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Two species of Brownian particles on the unit circle are considered; both have 
diffusion coefficient a > 0 but different velocities (drift), 1 for one species and 
- 1  for the other. During the evolution the particles randomly change their 
velocity: if two particles have the same velocity and are at distance ~<~ (e being 
a positive parameter), they both may simultaneously flip their velocity accord- 
ing to a Poisson process of a given intensity. The analogue of the Boltzmann- 
Grad limit is studied when a goes to zero and the total number of particles 
increases like e 1. In such a limit propagation of chaos and convergence to a 
limiting kinetic equation are proven globally in time, under suitable assump- 
tions on the initial state. If, furthermore, a depends on e and suitably vanishes 
when e goes to zero, then the limiting kinetic equation (for the density of the 
two species of particles) is the Carleman equation. 

KEY WORDS: Boltzmann-Grad limit; Carleman equation; stochastic inter- 
acting particle systems; propagation of chaos. 

1. I N T R O D U C T I O N  

O n e  of  the  m o s t  i m p o r t a n t  and  still  u n s o l v e d  p r o b l e m  in n o n - e q u i l i b r i u m  

sta t is t ical  m e c h a n i c s  is the  d e r i v a t i o n  o f  k ine t i c  a n d  f luid d y n a m i c a l  e q u a -  

t ions  ( B o l t z m a n n ,  Euler ,  N a v i e r - S t o k e s  e q u a t i o n s )  s t a r t i ng  f r o m  a pa r t i c l e  

sys tem wh ich  evo lves  a c c o r d i n g  to  N e w t o n ' s  laws  of  m o t i o n .  Very  few 

r i g o r o u s  resul ts  a re  k n o w n .  T h e  B o l t z m a n n  e q u a t i o n  has  been  de r ived  f r o m  

the  N e w t o n  d y n a m i c s  e i the r  for  shor t  t imes  (~) o r  at  all t imes  bu t  for  a 

d i lu te  c l o u d  of  gas  in the  v a c u u m .  (2~ These  resul ts  a re  o b t a i n e d  in the  
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Boltzmann-Grad limit when each molecule has very few collisions per unit 
time while it otherwise moves freely. When such a simplifying assumption 
is not fulfilled the analysis of the hydrodynamic behavior of the fluid 
becomes so intricate that no mathematically founded result is known and 
none seems likely in the near future. The hydrodynamic equations, though, 
have been derived rigorously starting from the Boltzmann equation, at 
least in some cases, by using Hilbert and Chapman-Enskog expansions. ~3) 

The situation is more satisfactory, in a sense, if one considers from the 
beginning simplified particle models such as stochastic interacting particle 
systems or stochastic cellular automata. (4) The long-time analysis of these 
models is made easier by the stochastic nature of their evolution, so that 
ergodiclike properties of the dynamics, hopeless to be proven in mechanical 
systems, can actually be established. The crucial point is that even after 
such assumptions on the nature of the evolution, the system keeps some of 
the features of the original mechanical model, and in particular the collec- 
tive phenomena responsible for establishing the hydrodynamic behavior of 
the system are preserved in many cases. This gives a concrete hope of 
proving for such systems the validity of the hydrodynamic description 
which seems so far off for the purely mechanical systems. 

In the same spirit of looking at simplified versions of the general 
problem, Kurtz (5~ and McKean (6) derived the hydrodynamic equation for 
the Carleman model. This latter is a caricature of the Boltzmann dynamics. 
The associated Euler equation is in fact trivial, so that one needs to con- 
sider a diffusive scaling in which Kurtz and McKean proved convergence 
to a nonlinear heat equation using the Chapman-Enskog expansion. 

In the present paper we complete, in a sense, their analysis, by 
deriving the Carleman equation from a particle system, in analogy with the 
Boltzmann-Grad limit. The particle model has a stochastic evolution to 
avoid the pathology appearing in the derivation of the Boltzmann equation 
with descrete velocities, as pointed out by Uchiyama (7) for the Broadwell 
equations. 

In Section 2 we introduce the model and state the main theorem, 
which is proven in Section 3. Concluding remarks are given in Section 4. 

