3.5),

ψ(r) =
∑

n≥0

{ jδGneum
(n+1)δ(r, 0)−

1∫

1−Aδ

Gneum
(n+1)δ(r, r

′)v(r ′)} (3.27)

but again we need a proof that the series is convergent. The Green function converges expo-
nentially:

|Gneum
t (r, r ′)− 1| ≤ ce−bt , c > 0, b > 0 (3.28)

Moreover, by its definition, see (3.3),

1∫

1−Aδ

v(r)dr = jδ (3.29)

Then
∣∣∣ jδGneum

nδ (r, 0)−
1∫

1−Aδ

Gneum
nδ (r, r ′)v(r ′)

∣∣∣ ≤ c′e−bnδ

so that the series (3.27) converges exponentially uniformly in δ. ��
Let us now add a superscript (δ,−) to ψ and v to underline their dependence on δ. We

shall first prove that ψ(δ,−) is equicontinuous:

Lemma 3.6 For any ε > 0 there is α > 0 so that for all δ

sup
|r−r ′|≤α

|ψ(δ,−)(r)− ψ(δ,−)(r ′)| ≤ ε (3.30)

Proof By (3.28) given any ε > 0 there is T > 0 so that

∑

n:nδ≥T

| jδGneum
(n+1)δ(r, 0)−

1∫

1−Aδ

Gneum
(n+1)δ(r, r

′′)v(δ,−)(r ′′)| ≤ ε (3.31)

It is well known that for any ζ > 0 and τ > 0 there is α > 0 so that

sup
t≥τ

sup
|r−r ′|≤α

sup
r ′′

|Gneum
t (r, r ′′)− Gneum

t (r ′, r ′′)| ≤ ζ

By bounding Gneum
t (r, r ′) ≤ c√

t
, we get for all |r − r ′| ≤ α

|ψ(δ,−)(r)− ψ(δ,−)(r ′)| ≤ 2ε + 4
∑

nδ≤τ

jδc√
nδ

+ δ−1T 2 jδζ
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By choosing ζ = ε/T and τ = ε2 we then have the right hand side bounded proportionally
to ε and the lemma is proved.

By (3.31) and the lemma we have that for any ε and for all δ small enough:
∣∣∣ψ(δ,−)(r)− jδ

∑

n

(
Gneum
(n+1)δ(r, 0)− Gneum

(n+1)δ(r, 1)
)∣∣∣ ≤ ε (3.32)

so that

lim
δ→0

ψ(δ,−)(r) = ψ(r) =
∞∫

0

{Gneum
t (r, 0)− Gneum

t (r, 1)} (3.33)

which proves that ρ(δ,−)(r) converges to ψ(r) for all r < 1. As in the previous case with
R < 1 fixed, the right hand side is identified to be a weak solution of the equation

ψ ′′ + j D0 − j D1 = 0 (3.34)

on R symmetric under all reflections of [0, 1]. To determine the solution we need another
condition, we are going to prove that at the right endpoint

Aψ(1) = j (3.35)

Indeed,

jδ =
1∫

1−Aδ

v(δ,−)(r)dr = Aδv(δ,−)(1)+
1∫

1−Aδ

[v(δ,−)(r)− v(δ,−)(1)]dr

Recalling (3.26), v(δ,−)(r) = ψ(δ,−)(r), r ∈ (1 − Aδ, 1), hence

| jδ − Aδψ(δ,−)(1)| ≤ Aδ sup
1−Aδ≤r≤1

|ψ(δ,−)(r)− ψ(δ,−)(1)|

By (3.30) in the limit as δ → 0 we then obtain (3.35). The weak solution of (3.34) with the
condition (3.35) is the function on the right hand side of (3.22). ��
3.3 Stationarity of the Linear Profiles

Proof of Theorem 2.3 To underline the choice of the initial datum we denote the limit profile
ρt of Theorem 2.1 by ρt = St (ρinit). We fix τ > 0 and have by Theorem 2.2

lim
n→∞

∣∣∣F(r; Sτ (ρ
(M)))− F(r; S(τ2−n ,−)

τ (ρ(M)))

∣∣∣ = 0, for all r ∈ [0, 1] (3.36)

Denote by ρ(τ2−n ,−) the stationary profile for the evolution S(τ2−n ,−)
t which converges to

