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Abstract We present some computer simulations run on a stochastic cellular automaton
(CA). The CA simulates a gas of particles which are in a channel,the interval [1, L] in Z,
but also in “reservoirs”R1 andR2. The evolution in the channel simulates a lattice gas with
Kawasaki dynamics with attractive Kac interactions; the temperature is chosen smaller than
the mean field critical one. There are also exchanges of particles between the channel and the
reservoirs and among reservoirs.When the rate of exchanges among reservoirs is in a suitable
interval the CA reaches an apparently stationary state with a non zero current; for different
choices of the initial condition the current changes sign. We have a quite satisfactory theory
of the phenomenon but we miss a full mathematical proof.

Keywords Stochastic cellular automata · Kac potential · Fourier law and phase transition ·
Uphill diffusion

1 Introduction

In this paper we introduce models of macroscopic dissipative systems made of interacting
particleswhichmove stochastically in a circuit and exhibit a very surprising behavior. Despite
the fact that there is no external biaswe see, after a transient, an apparently stationary statewith
a non zero current, with suitably different initial conditions we may select another state with
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the opposite value of the current.We speculate that onmuch longer times there is a “dynamical
phase transition” with the two states alternating one after the other. To make an analogy with
equilibrium phase transitions, consider the 2D Ising model in a large but finite box with
nearest neighbor ferromagnetic interactions. Running the Glauber dynamics at a temperature
below the critical value we typically see long time intervals where the magnetization density
has approximately the plus equilibrium value alternating via tunneling with those where it is
close to the minus equilibrium value. The analogue of the equilibrium magnetization in our
model is the current as we have two states with opposite values of the current. However we
observe our circuit for times long but much smaller than those for tunneling so that we only
see one of the two currents (selected by the initial condition) which then looks stationary.
Our analysis relies mostly on computer simulations, we have theoretical explanations but we
miss a mathematical proof.

There is a huge literature on the more general question of existence of periodic motions
or oscillations especially in the context of biological systems and chemical reactions, the
classical reference is the book by Kuramoto [11]. We just quote here a few examples selected
with the purpose of introducing what we will be doing in this paper.

In [16] Tass discusses a simple system of rotators which interact attractively with each
other and are subject to white noise forces. For small interactions the stationary state is homo-
geneous and even though each particle rotates there is no macroscopic change. However if
the interaction increases the rotators form a macroscopic cluster which then moves period-
ically. This is a simplified model for neural activities, the angle of the rotator is related to
the neuron potential and the crossing from 2π to 0 is interpreted as the neuron discharging
its potential (“firing”): the appearance of a cluster causes a great potential change when the
cluster crosses 2π which could explain some diseases related to anomalous neuron firing.

A quantum analogue of the rotator model has been studied by Wilczek in [17] where it is
shown that there are ground states with a localized cluster which rotates, this phenomenon
called a “time crystal”. Comments on time crystals can be found in [1]. Experimental evidence
of “time crystals” are presented in [18]. Time crystals in a classical (i.e. non quantum) context
have been considered in [15].

A rotators model is also considered in [10] where an additional external force is present.
The main point in the paper is to show that for a critical set of values of the parameters
there is a cluster which is however blocked (by the external force). However if the white
noise strength is increased then the cluster starts moving and performs a periodic motion,
this being a nice example of noise-induced periodicity. Also in our models noise is the fuel
which makes the system run.

In the above models each particle by itself rotates: the macroscopic rotations arise from
a “phase synchronization” of the rotators. Instead in the FitzHugh Nagumo class of models
for the firing cycles of a neuron, the appearance of periodic motions is due to a different,
more intrinsic mechanism. For what follows it is convenient to consider a particular model
in the class which can and will be read in a statistical mechanics language. In such a context
the model is defined by two (macroscopic) variables, the magnetization m and the magnetic
field h. m is the “fast” and h the “slow variable” as the evolution is defined by the equations:

ε
dm

dt
= −m + tanh{β(m + h)}, dh

dt
= −m (1.1)

where ε > 0 is the “small parameter” and β > 1 the inverse temperature. It can be seen
that (1.1) has a (stable) periodic solution which in the limit ε → 0 becomes the hysteresis
cycle: m = m±(h), m+(h) the positive solution of m = tanh{β(m + h)} which exists for
h > −hc, hc > 0; m−(h) = −m+(−h), h < hc, see Fig. 1. The transition from the upper
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Fig. 1 Hysteresis cycle, with
β = 2.5
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curve m+(·) to the lower one m−(·) (and vice versa) is discontinuous and hence very sharp
for ε > 0 small, a fact which catches the main feature of the neuron voltage cycle namely
that at the firing the potential changes very abruptly. Observe that m+(h) is metastable for
h < 0 as well as m−(h) for h > 0, the metastable values of the magnetization will play a
fundamental role also in this paper.

Dai Pra et al. [4], derived similar patterns in a macroscopic limit from a Ising spin model
with mean field interactions giving nice examples of “intrinsic” periodic oscillations in the
stochastic Ising model. In this paper we will consider the relaxed version of mean field as
defined by Kac potentials.

All the above examples can be interpreted in terms of a current in a circuit but in all of
them there is a more or less hidden bias because the current can flow only in one direction and
not in the opposite one, so that they do not fit in what we are looking for. However they have
all a common feature with our models, namely the presence of a phase transition, responsible
in the rotator models for the formation of a cluster and in the FitzHugh Nagumo models for
the presence of a hysteresis cycle. The way phase transitions appear in our analysis is the
following. In a first order phase transition there is a spontaneous separation of phases which
gives rise to gradients of the order parameter without currents being present. The Fourier
law associates to a gradient a current (in the opposite direction) so that the phase transition
generates “effective forces” which prevent the gradients to give rise to currents. Our idea is
to exploit such forces to construct a “battery” which allows for a non zero current in a circuit.

Our battery is a cellular automaton which simulates the Kawasaki dynamics in a lattice
gas with interactions given by an attractive Kac potential which in the Lebowitz-Penrose
limit has a van der Waals phase transition. Therefore we can distinguish between stable,
metastable and unstable values of the density. The main and somehow unexpected feature of
the system is that if we connect the endpoints of the channel to “infinite” (i.e. true) reservoirs
which fix the density at values ρ− and ρ+ = 1 − ρ− > ρ− with ρ± metastable densities
we observe numerically a current which goes through the channel from the reservoir with
smaller density ρ− to the one with the larger density ρ+. We have a theoretical explanation of
the phenomenon in terms of properties of the solution of an integral equation obtained from
the process in the “mesoscopic limit” where the scaling parameter γ of the Kac potential
vanishes, but we could verify these properties only numerically.

In [3] we have presented numerical evidence that the current in the CA flows from the
reservoir with smaller density to the one with larger density. In this paper we present a more
complete set of simulations from where a very complex structure emerges for which we
have a theoretical explanation, but we miss a complete mathematical proof. The other main
point in this paper is that we can exploit the above to construct a circuit with a self sustained
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current without an external bias, as claimed in the first sentence of this Introduction. This
is obtained by making the reservoirs finite and allowing also particles exchanges among the
reservoirs. We show (via the simulations) that for suitable values of the parameters there are
initial conditions which give rise to a steady non zero current (stationary for the times of our
simulations); there are also other initial conditions where the current flows in the opposite
direction and still others where there is no current at all. The state with zero current seems
unstable while those with a non zero current seem locally stable.

As suggested by a referee, similar phenomena have also been studied in other models, e.g.
the Bunimovich’s mushroom billiard model [2] in which the presence of peculiar transport
regimes can be traced back to the lack of ergodicity of the microscopic dynamics; but we
have not yet explored this issue.

The paper is organized as follows. In Sect. 2 we define two different versions of the CA
used in the simulations, namely: one describing a single (open) channel in contact with two
reservoirs (hereafter called OS-CA), and another mimicking the particle dynamics in a closed
circuit (called CC-CA).

In Sect. 3 we present the results of the simulations obtained by running the OS-CA and
also explain how to run the CC-CA by exploiting the results first obtained with the OS-CA.

In Sect. 4 we illustrate the behavior of the particle current in the CC-CA and comment on
the dependence of this quantity on the parameters of the model.

In Sect. 5 we study the continuum (mesoscopic) limits of both the OS-CA and the CC-CA,
which are described by an integro-differential equation; proofs are deferred to theAppendix 2.

In Sect. 6 we discuss the adiabatic limit of the model, and check the consistency of our
simulations of the CC-CA with the predicted adiabatic behavior.

In Sect. 7 we consider the case where the reservoirs have stable densities and in Sect. 8
where the densities are not stable.

In Sect. 9 we study the stability of a stationary density profile, referred to below as the
“bump” solution, close to the boundary.

Concluding remarks are finally drawn in Sect. 10.

2 The Cellular Automata

In this section we define two cellular automata: the first one, called “open system cellular
automaton”, OS-CA in short, has been first introduced in [13] and then used in [3] to simulate
a system in contact with reservoirs. The second one, simply called “closed circuit cellular
automaton”, CC-CA, is amodification of the first one obtained bymaking finite the reservoirs
and adding direct exchanges between them, so that it simulates a closed circuit.

2.1 The OS-CA

TheOS-CA describes the evolution of particles in a “channel” {1, 2, . . . , L}, L > 1 a positive
integer. Besides moving in the channel particles may also leave from or enter into the channel
through L and 1 (we then say that they are absorbed or released from the reservoirR2 if this
happens at L and from reservoir R1 if it happens at 1). The two reservoirs are “infinite” in
the sense that they do not have memory of the particles which are absorbed or released.