2. THE M O D E L  A N D  THE M A I N  RESULT 

Consider N point particles on the circle, i.e., the interval [0, 1] with 
periodic boundary conditions. We denote by X=(Xl,X2,. . . ,XN) their 
positions and by v= (vl ..... VN) their velocities and we assume vj= +_1, 
j =  1 ..... N. The interaction is described in the following way. A Poisson 
process of intensity one is introduced for each pair (i, j) of particles. Let 
{tl ..... tk,...} be a sequence of times distributed according to this process: 
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then, if at the time t~, vj = vi and d(xi, xj) <~ e [here d(x, y)  denotes the 
distance on the circle and g is a positive parameter],  the two particles i and 
j invert their velocities, otherwise they go ahead. The Poisson processes for 
different pairs of particles are mutually independent. 

Suppose now that the system is described at time zero by a distribu- 
tion whose Lebesgue density is #N(x,, Vl,.. .  , XN,  I)N)~]AoN(X, u Then the 
time-evolved distribution density tt u satisfies 

where 

and 

(a~*~#~l(x,  v) 

N N 

-=~E E 
i=1  j = l ; j ~ i  

DtpN(x,  v )=  (G~v~ttU)(x, v) (2.1) 

if(i, j)  = 1 

N 

D, = ~, + ~. vja~j (2.2) 
j ~ l  

f f (  i, J)[ktU(xl, U1 ..... Xi '  --~)i '" ' ,Xj ,  - - U j , ' " ' X N ,  ~)N) -- IAtN( X, u 

(2.3a) 

if d(xi, xj) <<. ~, vj = v i, and 0 otherwise (2.3b) 

We assume that #o u is symmetric under permutations of particles, so 
that it remains symmetric at all times. 

Introducing the marginal distribution densities 

f ~ ( X l , V l  ..... Xj, Uj;t) = E f dXw+l dXNZZU(X,,V~, ,Xu, VN) (2.4)  
Uj + l ;...;VN 

we obtain 

( D , - a * ~ ) f ;  = c ~,;j+ ~f~+, (2.5) 

where 

C s f c  j ; j+ 1J j+ I (X1 ,  Vl , ' " ,  Xj,  13j; t) 

i=1  

• { f ~ + ~ ( x , ,  Vm ..... x .  - v ;  ..... x j + , ,  - v j + ~ ; t )  

--f~+l(Xl, L~I,... , X j + l ,  1)j+ 1 ; t ) }  (2.6) 
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We refer to (2.5) and (2.6) as to the BBGKY hierarchy for our model 
system, in analogy with the system of equations which describe the evolu- 
tion of mechanical particle models. 

In the formal limit N ~  ~ ,  e--*0, Ne ~ 1, the above set of equations 
converges, formally, to the following hierarchy of equations: 

Otfj~-  Cj, j+l f j+ 1 (2.7) 

where 

Cj, j+ l f j+ l(X1, ~)1,..., xj, 1)j; t) 

J 
= E {fJ+ I ( x l '  D1 ..... Xi'--Oi '""XJ'1)j 'Xi ' - -Vi;1)  

i= l  

- f j +  l(X~, Vl,..., x , ,  v, . . . ,  x , ,  v~; t)} (2.8) 

The set of equations (2.7) is called the Carleman hierarchy. In fact, if 
we assume that the distribution densities fj  factorize, i.e., 

J 
f j ( x l ,  vl ,..., x s, vj; t ) =  1-I f l ( x i ,  vi; t) (2.9) 

i = l  

then the first equation of the set (2.7) reduces to the Carleman equation 

D , f l ( x ,  v; t ) =  f~(x, - v ;  0 2 --f~(x, v; 0 2 (2.10) 

Moreover, it is only a matter of simple algebraic manipulations to 
prove that, if f l ( x ,  v; t) satisfies the Carleman equation (2.10), then the lhs 
of (2.9) satisfies the hierarchy (2.7). 

