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Separation versus diffusion in a two species system
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Abstract. We consider a finite number of particles that move in Z as inde-
pendent random walks. The particles are of two species that we call a and b.
The rightmost a-particle becomes a b-particle at constant rate, while the left-
most b-particle becomes a-particle at the same rate, independently. We prove
that in the hydrodynamic limit the evolution is described by a nonlinear sys-
tem of two PDE’s with free boundaries.

1 Introduction

We consider a two-species particle system in Z, the species, also called colors, are
indicated by a and b. We suppose that at time 0 the species are partially separated
with a rightmost a-particle at a site denoted by X0 and a leftmost b-particle at a site
Y0 < X0. The evolution is such that if we are “color blind” we just see independent
symmetric random walks which jump at rate one on the nearest neighbor sites. As
particles keep their color during their random walk motion this means that the
a and b species diffuse in Z. In our model however, particles may also change
color with the following mechanism. Independently at rate λ > 0 the rightmost
a-particle becomes a b-particle and the leftmost b-particle becomes an a-particle.
If the evolution consisted only of this color exchanges, then eventually a and b

would separate, but this is contrasted in our model by the random walk motion of
the particles which drives toward homogenization.

The motivation behind this paper is to understand how much the species sep-
arate as time evolves when both random walks and color exchange are acting,
in particular to determine the evolution of the difference Xt − Yt , with Xt and Yt

the positions at time t of the rightmost a-particle and leftmost b-particle, respec-
tively. In this paper, we begin this program by looking at the hydrodynamic scale:
we take λ = εκ , κ > 0, and scale space and time diffusively (x → r = εx, x ∈ Z,
t → τ = ε2t). We assume that the initial distribution is such that the densities of
the two species approach in the limit ε → 0 a macroscopic profile and that the
total mass is macroscopically finite. These two assumptions imply that the total
number of particles is of order ε−1, see Section 2 below for a precise definition of
the initial condition.
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Under the above hypothesis, we prove convergence as ε → 0 to a nonlinear
system of two PDE’s with free boundaries provided the solution exists.

Despite its simplicity, the rule at which species mutate creates a very nonlocal
interaction: to find the rightmost b-particle it is necessary to know the whole con-
figuration of b-particles. Here the interaction is “topological rather than metric”,
as the influence on a particle i of a particle j does not depend on their distance
but rather depends on whether j is to the right or left of i. Stochastic evolutions
with similar nonlocal interactions have been considered to model problems from
different fields such as queuing theory, Atar, Biswas and Kaspi (2014), statistical
mechanics of open systems (currents and Fourier law), Carinci et al. (2014a), De
Masi et al. (2011) and pinned interface motions, Lacoin (2014).

2 Model and results

We thus consider a system of colored particles on Z. Both the initial distribution
and evolution depend on a scaling parameter ε > 0. We are interested in the hy-
drodynamic limit when ε → 0 and space and time are rescaled diffusively.

The initial condition

The initial macroscopic profile is described by a pair (u, v) of nonnegative func-
tions on R which are interpreted as the macroscopic particle densities of the a and
b species, respectively. We suppose that (u, v) ∈ U :

U = {
(u, v) ∈ C0

(
R,R2+

)
: support u = (L,R), support v = (D,E);

(2.1)
L < D < R < E,u, v > 0 in their support

}
.

The total “macroscopic mass” of the two species is denoted by

Mtot =
∫

(u + v).

The macroscopic profiles (u, v) are approximated by particle configurations
using a scaling parameter ε > 0. For each ε > 0 the initial configuration has
M := [ε−1Mtot] particles. Their positions x = (x1, . . . , xM) are random, they are
independently identically distributed with parameters

P ε[xi = x] = Z−1
ε

[
u(εx) + v(εx)

]
, Zε = ∑

x

[
u(εx) + v(εx)

]
. (2.2)

Conditioned on x we add independently a color σi ∈ {a, b} to each particle i, by
setting

P ε[σi = a|x] = u(εxi)

u(εxi) + v(εxi)
. (2.3)
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It is convenient for technical purposes to label the particles but the physically rel-
evant quantities are the occupation numbers

ξx,σ (y) =
M∑
i=1

1xi=y,σi=a, ηx,σ (y) =
M∑
i=1

1xi=y,σi=b, y ∈ Z, (2.4)

where σ = (σ1, . . . , σM). We then say that (x, σ ) and (x′, σ ′) are equivalent if

ξx,σ = ξx′,σ ′, ηx,σ = ηx′,σ ′, (2.5)

which means that one can be obtained from the other by exchanging colors of
particles at the same site.

It easily follows from the above definitions that under P ε , (εξx,σ , εηx,σ ) con-
verges weakly in probability to (u, v) as ε → 0. Our main results will be to extend
the result to positive times and identify the limit.

The positions time evolution

If we disregard the color of the particles, we just see a system of independent ran-
dom walks denoted by x(t) = (x1(t), . . . , xM(t)), t ≥ 0. The xi(t) are symmetric
independent random walks on Z which jump at rate 1 on nearest neighbor sites.
We denote by Pε the law of this process.

We shall next define how the colors change in time. To this end, we first define
the label of the rightmost a- and leftmost b-particles denoted, respectively, by
ia(x, σ ) and ib(x, σ ).

Definition 2.1. We denote the total number of a- and b-particles, respectively, by

ha(σ ) = ∑
i

1σi=a, hb(σ ) = M − ha(σ ). (2.6)

If ha(σ ) > 0, we define ia(x, σ ) = i if σi = a and for any j �= i with σj = a, either
xj < xi or, if xj = xi , then j < i. Analogously if hb(σ ) > 0, ib(x, σ ) = i if σi = b

and if σj = b, either xj > xi , or if xj = xi , then j < i. We also define the operators
H right(x, σ ) =: (x, σ ′), H left(x, σ ) =: (x, σ ′′) where σ ′ = σ if ha(σ ) = 0, σ ′′ = σ

if hb(σ ) = 0. Otherwise σ ′ and σ ′′ are obtained from σ by changing σia(x,σ ) into
b and, respectively, σib(x,σ ) into a.

The evolution of colors is determined by the clock rings of the following Poisson
processes.

Definition 2.2. Given ε > 0 and j > 0 we define the probability space (	,Pε).
	 is the set of ω = (s, �) where s = (s1, s2, . . .), sk ≤ sk+1 is an ordered se-
quence of times, and � = (�1, �2, . . .), �k ∈ {right, left} is a sequence of marks.
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P
ε is the product probability law of a Poisson process of intensity 2εκ for the time

sequences s and of a Bernoulli process with parameter 1/2 for the mark sequences
�. In the sequel, we will consider strictly increasing sequences of time s since these
have P

ε-probability one. We denote by Pε = Pε ×P
ε the joint law of the random

walk x and of ω.

The color time evolution

Given ε > 0, x(t), t ≥ 0, and ω = (s, �) we define the “càdlàg” trajectory σ(t) by
saying that colors are unchanged except at the times sk : at these times the config-
uration is updated by applying H right or H left according to �k = right or �k = left,
respectively. We denote by (x(t), σ (t)) positions and colors of particles at time t .

The main results in this paper are Theorems 2.1 and 2.2 below.

Theorem 2.1. Under the above assumptions on the initial data there are nonneg-
ative continuous functions (ū(·, t), v̄(·, t)) equal to (u, v) ∈ U at t = 0 and such
that for any t > 0

(εξx(ε−2t),σ (ε−2t), εηx(ε−2t),σ (ε−2t)) → (
ū(·, t), v̄(·, t)),

as ε → 0 weakly in probability.

Since for all s ≥ 0, ξx(s),σ (s)(x) + ηx(s),σ (s)(x) = ∑
i 1xi(s)=x and the xi(·) are

independent random walks, we know, see, for instance, De Masi and Presutti
(1991), that

ε[ξx(ε−2t),σ (ε−2t) + ηx(ε−2t),σ (ε−2t)] → w(·, t),
as ε → 0 weakly in probability with w the solution of the linear heat equation
wt = 1

2wrr and initial condition u+ v. Thus, it is enough for Theorem 2.1 to prove
convergence of ξx(ε−2t),σ (ε−2t) alone.

