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We study interacting spin (particle) systems on a lattice under the combined 
influence of spin flip (Glauber) and simple exchange (Kawasaki) dynamics. We 
prove that when the particle-conserving exchanges (stirrings) occur on a fast 
time scale of order ~-2 the macroscopic density, defined on spatial scale e -~, 
evolves according to an autonomous nonlinear diffusion-reaction equation. 
Microscopic fluctuations about the deterministic macroscopic evolution are 
found explicitly. They grow, with time, to become infinite when the deterministic 
solution is unstable. 

KEY WORDS: Stirring process; Glauber dynamics; branching processes; 
hydrodynamic limit; generalized Orenstein Uhlenbeck processes. 

1. I N T R O D U C T I O N  

Heuristic derivations of time-evolution equations for macroscopic 
variables, e.g., the particle momentum and energy, and the density of a 
fluid, usually contain, explicitly or implicitly, the following type of 
interrelated assumptions7: (a) Even systems which are far from thermal 
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590 De Masi e t  al. 

equilibrium globally are close to it locally. (b) The macroscopic variables, 
denoted by M(r, t), which characterize the state of local thermodynamic 
equilibrium, vary slowly on microscopic temporal and spatial scales. (c) 
Their change in a macroscopic time interval dt in a macroscopic region dr 
are (simple) functions of the M(r, t) and their spatial gradients. These 
assumptions lead to autonomous equations of the form 

~M(r, t) 
- -  - ~ ( M ( r ,  t) ,  VM,...) (1.1) 

?t 

where ~ depends on the type of problems considered (and contains 
parameters specific to the system considered). Examples include the 
Navier-Stokes equations for fluids, and diffusion-reaction type equations 
for chemically reacting mixtures; cf. Smoller/5~ 

The agreement between the predictions of equations like (1.1) and 
observations on real systems leave little doubt of their essential correctness 
in a great variety of situations. This has led naturally to many attempts at a 
"microscopic" derivation of these equations. This research has yielded 
important theoretical and practical results, e.g., the Einstein-Green Kubo 
relations for transport coefficients. (a9) Despite these successes, however, 
rigorous mathematical derivations based on realistic microscopic models 
are still very much beyond our reach. (22) 

The situation is much better if one starts with the Boltzmann 
equation, which is itself a deterministic law of form (1.1), for what one may 
call quasi-macroscopic variables. (11) Once it is accepted, or derived in cer- 
tain limits, ~35) hydrodynamical laws can be obtained from it using 
Chapman-Enskog expansion methods. (12) These methods fit in (are in fact 
part of the origin) both the heuristics described above and the rigorous 
analysis used below. 

The first serious mathematical effort to derive the real hydrodynamic 
equations for simple fluids, using classical dynamics for the motion of their 
microscopic constituents, was apparently undertaken by Morey. (4~ That 
paper is rather obscure (in every sense of the word) and incomplete, 
although it contains along the way many important new ideas (including 
the first rigorous derivation of the convergence of the Mayer fugacity 
expansion in equilibrium). In particular, it emphasizes the essential element 
involved in the transition from microscopic to macroscopic evolution 
equations: the suitable rescaling of space and time. By such rescalings one 
can take account, in a rigorous mathematical way, of the central fact that 
there are a very large number of atoms in each drop of macroscopic fluid 
and that there is a big spread between micro- and macro-time scales. The 
macroscopic picture is thus a "blurred" one: summing over a large number 
of elementary events. This brings in the "law of large numbers" which is 



Equations for Interacting Particle Systems 591 

crucial for obtaining deterministic autonomous macroscopic equations, like 
(1.1), not just for averages, but for the almost sure value of quantities 
which fluctuate on the microscopic scale. Controlling the fluctuations is 
clearly important if the deterministic equations are to describe what is 
actually observed in an experiment. 