ρ(M), then
∣∣∣F(r; S(τ2−n ,−)

τ (ρ(τ2−n ,−)))− F(r; S(τ2−n ,−)
τ (ρ(M)))

∣∣∣

≤ ‖S(τ2−n ,−)
τ (ρ(τ2−n ,−)))− S(τ2−n ,−)

τ (ρ(M)))‖1 (3.37)

Since Gneum
t is a contraction in L1 as well as K (δ) (see Lemma (7.3) in [3]) we have

‖S(τ2−n ,−)
τ (ρ(τ2−n ,−)))− S(τ2−n ,−)

τ (ρ(M)))‖1 ≤ ‖ρ(τ2−n ,−) − ρ(M)‖1 (3.38)
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which, from Theorems 3.3 and 3.5, vanishes as n → ∞. Since S(τ2−n ,−)
τ (ρ(τ2−n ,−)) =

ρ(τ2−n ,−),

lim
n→∞

∣∣∣F(r; S(τ2−n ,−)
τ (ρ(M)))− F(r; ρ(τ2−n ,−)))

∣∣∣ = 0, for all r ∈ [0, 1] (3.39)

which by (3.36) concludes the proof because, as already observed,

lim
n→∞

∣∣∣F(r; ρ(M))− F(r; ρ(τ2−n ,−))
∣∣∣ = 0, for all r ∈ [0, 1] (3.40)

��

4 Super-Hydrodynamic Limit

The main result in this section is a proof of a loss of memory of the initial conditions on
long hydrodynamic times. This result will be obtained by introducing couplings and to this
end it will be convenient to label the particles. We shall then conclude the section by using
the loss of memory result to prove convergence to linear stationary profiles and control the
super-hydrodynamic limit.

Definition 4.1 (Labeled configurations) A labeled configuration is a pair (x, I ) where I is
a finite subset of N and x a map from I to [0, ε−1]: I are the labels and x the positions of the
labeled particles. We shall also write x = {xi , i ∈ I }. To any labeled configuration (x, I )
we associate the unlabeled configuration ξx,I :

ξx,I (x) =
∑

i∈I

1xi =x (4.1)

We shall couple the evolution starting from (x0, I0) and (y
0
, J0) where I0 = {1, . . . , n}

and J0 = (1, . . . , n + m), n > 0, m ≥ 0. The coupled process will be a jump Markov
process on a state space S which is the family of all (x, I, y, J, N ) such that I ⊂ J , J \ I
has cardinality ≤m and N= max{i ∈ J }.

The coupled process starts from (x0, I0, y
0
, J0, n + m) and it is completely defined once

we specify the possible jumps and their intensities starting from any element (x, I, y, J, N )
in the state space S. To this end we introduce the set

I= = {i ∈ I : xi = yi }
and call (x ′, I ′, y′, J ′, N ′) the elements after the jump. The jumps are of four types:

– Single random walk jumps. They are independent random walk jumps involving the
restricted configurations (x, I \ I=) and (y, J \ I=). For any of these jumps it will be
I ′ = I , J ′ = J , N ′ = N . The jumps indexed by i ∈ I \ I= are such that y′ = y and
x ′

j = x j for j �= i , while xi → xi ± 1 with intensity 1/2 and x ′
i = xi ± 1 if this is in

[0, ε−1], otherwise x ′
i = xi . Analogously the jumps indexed by i ∈ J \ I= are such that

x ′ = x and y′
j = y j for j �= i , while yi → yi ± 1 with intensity 1/2 and y′

i = yi ± 1 if

this is in [0, ε−1], otherwise y′
i = yi . We denote by Ls the Markov generator describing

the single random walk jumps. It is given by:

Ls f (x, y) =
∑

i∈I\I=

1

2

{(
f (xi,+, y)− f (x, y)

)
1{xi �=ε−1} +

(
f (xi,−, y)− f (x, y)

)
1{xi �=0}

}

+
∑

i∈J\I=

1

2

{(
f (x, yi,+)− f (x, y)

)
1{yi �=ε−1} +

(
f (x, yi,−)− f (x, y)

)
1{yi �=0}

}
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where xi,± is the positions configuration obtained from x by replacing xi with xi ± 1. We
have omitted to underline the dependence of f on I, J, N since they remain unchanged
under the action of Ls .

