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We present an invariance principle for antisymmetric functions of a reversible 
Markov process which immediately implies convergence to Brownian motion 
for a wide class of random motions in random environments. We apply it to 
establish convergence to Brownian motion (i) for a walker moving in the infinite 
cluster of the two-dimensional bond percolation model, (ii) for a d-dimensional 
walker moving in a symmetric random environment under very mild assump- 
tions on the distribution of the environment, (iii) for a tagged particle in a 
d-dimensional symmetric lattice gas which allows interchanges, (iv) for a tagged 
particle in a d-dimensional system of interacting Brownian particles. Our 
formulation also leads naturally to bounds on the diffusion constant. 

KEY WORDS: Symmetric random environment; random potential; revers- 
ible Markov process; central limit theorem; invariance principle; interacting 
Brownian particles. 

1. I N T R O D U C T I O N  

In  this pape r  we p resen t  a n  i n v a r i a n c e  p r inc ip le  which  holds  for a large 
class of  " r a n d o m  var iab les"  which  arise n a t u r a l l y  in  the genera l  se t t ing  of  
t ime-revers ib le  M a r k o v  processes.  O u r  m a i n  t h e o r e m s  ( T h e o r e m s  2.1 a n d  
2.2 of Sec t ion  2) m a y  be su rp r i s ing  at  first g lance  since they app ly  to 
s t rong ly  d e p e n d e n t  var iab les  a n d  yet  c o n t a i n  n o  explici t  a s s u m p t i o n s  o n  

mix ing  or  decay  of  cor re la t ions .  R e m a r k a b l y ,  in  o u r  con tex t  these are  
rep laced  by  a n  a s s u m p t i o n  on  the symmetry  properties of the  var iab les  
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under time reversal. Roughly speaking, we prove that an antisymmetric 
function Xt ( t= t ime)  of a time-symmetric, stationary, ergodic Markov 
process converges to a Brownian motion (with a finite diffusion matrix D) 
when appropriately rescale& In typical applications, J(t is an increment of 
a component made in time t (or a current flowing during this time), and 
is obviously antisymmetric. Since there are no difficult-to-check mixing 
conditions in our theorems, they apply in these situations with ridiculous 
ease. This is especially useful in infinite-dimensional situations, where one 
cannot expect strong decay of correlations. 

In addition to the invariance principle, we obtain a formula for the 
diffusion matrix D. This is of a type known to physicists as an "Einstein- 
Green-Kubo formula": it expresses D in terms of an explicitly computable 
term and the time integral of the "velocity autocorrelation function." 

The proofs of our main theorems employ central limit theorems 
obtained by several authors. (12'26) These authors assumed the square 
integrability of the velocity function of the process, as well as the 
integrability of the velocity autocorrelation function (equivalent to a condi- 
tion on the spectral measure of the velocity function). We show that the 
first condition was unnecessary, thus generalizing a result of Kipnis and 
Varadhan. (26) For velocity functions arising from antisymmetric variables 
we show that the second condition is automatically satisfied. Thus the only 
hypothesis we need on the (antisymmetric) variable Xt is the existence 
of a velocity function (conditional drift), which is a weak requirement 
equivalent to asking that J(t be a semimartingale. 

The abstract theorems of Section 2 yield an invariance principle, but 
not that the limiting Brownian motion is nonsingular (i.e., that D has 
strictly positive eigenvalues). However, our expression for D suggests a 
general scheme for finding lower bounds. Often these lower bounds have an 
interesting probabilistic meaning. We also obtain an (explicitly com- 
putable) upper bound. All this is discussed in Section 3. 

In the subsequent three sections we reconsider some models in the 
light of the theorems in Section 2. These are: random walks in (symmetric) 
random environments, interacting random walks on the lattice (exclusion 
processes), and interacting diffusion in the continuum. In each case 
Theorem 2.1 or Theorem 2.2 applies as soon as the existence problem is 
settled. In several cases we obtain results more general than those that have 
appeared in the literature. For example, for the symmetric random walk in 
a random environment of Section 4, we require only that the first moment 
of the bond conductivities (jump rates) be finite, and obtain the invariance 
principle with a nonsingular diffusion matrix. This contrasts with the 
results in the literature, in which the bond conductivities were assumed to 
be bounded away from zero and infinity. We can even treat the case of 
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bond conductivities which are zero with positive probability (above the 
critical probability for bond percolation), by conditioning on the event that 
the infinite cluster contains the random walker at the initial instant. Thus, 
we establish the asymptotic diffusion of a random walk on an infinite 
percolation cluster (see Section 4 for references). 

An additional feature of our approach is that our formula for D can 
be used to relate diffusion constants for different processes. For instance, 
we prove that the motion of a tagged particle in a moving environment is 
generally faster than the motion of the "same" particle in a "frozen" 
environment. We also show that the diffusion matrix is typically an 
increasing function of the space dimension. 

A preliminary report of our results was presented in ref. 10. 

2. P R I N C I P A L  T H E O R E M S  

Our invariance principle will apply to a family X~ ~ ~a indexed by 
intervals I = [a, b ] c  N or 7/ of random variables enjoying certain sym- 
metry properties. The X~ will be functionals of a time-reversible Markov 
process 4,. We treat both discrete time (t e 7/) and continuous time (t~ N), 
although the applications discussed in Sections 4-6 will usually involve 
continuous time. We begin by introducing the class of Markov processes. 

Let 4,, t~7/ or t e N, be a reversible, ergodic Markov process with 
state space R (a measurable space) and invariant probability measure #. 
Let s be the space of trajectories (paths) of the process, maps from Z or 

into 1t. Let F~, I c l  or I c ~ ,  be the a-algebra generated by ~,, t e l ,  
with Ft=F(_~, o and F =  U, Ft. Let 0~ and R~ denote the time-translation 
operator and time-reflection operator (in ~), defined, respectively, by 

(O~4)(t)=4(t-r), (R,4)(t)=4(2z--t) 

[More precisely, R,~ is a suitable modification of t - - ,4 (2~- t ) .  For 
instance, in 11 is a topological space and the paths of f2 are in D = D(II), 
i.e., are right continuous with left limits, then R~ ~. is the modification in D 
of t ~ ~(2~-  t). Note that R~R~4 is a version of 02(~ ~)4. We assume that 
R~r is so defined that R~R~= 02(v_a). ] 

P,  (resp. Pc) will denote the distribution of our process on f2 with 
initial measure # (resp. with 40 = ~ a.s.), with corresponding expectation E ,  
(resp. Er We assume that 4: [0, ~ )  ~ N, r = 4(t, ~o), is jointly measurable. 
From this it follows that the probability semigroup T,: LP(#).---r Lp(#) given 
by 

E~[f(4,)lFo-] = T , f  a.s. (2.1) 

is strongly continuous (in t) in LP(#), for both p = 1 and p = 2. 
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To say that i t  is reversible means that P~ is invariant under R, for all 
r. In the discrete-time case, this is ensured if 

#(d~) T(d~'b~) = ,u(d~') T(d~ I ~')  (2.2) 

where T(. 1.) is the transition operator. In the continuous-time case, this is 
ensured if the Markov semigroup Tt is self-adjoint in L2(#). Stationarity of 
the process, that P ,  is 0, invariant for all ~, is an immediate consequence 
of reversibility. Finally, to say that 4, is ergodic means that P ,  is ergodic 
under the time-translation group, or equivalently that if, for all t ~> 0, 
Tt(A]~ ) = 1 for #-a.e. ~ ~A, then #(A) = 1 or 0 (A c N measurable) (see 
ref. 40, Corollary 5, p. 97). 

We introduce next the notion of antisymmetric random variables, 
which will play a key role in what follows. Let XI with values in Ra (d~> 1) 
be an/ ' , -measurable random variable. We say that J(~ is antisymmetric if 

X l  ~ I~m -.~- - -  X I ( 2 . 3 )  

a.s., where m is the midpoint of I. A symmetric random variable is defined 
in an analogous way. More generally, we shall say that a family XI, 
indexed by intervals I c N, is antisymmetric if each X, is Fl-measurable and 
antisymmetric. 

Antisymmetric ralndom variables arise naturally in several ways. The 
simplest case is if X, is an increment of a component of the process, 
X[a,b  ] = X ( ~ b ) -  X ( ~ a )  for X a function on 1I. For an example not of this 
type, let ~t be a jump process on a finite state space It and define XI to be 
(for fixed x, y in R) the number of jumps from x to y minus the number 
of reverse jumps, made in the time interval I. In other words, 

X~= I{t: ~, =x ,  ~,~-y; t e I } h -  I{t: ~,_ = y ,  ~ , = x ;  t e I} l  

where [A] is the cardinality of the set A. More generally, if X, has an 
interpretation as a current flowing during the interval I, it should be 
antisymmetric. 

Our invariance principle will apply to an antisymmetric family 
enjoying certain additional properties, which we list below. 

A.1. XIELI (p , )  for each bounded interval I. 

A.2. The family X~ is covariant: 

X[a,b] o O. c = X [  a + "c,b + "c] (2.4) 

a.s. (whenever both sides are defined, see below). 
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A.3. The family X~ is additive: 

X,  + X,, = Xi  u v (2.5) 

a.s. when the intervals intersect in exactly one point. 

A.4. In addition, in the continuous time case we assume that 
X,-XEo.,  2 has paths in D([-0, oo); ~a). 

Concerning the index set {i}, we wish to consider two cases: X~ is 
defined for all closed, bounded I = ~ or only for intervals of the form 
[-k, hi,  k <  h, k, h ~ 7/. Note that in the latter case A.1-A.3 follow easily if 

h - - 1  

X[k, h2 = Z Xo 0j (2.6) 
j = k  

where X =  X[o, ll is an FEo,~]-measurable, integrable, antisymmetric random 
variable. For discrete time this means simply that X =  X'(~o, ~i), where )2 
is an antisymmetric function on 1,t x R, such that X is integrable. 

The variance of the limiting Brownian motion in our invariance 
principle will be expressed in terms of quadratic forms associated naturally 
with the process, which we now introduce. 

Consider first a general nonnegative, self-adjoint operator B on a 
separable Hilbert space H with inner product ( . , . )  and norm ]].n. The 
quadratic form associated with B is the form 

1t6112 ~ II~Oll ~,B ~ ][B1/2~112 = x vq,(dx) (2.7) 

where v~, is the spectral measure associated with ~ 6 H relative to the 
spectral decomposition of B. Note that D(B m) = {~ e HI [lOll1 < oo } [here 
D(-) denotes the domain of the self-adjoint operator .]. We denote by 
H~ =- HI(B ) the completion of this domain in the [l" I11 norm, taken modulo 
null vectors [-equivalently, complete the space D(B 1/2) n Ker(B)~]. With a 
slight abuse of notation we write Hc~ H1 for D(BI/2). 

We denote by H_I -= H_I(B) the dual of H 1. One may identify H L 
(antilinearly) with the completion in the norm 11 I1-1 

ii~pll2 1 ~ itcpll z f s  v~o(dx) -1"~= [IB-1/zqg]l 2 = x (2.8) 

of the domain D(B-1/2)={~o~Hlll~oll_l<OO}, since (by the spectral 
theorem) for r ~ H the linear functional ff ~ (~p, ~k), ~ ~ Hc~ H1, has norm 
II~olj_l under 1J'111 and hence defines an element of H_j  of norm IIq~ll-i 
precisely if q ~ D ( B  1/2). We often write H ~ H _ I  for D(B-I/:).  Note that 
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if ~oeH~H_I,  v~,({0})=0. The map B: D(B)--+D(B -~) extends to a 
unitary from H1 onto H_I. 

For g e H  1 and ~b EH~, we write (g, ~) for the natural action o fg  on 
~,. Note that if g and q, belong to H, this agrees with the usual inner 
product on H. Note also that for geH_a, 

I(g, ~O)l 
Ilgll , = sup (2.9) 

We write ( - , . ) i  and ( - , . )_  1 for the inner products on Ha and H_I ,  respec- 
tively. Note that since B: Hi ~ H_a (B-I: H_I ~ H1), (~/, B~)- - (B4/ ,  @)* 
is well defined for ~ e H1 and in fact equal ]1 ~ [I ~ [(~o, B i cp) is well defined 
for ( p G n _  1 and in fact equals I1~p1121), in agreement with the obvious 
meaning of these expressions for ~ e D(B) [~0 e D(B 1)]. 

Let T, - e-~t be the contraction semigroup on H generated by B. The 
semigroup T, extends to a contraction semigroup on H+_a. Note that, by 
the spectral theorem, Tt(H) ~ H1 for t > 0 and for ~ ~ H 

(2.10) 

The spectral theorem may be extended to provide a simultaneous 
spectral representation of H, H1, and H_a relative to the spectral decom- 
position of B. We represent H vo H~ <o H i as a set of functions on a ~-finite 
measure space {f2, v} in such a way that 

B ~_ multiplication by the nonnegative function A on {I2, v} 

H-~ L~(I2, v) 

H1 --- Lz(,Q, Av) 

H I -~ L2( ~Q, A --1V) 

(here "~-" means "is represented by"). Moreover, the duality between H~ 
and H 1 has the canonical representation: For g~H_l and O e H t ,  
(g, O)=Se  ~,*~dv, where g_~ ~ and ~---~. Note that the semigroup 
T , -  multiplication by e -m, and is strongly continuous alnd self-adjoint on 
H+I as well as on H. When we say "by the spectral theorem" or "by 
spectral theory" we often refer to this simultaneous spectral representation. 

We now specialize to the case of interest, in which B is Markovian: 
H =  L2(/./) and B = - L ,  where L is the strong L2-generator of our revers- 
ible Markov process ~, for continuous time and is T1 - 1 for discrete time. 
By reversibility, - L  is a nonnegative self-adjoint operator on L2(#). Note 
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that for discrete time H ~  ~ H c  H1. We will often denote the integral in 
LL(#) by ( - ) .  

Note that in the case of discrete time we are faced with a minor nota- 
tional inconsistency: the semigroup T, = e x p ( -  Bt) = exp[(1 - T1) t |  does 
not agree with T 1, the transition probability, for t = 1. For the remainder 
of Section 2 we distinguish these two possibilities by writing T1 or T~ 
whenever the original discrete-time transition probability is intended. Note 
that T, is the transition probability for a continuous-time jump process 
also reversible with respect to/~. 

In the Markovian case, H n H ~ = L Z ( / ~ ) n H t  has a natural 
probabilistic interpretation. For discrete time, if ~, e L2(~), then 

Eu[(~({l)--~,(~o)) 2] =2(~ ,  (1 -- T~)~) = 2 I1~1]~ (2.11) 

For continuous time, if ~ e L2(,u), then 

l im 6-1gstE(~(~6) - ~/(~o)) 2] = 2  lim 6-~(~p, (1 -Ya)~,)  = 2]l~ll~ (2.12) 
6~0  6--+0 

and, in particular, ~, e L2(#)  belongs to H 1 precisely if the left-hand side of 
(2.12) is finite. 

Some functions in L~(#), not necessarily belonging to  L2(#), can be 
identified with elements of H a .  The key ingredient for this identification 
is the following result. 

k o m m a  2.1. L ~ ( / ~ ) n H ,  is dense in H 1 (under I1111), | 

Proof. Since B = - L  is Markovian, T, (L~(~t) )cL~(#) .  Therefore 
T,(L~(#) n HI) ~ L~(#)  n H 1. Since, for t > 0, Tt (L2(# ) )  c H 1 and Tt is 
strongly continuous on  L2(~) ,  L~176 is dense in L2(kt). The lemma 
thus follows from Lemma 3.2. (It also follows directly from the basic 
properties of Dirichlet forms.) I 

Now every function ~0 in L~(#) defines a linear functional gr on 
L~~ ~ Hi :  

( g ~ ,  0 )  - (~o*~, )  --  (,p, 4,) 

If g~ is bounded, we say, with a slight abuse of terminology, that 
~0 ~LI(#)  n H_I :  

L~(~t) n H_~ = {r ~ L~(#)I there exists a constant C < oQ such that 

[ (~o*~,)t ~< Cll~ll~ for all ~ ~ L~(U) n H,} 

Thus, using Lemma 2.1, if ~o ~ Ll(#) n H ~, g~ defines an element of H_!.  
[Note that ( L I ( # )  n H 1) n L2([t)  = L2(#)  n H _ ~ . ]  Moreover, we have the 
following result. 
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k o m m a  2.2. The map L I ( # ) n H _ I  ~ H  1, ~P~g~o is an injec- 
tion. I 

ProoL We must show that if g ,  = 0, then ~o = 0. Since T~ is strongly 
continuous on LI(#), it is weakly continuous on L~176 Therefore, since 
T , (L~176176176  it follows that L~176  is weakly dense in 
L~176 Thus, (~o*~O)=0 for all Ip~L~176 implies that ~o=0. I 

Note that T, acts, naturally, on LI(#) and, by extension from L2(#), 
on H_ 1. Nonetheless, T t on L I ( # ) n H  1 is unambiguous: Carefully 
distinguishing between ~0 e LI(#) n H_I and g ,  ~ H_I ,  we have, by duality, 
that 

Tt(LI(Iz)nH_I)~LI(#)nH_I and Ttg~=gr~ 

since 

(T~cp,~b)=(~p, Tt~,)-(g, ,T,~b)=(T,g~,tp) for ~b e L~ n H1 

By the preceding observation and Lemma 2.2, we obtain, using the 
spectral theorem, that for t > 0, Tt(LI(#) n H ~ )  c L2(#). Thus, since T, is 
strongly continuous on H 1 and on LI(#), we have proven the following 
useful result. 