The proof is reported in Section 4, it follows the same strategy used in De Masi,
Ferrari and Presutti (2015) and then in Carinci et al. (2014a). Namely we first intro-
duce auxiliary processes for which the hydrodynamic limit can be computed and
then prove by stochastic inequalities that the true process is sandwiched between
the auxiliary ones and that the inequalities become equalities in the limit. The first
part is easy (as the auxiliary processes are essentially independent random walks)
and we just sketch it in Section 4. The proof of the stochastic inequalities is instead
quite involved and given in full details in the next section, being one of the most
important parts of the paper.

Theorem 2.1 only states the existence of the hydrodynamic limit for all macro-
scopic times t ≥ 0. It does not give its properties nor specifies the hydrodynamic
equations. On the other hand, one may guess that the latter are given by the fol-
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lowing system of two equations

ut = 1

2
urr + κδVt , r < Ut ;

u(r,0) = u(r), u(Ut , t) = 0, −1

2
ur

(
U−

t , t
) = κ,

(2.7)

vt = 1

2
vrr + κδUt , r > Vt ;

v(r,0) = v(r), v(Vt , t) = 0, −1

2
vr

(
V +

t , t
) = −κ,

where U0 = R and V0 = D, see (2.1), and δx is the Dirac-delta.
Equations (2.7) is a system of two free boundary equations as the domains

(−∞,Ut ) where u(r, t) is defined and (Vt ,∞) where v(r, t) is defined are also
unknowns to be determined.

By the Dirichlet condition u(r, t) can be extended continuously past Ut by set-
ting u(r, t) ≡ 0 for all r ≥ Ut so that Ut is the rightmost-end point of the interval
where u > 0, it thus corresponds to the macroscopic position of the rightmost par-
ticle. Analogous interpretation is given to Vt . In the particle system a-particles are
created at rate εκ at the position of the leftmost b-particle, correspondingly the
equation for u has a source term κδVt , with an analogous interpretation for κδUt .
Finally, the boundary condition −1

2ur(U
−
t , t) = κ just says that the outgoing mass

flux of u is equal to κ which is the macro-analogue of the rate at which a-particles
disappear (changing into b-particles), analogous interpretation holds for the term
−1

2vr(V
+
t , t) = −κ .

The two equations are coupled by the Dirac-delta terms which involve the free
boundary terms Ut and Vt which make the problem highly nonlinear.

We did not find in the literature the above system of free boundary problems. We
notice however that (2.7) is similar to the free boundary PDE studied and for which
local and sometimes global existence and uniqueness are proved, see for instance
Fasano (2008). It is then conceivable that the same techniques might be applied to
our equation, but we did not pursue this issue here, so we assume existence of a
solution and we prove that this solution coincides with the limit of our particles
evolution.

We thus suppose that for some positive time interval [0, T ] there is a regular so-
lution of (2.7). By regular, we mean that the functions Ut,Vt of (2.7) are C1[0, T ];
that u(r, t), v(r, t) have the differentiability properties required by (2.7), and finally
that (u(·, t), v(·, t)) ∈ U for all t ∈ [0, T ].

Theorem 2.2. Assume there is T > 0 so that a regular solution of (2.7) exists in
the above sense in [0, T ]. Then this solution coincides with the hydrodynamic limit
(ū(·, t), v̄(·, t)) of Theorem 2.1 restricted to t ∈ [0, T ].
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We prove Theorem 2.2 in Section 5. The proof has some similarities with the
proofs in Carinci et al. (2014a) but it requires new ideas and it is the other most
important point of the paper together with the proof of the microscopic inequali-
ties.

3 Microscopic inequalities

As already mentioned stochastic inequalities play a fundamental role in our proof.
Let ξ ′ and ξ be nonnegative, integer valued functions on Z with compact support.

Definition 3.1. We say that ξ ′ � ξ if for all x ∈ Z

F
(
x; ξ ′) ≤ F(x; ξ), F (x; ξ) = ∑

y≥x

ξ(y). (3.1)

We also say that (x′, σ ′) � (x, σ ) if ξx′,σ ′ � ξx,σ (observe that the inequality re-
mains valid if we replace a configuration by an equivalent one, see (2.5)).

Recalling Definitions 2.1 and 2.2, we first introduce the following sets.

Definition 3.2. We call Xt , t > 0 the set of all (σ ,ω) such that

Na(t) := ha(σ ) + ∑
k

1sk≤t (1�k=left − 1�k=right) > 0,

(3.2)
Nb(t) := M − ha(σ ) + ∑

k

1sk≤t (1�k=right − 1�k=left) > 0.

In Xt there are always both a- and b-particles in the time interval [0, t]. In the
next section, see Lemma 3.2, we prove that Pε(Xt ) → 1 as ε → 0.

The setup

Throughout this section, we fix ε > 0, δ > 0, a time interval [0, ε−2δ], a random
walk trajectory x(t) = (x1(t), . . . , xM(t)), t ∈ [0, ε−2δ] and an element (σ ,ω) ∈
Xε−2δ .

The auxiliary evolutions

They are denoted by (x(t), σ (δ,±)(t)) and are defined by anticipating or postponing
the color changes at the initial, respectively final, time. Namely, given (σ ,ω) ∈
Xε−2δ we let σ (δ,+)(t) be the left continuous with right limits function obtained by
setting σ (δ,+)(t) = σ (δ,+)(0+) for t ∈ (0, ε−2δ] and

(
x
(
0+)

, σ (δ,+)(0+)) =
m∏

i=1

H�i
(
x(0), σ

)
. (3.3)
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Similarly σ (δ,−)(t) is the right continuous with left limits function obtained by
setting σ (δ,−)(t) = σ for all t ∈ [0, ε−2δ) while

(
x
(
ε−2δ

)
, σ (δ,−)(ε−2δ

)) =
m∏

i=1

H�i
(
x
(
ε−2δ

)
, σ

)
. (3.4)

Theorem 3.1. In the above setup, given (σ ,ω) ∈ Xε−2δ and σ ′ such that ha(σ
′) =

ha(σ ) and (x(0), σ ′)� (x(0), σ ), we have
(
x
(
ε−2δ

)
, σ ′(δ,−)(

ε−2δ
))
�

(
x
(
ε−2δ

)
, σ

(
ε−2δ

))
, (3.5)

(
x
(
ε−2δ

)
, σ ′(ε−2δ

))
�

(
x
(
ε−2δ

)
, σ (δ,+)(ε−2δ

))
. (3.6)

In (3.5) σ ′(δ,−)
(ε−2δ) is the auxiliary evolution associated to (σ ′,ω), and in (3.6)

σ ′(ε−2δ) is the true evolution associated to (σ ′,ω). The evolutions on the right-
hand side of (3.5) and (3.6) are, respectively, the true and the auxiliary (δ,+)-
evolutions associated to (σ ,ω).

We shall prove Theorem 3.1 in the remaining part of this section by constructing
joint processes (that we call couplings by an abuse of notation) which exploit the
fact that the above inequalities remain valid if we exchange colors of particles at
the same site.

The coupling is determined by specifying the colors of each xi(t) in the two
processes, the one associated to (σ ′,ω) and the one associated to (σ ,ω): they
have same positions and same ω. Thus, the configurations in the coupled process
are systems of particles with two colors: (x,),  = (σ , σ ′). We call (xi, σi, σ

′
i ),

i = 1, . . . ,M , the specification of particle i. With the aim of establishing stochastic
inequalities, we split the particles of (x,) into “married pairs”, “singletons”, and
“discrepancies” using the following notions:

• i is a a-singleton or a b-singleton if it has specification (xi, a, a), respectively,
(xi, b, b);

• i is married with j if i has specification (xi, a, b) and j has specification
(xj , b, a) with xi > xj ; (i, j) are then said to be a “married pair”;

• i is a (b, a)-discrepancy or a (a, b)-discrepancy if it has specification (xi, b, a)

or (xi, a, b), respectively, and it is not in a married pair.