– Double random walk jumps. They are indexed by i ∈ I= and also for these jumps I ′ = I ,
J ′ = J , N ′ = N . For each i ∈ I=, xi → x ′

i = xi ± 1 and yi → x ′
i , with intensity 1/2 if

xi ±1 ∈ [0, ε−1], otherwise the jump is suppressed; all the other positions are unchanged.
Let Ld be the Markov generator describing the double random walk jumps, then it is given
by:

Ld f (x, y)

=
∑

i∈I=

1

2

{(
f (xi,+, yi,+)− f (x, y)

)
1{xi ,yi �=ε−1} +

(
f (xi,−, yi,−)− f (x, y)

)
1{xi ,yi �=0}

}

– Creation events. At rate ε j , N ′ = N +1, I ′ = I ∪{N +1}, J ′ = J ∪{N +1}, x ′
i = xi , i ∈ I ,

x ′
N+1 = 0; y′

i = yi , i ∈ J , y′
N+1 = 0. We call Lcr the Markov generator associated to

these events.
– Death events. At rate ε j both I and J loose an element while N is unchanged. The

configuration after the death event is obtained in two steps. In the first step we erase from
x and y their rightmost particle with largest label, say xi and y j . That is also the final step
if j /∈ I or if i = j . If instead i �= j and j ∈ I we have two subcases: if x j ≤ yi we relabel
yi as y j so that the label i disappears from I and J . If instead yi < x j we relabel x j as
xi so that the label j disappears from I and J . We denote by Lann the Markov generator
associated to the death events.

It directly follows from the above rules that:

Lemma 4.1 In all the above cases (x ′, I ′, y′, J ′, N ′) ∈ S and the set I \ I= does not increase
after any of the above jumps. Moreover in the case of a death event, if i ∈ I ∩ I ′, the interval
with endpoints xi and yi may only change in such a way that the distance |xi − yi | decreases.

One can then easily check that

Lemma 4.2 The above rules can be used to define a jump process with state space S, denoted
by (x(t), I (t), y(t), J (t), N (t)). Its generator L is

L = Ls + Ld + Lcr + Lann (4.2)

where Ls describes the single random walk jumps; Ld the double random walk jumps; Lcr

the creation and Lann the annihilation jumps.
The processes ξx(t),I (t) and ξy(t),J (t) are then both Markov with generator L defined in

(1.1).

We say that i is a discrepancy at time t if it belongs to the set

D �=(t) = I (t) \ I=(t) =
{

i ∈ I (t) : xi (t) �= yi (t)
}

(4.3)

By Lemma 4.1, D �=(t) ⊂ D �=(0)⊆ I0 hence, if i ∈ D �=(t), then i ∈ {1, . . . , n}. We denote
by |D �=(t)| the cardinality of D �=(t) which thus counts the number of discrepancies at time
t .

Lemma 4.3 With the above notation, for any t ≥ 0 we have

ε−1∑

x=0

|ξx(t),I (t)(x)− ξy(t),J (t)(x)| ≤ |D �=(t)| + m (4.4)
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Proof Shorthand ξt (x) = ξx(t),I (t)(x) and ξ ′
t (x) = ξy(t),J (t)(x). Then

ε−1∑

x=0

|ξt (x)− ξ ′
t (x)| =

ε−1∑

x=0

∣∣ ∑

i∈I (t)

1xi (t)=x −
∑

i∈J (t)

1yi (t)=x
∣∣

≤
ε−1∑

x=0

{ ∑

i∈D�=(t)

∣∣1xi (t)=x − 1yi (t)=x
∣∣ +

∑

i∈J (t)\I (t)

1yi (t)=x

}

= |D �=(t)| + |J (t) \ I (t)|
then the result follows since J (t) \ I (t) ⊆ J0 \ I0 and |J0 \ I0| = m. ��
Call (x0(t), y0(t)) the independent random walk process starting from x0(0) = (x1, . . . , xn)

and y0(0) = (y1, . . . , yn). Call τ 0
i , i = 1, . . . , n, the first time t when x0

i (t) = y0
i (t) and

D0�=(t) = {i ∈ {1, . . . , n} : τ 0
i > t} (4.5)

and shall prove below that |D0�=(t)| stochastically bounds |D �=(t)|.
With this aim we introduce a process (x(t), I (t), y(t), J (t), N (t); x0(t), y0(t)) which

couples the two processes (x(t), I (t), y(t), J (t), N (t)) and (x0(t), y0(t)). We denote its
generator by

