
Journal of Statistical Physics, VoL 36, Nos. 1/2, 1984 

A Remark on the Hydrodynamics of the 
Zero-Range Processes 

A. D e  Masi  I'3 and P. Ferrari 2'4 

Received December 5, 1983; revision received February 15, 1984 

The nonequitibrium stationary hydrodynamical properties of the symmetric 
nearest neighbor zero-range processes are studied: local equilibrium and 
Fourier's law are proven to hold, and the bulk diffusion coefficient and the 
equal time covariance of the limiting nonequilibrium stationary density fluctua- 
tions field are computed. The result fits with those already known and confirms 
some conjectures derived from a time-dependent macroscopic analysis. The very 
simple proof is based on a result already published but may be not so well 
known in this context. 

KEY WORDS: Hydrodynamical behavior of microscopic systems; sto- 
chastic dynamics; zero range processes; local equilibrium; Fourier's law. 

Systems of inf ini tely many ,  s tochast ic ,  mu tua l ly  in terac t ing  par t ic les  m a y  
exhibi t  some of the h y d r o d y n a m i c a l  features  of real systems. Thei r  theory  is 
by  now fair ly well es tabl ished;  cf. Ref.  3 a n d  references ci ted therein.  In  
this p a p e r  we cons ider  the zero- range  processes  and  we prove  the val id i ty  of 
the nonequ i l ib r ium s teady  state h y d r o d y n a m i c a l  proper t ies .  The  tr ivial i ty 
of the proofs  is in some sense unexpec ted  but,  as we will see, it is due to 
some fac tor iza t ion  proper t ies  special  to these models .  

The  zero- range  mode l  is the process  descr ibed  by  {7/(x,t),  x ~ 7/, 
t ~> 0) where  ~ ( x , t )  ~ 7/+ denotes  the n u m b e r  of par t ic les  at  site x at  t ime 
t. The  process  is a j u m p  M a r k o v  process  with state space N~; the dynamics  
is comple te ly  specif ied by  the j u m p  rates g(7/(x)),  x ~ 7/, which give the rate  
for one of the ~/(x) par t ic les  at  site x to j u m p  to one of the nea res t -ne ighbor  
sites x + 1 , x -  1 with p robab i l i t y  1 /2 .  The  funct ion  g ( k ) ,  k ~ N is non-  
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decreasing, g(0) = 0, and 

sup (g (k  + 1) - g(k ) )  = c < +ac 
k 

This process has been introduced by Spitzer. (l~) In Ref. 1, for instance, the 
existence of the process and its ergodic properties have been studied. The 
extremal invariant measures are the product measures vp, p ~ [0, supkg(k)) 
given by (see Ref. l) I/z(-) denotes expectation with respect to/~] 

up((~(0) = k}) = g ( l ) . . ,  g(k )  ' k 4:0  (la) 

1 k = 0  

k : l  g( l )  g(k )  (lb) 

p = vp(g(~(O))) (lc) 

O = vpQl(0)) ( ld)  

The hydrodynamical equations for this model are conjectured to be 

0 0 r  0q [ D(0(q, 1 (2a) 

D(f)  = - 2  dd-~pp p=~ (2b) 

where 

The conjecture is based on some heuristic arguments first employed by 
Morrey to derive the Euler equations from the microscopic equations of 
motion. (3'9'1~ The approach has been extended to some stochastic evolu- 
tions. (3) Here we prove the validity of Eq. (2) in the nonequilibrium 
stationary case. This is a straightforward consequence of a result of Refs. 1 
and 7; cf. Theorem 1 below. We think that the result deserves to be 
communicated even though its derivation is trivial. We have two motiva- 
tions. The first one is that a rigorous derivation of the hydrodynamical 
equations is a hard problem, it has been accomplished just in a few models 
(see Ref. 3 and references quoted therein). Here we see, however, that for a 
class of systems, the zero-range symmetric processes nonequilibrium sta- 
tionary hydrodynamics can be rigorously derived. [For such processes 
results are known for the particular case g ( k ) =  1 Vk 4 = 0, (5) where an 
extensive analysis of the hydrodynamical properties is available. The linear- 
ized hydrodynamical theory and the fluctuation-dissipation theorem have 
been recently proven by Brox and Rost (2) for the process we consider here.] 
Another reason which motivated this paper comes from a remark of 
Herbert Spohn. He showed us how to guess the equal-time nonequilibrium 
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stationary covariance of the density fluctuation field. He then remarked 
that, owing to some surprising cancellations, in the zero-range process the 
resulting covariance is diagonal. Since one conjectures that there is a 
relation between macroscopic observables and the microscopic structure of 
the system, we thought that some analogous simplifications had to occur 
also in the nonequilibrium stationary process. We then realized what is now 
stated in Theorem 1. However before exposing our results, we think it 
might be useful to report (in our language) Spohn's argument, which we do 
very briefly in the followingl Suppose {/t~}~c(0,1 ) is a suitable family of 
measures which describe the equilibrium profile P(q, "r) given by Eq. (3); see 
Ref. 3. Define the nonequilibrium density fluctuation field as ( f  ~ s(R)): 

