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Abstract. We consider a stochastic system of particles in a two dimensional lattice
and prove that, under a suitable limit (i.e. ΛΓ->oo, ε->0, Λ/ε2-> const, where N
is the number of particles and ε is the mesh of the lattice) the one-particle
distribution function converges to a solution of the two-dimensional Broadwell
equation for all times for which the solution (of this equation) exists. Propagation
of chaos is also proven.

1. Introduction

The dynamics of the molecules of a rarefied gas could, in principle, be described
by Newton's equations, but a reduced description, as provided by the Boltzmann
equation, turns out in practice to be more appropriate and useful. On the other
hand it is known that in a low density regime, mathematically expressed by the
Boltzmann-Grad limit (B-G limit), the solutions of the Newton equations
approximate those of the Boltzmann equation. This is rigorously proven for short
times in [6] and globally in time for an expanding cloud of gas in the vacuum,
[5]. Both cases are based on the fact that the average number of collisions
experienced by any given particle is finite and small. At the present moment no
other results concerning more general situations are available.

In this paper we deal with a discrete velocity kinetic equation, namely the two
dimensional Broadwell equation. There are pathologies connected with the finite
structure of the velocity space: from one side it has been proven, [7], that such
an equation does not hold in the B-G limit for a natural class of approximating
Hamiltonian systems; on the other side, the recent existence theory, [4], for the
Boltzmann equation does not apply to discrete velocity models, essentially for the
same reason.

In the present paper we prove that the two-dimensional Broadwell equation
holds in the B-G limit for a sequence of stochastic particle systems. The
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stochasticity is absolutely necessary: it delocalizes the particles and, in this way,
the pathologies outlined in [7] are avoided. In fact it is easy to prove (see Sect. 3
below) that the short time analysis presented in [6] does apply without difficulties
to our case, yielding a derivation of the Broadwell equation for short times. In
this paper we develop a new technique which allows us to prove convergence up
to any time in which the solution to the Broadwell equation stays bounded. Indeed
solutions which are bounded for arbitrary long times have been constructed in
some cases so that our result provides a validity proof which is global in time, at
least in these situations. Our approach to the problem uses probabilistic ideas.
We basically prove that a sample of our stochastic process deviates from the
correct kinetic behavior with small probability, when the B-G limit is approached.
To prove this we introduce and evaluate a sort of truncated correlation functions
(i.e. the i -functions defined in Sect. 4) yielding powerful probability estimates, which
allow us to iterate the short time result up to arbitrary times. We remark that
also in this part of the proof the stochasticity plays a fundamental role: the same
strategy does not apply, at least directly, to Hamiltonian systems. The techniques
developed in this paper apply to more general discrete velocity equations with
minor modifications. We finally mention that other discrete velocity kinetic
equations have been derived from stochastic systems (see [2, 3]) and that techniques
similar to those presented here have been used in [1] to study Reaction-Diffusion
equations.

The paper is organized as follows. In Sect. 2 we describe the model and state
the main result. Section 3 is devoted to the short time analysis, while in Sects. 4
and 5 we prove the main theorem. The detailed definition of the branching process
which describes the evolution of the i -functions is given in Appendix A.

2. The Model and the Results

We consider the unit square A — [0,1]2 and its discretization

Λε = [q = (qx, qy)eΛ:qx = n^, qy = n2s, nt = 1,..., ε~x}, (2.1)

where ε"1 is a positive integer to be fixed later on. We then consider a system of
N (identical) particles whose configurations are denoted by:

X = {x1,...,xN}, (2.2a)

Xi = (qi,°i) qi€Λε, σteΩ, (2.2b)

where qt and σ{ are position and velocity of the ίth particle and

fl={(0,l);(l,0);(0, -!);(-!,0)} (2.3)

is the velocity space, consisting of four elements.
We denote by Γε = Λε x Ω the phase space of a single particle and, accordingly,

Γg will denote the phase space of our system.
In the sequel we shall avoid boundary problems by assuming periodicity

(0,qy) = (l,qy), (qx,0) = (qx,l), (2.4)

which makes A a torus.
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The dynamics of the system is a stochastic process with values in Γ*, described
in the following way. The free motion of each particle is a Poisson process of
intensity ε"1 associated to the transition:

(<7i,^-)^(<?i + ̂ , σ t ) (2.5)

All these Poisson processes are independent.
The interaction among the particles is described by N(N — l)/2 independent

Poisson processes of intensity one (one for each pair of particles) associated to the
transition:

(qh σh qj9 σ,.) -> (qh σ±9 qj9 σ/), (2.6)

where
σ-L=(-σ2,σί) if <τ = (σ1,σ2), (2.7)

and the transition (2.6) takes place only if

qi = qj and σ{ = - σ,.. (2.8)

In terms of differential equations, if μ\ — με

t(X) denotes the probability of finding
the configuration X = {x1,...,x j v} at the time ί, then the following evolution
equation holds:

dίiε

-p^ε-^ + L^, (2.9)
at

where, denoting by | X \ the cardinality of X, (in this case N)

1*1
L0μ'(X) = £ [μ?(Xt) - μ*(X)l (2.10)

ί = l

-ί g
We have used the following notation: (X = {xlt...,xm}),

Xl={x1,...,(qi-σίε,σt),...,xm}, (2.12)

X^={x1,...,(qi,σ^,...,(qj,σ^,...,xm}, (2.13)

_ , t j t }

Λί, j ) Λ ^ i ' V^"1^/
[ 0, otherwise

We want to investigate the behavior of the system in the limit as ε->0, Af-> oo,
]Vε2 -> ̂  > 0. In such a limit the number of particles per site is expected to be finite
so that each particle will undergo a finite number of collisions per unit time. On
the other hand the displacement per unit time of each particle is finite since ε"1!^
converges, at least formally, to the generator of the free stream. Therefore we are
in a situation which strongly resembles the Boltzmann-Grad limit for Hamiltonian
particle systems where the asymptotic behavior of the one-particle distribution
function is described by the Boltzmann equation. In our context the kinetic
equation which is expected to be valid in this limit is the two dimensional Broadwell
equation, as we shall see below by a simple formal argument.