We shall say that a quadruple (P,S, I, J ) is a “splitting” of (x,) if P is a set
of married pairs, S a set of singletons, I a set of (b, a) discrepancies, J a set of
(a, b) discrepancies and each particle is either in one (and only one) of the pairs in
P or if it is not in any of the pairs then it is in one (and only one) of the other three
sets. Of course there are in general many ways to split (x,) into a quadruple
(P,S, I, J ), we want splittings with as less discrepancies as possible, as it follows
from the following lemma which will be extensively used in the sequel (its proof
is an immediate consequence of the definitions and omitted).
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Lemma 3.2. Let (P,S, I, J ) be a splitting of (x,),  = (σ , σ ′) with I = J =
∅. Then (x, σ ′) � (x, σ ). Vice versa if (x, σ ′) � (x, σ ) there exists a splitting of
(x,),  = (σ , σ ′), such that I = J = ∅.

The coupling will be defined by specifying the evolution (x(t),(t)) and its
splitting (P (t), S(t), I (t), J (t)).

The map R

Let (sk, sk+1) be an interval between events of the Poisson process and let
(P,S, I, J ) the quadruple at time sk . Let t∗ be the first time after sk when xi(t

∗) =
xj (t

∗) for some (i, j) ∈ P . We then set (P (t), S(t), I (t), J (t)) = (P,S, I, J ) for
t < min{t∗, sk+1} and if t∗ < sk+1 we set P(t∗) = P \ (i, j) and put i, j ∈ S(t∗)
with i a a-singleton and j a b-singleton (we have used here the fact that we may
exchange colors of particles at a same site). By iteration, the evolution is extended
till time sk+1 with a new configuration x′ and with a new splitting (P ′, S′, I ′, J ′).

The set of possible x′, (P ′, S′, I ′, J ′) obtained in this way is characterized by the
following requests: I ′ = I , J ′ = J , P ′ ⊆ P with S′ \ S made by all labels i and j

of the pairs which have disappeared. x′ has the only constraint that x′
i > x′

j if (i,

j) ∈ P ′. We denote by R the collection of all maps R such that R(x,P,S, I, J ) has
the above properties. The important points for the sequel are: (i) the discrepancies
are unchanged under any R ∈ R and (ii) the identity map is in R.

The C-maps

They describe the changes of colors which involve, according to cases, the parti-
cles ia(x, σ ), ib(x, σ ), ia(x, σ ′) and ib(x, σ ′). Due to such changes the splitting
quadruple (P ;S; I ;J ) associated to (x,) will be modified into a new quadruple
(P ′;S′; I ′;J ′), in the way described below:

C
right
1 : shorthand i = ia(x, σ ):

(a) if there is j such that (i, j) ∈ P then P ′ = P \ (i, j), S′ = S ∪ i, I ′ =
I ∪ j , J ′ = J ;

(b) if i ∈ S then S′ = S \ i, I ′ = I ∪ i, J ′ = J , P ′ = P ;
(c) if i ∈ J then S′ = S ∪ i, J ′ = J \ i, I ′ = I and P ′ = P .

Cleft
1 : shorthand i = ib(x, σ ):

(a) if there is j such that (j, i) ∈ P , then P ′ = P \ (j, i), S′ = S ∪ i, J ′ =
J ∪ j , I ′ = I ;

(b) if i ∈ S then S′ = S \ i, J ′ = J ∪ i, I ′ = I , P ′ = P ;
(c) if i ∈ I then S′ = S ∪ i, I ′ = I \ i, J ′ = J and P ′ = P .

C
right
2 : shorthand i = ia(x, σ ′) and k the largest label in I if I �= ∅:

(a) if there is j such that (j, i) ∈ P and I �= ∅, then P ′ = P \(j, i)∪(j, k),
S′ = S ∪ i, I ′ = I \ k, J ′ = J ; if instead I = ∅, then P ′ = P \ (j, i),
S′ = S ∪ i, I ′ = I = ∅, J ′ = J ∪ j ;
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(b) if i ∈ S and I �= ∅ then S′ = S \ i, I ′ = I \ k, J ′ = J , P ′ = P ∪ (i, k);
if instead I =∅, then S′ = S \ i, P ′ = P , I ′ = I and J ′ = J ∪ i;

(c) if i ∈ I then I ′ = I \ i, P ′ = P , S′ = S ∪ i and J ′ = J .

Cleft
2 : shorthand i = ib(x, σ ′) and k the largest label in J if J �=∅:

(a) if there is j such that (i, j) ∈ P and J �= ∅, then P ′ = P \ (i, j)∪ (k, j),
S′ = S ∪ i, J ′ = J \ k, I ′ = I ; if instead J = ∅, then P ′ = P \ (i, j),
S′ = S ∪ i, J ′ = J = ∅, I ′ = I ∪ j ;

(b) if i ∈ S and J �= ∅ then S′ = S \ i, J ′ = J \ k, I ′ = I , P ′ = P ∪ (k, i);
if instead J = ∅, then S′ = S \ i, P ′ = P , J ′ = J and I ′ = I ∪ i;

(c) if i ∈ J then J ′ = J \ i, P ′ = P , S′ = S ∪ i and I ′ = I .

Remark 3.1. The subscript 1, 2, reminds that the C operator acts on the first
component σ , respectively, the second one, σ ′. The above properties of the C2
operators follow from the definitions of ia and ib allowing for the formation of
married pairs which are instead not used for the C1 operators. Recall that our goal
is to prove that at the end I and J are empty, in this respect the C1 operators are
dangerous, as they may increase by 1 the cardinality of I (with C

right
1 ) or J (with

Cleft
1 ) while the C2 are recovery operators as they decrease by 1 the cardinality of I

(with C
right
2 ) or J (with Cleft

2 ) when I and J are nonempty. This is behind the proof
of the next theorem which, as we shall see after its proof, yields as a corollary the
proof of Theorem 3.1.

Theorem 3.3. Let (P,S, I, J ), I = J = ∅, be a quadruple associated to (x,).
Then for any nonnegative integer m, any sequences (R1, . . . ,Rm), (R′

1, . . . ,R
′
m)

of elements of R,(
x∗,P ∗, S∗, I ∗, J ∗) := (

C2R
′)

m(C1R)m(x,P,S, I, J ) (3.7)

has I ∗ = J ∗ = ∅ where we have used the notation for q ≤ m: (C1R)q =
C

�q

1 Rq · · ·C�1
1 R1 and (C2R

′)q = C
�q

2 R′
q · · ·C�1

2 R′
1.

Proof. Observe that the elements of R change only the sets P and S, thus to prove
the theorem we only need to consider the C-maps. For q ≤ m, we call Iq and Jq

the discrepancies of (C1R)q(x,P,S, I, J ) and we define

N
right
≤q =

q∑
i=1

1�i=right, N left≤q =
q∑

i=1

1�i=left.

For q > m, we call Iq , Jq the discrepancies of (C2R
′)q−m(C1R)m(x,P,S, I, J )

and we set

N right
>q =

2m∑
i=q+1

1�i−m=right, N left
>q =

2m∑
i=q+1

1�i−m=left.
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We prove below that

N
right
≤q − |Iq | = N left≤q − |Jq | ≥ 0, q ≤ m, (3.8)

N right
>q − |Iq | = N left

>q − |Jq | ≥ 0, q > m (3.9)

and observe that if we put q = 2m in (3.9) we get I2m = J2m = ∅, so that the
theorem follows from (3.8)–(3.9).

Proof of (3.8). (3.8) trivially holds for q = 0 so that proceeding by induction
we suppose that (3.8) holds with q − 1 < m. Take for instance, �q = left. Then

N left≤q = N left≤q−1 + 1 while N
right
≤q = N

right
≤q−1. Recalling the definition of Cleft

1 , in case
(a) or (b) |Jq | = |Jq−1| + 1, and |Iq | = |Iq−1|; while in case (c) |Jq | = |Jq−1| and
|Iq | = |Iq−1| − 1, thus in all cases (3.8) holds with q . The case when �q = right is
analogous and omitted.

Proof of (3.9). As before we proceed by induction observing first that (3.9)
holds for q = m. In fact by definition N�

>m = N�≤m for � = right and left. We
then assume (3.9) holds for q − 1 ∈ (m,2m). Suppose for instance that �q = left.