The CA in the channel is a parallel updating version of a weakly asymmetric simple
exclusionprocess, designed for computer simulations. Thed = 1 symmetric simple exclusion
process is a system of random walks jumping to the right and left with equal probability, the
jump being suppressed if the arrival site is occupied. The weak asymmetry that we add is
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a small bias to jump in the direction where the density is higher. If the channel was a torus
this would produce a phase separation into a region where the density is higher and another
where it is smaller. But our channel is open as particles may leave or enter into the channel
in a setup typical of the Fourier law but in a context where phase transitions are present.

Let us now go back to the definition of the CA. The phase space is S = {(x, v), x ∈
{1, . . . , L}, v ∈ {−1, 1}}, particles configurations are functions η : S → {0, 1}, η(x, v) ∈
{0, 1} denotes the occupation variable at (x, v) and v will be interpreted as a velocity. η(x) =
η(x,−1)+η(x, 1) ∈ {0, 1, 2} denotes the total number of particles at x . We may add a suffix
t when the occupation variables are computed at time t .

The definition of the OS-CA involves four more parameters: γ −1 ∈ N, C > 0 and
ρ± ∈ [0, 1]. In the simulations presented in this paper we have fixed γ −1 = 30, C = 1.25,
while the length of the channel is set equal to L = 600. ρ± are referred to as the density of
reservoir R2, respectively R1, they are fixed during a simulation but they may be changed
in different simulations. In the definition of the CA we will use the notation

N+,x,γ =
x+γ −1∑

y=x+1

η(+)(y), N−,x,γ =
x−1∑

y=x−γ −1

η(−)(y), x ∈ [1, L] (2.1)

where η(+)(y) = η(y) if y ∈ [1, L] and η(+)(y) = 2ρ+ if y > L; similarly η(−)(y) = η(y)

if y ∈ [1, L] and η(−)(y) = 2ρ− if y < 1. We want N+,x,γ to be the total number of particles
to the right of x within distance γ −1 from x , however it may happen that if x is close to the
right boundary then there are not γ −1 sites in the channel to the right of x . Suppose that there
are only γ −1 − m such sites, we then add fictitiously 2m phase points (y, v), v = ±1 and y
takes m values to be thought as m physical sites to the right of the channel. The occupation
number η(y, v) is then set equal to ρ+ so that the contribution to N+,x,γ of the extra m sites
is 2ρ+m, which explains the factor 2 in the definition of η(+)(y). Analogous interpretation
applies to η(−)(y).

We are now ready to define how the OS-CA operates: the unit time step updating (from t to
t +1) is obtained as the result of three successive operations, we denote by η the configuration
at time t , by η′ and η′′ two consecutive updates starting from η and by η′′′ the final update
which gives the configuration at time t + 1.

1. Velocity flip At all sites x ∈ {1, . . . , L} where there is only one particle we update its
velocity to become+1with probability 1

2 +εx,γ and−1with probability 1
2 −εx,γ , εx,γ =

Cγ 2[N+,x,γ − N−,x,γ ] (the definition is well posed because (2γ −1)Cγ 2 = 2.5/30 < 1
2 ,

(2γ −1) being an upper bound for |N+,x,γ − N−,x,γ |). At all other sites the occupation
numbers are left unchanged. We denote by η′ the occupation numbers after the flip.

2. Advection After deleting the particles in the channel at (1,−1) and (L , 1) (if present)
we let each one of the remaining particles in the channel move by one lattice step in the
direction of its velocity. We denote by η′′ the occupation numbers after this advection
step.

3. Exchanges with the reservoirs With probability ρ+ we put a particle at (L ,−1) and with
probability 1 − ρ+ we leave (L ,−1) empty. We do independently the same operations
at (1, 1) but with ρ− instead of ρ+. The final configuration is then denoted by η′′′.

2.2 The CC-CA

We now turn to the second CAwhich describes the evolution of particles in a “closed circuit”.
The phase space is the disjoint unionS∪R1∪R2,whereS is as beforewhile the two reservoirs
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R1 andR2 are finite sets both with cardinality R, R a positive, even integer. R is interpreted
as the number of phase points in the reservoir, thus there will be R/2 sites with velocity 1
and R/2 sites with velocity −1: the velocities in the reservoirs however do not play any role
in the evolution, they are used only to have a symmetric description of the channel and the
reservoirs. Unlike in the OS-CA now the total number of particles (i.e. those in the channel
and in the reservoirs) is constant in time. In the CC-CA the densities ρ± in the two reservoirs
are no longer constant but given by NR1/R and NR2/R where

NR1 =
∑

(x,v)∈R1

η(x, v), NR2 =
∑

(x,v)∈R2

η(x, v) (2.2)

Accordingly we define N±,x,γ in the CA as in (2.1) but with ρ± replaced by the instantaneous
values NR1/R and NR2/R of the density in R1 and R2. With these notation the first two
steps of the evolution in the CA are the same as in the OS-CA. We call again η′ and η′′ the
configurations in the system after the first and the second step, with η′′ = η′ = η inR1 ∪R2

(i.e. the occupation numbers in the reservoirs are unchanged in the first two steps). In the
third step instead they may change as we are going to see.
3. The new third step, (reservoirs exchanges) Its definition involves a new, suitably small
parameter γ p > 0. We first select with uniform probability a phase point (x1, v1) ∈ R1

and (x2, v2) ∈ R2: if η(x1, v1) = 0 we set η′′′(1, 1) = 0, if instead η(x1, v1) = 1 we
set η′′′(1, 1) = 1. Analogously η′′′(L ,−1) = 0, 1 if η(x2, v2) = 0, 1. This concludes the
definition of η′′′ in the channel while in the reservoirs η′′′ = θ ′′′, with θ ′′′ defined as follows.
We first define θ ′ by setting θ ′(x, v) = η(x, v) for (x, v) in R1 with (x, v) �= (x1, v1) and
θ ′(x1, v1) = 0. θ ′(x, v) is defined analogously in R2. θ ′′(x, v) is obtained from θ ′(x, v) by
adding a particle in the first empty point of R1 (according to a fixed but arbitrary order) if
η′(1,−1) = 1, otherwise θ ′′ = θ ′ in R1. θ ′′ is defined analogously in R2. Finally θ ′′′ is
obtained from θ ′′ in the following way. With probability 1 − γ p we let θ ′′′ = θ ′′ while with
probability γ p we do the following: we choose with uniform probability (y1, v1) ∈ R1 and
(y2, v2) ∈ R2 and exchange θ ′′(y1, v1) with θ ′′(y2, v2). To be well defined we have tacitly
supposed that γ p ≤ 1, actually γ p � 1 in the simulations.

Heuristically γ p is the rate at which particles jump directly from a reservoir to the other.
Without the channel these exchanges would eventually make the densities of the two reser-
voirs equal to each other.

2.3 Magnetization Variables

To exploit the symmetries in the system it is convenient to introduce spin variables. We set
in the CC-CA:

σ(x) = η(x, 1) + η(x,−1) − 1 (2.3)

both in the channel and in the reservoirs (possibly adding t when the variables are computed
at time t). We call Sch = ∑L

x=1 σ(x) the total spin in the channel, thus

Sch = Nch − L , Nch :=
L∑

x=1

η(x) (2.4)

Recalling (2.2), we define analogously to (2.4)

SR1 = NR1 − R

2
, SR2 = NR2 − R

2
(2.5)
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We define also the magnetization density in the two reservoirs

mCC− = SR1

R/2
, mCC+ = SR2

R/2
(2.6)

In the OS-CA the magnetization density in the “reservoirs” is

m± = 2ρ± − 1 (2.7)

2.4 Currents

For the OS-CAwe define jR1→ch(t) and jch→R2(t) as the number of particles which go from
R1 to the channel minus those which go from the channel to R1 in the time step t → t + 1
and respectively, the number of particles which go from the channel toR2 minus those which
go from R2 to the channel in the time step t → t + 1. Thus

jR1→ch(t) = η′′′(1, 1; t) − η′(1,−1; t)

jch→R2(t) = η′(L , 1; t) − η′′′(L ,−1; t) (2.8)

with η′, η′′ and η′′′ the occupation numbers after the three updates which lead from t to t +1.
In the CC-CA the currents jCC

R1→ch(t) and jCC
ch→R2

(t) are defined by the same expression
as in (2.8) with the new η’s. The current between the reservoirs is defined as the number of
particles which go from R2 to R1 minus those which go from R1 to R2 in the time step
t → t + 1, thus:

jR2→R1(t) = −
∑

(x,v)∈R2

[θ ′′′(x, v; t) − θ ′′(x, v; t)] (2.9)

2.5 Conservation Laws

In the OS-CA we have

Nch(t + 1) − Nch(t) = jR1→ch(t) − jch→R2(t) (2.10)

In the CC-CA the analogue of (2.10) holds as well:

NR1(t + 1) − NR1(t) = jCC
R2→R1

(t) − jCC
R1→ch(t) (2.11)

with analogous formula for NR2 . As a consequence, in the CC-CA, the total number of
particles NR1 + NR1 + Nch is conserved as well as the total spin SR1 + SR1 + Sch.

2.6 Initial Conditions

In the OS-CA we impose ρ+ > ρ−, ρ+ + ρ− = 1. Observe that this implies m+ > 0 and
m+ + m− = 0. Analogously in the CC-CA we initially impose that

NR1 + NR2 = R, NR2 >
R

2
(2.12)

The initial state in the channel will be specified in the sequel.
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2.7 Parameters of the Simulations

We conclude the section by recalling the values of the parameters that will be used in the
simulations:

γ −1 = 30, C = 1.25, β = 2.5, L = 600, R = 105, R =: γ −1a, L =: γ −1
 (2.13)

3 The OS-CA

In this section we present the simulations obtained by running the OS-CA, recall that this
CA has been defined in terms of two fixed densities ρ+ and ρ−, ρ+ + ρ− = 1, which in
the magnetization variables, see (2.7), amounts to fix m+ > 0, m− = −m+. As already
mentioned the OS-CA simulates the typical Fourier law experiments therefore the physically
most relevant quantity is the stationary current j (m+): j = j (m+) plays the role of the
equation of state in a non equilibrium context (due to the presence of the reservoirs) and
defines the “non equilibrium thermodynamics” of the system.