Then one expects [this has been actually proven in Ref. 5 for the case 
g(k) = 1, Vk 4 = 0] that { Y~(f)} on D([0, oc),s'(N)) converges to a Gaussian, 
generalized Ornstein-Uhlenbeck process (Y~(.)). Y,(f)  is completely char- 
acterized, once the time zero distribution is given, by the fact that for each 
�9 E C0~(R) its law Ca makes the following process a martingale(6): 

;0 ' ;0 M~(O; f )  = O r - "d'r' Y~,(A,,f)O'~,- ~ IIB~/lt 2 "dr '  (4a) 

O~ = O(Y, ( f ) ) ,  O' = �9 (Y , ( f ) ) ,  O'; = ~x 2 �9 (Y~(f))  

(4b) 

A, f  = -~ D(o(q, r)) - -  (4c) ~q2 

ItB~/II 2 f dq f'(q)ZD(p(q, r))x(o(q, r)) (4d) 

X(O) = compressibil i ty:= vp(o)((7/(0) - 0) 2) (4e) 

The equal time covariance, C,(q, q'), is 

Ca(Y,(U) Y~(g)) = f dq dq' f (q)  C,(q, q')g(q') (5) 

from Eq. (4) one finds 

C, = C o + ~, ,  Co(q,q' ) = 8(q - q')x(o(q',O)) (6a) 

1 Od~O,r - A~C~ + C~A* + ~-(Dx)"I  
(6b) 

do = 0 

is the diagonal operator, (Dx)" = 02/Oq2(Dx) (6c) 
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So, in the stationary case the covariance will be formally given by 

C= C o+ l s176 e A*o (7) 

Using Eq. (2) in the stationary case we have that 

= d d (D6P 

So in any zero-range model C = C 0. Here we used the identity Eq. (10) 
below (special to zero-range models): 

do 1 
- x ( p )  

de e 

for which [since D = - 2(alp/do)] 

DX = - 2X ~ = - @  

(9) 

( lO)  

Let us consider the system in [ - L ,  L] and put boundary conditions 
r_ ,r+ at 7-L. The generator is ~L: 

L 
1 x ,x -  l) (~Lf)(rl) = "~ ~a g(~(x))[ f (~ x'x+') +f (~  - 2fQ/)] 

x =  - - L  

l r [ f ( r t - L ) - f ( ~ ) ]  + l r+[ f ( r lL ) - - f (~ ) ]  (11) + g  

where 

z § x, y ,  ~x,y(x) = ~ (x )  - 1, ~x,~(y) = ~ ( y )  + 1, 

x , y ~ + L  

- L < x < . L  

(13a) 

r+ - r _  r+ + r _  
- -  x + - -  ( 1 3 b )  eL(X) -- 2(L + 1) 2 

nL'L+ ' (C)  = n (C)  -- 1, n - L ' - ~ - ' ( - - C ) =  n ( - - L )  -- 1 

and ~/c (~/- L) is the configuration ~ adding a particle at the point L ( -  L). 