Then N left
>q = N left

>q−1 − 1 while N
right
>q = N

right
>q−1. Recalling the definition of Cleft

2 ,
in case (a) or (b) if Jq−1 �= ∅ then |Jq | = |Jq−1| − 1, and |Iq | = |Iq−1|; if instead
Jq−1 = ∅ then |Jq | = |Jq−1| and |Iq | = |Iq−1| + 1. In case (c) |Jq | = |Jq−1| − 1
and |Iq | = |Iq−1|, thus in all cases (3.9) holds with q . The case when �q = right is
analogous and omitted. �

Proof of Theorem 3.1. Given ω, σ and σ ′ as in the statement of Theorem 3.1, we
use Lemma 3.2 to construct a splitting (P,S, I, J ) such that I = J =∅. Let m be
such that sm ≤ ε−2δ and sm+1 > ε−2δ.

Proof of (3.5). For q = 1, . . . ,m let Rq be the maps corresponding to the times
intervals (sq, sq+1) and let R′

1 be the map corresponding to the time interval
(sm, ε−2δ). Furthermore let R′

q = identity for all q = 2, . . . ,m. Then (3.7) is a

splitting of (x(t), σ (ε−2δ), σ ′(δ,−)
(ε−2δ)). From Theorem 3.3, we then have that

I ∗ = J ∗ = ∅ and thus by Lemma 3.2 we get (3.5).

Proof of (3.6). We let Rq = identity for all q = 1, . . . ,m and instead, for q =
1, . . . ,m, R′

q are the maps corresponding to the times intervals (sq, sq+1). Finally,
R′

m+1 is the map corresponding to the time interval (sm, ε−2δ). Then
(
x∗,P ∗, S∗, I ∗, J ∗) := R′

m+1
(
C2R

′)
mRm+1(C1R)m(x,P,S, I, J )

is a splitting of (x(t), σ (δ,+)(ε−2δ), σ ′(ε−2δ)). Since R′
m+1 does not change the

sets of discrepancies, from Theorem 3.3 we get that I ∗ = J ∗ = ∅ which, by
Lemma 3.2 concludes the proof of (3.6). �
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4 Proof of Theorem 2.1

For any ε > 0, we choose an initial configuration (x, σ ) with law P ε (as described
in Section 2) and study its evolution (x(t), σ (t)) for a fixed time interval [0, T ].
We do not have a good knowledge of (x(t), σ (t)) (just that the process is well
defined). The information needed to prove Theorem 2.1 will be gained by studying
two auxiliary processes (x(t), σ (δ,±)(t)) (which start at time 0 from (x, σ ) as the
true process) and by using the inequalities of the previous section to compare the
true and the auxiliary processes.

Thus the first step is to extend the definition of the auxiliary processes to the
whole time interval [0, T ]. This is done in Definition 4.1 below by iterating the
definition given in the last section to the intervals [(k − 1)ε−2δ, kε−2δ], k ≤ K ,
K the smallest integer such that Kε−2δ ≥ T . To this purpose we consider the set
XKε−2δ defined in the previous section (see Definition 3.2) and we prove below
that with large probability we can restrict our analysis to trajectories in XKε−2δ .

Lemma 4.1. There is a positive constant c independent of ε (but it may depend on
δ and T ) such that

Pε[XKε−2δ] ≥ 1 − e−cε−1
, (4.1)

where Pε is defined in Definition 2.2.

Proof. Call Z = ∫
(u + v) and pa := 1

Z

∫
u ∈ (0,1). By (2.3) and (2.2),

P ε[σi = a] = 1

Zε

∑
x

u(εx), Zε = ∑
x

[
u(εx) + v(εx)

]

and since the σi are independent variables, given ζ > 0 such that 0 < pa − ζ <

pa + ζ < 1 we have for ε > 0 small enough

P ε[∣∣ha(σ ) − ε−1pa

∣∣ < ζ
] ≥ 1 − e−cε−1

,

with c a suitable positive constant. Recalling (3.2), the number Na(t) of a-particles
at time t is a nearest neighbor symmetric random walk with jump intensity 2εκ ,
until the time when Na(t) reaches either 0 or M . Thus,

Pε[Na(t) ∈ (0,M) for all t ≤ Kε−2δ
] ≥ 1 − e−cε−1

with c a new suitable constant. �

Definition 4.1. Chose an initial configuration (x, σ ) as above, fix a (σ ,ω) ∈
XKε−2δ and a trajectory x(t), t ≤ Kε−2δ. We call mk , k = 0, . . . ,K the positive
integers such that kε−2δ ≤ smk+1 < smk+2 < · · · < smk+1 . We also call tk = kε−2δ.



398 A. De Masi and P. A. Ferrari

We then define σ (δ,+)(t) as the left continuous with right limits function obtained
by setting σ (δ,+)(t) = σ (δ,+)(tk+) for t ∈ (tk, tk+1] and

(
x(tk+), σ (δ,+)(tk+)

) =
mk+1∏

i=mk+1

H�i
(
x(tk), σ

(δ,+)(tk)
)
, tk = kε−2δ.

Similarly σ (δ,−)(t) is the right continuous with left limits function obtained by
setting σ (δ,−)(t) = σ (δ,−)(tk) for all t ∈ [tk, tk+1), while at tk+1 = (k + 1)ε−2δ

(
x(tk+1), σ

(δ,−)(tk+1)
) =

mk+1∏
i=mk+1

H�i
(
x(tk+1), σ

(δ,−)(tk)
)
.

An immediate corollary of Theorem 3.1 is the following.

Corollary 4.2. In XKε−2δ setting tk = kε−2δ we have for all k ≤ K

(
x(tk), σ

(δ,−)(tk)
)
�

(
x(tk), σ (tk)

)
�

(
x(tk), σ

(δ,+)(tk)
)
, (4.2)

where all the above evolutions start from the same initial datum (x, σ ).

Proof. The number Na(kε−2δ) of a-particles at time kε−2δ is the same in all the
three evolutions. This is evidently true for k = 0 because they all start from the
same configuration and the claim follows because

Na

(
(k + 1)ε−2δ

) − Na

(
kε−2δ

) =
mk+1∑

i=mk+1

(1�i=right − 1�i=left).

The corollary then follows from Theorem 3.1. �

Next step is to prove that (x(kε−2δ), σ (δ,±)(kε−2δ)) have a limit as ε → 0. The
limit will be described by the following macroscopic evolutions.

Definition 4.2. For u, v ∈ L1(R,R+) and δ > 0 let Rδ(u) and Dδ(v) be such that
∫ ∞
Rδ(u)

u(r) dr = κδ,

∫ Dδ(v)

−∞
v(r) dr = κδ. (4.3)

We define K(δ)(u, v) = (u′, v′) with

u′(r) = 1(−∞,Rδ(u)](r)u(r) + 1(−∞,Dδ(v)](r)v(r),
(4.4)

v′(r) = 1[Dδ(v),+∞)(r)v(r) + 1[Rδ(u),+∞)(r)u(r).

Denote by Gt � u the convolution of the Gaussian kernel with a function u:

Gt

(
r, r ′) = e−(r−r ′)2/2t

√
2πt

, Gt � u =
∫

Gt

(
r, r ′)u(

r ′)dr ′. (4.5)
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With an abuse of notation, we write Gt � (u, v) ≡ (Gt � u,Gt � v). We define the
“barriers” S

(δ,±)
nδ (u, v), n ∈ N, by setting S

(δ,±)
0 (u, v) = (u, v), and ∀n ≥ 1

S
(δ,−)
nδ (u, v) = K(δ)Gδ � S

(δ,−)
(n−1)δ(u, v),

(4.6)
S

(δ,+)
nδ (u, v) = Gδ � K(δ)S

(δ,+)
(n−1)δ(u, v).

We denote by (u
(δ,±)
nδ , v

(δ,−)
nδ ) = S

(δ,±)
nδ (u, v).

Theorem 4.3. For any k ≤ K and any δ small enough

εξ(x(kε−2δ),σ (δ,±)(kε−2δ)) → S
(δ,±)
kδ (u, v)

as ε → 0 weakly in probability.

The auxiliary processes are essentially independent random walk evolutions
with an additional colors change at finitely many times, kε−2δ, k ≤ K . The con-
vergence of the random walk evolutions can be established in a very strong form
which allows to control the positions of the rightmost a- and leftmost b-particles.
The argument is rather lengthy but essentially analogous to that in Carinci et al.
(2014a) and for brevity we omit it.