L e m m a  2.3. L2(#) n H  1 is dense in L t ( # ) n H  1 in the norm 

It' 11-1 + II-II ~,,). I 

The following two lemmas describe the probabilistic significance of 
H 1. 

i . e m m a  2.4. Let ~, be a continuous-time Markov process reversible 
with respect to the (stationary) probability measure #. Then, for ~ ~ L2(#) 

lim t-~E~ ~o(~s)ds < 0o <=>~oeH i (2.13) 
t ~ o O  

Moreover, for any ~o e LI(#) n H 1, ~{) (P(~s) ds e LZ(P,) for all t > 0 and 

lim t 1E. ~(r =211~11~1=2 (~, Ts~)ds (2A4) 

Conversely, suppose ~0 ~ LI(#), ~ ~o(r ds e LZ(Pu) for all t > 0 and 

lim in f t - lEu  [ , - ~ o o  f~(~)ds 2]<0o 
Then q ~ L I ( # ) ~ H _ I .  I 
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ProoL For ~o~L2(#) 

= 2  ( ~o, T~ qo ) dr ds 

=2 (~o, ( 1 -  T,)q~)_, ds<<.2tll~oll2~ (2.15) 

The statements concerning ~o e L2(#) then follow from the spectral theorem. 
[Note that even if ~0 q} H , ,  the third term in (2.15) is naturally defined via 
the spectral theorem]. 

Now consider the map L2(p)c~H1 -+ L2(Pv) given by (p ~ 5/) q~({,) ds. 
By (2.15) this map extends, by continuity, to a bounded map on all 
of H i. This extension agrees with the usual integral on LI(#) c~ H_a, since 
the usual integral is continuous as a map from LI(#) to L'(P,) ,  and 
L2(#) ~ H_I is dense in LI(~) ~ H 1 in II" I[ --1 "~- tl" [ I L I ( # )  " Moreover, since 
the left-hand side and the third term of (2.15) are both continuous on H_ , ,  
we have that 

t-IE~ ~0(L)ds = 2 t - '  (~0, ( 1 -  g )  q,) ads (2.16) 

for all q~ e Ll(p)c~ H_I.  Passing to the limit t--* oo, we obtain (2.14), using 
the spectral theorem. 

Now suppose ~o satisfies the specified conditions for the converse. Let 
6 > 0, t = N& and let 

~oa = fo (T,e) &=E. o(L) dslFo 

Then ~o a e L2(#) and 

1 t 

= (N6) 'E,  q)({,) ds 
k =  1 " k 1)6 

= 2 ( N 6 ) - '  Z ~ (q)a, T,aq)a)+6 1E, q)(r 
k = l  i = 0  

(2.17) 

In this computation we have used the reversibility of the process and the 
"time reversal" symmetry of ~'o~O((s)ds. From (2.17) and the converse 



796 De Masi et  al. 

conditions we see, using the spectral theorem, that there is a constant 
C < oe such that for all 6 > 0 

M k--1 
6 1 lira 2M -1 ~ ~ (~o~, T~cp~)=26 ~(r 2 

M-~ ~ k= 1 i=0 

(2.18) 

where the middle term is defined, say, via the spectral theorem. 
Let ~eL~(/~)c~H~.  From (2.18) and the Cauchy-Schwarz inequality 

1(~o6, O)l ~< (~o6, (1 - T6) -~ ~o6)a/2(~,, (1 - T6)~)~/2<~ 6~/2C(0, (1 - T6)@) 1/2 

(2.19) 

Since Tt is strongly continuous on LI(#), dividing both sides of (2.19) by 
6 and letting 6-~ 0, we obtain, using (2.10), 

I(~o, r ~< cIIr (2.20) 

Therefore ~o ~ L~(#) n H 1. This completes the proof of Lemma 2.4. | 

We next consider the discrete time version of Lemma 2.4. The delicate 
point now is not that ~o need not be in L2(~), since H 1 ~ L2(#) in this 
case. Rather, it is that T 1 need not be positive and in fact may have - 1  as 
an eigenvalue. 

Lemrna  2.5. Let ~o, ~ ,  ~2,... be a Markov process reversible with 
respect to the (stationary) probability measure #. Suppose ~0 ~ L2(p). Then 

lim infn 1Eu ~o(~i) 
rt~o~ i 

and for ~o e H 

< ~ ~ ~0 ~ H 1 (2.21) 

lim n 1E~ r 

= 2 I1~ol121 - (~o, ~o) _= 2(~o, (1 - Z l ) - l f p ) -  (~0, (p) 

( I + T ~  ) 

ProoL Observe that 

n ~E~ 
i=O 

21 n--1 k 
= 2 n  i E E ((0, T ~ 0 ) - - ( q ) ,  ~o) 

k=0 i=0 

(2.22) 

(2.23) 
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If TI ~> 0, the limit n ~ 0o equals 

k=O 

and the result follows for this case. More generally, let 2 be the spectral 
measure associated with (p relative to the spectral decomposition of T,. 
Since [ITllt =1 ,  2 ( ~ \ [ - 1 ,  1 ] ) = 0 .  In terms of 2, the right-hand side of 
(2.23) becomes 

n_~l f l  k 
2n -1 2(dx) ~ x*-(~o, qo) 

k=0 1 i=0 

n--I I l l :  l _ x k + l  1 - - , ~ ( d x )  + (k + 1) ; t ( {1  } )  - (~o, ~o) = 2 n - i  ~ l - x  
k=0 

n--I 
=2({ - -1} )  n-1 Z E l - ( - 1 )  k+l]  

k=O 

+2n ln~1 I f1-  1--xk+l ] - - 2 ( d x ) + ( k +  1),~({1}) -(q, ,  ~0) 
k=O -1+ 1 - - x  

n-1 n--1 cO-- 1--X k+l 
2n 1 k j - -  2(dx) = X ( { - 1 } ) n - 1  Z [1-- (--1)k+1] q- 2 -I+ 1--X 

k=O =0 

+ 2 n - 1 ~  - - 2 ( d x ) + ( k + l ) 2 ( { 1 } )  - (~o , (p) (2 .24)  
= o  l - x  

Now, if qoeH_l ,  then 2 ({1})=0 ,  

fl )4dx) - - . <  O0 
-1 1 - x  

and passing to the limit n--+ oo on the third term of (2.24), using 
dominated convergence, we obtain 

fl ,~( dx) 2 ( { - 1 } ) + 2  - - -  (~o, ~o) 
--1+ 1 - x  

f l  2(dx) = 2  - - -  (~o, q,) 
--1 1--X 

I + T 1  "~ 
= 2((p, (1 -- T l ) - t~o ) -  (q~, cp)= cp, 1 - 7 ~  ~ q~) 



798 De Masi e t  al. 

Now suppose that 

i o-, ) 2] lira inf n--1E u ~ r162 < oo 

Then, since the first two terms on the right-hand side of (2.24) are bounded 
in n and the integrand in the third term of the right-hand side is monotone 
increasing, it follows that 

;[ 2(dx) < 
1 - x  

(and, in particular, 2({ 1 } ) =  0), so that r ~ H ~. This completes the proof 
of Lemma 2.5. | 

In applications, the state ~ of our reversible Markov process will 
represent the environment seen from a "tagged" particle. Since we wish to 
investigate asymptotic behavior for a fixed initial environment, as well as 
the behavior arising from averaging (with respect to #) over the initial 
environment, we employ the following notion of convergence. Let X ~ = 
(X~)t~>o, e > 0, be a family of E<valued processes defined on (O, Pu). Then 
we say that X ~ converges weakly in [t-measure (or probability) to the 
E<valued process Y, and we write X ' --* Y, if for all bounded, continuous 
functions F on D ~-D([0, c~), Ed) (equipped with the Skorohod topology) 

E~,[F(X~)Ir = ~) ~ E(F(Y) )  

as s ~ 0 in p-probability. Note that X ~ ~ Y in [t-probability implies that X ~ 
tends to Y in distribution. We similarly define the notion of convergence of 
finite-dimensional distributions in [t-measure, for which we write 

)(~ f ~ y 

We next state and prove two theorems. Theorem 2.1 applies to a 
discrete family, Theorem 2.2 to a continuous family. Although we shall rely 
primarily on Theorem 2.2 in the sequel, we state and prove Theorem 2.1 
because of its simplicity and paucity of assumptions. Since we are 
emphasizing simplicity, we set d- -1 ;  the reader will easily supply the 
generalization to d > 1. 

T h e o r e m  2.1. Let ~t be a (discrete- or continuous-time) Markov 
process which is reversible and ergodic with stationary probability measure 
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#. Let X (=XEo, lj) be an FE0,~l-measurable, square-integrable, antisym- 
metric random variable. Define 

X , = X o O ,  1, n = l ,  2 .... (2.25) 
E~-20 

X~=e ~ X ,  (2.26) 
n = l  

([-. ] = greatest integer function), and 

Let D be given by 

q) = Eu[ Xl Fo] (2.27) 

D = Eu(X 2) - 2(go, (1 - r , ) - lgo)  (2.28) 

[In (2.28), T 1 means T for discrete time.] Then both terms are finite. (The 
second term is the dual quadratic form associated with the self-adjoint, 
nonnegative operator 1 -  T~ and may be expressed in terms of a power 
series; see remark below.) 

Let WD be a Brownian motion with variance Dt = E(W2(t)) ,  starting 
from zero. Then X ~ ~ WD, weakly in/~-measure. Furthermore, 

lira Eu[(X~) 2] = D t  | (2.29) 
g ~ 0  

Remarks. 1. The second term in (2.28) can be interpreted as the 
"integral" of the "velocity autocorrelation function" (q) should be under- 
stood as the "velocity" of the process). If Tl is a positive operator in 
L2(#)--which is valid in continuous time or if the process can be imbedded 
in a continuous-time process--then the second term can be expressed as 

(go, (1 - T,)-Igo)= ~ (go, T]'go) (2.30) 
n = 0  

where the series converges absolutely. If T~ is not positive (e.g., for a two- 
state process for a certain parameter range), (2.30) is still correct provided 
the sum is interpreted in the Cesaro sense. In fact, only the presence of a 
point mass at - 1  in the spectral measure associated with go relative to the 
spectral decomposition of T 1 c a n  destroy the convergence of the series. (See 
the proof of Lemma 2.5.) 

2. At this point there is nothing which guarantees that D >0;  i.e., 
exact cancellation is possible in (2.28) (the second term is negative). For 
example, let i t  be a two-state process, R =  {-1 ,1} ,  and X = ~ - ~ o .  
Clearly, X, is bounded, so D = 0. See Section 3 for conditions implying 
D > 0 .  

3. The extra assumption X~L2(/~) is usually harmless when 
Theorem 2.1 is applied to discrete-time processes. However, for the con- 

822/55/3-4-21 



800 De Masi e t  al. 

tinuous-time case it is often difficult to check directly that X, is square- 
integrable. Therefore, in the next theorem (for continuous-time processes) 
we do not assume X, e L2(/~) at the outset. 

4. The condition X6LZ(/t) implies that go EL2(/~). However, for 
continuous-time processes (cf. Theorem 2.2) the analogue of go need not be, 
and in some interesting cases is not, in LZ(fl). 

Proof  of  Theorem 2. I. We first establish (2.29). Let 

go~- I=Eu[X,[  F.  1], n = l ,  2,..., goo=~p (2.31) 

M ,  = X , -  go,_ ~, n = l ,  2 .... (2.32) 

Then M, ,  n =  1, 2 ..... forms a stationary, square-integrable, martingale- 
difference sequence/v) Summing in (2.32) and computing the variance of 
the martingale on the left, we get (using stationarity) 

n E , [ M ~ ]  = E~ + E ,  gok 
k 1 0 

. n--1 

I (k~ - )21 [(i~_ 1 )2] I ~ x k  ] = E ,  1 Xk + E ,  = + 2E,  o gok go. _ k=l 
(2.33) 

In this computation we used that 

E~ gok = 0 (2.34) 
�9 1 k 0 

which follows from (i) the invariance of P ,  under R,/2, and (ii) the 
symmetry properties of the two sums in the integrand. 

Applying the Cauchy-Schwarz inequality to the third term in (2.33), 
we conclude that the first two terms are of order n and the third is of order 
n 1/2. It therefore follows from Lemma 2.5 that go ~ H I  and 

lim n-lE~, I( ~ X'k) 21 
n ~  k 1 

;] = E u ( M ~ ) -  l i m  n 'E u gok 
0 

= Eu(M~)+ Eu(go2o)- 2(go, (1--  TI) lgo) 

= E~,(X 2) - 2(9, (1 -- T1)-1 go) (2.35) 



Reversible Markov Processes 801 

from which (2.29) directly follows. The last equality in (2.35) follows from 
(2.31). 

Since q)E H ~ ,  we may invoke Dfirr and Goldstein I~2~ or Kipnis and 
Varadhan, (26) who show that under this hypothesis on cp one can write 

where N,, is another 
Eo = 0, and 

~n--I =N~ + E~-- E~ , (2.36) 

square-integrable martingale-difference sequence, 

n '/2E. ~ 0  in L2(#) (2.37) 

Since by (2.32) and (2.36) 

[~-2t] [e 2t] 

X~=~ 2 (Mn+CPn -1)=~ Z 
n = l  n = l  

(M, + Nn) + eEE,-2~ (2.38) 

the central limit theorem for X~ follows now from (2.37) and the central 
limit theorem for martingale-difference sequences. (7) That D is the diffusion 
constant follows now from (2.29), (2.37), (2.38), and the fact that the diffu- 
sion constant given by the martingale-difference central limit theorem is 
E((M 1 + N1)2). Without further hypotheses the invariance principle follows 
as well. (26) We postpone further discussion of the invariance principle to the 
proof of the next theorem. II 

T h e o r e m  2.2. Let i t ,  t ~ ~, and X~ (with values in ~a), indexed by 
the set of all closed bounded intervals I c[R, be a reversible, ergodic 
Markov process and antisymmetric family as specified above, and let 
X a = XEo, a 1. Assume that the mean forward velocity ~o exists; that is, 

1 
~im o ~ E~[Xa IF0] = q)(~0) (2.39) 

exists as a strong L ~ limit ( r  and has values in Na). In addition, 
assume that the martingale (46) 

fi Mt = X , -  ~o(~) dr (2.40) 

is square-integrable. 
Then (piE H ~ and the following hold: 

(i) Let the matrix D be given by 

Dij = Cij + 2(~o~, L -l~oj) = C o - 2 (q~i, T,~oj) dt (2.41) 
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1 ~< i, j ~< d, where C is the symmetric matrix determined by 

e r . C . e = E u [ ( e . M , )  2] (2.42) 

lim E~[(e. S t )  23 = (e ~- D .  e)t (2.43) 
g ---> 0 

. 

all i, j. 

4. 

(ii) If, in addition, q~ e L2(#) or, more generally, for some t-> 0, 

sup IX,[ EL2(p~) 
O < ~ t ~ t  

then X ~ --+ WD as e ~ 0, weakly in y-measure. | 

Remarks. 1. D is finite and nonnegative definite but may be 
degenerate. Strategies for proving D nondegenerate are discussed in Sec- 
tion 3. 

2. Ergodicity is needed only for the application (in the proof) of the 
martingale version of the invariance principle. If {, is not ergodic, one 
can decompose N into ergodie components and consider the restricted 
processes. 

Since ~o e H 1, the time integral in (2.41) converges absolutely for 

Since ~o e H_I ,  it follows from Eq. (2.16) that 

;] lira t - l E ,  e. ~0({s) ds = 0 
t ~ 0  

Therefore 

er .C  . e=E, [ (e  . m l )  2] = lim t-lE~[(e .m, )  2] = lira t 1E~[(e .X,) 2] 
t-+O t ~ O  

Now consider the weak LI(p~) limit 

lim t-lEu[(e. X,)2 t Fo] = e r . ~ .  e 
t ~ 0  

where ~ is symmetric. It follows from (2.44) that 

c,j= (g'0> 
which in practice is usually very easy to compute. 

(2.44) 

for all e ~ ~d (e r is the transpose of e). 
Let X~ = eX~ 2, and let W D be a Brownian motion with diffusion 

matrix D [Do.t=Eo(Wi(t ) Writ)] starting at zero. Then X ~  W o as 
~ 0, in y-measure. Furthermore, 
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5. Note that 

sup J ~< Jo [(P(r d'ceL2(p~') 
O<~t<~i 0 

if ~0 ~ L2(#), and since M~ is a square-integrable martingale, (46) 

sup ]Mt] ~Lz(Pu) 
O <~ t <~ t 

It therefore follows from (2.40) that if q~ e L2(#), 

sup jXt[ eL2(Pu) 
O <~ t <~ [ 

We also note that many of the conclusions of Theorem 2.2 follow from 
Theorem 2.1. However, we prefer to give a direct proof of Theorem 2.2, 
especially since the formula (2.41) for the diffusion matrix, which plays a 
crucial role in obtaining the estimates discussed in later sections, does not 
directly follow from Theorem 2.1. 