Thus our first task is to consider the currents in the CA, since the instantaneous currents
defined in (2.8) are strongly fluctuating, we take averages:

j T
R1→ch = 1

T

T −1∑

t=0

jR1→ch(t) (3.1)

In general with f T we will denote the average of f , thus j T
ch→R2

is the averaged current
from the channel to R2.

Strictly speaking stationarity is reached as T → ∞, existence of the limit should follow
(almost everywhere) from the Birkhoff theorem. Of course in the simulations we cannot take
such a limit and the value of T is chosen empirically in such a way that j T

ch→R2
≈ j T

R1→ch
looks independent of T . The initial condition in the channel is with all phase points empty,
we have checked that with other conditions the final current does not change appreciably. The
stationarity condition j T

ch→R2
(m+) − j T

R1→ch(m+) ≈ 0 is also satisfied, typical values are

10−8 while the currents have order 10−5. 10−8 is also considerably smaller than the a-priori
bound

| j T
R1→ch − j T

ch→R2
| ≤ 2L

T
= 1.2 × 10−7,when T = 1010

The black dots in Fig. 2 are the values of j T
ch→R2

(m+) in the simulations done with

T = 3 × 109 for m+ ∈ (0, m′) and m+ > m′′′ and T = 1010 elsewhere. The continuous
line in Fig. 2, denoted by j (m+), is a continuous interpolation of j T

ch→R2
(m+) which we

presume to be a good approximation of simulations done with the other values of m+, it is
therefore the “experimental” value for the non equilibrium equation of state j = j (m+). The
main features in Fig. 2 [where m′ = 0.500, m′′ = 0.825, m′′′ = 0.912 and miv = 0.985)]
are:

– For m+ ∈ (miv, 1] the current j (m+) is negative in agreement with the Fourier law,
while for m+ < miv the current is positive going from smaller to larger values of the
magnetization (i.e. from m− to m+).

– j (m+) is first increasing till m′, then decreasing till m′′, again increasing till m′′′ and
finally decreasing then after.
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Fig. 2 We plot j := j T
ch→R2

as a function of m+ (black dots). The continuous line is j (m+). Shown are

the values m′ = 0.500, m′′ = 0.825, m′′′ = 0.912, miv = 0.985

-250

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 2250

 2500

 0  2x107  4x107  6x107  8x107  1x108  1.2x108  1.4x108

t

Fig. 3 We plot j t
R1→ch(m+)t (black circles) and j t

ch→R2
(m+)t (empty circles) as functions of time t , with

m+ ∈ [m′, m′′′]

– In Fig. 3 we plot j t
R1→ch(m+)t and j t

ch→R2
(m+)t , t ≤ T with m+ ∈ [m′, m′′′]. We see

significant fluctuations around the linear slope j T
R1→ch(m+)t , while for m+ /∈ [m′, m′′′]

the fluctuations are “negligible”.

The most striking feature in the simulations is undoubtedly the fact that the current is
positive when m+ < miv so that it flows along the gradient going from the reservoir with
smaller magnetization to the one with larger magnetization. If we dropped the interaction
among particles in the channel, namely put εx,γ ≡ 0, then the current would flow according
to the Fourier law opposite to the gradient, namely from R2 to R1.
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Fig. 4 We plot j/m+ := j (m+)/m+ as a function of m+ (black dots). The continuous line is a black dots
interpolation

3.1 A Heuristic Argument

Let us now imagine to have two channels connected toR1 andR2, channel 1 is the channel
considered so far while channel 2 is some other channel where the Fourier law is satisfied (for
instance the OS-CA with no bias, εx,γ ≡ 0, or some simpler connection as the one discussed
later). When m+ < miv , in channel 1 there is a current j (m+) going fromR1 toR2, while in
channel 2 the current is j2 = κm+, κ > 0, going from R2 to R1 (recall m− = −m+). Thus
in a time t the reservoir R1 will loose a magnetization j (m+)t through channel 1 and gain
a magnetization κm+t through channel 2; the opposite happens to R2. This will go forever
because the reservoirs in the OS-CA are not changed by what comes and goes; if instead the
reservoirs were realized by large but finite systems (as in CC-CA) then after a time which
depends on the size of the reservoirs and the difference j (m+) − κm+ the magnetization in
the reservoirs would change and stationarity would be lost. However if we choose channel 2
so that κm+ = j (m+) there is a perfect balance so that whatR1 gives toR2 through channel
1 comes back from channel 2. We may thus hope that even if the reservoirs are finite (yet
sufficiently large) this is again approximately true and that there is a non zero current which
looks stationary for long times.

The simplest choice for channel 2 leads to the CC-CA of Sect. 2 where channel 2 is made
by just allowing direct exchanges between the two reservoirs. Then, as we shall see later, the
average current in the CC-CA from R2 to R1 is equal to γ pm+, hence the conjecture that
for such a particular value of γ p there is a non zero stationary current in the circuit which is
close to j (m+).

To check this we have defined for eachm+ < miv in Fig. 2 γ p = j (m+)/m+ as a function
of m+, see Fig. 4.

We have then run the CC-CA with such values of γ p, putting m+(0) = m+ in R2,
m−(0) = −m+ inR1 and choosing the initial state in the channel equal to the configuration
in the OS-CA simulation at the final time T . For all the values of m+ considered in Fig. 2
we have run the CC-CA for a same time T = 3 × 109 and computed the averaged currents
j T,CC
R1→ch, j T,CC

ch→R2
and j T,CC

R2→R1
defined as in (3.1). Recalling (2.6) we have also defined the

averaged magnetization mT,CC
± in the two reservoirs writing j T,CC

R2→R1
(m+), j T,CC

R1→ch(m+),
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Fig. 5 Weplot� j := 105×[ j T,CC
R2→R1

(m+)− j T
ch→R2

(m+)] (left panel) and�m+ := mT,CC
+ −m+ (right

panel) as a function of m+. Note that the large fluctuations occur in the interval (m′′, m′′′), with m′′ = 0.825,
m′′′ = 0.912

j T,CC
ch→R2

(m+), mT,CC
± (m+) when we want to underline that the values are obtained starting

from m+.
The previous heuristic argument suggests that the three currents above are all close to each

other and thus approximately equal to j T
ch→R2

(m+) andmoreover that mT,CC
± (m+) ≈ ±m+.

In the next section we will see what the simulations say.

4 Self Sustained Currents

Figure 5 is obtained by running the CC-CA in the setup described at the end of the previ-
ous section. It reports the values of the differences 105[ j T,CC

R2→R1
(m+) − j T

ch→R2
(m+)] and

mT,CC
+ (m+)−m+ as a function of m+, recall from Fig. 2 that the typical values of the current

have order 10−5.
We have also reported for each m+ in Fig. 2 the values of the pair (γ p, j T,CC

R2→R1
), see

Fig. 6 left, the continuous line is obtained by interpolating between such values. Analogously
in Fig. 6 right the dots are the values of (γ p, mT,CC

+ ) and the continuous line is obtained
by interpolation. The continuous lines are multi-valued functions denoted respectively by
jCC (γ p) and mCC+ (γ p), we presume they are a good approximation of what would be
obtained by following the same procedure for other values of m+ in Fig. 2.

Let us point out the main features of our simulations.

– Figure 5 shows that the simulations are in good agreement with the conjectures stated
at the end of the previous section except in the interval m+ ∈ (m′′, m′′′). The values of
j T,CC
R2→R1

(m+) and mT,CC
+ (m+) when m+ ∈ (m′′, m′′′), are however approximately the

same as those obtained for different values of m+, see the black circles in Fig. 6).
– The values of γ p are all in the interval (0, qc), qc = 11.25 × 10−5, and jCC (γ p) is

positive for all such values of γ p. We have also done simulations with γ p > qc with
several choices of the initial condition andwe have always seen zero current (not reported
here).

– jCC (γ p) is multi-valued, it has two distinct branches (separated from each other), the
upper one in the interval (0, q ′′), q ′′ = 5.26×10−5, the lower one in the interval (q ′, qc);
q ′′ > q ′, q ′ = 1.98 × 10−5. In the interval (q ′, q ′′) there are two positive currents
different from each other.
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Fig. 6 We plot the values of the pairs (γ p, j T := j T,CC
R2→R1

) (left panel) and (γ p, mT+ := mT,CC
+ ) (right

panel). The black circles in the panels above denote, respectively, the stationary values of j T,CC
R2→R1

andmT,CC
+

obtained with m+ ∈ (m′′, m′′′). Shown are also the values of q ′ = 1.98 × 10−5 and q ′′ = 5.26 × 10−5

– mCC+ (γ p) has the analogous structure, being two valued in (q ′, q ′′). Both branches are
decreasing, mCC+ (γ p) → miv = 0.985, as γ p → 0, and to 0 as γ p → qc.

– There is a gap in the range of mCC+ (γ p), namely the interval (m′, m′′).

4.1 Conclusions

The simulations in Fig. 5 show good agreement with the conjectures of Sect. 3 except when
m+ ∈ (m′′, m′′′). Thus, with such exception, we may say that the stationary state found in
the OS-CA evolution persists in the CC-CA provided that γ p = j (m+)/m+.