In spite of the fact that (2.5) converges formally to (2.7), one can 
prove that the solutions to (2.5) do not converge to those of (2.7). Such a 
"paradoxical" feature is also present in the four-velocity Broadwell model, 
as noticed by Uchiyama3 7) In the Carleman case it is a consequence of the 
fact that two isolated particles, initially at the same point, cannot be 
separated by the dynamics, so that, in the limit e--* 0 their motion con- 
verges to a synchronous random flight (random change of velocity) rather 
than to a free flow, as in (2.7). 

One might wonder about the relevance of such considerations, since 
the set of configurations with two particles at the same place has zero 
Lebesgue measure. Notice, however, that in the rhs of (2.8) two particles 
are at the same place and with the same velocity: it is the same evolution 
in a sense which forces us to consider such configurations. More details will 
be given in Section 4. 
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To overcome the above intrinsic difficulty, we add a Brownian motion 
on each particle, i.e., we replace G *~ by 

G~=G*~+crA,  ~r>0 (2.11a) 

3 =- ~x~ (2.1 lb)  
i = 1  

and in order to have the same limiting equation we shall choose a = a(e) 
vanishing with e slowly enough for the particles to be sufficiently 
delocalized. In this way we shall avoid the pathology that we discussed 
previously. 

For this new model the hierarchy of equations is 

( D r -  G~)f~ = C~;j+ lf~+1 (2.12) 

We study the behavior of the f~ in the limit N ~ o% e ~ 0, Ne ~ 1. Our 
main result is the following theorem. 

T h e o r e m  2.1. For  each e let N(E) be a positive integer such that 
eN(e)--* 1 as ~ ~ 0. Assume further that the density of the initial distribu- 
tion of N particles is 

N 

]~N(Xl, 1")1,'", XN, ~)U) = l-I f ( x k ,  vk; 0) (2.13a) 
k = l  

axf(x, v; 0 ) =  1 (2.13b) 

where f (  .; 0) is in C~ 1] 2) and f (0 ,  v; 0 ) = f ( 1 ,  v; 0), v = +1. Then the 
following two statements hold. 

(i) There is a constant c~ not depending on e such that for all j >  0 
and t~>0 

IIf~( ", t)l] o~ ~< Ilf}( ", 0)11 ~ exp(c~j2t) (2.14) 

where It'll~ denotes the sup norm. [For  this result we do not need the 
factorization property (2.13). ] 

(ii) There exists a function a(e) such that a ( e ) > 0  for each e and 
a(e) ~ 0  as e--*0 such that for all j > 0  

J 

lira f}(x~, vl,..., x i, vj; t) = ]-I f(x~, v~; t) uniformly on compact sets 
e ~ O  i = 1  

(2.15) 
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where f ( - ,  .; t) satisfies the Carleman equation in mild form, i.e., 

f (x ,  v; t ) = f ( x - v t ,  v; 0)) 

+ ds { f ( x + v ( t - s ) ,  - v ; s ) 2 - f ( x + v ( t - s ) , v ; s )  2} (2.16) 

Remark. If a > 0 is kept fixed when e--, O, then (2.15) holds and the 
limiting density f (x ,  v, t) satisfies the following equation: 

v , t )+v  f ( x , v , t ) = [ f ( x ,  - v , t ) 2 - f ( x , v , t ) 2 ] + a - ~ x 2 f ( x , v , t  ) 

(2.17) 

We shall prove Theorem 2.1 in the next section by studying a pertur- 
bative expansion of (2.5) as usual when deriving kinetic equations from 
microscopic-particle models. We may overcome the typical limitation to 
short times by exploiting the diffusion part of the evolution. While a 
diffusion is necessary, as explained above, to get convergence to the "right" 
Carleman equation, here the diffusion plays a more important role by 
providing also a technical device to gain a priori bounds on the correlation 
functions. The price we pay is that we can only state the existence of a 
function cr(g) but we are not able to make it explicit. As we discuss in 
Section 4, a natural choice for a(e) is a proportional to e. We expect the 
theorem to hold also in this case. Actually, for such a choice of a(e) 
convergence at short times holds, as proven in Section 4. 

3. PROOF OF T H E O R E M  2.1 

We start by proving the a priori estimate (2.14) on f~, which is the key 
ingredient in the proof of Theorem 2.1. We shall often write f~;t instead of 
f~( .; t). 