Proof. We begin by establishing that X t and the integrated drift are 
actually square-integrable. For this we exploit the symmetry properties of 
the variables. Writing 

f2 M,=X,-  ~o(~)&-A,-S,  (2.45) 

we note that A, is antisymmetric, S, is symmetric, and so 

A ,  = ( 1 / 2 ) ( M  r - M ,  o Rt/2) 

S, = -(1/2)(M, + M, o R,/2) 
(2.46) 

Thus (since P~ is invariant under Rt/2), both A, and S, are in L2(pu). 
It thus follows from (2.45), again using the symmetry properties, that 

E~(S~) + E~(XZt ) = Eu(M 2) = tE.(M2,) (2.47) 

The last equality follows since M, is a square-integrable martingale having 
stationary increments. We conclude from (2.47) that both E(S 2) and E(X}) 
are O(t). In particular, by Lemma 2.4, ~0 e H 1. 

It similarly follows from (2.45) that 

EuE(e.Xt) 2] =tEu[(e.M~)2]-Eu e.~o(~s)ds (2.48) 
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Thus, again using Lemma 2.4, 

lina t-IE,[(e �9 X,) 2] = e r. C. e + 2(e- ~0, L-~e �9 q~) 

which is equivalent to (2.43). 
We now begin the proof of the convergence of X ~ to the Brownian 

motion WD. The idea is to replace the drift term S, by another square- 
integrable martingale (plus a negligible error term) following a line of 
argument given in ref. 26. We require a generalization of a result of Kipnis 
and Varadhan, (26) which we interrupt the proof of Theorem 2.2 to state. 

T h e o r e m  2.3. Let ~,, t~ ~, be a Markov process reversible and 
ergodic with respect to the (stationary) probability measure /z and let 
~0 e L I ( # ) n  H_~ with values in Rd. Then 

e 2t 

e fo ~p(~)dz=eN,~ 2+Q~(t) (2.49) 

where N, is a square-integrable, ~d-valued martingale (with respect to the 
filtration F,) with stationary increments and (i) 

lim E~[Q'(t) 2] = 0 (2.50) 
e ~ 0  

and (ii) if q~ e L2(#) or, more generally, if for some t-> 0, 

sup q~(~) e g~(P~) 
O<~t<<.i 

then 

lira Pu[ sup kQ'(t)j > ~ / ] = 0  (2.51) 
e ~ O  O~<t~<r  

for all r and r/> 0; (iii) furthermore, 

I( ;2 l imEu e e . ~ o ( ~ ) &  =tE,[(e.N1)2]=t211e.~olt2_l | (2.52) 

Remark. Without loss of generality we may assume that the 
martingale N, appearing in Theorem 2.3 has paths in D([0, ~ ) ,  ~d); see, 
e.g., ref. 47. 

To complete the proof of Theorem 2.2, we write, using Theorem 2.3, 
~ - 2  t 

X~=e l ~ tp(~)dz +eM~-2,=el~i~ 2,+Q~(t) (2.53) 
ao 
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where Mt = N, + M,  is a square-integrable martingale (with respect to Ft) 
with stationary increments and paths in D([0, oo), Ra) and Q~ ~ 0 in the 
appropriate sense. Note that it follows from the condition 

sup IX, I ~ L2(p~) 
O<~t<~t 

in Theorem 2.2(ii) that the condition 

sup f~ ~o(~) dr eL2(Pu) 
O<~t<~[ 

in Theorem 2.3(ii) is also satisfied; see Remark 5 following the statement of 
Theorem 2.2. 

Since ~-t is ergodic, we may invoke the invariance principle for 
d-dimensional square-integrable martingales ~/, with stationary 
increments,(7'22) 

M~ =- eM~-z, --, Wo( t )  (2.54) 

in the sense of standard weak convergence for processes with paths in 
O ( E O , ~ ) , ~ a ) ,  where e r . D . e = E u [ ( e . M 1 ) 2 ] .  By (2.50), (2.53), and 
(2.43), D in Eq. (2.54) is given by (2.41). The convergence X ~ ~ W D in the 
standard sense follows easily--convergence in finite-dimensional distribu- 
tion from (2.50) and weak convergence from (2.51). Moreover, this 
convergence can be strengthened to the convergence in #-measure of 
Theorem 2.2 by observing that in the martingale case there is an "a.s." form 
of the invariance principle: For any "ergodic" square-integrable martingale 
~/t (with respect to F,) with stationary increments and paths in 
D([-0, ~ ) ,  Ra), a.e. martingale arising from hT/t via formation of regular 
conditional probabilities given F0 converges weakly to WD under the usual 
e-scaling 37/~ = eAT/~-2 t as e -~ 0, with e r .  D .  e = E[ (e .  37/1)2 ]. This follows 
from Theorem 5.4 of Helland (22) and the ergodic theorem. (Because of the 
form of the z-scaling, the usual condition on the size of the jumps (z2) is 
easily verified using the ergodic theorem.) In particular, for every bounded, 
continuous function G on D([-0, ~ ) ,  ~a) 

lira E[G(M~)]Fo] = E[G(WD)] ,  a.s. (2.55) 
~ 0  

The convergence of X~ to W D in #-measure follows easily. This completes 
the proof of Theorem 2.2. | 

Proof  of  Theorem 2.3. It will suffice to consider the one-dimensional 
case, d =  1, since the martingales which arise are in fact all martingales with 
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respect to the same filtration F~. In particular, if ~o has values in Na, d > 1, 
the martingales arising from each of the components q~ of ~o together form 
an Re-valued martingale. 

For 2 > 0 define 0h by 

f tph = e htTtq) dt 

Oh �9 LI(#) and satisfies 

2~.kh -- [,0h = ~P (2.56) 

and 

lim 2 ( ~ ,  ~k~) = 0 (2.59) 
2 ~ 0  

where [, is the strong generator of T t acting on LI(#). We claim that 

~ - (2 - L)-1~o = (2 - L)-lrp (2.57) 

i.e., that g , ; =  ( 2 - L )  15~ = (2_L) - lq )  [where L is the canonical map 
H1 ~ H_I arising from the L2(#) generator], so that the spectral theorem 
may be used to analyze Oh" Note that by the spectral theorem 
(2 - L)-l~o e H_I .  The claim follows by observing that for ~ e L~176 n H1, 
using the spectral theorem, 

= f :  e ~t(rt(p, ~t)dt 

= f :  e-ht(~o, T,O) dt 

= (q~,( ,~-g)-10)= ( ( ,~-L)  1~o, O) 

Since rp e H 1, we have that 0o -= ( - L ) - l q  ~ e HI and, by the spectral 
theorem, we may associate with q~ a spectral measure v~o relative to the 
spectral decomposition of - L  which satisfies ~ ve(dx) /x< oo. It follows 
easily that 0h e L2(#), 

lim IlOh -- 0O111 = 0 (2.58) 
h ~ O  
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We now obtain the decomposition (2.49). We have for every 2 > 0 

f~ q~(~) dr = U~" + R~" (2.60) 

where 

and 

N~ -- ~.(~,) - @~.(~o)- 2 ~ ( ~ )  dr + ~p(r dr (2.61) 

R~ = -Ox(r + Oz(r + 2 0).(r & (2.62) 

By (2.56), N~ ~ is a martingale, and it follows from Lemma 2.4 and the fact 
that 0h ffL2(, tt) that it is square-integrable. Moreover, N z is Cauchy in 
the space of L2-martingales as 2--+0: Since O~eL2(#), it follows from 
stationarity, (2.58), and (2.12) that 

E~[(Nr - Nr 2 ] = t lim _1 Eu[(N~ - N~') 2 ] 
~ O T  

= 2t II@~- ~b~,l]~ m:-~o ~ 0 (2.63) 

Thus there exists a square-integrable martingale N,, with respect to the 
filtration F,, such that 

N ~ ~ N (2.64) 

in the space of L2-martingales. Thus, for any 2 > 0, 

fo q~(~) dr= N~ + (U~, - X,) + R ~ -  Ut + Q~,, (2.65) 

and introducing the scaling parameter e > 0, putting 2 = ~2 and 

Q~(t) = eO~2 ~-2, (2.66) 

we arrive at the decomposition (2.49). 
We now verify the properties (i)-(iii) of this decomposition. Since 

[Qa,,l<~[(Nr162 (2.67) 

(2.50) follows easily from (2.64) and (2.59). Then (2.52) follows from (2.50) 
and Lemma 2.4. 
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Finally, to verify (2.51), we first note that since the left-hand side of 
(2.65) has continuous paths and Nt has a modification with paths in 
D([0, oe), ~) (see, e.g., ref. 47), it is sufficient to verify (2.51) with the 
supremum taken over a dense set. Thus, we may conclude the proof by 
establishing that for all t /> 0 

lira P , [  sup Q~)/x/-t > r/] = 0 (2.68) 
t--+oo O ~ s ~ t  

s r a t i o n a l  

where Q~0, i = 1, 2, 3, 4, are the terms on the right-hand side of (2.67) with 
~ = t  1. 

Verification of (2.68) for i =  2 and i =  4 just involves more or less the 
same L 2 estimates of Q~2) and Q~4) required for (2.50), while (2.68) for i =  1 
follows from (2.64) and the Doob-Kolmogorov inequality. (46'47) The 
analysis of (2.68) for i-= 3 is more delicate. Here, as in ref. 26, we appeal to 
the following result. 

I . emma  2.6 (Kipnis and Varadhan(26)). Let ~ ,  t e R, be a Markov 
process reversible with respect to the probability measure #, and let 

e L2(#) c~ H1. Then 

P~[ sup IO(~s)l>~l~B~l-~{(~,~)+tllOIl~} v2 I 
O<~s<~t 

s r a t i o n a l  

This 1emma is exploited as follows. We write, for 2o > 0, 

and apply the lemma with ~ = Ot_l - ~o  and t/replaced by r/x/-t to obtain 
that 

lim sup P,[ sup 
t -* oo O <~ s <~ t 

s r a t i o n a l  

By (2.58), the proof may be completed by taking 2o--' 0 provided we can 
establish (2.68) with i =  6 for any fixed 2 o > 0. To do this, we note that 

sup 10;.0(~s)l ~< sup ~(") (2.69) 
O<~s<~ t n = O ,  1 , . . . , [ t / []  

s r a t i o n a l  

where 

~(n) = sup I~O;.0(~s)] (2.70) 
n{<~s<. . (n+ 1)t- 

s r a t i o n a l  
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By (2.61), 

{ 

+ sup IN~~ sup ~0(g~) (2.71) 
O~<s<~i O<.s<~i 

s r a t i o n a l  s r a t i o n a l  

so that choosing { as in Theorem 2.3(ii), we have that ~(~ LZ(Pu). It then 
folows, using stationarity and (2.69), that 

e~,[ sup ]~).o(~)t/tl/z>q] 
O<~s<~t 

s r a t i o n a l  

<~ ([t/{] + 1) PuE~(~ > tv2rl] 

<~ [([tlt-] + 1)/(tr/2)] f dP.((/(~ 2 ~ 0 (2.72) 
{ ~(0) > #/2~ } 

as t ~ oe. This completes the proof of Theorem 2.3. | 

Remarks. 1. Theorem 2.3 is established in ref. 26 under the additional 
hypothesis that (p e L2(#), which immediately implies the square- 
integrability of the time integral of (p and thus of N~. However (see 
Lemma2.4), the condition that q~EH ~ itself guarantees this square- 
integrability. 

2. One might expect the integrated drift S, = ~ ~o(~) dr to provide a 
good indication of the behavior of X, as t ~ oo. However, these processes 
are asymptotically independent. In fact, by (2.40) and Theorem 2.3, 

(X~, S~) = (N~ + M~, N;) + (Q~(t), Q~(t)) =- N~ + Or(t) 

where S~ = eS~ 2, N~ = eN~ 2, and M~ = eM~ 2 t. Since N~ = eNd-2,, where 
N,=-(N,+Mt, Nt) is a square-integrable E2<valued martingale with 
stationary increments, Q~(t) is asymptotically negligible in the sense of 
(2.50) or (2.51), and E~[(e. X~)(O. S~)] - -0  by symmetry, we have that the 
processes X~ and S~ are asymptotically independent Brownian motions. 

Theorem 2.4. With the hypotheses and notation of Theorem 2.2, 
let St=S'oq)(~)& and S~=~S~-2,. Then (X ~, S ~) ~ (Wn,  W**) as e ~ 0 ,  
in/~-measure, where W D and W** are independent Brownian motions with 
D given by (2.41) and (2.42) and D* by D * = - 2 ( ~ o i ,  L-l~oj). If the 

hypothesis in Theorem2.2(ii) is satisfied, the convergence " ~ "  can be 
strengthened to "--.," weak convergence in #-measure. 
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3. BOUNDS ON THE DIFFUSION MATRIX  

In the models treated in subsequent sections we will be interested in 
bounds on the matrix D, the diffusion matrix of the limiting Brownian 
motion. Typically we cannot compute D explicitly (exceptions are random 
walk and diffusion in a random environment in one dimension), so we 
resort to finding upper and lower bounds. Of course, a lower bound is 
more interesting theoretically than an upper bound--we already know that 
D is finite, but not that it is nondegenerate. 

A simple upper bound always follows by dropping the (negative- 
definite) second term in (2.28) or (2.41): as a matrix, D ~< C. In examples 
one can usually compute C explicitly, as the definition of the model and the 
choice of Xt usually specify the quadratic variation of Xt as well; see 
Remark 4 after Theorem 2.2. Note that unless r (i.e., Xt is already a 
martingale), the second term in (2.28) or (2.41) is not zero, so the 
inequality is strict. 

We discuss lower bounds on D in the continuous-time case. We have 
written our formula for D in terms of a quadratic form, and in fact, as we 
have seen, quadratic forms (Dirichlet forms and their duals) are natural for 
the study of reversible Markov processes. Now it often happens that the 
quadratic form 

QOP) ~ IIO'[l~ 

associated with our process has a decomposition 

Q=Q~ +Q2 (3.1) 

where Q1 and Q2 are closed, symmetric, nonnegative quadratic forms. Such 
a decomposition corresponds to a sum (let A = - L )  

A = A  1 + A  2 (3.2) 

where A1 and A2 are self-adjoint, nonnegative operators on  L2(/t),  and 
(3.2) is understood "in the form sense," i.e., (3.1) holds on 

D(Q)= D(Q1)ca D(Q2) 

where Qi and D(Qi)=  HI(Ae) are the quadratic form and form domain of 
Ai, respectively. [Sometimes we know (3.1) only for a subdomain of D(Q) 
consisting of "nice" functions on which the quadratic forms Q~ are defined. ] 
In fact, one can always define the "form sum" (3.2), provided 
D(Q~) ca D(Q2) is dense in the Hilbert space; - L  is the operator associated 
with Q. (Q is automatically a closed, symmetric quadratic form, and 
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furthermore is Dirichlet if the Qi are Dirichlet, implying that L is a 
Markovian generator.) 

In typical applications the Markov process is a composite of different 
motions, each reversible with respect to the same measure #, and this is 
reflected by a corresponding decomposition of the quadratic form. For 
example, our process might have jumps or Brownian motions in different 
directions. The "environment process observed from the tagged particle" 
considered in subsequent sections often has a decomposition into the 
"motion of the environment" and the "motion of the particle." Yet another 
decomposition is used in Section 5. 

If in such a decomposition of the process into several motions, one of 
these motions yields the same (p and ~g (or C) as the full process, we obtain 
inequalities (lower bounds) on the diffusion matrix of the limiting 
Brownian motion using Eq. (2.41) and Lemma3.1 below. Often these 
inequalities have interesting probabilistic meanings, relating diffusion con- 
stants for different processes. For example, D is typically increasing with 
the dimension of the motion. For the motion of a tagged particle, we have 
the following quasitheorem: The diffusion matrix for a particle moving in 
a random, dynamic environment is greater than that for the "same" particle 
moving in the "frozen" environment. These statements are made precise in 
Sections 5 and 6. 

We give here several lemmas of a technical nature which are useful for 
obtaining the inequalities. The basic idea is that when one can establish 
(3.1) on a suitably large class of functions (a "form core" of the generator), 
the inequality Q ~> Q1 implies the reversed inequality for the dual quadratic 
forms. 

For self-adjoint operators 0 ~< A ~< B on a separable Hilbert space H 
(with norm ]j. 11), it follows directly from the definition of If J]-1 as a dual 
norm Esee Eq. (2.9)] that B -1 ~< A-1. More precisely, for any self-adjoint 
operator B>~0 on H, we may write (~, BO) for tlq/]l 2 [the square of the I,B 

norm on HI(B)],  (~0, B l~o) for ]]q~f]2 [the square of the norm on --1,B 

H I(B)], and for 0 e H set flOlJ +I.B= ~ when it is not otherwise defined 
[so that (~, BO) and (0, B-1O) are defined for all ~ e H].  We then have, 
by (2.9), that for ~0 e H 

I(~, O)l 2 
(q~, B-lq~)= sup (3.3) 

Here, and in similar formulas, we set 0 /0=0,  a/O= ov for a > 0 ,  and 
a / o v  = O. 