There is nomystery about the current between the two reservoirs being γ p(m+−m−)/2 ≈
γ pm+ because we can prove (see Appendix 1) that

E

[{
j T,CC
R2→R1

− γ p
1

2

[
mT,CC

+ − mT,CC
−

]}2
]

≤ γ p

T
+ 16

(γ p)2

R
+ corrections (4.1)

Since γ p ≈ 10−5, R = 105 and T ≈ 109, the corrections have order 10−19, see (10.18).
Figure 6 can be obtained from Fig. 2: in fact according to the above statements jCC (γ p) is

(approximately) equal to j (m+) with j (m+) = γ pm+. Since this may have multiple roots,
jCC (γ p) will be correspondingly multi-valued. However the roots with m+ ∈ (m′′, m′′′)
are absent in the simulations (see the black circles in Fig. 6) but their values are the same
as those obtained with other values of m+. Same if we look at mCC (γ p) and compare with
Fig. 2.

As a conclusion we have a consistent explanation of what seen in the OS-CA and the
CC-CA, but we still need to explain (i) what happens when m+ ∈ (m′′, m′′′); (ii) why the
typical values of j (m+) have order 10−5 which is much smaller than 1/L ≈ 10−3 which
is what expected from Fourier law experiments; (iii) why the true reservoir current has the
behavior shown in Fig. 2.

We can gain a theoretical insight on what is going on by looking at what happens in the
mesoscopic limit γ → 0 which we study in the next section.
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5 The Mesoscopic Limit

This is defined by letting γ → 0 with

L = γ −1
, R = γ −1a, 
, a > 0 fixed (5.1)

In the channel space and time are scaled diffusively, thus x → r = γ x and t → τ = γ 2t .
In mesoscopic units the channel after the limit γ → 0 becomes the real interval [0, 
]. We
will prove existence of the limit (for the relevant quantities) under the assumption of a strong
form of propagation of chaos, the details are given in an appendix.

We denote by Eγ the expectation in the CA processes (randomness coming from the initial
datum and from the updating rules of the CA’s).

Assumptions
We suppose that

1. In both CA the limit below (denoted in the same way for both CA) exists and is smooth

lim
γ→0

lim
γ x→r,γ 2t→τ

Eγ [η(x, v, t)] = m(r, τ ) + 1

2
, r ∈ [0, 
], v ∈ {−1, 1}, τ ≥ 0 (5.2)

2. In the CC-CA
lim

γ→0,γ 2t→τ
m±,γ (γ 2t) = m±(τ ) (5.3)

where, recalling (2.6), we have set m±,γ (γ 2t) := Eγ [mCC± (t)]
3. In both CA for all r, r1, r2 ∈ (0, 
), r1 �= r2, v ∈ {−1, 1} and τ ≥ 0

lim
γ→0

lim
γ x→r,γ 2t→τ

|Eγ [η(x, v, t)η(x,−v, t)] − Eγ [η(x, v, t)]Eγ [η(x,−v, t)]| = 0

lim
γ→0

lim
γ x→r1,γ y→r2,γ 2t→τ

|Eγ [η(x, t)η(y, t)] − Eγ [η(x, t)]Eγ [η(y, t)]| = 0

(5.4)

4. In the CC-CA for all τ ≥ 0

lim
γ→0,γ 2t→τ

R−1Eγ

[∣∣NRi (t) − Eγ [NRi (t)]
∣∣
]

= 0, i = 1, 2 (5.5)

In Appendix 2 we will prove the following two theorems.

Theorem 1 (Mesoscopic limit) Under the above assumptions, in both CA, the limit magne-
tization m(r, t) satisfies:

∂

∂t
m(r, t) = − ∂

∂r
I (r, t), r ∈ (0, 
)

I (r, t) = −1

2

{
∂m(r, t)

∂r
− 2C[1 − m(r, t)2]

∫ r+1

r
[m(r + ξ, t) − m(r − ξ, t)]dξ

}

(5.6)

with m(r + ξ, t) = m+(t) if r + ξ ≥ 
 and m(r − ξ, t) = m−(t) if r − ξ ≤ 0 in the CC-CA;
same expression holds in the OS-CA but with m±(t) replaced by m±. Moreover

m(0, t) = m−, m(
, t) = m+, in the OS-CA (5.7)

while in the CC-CA

m(0, t) = m−(t), m(
, t) = m+(t) (5.8)

123



1094 M. Colangeli et al.

d

dt
m+(t) = 1

a

(
2I (
, t) + p[m−(t) − m+(t)]

)
(5.9)

d

dt
m−(t) = 1

a

(
− 2I (0, t) + p[m+(t) − m−(t)]

)
(5.10)

A proof which avoids our assumptions of propagation of chaos has been obtained in [9] for
a lattice gas with Kac potential and Kawasaki dynamics in a torus. In magnetization variables
the system becomes the Ising model with Kac potential and the limit equation is (5.6). In
[13] it has been studied the macroscopic scaling limit of this system with space scaled by
γ −α and time by γ −2α , α > 1 ( α = 1 is the mesoscopic limit considered above).

Theorem 2 (Currents) Denote by jx,x+1(t) the number of particles which in the time step
t, t +1 cross the bond (x, x +1), x ∈ {1, . . . , L −1} (counting as positive those which jump
from x to x + 1 and as negative those from x + 1 to x). Then, under the above assumptions,
in both CA, for all r ∈ (0, 
) and τ > 0

lim
γ→0:γ x→r

γ

T −1∑

t=0

Eγ [ jx,x+1(t)] =
∫ τ

0
I (r, s)ds, T = [γ −2τ ] (5.11)

lim
γ→0

γ

T −1∑

t=0

Eγ [ jR1→ch(t)] = −
∫ τ

0
I (0, s)ds,

lim
γ→0

γ

T −1∑

t=0

Eγ [ jch→R2(t)] =
∫ τ

0
I (
, s)ds (5.12)

where I (r, s) is given in (5.6).

In the CC-CA the current between reservoirs converges by (4.1) to:

lim
γ→0

γ

T −1∑

t=0

Eγ [ jR2→R1(t)] =
∫ τ

0
pm+(s)ds (5.13)

In the simulations we have plotted the quantity j T
ch→R2

. This is related by (5.12) to the
mesoscopic current I by

Eγ [ j T
R1→ch] = γ

T

T −1∑

t=0

Eγ [ jR1→ch(t)] ≈ −γ

τ

∫ τ

0
I (0, s)ds,

Eγ [ j T
ch→R2

] = γ

T

T −1∑

t=0

Eγ [ jch→R2(t)] ≈ γ

τ

∫ τ

0
I (
, s)ds

Eγ [ j T
R2→R1

] = γ

T

T −1∑

t=0

Eγ [ jR2→R1(t)] ≈ γ

τ

∫ τ

0
pm+(s)ds (5.14)

so that the experimental values of the three currents scale all as γ when γ → 0.
Wenext show that there is a natural interpretationof the solutions of the system (5.6)–(5.10)

in terms of statistical mechanics, which then allows to relate what seen in the simulations to
phase transitions and metastable–unstable magnetization values.

123



Particle Models with Self Sustained Current 1095

5.1 Free Energy Functional and Thermodynamic Potentials

The evolution equation (5.6) in [0, 
] with periodic boundary conditions is the gradient flow
relative to a non local free energy functional F(m), in fact

I (r) = −χ
∂

∂r

δF(m)

δm(r)
, χ = β

2
(1 − m2), β = 2C

F(m) =
∫ (

− m2

2
− S

β

)
+ 1

4

∫ ∫
J (r, r ′)[m(r) − m(r ′)]2

S(m) = −1 − m

2
log

1 − m

2
− 1 + m

2
log

1 + m

2
J (r, r ′) = 1 − |r − r ′|, for|r − r ′| ≤ 1 and = 0 elsewhere (5.15)

F(m) is “the mesoscopic free energy functional” [12], the Ginzburg-Landau functional is
a local approximation of F(m) where the non local term becomes a gradient squared. The
corresponding gradient flow evolution is the Cahn-Hilliard equation, which can then be
viewed as a local approximation of (5.6).

The important point for us is that F(m) specifies the thermodynamics of the system. In
fact

fβ(m) = −m2

2
− S(m)

β
(5.16)

is the van derWaalsmean field free energy; its convex envelope f ∗∗
β (m) is the thermodynamic

free energy. f ∗∗
β (s) is obtained by minimizing F(m)/
 under the constraint

∫
m(r) = 
s and

then taking the limit 
 → ∞, see for instance [14, Chap. 6].
The equilibrium magnetization density when there is a magnetic field h is the solution of

the mean field equation

m = tanh{β(m + h)} (5.17)

When β > 1 there is hc(β) > 0 so that for any |h| < hc(β), fβ(m, h) = fβ(m) − hm is
a double well function of m. The local minima are m+(h) and m−(h) and their graph is the
hysteresis cycle, see Fig. 1. In particular at h = −hc(β), m+(h) = m∗

m∗ > 0 : β[1 − (m∗)2] = 1 (5.18)

so that the magnetization in (m∗, mβ) and in (−mβ,−m∗) is metastable. At h = 0 the double
well is symmetric and the local minima are global minima, they are attained at m = ±mβ ,
mβ the positive solution of (5.17) with h = 0. ±mβ are the equilibrium magnetization at
the phase transition with h = 0 and β > 1. m+(h) and m−(h) are the unique equilibrium
magnetization at h > 0 and respectively h < 0.

6 The Adiabatic Limit

Some of the characteristic parameters of the simulations are related to the thermodynamics
associated to the mesoscopic equations, see the end of Sect. 5. Indeed in Fig. 2 which refers
to simulations with the OS-CA, the value 0.985 is very close to mβ so that the simulation
shows that the current is negative when m+ is stable, namely m+ > mβ and positive when
m+ < mβ (metastable or unstable). Correspondingly when there is a current in the CC-CA
then m+ < mβ , see Fig. 6 right. The above validates the considerations in the Introduction

123



1096 M. Colangeli et al.

about the relation between the appearance of a current in the circuit and the occurrence of
phase transitions.