Morey's ideas, combined with the heuristics and Chapman-Enskog 
methods described earlier, outline a program for derivations of (1.1). The 
mathematical difficulties encountered in carrying out this program fully 
are, however, enormous--possibly insurmountable. This has led, in recent 
years, to the study of special situations and/or special model systems. The 
special situations include time-dependent fluctuations and "color" diffusion 
in equilibrium systems. (32'36) The latter concerns the time evolution of the 
relative concentrations in a fluid mixture whose components differ only by 
their color, i.e., they are mechanically identical, and the system, ignoring 
color, is in true thermal equilibrium. Unfortunately, even for these intrin- 
sically linear nonequilibrium phenomena, i.e., the F's in (1.1) are linear in 
the M's, the problem is too difficult to solve completely except in simplified 
model systems. These include systems at low density, (36) one-dimensional 
systems, (32) and those whose microscopic dynamics involve some stochastic 
elements, e.g., interacting Brownian particles (43'52) and particles on a lattice 
with hopping dynamics. For some of the latter systems it has in fact been 
possible to derive nonlinear diffusion equations for the macroscopic par- 
ticle density, (2~ the only microscopically conserved quantity in these 
models. For a review, see De Masi e ta / . ,  (16), Presutti, (46) and Spohn. (51) 
[-For special mechanical models where (1.1) can be derived, at least par- 
tially, see Lanford (35) (low density), Boldrighini et aL (6) (one dimension, 
hard core), and Shuhov and Sukhov (53) (rotators).-] 

In this paper we generalize the class of stochastic model systems 
investigated in this context to obtain new interesting macroscopic 
equations. 

We study interacting particle (spin) systems on a lattice under the 
combined influence of general Glauber (spin flip) and simple exclusion 
(spin exchange) dynamics. (37). We prove that when the magnetization-con- 
serving exchanges occur on a microscopic time scale, say of order e 2, 

~ 1, the macroscopic density (magnetization) viewed on a spatial scale of 
order e-1 evolves according to an autonomous nonlinear diffusion-reaction 
equation,(5~ 

3m(r, t) _ V2 m + F(m(r,  t)) (1.2) 
c~t 

where r e ~  a and F(m)  is a polynomial which can be "adjusted" by 
choosing suitable Glauber rates. 
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Our analysis is related to, but more complicated than, that used in 
Ref. 16 for the case when there are only exchanges, which leads to (1.2) 
with F(m)= 0. In all cases the proof involves showing that the microscopic 
state is close to "local equilibrium." The deviations from local equilibrium 
produce fluctuations about the deterministic solutions of (1.2). These fluc- 
tuations, which we also derive directly from our microscopic dynamics, 
form a Gaussian field. They have an amplitude of 0(~ a/2) around stable 
solutions of (1.2) but grow exponentially or like a power law around 
unstable solutions. 

The existence of unstable solutions requires, of course, having a non- 
linear term in (1.2). The simplest case corresponds to the existence of mul- 
tiple spatially uniform stationary solutions of (1.2), some of which are 
stable and other unstable. They can be interpreted (in some cases) as 
coexisting stationary states of our microscopic lattice system, even before 
taking the limit e ~ 0. Note that these stationary states are generally not 
equilibrium Gibbs states with any finite range (or rapidly decaying) poten- 
tial. They are nonequilibrium stationary states which can have phase trans- 
itions even in one dimension. The study of such stationary nonequilibrium 
microscopic states is in itself a problem of great interest ~31) and was one of 
the motivations for undertaking the present work. Another motivation is 
our hope that the analysis of the microscopic fluctuations about the deter- 
ministic macroscopic equations will add to our understanding of the 
instabilities and pattern formation associated with some nonlinear 
evolution equations. ~5) This may be particularly so in cases where 
stochastic lattice models are invented to simulate physically important and 
mathematically intractable nonlinear equations, e.g., those describing the 
motion of an interface between two fluidsJ 29) (We hope that we can find 
stochastic models leading rigorously to those equations.) 

We shall not pursue the above questions too much in the present 
paper--which is mainly devoted to the derivation of (1.2) and the 
equations for the fluctuations. We note, however, that Eq. (1.2), or its 
generalization involving several densities (which we know how to derive), 
is sometimes used to describe phenomena in biology, population genetics, 
flame propagation, etc. ~2) In some such cases our lattice model with rapid 
stirrings may in fact model reality, and the fluctuations may then be clearly 
relevant. The fluctuations play an important role in Ref. 18 where the 
escape from the unstable equilibrium in a one-dimensional version of the 
model presented here is studied. 

In Haken, ~25) and Nicolis and Prigogine, ~41) stochastic models of 
chemical reactions with diffusion are presented. These models are studied in 
Refs. 1, 33, and 34, where the derivation of Eq. (1.2) is given by means of a 
mean-field type of limit. In Ref. 33 fluctuations are also studied. 
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Bramson (s) showed that the solution of Eq. (1.2) when f ( m ) = m -  m 2 
and when the initial datum is a square step function is equal to the dis- 
tribution of the position of the maximum displacement of a branching 
Brownian motion. As we shall see, our model is also strictly related to a 
branching random walk with hard-core interaction. 