L̂ = L̂s + L̂d + L̂cr + L̂ann + L̂0 (4.6)

L̂d , L̂cr and L̂ann are the same as Ld , Lcr and Lann leaving unchanged x0 and y0. Also L̂s

describes the same jumps as Ls but it also changes x0 and y0 with the following rules. For

any i ∈ I0 \ I=(t), if xi → min{xi + 1, ε−1}, then also x0
i → min{x0

i + 1, ε−1} and, if
xi → max{xi − 1, 0}, then also x0

i → max{x0
i − 1, 0} (analogous rule for the y-jumps).

The generator L̂0 takes into account the independent jumps of x0
i and y0

i relative to the
labels i ∈ I0 ∩ I=(t) which are not being taken into account by L̂s . As before, for any
i ∈ I0 ∩ I=(t), if xi , yi → min{xi + 1, ε−1}, then also x0

i , y0
i → min{x0

i + 1, ε−1} and, if
xi , yi → max{xi − 1, 0}, then also x0

i , y0
i → max{x0

i − 1, 0}.
Lemma 4.4 If P̂ is the law of the above process with generator L̂, then

P̂
[
D �=(t) ⊂ D0�=(t)

] = 1 for all t ≥ 0 (4.7)

Proof Let us consider i ∈ {1, . . . , n} and suppose (for the sake of definiteness) that initially
xi < yi (recalling that x0

i = xi and y0
i = yi ). Call τi the first time t when either i leaves I (t)

or i enters into I=(t) We claim that xi (t) = x0
i (t) and yi (t) ≤ y0

i (t) for t < τi and since
this implies (4.7) the claim will prove the lemma. Indeed the jumps described by L̂s preserve
such a property and if L̂ann involves the label i (in the case we are considering it will still be
present after the jump event) then xi is unchanged and yi may only stay or decrease. ��

As a direct consequence we have

Theorem 4.5 There are positive constants c and b so that for any t ≥ 0, any n, m and any
initial configurations x and y as above

Ê
[|D �=(t)|

] ≤ cne−bε2t (4.8)
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(Ê denoting expectation with respect to the measure P̂).

Proof By (4.7) it is enough to prove the inequality for E0
[|D0�=(t)|

]
, E0 the expectation for

the independent walkers process. The bound will follow from the inequality

pt= pt (i) :=P0[τ 0
i > t] ≤ ce−bε2t (4.9)

for any i ∈ I0 = {1, . . . , n}. There is γ > 0 so that supposing xi < yi

pε−2 ≥ P0
[
x0(ε−2) ≥ y + x

2
, y0(ε−2) ≤ y + x

2

]
=

(
P0

[
x0(ε−2) ≥ y + x

2

])2 ≥ γ

hence

pt ≤ (1 − γ )ε
2t−1 = ce−bε2t , b = − log(1 − γ ), c = (1 − γ )−1 (4.10)

and therefore E0
[|D �=(t)|

] = n pt . ��
4.1 Convergence to Linear Profiles

We start by proving Theorem 2.4, to this end we show that two initial profiles with the
same mass (or two initial configurations with the same total number of particles) become
indistinguishable on the hydrodynamic time scale.

Proposition 4.6 (Loss of memory for ρt ) Let ρinit, ρ̃init be as in Definition 2.1. Suppose
F(0; ρinit) = F(0; ρ̃init) =: M, then

lim
t→∞ sup

r∈[0,1]
∣∣F(r; St (ρinit))− F(r; St (ρ̃init))

∣∣ = 0 (4.11)

Proof We shall use a corollary of Theorem 2.1 which may have an interest in its own right.
Let ρinit , ξ and ρt (r) as in Theorem 2.1 then for any t > 0

lim
ε→0

E (ε)ξ

[
max

x∈[0,ε−1]
|εFε(x; ξε−2t )− F(εx; ρt )|

]
= 0 (4.12)