It follows immediately from (3.3) that if A~>0 and B>~0 are self- 
adjoint operators on H satisfying 

(tp, A~p)<~(O, BO) for all 0 e l l  
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then for all qo s H 

(q), B-l(])) ~ (q0, A -lip) (3.4) 

Now suppose a subspace D c H n  H~(B) is dense in H~(B) under 
11 "l[1,B. Then, since for qosHc~H I(B) 

sup I(rp' 0)l sup 1(% 0)12 = sup 

we have that for ~ o ~ H n H  ~(B) 

Thus, if for all ~9 e D 

(q), B 1~0)-~- sup I(% 0)1 2 (3.5) 

(~, A~O) ~ (~k, BO) (3.6) 

I(~0, O)l 2 
~< sup - -  - ((p, A-l~p) 

~ /~  (~b, A0) 

then for all c p ~ H n H  I(B) 

(~o, B 1~o) ~< sup 
O~D (~, AO) 

We call a subspace D c H n H I ( B  ) dense in Hi(B) under [I'll1,8 a 
form core for B. This terminology does not quite agree with the conver- 
tional, which refers to density in H n  H1 in II 11 + II" [I 1, or, equivalently, to 
density in HI(I+B) (under l/"lll,l+B)- We remark that if D is a form core 
in the conventional sense, then if (3.6) holds for all ~ ED, it holds, in fact, 
for all ~, e H. 

Now suppose further that A and B are Markovian (i.e., are the 
negat ive L 2 generators of a probability semigroup). Then, as explained in 
Section 2, we have a canonical embedding L~(kt)n H I ( B ) c H I ( B )  and 
(~o, B ~0) is defined for all q~EL 1. l i t  is oe for ~o s L I \ H _ I ( B ) . ]  Moreover, 
as we shall now explain, the conclusion (3.4) can be extended to ~o e L ~. 

First, observe that if (3.6) holds for all ~keH, then H n H I ( B ) c  
H n  H~(A) and with any linear functional g e H  ~(A) we may naturally 
associate a linear functional ~ s H  I(B); merely let ~ be the continuous 
extension to Hi(B) of g restricted to HnHI(B) .  It then follows trivially 
that 

(3.7) (~, B-I~)~< (g, A-~g) 

for all g e H I(A). In particular, for ~o EL 1, we have that 

(~o,B lop) ~< ((p, A-l~o) 
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since (09, A-a09)< oo implies that 09 defines a linear functional 
g= g~ e H~(A) which is associated with the linear functional ~ H_a(B) 
also defined by 09. 

Now suppose that (3.6) holds for all ~ in a form core D for B. Then 
with any geH_~(A) we may still associate ~,eH_a(B), by extension to 
Ha(B ) of the restriction of g to D. Moreover, 

(~ ,B- l~)= sup t (g ,r  2 sup I(g, r sup I(g, r 
~,1(~  ( ~ , ~ )  r ( r  ~ I ,  (~,Ar 

~< sup I(g, O)[_______~ 2 _ (g, A -ag) 

Suppose that opeL 1, (09, A a09)< o% and D c L  ~176 Let g =  g~o~Hl(A ) be 
the linear functional defined by 09 and let ~,cHa(B) be the linear 
functional associated with g. Then, since (~, ~ ) =  (09, ~r for all ff c D, it 
follows that if 09eLac-~H I(B), 

(~, i f )=  (09, r  for all ~ L ~  ~ H a ( B )  

Thus, if q9 e L 1 c~ H ~(B), ~ is defined by 09 and we may conclude that 

(09, B-a09) ~< (09, A -a09) 

We summarize the preceding discussion in the following result (see 
also Faris, (a3) Proposition 6.1). 

Lemma 3.1. Suppose A and B are nonnegative, self-adjoint 
operators on a Hilbert space H, and let D be a form core for B. Then: 

(i) If (O, AO)<~(~b, BO) for all ~beH, it follows that (09, B 109)~< 
(cp, A -109) for all 09 e H. 

(ii) If (O, AO)<<,(O,B~) for all 0 e D ,  it follows that (09, B a09)~< 
(09, A-a09) for all 09eH~H1(B ). 

If, in addition, A and B are Markovian, (i) and (ii) can be 
strengthened to: 

(iii) If (~,, AO)~< (~, BO) for all ~ e l l ,  if follows that (09, B-109)~< 
(09, A -a09) for all 09 e L a. 

(iv) If D e E  ~~ and (O, AO)<~(O,B~) for all ~r it follows that 
(09, B-a09) ~< (09, A -a09) for all 09 ~ L a ~ H_I(B).  

Finally, if D is a conventional form core for B, then (i) and (iii) still 
hold when "~ e H "  is replaced by "lp ~ D." | 
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Note that whenever B is Markovian, L ~176 c~ H~(B) is a form core for B 
by Lemma2.1. Since L ~ is invariant under the semigroup T~=-e - ~  
generated by B when B is Markovian, the preceding observation is, in fact, 
a special case of the following lemma, whose operator version is widely 
employed. This lemma usually provides the easiest way to check that a set 
is a form core. 

Lemma 3.2. Let B be a nonnegative, self-adjoint operator on the 
Hilbert space H and let D c Hc~ Hi(B) be a subspace dense under If "ll in 
H a - (Ker B) • the orthogonal complement in H of Ker B. Suppose D is 
invariant under the semigroup T~ - e Bt generated by B, TtD c D. Then D 
is a form core for B. If, in addition, D is dense in H under II" II, it is a 
conventional form core for B. | 

Proof. ( J s>oTsH • is dense in HI(B ) under I]llx-IIll~,~. Since 
Be-"<~ (e-Z/t)L we have that T~D is a dense subset of T~H ~ under II 11 ~. 
Therefore, (J,>0 T~D is dense in Hi(B) under IL" II 1. Hence, by invariance, 
so also is D. The last statement of the lemma follows by applying the 
preceding part of the lemma to I + B. | 

4. RANDOM WALK IN RANDOM ENVIRONMENT 

Random walks in a random environment have been widely studied; 
see, for instance, refs. 3-5, 23, 25, and 44. For  review papers we refer to 
Papanicolaou. (37.38] 

In this section we apply the general theorems of Section 2 to establish 
diffusive behavior for a random walk on an inhomogeneous lattice. To be 
definite, the model is the following. In the d-dimensional lattice Zd, to each 
bond (x,x+e),  xcT/a, l e ] = l ,  associate a random rate ae (x)=  
a_~(x + e)>~ 0 with some distribution #. We denote by 1I the space of the 
environments: 

Z~=~(zd)- -  - { a e : 2 U ~  I-0, ~ ] ,  lel = 1} (4.1) 

Sometimes we will write ai(x)=ae,(x), where ei is the unit vector in the 
positive i direction. Let # be a probability measure on N satisfying: 

HI.  # is translation invariant; i.e,, for any measurable set A o N ,  
/~(SxA) = p(A), where Sx denotes the translation by x ~  77 a [see (4.8c) for 
the formal definition]. Furthermore, # is ergodic. 

Given a configuration a ~ R with distribution #, put a particle at the 
origin and let it move to its nearest neighbors with rates a. That is, define 
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the jump process Xt(a), t ~ ~, as the Markov process with state space 71 d 
and transition probabilities defined by 

P[Xt+h(a) = x + e]Xt(a) = x] = ae(x)h + o(h) 

P [ X t + h ( a ) = x l X t ( a ) = x ] = l -  ~ ae(x)h+o(h ) 
lel = 1 

and 

(4.2a) 

(4.2b) 

Xo(a) = 0 (4.2c) 

The problem we are interested in is the convergence to a Brownian 
motion of the rescaled process eX~-2t(a) as e ~ 0. 

The case in which # has support on the set of configurations 

R([bl, b 2 ] ) = { a ~ R : a e ( X ) ~ [ b l , b 2 ] , V x 6 g  a, let = 1}, 0 < b l < b 2 <  ~ 

has been widely studied; convergence to Brownian motion has been proven 
in refs. 5, 15, and 29. 

One natural question is whether it is possible to relax this condition, 
allowing both unbounded and zero rates. This, as we shall see, involves 
two different kinds of difficulties: the unboundedness is somehow a techni- 
cal problem (see below), while zero rates will imply a nontrivial problem 
in bond percolation. 

If the rates are unbounded, one even has some difficulty in proving the 
existence of the process, that is, in excluding explosion. We assume 

(ae(O)) =--#(a~(O))< (4.3) 

Condition (4.3) turns out to be the "minimal" requirement for existence. In 
fact, one can given examples in which the first moment does not exist and 
explosion does occur. Even assuming (4.3), it is not straightforward to 
see that the mean squared displacement of the particle is finite, i.e., 
E(Xt(a) 2) < o0, though it is true. Using the general theorems of Section 2, 
we establish convergence to a Brownian motion under hypothesis (4.3). 

The case in which the distribution/~ gives positive probability for the 
rates to be zero is a deeper problem. The general theorems will give 
convergence to Brownian motion, but one has to prove that the diffusion 
matrix is not degenerate, and this will be true only under certain hypo- 
theses and will require a nontrivial argument. L e t  us for the moment 
assume that 

P - # ( { a e ( 0 ) > 0 } )  < 1 (4.4a) 

822/55/3-4-22 
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and that 
# is a product measure (4.4b) 

Given a ~ N, define 

x ~ y if 3x = x l ,  x2,..., xn = y with [ x i -  xi_ 11 = e i i  and aei_~(x ~_ 1) > 0 

(4.5a) 
and 

W(x, a) = {y~ 7/J[ y ~  x} (4.5b) 

We call W(0, a) the cluster containing the origin. It is then clear that 
for the configurations a ~ R  for which [W(0, o)[ < ~  (here IA[ denotes 
the cardinality of the set A), the position Xt(a) of the particle will be 
bounded for any t. So the minimal condition one has to require is that 
[W(0, a)l = oo. It is well known (24) that there exists a critical probability 
pc(d), depending on the dimension d, such that 

pc(l)  = 1 (4.6a) 

Op-N{a:  IW(0, a ) l = ~ } ) > 0  iff p>pc(d) (4.6b) 

So one has to require that d>~ 2 and p is such that p > pc(d). Even under 
these hypotheses it is still not so obvious that the particle walking on the 
infinite cluster will converge under the scaling limit to a Brownian motion. 
This seems to depend very much on the geometry of the cluster; but 
computer simulations, and physical considerations, (35) predict a diffusive 
behavior no matter what the geometry of the cluster is. 

In fact, we prove this result in dimension d =  2 for p > 1/2, 1/2 being 
the critical probability in two dimensions. In d >  2 dimensions the results 
we have are less satisfactory; see Remark 4.16. 

To separate the difficulties, we proceed as follows. In Section 4.1 we 
consider the unbounded case, while in Section 4.2 we prove the diffusive 
behavior for the random walk on the infinite cluster of the bond percola- 
tion problem in two dimensions. 

4.1. Case of  U n b o u n d e d  Rates 

In this subsection we consider the case in which p (i.e., the distribution 
of the rates) satisfies the following conditions: 

C1. # is translation invariant and ergodic. 

C2. ( a e ( 0 ) ) ~ <  ~ ,  where ( - ) u  denotes expectation with respect to # 
(sometimes we simply write ( - ) ) .  

C3. p--~({ae(O)>O})=l.  
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In most of the statements condition C3 is not really needed, but, as we 
pointed out before, we will always assume it in this subsection to avoid 
confusion. 

To use the general theorems of Section 2, consider the process 
describing the environment as seen by the traveling particle (see Definition 
4.1 below). The generator L of this process is formally given by 

L f ( a ) =  ~ a e ( O ) [ f ( S _ e a ) - f ( a ) ]  (4.7) 
lel  = 1 

and the position X~(a) of the traveling particle is given by the algebraic 
number of shifts of the environment during the time interval [0, t] [see 
Eq. (4.12) for the formal definition of X~(a)]. Using the translation 
invariance of the measure #, one checks, formally, that 

kt(gLf)  = # ( f L g )  

Without further assumptions it is not, however, directly clear that the 
generator L is, in fact, self-adjoint on L2(/~), from which reversibility would 
follow. Rather, we directly establish the existence of this process and rever- 
sibility and ergodicity with respect to the measure /~ (obtaining the self- 
adjointness of L as a consequence). Afterward the invariance principle as 
well as bounds on the diffusion matrix are established. 

The basic process in our analysis, which plays the role of ~ (in 
Theorem 2.2), describes the environment seen by the traveling particle. 

Def in i t ion 4.1. The Envi ronment  Process 

(i) The Discrete Process. We define a discrete Markov process 
a ( k ) =  {ae(X, k), x e Z  d, let = 1}, k e N ,  with state space R, by giving the 
transition probabilities p(a, a'), a, a' ~ R, in the following way: 

p(a,a,)= ot(a)-lae(O) iff a ' = S _ ~ a f o r s o m e e ,  le]=l  
(4.8a) 

otherwise 

where 

o~(a)= ~ ae(O) (4.8b) 
I <  = 1 

and S e a is defined by 

S_ea = a*, a~(x) = ae,(X + e) Vx ~ •d Ve', 

We will write 

p f ( a ) =  ~ p ( a , S  e a ) f ( S _ e a  ) 
]el = i 

leVI = 1 (4.8c) 

(4.8d) 
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Furthermore, we define the discrete process X(k), k e N, with state space 
7/~, by setting 

X ( 1 ) = x  iff a(1)=S_xa(O) (4.8e) 

X(0) = 0 (4.8f) 

and 
k 

X(k)= ~ X(1).0i_ 1 (4.8g) 
i = 1  

If we wish to focus on the process starting from the environment a, we 
write X(a, k). 

(ii) The continuous process. The Markov jump process Xt(a) we are 
interested in, with transition probabilities given by Eq. (4.2), is defined 
via a random time change of the discrete process. We follow the standard 
construction (ref. 8, Chapter 15, Section6). For n~N,  a ~ R  construct 
independent exponential random variables rn(a) with mean c~(a) [see Eq. 
(4.8b)]. Let these exponential variables be independent of the process a(k), 
k ~ N, constructed so far. %(a) will serve as the waiting time in the state a 
after the nth jump. Then, we define random variables as follows: 

Ro=0,  e n = r n  l ( a ( n - 1 ) ) + - - - + % ( a ( 0 ) )  (4.9a) 

n*(t)=n iff R , ~ t < R , + I  (4.9b) 

The continuous-time Markov process a(t), t ~ ~, is defined by setting 

a(t) = a(n*(t)) (4.10) 

Note that the generator L of this process is formally given by 

L f ( a ) = - c ~ ( a ) ( I - p ) f ( a ) =  ~ ae(O)Ef(S_ea)- f (a)]  (4.11) 
let = t 

where I is the identity and p is defined in (4.8). 
The variable X~ we are interested in, defined by 

Xt=X(n*(t))  (4.12) 

is the algebraic number of shifts of the environment during the time inter- 
val [-0, t]. Thus, Xt(a) = X(a, n*(t)). 

Note that the function t ~ n*(t) is nondecreasing; following 
Billingsley (7) (Chapter 3, Section 3), we call n*(t) the random time change 
function. We denote by P ,  (resp. Pa) the law of the process a(t), t ~ ~, with 
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starting measure # [resp. with a ( 0 ) = a  a.s.], and by E ,  (resp. Ea) the 
expectation with respect to Pu (resp. Pa). 

R e m a r k  4 .2  

(i) Note that (4.8e) is meaningless if the rates a are periodic with 
period less than or equal to two in a coordinate direction. Our theorems 
apply also to this case, provided we suitably enlarge the state space. We 
avoid giving more details here. 

(ii) The process a(t) and the process Xt are well defined if and only 
if the random time change function is well defined, or, equivalently, if 
explosion is excluded. In Lemma 4.3 below we prove absence of explosion 
as well as reversibility and ergodicity of both the discrete and the con- 
tinuous processes defined so far. 

Lamina 4.3. Let p* be the measure on N defined by 

kt*(da) = <or(a)> -1 ~(a) #(da) 

Then the following hold: 

(i) 
ergodic. 

(ii) 

(4.13) 

The discrete process with starting measure /~* is reversible and 

The following relation holds: 

lira -1 n*(t)  = <~(a))  a.s. (4.14) 
t ~ o o  t 

(iii) For any t > 0 fixed 

Pot{  sup 
0 ~ z ~ < t  

IX~(a)J < c~} ]  = 1 a.s. (4.15) 

(iv) The continuous process with starting measure p is reversible and 
ergodic. | 

Proof. (i) Reversibility follows from the following easy calculation: 

I~*(da) p(a, a') = #*(de ' )  p(a',  a) 

To prove ergodicity, let A c R be an invariant set, i.e., 

p(a, A )  = 1, Va e A 

Then, by definition of p [see Eq. (4.8)], A is translation invariant. Since p 
is ergodic with respect to space translations (see condition C1), /~(A) is 
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zero or one, and therefore as a consequence # * ( A ) = 0  or 1, #* being 
absolutely continuous with respect to #. 