We describe our models and give results and an outline of the proofs 
in Sec. 2. Proofs are presented in Sec. 3 and Sec. 4. A brief report of our 
result is presented in Ref. 14. 

2. M O D E L S  A N D  RESULTS 

2.1. General 

Our system is a simple cubic lattice in d dimensions, at each site of 
which there is a spin a ( x ) =  _+1, x e Z  a. We consider two mechanisms by 
which a configuration of the lattice o- = {a(x), x e Z d} changes with time: a 
Glauber dynamics in which a spin flips at a site x, a ~ a x, with a rate 
c(x; ~), and a simple exchange dynamics in which unequal spins at 
neighboring sites x, y, Ix-Yl = 1 exchange, a ~  ~x'Y, with a rate e 2/2. 
This leads to a family of Markov processes on the state space 
o~ = { _ 1, 1 } z~ depending on a parameter e. 

It is sometimes convenient to picture our system as consisting of par- 
ticles, located at each lattice site, which are of two interconvertible species, 
~r(x) = _1, and are stirred rapidly. Equivalently it can be thought of as a 
lattice gas with occupied and empty sites, a(x)-- _+ 1, in which particles are 
born, die, and while alive can jump to nearby empty sites. We shall use all 
these representations interchangeably and refer to Liggett (37) for a complete 
description of the interacting particle systems we are considering in this 
paper. 

Given an ~ > 0 we define a Markov semigroup S~, t >~ 0, on W via its 
generator L~ which acts on cylinder functions as a sum of the generators 
for the Glauber and exchange processes: 

where 

L~f(a) = Lof (a)  + a 2LEf(a ) (2.1a) 

L o f ( a  ) = ~ c(x; a)[f(a x ) -  f(a)] (2.1b) 
x e Z  d 

1 
LE f(tY)-----5 ~ [f(a x'y) -- f(cr) ] (2. lC) 

I x -  yl = 1 

The semigroup S~ defines on 3f a Markov (and Feller) process a~ 
which we write as a, or a(. ,  t). 
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Remark 2.1. The behavior of the exclusion process and the Glauber 
dynamics is very different. Exclusion conserves magnetization (particle 
number). It is, in the language of physics, Kawasaki dynamics at infinite 
temperature. Its stationary measures are ergodic and form a one-parameter 
family {Vm, m e [---1, 1] }; Vm is a translation-invariant product measure 
Vm(r = m .  (37 )  The Glauber dynamics has no such conservation law. Its 
stationary measures depend on the spin flip rates c(x; ~r) which we are free 
to choose pretty much as we want. 

We shall assume that c(x; r is translation invariant and depends only 
on finitely many tr(y)'s. This gives generally 

c(0, a ) =  ~ KAVA, ~A = ~I a(Y) (2.2a) 
A ~ A o  y ~ A  

where A o is some bounded domain, 0 e A  o ~ 2~ a, and the K A have to be 
chosen so that c(0; a)>~ 0, Va e X. By translation invariance 

c(x; a) = c(0; ~ x o) = ~ KAaA+ x (2.2b) 
A 

where r x is the shift by - x ,  (r x c r ) ( y ) = a ( x +  y). 
Let us now define the magnetization density on the scale e-1 by set- 

ting, for e < 1, 

fA d rm~( r ' t : a )=S~(  ~a ~ a~(x)) (2.3, 
r ", X E / l r  

where A r and A~ are cubes with sides of length 3, b > 0, and be 1 respec- 
tively, centered on r e ~a. (We suppress the dependence on 3 which is fixed 
and small and can be taken to be zero after E ~ 0). m'(r, t ; ' )  is a random 
variable whose distribution depends on the initial probability distribution 
of the system. We shall assume the latter to have good cluster properties 
and that, as e ~ 0 ,  e-d l (a(x) ) , - -mo(eX) l - -*0  where mo(r ) is a smooth 
function of r, r e  N d, Imo(r)] -%< 1. 

The change in the magnetization in the region A 7 in a fixed 
macroscopic time interval [0, t] will be governed by (a) the number of flips 
in A~ which is proportional to e d and (b) the number of exchanges which 
cause particles to cross the surface of /If ~. The latter are proportional to 
~-2 Ir where IOA~l ~e  -(d-l)  is the surface area and D ~ e  is the 
gradient of the magnetization on the microscopic scale. Both effects are 
thus, for m~(r, t; ~), of order unity. The number of exchanges per site 
behaves, on the other hand, like e -2 in any macroscopic time interval. 