Thoorem 1. Let r+ , r _ ,  r+ 4 = r _ ,  be nonnegative real numbers 
such that 

max(r+ ,r_ ) < sup g(k) (12) 
k 

Then the unique invariant measure/*c for the process with generator fa c is a 
product measure with marginal distributions: 

/ ,~(x)  ~ 
# L ( ( ~ / ( x ) = k } ) =  g ( 1 ) . . . g ( k ) Z L ' ( X ) '  kv  ~0, 
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Proos Can be found in Ref. 7 or by direct computation. We knew it 
from Ref. 1, Section 8. The condition (12) comes from the following fact. 
To define correctly the measure/x L we need that 

!PL(X) k 
ZL(X ) = 1 + k=, g ( ~ : _ g ( k )  <~ -L<<.x< L (14) 

This is ensured by requiring 

max(eL(L), PL(-- L)) < sup g(k) 
k 

where [see Eq. (13b)] 

L r+ + r _  
PL(+-L)-- L+ 1 r+ + 2 ( L +  1) �9 

As a corollary we can derive the hydrodynamical equation (2) in the 
stationary case. 

Theorem 2. Let r_ ,r+ be such that Eq. (12) holds, and let ~L be the 
unique invariant measure for the f~L process. Then the following hold. 

(i) Local Equilibrium and L -~ Correction. Let q ~ ( - 1 ,  1) and let 
qL = [qL]/(L + 1), where [a] denotes the integer part of a. Then for any 
cylindrical function f 0"x denotes the shift by x E 7/) we have 

2 i ra  [ l~L(~'[qLlf) -- Vp(qD(f)[ = 0 (15a) 

l i m  [t~L('riqLlf) -- Vp(qL)(f) I = a(q) E X P p ( q ) ( ( ~ ( X )  - -  p)f) (15b) 
x@~ 

where re(q)is the equilibrium measure with parameter p(q) and density 
p(q): 

l r _ (16a) p ( q ) = � 8 9  )q+~( ++r ) 

and p(q) is the unique solution of 

-~qd (D(p(q))-~q do ) = 0 ,  - 1  < q < 1  (16b) 

p ( - 1 ) = p _  , p ( 1 ) = O +  

O+ = Vr+ (~(0))  (16c) 

D(o(q)) = - 2  dd~Pp (16d) 
p=p(q) 

1 1 I d o  q'=q (16e) 
a ( q ) -  P(q) 2 ( r + - r - ) = X -  

In the last equality of Eq. (16e) we have used Eq. (9). Equations (16) are a 
straightforward consequence of the product structure of the measure/~c" 
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(ii) Fourier's Law. The curren t j ( x , x  + 1) at the bond (x ,x  + 1) is 
defined by 

a171(x ) = - [ j ( x , x  + 1) - j ( x  - 1,x)] (17) 

Then the Fourier's law holds, namely, 

dp q'=q 
lim LI~L(j(x + [Lq] , x  + 1 + [Lq] ) )  = - D ( o ( q ) )  ~ (18) 

L--)  co 

Equation (18) is an immediate consequence of Eq. (15b): note that the 
average current at equilibrium is zero and that [by definition Eq. (t7)] 

j ( x , x  + l) = ~x+,g(~(O)) - ~xg(~(O)) 

(iii) The Density Fluctuation Field. The density fluctuation field is 
defined by 

L 

Then the limit covariance is given by 

lim ~t L ( y L ( f )  yI . (g))  = f d q  f (q)x(o(q))g(q)  (20) 
L--> oo 

Actually Theorem 1 holds for a process constructed on N s, S being a 
denumerable space, with sources on a set T C S. (I) One can then prove 
Theorem 2 in any dimension. In this case the symmetric n.n. process f2 L 
would be constructed with sources in the hyperplanes {x I = + L)  (x I is the 
first coordinate of x ~ Zd). The invariant measures will still be product 
measures such that iXc(g(vl(x)))= IOL(Xl) where FL is defined in Eq. (13b). 

Conc lud ing  Remarks .  In some sense the triviality of the nonequilib- 
rium stationary case is unexpected. The symmetric simple exclusion process 
is considered rather trivial because it is self-dual and so its analysis is easier 
than that of the other stochastic models. Furthermore the bulk diffusion 
coefficient is constant, D = 1. On the other hand for this model the L-1  
correction and the nonequilibrium stationary covariance are not trivial. In 
fact, in Ref. 4 it has been proven that in the L ~ approximation correla- 
tions remain finite and they are equal to the nontrivial structure of the 
density fluctuation field; in Ref. 12 it is proven that the nonequilibrium 
stationary fluctuation field yL converges to a Gaussian process with 
covariance given by Eq. (7) [in this model X = P - O 2, D = 1, so (Dx)" = 

- 2(do/dq)2l . 
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