Theorem 4.4. There exist continuous functions ū(r, t), v̄(r, t), r ∈ R, t ∈ [0, T ),
also denoted by (ū(r, t), v̄(r, t)) = St (u, v) such that S0(u, v) = (u, v) and for any
t ∈ [0, T ):

lim
n→∞S

(δ,±)

2−nt
(u, v) = St (u, v), (4.7)

uniformly in the compacts and in L1.

We refer to Section 8 of Carinci et al. (2014a) where an analogous statement
has been proved. Fix t , by (4.2) and Theorem 4.3 with δ = 2−nt , for any r ∈ R, in
probability

lim sup
ε→0

ε
∑

y≥ε−1r

ξ(x(ε−22−nt),σ (ε−22−nt))(y) ≤
∫ +∞
r

u
(2−nt,+)
t , (4.8)

∫ +∞
r

u
(2−nt,−)
t ≤ lim inf

ε→0
ε

∑
y≥ε−1r

ξ(x(ε−22−nt),σ (ε−22−nt))(y). (4.9)

Theorem 2.1 then follows because by (4.7), the integrals in (4.8) and (4.9) converge
as n → ∞ to the same limit

∫ +∞
r ū(r ′, t) dr ′. Details are omitted.
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5 Macroscopic inequalities

In this section, we assume that for some S > 0 there exists a solution (μ(·, t),Ut ),
(ν(·, t),Vt ), t ∈ [0, S] of the free boundary problem (2.7). We assume that this
solution is regular in the sense specified before Theorem 2.2.

The main result of this section is Theorem 5.1 below that states that, mod-
ulo an error exponentially small in δ, (μ(·, t), ν(·, t)) is in between the barriers
S

(δ,±)
nδ (μ0, ν0) ≡ (u

(δ,±)
nδ , v

(δ,±)
nδ ), μ0 = μ(·,0), ν0 = ν(·,0). The inequalities are

the macroscopic analogue of the microscopic ones.

Theorem 5.1. There is δ0 so that the following holds. There are constants c and c′
so that for all δ < δ0, for all k ≤ δ−1S and for all r ∈ R we have

F
(
r;u(δ,−)

kδ

) − kc′e−cδ−1 ≤ F
(
r;μ(·, kδ)

) ≤ F
(
r;u(δ,+)

kδ

) + kc′e−cδ−1
, (5.1)

where F(r;g) = ∫ +∞
r g.

We first prove Theorem 2.2 as a corollary of Theorem 5.1.

Proof of Theorem 2.2. Fix a t ≤ S and consider k = integer part of δ−1t , then
take the limit δ → 0 in (5.1) using Theorem 4.4 we then get that (μ(·, t), ν(·, t))
coincide with (ū(·, t), v̄(·, t)) of Theorem 2.1. �

We prove in Section 5.2 the lower bound and in Section 5.3 the upper bound
in (5.1) for k = 1, finally, in Section 5.4 we prove that we can reduce the generic
step to this case. We first need to state properties of the regular solutions that will
be used in the sequel.

5.1 Properties of a regular solution

The regular solution (μ(·, t),Ut ), (ν(·, t),Vt ), t ∈ [0, S] is related to the law Pr ′,s
of a Brownian motion {Bt, t ≥ s} that starts from r ′ ∈ R at time s ∈ [0, S] in the
following way, see, for instance, Karatzas and Shreve (1991). First, define the stop-
ping times

τU
s = inf{t ≥ s :Bt ≥ Ut }, τV

s = inf{t ≥ s :Bt ≤ Vt }. (5.2)

Then for any t ∈ [0, S] and any interval I ⊂R∫
I
μ(r, t) dr

(5.3)

=
∫

μ0
(
r ′)Pr ′,0

(
Bt ∈ I ; τU

0 > t
) + κ

∫ t

0
PVs,s

(
Bt ∈ I ; τU

s > t
)
,

∫
I
ν(r, t) dr

(5.4)

=
∫

ν0
(
r ′)Pr ′,0

(
Bt ∈ I ; τV

0 > t
) + κ

∫ t

0
PUs,s

(
Bt ∈ I ; τV

s > t
)
.
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We call Pr,s(τ
U
s ∈ dt) and Pr,s(τ

V
s ∈ dt) the law of the stopping times (5.2).

Lemma 5.2. For all t ∈ [0, S] we have∫
μ0(r)Pr,0

(
τU

0 ≤ t
)
dr + κ

∫ t

0
PVs,s

(
τU
s ≤ t

)
ds = κt, (5.5)

∫
ν0(r)Pr,0

(
τV

0 ≤ t
)
dr + κ

∫ t

0
PUs,s

(
τV
s ≤ t

)
ds = κt. (5.6)

Moreover, there are C and C′ depending on the constant c > Ut −Vt such that for
all δ small enough the following holds. For all r∗ ∈R and t ≤ δ∣∣∣∣κ

∫ t

0
PVs,s

(
Bt ≥ r∗; τU

s > t
)
ds

(5.7)
−

∫ t

0

∫
ν0(r)Pr,0

(
τV

0 ∈ ds
)
PVs,s

(
Bt ≥ r∗; τU

s > t
)
dr

∣∣∣∣ ≤ C′e−Cδ−1
,

∣∣∣∣κ
∫ t

0
PUs,s

(
Bt ≤ r∗; τV

s > t
)
ds

(5.8)
−

∫ t

0

∫
μ0(r)Pr,0

(
τV

0 ∈ ds
)
PUs,s

(
Bt ≤ r∗; τV

s > t
)
dr ds

∣∣∣∣ ≤ C′e−Cδ−1
.

Proof. From (5.3), we have∫
μ(r, t) dr

=
∫

μ0(r)Pr,0
(
τU

0 > t
)
dr + κ

∫ t

0
PVs,s

(
τU
s > t

)
ds

=
∫

μ0(r) dr + κt −
∫

μ0(r)Pr,0
(
τU

0 ≤ t
)
dr − κ

∫ t

0
PVs,s

(
τU
s ≤ t

)
ds.

Since the total mass is conserved this yields (5.5). The proof of (5.6) is analo-
gous. Differentiating equations (5.5) and (5.6) and noticing that Pr,0(τ

U
0 ∈ dt) is

absolutely continuous with respect to the Lebesgue measure, we get

κ =
∫

μ0(r)Pr,0
(
τU

0 ∈ dt
)
dr + κ

∫ t

0
PVs,s

(
τU
s ∈ dt

)
ds, (5.9)

κ =
∫

ν0(r)Pr,0
(
τV

0 ∈ dt
)
dr + κ

∫ t

0
PUs,s

(
τV
s ∈ dt

)
ds. (5.10)

We now use (5.10) to rewrite κ on the right-hand side of (5.3) as follows

κ

∫ t

0
PVs,s

(
Bt ≥ r∗; τU

s > t
)
ds

=
∫ t

0

∫
v0(r)Pr,0

(
τV

0 ∈ ds
)
PVs,s

(
Bt ≥ r∗; τU

s > t
)
dr (5.11)

+
∫ t

0

∫ s

0
κPUs′ ,s′

(
τV
s′ ∈ ds

)
PVs,s

(
Bt ≥ r∗; τU

s > t
)
ds′.
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There are C,C′ > 0 so that for all 0 ≤ s′ < s < δ

PUs′ ,s′
(
τV
s′ < s

) ≤ C′e−Cδ−1
, PVs′ ,s′

(
τU
s′ < s

) ≤ C′e−Cδ−1
. (5.12)

To prove (5.7), we observe that the last term in (5.11) is bounded by (5.12). The
proof of (5.8) is analogous by using (5.4) and (5.9). �

5.2 Lower bound in the first time interval

Here we prove the first inequality in (5.1) for k = 1 observing that in the proof
we only use that the evolution S

(δ,−)
δ (μ0, ν0) has same initial datum as the regular

solution. More precisely, we prove that for all r∗ ∈R

F
(
r∗;μ(·, δ)) =

∫ ∞
r∗

μ(r, δ) dr ≥
∫ ∞
r∗

u
(δ,−)
δ (r) dr − 3C′e−Cδ−1

, (5.13)

with C′ and C as in Lemma 5.2.
By definition u

(δ,−)
δ = 1(−∞,R)Gδ � μ0 + 1(−∞,D]Gδ � ν0 with R, D so that
∫ ∞
R

Gδ � μ0 = κδ,

∫ D

−∞
Gδ � ν0 = κδ. (5.14)

By using the law of the Brownian motion, we write∫ ∞
r∗

u
(δ,−)
δ =

∫
μ0(r)Pr,0

(
Bδ ∈ (

r∗,R
))

dr +
∫

ν0(r)Pr,0
(
Bδ ∈ [

r∗,D
))

dr

(5.15)
=

∫
μ0(r)Pr,0

(
Bδ ≥ r∗) − κδ +

∫
ν0(r)Pr,0

(
Bδ ∈ [

r∗,D
))

dr.