By part( i) ,  the process {a(k), %(a(k)); k e Z }  is ergodic; (ii) 
therefore 

n--I 1 
lim -1 ~ r~(a(k)) = lira - Rn = E~.[zo(a)] 

n ~ o o  t ' l  k = 0 n - ~  o~ n 

= f d#*(a) c~(a)-I _ 1 ( e ( a )~  #-a.s. (4.16) 

Equation (4.16) proves Eq. (4.14), since by definition [see Eq. (4.9)], 

n*(t)/Rn*(,)+ 1 <<- n*(t)/t  <<. n*(t)/Rn.(o 

(iii) Equation (4.15) follows from (ii): in fact, 

{Ix, I > c} = {n*(0 > c} 

(iv) Since, by (4.3), the environment process has rates r(a, db) 
satisfying S~• #(da)r(a,  db)< oo and since by the translation invariance 
of # and the bond form of the rates we have the evident symmetry 
#( da ) r( a, db ) = #( db ) r( b, da), reversibility follows easily. 

We also give a more concrete verification of reversibility: We prove, in 
fact, that the continuous process a(t) is "reversible for any fixed initial 
configuration." More explicitly, we prove that for any a, b ~ 1f such that b 
is a translate of a, 

Pa[{a(t)  = b}]  = Pb[{a(t)  = a}]  (4.17) 

Let to - -0 ,  r l ,  ~2 .... be the times of jump of the process a(t) and let n*(t) 
be the number of jumps up to time t [see Eq. (4.9b)]. Let a=bo ,  bl,.., be 
a fixed trajectory for the process a(t). Then 

Pa[ {a('Co) = bo,..., a(z,) = b, ; n*( t ) = n } ] 

= r . . . c  , ao...a _l 
J J i 1 ) ~ 0  0~n-- 1 

x ~o exp( - ~o t ] ) . . .  ~, _ 1 exp( - ~, _ 1 t',) dt ' l . . ,  dt', 

= Pb[{a(Zo) = b ...... a(%) = bo; n*(t) = n}]  

where 
n 1 

co = t -  Z t; 
i = 1  
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and the a~ are the rates associated with the bonds involved in the transition 
at time t; and cq = c((b~), where c((b) is defined in Eq. (4.8b). 

Equation (4.17) follows by summing first over all trajectories with 
b o = a and b~ = b and then over n. By translation invariance of the measure 
#, this suffices to establish reversibility, which in turn implies time 
invariance. Ergodicity follows from the fact that # is ergodic with respect 
to translations. | 

R e m a r k  4.4. To prove the invariance principle for X,, we first 
establish convergence to Brownian motion for the discrete process and then 
we use a random time change argument to conclude the proof. 

T h e o r e m  4.5. The following hold: 

(i) The rescaled discrete process Xln)==-n 1/2X(Ent]), with [nt] the 
integer part of nt, converges weakly in #*-measure to a Brownian motion 
WD,(t) with finite diffusion matrix D*. Furthermore, D * =  (Do., i, j= 
1 ..... d) is given by 

where 

1 ~a,(O)\ 6~j_ (q~*(a), ( I - p )  ~ ~o*(a))~,. 
~D*  = \ o~(a)/,. (4.18) 

q)*(a) = 7 ( a ) l [ a i ( O ) - a i ( - - e i ) ] e H i ( I - p ; i ~ * )  (4.19) 

I is the identity, and p is defined in Eq. (4.8). 

(ii) The rescaled continuous process ~X~_2, converges weakly in 
#-measure to a Brownian motion WD(t) with finite diffusion matrix D. 
Furthermore, D is given by 

D = ( e ( a ) )  D* (4.20) 

where D* is defined in (4.18). 

(iii) Setting ~oi(a)=Eai(O)-ai(-ei)], we have that q~iEH_l= 
H _ I ( - L ; / t ) ,  where L is the strong L2(/~) generator of the environment 
process a(t), and 

�89 (a,(O)),6o.+ (qo~(a), L l q)j(a)), II (4.21) 

ProoL (i) We use Theorem2.1. By Definition 4.1, we have that 
IX(l ) /=  1, X(1) is antisymmetric, and 

E~,(Xi(1)f Fo) = ,p~*(a(O)) 
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Furthermore, by Lemma4.3(i), the discrete environment process is 
reversible and ergodic; therefore, from Theorem 2.1, part (i) of Theorem 4.5 
follows. 

(ii) The continuous-time process Xt is obtained from the discrete one 
via the random time change function n*(t). By Theorem 17.1 of ref. 7, 
eX~-2t converges weakly in #-measure to a Brownian motion provided that 
the random time change function behaves like t in probability. Therefore, 
the invariance principle and Eq. (4.20) follow from the fact that [see 
Lemma 4.3(ii)] 

lim l n* ( t )=  (~(a))  in measure 
t - - * ~  t 

Finally, (4.21) follows from (4.18) and (4.20): in fact, 

1 1 (ai(O)). .6 o -  cp*, c~(I-p) ~. -~ D* = (a(a) ) 

- ( ~ ( a ) )  ~ '  L-I~  ~ - . 

where the preceding formal calculation is justified using Eq. (3.3). | 

Remark. One can also obtain parts (ii) (except "tightness") and (iii) 
of Theorem 4.5 from Theorem 2.2. One need only check that (2.39) holds 
and that Mt as defined in (2.40) is square-integrable. This can be easily 
done by considering a sequence of processes with cutoff (bounded) rates 
and observing that the corresponding sequence of martingales is Cauchy in 
L 2, so that upon the removal of the cutoffs, (2.40) is obtained with 
cp ~ LI(#) and M, square-integrable. [Note that our hypothesis (4.3) on the 
moments of ai(0) guarantees only that q~ ~ LI(#), but not necessarily L2(#), 
so the Kipnis-Varadhan theorem is not applicable as originally stated. 
Note also that without further hypotheses on the moments of a/(0) it is by 
no means obvious that X,, let alone M,, is square-integrable.] The usual 
asymptotics for the mean-squared displacement for the continuous-time 
model, which do not directly follow from the random time change analysis 
presented above, also follow easily upon application of Theorem 2.2. 

In the next theorem we will establish bounds on the diffusion matrix 
D. First of all we observe that D is explicitly computable in dimension 
d =  1. This is a well-known result. O'23' 36) We have that for d =  1 

D = 2 (ae~0)) -~ (4.22, 

provided the rhs is finite. We prove (4.22) at the end of this section. 
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T h e o r e m  4.6. Let # = #d be a measure on R(Z d) satisfying C1-C3. 
Then the following hold: 

(i) Let Pal-1 be the projection of #a on the hyperplane {x=  
(xl ..... xd): xa= 0}. Then we have the matrix inequality 

and, in particular, 

Furthermore, 

D(#d_ ~) ~< D(#d) (4.23a) 

D ii(pa_ ~ ) <~ D ~(#d) (4.23b) 

( i i )  
the set 

(ai~0) / -1 1 <~ 5 D~'(gd) <~ (ai(O) ) (4.23c) 

The lower bound in Eq. (4.23c) is attained if # has support on 

{a: ai (x  ) = a i (x  -4- z)  ifz is orthogonal to ei} (4.24a) 

The upper bound in Eq. (4.23c) is attained if and only if # has support 
on the set 

{a: ai(x ) = ai(x + ei) Vx ~ y_a} (4.24b) 

(iii) If # is either reflection invariant or isotropic (i.e., invariant with 
respect to Z a rotations by n/2), then D = D(#) is a diagonal matrix. In the 
isotropic case D is a multiple of the identity matrix. | 

Proof. (i) To establish (4.23a), we use Eq. (4.21) and Lemma 3.1. In 
fact, the generator L of the process is a sum of generators corresponding 
to the various directions in Z d. The lower bound in (4.23c) then follows 
from Eq. (4.22), while the upper bound is the first term in the formula 
(4.21) for D (the second one being nonpositive). In order to check the 
hypothesis of Lemma 3.1, we need only check that L is given by the expec- 
ted formula, i.e., the one in Eq. (4.7), on D -  L~(p),  and note that D is a 
form core by Lemma 3.2 (or by Lemma 2.1). 

(ii) If # has support in the set defined in (4.24a), the ith marginal of 
the process Xt makes a one-dimensional random walk in the environment 
given by {ai(0,..., 0, xi, 0 ..... 0), x,.~ ~} (xf is the ith coordinate) distributed 
according to #. Thus, by (4.22), D~=2(1/a~(O)}~  1. If # concentrates on 
the set given by (4.24b), X~.t is a martingale. Thus, 

l" 1 2 D,, = lm ~ t Eu[X~"] = 2(a,(O) 5,, 
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If D i i = 2 ( a i ( 0 ) ) ,  then by (4.21), (q)i,L 1q0i)=0, so in particular 
((Pi, L-I(pi) = ((L-1/2(,~ 2) =0.  This implies that q ~=0  #-a.s. Therefore, 
since # is translation invariant, it must concentrate on the set given by 
(4.24b). 

(iii) Suppose /~ is isotropic. Then D is invariant under all rotations 
R = R ~ by ~/2 in a coordinate 2-plane. Thus, if v is an eigenvector for D, 
Rv is an eigenvector belonging to the same eigenvalue. Since 
{RUv] i, j = 1,..., d} spans, it follows that D is a multiple of the identity. 

Now suppose # is reflection invariant. Then D is reflection invariant, 
and if v = (vl ..... v~ ..... va) is a eigenvector for D, then R~v - (vl ..... -v~,. . ,  Va) 
is an eigenvector belonging to the same eigenvalue. It follows that every 
coordinate vector e~ is an eigenvector: Let v be an eigenvector such that 
v~ r 0. Then e~ = ( v -R iv ) / (2v i ) .  Thus, D is diagonal. | 

4.2. Dif fusion in Percolation Regime 

In this subsection we will establish diffusive behavior for a random 
walk in the infinite cluster of the bond percolation model. So, we consider 
the model described so far, but we will restrict our considerations to the 
two-dimensional lattice. 

The main result of this subsection is the following theorem. 

T h e o r e m  4.7. Let p be a measure on 11(2 2) satisfying: 

(i) Under #, {ae(x): ]el = 1, x e 7/2} is a family of independent iden- 
tically distributed random variables. 

(ii) p - # ( { a e ( 0 ) > 0 } ) < l  and p > l / 2 .  

(iii) #({SUpxez2ae(X)<-..b})= 1 for some b > 0 .  

Let [see Eqs. (4.5) and (4.6)] 

11" = {a e 11(•2): I W(0 ' a)l = oe } (4.25a) 

Op -- #(11") (4.25b) 

(in ref. 24 it is proven that Op > 0), and 

#*( ' )  - #(" I11") (4.25c) 

For a ~ 11, let Xt(a), t e N, be the jump Markov process with state space 7/2 
and transition probabilities defined in Eq. (4.2). Then the following hold: 

1. The following limits exist and are finite, for all i, j = 1, 2: 

lim 1 E~,(X~ ,Xj ,) =- O U, l i m  1 - , , 7 E ~ . ( x ~ , , x j , , ) -  D *  



Reversible Markov Processes 825 

2. eX~-2,~ Wo,(t)  weakly in #*-measure. Here Wo,(t)  is the two- 
dimensional Brownian motion with diffusion matrix D * =  {D*}. 

3. D =  {Des} and D* are diagonal, i.e., D = D I  and D* =D*I ,  where 
I is the identity matrix. Furthermore, 

D* < 0% 

and D can be written as follows: 

�89 = ( ae~(O) ) - [~176  
J o  

4. D * > 0  | 

OpD* = D (4.26a) 

dt ([ae~(0) - ael ( - -e l ) ]  Ea[ae l (Xt )  -- a e l ( X z -  el)] ) 

(4.26b) 

(4.26c) 

Remark 4.8. We prove statements 1-3 using the general 
Theorem 2.2. For  this part of the proof only ergodicity is not an obvious 
property. We prove ergodicity in Lemma 4.9 below. The difficult part is the 
proof of statement 4: we prove D* > 0 by relating D* to the limit of the 
"effective current" in a finite box. Then the result follows from Kesten's 
proof of the fact that the limit of the effective current is strictly positive. 

k e m m a  4.9. The measure #* [see (4.25c)] is ergodic with respect 
to the process a(t), t ~ ~ (see Definition 4.1), i.e., with respect to the process 
of the environment seen from the traveling particle. | 

Proof. The proof is based on the fact (z) that there exists only one 
infinite cluster, #-a.s., and on the ergodicity of the random environment 
under translations. 

The first observation is that the set 1~* is invariant with respect to the 
time evolution; i.e., if a ~ bt*, then obviously a(t) ~ R*, Vt > 0. Let A c R* 
be a nontrivial time-invariant set; i.e., assume 

aEA=~a( t )~A  V t > 0  and # ( A ) > 0  (4.27) 

Ergodicity will follow upon showing that # ( A ) =  # ( R * ) =  0p. 
From (4.27) it follows that 

Va~A S x a e A  if x e W ( 0 ,  a) (4.28) 

In fact, if there exists an x e W(0, a) for which S_xa f~ A, then for those 
trajectories for which there exists a t > 0 such that Xz(a) = x we would have 
a(t) ~ A. Note that the set of these trajectories has positive probability. 

Define 

B = { a ~ R :  3x~//z  S x a s A }  (4.29) 
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Clearly, B contains the set A. Since # is ergodic with respect to the 
translations, B is invariant under translations, and #(B) >..- #(A ) > 0, we 
have that 

We will show that 

Observe that since 
concluding the proof. 

#(B) = 1 (4.30) 

B c ~ R * c A  (4.31) 

A c B ~ R * ,  by (4.31) and (4.30), # ( A ) =  #(R*), 

To prove (4.31), we observe that a~Bc~N*~3x~7 /2  such that (i) 
S _ x a e A  and (ii) Sx(S_xa)=a~R*.  

Since there is only one infinite cluster, (2) ( i )+( i i )  imply that 
x~ W(O,a). By Eq. (4.28), Sx(S_xa)=a~A.  | 

Proof of Theorem 4.7. Statements 1-3. Statements 1 and 2 in 
Theorem 4.7 are an easy consequence of Theorem 2.2. In fact, first of all we 
observe that the operator L given by 

L = ~ Li (4.32a) 
i 

Ls f ( a )  = a~(O)(V+f)(a) - a~(-ei)(V~f)(a) (4.32b) 

(V+f) (a )  - f (S_<a) - f (a)  (4.32c) 

(VTf)(a)  = f ( a ) - f ( S ~ , a )  (4.32d) 

is the generator of the process a(t) (the environment as seen from the 
traveling particle). 

The four hypotheses of Theorem 2.2 are satisfied: 

1. Reversibility and ergodicity. Ergodicity has been proven in 
Lemma 4.9, while reversibility follows from the fact that the operator L is 
symmetric on L2(#*), i.e., 

( f  Lg)~.= (g, Lf)~. Vf, g~L2(#  *) (4.33) 

Equation (4.33) follows from the translation invariance of the measure # 
and the identity 

ai(0) l { a ~ R * }  = a i ( 0 ) l { a ~  R*, S_e,a~R*} 

2. Antisymmetry. The variable Xt = the algebraic number of shifts 
during the time interval [0, t] is obviously antisymmetric with respect to 
time reversal. 
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Since the rates are bounded, one easily checks that the other two 
hypotheses of Theorem 2.2 are satisfied, i.e., that the following hold: 

3. The mean forward velocity exists. The following limit exists in 
L2(p,*): 

1 
lim E,.[X~[Fo]=ag(O,O)-a~(-e~,O)=q~(a(O)) (4.34) ~0~ 

4. Xa is square-integrable and 

I E.. [X2a ] = 2(a , (O)) , .  (4.35) 

Therefore, from Theorem2.2 we can conclude that the process 
~X~-2, ~ WD.(t) weakly in #*-measure and the matrix D* is given by 

1 
D ~  = l im - G . [ x ~  ,x:,] 

fo = 2<a~(0) ) , .g i j -  2 dt(~oi(a) Ea[~oj(a(t))]),* (4.36) 

where ~0~(a) is defined in (4.34). 
To prove (4.26b), we show that 

and 

i ~ {E. . [X, . ,X j . , ]  l i m  , , = Op }im 7 EAx' ,xj ,] 

Dii= ,~olim -lt E"[X~'Xi']=2(ai(O))" ' - 2 I o  

(4.37) 

dt <~oi(a) E~[~py(a(t))] > 

(4.38) 
To prove (4.37), we observe that 

I E u [ X ~ , X y , ] = ~ f  d#(a) l {ae  R*} E. [X , . , (a )  Yy.,(a)]  
t " ' 

The limit as t ~ oo of the first term on the rhs of Eq. (4.39) is equal to the 
rhs of Eq. (4.37). On the other hand, if ar N*, then 

IXi,,(a) Xi,,(a)l<h(a) 2 for any t>~0 

where h(a) is the diameter of W(0, a), so that h(a)< oo if ar R*. 
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It is known (ref. 24, Section 5, Theorem 5.1) that 

/~({a: a r R*, h(a) > N} ) <~ cl e x p ( -  c2N) 

for some positive constants cl, c2. Hence, in particular, 

f dl~(a) l{aCR*} h(a)2 < C 

for some positive constant C. Therefore, the second term on the rhs of 
(4.39) goes to zero as t ~ oo. 