Also the metastable region (m∗, mβ) has a role in the simulations as the interval (m′′, m′′′)
is a subset of (m∗, mβ) (because m′′ = 0.825 and m′′′ = 0.912 while m∗ ≈ 0.775 and
mβ ≈ 0.985); thus the gap phenomenon (i.e. that some values of the magnetization in R2

are never seen for all γ p) occurs only inside the metastable region.
We turn now to the heuristic argument at the end of Sect. 3 by observing that it becomes

rigorous in the context of the mesoscopic equations. In fact if m is a stationary solution of
the mesoscopic equation for the OS-CA when the reservoirs magnetizations are m±, and the
corresponding current I is positive, then u = m in the channel and u = m± in Ri i = 1, 2
is a stationary solution of the CC-CA mesoscopic equations with p = I

1
2 (m+−m−)

, recall that

the ratio between the mesoscopic current and the current in the CA scales as γ −1. Thus for
sufficiently small γ we may expect to see what conjectured at the end of Sect. 3.

We can also give an explanation of the gap phenomenon (i.e. that for all γ p the magneti-
zation in the reservoirsR2 is never in the interval (m′′, m′′′)) by assuming that the evolution
of the OS-CA is well approximated by the mesoscopic equations in the adiabatic limit that
we are going to define. We first observe that the OS-CA can be regarded as the “infinite
reservoirs limit” of the CC-CA, in fact in the limit R → ∞ the updating rules of the CC-CA
become those of the OS-CA. This is true also at the mesoscopic level: when a → ∞ the
magnetizationsm±(t) converge to their initial valuem±(0) and the evolution becomes that of
the OS-CA. The above is true when we let a → ∞ keeping the time finite, more interesting
behaviour is seen if we scale time proportionally to a, which is the so called adiabatic scaling
limit. Suppose (in agreement with the simulations in Fig. 2) that for each value of m+ (and
with m− = −m+) there is a unique stationary solution of the mesoscopic equations for the
OS-CA, Istat(m+) being the corresponding current. We then say that the CC-CAmesoscopic
equations have a “good adiabatic behavior” if in the adiabatic limit the magnetizations m±(t)
satisfy the equations

dm+(t)

dt
= 2

(
Istat(m+(t)) − pm+(t))

)
m−(t) = −m+(t) (6.1)

Suppose now that Istat is positive with a graph like j (m+), see Fig. 2. Then the stationary
solutions of pm+ = Istat(m+) with m+ ∈ (m′′, m′′′) are linearly unstable because Istat(m+)

is decreasing while pm+ is increasing. Thus a small perturbation will lead the magnetization
away from the stationary value pm+ = Istat(m+), m+ ∈ (m′′, m′′′), and presumably it will
converge to one of the two other solutions of pm+ = Istat(m+). This may therefore explain
why in the simulations we do not see the magnetization m+ ∈ (m′′, m′′′) and instead find
another solution of pm+ = Istat(m+).

We can check experimentally whether the CC-CA has a good adiabatic behavior by doing
simulations with non stationary initial data. In Fig. 7 we report the experimental values and
those obtained by solving numerically the adiabatic equations.

We do not have an analytic proof of good adiabatic behavior which instead can be rigor-
ously proved for another particle model. This is the simple symmetric exclusion process in
an interval with boundary processes at the endpoints which simulate reservoirs with densities
ρ±(t) dependent on time. In [6] it is proved that in a scaling limit where ρ±(t) are “slowly
varying” the current in the system becomes at each time t the same as the stationary current
when the densities at the endpoints are kept fixed at the values ρ±(t).

Summarizing, we have a reasonable explanation of the simulations in the CC-CA once
we accept the behavior of the current j (m+) in the OS-CA as given in Fig. 2. To explain the
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Fig. 7 We plot m± as functions of time t (empty circles), obtained by running the CC-CA, as well as the
predicted behavior in the adiabatic limit (dashed line). The initial values of the magnetization are, respectively,
m+(0) = −m−(0) = 1 (left panel) and m+(0) = −m−(0) = 0.5 (right panel)
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Fig. 8 Magnetization profile with m+ = 1. The different curves in the plot correspond to the averaged
magnetization computed at different times: t = 105 (empty squares), t = 106 (black squares), t = 107 (empty
circles) and t = 108 (black circles). The black thin line denotes the initial configuration, corresponding to a
step function centered at r = 5

latter we need to go deeper in the analysis of the simulations discussing the magnetization
profile in the channel, which will be the argument of the remaining sections.

7 The Instanton and the Stefan Problem

We have a good understanding of what happens when m+ ∈ (mβ, 1]. In Fig. 8 we plot the
time evolution of the magnetization pattern when m+ = 1, but a similar picture is observed
for the other values of m ∈ (mβ, 1]. The simulation shows convergence as time increases to
a profile which is therefore stationary (in the times of the simulation) and it agrees with what
found studying themesoscopic equations. The existence of stationary solutionsmst(r; 
; m±)

of (5.6) with boundary conditions (5.7) when m+ > mβ has been proved in [5] for 
 large
enough. It is also shown that

lim

→∞ mst(r
; 
; m±) = mst(r; m±), r ∈ (0, 1) (7.1)
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where the limit mst(r; m±) is antisymmetric around r = 1/2 and satisfies the equation

− 1

2
[1 − β(1 − m2

st)]
dmst

dr
= Ist(m+), r ∈

[
1

2
, 1

]
(7.2)

where Ist(m+) is determined by requiring that mst(1/2) = mβ and mst(1) = m+. For
m+ = 1, β = 2.5 and mβ = 0.985 from (7.2) we get Ist(1) � −7.2 × 10−3. To compare
with the simulations we have to divide by L = γ −1
 = 600 getting −1.2× 10−5 the current
in the simulations of the cellular automataOS -CA is instead� −2.2×10−5. The discrepancy
is possibly due to 
 not being large enough. In [5] it is also proved that

lim

→∞ mst

(
1

2
+ x; 


)
= m̄(x), x ∈ R (7.3)

where m̄(x) is the instanton solution of

m̄(x) = tanh{J ∗ m̄(x)} (7.4)

namely the antisymmetric function solution of (7.4) which converges to mβ as x → ∞. See
for instance [14] for existence and properties of the instanton.

In Fig. 8 it is also plotted the time evolution of the magnetization pattern when starting
away from the stationary one. The approach to the latter occurs on the time scale L2.

Conjecture Let m(r, t; 
; m±) be the solution of (5.6) with boundary conditions (5.7) and
with initial datum m0(r
), r ∈ [0, 1], such that:

– m0(r) < −mβ is smooth in r < r0, r0 ∈ (0, 1) with limits m− and −mβ as r → 0 and
r → r0

– m0(r) > mβ is smooth in r > r0, with limits mβ and m+ as r → r0 and r → 1.

Then
lim


→∞ m(r
, t
2; 
) = m(r, t) (7.5)

where m(r, t) is the solution of the Stefan problem with initial datum m0(r):

∂

∂t
m(r, t) = − ∂

∂r
I (r, t), I (r, t) = −1

2
[1 − β(1 − m(r, t)2)] ∂

∂r
m(r, t) (7.6)

where (7.6) holds in {r < rt } and in {r > rt } with Dirichlet boundary conditions m− and
−mβ in {r < rt } and mβ and m+ in {r > rt }. The free boundary rt is also an unknown and
it is determined by (7.6) and the condition

2mβ

drt

dt
= I (r−

t , t) − I (r+
t , t) (7.7)

We do not have a proof that m(r, t) → mst(r; m±) as t → ∞ (mst(r; m±) as in (7.1)).
However if the pattern looks like the one in Fig. 8, i.e. essentially linear away from ±mβ ,
then the current (being proportionally to the slope) when r > rt > 1/2 is larger (in absolute
value) than the one when r < rt . Thus the magnetization increases and therefore rt moves
to the left.

Equation (7.6) has been derived in [13] from the spin dynamics on a torus when the
initial profile m0(r) has values in (m∗, 1) for all r or when it has values in (−1,−m∗). The
result does not apply in the case of the Stefan problem where there are both positive and
negative values of the magnetization: the derivation of the Stefan problem for Ising spins
with Kawasaki dynamics and Kac potential is still an open problem.
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Fig. 9 Magnetization profile with m+ = 0.93. The different curves in the plot correspond to the averaged
magnetization computed at different times: t = 105 (empty squares), t = 106 (black squares) and t = 108

(empty circles). The black thin line denotes the initial configuration, corresponding to a step function centered
at r = 5

8 Boundary Layers, the Bump

When m+ < mβ we get a completely different picture. Compare in fact the simulations in
Figs. 8 and 9 where the initial state is the same but m+ is stable in the former (m+ = 1)
and metastable (m+ = 0.93) in the latter. In both cases, after a transient, we see a profile
with a sharp (instanton-like) transition from −mβ to +mβ and then approximately linear
profiles which connect m− to −mβ and mβ to m+. But, in the stable case the instanton-like
region moves towards the center, while in the metastable case it moves towards 0 which is
eventually reached. The same [heuristic] argument which explained in the case of Fig. 8 the
motion of the instanton towards the center, now explains its motion away from the center:
since m+ < mβ the slope of the pattern from the endpoint to the instanton is negative in the
case of Fig. 9 (as it connects m− to −mβ and mβ to m+); consequently the current in the
interval from m− to −mβ is positive and larger than the one from mβ to m+ (as the instanton
in Fig. 9 is closer to 0 than to 
), thus the total magnetization increases and the instanton
moves further towards 0.