By (2.12) we have 

* . . . . .  ( 3 . 1 )  f~, ,= Vj,,fj, o+ ds Vj,,_sG s f~;s+ as Vj,,_sC~;j+lfj+l; s 

where 

J 
(Vj, t f )(xl ,  I~1,..., xj, vj)= f dy 1 ...dyj U Ht(xk--vkt, Yk) f (Yl ,  V, ..... yj, Vj) 

k = l  

(3.2) 
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and H,(x, y) is the Green function associated with the heat equation with 
periodic boundary conditions in [0, 1 ]. 

Throughout this section we shall denote by c [-respectively c~] any 
positive numerical constant [-respectively any positive constant depending 
only on a].  

The following properties of H, are well known for t~<T, T>~0 
arbitrary but fixed: 

f •  dy H,(., y) dy = 1 (3.3a) 

1 
sup IH,(x, Y)I ~ c= (3.3b) 
x ,  y 

1 
sup HOxH,(x,.)ll~ ~< c~ ~ (3.3c) 

1 
SUPx 11~22H'(x' ')kl~ < c~ t (3.3d) 

where [I'lL1 denotes the Ll-norm. 
We then have the following estimates: 

IIVj, t f j , , l l ~ < l l f j ,  t i t~ ,  Vj>~I, Vt>~O (3.4) 

ds V. G *~s 
�9 J , t - - s ~ j  J j ; s  

t J j 

<~2fodsllf;;sH~ 2 IdYl""dYj l-I Ht s(Xh--vh(t--s),yh)z~(i,k) 
i , k ; i ~ k  * h =  1 

t ll/;;sll  
<~ JZec~ fods ( t -  s) 1/2 (3.5) 

Therefore, since je <~ c, the lhs of (3.5) is also bounded by 

ff Ilfff;~[I 0o (3.6) 
c~j ds ( t  -- S) 1/2 

The next is the crucial estimate: we use the fact that the kernel H 
delocalizes the position of the particles to get an a priori bound on the last 
term in the lhs of (3.1) in terms of II f~;sH~ itself and this allows us to 
decouple the hierarchy of equations (3.1). 
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Let j~>2; then 

[( Vj, t_~Cg;j§ l f j+ ,;~)(x z, 1)1,... , Xj, /)j)l 

J J 
<<- 2 I dy1"" dyj 1-I Ht-,(Xh -- Vh(t - s), Yh) 

k= l  ' h= l  

o ~dyj ~k " x ( N - j )  + I Z (  , J+l)[ f~+l;s(Yl ,  Vl ..... Yk,--Vk ..... Yj+I, --Vj+I) 

f j +  1;s(yl,  Vl,..., Yk, Vk,..., Yj+ I, l)j+ 1)] 
j 1 Ca 

<~ E I dyl""dykdyk+2""dyj I~ H, s(Xh--Vh(t--s), yh)'(,--7)l/2 
k= l  " h#k+l  

• ( N - j ) f  dyj+ 1 f dyk+ t [f~+t;s(Yl, UI,'"~ Yg,--l')k,'", Y j + I , - - U j + I )  

Av Uj+ I;s(Yl, 1)I,'", Yk, Vk,'", Yj+ I, /)j+ 1)] •e(k, J -[- 1) 

f j Ccr + dy 2...dyjh=2I] Ht s(Xh--vh(t--s), Yh)(t_s)l/2 

AV ( N - - j )  f dyj+ i f  dy 1 r f j+ l ; s ( y l ,  Vl,..., y j+l ,  - U j + l )  

+fj+l;+(Yl,  v, ..... Yj+t, vj+l)] z+(J, J+ 1) 

Ca 
<~ ( t _  s)l/2 J Ilfff;,ll (3.7) 

The last inequality follows from the symmetry and the compatibility condi- 
tion 

2 fdyj+l f~+l;s(Yl ,  l)t ..... Yj+l, --Vj+I)=L;s(Yl, UI,..., Yj, Vj) 
Vj+l 

By (3.4), (3.6), and (3.7) we get 

(3.8) 

rlfff;AI ~ ~ ]lfj, ollo~ + c~ ds (t_s),/2 (3.9) 

yielding 

f~,ll ~ ~< Ilfj, o[I ~ exp(c~ tJ'2), j~> 2 

The same estimate is easily obtained also for j =  1 using (3.8). 