For a probability measure μ which is symmetric under the exchange of the
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particles, we introduce the rescaled correlation functions:

p ' j ( x l 9 . . . 9 X j ) = (Ne2)-JN(N-l):.(N-j+l) £ με(xl9...9xj9Xj+l9...9xN).
Xj + i XN

(2.15)

Proceeding as in the derivation of the BBGKY hierarchy for Hamiltonian systems,
we obtain:

t l9 (2.16)

where

j
Cjj+ιPεj+ι(xι> >Xj)= Σ [p5+ι(*ι> >(4i,^ ,M4ί> -^i1))

ί = l

- Pε

j+ ι(*ι , - > (tfί, σ, )» . . . , */, (tfi, - <Ji))]. (2. 17)

Remarks on the Definition in (2.15). Consider the joint distribution densities:

f ε j ( x l 9 . . . , Xj) = ε~2j Σ μB(xί9 . . . , xj9 x/+ 1, . . . , XN) (2.18)
Xj + i XN

(notice therefore that ε 2 j f ε j ( x ι 9 . . . , X j ) is the //-probability of finding the group of
particles 1 •••; in the states x t --Xj). Then the correlation functions are:

In the B-G limit the correlation functions diverge. Renormalizing by a factor N~j

we then get the rescaled correlation functions:

These can also be expressed as follows: if xί9 . . . , xj are distinct states then

(2.20)

(2-21a)

where Eμε denotes the expectation with respect to με and η(x^ the random variable
number of particles in the state xt. If the states are not distinct the expression
changes. For instance if x± = ••• = x^ = x then

pj(x, . . . , x) = (Nε2)-^.(ι;(x) - - (η(x) -j + 1)). (2.21b)

For the other cases see (4.10) below.
The formal limit of (2.16) when ε->0, N -+ oo, Nε2-+λ is the following infinite

hierarchy:

τ:9j= -\ Σ σ i ' β j + λcjj+ι9j+ι (2 22)

The reason why in (2.22) there is not a term corresponding to L/p] is due to the
fact that the flow generated by ε~ XL0 gives vanishing probability to configurations
in which two tagged particles sit on the same site.
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We shall call the set of Eqs (2.22) the Broadwell hierarchy because if g denotes
any solution of the two-dimensional Broadwell equation:

— g ( q , σ ) = - σ — g(q9 σ) + λ\_g(q, -σL)g(q, σ1) - g(q, σ)g(q, -σ)] (2.23)
dt dq

then the products:

j
(2.24)

solve the Broadwell hierarchy (2.22). Conversely, in case of uniqueness of the
solutions of (2.22) and (2.23), any solution of the Broadwell hierarchy which initially
factorizes (i.e. satisfies (2.24) at time zero) cannot fail to be of the form (2.24) at
all times.

The aim of this paper is to prove rigorously the above limit. We make the
following hypothesis at time zero. Consider 00eC1(.Γ) a positive initial value for the
Broadwell equation (2.23) satisfying the normalization condition £ J dqg0(q, σ) =>1.

0-
Let με

0 be the probability measure on Γ% defined as follows:

N

μo(xί9...,xN)=H j dqg0(q9σi) (χi = ( q i ί σ i ) ) , (2.25)
i = l Λ(qt)

where A(qt) is the atom of the partition into squares induced by the lattice Λε and
whose left low corner is qit Let με

t be the measure evolved according to (2.9), or,
what is the same, the distribution of the process {xl9...9xN} at time t. Consider
the associated rescaled correlation functions ρε

t. (In what follows we shall compare
functions on Γ{ with functions on (Λ x Ω)j by restricting these latter to Γj

ε.) We
have the following theorem (the main result of this paper), which is actually valid
under more general assumptions on the convergence at time 0.

Theorem 2.1. Let ^eC1([0, T]; C1^)) be a solution of (2.23) with initial datum
g0. Let gjtt be given by (2.24) and με

0 by (2.25). Then:

lim 2 | | pJ i f -0 Λ Joo=0 (2.26)

uniformly in £e[0, T].

3. Short Time Analysis

In this section we prove Theorem 2.1 for T sufficiently small. This result is not
surprising at all: we simply exploit Lanford's technique used for deriving the
Boltzmann equation for hard spheres, [6]. This short time analysis, however, will
turn out to be useful in the sequel so that we shall present it here in some detail.

Theorem 3.1. Suppose that 00eC1(/"'). Then there exists T(λ, \\g0 H ^ ) such that, for

I I PS,, II »^(2 I I 0o ILX (3.1)
and (2.26) holds.
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Proof. We write the solution of (2.21) by means of a perturbation series around
Vε

jtt which is the semigroup generated by ε"1!^ + L7 and acting on functions of)
particles. In the sequel we simply write V\ instead of V ε

j t t , making clear the
7-dependence from the context. We have:

pj,< = vϊpj,0+ Σ (N^2γ\dt^dtr

 n~{ dtnv^tlc^+ίv^_t2cj+ί^2 vip]+^.
n=\ 0 0 0

(3.2)

Since V\ is a contraction semigroup in Lx, and

I|CW + 1ILS2;, (3.3)

we conclude:
N-J

n — 1 fl

Using the inequality:

J(J+l)-(J + n-l)^n\2"+J, (3.5)

we finally obtain:

00

II Pj,t II =0 ^ II Pj.o II co + V Σ (4ίNε2)" II p J+ΛΛ II „
«=1

^ H ί 7 o l l i + ( 2 | l ί 7 o l L y Σ (4ίΛfε2)"|| f foΓw. (3-6)
π = l

Therefore (3.1) is verified with t £ Γ(λ, \\ g0 \\ J = [12λ || 00 I I «]" '-
To prove the convergence we set:

where gjtt is given by (2.24). It is easy to see that gjtt solves the Broadwell hierarchy
(2.22) and by using a perturbative expansion as above, we can also prove uniqueness
(in a suitable space). ;

Denoting by Vt the free stream, i.e. the group generated by — ̂  σi — and by
P\ the semigroup generated by ε~1L0, we have: i=1 "&

}} + (Vt - Pε

t)gj,0 + PJ4J(0)

(3.8)

To estimate the first term on the right-hand side of (3.8) we develop, in some detail,
an elementary argument which will be often used in the sequel. We want to estimate
Pεt%(x> y\ where χ is the characteristic function of the event that two particles sit
on the same site. We denote by P](x,y\z,u) = P\(x\z)P\(y\u) the transition
probability that two particles, initially in the states z, u, are at time ί in the states
x, y respectively, when they moved according to the process Pf , (the random flights
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associated to each particle are independent so that the transition probability
factorizes). We have:

(3.9)
x,z

Moreover
(+/P\k

(3.10)
k

and recalling the Stirling formula

enn(n+l/2) 1-γ

n\
we finally get

ε
Pe,χ(x,y)^ const. /-. (3.11)

Therefore for t< Γ(l,|| go II αo ):

ΠΓ
IJL ^ const.;2 / - (2\\g0 \\JJ. (3.12)

V t — s

Furthermore, for a function feCl(Γ\

^const.ί ]ΓPJ(x|tt)|tt-:
\ "

^ const, yεί. (3.13)

The third term on the right-hand side of (3.8) can be easily bounded by

so that we obtain the integral inequality:

ί
llzi^ί)!!^ rgc j(ε + ^/εt) + 2 j ^ d s \ \ Δ ε

j + ί ( s ) \ \ a o . (3.15)
o

From (3.15), since || Δj(s) || ̂  cj for some c, we can obtain a series expansion which
converges for short times. It is now easy to conclude that in the B-G limit, (ε -> 0,
N-+CQ and Nε2 ->λ) \\ A](t) ||«, ->0, uniformly in ίe[0, T(λ, ||^01|«,)].

Remarks. The only difference between the Lanford argument for hard spheres
and the present one is that here we can prove a stronger (uniform) convergence
at time ί, the same as that assumed at time zero. This is due to the stochasticity
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of the free motion. For Hamiltonian systems it is unavoidable to have some weaker
convergence at time t because of the reversibility-irreversibility transition occurring
in the B-G limit, (see [6] for details).

A general global existence theorem for the two-dimensional Broadwell equation
is still lacking. However for special cases, as for space-homogeneous initial data,
or when there is a one-dimensional symmetry, a unique, smooth, global solution
can be constructed. As an outcome of our analysis we shall see that, in these cases,
the short time analysis carried out in this section can be extended to arbitrary times.

We observe that the knowledge of a uniform bound on the limiting solution, say

\\gj,t\\«> £c(T)J, (3.16)

valid up to the time T introduced in Theorem 2.1 does not allow us to extend the
convergence result up to such a time. In this section we have established that for

(3.17)

where the above constant c increases with supdlpjj^) 1^. It is clear that (3.17)
j

combined with (3.16) is not enough to iterate the short time convergence to reach
arbitrary times.

4. Proof of Theorem 2.1

According to (3.17) the difference \g j t t — pε

jtt\ is only bounded by c '^/εί; if we had,

instead, a bound like cj(^/εt)j then using (3.16) we could improve the bound for
pε

jtt and iterate the short time analysis past the time T(λ, | | g 0 l l α o ) We notice that
if pεjj is going to converge to gjtt then in the limit the p] >f's will factorize as the
gjtt

9s actually do. With this in mind we introduce the functions:

vt(X) = X ^iyχMgt(X/Y)p°t(Y), (4.1)
Y

where X is a configuration with finitely many particles, ]Γ denotes the sum over
Y^X

all the subsets of X, and pε(Y) is a shorthand for pε\γ\tt(Y). In the sequel we shall
denote the restriction of υt on the configurations X with j particles by vjtt(X). The
u-functions reduce then to:

vJ.t(X)=fl(gt-p\<l)(xl) (4.2)
ί = l

if the p^'s strictly factorize. Therefore we may hope that, at any fixed time, the
u-functions will be bounded by c7 ω(ε)J, where c,- does not depend on ε and ω(ε) is
infinitesimal in ε. A control on the size of the i -functions gives a measure of the
tendency of the system not only to converge to the limiting kinetic behavior, but
also to gain the factorization property. This means that the processes associated
to each particle are going to become independent according to the so-called
propagation of chaos hypothesis which is used in the heuristic derivation of the
Boltzmann equation. However a bound like the above one, i.e. c7 ω(ε)J, is not at
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all easy to derive even for short times. Following the definition given in (4.1), one
can write down an evolution equation for the i -functions (see Appendix A) which
involves not only operators which increase the number of particles, (as Cjtj+1) but
also others which decrease it. A naive bound can be obtained by taking sup norms
as in Sect. 3, getting an integral inequality for Vj(t) = || ΌJ \\ ̂  which looks like the
following one:

t
Vj(t) ^ υj(0) + c$dsjυj+1(s) +J2[vj(s) + ΌJ-^S)],

0

(4.3)

where c is some constant. In addition to (4.3) we have the a priori bound Vj(t) :g cj

for short times, as follows from (4.1) and the analysis in Sect. 3. If we could improve
the a priori bound showing that