Thus, in the limit e--, 0, when there is a true separation between the 
microscopic and macroscopic scales, the exchanges whose long-time 
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asymptotic state is one of uncorrelated spins should cause the spins in the 
box A~ to be distributed independently (with a product measure) at the 
instantaneous value of the magnetization in A~. The change in this 
magnetization due to the fluxes across the boundaries of A~ and spin flips 
inside tends to make the spins correlated but their effect, with the scaling 
chosen, are of o(~) compared with the stirring inside A~. Thus, as e ~ 0, 
A~---> ~ ,  m~(r, t; a) should become a deterministic variable m(r, t) (fluc- 
tuations should go to zero), with m(r, O)= mo(r), whose time evolution is 
determined by using the product measure to evaluate the changes it 
undergoes. This is in fact what happens, as will be seen from the results 
which follow. These are stated formally in Theorems 1~4 and discussed 
informally in Remarks 2.2 and 2.3. 

For stating the theorems in a precise way we first need some 
definitions. 

Definition 2.1. We will use the following notations: 

p, o,..., measures on the state space ~ ,  # ( - ) =  expectation 
with respect to #, (2.4a) 

E = D ( [ 0 ,  Go), Y ) i s  the trajectory space (2.4b) 

P~ is the law of the process with initial measure # (2.4c) 

n - ( f ) -  # ( S J ) -  #(f(at) )  is the expectation with respect 
to the process with initial measure # (2.4d) 

Defini t ion 2.2. Hypothesis on the Initial Measure. 

Let m0: R--, [--1, 1] be a C3-function with uniformly bounded 
derivative. Let #~, e ~ (0, 1) be a family of measures such that 

(i) lim sup e alp~(a(x))-mo(eX)l = 0  (2.5) 
e ~ O  x ~ d  

(ii) For every n>~2 there are positive decreasing functions 
~bn : ~ ~ ~ + such that, for all A, B c Z a, A ~ B = ~, 

[#~(O" A O-B) --  #~(O'A) #~(O'B) [ ~ ~ n ( r A , B )  (2.6a) 

where rA,B= Min dist(A, B), n = [A] + IB[, and 

~b,([x])< ~ (2.6b) 
X ~ Z  d 

(iii) For every k E ~ ,  xi ..... xk~ 72a, xiv~xj, Vi~ej, 

lim sup #~ ~(x~+x) - = 0  (2.7) 
~ 0  x ~ d  i 
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T h e o r e m  1. Let /V, e e(0,  1] be a family of measures on 
Y" = ( - 1, 1 }z~ satisfying (i)-(iii) of Definition 2.2. Then for every t/> 0, 
r e ~d and for any cylinder function f the following holds: 

lim #~(S~f( 'c_~a))  = v,.(,,,)(f) (2.8) 
e ~ 0  
ex ~r 

where Ym is the translation-invariant product measure on 3f with 
vm(~r(0)) = m and m(r, t), r ~ ~a, t >>, 0 is the unique solution of the follow- 
ing reaction-diffusion equation; 

0m 1 
- 3 m + F ( m )  

0t 2 (2.9a) 

m(r, O) = too(r) 

F(m)  = Vm(--2a(0)  C(0, ~r)) (2.9b) 

ZJ = ~Ft.2, r = (F 1 ,..., I'd) ~. ~ d  ( 2 . 9 C )  
i = 1  

Theorem 1 describes the average behavior of the magnetization. The 
next result is the law of large numbers for the macroscopic magnetization 
density. 

T h e o r e m  2. Let/x ~, ~ ~ (0, 1 ] be a family of (initial) measures on 5( 
satisfying Definition 2.2. For  ~b e 5P(~a), define the "magnetization field" 

X~,((J) = e a ~, (~(~x) a(x, t) (2.10) 
xG ~d 

as a process on D([-0, Go), 5e '(~)) and let ~ '  denote its law as inherited 
from P,=. Then 

~ '  > ~ weakly (2.11) 
~ 0  

where ~ is the measure having support on a single trajectory given by 

f dr (b(r) m(r, t) (2.12) 

m(r, t) being the same as in Theorem 1. 