(3.1o) 
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Notice that in the above proof we have used that a is positive [the 
constant c~ in (3.8) diverges as 1/x/a when a ~ 0]. We have also exploited 
the one-dimensional nature of the model; in more dimensions we would 
have a factor ( t - s )  d/2 (d=  the dimension) out of the heat kernel, hence 
a divergence for d > 1. 

We shall now prove that keeping a fixed, we can construct a sequence 
f~,~k) 'which converges uniformly on the compacts to a limit h;  which 
satisfies the equation 

(Dt+aA)hy=Cj . j+ h ~ , 1 j + l  (3.11) 

To this purpose, we show that {f~; ~} is an equicontinuous family in x and 
t over a time interval [6, T] with fi and T fixed and positive [note that 
from (3.10) we already know that {f~;t} is equibounded]. 

By all the previous estimates [-see Eqs. (3.3)] we have, for i =  1,..., j, 

Ca (" Ca e 
IlOxf~;t[[~<~--Ilf~'~ Jo d s - - j [ t [ f ~ ; ~ [ l o ~ + [ ] f j + ~ ; ~ H ~ ]  (3.12) 

and this together with (3.10) implies that 8~f~;~ is equibounded in [8, T]. 
Furthermore, for any t, t' in [6, T] with t ' < t  and for any hounded 
function f ,  one has 

t (Vj , , -  Vj, c) f (x~,  v~ ..... xj, vj)[ 

;J ( ~<cJllfl[oo d s m a x  IIAxg, II 

t - -  t '  

Hence, by (3.10), 

~ ,  ~ ItVxJLLl~ 
i = l  

( 3 . 1 3 )  

t m  t t 

Ilfff;,- fff;,,H o~ ~ c~ ~ (3.14) 

with c~ only depending on j, T, and the initial datum. This proves the 
equicontinuity of f~;, for t in [6, T]. 

By a diagonal procedure, for any sequence e, ~ 0, a subsequence G(k) 
can be extracted such that the corresponding ~-~,~k~ converges to some limit J J; t 

hj~ t for t e (0, T). Since r Jj;o = fj,0 for any k, then the convergence holds for 
all t in [0, T]. We want now to show that he satisfies Eq. (3.11) for j ; t  

t e [0, T]. We have 

hj~t= Vj, tfj, o + l im rods Vjt ,(Gj*~ff:k)+ C~;f+ r~"(kl . - ; ; IJj+l,~1 (3.15) 
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By (3.5), (3.7), and (3.10) the integrand is bounded by an integrable 
function of time, so that by the dominated convergence theorem, we can 
interchange the limit with the integral. We note that the first term in the 
integral goes to zero with e, by (3.5). Moreover, 

Cjen(k )  ~'en(k) _ _  ; j+ lS j+ l ; s  Cj; j+lhj+l;s]l~ 

(C~.(~) l_Cj; j+1)f~ . (k)  ~ll o _c~.r  ~) ~lr ,~ j ; j+ Jj+l;sl l l  ~ + HC-j+I(hj+. a;~ J j+  1;s,,, 0o (3.16) 

Since the estimate (3.12) together with (3.10) implies that the first term 
in the rhs of (3.16) goes to zero as e,(k) goes to zero, we can conclude that 
h~;t satisfies Eq. (3.11). 