To prove (4.38), we observe that the mean forward velocity for the 
process Yt with starting measure/~ (instead of #*) still exists in L2(#) and 
it is equal to q~, i.e., 

1 
lim E~[Xi~hFo] =q)i(a(0)) in Lz(P,)  (4.40a) 
6 ~ 0 ~  

and 

1 2 jim ~ -~ E.[  X,,a] = 2 ( a ~ ( O ) ) u  (4.40b) 

Furthermore, /~ is reversible but not ergodic. Since in the proof of 
Theorem 2.2 only reversibility, antisymmetry, and Eqs. (4.40) were used 
for the computation of l i m , ~  E(X2,), Eq. (4.38) can be derived as in 
Theorem 2.2. 

By hypothesis, # is invariant under rotations of ~z/2. Thus, by 
Theorem4.6(iv), D is a multiple of the identity. As a consequence of 
Eq. (4.26), D* is also a multiple of the identity. | 

We now start the proof that D* >0.  We prove instead the positivity 
of 

�89 = (a , (0) )~  - f o  dt (q)~(a) E.[CPl(a(t))] )~ (4.41a) 

(p l ( a )  =- a l ( 0 )  - -  a l (  - -  el) (4.41b) 

Since D* is proportional to D by Eq. (4.26), this will conclude the proof. 

Sketch of the Proof that D > 0. The proof that D > 0 is given also 
in ref. 10; we report it here for the sake of completeness; we use the same 
notation and (sometimes) even the same words used in ref. 10. 

We consider periodic configurations with period 2N and call DN the 
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diffusion coefficient [i.e., lim E(X2jt)] for the corresponding random walk. 
Since with positive probability all the rates are strictly positive, one expects 
that DN>O, which can, in fact, be easily shown. The problem left is to 
prove that (a) as N increases, D N remains bounded away from 0, and (b) 
D N and D are suitably related. 

The relationship between DN and D is easily established by looking at 
the "explicit" formula for D in Eq. (4.41). In that formula the integrand of 
the second term is positive and involves E[~o(Xt)]. For each fixed t the 
expectation EN[~O(X,)] related to the periodic configuration converges to 
E[cp(X,)]. On the other hand, the first terms for both D and DN are 
identical. So we can use Fatou's lemma to obtain the inequality 

D ~> lim sup D N (4.42) 

The positive of lira sup DN is not clear; here deep percolation problems 
enter. We prove that 

�89 = aN (4.43) 

where o- N is the current flowing in a box of size N when a unit potential 
difference is established, which is better thought of as the effective conduc- 
tivity. Then we use the result of Kesten, (24) who proved that lira infcr u > 0. 

Thus, to conclude the proof, we define the periodic random walk, with 
diffusion coefficient DN; we establish that D~>lim sup ON; then we define 
the conductivity o- N and determine its relationship to D N. 

D e f i n i t i o n  4.11.  The periodic random walk. Let BN c Z 2 be the box 

BN={X=(Xl,  X2)~22:--N<~xl<~N, --N<~x2<N} (4.44) 

Given a configuration a e II of rates, let a* be the periodic rate configura- 
tion, with period 2N (on bonds linking nearest neighbor points) in the strip 

'~'N = {X = (Xl, X2) ~: 22: -N~<  x2 < N} (4.45) 

which agrees with a on the box BN, except that the vertical bonds on 
x l =  + N  are given infinite rates. (This is required to obtain a simple 
relation between O N and aN.) 

Since bonds leading out of XN on {x2= - N }  and { x 2 = N -  1} do 
not exist for a*, Z" N has "reflecting boundary conditions" on top and 
bottom. In order to construct a random walk on XN with rates a*, it is 
necessary to identify the points with Xl = - N ,  and similarly for the points 
with x~--N,  3N, -3N,.. . ,  but as long as we consider only functions 
which agree on equivalent points, this may safely be ignored, provided 
we bear in mind that from all points on, e.g., x I = N  the rates a* 
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to the point with coordinates ( N + l ,  x2), [ ( N - l ,  x2)] are now 
( 2 U ) - l a t ( - N ,  Xz)[(2N) -1 a~(N-  1, x2)]. 

Denote by X*(x, t; a) [or simply X*(t)  if no conflasion is likely] the 
Markov process on ~'U defined by the rates a* starting from x, and let 
XN(t) be the xl component of X*(t). Denote by Yjv(x, t; a) [or simply 
YN(t ) ]  the Markov process X*(t)/.~, where (x l ,x2)~(x ' l ,x '2)~.  
x ' l - x l = 0  rood 2N and x'2=x2. One may regard Yu(t) as a Markov 
process with state space B*, the box B u with the left side identified with the 
right [i.e., ( - N ,  x2) identified with (N, x2)]. Let m u be the uniform 
distribution on B*, i.e., 

1 
mu ( f )  -- (2N) 2 x ;--8~} f ( x )  (4.46) 

Then (for fixed a) with respect to raN, YN(t) is clearly a reversible Markov 
process, in terms of which X*(t), and hence X~(t), can be realized. Under 
this realization 

XN(t) = the number of jumps of Y~v(t) in the positive horizontal 
direction minus the number of jumps of YN(t) in the 
negative horizontal direction during the time interval [-0, t] 

[-In the above definition the jump from N - 1  to - N - N  (respectively 
from N -  = - N  to N - 1 )  is considered as a unit positive (respectively 
negative) jump.] Note that this is well defined if N~> 2, which we assume. 

We now need some notation. The rates are most naturally regarded as 
bond functions: (x, y) =- b ~ a*(b), the rate for going from x to y. [Though 
the original a(b) was symmetric, this may no longer be the case for a*, 
because of the redefinition of the rates for leaving Xl . . . .  , N, 3N, - 3 N ,  .... 
necessitated by granting infinite "conductivities," i.e. rates, to the vertical 
bonds on these lines; e.g., a*((N, x2), (N+ 1, x'2))= a*((N + 1, x'2), (N, x2)) 
may fail.] For any oriented bond b = (x, y), let 

V o f  = f ( y )  - f ( x )  (4.47a) 

and let (V~f ) (x )=  +_V(x,,+e,)f Let 

E x ==- the set of bonds emanating from x (4.47b) 

Then the generator L,  of the process X*(x, t; a) is given by 

L ~ f ( x ) =  ~ a*(b)gbf(x)  (4.48) 
b e  Ex 
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while the generator for the process YN(x, t; a) may be identified with the 
restriction of La to periodic functions. Here, and from now on, "periodic" 
means periodic with period 2N (in the Xl direction). 

Let 

q)J = Lax1 (4.49a) 

and note that for x~BN, IXlj # N ,  

q~ ~(x) = (Vi= al)(x) - al(x) - al(x - el) (4.49b) 

1 N 
q)~(-N, x2)=~x2_~__Nal(-N, x2)--aL(N-l ,  x2) (4,49c) 

Denote by Pa u [resp. N Pa, x] the law of the process YN(t) with starting 
N measure mN [resp. cSx]; E N [Ea, x] denotes the expectation with respect to 

pN [resp. PNx]. 

For any a E 1~ fixed the following limit exists and is L e m m a  4.1 2. 
finite: 

Furthermore, 

1 
lira - EN[XN(t) 2] = D~v(a) (4.50a) 

t ---+ oo t 

DN(a)=mN(ON)--2 JO mN(~oNEJx[q)~(YN(S))])ds (4.50b) 

where ~o~ is given in (4.49) and 

I ~ N ( ( X l ,  X2) ) = a l ( X l ,  x 2 )  -I- a(x  1 - -  1, x2) for x I r - N  (4.50c) 

1 N--1 

t ~ ( ( - N ,  x 2 ) ) = ~ x 2 ~ N [ a ~ ( - N ,  x2 )+a l (N- l ,  x2) | (4.50d) 

Proof'. We have that 

1 EN[XN(6)IFo] = ~oN(XN(O)) (4.51a) 

and 

1 
lim EN[XN(g)2IFo] = tp~(XN(O)) 
6 ~ . 0 ~  " " 

(4.51b) 

822/55/3-4-23 
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Therefore, using reversibility, Eqs. (4.51), and the fact that the variable 
XN(t ) is antisymmetric, Eqs. (4.49) and (4.50) can be proven as in 
Theorem 2.2. l 

Romark. A fixed configuration a* induces a partition of B N into 
disjoint clusters. Each cluster determines an ergodic component of the 
process Yu(t). 

It follows easily from Theorem 2.2, with Yu(t)  playing the role of 
the Markov process G, that the process XN(I ) converges to a mixture of 
Brownian motions with (average) diffusion constant DN(a ). Since the rates 
are infinite in the vertical strip {Xl = N}, there is at most one cluster with 
an interior path connecting {x~ = - N }  to {x~ = N}. For this component 
the diffusion coefficient is positive, and for the others it is zero. 

Now we are ready to prove the inequality (4.42) between D and DN. 

Proposition 4.13. The following hold: 

(i) For any t > 0  fixed 

lim N N N (mu((PaEa, x[(Pa ( Y N ( / ) ) ] ) ~  : (q01(a )  Ea[(pl(a(t)) ] )~ (4 .52)  
N~oo  

where ~0 N is defined in Eq. (4.49) and q~ is defined in Eq. (4.41b). 

(ii) The following inequality holds: 

D/> lim sup~ D N(a ) 5 ~, 
N~oo 

(4.53) 

where D is defined in Eq. (4.41a) and DN(a ) in Eq. (4.50). I 

Proof. (ii) Part (ii) follows from (i). In fact, if (i) holds, we have 

Iodt~o~(a) E. [~p l(a(0)] )~ 

~ 1 7 6  l im  N U N = <mx(qO, Ea.x[q), ( Yu(t))]  ) }~ 
N ~ eO 

~< lira inf ~ ~ dt N N N (mN(q)aEa, x[(Pa]) )u 
N~o~ dO 

lim inf N N = dtmN((PaEa, x[(pu(yN(t))])  (4.54a) 
N~oo \ J 0  

where the positivity of the integrands and Fatou's lemma have been used. 
Furthermore, by the translation invariance of #, 

~mN(~k~) }~ = 2~a1(0) }~ (4.54b) 
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Therefore from the formulas for D [see (4.41)] and D;~. [see (4.50)], and 
from (4.54) it follows that 

D = 2 ( a , ( 0 ) ) -  2 dt (q~(a)  Ea[~pa(a(t))])~, 

-- mu(~p, , E.,  ~ [ ~p,, ( YN (t))])  
N ~ o o  / # 

= lira s u p ( D N ( a ) )  
N ~ o o  

(i) To prove (4.52), we first note that 

and also that 

E~[rpl(a(t) ) ] = E~,o[al(X(t)  ) - a~(X(t) - el)]  

E s  .... oFa~(X(t) + x ) -  a~(X(t)  + x -  e , ) ]  

= f o ,  x r a , ( X ( 0 )  - al ( X ( t ) -  e~ ) ]  

~-- Ea, x[(~l(X(t)) ] 

Using the abuse of notation ~pi(x)=q~i(S ~a ), from the translation 
invariance of the measure/~ we have that for any N > l, 

1 
Z* <~o,(a) Ea~o~(a(t))>- (2N) 2 <~o,(x) E .... ~o~(X(t))) (4.55a) 

where ~ *  is the sum over {x~ BN: Ix1] < N}. Furthermore, by definition 
[see Eq. (4.49)] we have that 

~oN(x)~-(~OI(X) VxEBN\{IXll =N} (4.55b) 

Let rN = r(N, x, a) be the following (possibly infinite) stopping time: 

r N = inf{ t: [X(t)l = N} (4.56a) 

For 0 < ~ < 1 let BN(O~ ) be the set 

BN(O~)---- {XEBN:  I x  I <<.N-- N ~ } (4.57) 

Then the rhs of Eq. (4.55a) can be written as 

1 
Z* (2N) 2 (~o~(x) Ea,~[~p,(X(t)) ] )~ = G~ + G2 + G3 
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where 
! 

G~ - (2N) 2 ~ (opt(x) E~,~[(Ol(X(t))] ~ 
x ~ BN\BN(C Q 

1 
G 2 - ( 2 N )  2 ~ (~oI(X) E~,~[~o~(X(t)) l {~N~<t}] ) ,  (4.58a) 

x e BN(~) 

1 
G 3 - ( 2 N ) 2  2 (~~ x[~~ I { T N > t } ] ) / t  

X e BN(CQ 

The first two terms are bounded as follows: 

G~ ~< (2b) 2 [-2N 1 + ~/(2N) 2 ] 

G2 <~ (Zb)2([N_ N~]2(ZN) 2) sup 
x �9 BN(O~ ) 

where supx ae(X)< b has been used. 
If x ~ B N (~), 

(4.58b) 

P x('C N ~ l )  (4.58c) 

Px[{ru<~ t}]  ~<P*[{n* > N - x ) ]  

where n* is a Poisson-distribution random variable with parameter bt and 
P* is its law. Therefore, we have for x ~ BN(O~ ) 

Px[{rN<<,t}]<<,P*[{n*>N~}]<~Clexp(--C2 N~) (4.59) 

for some positive constants C1 and C2 depending on t. Therefore, 7 < 1 and 
(4.59) imply that G2 goes to zero as N--* oe. Since also G1 goes to zero, we 
have that 

( q ) ~ ( a )  E a [ ( P l ( a (  t )  ) ] ) 

1 
= lim Z (q)l(X)Ea, x[~o~(X(t)) l { v u > t } ] ) ,  (4.60) 

N ~  oO (2N) 2 x~Su(~ 

It is possible to construct a joint representation of the processes X(t) 
and Yu(t) in such a way that 

X(0)=  x =  YN(O), X( t )=  YN(t) Vt<~u (4.61) 

The same computations as in (4.57) show that 

lim N N N (mN(qO ,E~,x[~O u ( YN(I) ) ] ) ) ~ 
N + oo 

=u~lim ~-~ 2 (q~(x) E~,~[q)l(X(t)) l { r u > t } ] ) ~  (4.62) 
or x e BN(C~ ) 

where (4.55b) has been used. Now (4.52) follows from Eqs. (4.60)- 
(4.62). II 
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D e f i n i t i o n  4.14. The effective conductivity. Let ae l~  be fixed. The 
effective conductivity fiN(a) is the current established across B N by a unit 
potential difference. Let V be the corresponding potential. It satisfies 

La V(x) =0,  - N < X l < N  (4.63a) 

V(--N, x2) = 0, V(N, x2)= 1, - N < ~ x 2 < N  (4.63b) 

Due to the possible existence of clusters not connected to {lx~] =N},  the 
solution of (4.63) may not be unique. But, since in this clusters V must be 
constant, all solutions give rise to the same current 

N--1 
fiN(a) = ~ al(xl, x2)(V~-V)(xl, x2) (4.64) 

x 2 = - - N  

where we recall that 

iV? V)(x)= V(x + e~)- V(x) 

The expression in (4.64) is independent of xl provided (4.63) is satisfied, 
and thus we have that 

f i N ( a )  = 2 N m u ( a l  V ~- V )  (4.65) 

Let V* be the natural extension of V to all of L'N, not the periodic 
extension but one producing periodic current: 

V*(x) = V(x) for x ~ ON, V*(x 1 + 2N, x2) = V(xl, x2) + 1 

Because the left and right boundaries of B N have been made "supercon- 
ducting," V* satisfies 

L ,  V*(x) = 0  for all X~SN 

since all that is now required at, e.g., xl = - N  is that the current into this 
line, from the left, equals the current out, into the right, which is already 
guaranteed by the fact that the expression (4.64) for fiN(a) is independent 
of x I . 

The relationship between DN(a ) and fiN(a) now follows easily: 

Proposition 4.15. For a n y N > ~ 2 a n d a e R  

ON(a )=2fiN(a) II (4.66) 

ProoL Consider the function 

f = x 1 -  2NV* + N (4.67) 
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on --~N" The constant N is added so that, for convenience, f = 0  on 
xl = i N .  Since 

,vN= L~x~ 

it follows that f is a periodic function satisfying 

Laf  = ~p N (4.68) 

By the definition of D N in Eq. (4.50), 

N N 1 N Du(a) = mu($,  ) -- 2mu(q~, La ~o~ ) (4.69) 

The solution of Lag  = ~0 N is not unique, all solutions being of the form 
g = f + h ,  where f is given in (4.67) and h is a periodic, La-harmonic 
function, i.e., Lah(x) = 0 for x ~ B*. 