Vj(t)^(Cε*γ, (4.4)

then we could easily iterate the argument of Sect. 3 by expressing pε

t in terms of
vt and gt by means of (4.1). However the estimate (4.4) is clearly incompatible with
(4.3): if we just take the contribution coming from the term vj-1 we get a bound like

v HW_^_U_^^J_ ,-v (45)

k = o k\

We could still recover a bound like (4.4) if t« εβ, βe(0,1). However this is not a
real gain because we would need an estimate like εδj with δ > β to iterate the
procedure to reach arbitrary finite times. The estimate (4.4) with t < εβ and δ > β
will be obtained (see Proposition 4.1 below) by exploiting more carefully the real
structure of the evolution equation for the i -functions. Unfortunately the best
estimate that we have been able to derive gives a bound for Vj like c(j)εδj with
c(j) which increases in 7 faster than exponentially. This new difficulty will be
overcome by using probabilistic arguments.

Following these considerations we can outline the strategy of our proof. We
fix an arbitrary time T and split the interval [0, T] into intervals of length εβ,
/?e(0,1). On each of these time steps we estimate the v-functions conditioned to a
good set of initial configurations (see Proposition 4.1 below). As a consequence we
can compare the empirical distribution of the process at the end of the time step
with the solution of an approximate Broadwell equation (see Proposition 4.2) and
prove that their difference is small in probability. This allows us to say that at
this final time the configuration is, with some large probability, good as required
for iterating the procedure to a new time step. In this way we prove, see
Proposition 4.4, that, typically, the process follows pieces of trajectories of the
approximate Broadwell dynamics. We also prove that these pieces are uniformly
close to the Broadwell dynamics so that the proof will be achieved.

From now on we shall put Nε2 = 1 for notational simplicity and denote by η
the function which associates to any xeΓε the random variable number of particles
η(x) in the state x. The knowledge of η uniquely determines a configuration
X = {x1 - XN} of particles modulo their labelling. Let ξ = ξ(x) be any integer
valued function on Γε and p a symmetric function on the configuration space with
finitely many particles. We set

= P/XI •••*,•) (4.6)
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for any configuration xί xj realizing ξ, that is:

ξ(x)= Σ <*(*,**), (4.7a)
i = l

where

= (4.7b)
0, otherwise

The following functions will be useful in solving combinatorial problems:

D(ξ,η) = Y\Dξ(x)(η(x)), (4.8)
Λ;

Dk(j)=j(j-l) (j'-k+l). (4.9)

Let p(",μ) be the family of rescaled correlation functions relative to the measure
μ. Then

p ( ξ ; μ ) = E μ ( D ( ξ 9 η ) ) . (4.10)

To understand (4.10) suppose μ concentrated on the singleton η. Denote by xl - - Xj
a configuration which realizes ξ and by Pμ(xί •• x / ) the probability of finding the
first j particles in the states x{ - Xj. Then:

Therefore, according to (2.15) we have:

). (4.12)

The general statement (4.10) follows by integrating on η.
For any configuration η, consider gε( \η) the solution of the following initial

value problem:

— 9εt(q^\^} = ̂ 1L0g
ε

t(q7σ\η) + gε(q,σ

-gε

t(q,σ\η)gε(q,-σ\η) (4.13)

which is an approximate version of the Broadwell equation on the lattice Λε. Let
p*('\η) be the rescaled correlation functions of the distribution of the process η(t)
which starts from η at time zero. Alternatively p*('\η) is the solution of Eq. (2.16)
associated to the initial datum D( \η). We define (compare with (4.1)):

vt(ξ\η)= Σ (-l) lζ l^(CI^P^-CI^, (4.14)
ζ^ξ

where \ζ\ denotes the cardinality of the set {ζ(x),xεΓε}, Σ means that we sum
over all the set of particles ζ contained in the set ξ, i.e. ^^

Σ=Π Σ =Π Σ
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and

tf(ίto) = Πtf(*l>/P ) (4 16)
X

Denoting by Eη the conditional expectation that at time zero the process is in the
state η, we have

X (-Ip'rfίxtoP'lVQMO/Λ (4.17)
ζ ( x ) a ξ ( χ ) /

Notice that if ξ(x) = 0, 1 for all x, i.e. there is no more than one particle per state,
then:

To estimate the i -functions we write, after straightforward but tedious calculations,
the following evolution equation:

~vt(ξ\η) = ε^L^ξlη) + £ at(ξ, ζ)vt(ζ\η). (4.19)
dt ζ

The operators at(ξ, C) are non vanishing only when \ξ\ — 2^\ζ\^\ξ\ + l. We do
not give here their explicit expression referring the reader to Appendix A, where
(4.19) is derived.

The main technical point of our result is the following proposition whose proof
will be given in Sect. 5:

Proposition 4.1. Let β = y^, δ = ?9ζ = J^Q. Suppose that for all x η(x) ^ ε"ζ. Then
for all t^εβ we have

*J (4.20)

where c(j) is a positive constant depending only on j and j = \ζ\.

Remark. The choice of the parameters /?, δ, ζ in Proposition 4.1 is obviously rather
arbitrary, but good enough for our purposes.

The above proposition allows us to control the deviation of the process ηt from
the approximate solution of the Broadwell equation gε

t(x\η) by means of the
following seminorm:

(4.21)

We remark that Pli/*(x\y), x = (q, σ), is essentially supported by all y = (qf, σ) such
that q varies in an interval of length ε~3 / 8 = (ε~1ε1/4)1/2. Therefore (4.21) expresses
the supnorm of the one dimensional averages on intervals of size ε~3/8. The
introduction of these averages is necessary to smooth out the local fluctuations
of ηt. However the seminorm (4.21) will be sufficient to ensure a macroscopic local
control since f < 1.