Remark  2.2. Theorem 2 confirms the behavior we expected. It states 
essentially that the random variable m~(r, t; ") defined in (2.3) converges 
(weakly) to the deterministic function m(r, t) satisfying (2.9). For the 
exclusion process it has been proven (see De Masi et al. (16) and references 
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therein) that in the time space scaling e 2t, e lr the system approaches, as 
e ~ 0, local equilibrium, i.e., its distribution at time e 2t in a region of 
order ~-] converges to a product (equilibrium) measure with a parameter 
which varies in space and time according to the linear diffusion equation. 
Here we are using this scaling in a somewhat different way. In fact, as e 
varies, the process is changing. Nevertheless, when e is small, the dis- 
tribution at time t of the process with generator L~ still looks like a product 
measure but with a time-dependent parameter which feels the effect of the 
Glauber dynamics and of the fluxes, produced by the stirrings, across the 
boundaries of A~: the process and the scaling are chosen in such a way that 
the local magnetization changes in the macroscopic time t by only a finite 
amount. The exchanges acting in a manner independent of the environment 
continue to produce a linear diffusion term while the Glauber dynamics 
produces the polynomial terms in the evolution equation for the 
magnetization, their exact form depending on c(x; a) via (2.9b). 

We next study the microscopic fluctuations about the deterministic 
macroscopic evolution. 

Theorem 3. Let #~ satisfy Definition 2.2. For ~b ~ y ( ~ d )  define the 
magnetization fluctuation field as 

Y~(~b)=e d/2 ~ ~b(ex)[a(x, t )-E~(cr(x,  t))] (2.13) 
x ~ 2V d 

Then {Y~(.)}, considered as a process on D([0, oo), 5~'(Ra)), con- 
verges weakly (as e ~ 0 )  to a generalized Ornstein-Uhlenbeck process 
{ Y~(.)} with distribution P. P is uniquely determined by the condition that 
the { Y,(~b)} are centered, that for all G ~ C~(~)  

fo lfo G(Y,(q~))- ds Y~(AsO)G'(Ys((b))-- ~ dslIBxV)IIZG"(L( )) (2.14a) 

is a P-martingale, and that the law of the {Yo(~b)} is Gaussian with 
covariance 

P( Yo(~ b) Yo(0)) = f dr ~(r) tp(r)(i - too(r) 2) (2.14b) 

In (2.14a) G' and G" denote, respectively, the first and second derivative of 
G and 

1 ,, dF 
AsO(r) =-~ q) + ~(r) ~ (m(r, s)) (2.14c) 

NBsO[12=fdr(Vq~(r))2(1-m(r,s)2)+fdrO(r)24Vm(r,s)(c(O,a)) (2.14d) 

where F is defined in Eq. (2.9b) and m(r, t) is the solution of Eq. (2.9). 
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We observe that it follows from Eq. (2.14) that the equal time 
covariance of the limiting process { Y~(')} is given by 

fo P(Y,((~) Yt(~b))=P(Yo(fb) Yo(O))+ ds[Ys(As(~) Y~(O)+ Ys((~) Y~(A,~b)] 

+~ ds(BsO, B,O) (2.14e) 

where 

(B~O, B~b ) - f dr[(V~b) �9 (V0)(1 - m(r, S) 2) -~- ~b(r) O(r) 4vm(~.~)(c(0 , a))]  

The proof of Theorem 3 uses Theorem 4 below 
separately because it is an interesting result in its 
Remark 2.3). 

(2.14f) 

which we state 
own right (see 

Theorem 4. For ~bs ~o(N d) and any f cylinder on { - 1 ,  1} zd, define 

y~ �9 ~3dl2 ,(~b, f )  = ~ ~b(ex)E/(r x a t ) -  E,~(f(r .tat))] (2.15) 
x 

Then for every 0 < ~' < r < 0% 

/I 1 r t+~2r 2,] 
lira lim sup P ds ,(fb, f )  - Y~(af~b) = 0 

J T ~  oo e- -*O ~, ~ t < ~  T 

where 

(2.16a) 

af O(r ) = I ~-~ " V m(f ) m = ,,,(r,s)l ~( r ) (2.16b) 

Roughly speaking, Theorem 3 states that the limiting Remark 2.3. 
process describing the magnetization fluctuation field satisfies, in the weak 
form, the stochastic differential equation 

t ) = ( 2  V2~ + F'(m(r, t)) q)) dt + W(r, t) (2.17) dqb( r, 

where W(r, t) is a "white noise" with the covariance 

( W(r, t) W(r', t') ) 