Observe that [see (4.49)] 

1 
mN(~OUf)--(2N)2 ~ [q~U(x) f (x)J  

x ~ B ~  

,{ 
- ( 2 N )  2 ~ [ a l ( x + e l ) - a l ( x ) ] f ( x )  

]Xll : ~ N  

, } 
+ ~ 2N ~ [a~(y+e~)+a~(y)Jf(x) 

IXl] ~ N l Y l I = N  

1 
- [,zIv)'~'T'2 x~Tv~ [al(X + el) - a l (x) ]  f ( x )  

= mN((gla 1)f) (4.70a) 

The second equality follows from the fact that f ( x )  is constant in 
{ Ixll = N}. Similar computations show that 

mN(~OU(f + h)) = mN((V( al)( f  + h)) (4.70b) 

On the other hand, since h is harmonic and periodic, it must be 
constant in connected clusters. Observe that in clusters connected to 
{ Ixll = N}, because of the periodic boundary conditions, we have that 

mN((V~- a , )h)  = 0 (4.71) 

On the other hand, in clusters nonconnected to { Ix,I : N} we have zero a's 
on the boundaries and therefore (4.71) also follows. 
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From (4.71) we have that for all solutions g ( = f + h )  of Lag=q~2,  

N 1 N mN((Pa La ( P a ) = m N ( ( V I  a , ) f )  (4 ,72)  

A computation as in (4.70a) shows that mN(~U)=2mN(al); thus, (4.70) 
and (4.72) imply that (4.69) can be written as follows: 

ON(a) = 2mu(al) + 2mN((V1- a l ) f )  (4.73) 

"Integrating" by parts and using the translation invariance of m N (i.e., 
periodicity), we obtain that 

DN(CI ) = 2m N (a  1 ) --  2m N (a I V ~-f )  

= 2mN(a~) -- 2mN(al(1 -- 2NV + V)) 

= 4NmN(a1V~ V) 

= 2~N(a) I 

Proof That D > 0. It follows from Proposition 4.13(ii) and Proposi- 
tion 4.15 that 

D)limsup{DN(a))u=21imsup{aN(a))u>~2{liminfaN(a)) ,  (4.74) 
N ~ G O  N ~ c o  N ~ o o  

Moreover, it has been proven in refs. 18 and 24 that there exist constants 
0 < Cl < c2 < m such that 

cl<~liminfau(a)<~limsupaN(a)<-~c2, tt-a.s. (4.75) 

Thus, D~>2c1>0. I 

Remark 4. 76. 1. Independence is required only for (4.75). 

2. For boxes other than squares, and for higher dimensions, it 
remains true that 

D N(a) = 2aN(a) = mN(al V ? V) 

where V(x_)=2N, V ( x + ) = 0 ,  and the box extends from x l = x _  to 
xl = x+ and x+ - x _  = 2N. Thus, aN(a ) is the effective local conductivity, 
the current per unit cross section per unit average electric field. 

3. In more than two dimensions, the invariance principle still holds, 
by Theorem 2.2. The proof of the positivity of the diffusion coefficient D 
works only for p > 1/2, i.e., above the two-dimensional critical probability. 
In fact, as in Theorem 4.6, it is possible to show that D(d)> D(2) (where 
d is the dimension) and we know that D ( 2 ) > 0  if p > 1/2. Furthermore, 
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since Kesten proved that lim inf aN(a) > cl in any dimension if p > 1/2, we 
can also repeat the same argument as above to conclude that D(d)> cl. 

Proof of (4.22). In d =  1 dimension, suppose that (1/ae(O))~ < oe; 
then 

D = 2 ( 1 / a e ( 0 ) )  ~ | (4.76) 

Proof. See ref. 23 and references therein. We give here a different, 
easy approach. 

(i) Writing a(x) for ae~(x), define 

x 1 1 

h(x)= ~ for x > 0  
y=oa(Y) 

h(O) = 0 (4.77) 

- 1  1 

h(x)= -y~=xa(Y ) for x < 0  

and check that h(X~) is a martingale [h(x) is harmonic] for (almost) any 
fixed configuration a with a (x )>0 ,  Vx. The invariance principle for 
martingales then gives that eh(X~-2,) converges to a Brownian motion with 
diffusion constant 

Dh -- lim - E [ h ( ~ t )  2] = 2 (4.78) 
,~o t 

where the stationarity and the ergodicity of/~ have been used. 
Now by the ergodicity of/~ under translations we have that 

Thus 

X txl ~ oo 
#-a.s. 

Xt 
x ,  - h(X, )  

h(X,)  

- h ( X , )  + ~(t) 

D = ( 1 / a ( 0 ) )  2Dh=2(1/a(O))-i 

where e(t)/x/~ ~ t ~  o~ 0 in probability, and Xt behaves asymptotically like 
( l / a ( 0 ) )  lh(Xt). In particular, 
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[Note that since supo ~s 4, e(s)/x/7 ~ , ~  oo 0 in probability, h(X,)/x/~ being 
small whenever IXt[ is not large, the invariance principle for d =  I also 
directly follows.] 

There is a second argument leading directly from the expression given 
in Theorem 2.2 for D to (4.22); the reader will infer this argument from the 
final part of Section 6, so we omit it here. | 

5. SYSTEM OF INFINITELY M A N Y  PARTICLES 

In this section we discuss some applications of Theorem 2.2 to jump 
processes on the lattice. We consider two models: "the exclusion process" 
and the "stirring-exclusion dynamics." These models are examples of 
random walks in a random moving environment. We show that the 
"diffusion coefficient" in the case of a random moving environment is not 
less than the one in the case of the "same" frozen environment. 

5.1. Exclusion Process 

The state space is R * =  {0, 1}zd; r / e~*  stands for a configuration of 
particles, q(x) denoting the occupation variable for lattice site x e Z d with 
q(x)=  1 [0] corresponding to x occupied [empty]. The particles move 
by random jumps respecting a hard-core exclusion; see, in particular, 
Eq. (5.6c). The jump rates are functions c(x, y; ~)>>. 0 which are translation 
invariant, uniformly (in x, y, and r/) bounded above, short range [i.e., for 
fixed x and y they depend on only finitely many coordinates of r/ and 
c(0, y;. ) = 0 for all but finitely many y's], and they are not identically zero. 
We distinguish one of the particles, which we call the tagged particle, and 
study its motion. 

More precisely, the generator of the process described above is given 
by 

L*f(r / )=�89 ~ c(x, y ; t l ) [ f ( q x ' Y ) - f 0 1 )  ] (5.1) 
x ,  y E  • d 

where tl x'y denotes the configuration t/ with t/(x) and q(y) interchanged. 
We refer to Liggett (33) for the existence and the ergodic properties of this 
process. In order that the process be reversible, we require that the rates 
c ( . , . )  satisfy the detailed balance condition 

c(x, y; q) = c(x, y; r/t' Y) exp{ - [H(~ x' Y) - H(r/)] } (5.2a) 

where, formally, 

H(q )=  ~ q~(A) I]  q(x) (5.2b) 
A = . Z d [ A I  < oo x e A  
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with {cb(A)lAcT/a, IAI < oo} a family of translation-invariant, short- 
range potentials. We consider the extremal reversible translation-invariant 
Gibbs measures #*, p ~ (0, 1), associated with the Hamiltonian H, with the 
one-body potential chosen in such a way that 

#*(7(0)) = P 

Let Y(t) be the position of the tagged particle at time t. The role of 
the reversible Markov process of Theorem 2.2 is played, not by r/,, but by 
the process ~, defined by 

~,(x)-rl,(Y(t)+x) Vt>~O, Vx~Y_ a (5.3) 

(the process as seen from the tagged particle). By definition 

~,(0) -= 1 Vt ~> 0 (5.4) 

Furthermore, it is easy to see that ~, is the Markov process with state space 

R =  {~ EN*; r = 1} (5.5) 

and generator L given by 

L = L1 + L2 (5.6a) 

L l f ( ~ )  = �89 2 c(x, y; ~)[f(~x.y)_f({)] (5.6b) 
x,yr 

L2f(~)  = ~ c(0, x; ~)[1 - ~(x)] [U(S x~ ~ - / ( ~ ) ]  (5.6c) 
x 

where Sx is the shift by x ~ Z d. 
Thus the generator L has a decomposition into a sum of two 

generators L1 and L 2 as discussed in Section 3. L 2 generates the shifts 
of the environment caused by the jump of the tagged particle and L~ 
generates the "motion" of the environment. 

It is not difficult to see that the Gibbs measures 

#p(.) = #~(.I ~(0) = 1) (5.7) 

are reversible and ergodic for r Let X(t) be the (vectorial) sum of shifts 
of the system during the time interval [0, t]. Clearly, X( t )=  Y(t) in 
distribution. 

Theorem 5.1. The process eX(~-2t), t>~0, converges as e---,0 
weakly in #p-measure to a Brownian motion with finite diffusion matrix 
D =  (O~: i , j~ {1,..., d}) given by 
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Dij = 6~ ~ x2#p(c(0, x; ~)(1 - ~(x)) 
x 

~ , c c  

- 2  Jo ds ~ xiyj#p(c(O, x; ~)(1 - ~(x)) E,[c(0, y; ~,)(1 - ~,(y))]) 

~'~ (5.8) 

where Er denotes the expectation with respect to the process with starting 
configuration ~. 

Furthermore, 'if the functions c(x, y; ~) and H(~) and the measure #p 
are invariant under reflection in the coordinate hyperplanes, then D is 
diagonal; if they are rotation (by ~/2) invariant, D is a multiple of the 
identity. | 

Theorem 5.1 does not preclude the possibility that D is degenerate. 

Proof. We apply Theorem 2.2. Reversibility follows from the condi- 
tion (5.2). In order to establish ergodicity it is sufficient to show that if 
(f, L f )  = 0, then f is c o n s t a n t  #-a.s .  (26) Using reversibility, we have that 

( f  ( -L) f )=#(x~vc(x ,  y;~)]f(~x'Y)- f(~)]2)+(f, ( - L 2 ) f )  

Hence (f, L f ) = 0  implies that f is invariant under the permutations 
_~ ~x, y for all x, y. Hence, f is measurable with respect to the tail field at 

infinity, which is trivial. Hence f is constant. The other hypotheses are 
easily verified. Finally, we have 

P t 

Xi(t) = Jo (Pi(~) dr + M~(t) 

(Pi( ~ ) = ~ xic(O, x; ~)[1 - ~(x)] (5.9) 
x 

E[M,(t) Mk(t)3  = 6i, kt ~ x~ #p(c(O, x; ~)[1 -- ~(x)3)  
x 

from which (5.8) follows. [(5.9) follows from standard computations for 
Markov processes; see, e.g., ref. 46.3 

The same argument as for Theorem 4.6(iii) gives the properties of D 
in the case of reflection or rotation invariance. | 

Remark. As far as we know, it is not known, in general, whether or 
not D is degenerate. In ref. 26 some results are obtained for the case in 
which the rates c(x, y; ~) are constant in ~, i.e., c(x, y; ~)=p(x ,  y) with 
p(x, y)=p(y,x) .  The resulting model is called the simple exclusion 
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process. (33) For this model it is proven in ref. 24 that D is not degenerate 
if either the dimension is larger than one or d =  1 and p(x, y) does not 
vanish for at least four values of y. In d =  1 in the nearest neighbor case, 
the behavior is quite different. Arratia (6) proved that t-1/4X(I) converges as 
t ~ oo in distribution to a Gaussian random variable with mean zero and 
variance (2/~)(1 -p )p .  (See also ref. 48.) 

5.2. The "Stirring-Exclusion" Process 

In this subsection we consider the lattice analog of a model introduced 
in ref. 31 (see also ref. 26) for the ideal gas. 

The intuitive description of the model is as follows: Given an initial 
configuration of particles in Z d (the state space is {0, 1}~), each particle 
performs a simple symmetric (continuous-time) random walk on the lattice 
obeying the exclusion condition: jumps to occupied sites are suppressed. 
Furthermore, when two particles are at nearest neighbor sites they inter- 
change their positions (like "stirring" particles) with rate r. Just as in the 
previous subsection, we put a particle at the origin and study its motion. 
As before, Y(t) is the position of this tagged particle at time t. Since the 
particles (other than the tagged one) are indistinguishable (i.e., we do not 
distinguish whether they interchange positions or not) we regard only the 
tagged particle as interacting via stirring-exclusion as described above. 

To apply Theorem 2.2, we represent as usual Y(t) in terms of the 
process ~t as seen from the tagged particle. The state space of this process 
is the set R defined in (5.5), and the generator is given by 

L = L 1 + L 2 (5.10a) 

L l f ( ~ )  = 1 ~ [ f ( ~ , Y ) - f ( ( ) ]  (5.lOb) 
x ~ O , y ~ O  
I x - - Y l  = 1 

L 2 f ( ~ ) =  ~ {[1 - ~ ( y ) ]  +r~(y)}[f(S y~O,y)_f(~)] (5.10c) 
]Yt = 1 

We denote by T, [Ti,,] the semigroup generated by L[Li ]  on 11. The 
Bernoulli measures #p of parameter p conditioned to have a particle at the 
origin (Palm measures) are reversible for this process. 

Denote by X(t) the (vectorial) sum of shifts of the environment up to 
time t. Clearly X(t)= Y(t) in distribution. 

Theorem 5.2. The process eX(e-2t), t>~0, converges as e -~0 
weakly in #p-measure to a Brownian motion with finite diffusion matrix 
D = (Dij: i , j~ { 1,..., d}) given by Eq. (5.11) below. 
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If r > 0, then D is not degenerate. D = DI ( |  is the identity), where D 
is given by 

t ,  c O  

D-D(p,r ,d)=Z[1-p(1-r)J-Zj]o  ds(~o(~)Er (5.11) 

where 

~0(~) -= (1 - -  r ) [ ~ ( - - e l )  - -  ~ ( e l ) ]  ( 5 . 1 2 )  

( . )  denotes expectation with respect to/~p, and e~ is the unit vector in the 
positive 1-direction. 

Furthermore, 

D(p, r, d) is decreasing in d (5.13) 

D(p, r, d) ~ Dfrozen (5.14) 

(the diffusion coefficient when only the tagged particle moves) and 

2[pr-l+(1-p)]-~<~D(p,r,d)<~Z[1-p(1-r)] | (5.15) 

Proof. The hypotheses of Theorem 2.2 are satisfied. One easily 
verifies that the drift is given by (5.12) and the average quadratic variation 
of the martingale in the decomposition of X(t) is ( 1 - p  +pr)t. This gives 
(5.11). 

To prove Eq. (5.14), we observe that, by definition [see Eq. (5.10)], 
the generator L splits into the sum of two generators L~ and L2. The 
process with generator L2 is the "environment process" for the tagged 
particle moving in a "frozen" environment. It is easy to check that the same 
measure Up is reversible and ergodic for this process. We are thus in the 
framework of Theorem2.2; hence, we can conclude that X*(t), the 
(vectorial) sum of shifts of the environment up to time t for this process, 
converges under the usual scaling to a Brownian motion with diffusion 
matrix Dir . . . .  = Dfr . . . .  I, where 

Dfr . . . .  - -  211 - p(1 - r)] + 2(g0, L~-l(p)~p (5.16) 

with (p given by (5.12). 
Since the hypotheses of Lemma3.1 are satisfied, (5.14) follows. 

Furthermore, it is not hard to realize that the process of a particle starting 
at the origin and moving in a frozen configuration ~/is distributed identi- 
cally to a random walk in a random environment a, as in Section 4; for 
d =  1, a is given by 

{~ if x>>.land~l(x)=lorx<~Oandtl(x-1)=l 
ax_ 1,x = otherwise 
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With this in mind, we compute Dfr . . . .  for d =  1 using (4.22): 

Dfr . . . .  = 2[or -1 + (1 - p)]  -1 (5.17) 

Equation (5.17) gives the lower bound in (5.15), once (5.13) has been 
established. 

The proof of (5.13) is similar to the one for (5.14): Observe that 

d 

L = ~ L i  
i = l  

where now Li is the generator of the jumps in the i direction, and apply 
Lemma 3.1. 

Finally, we observe that the upper bound in (5.15) is the first term in 
the expression (5.11) for D, the second one being negative. I 

6. D I F F U S I O N  IN A R A N D O M  POTENTIAL  A N D  SELF- 
D I F F U S I O N  FOR I N T E R A C T I N G  B R O W N I A N  PARTICLES 

In this section we consider two models in the continuum similar to the 
lattice models discussed in previous sections. These are: diffusion of a 
Brownian particle in a random potential, and the diffusion of a tagged par- 
ticle in an infinite system of interacting Brownian particles (self-diffusion). 
The first case has been treated in Papanicolaou and Varadhan, (36) the 
second case in Guo. (191 We are able to obtain the invariance principle with 
minimal hypotheses (essentially just those necessary to make the process in 
question well defined). After stating and proving the invariance principle 
for each model, we discuss various inequalities between the diffusion con- 
stants of the models, leading to the conclusion that they are all positive. 
The proof of this fact requires that some technical points concerning 
quadratic forms be cleared up; we state what we need without giving a full 
proof. 

By a diffusion in a random potential we mean a particle moving in ~d 
according to the equations 

dX(t) = - V V ( X ( t ) )  dt + dW(t) (6.1a) 

X(0) = 0 (6.1b) 

In (6.1), W(t) is a standard Brownian motion (with diffusion matrix the 
identity matrix), starting at zero, and V(x) =- V(x, ~o) is a random potential 
By this we mean that V(x, co) is a (C 1) function of x and a measurable 
function of m, co in some probability space (g2, Z', #). We assume that this 
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process is translation invariant and ergodic under translation. Translation 
acts naturally on V by 

(sy V)(x, ~o) = V ( x -  y, ~)  

If Z is generated by V(x,. ), x ~ flU, we can assume Sy is a measurable and 
measure-preserving transformation on f2. We assume that the V process is 
jointly measurable. 

If, in addition, there is a function C(~o), positive and finite a.e. on f2, 
for which 

Ix .VV(x, co)[ ~< C(co)(1 + Ix[ 2) (6.2) 

a.e., which we assume, then solutions X(t) of (6.1) exist for a.e. V, and X(t) 
is a diffusion. 