Proposition 4.2. Under the same hypotheses of Proposition 4.1, setting γ = τβ, for
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all n > 0 there exists c(n) such that:

PΓ,( II 9A I n) - n/ II > ̂  < ΦK, (4.22)
where Pτη denotes the law of the process starting from η at time zero.

Proof. By the Chebichev inequality, the left-hand side of (4.22) is bounded by:

Σ
i •• y2

Έη ΠMΛk)-^(Λ))- (4-23)
fc=ι

Consider first the contribution coming from points y1'-y2j which are mutually
distinct. By (4.18) and Proposition 4.1:

Π toXj^-vύ^V^ (4.24)
fe=ι J

hence the sum in (4.23) over all distinct states is bounded by

ε-2yjε~2ζj. (4.25)

The general case can be recovered by combining the probability estimate that two
particles are in the same site, see (3.11), with estimates on the i -functions of lower
order. In fact if y1 •• y2j is a configuration with n, (n ̂  2j) particles on the same
state x, then in the product in (4.23) we have a factor:

(9-nT, (4-26)

where ή = ηεβ(x) and g = gε

εβ(x\η). The following identity is easily proved by
induction:

ήk=ΣA(k,h)Dh(ή), (4.27)
Λ = l

where the A(k9 h) are defined by recurrence:

A(k9h)=l if k = h or h=l9

A(k, h) = hA(k -I9h) + A(k - 1, h - 1). (4.28)

The explicit form of A(k9 h) is not relevant at all, we simply remark that A(k9 h)
may be bounded by (2h)k. We define:

v*(i> 9} = Σ 7 k ^ ( ^ ~ S D s ( f i ) ' (429)

By inverting (4.29) we have:

Dk(ή)= Y - - - gk~sVs(ή,g). (4.30)
,tΌ(fc-s)!s!

Using (4.27) we can express ή" in terms of Vs(ή, g) to obtain:

(g-ήγ=Ϋ V Y - - -- - - A(s,h)(-ίY^ + r~'Vr(ή,g). (4.31)
,tΌ» = i r = o(w-s)!s!(Λ-r)!r!
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Since

v t ( ζ \ r l ) = Eη\ ]\Vξ(X)(ηεβ(x\gε

εβ(x)) (4.32)
|_ X _J

by inserting (4.31) in the expectation in (4.23), we obtain a linear combination of
i -functions whose minimum order is given by the number of j;f's having only one
particle per site. Hence the contribution to the sum £ relative to the event

with exactly k isolated particles may be estimated by

the first factor c(j) is a suitable constant independent of ε, the second factor comes
from the sum over xeΛ ε, the third one was already present in (4.23), the fourth
and fifth terms are consequences of Proposition 4.1 and the sixth arises from estimate
(3.11). Finally the last one bounds the g's in the expansion (4.31). This last bound
follows from the short time analysis (recall that β > ζ) of Sect. 3 which applies as
well to the discretized Broadwell equation (4.13). Since:

C + y <(1 — β)δ, C + y < f , (4.34)

the proof is achieved.

In order to iterate the probability estimate given by Proposition 4.2, we
introduce a set of trajectories well behaving locally in time, with respect to the
approximate Broadwell dynamics.

Definition. We denote by Hn the set of all sequences {η(k}}k = o,...n i
n Γ%, (η(0) = η)

such that:
η(k)^ε~ζ, (4.35)

(4.36)

\\ηM-g°Λβ('\η<k-»)\\£ε*9 k=l,...,n. (4.37)

Let T be an arbitrary fixed time, we set m = integer part of T&~β + 1.
The next proposition (combined with (4.37)) shows that the solutions of the

Broadwell equation are well approximated by the trajectories in Hm.

Proposition 4.3. In the same hypotheses of Theorem 2.1, if {Vk)}eHm then there
exists a constant c > 0 such that:

\βΆx\^k-1})-gla>(x)\^ckε'. (4.38)

Proof. We prove Proposition 4.3 by induction so that we assume the estimate
(4.38) true up to /c - 1. We set

h(x, ί) = g>t(χ\η<*- »>) - g(k_»β+t(x), (4.39)

H(x, t) = g*(x \η(k-lί) + glk_ „/ + ((x), (4.40)
Then

(4-41)
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where

, σ1) - f(q, σ)g(q, -σ)

g(q, -σL)f(q,σ^-g(q,σ)f(q, -σ)},

(4.42)

We denote by Th i= 1,...,4 the four terms in the right-hand side of (4.41). We
estimate them separately. For εβ ̂  ί Ξϊ ε1/4,

IT, ί\\η(k-»-glβ( \η«-V)\\ + \\gle( \η«-2))-g(k_l)εβ\\ίεT + (k-l)Cε >, (4.43)

where the first term arises by the assumption that {f/(fe)}e//m and the second follows
by the induction hypothesis. Moreover:

|T2 |^C l £

1 / 2 (4.44)

as follows by (3.13) and the hypothesis of the regularity of the solution g. To
estimate the third term we split the time interval into two parts: se[0,ε1/4] and
se[ε1/4, ί]. In the first we simply use the short time estimate:

Q(h( ,s),H( ,s))^C2ε-^ (4.45)

in the second:

gC 3 | |ή( ,s)IL(l + I I Λ ( ,s)IL), (4-46)

so that

Γ3 1 ^ C2ε-2ζε1/4 + C3 } dsχ(s > ε1/4) || h(;s) \\ „(! + || h(;s) \\ J. (4.47)
0

Finally the last term can be bounded in the same way as the second one. In
conclusion we have obtained the following integral inequality: for fe[ε1/4, ε^],

|| Λ( , ί) || ̂  ̂  C4ε
1/2 + C2ε-2ζε1/4 + z* + (k - l)Cεy

+ C 3}d5| |/ι( ,5)||00(l + ||/ι( ,5)||00)χ(5>ε1/4). (4.48)
o

Because ^ — 2ζ > 7, we can first conclude that the first time s for which || h(-9 s) \\ ^ ̂  1
is larger than ε^; we then solve the linear integral inequality obtained from (4.48)
replacing (1 + IIMssH^) by 2. Finally we choose c so large that the estimate

| | A ( ,OL<<*ε y (4.49)

holds.
The case k — 1 can be recovered in a similar fashion so that the proof is

achieved.