Proof of (4.12). For any ζ > 0 define

Eζ (ε, t) :=
{

max
x∈[0,ε−1]

∣∣F(εx; St (ρinit))− εFε(x; ξε−2t )
∣∣ ≤ ζ

}

Then, from the Cauchy–Schwarz inequality we have

E(ε)ξ

[
max

x∈[0,ε−1]
|εFε(x; ξε−2t )− F(εx; ρt )|

]

≤ ζ P(ε)ξ

[
Eζ (ε, t)

]
+ P(ε)ξ

[
Eζ (ε, t)c

]1/2
E(ε)ξ

[(
max

x∈[0,ε−1]
|εFε(x; ξε−2t )− F(εx; ρt )|

)2]1/2

≤ ζ + P(ε)ξ

[
Eζ (ε, t)c

]1/2
E(ε)ξ

[
(ε|ξε−2t | + M)2

]1/2

because F(0, ρt ) = F(0, ρinit) = M . By Theorem 2.1 P(ε)ξ

[
Eζ (ε, t)c

]
vanishes while by

Theorem 2.6, E (ε)ξ

[
(M + ε|ξε−2t |)2

]
≤ c uniformly in ε. (4.12) is thus proved.

Let {ξ̃} be the family of initial data which approximate ρ̃init , chosen in such a way that for
all ε, |ξ̃ | = |ξ | =: nε . Calling xr := [ε−1r ], r ∈ [0, 1], since St (ρinit), St (ρ̃init) are bounded
we have
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∣∣F(r; St (ρinit))− F(r; St (ρ̃init))
∣∣ ≤ c |r − εxr | + E (ε)ξ

[
|F(εxr ; St (ρinit))− εFε(xr ; ξε−2t )|

]

+E (ε)
ξ̃

[
|F(εxr ; St (ρ̃init))− εFε(xr ; ξ̃ε−2t )|

]
+

∣∣∣E (ε)ξ
[
εFε(xr ; ξε−2t )

]
− E (ε)

ξ̃

[
εFε(xr ; ξ̃ε−2t )

]∣∣∣

for some c ≥ 0, then, by (4.12), (4.4) with m = 0 and (4.8)
∣∣∣F(r; St (ρinit))− F(r; St (ρ̃init))

∣∣∣ ≤ lim
ε→0

∣∣∣E (ε)ξ
[
εFε(xr ; ξε−2t )

]
− E (ε)

ξ̃

[
εFε(xr ; ξ̃ε−2t )

]∣∣∣

≤ lim
ε→0

cεnεe
−bt ≤ cF(0; ρinit)e

−bt (4.13)

(4.11) is then proved. ��

Proof of Theorem 2.3 Recall that the macroscopic evolution ρt is defined via Theorem 2.1.
Then equation (2.13) follows from Theorem 2.3 and Proposition 4.6 with ρ̃init = ρ(M). ��

We fix arbitrarily M > 0 as an upper bound for the total macroscopic mass with ε−1 M
bounding the total number of particles.

Definition 4.2 For any ε > 0 and any positive integer N ≤ Mε−1 we denote byη(N ,ε) ∈ N
�ε

the following particle approximation of the invariant profile ρ(εN ). We set η(N ,ε)(ε−1) = 0
and define iteratively for any x ∈ [0, ε−1 − 1]:

x∑

y=0

η(N ,ε)(y) =
⌈
ε−1

ε(x+1)∫

0

ρ(εN )
⌉

(4.14)

where �z� is the smallest integer ≥ z.

Observe that
∑ε−1−1

y=0 η(N ,ε)(y) = N and that for any m > 0 the sequence η([ε−1m],ε)

satisfies the conditions in Definition 2.1 with respect to ρinit = ρ(m).