The transition region in the stable case is approximatedby an instantonwhich is a stationary
solution of the evolution equations on the whole line. Analogously, when m+ < mβ we
speculate that the transition region is approximated by a bump which is again a stationary
solution m(r), r ≥ 0, of (5.6) on the half line with zero current and given boundary condition
at 0, say μ, namely:

m(r) = tanh
{
β[J ∗ m(r) + h]

}
, r ≥ 0 (8.1)

h = −J ∗ m(0) + 1

β
tanh−1 μ, m(r) = μ for r < 0 (8.2)

Indeed it can be easily seen that a stationary solution of (5.6) with zero current is necessarily a
solution of (8.1). TheGibbsian formula (in themesoscopic limit)would give (8.1)with h = 0,
thus the problem (8.1) is not in the framework of the equilibrium theory. This is reflected by
the appearance of an auxiliary magnetic field which has to be determined consistently with
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the magnetization pattern (as in the FitzHugh Nagumo models of the introduction where
however by a mean field assumption the magnetization was simply a real number).

Observe that if m(r) solves (8.1) with boundary conditionμ then−m(r) solves (8.1) with
boundary condition −μ, this symmetry will play an important role in the sequel. Besides
the trivial solution m(r) ≡ μ, existence of other solutions of (8.1) is an open problem. The
simulations indicate the existence of increasing solutions, we thus define:

Definition The bump Bμ(r), μ ∈ (−mβ, m∗), is a non constant solution of (8.1) which is
monotone non decreasing, We call b(μ) its asymptotic value:

lim
r→∞ Bμ(r) =: b(μ) (8.3)

Analogously we call B−
μ , m ∈ (−m∗, mβ) a non constant solution which is monotonic non

increasing and denote by b−
μ its asymptotic value. The existence Bμ implies the existence of

B−
μ , in fact by simmetry B−

μ = −B−μ. Thus what we will say for Bμ extends to B−
μ and in

the sequel we will consider only Bμ.

As mentioned above the existence of bumps is an open problem, the simulations indicate
that bumps do indeed exist. The relation between bump and instanton can be understood in the
following way. Call x̄(μ) the value of r such that m̄(r) = μ. Replace the boundary condition
m(r) = μ, r < 0, in the definition of the bump by m(r) = m̄(r + x̄(μ)), r < 0. Then the
solution of (5.6) would be m(r) = m̄(r + x̄(μ)), r > 0, with h = 0, the asymptotic value at
r = +∞ being mβ . Replacing m(r) = μ by m(r) = m̄(r + x̄(μ)) for r < 0 is a small error if
μ is close to −mβ (because the instanton converges exponentially to its asymptotic values).
One may then hope to prove in such a case the existence of the bump using perturbative
techniques as in [7,8]. This has been done successfully in [8] for the equation

m(r) = tanh{β[J neum ∗ m(r) + h]}, r ≥ 0

where J neum is defined with Neumann conditions; h above is fixed and sufficiently small.
Wehave numerical evidence of the existence of bumps.Wehave simulated (8.1) by looking

at its discrete version with γ −1 = 120, 
 = 5 and Neumann conditions at the right boundary.
We have solved such an equation by iteration: we start with m ≡ 1, compute h via (8.2)
with such m and then define the first iterate m1 as m1 = tanh β(J ∗ m + h). We then repeat
the procedure till we find a fixed point. This is indeed reached (approximately) after a few
iterations (in fact, three iterations already suffice to obtain good numerical convergence), see
Fig. 10.

The numerical values of b(μ) are reported in Fig. 11, the main features are:

– the values of b(μ) are all in the metastable region,
– b(m+) = m+ if m+ ∈ (m∗, mβ), i.e. in the plus metastable region (left panel)
– b(m−) > b(m+) for m− ∈ (−mβ, 0) and m+ = −m− (right panel).

Conjecture The bump Bμ exists for all μ < m∗, when μ ∈ [m∗, mβ) there is no bump and
we call b(μ) = μ. When m+ < mβ for all 
 large enough there is a stationary solution
mst(r; 
; m±) of (5.6), such that

lim

→∞ mst(r
; 
; m±) = mst(r; m±), r ∈ (0, 1) (8.4)

mst(0; m±) = b(m−), mst(1; m±) = b(m+) (8.5)

and

− 1

2
[1 − β(1 − m2

st)]
dmst

dr
= Ist(m+), r ∈ [0, 1] (8.6)
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Fig. 10 Iterations of Eq. (8.1), with β = 2.5, γ −1 = 120, 
 = 5 and μ = −0.7. The different points denote,
respectively, the initial condition (empty squares), the first iteration (black squares), the second iteration (empty
circles) and the third iteration (black circles)
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Fig. 11 Left panel behavior of b(μ), with β = 2.5 and γ −1 = 120. The black dashed line denotes the curve
b(μ) = μ. Right panel for any μ ∈ (−mβ, 0) we report with an empty circle the value of b(m−) and with a
black circles the value of b(m+), m+ = −m−

Remark Under the above Conjecture the channel has a positive current if

b(μ) > −μ, μ ∈ (−mβ,−m∗); b(μ) > b(−μ), μ ∈ (−m∗, 0) (8.7)

As shown in the right panel of Fig. 11 there is clear numerical evidence of the validity of
(8.7).

The Eq. (8.6) with boundary conditions (8.5) can be easily solved analytically thus deter-
mining Ist(m+). By using the numerical values obtained for b(m−) and b(m+) we get the
graph shown with empty circles in Fig. 12, where however Ist is divided by L in order to
compare it with the experimental value j (m+) (black circle in Fig. 12) as given in Fig. 2.
The agreement is good except in the interval m+ ∈ (m′, m′′′), such a discrepancy will be
discussed in the next section.
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Fig. 13 β = 2.5, γ −1 = 120, 
 = 5 and μ = 0.7 ∈ (miv, m′′). The black dashed line represents Bμ, the
black thin line represents the asymptotic pattern of the CA which is close to −B−μ

9 Stability of the Bump

The numerical analysis of (8.1) suggests the following:

– there exists a bump solution Bμ for all μ ∈ (−mβ, m∗),
– when μ ∈ (−mβ,−m∗) there are two solutions: m(x) ≡ μ and m(x) = Bμ(x),
– when μ ∈ (−m∗, 0) there are three solutions: m(x) ≡ μ, m(x) = Bμ(x) and m(x) =

−B−μ(x),

An alternative way to study the existence of the bump is by running the OS-CA with
boundary conditions μ on the left and Neumann on the right. We take the same parameters
γ −1 = 120 and 
 = 5 used for the numerical analysis of the solutions of (8.1) and start with
an initial condition where all sites in the channel are occupied. Referring to Fig. 2, when
μ ∈ (−mβ, m′) we see, after a transient, a steady pattern close to Bμ. When μ ∈ (miv, mβ)

we see, after a transient, a steady pattern close to m(x) ≡ μ. When μ ∈ (m′, miv) the final
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Fig. 14 Typical (average) magnetization profile obtained at the beginning of a cycle (left panel) and at the
end of a cycle (right panel)

pattern is close to −B−μ, see Fig. 13. Observe that the OS-CA does not select the bump
solution when μ ∈ (m′, miv) which is approximately the region where there is discrepancy
between the theoretical and the experimental curves in Fig. 12. We conjecture that this is
due to γ being not small enough so we are far from the mesoscopic regime and stochastic
fluctuations are relevant. Stochastic fluctuations may then determine tunnelling from the
bump to patterns where there is a bump on the left and a minus bump on the right with an
instanton in between them and patterns where the two bumps are both up. Indeed we have
numerical evidence of all that, in the times of the simulations we see in fact the magnetization
patterns oscillate as described above, see Fig.14.

10 Conclusions

We have presented two sets of simulations: the first one, see Fig. 6, shows that in the CC-CA
there is a non zero current jCC (γ p) (provided the rate γ p of exchanges between reservoirs
is in some non zero interval); the second set of simulations, see Fig. 2, refers to the OS-CA
at magnetization m+ = −m− > 0 and shows that when m+ ∈ (0, mβ) then the current
j (m+) goes “in the wrong direction”, namely from the reservoir with m− to that with m+.
We have a heuristic proof that what seen in Fig. 6 follows from the behavior of the channel
in the OS-CA, as shown in Fig. 2; the proof relies on the validity of the mesoscopic and the
adiabatic limits.

In the case of Fig. 2 the current is negative when m+ > mβ and positive when m+ < mβ ,
in the former case the magnetization pattern in the channel shows the coexistence of the plus
and minus phases while in the latter case only one phase appears (the statement in both cases
refers to what happens in most of the volume). When the current is negative the values of
the magnetization in the plus phase are larger than mβ and smaller than −mβ in the negative
one. Instead when the current is positive we are in the one phase regime and the values of
the magnetization are metastable (thus there is a state with positive current which in the
bulk takes positive metastable values and another state also with positive current which in
the bulk takes negative metastable values). When the current is negative the plus and minus
phases are connected via an instanton-like profile around the center of the channel, when the
current is negative the unstable values of the magnetization are localized in a small region
close to the endpoints. We thus have a boundary layer which leads quite abruptly from the
imposed values of the magnetization at the boundaries to some metastable value after which
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the magnetization pattern is smooth and the current flows opposite to the magnetization
gradient in agreement with the Fourier law.

The strange phenomenon of the current going “in the wrong direction” depends on the
fact that the magnetization-jump in the boundary layer is more pronounced if it starts from
lower values of the magnetization. Such a property, see (8.7), follows from the solution (the
bump) of a non local equation describing the boundary layer, but its solution is obtained only
numerically and we do not have a mathematical proof or even a heuristic explanation of why
(8.7) should hold.

We expect that also in the Cahn-Hilliard equation the graph of j (m+) has a qualitatively
similar shape as in Fig. 2, but we miss a proof.