Using (5.3) and (5.5), we get∫ ∞
r∗

μ(r, δ) dr ≥
∫

μ0(r)Pr,0
(
Bδ ≥ r∗) + κ

∫ δ

0
PVs,s

(
Bδ−s ≥ r∗) − κδ. (5.16)

Thus, if r∗ > D from (5.15) and (5.16) we get (5.13). We then assume that r∗ ≤ D

and observe that by (5.7) and (5.12)

κ

∫ δ

0
PVs,s

(
Bδ−s ≥ r∗) ≥ κ

∫ δ

0
PVs,s

(
Bδ−s ≥ r∗; τU

s > δ
)

(5.17)
≥

∫
ν0(r)Pr,0

(
Bδ ≥ r∗; τV

0 ≤ δ
)
dr − 2C′e−Cδ−1

.

By (5.6) and (5.12),
∫

ν0(r)Pr,0(τ
V
0 ≤ δ) dr ≥ κδ − C′e−Cδ−1

. Thus,∫
ν0(r)Pr,0

(
Bδ ≥ r∗; τV

0 ≤ δ
)

≥ κδ −
∫

ν0(r)Pr,0
(
Bδ ≤ r∗; τV

0 ≤ δ
) − C′e−Cδ−1

(5.18)

≥ κδ −
∫

ν0(r)Pr,0
(
Bδ ≤ r∗)

dr − C′e−Cδ−1
.
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Then from (5.17), (5.18) and the definition of D we get

κ

∫ δ

0
PVs,s

(
Bδ−s ≥ r∗) ≥ κδ −

∫
ν0(r)Pr,0

(
Bδ ≤ r∗)

dr − 3C′e−Cδ−1

(5.19)
=

∫
ν0(r)Pr,0

(
Bδ ∈ [

r∗,D
])

dr − 3C′e−Cδ−1
,

concluding the proof of (5.13).

5.3 Upper bound in the first time interval

Here we give the proof of the upper bound in (5.1) for k = 1. Call R0 and D0 the
points such that

∫ ∞
R0

μ0(r) dr = κδ,

∫ D0

−∞
ν0(r) dr = κδ (5.20)

and call u2 = μ0 − u1, v2 = ν0 − v1, where

u1(r) = μ0(r)1(R0,+∞)(r), v1(r) = ν0(r)1(−∞,D0](r). (5.21)

Thus v1 and u1 have mass κδ and by definition

u
(δ,+)
δ = Gδ � [u2 + v1], v

(δ,+)
δ = Gδ � [v2 + u1].

From (5.3), we get that the inequality F(r∗;μ(·, δ)) ≤ F(r∗;u(δ,+)
δ ) + m can be

written as∫
μ0(r)Pr,0

(
Bδ ≥ r∗; τU

0 > δ
)
dr + κ

∫ δ

0
PVs,s

(
Bδ−s ≥ r∗; τU

s > δ
)
ds

(5.22)
≤

∫ [
u2(r) + v1(r)

]
Pr,0

(
Bδ ≥ r∗)

dr + m.

We prove below (5.22) for m = 4C ′e−Cδ−1
with C′ and C as in Lemma 5.2. Since

μ0 = u1 + u2 we have∫
μ0(r)Pr,0

(
Bδ ≥ r∗; τU

0 > δ
)
dr

=
∫

u2(r)Pr,0
(
Bδ ≥ r∗)

dr +
∫

u1(r)Pr,0
(
Bδ ≥ r∗; τU

0 > δ
)
dr (5.23)

−
∫

u2(r)Pr,0
(
Bδ ≥ r∗; τU

0 ≤ δ
)
dr.

From (5.7), (5.12) and using that ν0 = v1 + v2 we have

κ

∫ δ

0
PVs,s

(
Bδ−s ≥ r∗; τU

s > δ
)

≤
∫

ν0(r)Pr,0
(
Bδ ≥ r∗; τD ≤ δ

)
dr + 2C′e−Cδ−1

(5.24)
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=
∫

v2(r)Pr,0
(
Bδ ≥ r∗; τV ≤ δ

)
dr −

∫
v1(r)Pr,0

(
Bδ ≥ r∗; τV > δ

)
dr

+
∫

v1(r)Pr,0
(
Bδ ≥ r∗)

dr + 2C′e−Cδ−1
.

From (5.23) and (5.24), we get

F
(
r∗;μ(·, δ)) ≤

∫ [
u2(r) + v1(r)

]
Pr,0

(
Bδ ≥ r∗)

dr + 2C′e−Cδ−1

+
∫

u1(r)Pr,0
(
Bδ ≥ r∗; τU

0 > δ
)
dr

−
∫

u2(r)Pr,0
(
Bδ ≥ r∗; τU

0 ≤ δ
)
dr (5.25)

+
∫

v2(r)Pr,0
(
Bδ ≥ r∗; τV ≤ δ

)
dr

−
∫

v1(r)Pr,0
(
Bδ ≥ r∗; τV > δ

)
dr.

In Lemma 5.3 below we prove that the last two terms on the right-hand side
of (5.25) are bounded by C′e−Cδ−1

thus concluding the proof of (5.22).

Lemma 5.3. Let ui and vi , i = 1,2 be as in (5.21), then for all r∗ ∈ R

∫
u1(r)Pr,0

(
Bδ ≥ r∗; τU

0 > δ
)

(5.26)
≤

∫
u2(r)Pr,0

(
Bδ ≥ r∗; τU

0 ≤ δ
) + C′e−Cδ−1

,

∫
v1(r)Pr,0

(
Bδ ≥ r∗; τV

0 > δ
)

(5.27)
≥

∫
v2(r)Pr,0

(
Bδ ≥ r∗; τV

0 ≤ δ
) − C′e−Cδ−1

.

Proof. We only prove (5.26) since the proof (5.27) is completely analogous.
From (5.5), we get
∫ [

u1(r) + u2(r)
]
Pr,0

(
τU

0 ≤ δ
)
dr + κ

∫ δ

0
PVs,s

(
τU
s ≤ δ

)
ds = κδ =

∫
u1(r) dr,

thus ∫
u1(r)

[
1 − Pr,0

(
τU

0 ≤ δ
)]

dr

(5.28)

=
∫

u2(r)Pr,0
(
τU

0 ≤ δ
)
dr + κ

∫ δ

0
PVs,s

(
τU
s ≤ δ

)
.



A two species system 405

We call

α(r) = Pr,0
(
τU

0 ≤ δ
)
, β(s) = PVs,s

(
τU
s ≤ δ

)
(5.29)

and from (5.28) we get

Z :=
∫

u2(r)α(r) + κ

∫ δ

0
β(s) =

∫
u1(r)

[
1 − α(r)

]
dr. (5.30)

We call λr(ds) the law of τU
0 conditioned to the event τU

0 ≤ δ when the Brownian
motion starts from r at time 0 and write∫

u2(r)Pr,0
(
Bδ ≥ r∗; τU

0 ≤ δ
)
dr

(5.31)

=
∫

u2(r)α(r)

∫ δ

0
λr(ds)PUs,s

(
Bδ ≥ r∗)

.

We denote by νs(ds′) the law of τU
s conditioned to the event τU

s ≤ δ when the
Brownian motion starts from Vs at time s and write

κ

∫ δ

0
PVs,s

(
Bδ−s ≥ r∗; τU

s ≤ δ
)

(5.32)

= κ

∫ δ

0
β(s)

∫ δ

s
νs

(
ds′)PV ′

s ,s
′
(
Bδ−s′ ≥ r∗)

.