We now prove that, with large probability, the sequence ηkεβ obtained by
observing the process at times kεβ is in Hm. Define the set of trajectories:

H* = {(ηt\>^\{ηk/}k = 0,...n€Hn}. (4.50)

Then
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Proposition 4.4 For any n>Q there exists c(ri) such that:

Pμ.(fl*)>l-φ)ε", (4.51)

where Pμ* is the law of the process distributed at time zero according to με.

Proof. Denote by χk the characteristic function of the set H % and by η the value
of the process at time (fc — l)εβ. Then:

£/*Λ = £/(**-! Pr,^^^ (4-52)

If η ̂  ε~ ζ we already know by Proposition 4.2 that:

PrJ I I V - 0X I n) II > £y} ̂  Φ)β" (4.53)

which controls the second event in (4.52). For the first term we have

PrJ l lv l loo>β~ ζ }^PrJII#X^

(4.54)

By Proposition 4.3 we know that:

(4.55)

so that, since γ> β, we have an uniform bound on HgX'^)^ inherited by the
assumed boundedness of the Broadwell solution gkεβ. Hence the first probability
appearing on the right-hand side of (4.54) is zero. By the Chebichev inequality the
second term on the right-hand side of (4.54) is bounded by:

22»fi2<"£ Eμ£{(ηεβ(x) - gε

εβ(x\η))2"}. (4.56)
X

Now we expand (4.56) by using (4.31) as we did before. We obtain a linear
combination of terms with products of i -functions and powers of gε

εβ. Both are
known to be bounded uniformly in ε so that, for an arbitrary n:

Eμε(χk)^Eμε(χk^)(l-c(n)εn). (4.57)

The estimate of Eμe(χ0) is obvious by the assumption on με so that by iteration
we conclude the proof.

We are now ready to conclude the proof of Theorem 2.1.

Proof of Theorem 2.1. By definition, putting ί = kεβ:

pl(ξ] = E(D(ξ, ηt)) = E(χk^D(ξ, ηt)) + £([1 - χk.^D(ξ9 ηt)\ (4.58)

By using the Cauchy-Schwartz inequality, the last term is bounded:

v l / 2

;<*)

^C(n)εn/2ε-2lξ( (4.59)

Here we have used the conservation of the number of particles for which ηt(x) <ε~2.
For fixed \ξ\ and sufficiently large n the right-hand side of (4.59) vanishes in the
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limit ε-»0. Finally:

(4.60)
J/

where η denotes, as before, a configuration at time (k — \}&β. By Proposition 4.3
the last term of the right-hand side of (4.60) is also vanishing. Finally the first term
in the right-hand side of (4.60) can be expressed in terms of a linear combination
of i -functions, (see formula 4.30) for which, by Proposition 4.1, we can conclude
that all terms are vanishing.

From this it is easy to prove convergence uniformly in x and ί on the
compacts.

5. Proof of Proposition 4.1

The analysis at the beginning of Sect. 3 applies as well when the initial measure
is supported by a single configuration η: for each ε > 0 let the configuration η be
such that η(x)^ε~ζ, for all x, and denote by pε

jtt(-\η) the correlation functions
when the initial measure is supported by η. By (3.6) (here \\g0 H ^ ^ ε~ ζ)

for t^(12λε~ζ)~ί. Hence (5.1a) is satisfied for all times t^εβ, those relevant in
the proof of Proposition 4.1 (recall that β = 1/100 and ζ = 1/1000). Analogously it
can be proven that the solution gε

t(-\η) of (4.13) is bounded by

From (4.17) and (5.1) we then derive (4.20) for ί ̂  ε. For the remaining values
of t a more careful analysis is required, as we shall see hereafter.

We recall that Pε

t is the semigroup generated by ε~1L0 and denote by Pε(X\ Y)
its kernel. By (4.19), denoting by atvt(ξ\η) = ^at(ξ9ζ)υt(ζ\η)9 we have:

υ,(ξ\η) = Pt

tv0(ξ\η) + ίdsPt

l_,a,v,(ξ\η)
0

,, . ί _ ι

π = 0 0 0

where

Λ(t,m) = } A!- "ί dtnPΐ.^ P^^.^P^VtJξlη) (5'2b)

0 0

and m = 100;, 7 = |^ | = cardinality of ξ. We recall that

12

9=1
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where αf, q = 1,. . ., 12 is the finite sequence of the operators C±, K^2, A^2, Lf
defined in Appendix A and given in some order. We shall first estimate:

Pί-trf Pi^^PiMξM. (5.3)
The particles appearing in the expansion (5.3) are at most j + n (this value is
achieved when only operators of type C are present). Thus we need to estimate
the following transition kernel:

where a* = £0?(U)> a?(ί,j) is the contribution to the operator aq

t coming from the

pair of particles i and j and finally a?(ίj) = 0 if i —j for the operators of type A
and Lj. For the operators C and X, a?(ij) is the contribution due to the particle
i and aq(ίj) = 0 if 1/7. Moreover we use the convention that a<*(ίj} = ΰ if the
particle i and 7 are not present at time ί.