We imagine that our results extend tomore general systemswithKac potentials andmaybe
to physical systems where a van der Waals type of phase transition is present. In such cases
a metastable interval is well defined and the relevant density (or magnetization) patterns in
the bulk of the channel should have metastable values. Also for short range interactions, as
in the n.n. Ising model with ferromagnetic interactions there are metastable values but the
metastable region depends on the size of the system and shrinks to 0 as the volume diverges.
Take the 2D Isingmodel in a squared box of side L: in the periodic case for β large it is proved
that if ±mβ are the equilibrium magnetizations then for the canonical Gibbs measure with
average magnetization m ∈ (−mβ,−mβ + cL−2/3) and c small enough the phenomenon of
phase separation is absent. Consider the Kawasaki dynamics at such values of β with periodic
conditions on the horizontal sides of the box and exchanges of the spins in the vertical ones
with infinite reservoirs at magnetization m− and m+ on the left and right. If what we have
observed extends to this 2D Ising model we should see in the bulk magnetization patterns
in the metastable phase, hence with values in an interval of size L−2/3. The current should
therefore scale as L−1L−2/3 = L−5/3 and if the boundary layer goes like in our case then
the current would go from the small to the large values of the reservoirs magnetization.

Acknowledgements The authors acknowledge very useful discussions with Dima Ioffe.

Appendix 1: Estimates on the Current Between Reservoirs

Recalling (2.9) we have

jR2→R1(t) = jt := ζt

∑

i+,i−
1ξt =(i+,i−)[θ ′′

t (i+) − θ ′′
t (i−)] (10.1)

where ζt and ξt are random variables independent of the process till time t and of θ ′′
t ,

they are also independent of each other. ζt takes value 1 with probability γ p and value
0 with probability 1 − γ p; the values of ξt are pairs (i+, i−), i+ ∈ R2, i− ∈ R1 and
P(ξt = (i+, i−)) = 1

R2 . The sum
∑

i+,i− is over i+ ∈ R2 and i− ∈ R1. We first estimate
the expected value of jR2→R1(t):

Eγ

[
jR2→R1(t)] = Eγ [ N ′′

R2
(t) − N ′′

R1
(t)

R

]
γ p (10.2)

where
N ′′
Ri

(t) =
∑

i∈Ri

θ ′′
t (i), i = 1, 2 (10.3)
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Since |N ′′
Ri

(t) − NRi (t)| ≤ 2 for all t we have
∣∣∣∣Eγ [ jR2→R1(t)] − γ pEγ

[
NR2(t) − NR1(t)

R

]∣∣∣∣ ≤ γ p
4

R
(10.4)

We will next prove (4.1). Since θ ′′ has values 0, 1 we have from (10.1)

E[ jt ] ≤ γ p (10.5)

By (2.5) the left hand site of (4.1), can be written as

AT := E

⎡

⎣
[{

1

T

T −1∑

t=0

[ jt − γ pR−1(N+,t − N−,t )

]}2⎤

⎦ (10.6)

where
N+,t =

∑

i+
ηt (i+) = NR2(t), N−,t =

∑

i−
ηt (i−) = NR1(t) (10.7)

Define N ′′±,t as in (10.7) but with θ ′′
t instead of ηt and A′′

T as in (10.6) but with N ′′±,t .

Lemma 1

AT ≤ A′′
T + 16

R
(γ p)2 + 16

R2 (γ p)2 (10.8)

Proof Call

at = jt − γ pR−1(N ′′+,t − N ′′−,t ) (10.9)

bt = γ pR−1{(N ′′+,t − N ′′−,t ) − (N+,t − N−,t )} (10.10)

Then

AT = E

[
1

T 2

∑

s,t

(at − bt )(as − bs)

]
(10.11)

Hence

AT ≤ A′′
T + 2E

[
1

T 2

∑

s,t

|at ||bs |
]

+ E

[
1

T 2

∑

s,t

|bs ||bt |
]

(10.12)

|bt | ≤ γ p 4
R because |N ′′+,t −N ′′−,t | ≤ R and |N ′′±,t −N±,t | ≤ 2.By (10.5) and |N ′′+,t −N ′′−,t | ≤

R we get Eγ [|at |] ≤ 2γ p, therefore

AT ≤ A′′
T + 2γ p

8

R
γ p + [γ p

4

R
]2 (10.13)

��
Lemma 2 Let s < t and at as in (10.9) then

E[asat ] = 0 (10.14)

Proof By the independence properties of ζt and ξt :

E[as jt ] = E

⎡

⎣asγ p
∑

i+,i−
R−2[θ ′′

t (i+) − θ ′′
t (i−)]

⎤

⎦ = E
[
asγ pR−1[N ′′+,t − N ′′−,t ]

]
(10.15)

��
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As a consequence

A′′
T = 1

T 2

T −1∑

t=0

E[a2
t ] (10.16)

We expand the square in E[a2
t ], the first term is

E

⎡

⎣ζt

∑

i+,i−

∑

i ′+,i ′−

1ξt =(i+,i−)1ξt =(i ′+,i ′−)[θ ′′
t (i+) − θ ′′

t (i−)][θ ′′
t (i ′+) − θ ′′

t (i ′−)]
⎤

⎦

Due to the characteristic functions i± = i ′± so that the above is bounded by γ p. The double
product in the expansion of E[a2

t ] is bounded by 2(γ p)2 and the third term by (γ p)2, so that

A′′
T ≤ 1

T
{γ p + 3(γ p)2} (10.17)

Going back to (10.13) we get

AT ≤ 1

T
{γ p + 3(γ p)2} + 16

(γ p)2

R
+ 16[γ p

R
]2 (10.18)

which concludes the proof of (4.1).

Appendix 2: Proof of Theorems 1 and 2

Proof of (5.6)

Here we prove that m(r, t) satisfies (5.6) both in the CC-CA and in the OS-CA.
Let u(r, t) = m(r, t) + 1 then m satisfies (5.6) if and only if u satisfies

∂

∂t
u(r, t) = 1

2

∂2u

∂r2
− C

∂

∂r

{
[u(2 − u]

∫ r+1

r
[u(r + ξ, t) − u(r − ξ, t)]dξ

}
(10.19)

with u(r + ξ, t) = u+(t) = m+(t) + 1 if r + ξ ≥ 
 and u(r − ξ, t) = u−(t) = m−(t) + 1
if r − ξ ≤ 0. In the OS-CA m±(t) ≡ m±.

By (5.2)

lim
γ→0

lim
γ x→r,γ 2t→τ

Eγ [η(x, v, t)] = 1

2
u(x, t), v ∈ {−1, 1}

lim
γ→0

lim
γ x→r,γ 2t→τ

uγ (x, t) = u(x, t), uγ (x, t) = Eγ [η(x, t)] (10.20)

So that we need to prove that the limit of uγ satisfies (10.19).
By assumption u(r, t) is smooth so that it is enough to prove weak convergence namely

that for any smooth test function f (r, t) with compact support in (0, 
) × (0,∞),
∫

u(r, t)
∂ f (r, t)

∂t
drdt

= −1

2

∫
u(r, t)

∂2 f (r, t)

∂r2
drdt

−
∫

∂ f (r, t)

∂r
C

{
[u(2 − u]

∫ r+1

r
[u(r + ξ, t) − u(r − ξ, t)]

}
drdt (10.21)
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By an integration by parts
∫

u(r, t)
∂ f (r, t)

∂t
drdt = − lim

γ→0
γ 3

∑

x,t

f (γ x, γ 2t)γ −2{uγ (x; t + 1) − uγ (x; t)}

We will next consider uγ (x; t + 1) − uγ (x; t). Recalling that jx,x+1(t) is the number of
particles which in the time step t, t + 1 cross the bond (x, x + 1), x ∈ {1, . . . , L − 1}
(counting as positive those which jump from x to x + 1 and as negative those from x + 1 to
x), we have

uγ (x; t + 1) − uγ (x; t) = Eγ [ jx−1,x (t)] − Eγ [ jx,x+1(t)]
We then have denoting by ∇γ the discrete derivative (∇γ ϕ(x) = ϕ(x + 1) − ϕ(x)),

∫
u(r, t)

∂ f (r, t)

∂t
drdt = − lim

γ→0
γ 3

∑

x,t

γ −1∇γ f (γ x, γ 2t)γ −1Eγ [ jx,x+1(t)] (10.22)

Lemma 3

Eγ [ jx,x+1(t)] = 1

2
[uγ (x; t)−uγ (x +1; t)+ Eγ

[
χx,γ ;tεx,γ ;t +χx+1,γ ;sεx+1,γ ;t

]
(10.23)

where εx,γ ;t is εx,γ computed at time t and

χx,γ ;t = η(x, 1; t)
(
1 − η(x,−1; t)

)
+ η(x,−1; t)

(
1 − η(x, 1; t)

)

Proof Observe that the expected number of particles that goes from x to x + 1 is

Eγ

[
η(x, 1; t)η(x,−1, t) + χx,γ ;t

(
1

2
+ εx,γ ;t

)]
= 1

2
uγ (x, t) + Eγ

[
χx,γ ;tεx,γ ;t

]

The expected number of particles that goes from x + 1 to x is

Eγ

[
η(x + 1, 1; t)η(x + 1,−1, t) + χx+1,γ ;t

(
1

2
− εx+1,γ ;t

)]
= 1

2
uγ (x + 1, t)

−Eγ

[
χx+1,γ ;tεx+1,γ ;t

]

so that we get (10.23). ��
We insert (10.23) in (10.22) and, denoting by �γ the discrete laplacian, we get

γ 3
∑

x,t

γ −1∇γ f (γ x, γ 2t)γ −1 jγ (x, x + 1, t)

= 1

2
γ 3

∑

x,t

γ −2�γ f (γ x, γ 2t)uγ (x, t)