From (5.30), (5.31) and (5.32) it follows that there exists a nonnegative measure
g(dt) on [0, δ], so that

∫ δ
0 g(dt) = Z and

∫
u2(r)Pr,0

(
Bδ ≥ r∗; τU

0 ≤ δ
)
dr + κ

∫ δ

0
PVs,s

(
Bδ−s ≥ r∗; τU

s ≤ δ
)

(5.33)

=
∫ δ

0
g(dt)PUt ;t

(
Bδ−t ≥ r∗)

.

Thus since by (5.30) the measures u1(r)[1−α(r)]dr and g(dt) have same mass Z

then, by the isomorphism of Lebesgue measures, Rohlin (1952), there is a map
� :R→ [0, δ] so that

∫ δ

0
g(dt)PUt ;t

[
Bδ ≥ r∗] =

∫
u1(r)

[
1 − α(r)

]
PU�(r);�(r)

(
Bδ ≥ r∗)

dr. (5.34)

We use the following inequality proved in Carinci et al. (2014b) (see the proof
of (5.36) in this paper). If γ = (γ (t), t ≥ 0) is a C1-curve then for all δ > 0

Pr;0
[
Bδ ≥ r|τγ

0 > δ
] ≤ Pγt ;t [Bδ ≥ r] ∀r ≤ γ (0), t ∈ [0, δ], (5.35)

where τ
γ
0 is the hitting time of the curve γ .
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By (5.35) and (5.12), from (5.33) and (5.34) we get∫
u1(r)Pr,0

(
Bδ ≥ r∗; τU

0 > δ
)

=
∫

u1(r)
[
1 − α(r)

]
Pr,0

(
Bδ ≥ r∗|τU

0 > δ
)

≤
∫

u1(r)
[
1 − α(r)

]
PU�(r);�(r)

(
Bδ ≥ r∗)

=
∫

u2(r)Pr,0
(
Bδ ≥ r∗; τU

0 ≤ δ
)
dr + κ

∫ δ

0
PVs,s

(
Bδ−s ≥ r∗; τU

s ≤ δ
)

≤
∫

u2(r)Pr,0
(
Bδ ≥ r∗; τU

0 ≤ δ
)
dr + C′eCδ−1

.

This concludes the proof of (5.26). �

5.4 Properties of the barriers

The function w(·, t) = μ(·, t) + ν(·, t) is the solution of the heat equation:

w(r, t) = (Gt � w0)(r), r ∈ R, t ≥ 0, w0 = μ(·,0) + ν(·,0). (5.36)

Observe that not only the total mass
∫

w0 = Mtot is conserved but also
∫

μ(r, t) =∫
μ(r,0) =: M0 for all t . Given φ ∈ L1(R,R+) we call

B(φ,M0) :=
{
(u, v) ∈ U : u(r) + v(r) = φ(r),∀r ∈ R, and

∫
R

u = M0

}
. (5.37)

Below we will use the above definition with φ = w(·, nδ), because from the defi-
nitions it follows that

u
(δ,±)
nδ (r) + v

(δ,±)
nδ (r) = w(r,nδ) ∀r ∈ R,∀n ≤ δ−1T (5.38)

and also that for all n ≤ δ−1T∫
R

u
(δ,±)
nδ =

∫
R

μ(r,0) = M0,

∫
R

v
(δ,±)
nδ =

∫
R

ν(r,0) = Mtot − M0. (5.39)

Definition 5.1. Given two pairs (u′, v′), (u, v) ∈ B(φ,M0) and a number m ≥ 0,
we define

(
u′, v′) ≺ (u, v) modulo m iff ∀r ∈ R :F

(
r;u′) ≤ F(r;u) + m. (5.40)

If m = 0 we say that (u′, v′)� (u, v).

At the end of this subsection we will prove that (5.1) for all k ≥ 1 follows from
the one step estimates of Sections 5.2 and 5.3. We first prove that the evolutions
S

(δ,±)
δ preserve the order in the case m = 0.
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Lemma 5.4. Let (u′, v′), (u, v) ∈ B(φ,M0)

if
(
u′, v′) � (u, v) then S

(δ,±)
δ

(
u′, v′) � S

(δ,±)
δ (u, v). (5.41)

Moreover S
(δ,±)
δ (u′, v′) and S

(δ,±)
δ (u, v) belong to B(Gδ � φ,M0).

Proof. We first prove that Kδ is nondecreasing with respect to �. Calling
(ū′, v̄′) = Kδ(u

′, v′) and (ū, v̄) = Kδ(u, v) we have

ū′ = u′1(−∞,R′) + v′1(−∞,D′), v̄′ = u′1[R′,+∞) + v′1(D′,+∞),
(5.42)

ū = u1(−∞,R) + v1(−∞,D), v̄ = u1[R,+∞) + v1(D,+∞),

where D, D′, R and R′ are the points such that
∫ ∞
R′

u′ = κδ =
∫ D′

−∞
v′,

∫ ∞
R

u = κδ =
∫ D

−∞
v. (5.43)

Since (u′, v′)� (u, v) we have that D ≤ D′ ≤ R′ ≤ R. Furthermore Kδ(u
′, v′) and

Kδ(u, v) are both in the set B(φ,M). Using this fact we get
∫ D′

D

[
u′ + v′] +

∫ R′

D′
u′

(5.44)

=
∫ ∞
D

[
u′ + v′] −

∫
R

v′ =
∫ ∞
D

[u + v] −
∫
R

v =
∫ R

D
u.

For r ≤ D, from (5.44) we get

F
(
r; ū′) =

∫ D′

r

[
u′ + v′]dr +

∫ R′

D′
u′ =

∫ D

r
φ +

∫ R

D
u = F(r; ū).

Analogous computations show that F(r; ū′) ≤ F(r; ū) for r ≤ D′. For r >D′

F
(
r; ū′) =

∫ +∞
r

u′ − κδ ≤
∫ R

r∗
u = F(r; ū).

Thus F(r; ū′) ≤ F(r; ū) for all r ∈ R and this concludes the proof of the mono-
tonicity of Kδ . Recalling the definitions, to conclude the proof of the lemma it is
enough to show that also the convolution with Gδ is nondecreasing with respect
to �. This fact is a simple adaptation of the proof of Lemma 2.6 of Carinci et al.
(2014a) and thus we omit its proof. �

The following proposition, proved in Appendix, will allow us to reduce the
inequalities modulo m > 0 to the ones with m = 0.

Proposition 5.5. There is m0 > 0 so that for all m ∈ (0,m0) the following holds.
Let (u′, v′), (u, v) ∈ B(φ,M0) be such that (u′, v′) ≺ (u, v) modulo m < M0,
m > 0.
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1. There is (f �, g�) ∈ B(φ,M) such that (u, v) � (f �, g�), (u′, v′) � (f �, g�)

and

S
(δ,+)
δ

(
f �, g�) ≺ S

(δ,+)
δ (u, v) modulo 2m. (5.45)

2. There is (f�, g�) ∈ B(φ,M) so that (f�, g�)� (u′, v′), (f�, g�)� (u, v) and

S
(δ,−)
δ

(
u′, v′) ≺ S

(δ,−)
δ (f�, g�) modulo 2m. (5.46)

As a consequence of the above proposition, we now prove (5.1). We will use the
following notation:(

μ
(·, (k + 1)δ

)
, ν

(·, (k + 1)δ
)) = Tδ

(
μ(·, kδ), ν(·, kδ)

)
. (5.47)

Proof of Theorem 5.1. As a consequence of the estimates in Sections 5.2 and 5.3,
we have that for all k, letting (û, v̂) := Tkδ(μ0, ν0)

S
(δ,−)
δ (û, v̂) ≺ Tδ(û, v̂) ≺ S

(δ,+)
δ (û, v̂) modulo m := c̄e−Cδ−1

(5.48)

with c̄ = 4C′ and C and C′ as in Lemma 5.2.
Observing that (5.36), (5.38) and (5.39) imply that for all k, S

(δ,±)
kδ (μ0, ν0) and

Tkδ(μ0, ν0) belong to B(wkδ,M0), by (5.48) with k = 0 we can use 1 of Proposi-
tion 5.5 with φ = w(·, δ), (u′, v′) = Tδ(μ0, ν0) and (u, v) = S

(δ,+)
δ (μ0, ν0). Thus

from Lemma 5.4 and (5.45) we get

S
(δ,+)
δ

(
u′, v′) � S

(δ,+)
δ

(
f ∗, g∗) ≺ S

(δ,+)
δ (u, v)

(5.49)
= S

(δ,+)
2δ (μ0, ν0) modulo 2m.