We denote by Γ= {qι, ..,qnl(iJι), >.,(inJn)} the set of all possible choices
of operators and pairs of interacting particles. The algebraic structure of the process
is entirely given by yeΓ. For each y we have the following estimate:

Proposition 5.1. For each fixed yeΓ, n<m= lOOj and ε ̂  t rg εβ,

εV / 4

- tnl2. (5.5)
o o y \tj

Since t^εβ the factor ε~2πζί"/2->0 as ε->0, hence Proposition 5.1 will imply
Proposition 4.1, once we prove an analogous statement for the remainder term
(5.2b).

Proof. Since v0 vanishes whenever there is a state occupied by a single particle,
we have

y

where X is the set of states realized by ξ and χ(Y) vanishes unless there are at
least two particles per site. Therefore

9 i= 1

where 2 = {^1;..., ̂ s}? |^| = s, is a partition of the particle labels in Y into atoms
@19...9@S each one containing at least two elements. Finally χ&l(Y) = Q9 unless
all the particles of Y with labels in Q)i are on the same site. Since the number of
partitions is finite (once j is given) it will be enough to prove the estimate (5.5) for
a fixed partition *2. Hence from now we shall consider a fixed value of y and 3.
We first consider those y's where the terms αf are only of type A and C, i.e. when
there is no operator which leaves invariant the number of particles. Then the
transition kernel (5.4) has the following structure:

where τ 1 ? . . . , τ f c are the times when a new particle is created and the #'s are the
corresponding creation operators. Each operator 5 is a string whose transition
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kernel is given by:
sτr_ί_τr(x\Y) = Pi_ι_srΛ/.. ^Pirn(r)_τr(x\Yi (5.9)

where {sj}"^ are the times when the particles die and the j/'s denote the corres-
ponding destruction operators. It is obviously assumed that Sτr_l_τr = P ε

C r _ l _ τ r if
no particle is destroyed.

By using (5.1b) we get

Zί •••Zn(r) ΐ= 1

...P^.JZ^IY), (5.10)

where χt is the characteristic function of the event that the two particle involved
in the interaction must stay at the same site at the time sj. Zf is the set Zf deprived
of one or two particles if A1 respectively A2 acted at time sj (one or two particles
dying in such a case). Furthermore when the operator Af acts then the velocity
of the particle involved (say i) changes σ^σ^- according to (A.25). By applying
the probability estimate (3.11) we easily obtain:

τr-l

(5.11)

where the set X ( Z 2 ) is the set X deprived of the particle (or particles) which died;
Qε(X\ Y) denotes the transition probability associated to\X\ independent Poisson
jump processes to which we add the transition σt-^σ^ whenever the operator A±
acts on particle ί. Notice that Qε depends on yeΓ.

Iterating the procedure we obtain:

- -•-. - -, (5.12)
!,_!-/! V τ r - ι - a £ < r )

where X(Y) denotes the subset of X which survives in the time interval T r _ x — τr.
Before using (5.12) we need to estimate the action of the operators C. For simplicity
let us first consider the case when all the operators C are of the form C~. We now
denote by zt ~zk the single particle states of the newly created particles, cf. (5.8),
(they are completely specified by yeΓ and by the configurations just before the
times of creation). Therefore:

(5.8)= X S t.τι(X,Z1)S t l.τ2(Z1uz1,Z2)
Zi Zk

-.S^^JZ^iUZfc.^ZJSJZfcUz^y). (5.13)

We introduce the notation:

(ZUZ)o (5-14)

to indicate the set of particles in the configuration Z which are present at time ίk

and at time 0, respectively. By using (5.12) we can bound (5.13) by the following
quantity:

Zi Zfc

(5.15)
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where

ε
- Π UW (5-16)

-

From now on we shall consider only those Y for which J~J %@.(Y) = 1, recall that
the partition ^ has been fixed once for all. / = 1

There are two possibilities. Either the particle created in the state zk dies in
the time interval (0, τk) and therefore

Y)^Q*k((Zk)0\Y) (5.17)

or it survives, so that

ρ*k((Zfcuzfe)0| Y) = Qlk((Zk}Q\Yk}Plk(zk\yk\ (5.18)

where yk is the position in Y of this particle and Yk = Y/yk. In the first case, (5.17),
we sum over Zk and obtain the same expression as (5.15) with k replaced by k — 1.
In the second case, (5.18), we estimate Pε

τk(zk\ yk) by (3.11) so that the expression
(5.15) is bounded by:

τk

where
@k = {@k}s

i=1 (5.20)

is the partition of the labels of Yk obtained from 2 by eliminating yk. We notice
that Q)k may have an atom (say 3)\ ) with a single element (correspondingly χ^ = 1).

We want to iterate the above procedure but now there is a new possibility,
namely that the particle created in zk_1 belongs, at time 0, to a cluster with a
single element. In this case, as well as in the case when the particle dies, we do

not gain the factor -^/ε/τk _ ι . In all cases summing first over the particles which
are not alive at time 0 and then over yk _ 1 (if present) we complete this step of the
iteration passing from fc — 1 to k — 2.