The initial value problem associated with the equation 

( D J t ) ( x ,  v ) =  ft(x, - v )  2 - f t ( x ,  v)2+ aAf t (x ,  v) (3.17) 

has a unique solution f 7  (see ref. 8) which satisfies the bound 

rr.f;~ji ~ ~< ilfglf ~ for ~ > 0  (3.18) 

As a consequence of algebraic manipulations, the functions 

J 

f }~ , (x , ,  vi,..., xj ,  vfl = 1-[ f ; ( x i ,  vi) (3.19) 
i = l  

solve (3.11), which also has a unique solution. In fact, applying the 
Lanford's argument (cf. Section 4) to this context, one easily finds that 
there exists a unique solution to (3.11) for a time interval depending only 
on the supremum norm of the initial datum. This solution factorizes if the 
initial datum does. By the estimate (3.18) we know that the factorizing 
solutions do not increase the supremum norm, so that we can iterate the 
argument to prove the uniqueness of solutions with factorizing initial data. 
Thus, we conclude that 

J 

lim c~'(k)l~ ~ J ~;, ~ 1 ,  Vl,..., xj ,  vfl = H f ,  (xi ,  vi) (3.20) 
k ~ o o  i - 1  

To conclude the proof of the theorem, it is enough to show that 

,7 x lim f t (  , v )=f t (x ,  v) (3.21) 
o - ~ 0  

This is standard, so we only outline the proof. To underline the 
dependence on a, we denote by V7 (~r ~> 0) the semigroup VI., defined in 
(3.2). First we assume foe  C1([0, 112). From the estimate 
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I (VT- V~ fo(x, v)l 

we obtain, for t <~ T, 

an a. VTfo(x. v) 

drl f dy ~H.,(y, X) fo(X, v) 

dr/ tsup 11~3yH~,(y, )Ill II~xf011~ 
Y 
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(i) = d~/ c rl~?xf0 [I oo (3.22) 

I l l ,  -fVH ~ ~ cT v2~'/2110x fo i l  ~ + cT3/2G1/2 sup(l lZ/~,  II0~LII ~) 
t<~ T 

f2 + c ds (llf~ll~ + I I f~l l~)I l f~-fs l l~ (3.23) 

Condition (3.18), together with the obvious integral inequality 

II?xf, It ~< v, ~ Ilaxfoll 

f2 + 2  dst lg~ 

(3.24) 

provides an a priori bound on H~?~f~H~ so that, by the Gronwall lemma 
applied to (3.23), we conclude that 

Ill, - fTII  o~ ~< cx/-~ (3.25) 

with c depending only on T and the supremum norm of fo and ~?~fo. The 
general case, i.e., f o e  C~ 112), can easily be recovered by a density 
argument, since f ~  is continuous in L~ ,  uniformly in or6 with respect to the 
initial datum. 

4. C O N C L U D I N G  R E M A R K S  

To derive the Carleman equation, we added a Brownian motion with 
diffusion coefficient cr to each particle, so that the correlation functions 
satisfy the following equations [see (2.12) and (2.11)] 

( D , -  G~) f~ = C~:j+ ~f~+ ~ (4.1a) 

G~ = G *~ + aA (4.1b) 
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In Theorem 2.1 we have shown that there is a sequence a(e) which 
makes the term G~f~ in (4.1) vanishingly small in the limit ~--*0. The 
method used for proving Theorem 2.1 does not specify how fast a(e) should 
vanish. This is even less satisfactory because, on one hand, a(e) depends on 
the initial datum f ( - ,  0) and, moreover, there is a natural choice for a(e), 
namely a ( e ) =  e, as we shall discuss later, and, on the other hand, there are 
reasons to conjecture that a ( e )=  e a should work as well if a < 2, as we are 
going to see now. 

This last consideration is based on a proof of Theorem 2.1 for short 

times which only requires l i m ~ o ( e / x / a ) = 0 .  We use the Lanford 
approach: to this purpose we define, for any j and t, Wj, t as the semigroup 
generated by the operator 

L~,j-- v j - - +  cr 
i = 1  ~Xi i=~ ~ + Gj*~ (4.2) 

SO that f~ satisfies the following integral equation [-compare it with (3.1)] 

f~;t = Wj,,fo+ ds Wj,~ sC~;j+lf~+x; , (4.3) 

We can iterate (4.3); since II Wj, tl] ~ ~< 1, we obtain a convergent series at 
"short times." In fact, from (4.3) we have 

c ~ -  1) Ilfolt~ +~ (4.4) [[f~;,[[ ~ ~< n ! j ' " ( j + n -  
n = 0  

which converges for t~< T where T is some suitably chosen positive 
number. 