We apply (5.48) with (û, v̂) = (μ(·, δ), ν(·, δ))
T2δ(μ0, ν0) = (

μ(·,2δ), ν(·,2δ)
) ≺ S

(δ,+)
δ

(
u′, v′) modulo m (5.50)

that together with (5.49) proves the upper bound in (5.1) for k = 2 and c′ = 3c̄.
By using 2 of Proposition 5.5 and Lemma 5.4 we similarly get the lower bound
in (5.1) for k = 2 and c′ = 3c̄. Theorem 5.1 follows from the iteration of the above
procedure. �

Appendix

Proof of Proposition 5.5. Let H and Z be the points so that∫ H

−∞
u(r) dr = m,

∫ +∞
Z

v(r) dr = m.

Since (u, v) ∈ U for m0 small enough we have that H < Z. We define

f � = u + v1[Z,+∞) − u1(−∞,H ], g� = v + u1(−∞,H ] − v1[Z,+∞). (A.1)

Obviously (f �, g�) ∈ B(φ,M0) and (u, v)� (f �, g�).
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If r ≤ H then F(r;f �) = ∫
R

u(r) dr = M ≥ F(r;u′). For r ∈ [H,Z] by using
that (u′, v′) ≺ (u, v) modulo m we get

F
(
r;f �) =

∫ +∞
r

u(r) dr + m ≥ F
(
r;u′) − m + m ∀r ∈ [H,Z].

Finally since g� = 0 for all r > Z and (f �, g�) ∈ B(φ,M0) we have that f �(r) =
φ(r) = u′(r)+ v′(r) for all r > Z and therefore F(r;f �) ≥ F(r;u′) for all r ≥ Z.
Thus, (u′, v′)� (f �, g�).

To prove (5.45), recalling that S
(δ,+)
δ = GδKδ , we first compare (f̄ �, ḡ�) :=

Kδ(f
�, g�) with (ū, v̄) := Kδ(u, v). Let D�, R� and D, R be the points such that∫ +∞

R�
f �(r) dr = κδ =

∫ D�

−∞
g�(r) dr,

(A.2)∫ +∞
R

u(r) dr = κδ =
∫ D

−∞
v(r) dr.

By definition of Kδ ,

ū = u1(−∞,R] + v1(−∞,D], v̄ = u1[R,+∞) + v1[D,+∞),

f̄ � = f �1(−∞,R�] + g�1(−∞,D�], ḡ� = f �1[R�,+∞) + g�1[D�,+∞).

Since (u, v) � (f �, g�) we have D� ≤ D ≤ R ≤ R� and since (u, v) ∈ U then for
m0 small enough we have that H < D and Z > R that implies

∫ R�

R u(r) dr ≤ m

analogously
∫ D
D� v(r) dr ≤ m. Let r ≤ D�, then since (f �, g�) ∈ B(φ,M0),

F
(
r; f̄ �) =

∫ D�

r
φ

(
r ′)dr ′ +

∫ R�

D�
f �(r ′)dr ′.

Since ū(r ′) = φ(r ′) for r ′ ≤ D, using the definition (A.1) we have that∫ R�

D�
f � =

∫ D

D�
u +

∫ R�

D
u +

∫ R∗

Z∧R�
v

≤
∫ D

D�
φ −

∫ D

D�
v +

∫ R

D
u +

∫ R�

R
u +

∫ R�

Z∧R�
v ≤

∫ R

D�
ū + 2m.

Thus, F(r; f̄ �) ≤ F+(r; ū) + 2m for all r ≤ D�. For r > D�

F
(
r; f̄ �) =

∫ R�

r
f � =

∫ R�

r
u +

∫ R�

Z∧R�
v ≤

∫ R

r
u + 2m = F(r; ū) + 2m.

Thus, (
f̄ �, ḡ�) = Kδ

(
f �, g�) ≺ Kδ(u, v) = (ū, v̄) modulo 2m. (A.3)

We are left with the proof of the analogous inequality for the convolution with Gδ .
We call C± the point such that∫ +∞

C+
f̄ �(r) dr = 2m,

∫ C−

−∞
ḡ�(r) dr = 2m



410 A. De Masi and P. A. Ferrari

and we let f = f̄ �1(−∞,C+) + ḡ�1(−∞,C−) and g = f̄ �1[C+,+∞) + ḡ�1[C−,+∞).
Then, by definition (f, g) � (f̄ �, ḡ�) and it is not difficult to check that (f, g) �
(ū, v̄). Since Gδ is nondecreasing with respect to � (see the proof of Lemma 5.4)
we have that (Gδ � f,Gδ � g)� (Gδ � ū,Gδ � v̄). On the other hand,

F
(
r,Gδ � f̄ �) = F(r,Gδ � f ) + F

(
r,Gδ �

(
f̄ � − f

)) ≤ F(r,Gδ � ū) + 2m.

Thus GδKδ(f
�, g�) ≺ GδKδ(u, v) modulo 2m which proves (5.45) and thus con-

cludes the proof of 1.
We define

f� = u′ + v′1(−∞,Z′) − u′1[H ′,+∞),
(A.4)

g� = v′ + u′1[H ′,+∞) − v′1(−∞,Z′),

where H ′ is such that
∫ +∞
H ′ u′(r) dr = m and Z′ is such that

∫ Z′
−∞ v′(r) dr = m.

By definition (f�, g�) ∈ B(φ,M0) and (f�, g�)� (u′, v′). We next observe that for
r ≤ Z′

F(r;f�) =
∫ +∞
−∞

f�−
∫ r

−∞
[
u′+v′] = M0 −

∫ r

−∞
[u+v] ≤ M0 −

∫ r

−∞
u = F(r;u).

For r ∈ [Z′,H ′] we have

F(r;f�) =
∫ +∞
r

u′(r) dr − m ≤ F(r;u).

And finally for r ≥ H ′, F(r;f�) = 0 ≤ F(r;u), which concludes the proof that
(f�, g�)� (u, v). To prove (5.46), we first write

Gδ � f� = Gδ � u′ + Gδ �
(
v′1(−∞,Z′)

) − Gδ �
(
u′1[H ′,+∞)

)
,

(A.5)
Gδ � g� = Gδ � v′ + Gδ �

(
u′1[H ′,+∞)

) − Gδ �
(
v′1(−∞,Z′]

)
.

Let D′, R′, D� and R� be the points such that

∫ +∞
R�

Gδ � f� = κδ =
∫ D�

−∞
Gδ � g�,

∫ +∞
R′

Gδ � u′ = κδ =
∫ D′

−∞
Gδ � v′.

From the fact that the convolution with Gδ preserves the inequality, we have D′ ≤
D� ≤ R� ≤ R′. Furthermore using (A.5), we get

∫ R′

R�

Gδ � u′(r) dr ≤ m,

∫ D�

D′
Gδ � v′(r) dr ≤ m. (A.6)

Recalling the definition of Kδ we call (f̄�, ḡ�) := Kδ(Gδ � f�,Gδ � g�) and
(ū′, v̄′) := Kδ(Gδ � u′,Gδ � v′). For r ≤ D′, using that (f�, g�) and (u′, v′) are
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both in the set B(φ,M0) and (A.6) we have for r ≤ D′
∫ +∞
r

ū′ =
∫ D′

r
Gδ � φ +

∫ D�

D′
Gδ � u′ +

∫ R′

D�

Gδ � u′

≤
∫ D�

r
Gδ � φ +

∫ R�

D�

Gδ � u′ + m

≤
∫ D�

r
Gδ � φ +

∫ R�

D�

Gδ � f� + 2m = F(r; f̄�) + 2m.

Analogously, for r > D′
∫ +∞
r

ū′ ≤
∫ D�

r
Gδ � u′ +

∫ R�

D�

Gδ � u′ + m

≤
∫ D�

r
Gδ � φ +

∫ R�

D�

Gδ � f� + 2m = F(r; f̄�) + 2m.

This proves (5.46) and concludes the proof of the proposition. �
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