We define Yh = Yh + 1 / y h for h = 1, . . . , k - 1, with the convention that Yh = Yh + 1

whenever the particle zh is not present at time 0. Analogously we define @h as the
partition derived from 3) by restricting it to the particles in Yh. At the end of the
iteration we obtain

/- F(ί,τ1)...F(τ fc,0)Σ^(Wol^1) Π U(^\ (5.21)
~ yi i=l '

where σ l 5 . . . , σ Λ is the following subset of τl9...,τk: τ ίe{σ 1,...,σΛ} if and only if
zt is present at time 0 and its label belongs to a cluster in ̂ I + 1 consisting of more
than one element, @k+1 = *2). Moreover Y1 is the image at time 0 of the particles
(X)0 in X which are alive at time 0. Finally & is the partition of 71 obtained
from 3) after subtracting all the new particles alive at time 0. We finally bound
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(5.21) by

h

i =

h

Π - F(ί,τ1). .F(τk,0)Π - > (5.22)

where | ̂  1 denotes the cardinality of 3)\ whenever it is larger than 1 and it equals
1 otherwise. We now insert the estimate (5.22) in the left-hand side of (5.5) and
perform the time integrations. We get

l.h.s. of(5.5)^φ>-(^2n)^ (5.23)

After some thought one can realize that

Σ (1^1-1)= Σ (I®*1 1-1) + A, (5.24a)

(5.24b)

ί=l

M

where M is the total number of particles which have died. Then

Σ(|^|-1) + Σ«(^~ + T=J^ (5.25)
i r 2 2 2

From (5.23), since ε/t < 1 we obtain as a final estimate:

/ P \ 0 + Ό/4

l.h.s. of (5.5) ̂  c(j)B-(J+2n*( - (Jt)n. (5.26)
W

If also the operators C+ are present in the expansion (5.8), the same estimate
(5.26) can be easily obtained after redefining Qε to take into account the transitions
σ -> σ -1 of the particles which are involved in the interaction.

Exactly the same estimate may be obtained in the case when in the expression
(5.9) there are operators as Lj and K. Consider the following string:

-^X, Yl (5-27)

where {sj^i...,. are the times when an operator $£ of type L7 or K acts, leaving
the number of particles invariant. Removing the characteristic functions of the
interaction we bound (5.27) by

2ε~^ΠlΌ_Sr(X, 7), (5.28)

where Πy is the transition probability oϊ\X\ independent Poisson jump processes
of intensity ε~ 1 in which the velocity of the particle is changed at time st according
to the sequence y. We can replace P by Πy and obtain the same estimate (5.26)
for the general case. The extra factors 2ε"rζ can be controlled by the time integrals
yielding a factor εβr. Thus the proof of Proposition 5.1 is achieved.

By Proposition 5.1 we can easily bound the sum in the right-hand side of (5.2a)
by the desired estimate,

Finally we estimate the remainder. By definition

(5 29)
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Using (5.1) and recalling that β= 1/100, we get

ml

ε-lolζj (5.30)

and, with our choice of the parameters, the proof is achieved.

Appendix A

In this appendix we derive Eq. (4.19) which describes the time evolution of the
i -functions. We recall the hierarchy satisfied by the rescaled correlation functions
(Eq.2.16):

^-p^ε-tLop' + Ltp' + Cp . (A.I)
at

Defining:

<7ε(*ι "*,-) =ΓM^)> (A 2)
1=1

where gε satisfies Eq. (4.13), we have for the set {gε(xι •• x/)}JLι the following
hierarchy of equations:

-g^ε^L^ + Cg^ (A.3)
at

According to Definition (4.14), the ^-functions relative to the correlations pε are
implicitly defined by the formula:

pε(X)= £ g*(Y)v(X/Y)) = (g°*υ)(X)9 (A.4)
YciX

where X = (xί- Xj) denotes any set of states of single particle and the convolution
product * is defined by the last equality in (A.4). We first observe that the operator
L0 acts as a derivation for the product * :

L0ρ = (L0v)*g + v*(L0g) (A.5)

(from now on we skip the suffix s for notational simplicity). We now express the
collision and the interaction operators, C and Lj respectively, in the set formalism.
We have:

C = C+-C", (A.6)

C+p(X)= ΣP(^UX±), (A.7)
xeX

x_), (A.8)
xeX

where
(A.9)

and
(A. 10)
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Finally
L^L +L,-, (A.ii)

and

=l- Σ
^ (x,y)eX

= ~ Σ
^ (χ,y)eX

where
X^y = (X/{x,y})u{x\y^} (A. 14)

and χx y = χ ί f j (cfr. Eq. (2.14)) whenever the particles i and j are in the states x and
y. The following is straightforward algebra:

Σ Σ v(Z)g(Xvx./Z)
xeX ZcJSTux-

Γ c: ̂  xeX Γ c X

= (C~v)*g(X)+ Σ Σ v(Tvx
T^X xeX/T

+ Σ Σ v(T)g(Xυx-/T)
TcX xeT

= (C~v)*g(X) + υ*(C-g)(X) + (K;V)*g(X) + (Kϊυ)*g(X), (A. 15)

where

xeT

X6T

By analogous computations:

C + p(X) = (C + v)*g(X) + υ*(C+g)(X) + (K + v)*g(X) + (K^)*^), (A. 18)

where

K + v(T)= Σ ^Tuxi/x^ίx1), (A.19)
xeT

K^v(T)=^v(T^xi/x)g(X^\ (A.20)
xeΓ

Moreover

L/~PW^ Σ Σ v(T)g(X/T)χXty. (A.21)
^ T c z X x,yeX

We split the sum x, yeJΓ in the four sums: x,yeT; yeX/T, xeT; xεX/T, yeT;
x, yεX/T and, after this, we arrive easily at the following identity:

Lfp = Lj~v*g + A^v*g + A^vxg, (A.22)
where

(A.23)
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ΛΓ»(T) = ̂  Σ v(T/χ,y)g(χ)g(y)χx,y. (A.24)
^ x,yeΓ

Analogously
L/p = Lfυ*g + A±v*g -{- A^vxg, (A.25)

where
χ J C f y, (A.26)

χ;c,r (A.27)
2 χ,>>eΓ

Defining
K^Kf-KΓ, ί=l,2, (A.28)

A^A^-AΓ, 1 = 1,2, (A.29)
we arrive, finally, at the equation:

— = (ε~ 'LO + L, + K! + K2 + C + ̂ x + X2)ι;. (A.30)
at
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