+ γ 3
∑

x,t

γ −12 f ′(γ x, γ 2t)Eγ [χx,γ ;t ]Eγ [γ −1εx,γ ;t ] + Rγ (10.24)

where 2 f ′(γ x, γ 2t) = [∇γ f (γ x, γ 2t) + ∇γ f (γ (x − 1), γ 2t)] and
Rγ := 2γ 3

∑

x,t

γ −12 f ′(γ x, γ 2t)Eγ

[
χx,γ ;t

(
γ −1εx,γ ;t − Eγ [γ −1εx,γ ;t ]

)]

By (10.20) and (5.4)

lim
γ→0

lim
γ x→r,γ 2t→τ

Eγ

[
χx,γ ;t ] = 1

2
u(r, t)[2 − u(r, t)

]
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lim
γ→0

lim
γ x→r,γ 2t→τ

Eγ [γ −1εx,γ ;t ] =
∫ r+1

r
C[u(r + ξ, t) − u(r − ξ, t)]dξ (10.25)

We postpone the proof of

lim
γ→0

γ 3
γ −1
−1∑

x=2

γ −2T∑

t=1

Eγ

[∣∣γ −1εx,γ ;t − Eγ [γ −1εx,γ ;t ]
∣∣
]

= 0 (10.26)

where (0, 
) × (0, T ) contains the support of f (r, t).
Observe that (10.22), (10.24), (10.25) and (10.26) yield (10.21) concluding the proof of

��
Proof of (10.26)

By Cauchy-Schwartz it is enough to prove that

lim
γ→0

γ 3
γ −1
−1∑

x=2

γ −2T∑

t=1

Eγ

[∣∣γ −1εx,γ ;t − Eγ [γ −1εx,γ ;t ]
∣∣2

]
= 0 (10.27)

We thus need to compute the limit of

γ 5
∑

r,r ′,r ′′∈γZ

∑

τ∈γ 2Z

gγ (r, r ′, r ′′, τ ) (10.28)

where γ −1r ∈ [2, γ −1
 − 1], |r ′ − r | ≤ 1, |r ′′ − r | ≤ 1, γ −2τ ∈ [1, γ −2T ] and
gγ (r, r ′, r ′′, τ ) = C2Eγ [η̃γ −2τ (γ

−1(r ′ − r))η̃γ −2τ (γ
−1(r ′′ − r))] (10.29)

where η̃t (x) = η(x, t) − Eγ [η(x, t)] if x ∈ [1, L], otherwise it is = 2NRi
R − Eγ [ 2NRi

R ]
where i = 2 if x > L and i = 1 if x < 1 otherwise in the OS-CA is equal to m± respectively.
By (5.4) and (5.5), (10.28) vanishes as γ → 0. ��
Proof of (5.11)

We call

I T
x,γ = γ

T −1∑

t=0

Eγ [ jx,x+1(t)] (10.30)

Lemma 4 There are c and c′ so that for all r ′ < r ′′ in (0, 
)
∣∣∣∣∣∣

1

x ′′ − x ′
x ′′∑

y=x ′
I T

y,γ

∣∣∣∣∣∣
≤ c, x ′ = [γ −1r ′], x ′′ = [γ −1r ′′] (10.31)

∣∣∣I T
x ′′,γ − I T

x ′,γ

∣∣∣ ≤ c′|r ′′ − r ′| (10.32)

Proof By (10.23), using that |χx,γ ;t | ≤ 2 and |εx,γ ;t | ≤ 2Cγ for all x and t and after
telescopic cancellations we get

∣∣∣∣∣∣
1

x ′′ − x ′
x ′′∑

y=x ′
I T

y,γ

∣∣∣∣∣∣
≤

∣∣∣∣∣γ
T −1∑

s=0

1

x ′′ − x ′ Eγ

[
1

2
(η(x ′, s) − η(x ′′ + 1, s))

]∣∣∣∣∣ + 8Cγ 2T

123
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The right hand side converges to 1
r ′′−r ′

∫ τ

0
1
2 [m(r ′.s) − m(r ′′, s)]ds + 8C2τ which, by the

smoothness of m, proves (10.31).
We have that

∣∣∣∣∣γ
T −1∑

t=0

jx ′,x ′+1(t)] − γ

T −1∑

t=0

jx ′′,x ′′+1(t)

∣∣∣∣∣ ≤ c′γ |x ′′ − x ′|

because the particles which contribute to the left hand site are: (1) those which reach for the
first time x ′ + 1 jumping from x ′ and at the final time are in [x ′ + 1, x ′′]; (2) those which
reach for the first time x ′′ jumping from x ′′ + 1 and at the final time are in [x ′ + 1, x ′′]; (3)
those initially in [x ′ +1, x ′′] and which leave this interval for the last time jumping to x ′′ +1;
(4) those initially in [x ′ + 1, x ′′] and which leave this interval for the last time jumping to x ′.

��

The family {I T
x,γ } thought as functions of r = γ x are equibounded and equicontinuous

in any compact of (0, 
), thus they converge pointwise by subsequences. We will then prove
(5.11) by identifying the limit. By continuity it will be enough to prove

lim
γ→0

1

x ′′ − x ′
x ′′∑

y=x ′
I T
x,γ = 1

r ′′ − r ′

∫ r ′′

r ′
dr

∫ τ

0
I (r, s)ds (10.33)

By (10.23)

1

x ′′ − x ′
x ′′∑

y=x ′
I T
x,γ = γ

T −1∑

s=0

{
1

x ′′ − x ′ Eγ

[
1

2
(η(x ′, s) − η(x ′′ + 1, s))

]

+ 1

x ′′ − x ′
x ′′∑

y=x ′
Eγ [χx,γ ;sεx,γ ;s + χx+1,γ ;sεx+1,γ ;s]

}

The first term converges to

1

r ′′ − r ′
1

2

∫ τ

0
[m(r ′, s) − m(r ′′, s)]ds = 1

r ′′ − r ′
1

2

∫ τ

0
ds

∫ r ′′

r ′
dr

∂m(r, s)

∂s
(10.34)

By (10.25) and (10.26) the second one converges to

− 1

r ′′ − r ′

∫ τ

0

∫ r ′′

r ′
C[1 − m2]

∫ r+1

r
[m(r + ξ, s) − m(r − ξ, s)]dξdrds

Proof of (5.12)

As the two are similar, we just prove the second equality in (5.12). The same proof as the
one for (10.32) shows that

∣∣∣I T
x,γ − I T

ch→R2,γ

∣∣∣ ≤ c′|
 − r |, x = [γ −1r ] (10.35)

where

I T
ch→R2,γ

= γ

T −1∑

t=0

Eγ [ jch→R2(t)]

123
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Let Ĩ be a limit point of I T
ch→R2,γ

as γ → 0 then
∣∣∣∣
∫ τ

0
I (r, s)ds − Ĩ

∣∣∣∣ ≤ c′|
 − r |

Using the expression (5.6) for I (r, t) and the continuity of m, we get in the limit r → 
 that
Ĩ = ∫ τ

0 I (
, s)ds.

Proof of (5.8)

As the proofs are similar,we just prove the second equality in (5.8) for theCC-CA. Suppose by
contradiction that there is t > 0 such that m(
, t) �= m+(t) and for the sake of definiteness
m(
, t) < m+(t). Then there is δ > 0 and an interval [t ′, t ′′] so that for s ∈ [t ′, t ′′],
m+(t) > m(
, t) + δ. Recalling the Proof of Lemma 3

Eγ [ jch→R2(s)] = Eγ

[
NR2(s)

R

]
− 1

2
uγ (L , s) − Eγ

[
χL ,γ ;sεL ,γ ;s

]

≥ Eγ

[
NR2(s)

R

]
− 1

2
uγ (L , s) − cγ

c a suitable constant, cγ bounding the term with εx,γ . Then, recalling (2.3), (2.5), (2.6) and
using the assumptions in Theorem 1 we get

lim inf
γ→0

γ 2
∑

s∈Z∩γ −2[t ′,t ′′]
Eγ [ jch→R2(s)] ≥ 1

2

∫ t ′′

t ′
[m+(s) − m(
, s)]ds ≥ δ

2
[t ′′ − t ′]

which contradicts (5.12).

The Dynamics of the Reservoirs

We just prove (5.9). Let τ0 ≥ 0, τ > 0, t0 = [γ −2τ0], T = [γ −2τ ], then

NR2(t0 + T ) − NR2(t0) =
t0+T −1∑

t=t0

[
jch→R2(t) − jR2→R1(t)

]

We take the expectation and we use (10.4) to get
∣∣∣∣∣∣
Eγ [NR2 (t0 + T ) − NR2 (t0)] −

t0+T −1∑

t=t0

[
Eγ [ jch→R2 (t)] − Eγ

[
NR2 (t) − NR1(t)

R

]
γ p

]∣∣∣∣∣∣

≤ 4γ p

R
T (10.36)

We then get

a

2
[m+(τ0 + τ) − m+(τ0)] =

∫ τ0+τ

τ0

I (
, s)ds − p
∫ τ0+τ

τ0

1

2
[m+(s) − m−(s)]ds

(10.37)

which is obtained from (10.36) by multiplying by γ and taking the limit γ → 0 after using
that (1) R = aγ −1, (2) by (5.3)

lim
γ→0

Eγ

[
NR2(t) − NR1(t)

R

]
= m+(τ ) − m−(τ )

2
, t = [γ −2τ ]

123
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(3) by (5.12)

lim
γ→0

γ

t0+T −1∑

t=t0

Eγ [ jch→R2(t)] =
∫ τ0+τ

τ0

I (
, s)ds

Then (5.9) is obtained from (10.37) by dividing by τ and taking the limit τ → 0.
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