Proposition 4.7 For any ζ > 0 and M > 0 there are t and ε∗ so that for any ε ≤ ε∗:

sup
ξ :|ξ |≤Mε−1

E (ε)ξ

[
max

x∈[0,ε−1]
∣∣εFε(x; ξε−2t )− F(εx; ρ(ε|ξ |))∣∣

]
≤ ζ (4.15)

Proof of Theorem 2.4 We split the interval [0,M] into intervals of length θ , θ > 0, calling
θn = nθ . We choose θ so small that

max
n

sup
m∈[θn ,θn+1]

1∫

0

|ρ(θn)(r)− ρ(m)(r)| ≤ ζ

2

Let η([ε
−1θn ],ε)

t be the process with generator (1.1) and initial configuration η([ε−1θn ],ε), then
|ε|η([ε−1θn ],ε)| − θn | ≤ ε. By (4.4) and Theorem 4.5 for any n and any ξ such that ε|ξ | ∈
[θn, θn+1],

Ê
[
ε
∑

x

∣∣η([ε
−1θn ],ε)

ε−2t
(x)− ξε−2t (x)

∣∣
]

≤ θ+ε + cMe−bt ≤ ζ

4
(4.16)
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The last inequality requires t large enough: cMe−bt < ζ/8 and θ and ε small enough so that
θ + ε ≤ ζ/8. By Theorem 2.1 and (4.12), since St (ρ

(m)) = ρ(m), there is ε1(t, ζ ; θ) so that
for all ε ≤ ε1(t, ζ ; θ)

max
n

E (ε)
η([ε−1θn ],ε)

[
max

x∈[0,ε−1]
∣∣εFε(x; η([ε−1θn ],ε)

ε−2t
)− F(εx; ρ(θn))

∣∣
]

≤ ζ

4
(4.17)

As a consequence

sup
ξ :ε|ξ |≤M

E (ε)ξ

[
max

x∈[0,ε−1]
∣∣εFε(x; ξε−2t )− F(εx; ρ(ε|ξ |))∣∣

]

≤ sup
ξ :ε|ξ |≤M

E (ε)ξ

[
max

x∈[0,ε−1]
∣∣εFε(x; η([ε−1θn ],ε)

ε−2t
)− F(εx; ρ(ε|ξ |))∣∣

]
+ ζ

4

≤ ζ

2
+ max

n
sup

m∈[θn ,θn+1]

1∫

0

|ρ(θn)(r)− ρ(m)(r)| < ζ

this concludes the proof. ��
4.2 Evolving Profiles

Proof of Theorem 2.6 From the definition of the generator (1.1) we infer that the induced
process |ξt | counting the number of particles at time t evolves with the generator

L(ε) f (|ξ |) = jε{
(

f (|ξ | + 1)− f (|ξ |)
)

+ 1|ξ |>0

(
f (|ξ | − 1)− f (|ξ |)

)
} (4.18)

acting on bounded functions f : N → R. Such generator is immediately recognized to be
the generator of the continuous time symmetric random walk on N at rate jε and reflected at
the origin. ��

We also have that calling P(ε)
x , x ∈ N, the law of the random walk xt with generator L(ε)

starting from x :

Lemma 4.8 Let M ′ > 0 and T > 0 then for any δ > 0 there is M so that for all ε small
enough, any x ≤ ε−1 M ′

inf
t≤ε−2T

P(ε)
x [|xt − x | ≤ δ] ≥ 1 − δ, sup

t≤ε−3T
P(ε)

x

[
xt ≥ ε−1 M

] ≤ δ (4.19)

Proof of Theorem 2.5 The last statement of the theorem, i.e. that

M (ε)
t := ε

∣∣ξε−3t

∣∣ → B jt as ε → 0 in law (4.20)

with (Bt )t≥0 the brownian motion on R+ with reflection at the origin, starting from B0 =
limε→0 M (ε)

0 = limε→0 ε|ξ |, follows from Theorem 2.6 and the fact that the diffusive scaling
limit of the random walk is Brownian motion.

• Subcritical regime. (2.15) follows directly from (4.15).
• Critical regime. Let t∗ = ε−3t−s, then by Lemma 4.8 for any given s > 0, with probability

≥ 1 − δ, |ξt∗ | ≤ ε−1 M . By (4.15), choosing s large enough in the set |ξt∗ | ≤ ε−1 M ,

E (ε)ξt∗

[
max

x
|εFε(x; ξε−2s)− F(εx; ρ(ε|ξt∗ |))|

]
≤ ζ

2
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On the other hand by (4.19) for ε small enough

P(ε)ξt∗
[||ξt∗ | − |ξt∗+ε−2s || ≤ δ

] ≥ 1 − δ

so that (2.16) follows from the continuity in m of F(0; ρ(m)).
��
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