From (4.4) it follows that in order to prove Theorem 2.1 for t ~< T, it 
is enough to show that the series for f~;~ converges term by term to 1-I~ f ,  
with f~ solving (2.16). Observe that up to now we have not used at all the 
diffusion: (4.4) is in fact true also for a = 0. On the other hand, if for any 
bounded, continuous function F 

lim H Wj,,F- Vj.,F[[ oo = 0 (4.5) 

where Vj, t is defined in (3.2), then we are reduced to the analysis of the 
series expansion for f~;t with Vj, t in place of Wj,, and by the same 
arguments as those discussed at the end of Section 3 we can conclude that 

J 

lim f~;, = 1-I f , ,  Vt <~ T (4.6) 
1 

where f ,  solves Carleman. 
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So we are left with the proof of (4.5), where the presence of a is 
crucial, as it should be. The difference between Wj,, and Vj, t comes from the 
presence of the interaction among the j particles described by G y .  By 
definition this interaction is present whenever two Brownian particles (with 
diffusion constant a) are at a distance less than e. Proceeding as in (3.6), 
realizing that c~ = c/x/a, we obtain 

]]Wj,,F-Vj, tFt]~<~c dsllVj.t ,Gi Wj.sF}t~o 

~< c [[FI] oof(e/x~a)x/t (4.7) 

Therefore, in order to have (4.5), it sufficies that l i m ~ o ( e / x / a ) = 0 .  
As mentioned earlier, there is a natural choice for o-(e), namely 

a(e)= e, as we are going to explain. Consider a system of N Brownian 
particles in the interval [0, e - I ]  (with periodic boundary conditions). The 
generator of the process is 

N ~ N 

- - Z  Ui--2--"+ 2 A~+aGN (4.8) 
i = 1 OXi i = 1 

where, e > 0, GN stands for G .1 ,  i.e., e = 1, and z~(i, j) is replaced by z(i, j), 
where 

z ( i , j )= l  if d(xi, xj)~<l and vi=vj  
(4.9) 

= 0 otherwise 

From a physical point of view, this is the microscopic representation of our 
model. If we want to investigate its macroscopic behavior, we set N-~ ~ 1 

to have finite densities and we rescale space and time in the following way: 

r=ex, r=et  (4.10) 

so that the (macroscopic) variable r varies in [0, 1], as in the model we 
have been considering so far. 

Defining 

v~(rl, vl . . . . .  r N ,  U N ) = e  N~I~(XI, 1) l,... , XN,  ON) (4.11) 

where #~ is the probability distribution of the system in microscopic 
variables, i.e., the distribution evolved according to the dynamics generated 
by (4.8), we obtain 

Dr = eAv~; + - GNV~ (4.12) 
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We now require that the number of collisions per unit macroscopic time 
is finite, while the particle density is constant ( N ~  e-l) .  Hence, we set ~ = e 
and in the limit e ~ 0 we reproduce exactly the model considered in the 
introduction but with a = e. This shows that a standard Brownian motion 
at the microscopic level automatically disappears in the hydrodynamic 
limit, its diffusion coefficient in macroscopic units vanishing proportionally 
to e. 

The Carleman equation is therefore derived by rescaling the interaction 
(a = ~). The same is true for the Boltzmann equation, which cannot be 
derived (at least formally) by means of a pure space-time scaling: one also 
needs to reduce the collision rate. The hypothesis ~ = ~ can be regarded as 
a rarefaction hypothesis, which gives a finite mean free path. Consequently, 
the continuum limit ~-~0 describes the kinetic regime given by the 
Carleman equation. It is only on a longer time scale that the hydrodynamic 
regime appears; we need to wait for a time so long that the number of 
collisions per particle becomes infinite. At such times the collision term in 
the Carleman equation forces the local equilibrium current to vanish, so 
that the first nontrivial hydrodynamic equation is diffusive. While all this 
is proven, (5"6) by taking the hydrodynamic limit in the Carleman equation, 
it is still an open and interesting question whether such behavior holds in 
the particle model. 
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