An example (which plays the leading role in our discussion of the 
inequalities on diffusion constants) is the following. Let U(x) be a sym- 
metric, positive, compactly-supported C ~176 superstable ~41) pair potential in 
I~ a. Define 

V(x) = ~ U(x -  y,) (6.3) 
i 

where (Yi)i= 1 ...... is a (locally-finite) point process on Re distributed accor- 
ding to an (extremal translation-invariant) Gibbs state of the potential U. 
Using Ruelle's estimates, one sees that for some function Cl(co) finite a.e. 

[VV(x, co)l ~ C1(~o)[1 + log(1 + [x[) 1/d] (6.4) 

a.e., so (6.2) holds. 
Following the by now standard procedure, we introduce the environ- 

ment as seen from the moving particle. This is the process 

V ( t ) - S  x~v,,)V (6.5) 

where X(V, t) [ = X ( t ) ]  is the solution of (6.1). The corresponding semi- 
group acting on bounded measurable functions of V is 

T,F(V) = E~ x~,) V)] (6.6) 

[E ~ is the expectation with respect to the solution of (6.1)]. As usual, we 
have to prove that V(t) is reversible and ergodic. 

To prove reversibility, assume that 

Z= @xp{-2V(O)})~,=-fp(dV)exp{-2V(O)} < oo (6.7) 
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and let 

We prove 
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#*(dV) = Z -1 exp{ :-2V(0)} #(dV) (6.8) 

that #* is a reversible measure. In order to do this, let 
pt(x[ y; V) be the density of the transition function of the process governed 
by (6.1). The reversibility with respect to the measure exp{-2V(x)} dx is 
expressed by 

exp{-2V(x)} pt(y]x; V)=exp{-ZV(y))  pt(x[ y; V) (6.9) 

which holds for all x, y. Let F and G be bounded measurable on (2; we 
have 

(GTtF) =- I i~*(dV) G(V) E~ V)] 

= Z-1 f #(dV) f dy exp { - 2 V(0) } G(V) pt(y I 0; V) F(S y V) 

(6.10) 

Using Fubini's theorem and making the change of variables V ~ S_y V, we 
obtain 

=Z- l fdy f l~(dg)exp{-2V(-y )}G(SyV)p~(y lO;SyV)F(V)  (6.11) 

Next, using the invariance property 

Pt(ylx; V)= pt(y + z[x + z; SzV) (6.12) 

we obtain in (6.11) 

= Z-1 f dy f i~(dV) exp { - 2 V( - y ) }  G(Sy V) pt(Ol -y;  V) F( V) 

= (FT, G)u. (6.13) 

In the last equality, (6.9) has been used. 
Ergodicity of the process with invariant measure/~* now follows from 

the full support o f  the process governed by (6.1) in R a, for #-a.e. V, and 
from the ergodicity of/~ under translations (note that/~* ~/~). 

We next have to recover the motion of the particle from the process 
V(t). Rewriting (6.1) in terms of the process V(t), we have 

dX(t) = -VV(0; t) dt + dW(t) (6.14) 

or in integrated form 

f2 X(t) = VV(0; s) ds + W(s) (6.15) 
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There remains only the question whether X(t) is suitably measurable (see 
Section 2) with respect to the process V(t) (and ant|symmetric). Clearly, 
the former is false if # ( { V - c o n s t } ) =  1, but if # is supported by non- 
periodic configurations, this is more or less clear. In any case one can 
always consider the process (V(t), y(t)) in place of V(t), where y(t) moves 
identically to X(t) but is taken mod 1, so y(t) remains in the unit cube. 
This process is reversible (with invariant measure #* times the Lebesgue 
measure on the unit cube), and clearly X(t) is ~r(y(s), 0 <~ s <~ t)-measurable 
and ant|symmetric. 

We are ready to state the following theorem. 

T h e o r e m  6.1. Let V(x) be a translation-invariant and ergodic 
random potential with exp{-2V(0)} e LI(/~) and ~0- VV(0) in LI(#*),/~* 
given by (6.8). Then eX(e-2t) IX(t) given by (6.15)] converges (weakly in 
#-measure) to a Brown|an motion with diffusion matrix given by 

O0=fu+2(~pi,  L l~0j)~, | (6.16) 

Proof. The theorem follows from Theorem 2.2. Note that/~ ~ #* and 
convergence in measure is preserved by replacing the measure by one 
absolutely continuous with respect to it. | 

Remarks. (i) Without further assumptions it is not immediately clear 
that the generator of the environment process is a self-adjoint extension of 

L F =  [ - V V ( 0 ) ]  .VF+ (1/2) V2F (6.17) 

[where V is the generator of translations on L2(#)] on some suitable 
domain, or that the quadratic form associated with the process is given by 

= (1/2) f #*(dV)IVrl 2 (6.18) IIF[I~ 

on D(V) [as one would conjecture from (6.17)], but we expect that this is 
true. With some further assumptions on V these facts can be established. 
For instance, if V is bounded below by a constant ~-a.s. and C 2, one can 
differentiate in (6.6) with respect to time on the domain {F: F, VF, and V2F 
are in L2(//)}, use the fact that Pt(Xl 0; V} solves the backward equation, 
and integrate by parts to establish (6.17) [and similarly on the domain {F: 
F and VF are in L2(/t)} to establish (6.18)]. One can then use (6.6) again 
to show that these domains are invariant under the transition semigroup of 
the process. Lemma 3.2 then implies that these domains determine the 
generator and quadratic form, respectively. 

(ii) One can treat just as easily the motion governed by 

dX(t) = VV(X(t) ) dt + [2V(X(t) ] 1/2 dW(t) (6.19) 

822/55/3-4-24 
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for a random potential V(x, co) with V~> 0. In this case the translation- 
invariant measure on environments V is itself the reversible measure, and 
L is a self-adjoint extension of V-V(0)V. One assumes that V(0) and 
VV(0) are in LI(#), and Theorem2.2 applies verbatim. (Th is  is the 
continuum analog of themodel  treated in Section 4.) 

We consider next the self-diffusion of a tagged particle in a system of 
interacting Brownian particles. The evolution of this system--with interac- 
tion given by the gradient of a pair potential U--is governed by the system 
of equations ( i=  1, 2,...) 

dXi(t) = - ~ VU(Xe(t) - Xj(t)) dt + dW,(t) (6.20) 

In (6.20), Xe(t)e ~ ,  U is a compactly-supported, C 2, positive, superstable 
(even) pair potential (as in refs. 30 and 31), and the Wi(t) are independent 
standard Brownian motions. If (6.20) defines an evolution (in the space of 
locally-finite infinite-particle configurations), then the translation-invariant 
Gibbs states of the potential U with inverse temperature / ?=2  and 
arbitrary finite density should be reversible, and among these the extremal 
ones will be ergodic. 

Lang (3~ and Shiga (a3) have given a proof of the existence of the 
"equilibrium dynamics." This means that (strong, unique) solutions exist 
for (6.20) for a set of initial configurations of full measure with respect to 
any /?=2  Gibbs state (for a given density). Fritz ~ has shown the 
existence of nonequilibrium dynamics [that is, he described explicitly a 
"large" set of initial configurations for which (6.20) can be solved] for 
d~<4. Previous constructions for d = l  were given by Rost (42) and 
Lippner. (34) 

There are several approaches to constructing the environment process 
seen from the tagged particle. If we have available solutions of (6.20) for an 
explicitly described set of initial conditions (of labeled particles, 0 labeling 
the tagged particle), we can proceed by change of variables, as follows. We 
solve (6.20) for a solution (Xo(t), Xl(t),...) and define Y~(t)= Xi(t ) -Xo(t), 
i~> 1. Then (6.20) becomes ( i=  1, 2,...) 

dXo(t) = ~ VU(Yj(t)) dt + dWo(t) (6.21) 
j ) l  

j > ~ l , j ~ i  j>~l 

+d[Wi( t ) -  W0(t)] (6.22) 

Note that in (6.22) Yi(t), i~> 1, has an autonomous Markovian evolution. 
This evolution is invariant under permutation of the labels, and solutions 
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of (6.22) should exist for a set X* of locally finite initial configurations. 
Furthermore, if #* is a fl = 2 Gibbs state of the (formal) Hamiltonian 

�89 2 U(yi--YJ)+Z U(yi) (6.23) 
j ~ i  i 

/x*(X*) = 1 and #* should be reversible. Then (6.21) with Xo(0)=0 defines 
the motion X(t) of the tagged particle, which is suitably determined by the 
Y motion: Note that by (6.22), Wo(t) can be expressed as the limit of a 
sequence of averages involving only Y's. We are thus in the familiar 
framework of Theorem 2.2. 

There are other constructions of this process--directly from the Lang 
process which are perhaps more "intrinsic." The Palm process construc- 
tion (see, e.g., Harris (2~ should lead directly to the Y-process with Palm 
measure/x* as reversible measure. One would have then only the additional 
technical question of whether the tagged particle's motion can be recovered 
from the environment process, i.e., whether X(t) is measurable with respect 
to  r'(s)= {Yi(s)}, O<~s<<.t. 

We remark after stating Theorem 6.2 on another construction begin- 
ning directly with quadratic forms. Since it is not the purpose of our paper, 
we do not present more details of any of these constructions or prove that 
they all lead to the "same" process. 

T h e o r e m  6.2. Let X(t) be the position of a tagged particle in the 
system of interacting Brownian particles, as defined above. Let 

~0 = ~ V U ( Y i )  (6.24) 

be in LI(#*), #* as above. Then eX(e-zt) tends weakly in #*-measure to 
a Brownian motion with diffusion matrix 

D~ = 6,j + 2(q)i, L-lqgj),. (6.25) 

where L is the strong L2(# *) generator of the environment (Y) process. 

Remarks. 1. From (6.22) and Ito's lemma the (formal) generator of 
the environment process is easily calculated; one finds that 

L = L1 + L2 (6.26) 

where 

L l f ( y ) = -  ~ ~ V U ( y j ) . V , f + l ~ A i f + ~  Vi.Vjf (6.27a) 
j>~l i>~l i i • j  
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(Vi-Vyj;  J i = V i ' V i )  and 

L 2 f ( y ) = -  ~, ~ V U ( y i - y y ) . V i f - ~ V U ( y i ) . V i f + � 8 9  
i>~l j ~ i  i i 

(6.27b) 

Techniques similar to those of Fritz ~16) should allow one to show 
at least that L is an extension of the formal generator acting on local 
functions. We conjecture that the quadratic form of the environment 
process is given by 

1 = ( IDf l2 )u ,  + [Vif] 2 (6.28) 

where D is the generator of an overall translation (D = ~ 1 V~, formally), 
and the quadratic form domain consists exactly of those f for which both 
terms in (6.28) are finite. One could prove this conjecture using Fritz's 
techniques by proving that a suitable subdomain is invariant under the 
semigroup (using Lemma 3.2), but we have not carried out the details. Of 
course if one can show that L is the Friedrich extension of the formal 
generator (or better, that it is self-adjoint on local functions), then (6.28) 
follows easily by integrating by parts. For the Lang process, Rest ~42) has 
shown how to prove that the second term in (6.28) is the correct quadratic 
form: use the fact that Lang's process is a limit of finite-volume processes 
reversible for /~* whose quadratic forms are increasing, and apply a 
theorem of Faris. ~13~ 

2. One can simply define a quadratic form by the sum (6.28) on the 
intersection of the domains. Clearly, the form defined in this way is 
Dirichlet and so is associated with a Markovian semigroup on L2(#*). This 
semigroup is given by the Trotter product formula for the semigroups 
associated with L 1 and L2, making clear that the associated process has the 
correct probabilistic interpretation. One can take this process as the under- 
lying environment process. We have not investigated in detail the connec- 
tion with the previous constructions. 

Proof of Theorem 6.2. The theorem follows from Theorem 2.2. | 

We now discuss inequalities between the various diffusion constants, 
using ideas already explained in Section 3. The only lack of rigor in our 
discussion concerns the exact quadratic form domains of the various 
processes. Sufficient for the conclusions to hold would be, e.g., that 
C2-1ocal functions are form cores of all the quadratic forms in the 
discussion. We expect that for the interacting case this will be settled in the 
near future. 
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As explained in Section 3, upper bounds are immediate. For lower 
bounds, we first note that DRp(d), the diffusion matrix for the diffusion in 
a random potential in dimension d, is a lower bound for the corresponding 
matrix Din(d) for the interacting Brownian particles, provided d#*=  
Z -1 e x p [ - 2  Z i  U(yi)] d#, where # is translation invariant and we take the 
potential in the first model to be the "frozen environment" of the second 
model. That is, the random potential is given by (6.3) with (y~) distributed 
according to # and with the pair potential U the same as for the interacting 
case. The inequality follows from the decomposition (6.28) and Lemma 3.1. 

Further inequalities between diffusion matrices for different dimen- 
sions follow. For example, in the random potential case fix d>~ 1 and a �9 
measure #a on potentials in ~d. Let Va_ 1 denote the restriction of a poten- 
tial to the hyperplane {Xd=0}, and let #d-I  be the induced measure on 
environments in R a- ~. Then for e = t,..., d -  1 

DRp(,ua)~,,~ , --= (DRp(d))~,,~,/> (DRp(d-  1))~,,~ = DRp(#a- 1)~,,~, (6.29) 

Inequality (6.29) follows from the decomposition 

Qd= Q* + Qd 1. (6.30) 

of the quadratic form of the d-dimensional generator, reflecting the decom- 
position of the process into motion in the xd direction and the motions in 
the other directions. Now Lemma 3.1 applies. 

In the case of a one-dimensional random potential, one can compute 
D explicitly; the result is well known. (37) There are two arguments leading 
to this result. First, define for each environment V 

Assume that 

hv(x)= exp{2V(y)} dy for x>~0 

0 

hv(x)= -~x exp{2V(y)} dy for x < 0  

One checks easily that 

(6.31) 

(exp{2V(0) } )~ < oo (6.32) 

Lvhv=-O (6.33) 

where Lv is the generator of the motion Xv(t). Furthermore, by Ito's 
lemma 

E~ = E~ exp{ 4V(Xv(t')) } dt'] (6.34) 
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Let h(t)=hv(Xv(t))  with V distributed according to #*. From (6.33) it is 
easy to see that h(t) is a martingale with stationary increments, and from 
(6.34) 

E~.[h(t) ~ ] = t (exp{4 V(0) } )~. 

= t (exp {2 V(0) } ) ,  (exp{ - 2 V(0) } )~-1 (6.35) 

Since, by the ergodic theorem, for p-a.e. V 

x-lhv(x)-- .  (exp{ZV(0)})~ as [xl ~ oc (6.36) 

an argument similar to that used in Section 4 [proof of Eq. (4.22)] gives 

D = [ (exp{2V(0)})~ (exp{ - 2V(0)} )~] -1 (6.37) 

which is the formula we wished to establish. 
Formula (6.37) for D follows also in one dimension directly from the 

general expression given in (6.16) if (6.32) holds and if we can establish 
that the Dirichlet form is given by (6.18) on a domain D c D ( V )  IV 
considered as an operator on L2(#)] on which this form is finite, and 
which is furthermore a core of D(V) and invariant under Tt (and therefore 
a core of the Dirichlet form by Lemma 3.2). As remarked before, this can 
be checked using formula (6.6) for Tt if V is C 2 and b o u n d e d  below. 

Given (6.18), we can compute an explicit expression for [[q~[]-1, where 
~0 = -VV(0).  Note that, since D is a form core, from its definition 

[Z 1 ~ d# e x p [ - Z V ( 0 ) ]  ~0r[ 
Ib~ol1-1 = sup {(2Z)_ 1 .[ d~ e x p [ - 2 V ( 0 ) ]  ]VF] 2~m 

I~ d~ exp[ - 2 V ( 0 ) ]  VF[ 
= (2Z) -t/z sup {~ d~ e x p [ - Z V ( 0 ) ]  [VF[2} 1/2 (6.38) 

where the supremum is over F in D with nonzero Dirichlet norm. Since V 
generates a unitary semigroup in L2(#), and D is a core of D(V), {VF: 
F e D }  is dense in the orthogonal complement of 1 in L2(#). Therefore 
{ e x p [ - V ( 0 ) ]  VF} is dense in the orthogonal complement of exp[V(0)] ,  
so by (6.40), 

IIq~l[ 2_1 = (1/2)Z -1 II(1 -PexpEv~o)3)expE- V(0)] II zz, 

= (1/2){ 1 - ( exp[2  V(0)] )~-1 (exp[  - 2 / I ( 0 ) ]  )ya  } 

and again we obtain (6.37). | 

We summarize the preceding discussion in the following theorem. 



Reversible Markov Processes 853 

T h e o r e m  6.3 .  Assume that  

( e x p { 2 V ( 0 ) } ) ,  < oo 

F o r  c~ = 1 ..... d we have tha t  

(DIB(d))~, ~ ~> (DRp(d))=,~/> ' "  ~> (DRp(1))~, ~ 

= [<exp{2V~(O)}>. (~ , l )<exp{-2V~(O)}>~(~ . , ) ]  ~ > 0  (6.39) 

where V~ is the env i ronmen t  induced  on the space {x~=O,  fl#c~} with 
induced  measure  #(e,  1). 
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