=6(t - t ' ) [VrVr , ( (1-m(r , t )2  6 ( r - r ' ) i + 4 f ( m ) f ( r - r ' ) ]  (2.18a) 
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where 
f ( m )  = Vm(C(O, a)) 

The equal time correlations of the fluctuation field 

e(r, r'; t ) -  (q~(r, t) q~(r', t ) )  

satisfy the following equation. Let 

c(r, r'; t) = (1 - m2(r, t)) f (r  - r') + E(r, r'; t) 

then g(r, r'; t) satisfies 

1 2 2 

( m)2 x[-\OrJ 
+ [F'(m(r, t)) + F'(m(r', t))] ct + 6(r, r') 

(2.18b) 

(2.19) 

+ 2F'(m)(1 -- m 2) + 2mF(m) + 4f(m)]  (2.20) 

~(r, r'; O) = 0 

Theorem 4 states that the fluctuation fields of any local function 
become proportional to the fluctuations of the magnetization field. This is a 
property that one expects to hold in all systems that have conservation 
laws. It is based on the physically natural idea that in equilibrium the fluc- 
tuation fields of nonconserved quantities change in time on a much faster 
scale than the fluctuations of the conserved quantities, hence in a time 
integral only the component along these fields survives. This property was 
formulated explicitly in a precise mathematical form by Rost (4s) and called 
the "Boltzmann-Gibbs' principle." It has been proven so far for some 
models of interacting particle systems in equilibrium; see Brox and Rost, (9), 
Spohn, (52) and De Masi et al. (17) The validity of the principle in non- 
equilibrium (when a conservation law is present) has been proven for two 
models--the simple exclusion and the zero-range process (Ferrari et 
al.(2~ it is questionable whether it should be expected to hold in 
general. The validity of this principle in our case is even less obvious since 
the process we are considering has no strictly conserved quantities. 

Nevertheless it appears sufficient that in the "microscopic" time e2t the 
total magnetization is unchanged, since with large probability no flips 
occurred in that time interval. 

To make the discussions and proofs simpler, we wilt consider from 
now on a specific one-dimensional example. We will give all the proofs for 
this example: the generalization to more dimensions and/or more general 
models is quite simple. However, when the dimension or the structure of 
the model has been used in some of the proofs, we will point this out. 
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We now present the example and conclude this section with an outline 
of the proofs. 

2.1. The  E x a m p l e  

Given an e > 0 ,  we define the one-dimensional Glauber-exclusion 
process (GE) on the state space • = { -  1, 1 } z via the generator L, as in 
Eq. (2.1) with 

c(x; a)--  1 -7o'(x)[-~(x + 1)+ ~ ( x -  1)] + y2~r(x + 1 ) ~ ( x -  1), 

0~<7<1 

These rates have the property that if we let 

7 = tanh flJ, /3 > 0 

(2.21a) 

(2.21b) 

then the (Glauber) dynamics with this generator LG is reversible for the 
Gibbs measure /~  of a one-dimensional Ising model with nearest neighbor 
interaction J at reciprocal temperature /~. The measure #8 is, as is well 
known, unique with exponential decay of correlations. In the absence of 
exchanges, which, as already noted, act as if the system were at infinite 
temperature,/~p would be approached in time "exponentially fast .  ''(27) 

When the dynamics are combined, L =  L ~ + e  2LE, the stationary 
state is no longer reversible and its nature is unknown. In particular, we do 
not know whether it is unique. Its behavior, when e --* 0, will be related to 
the deterministic evolution and the fluctuations about it which we now 
discuss briefly. 

Macroscopic Equation 
For our example, Eq. (2.9) takes the form 

•m(q, t) 1 ~2 
-20qzm(q, t) + 2 (27-  1) re(q, t)-272m3(q, t) (2.22) 

0t 

where q is a one-dimensional variable, q 6 N. 
Given m(q,O)=mo(q)~[-1, 1], Eq. (2.22) has a unique solution 

satisfying the integral equation 

m(q,t)= d~G(q-~,t)mo(~)+ ds d~G(q-~,t-s)F(m(~,s) 
- - o o  - - o o  

where (2.23) 
G(q, t) = (27rt) 1/2 exp[ -qZ/2 t ]  

(2.24) 
F(m) = [--2(27 -- 1)] m-- 272m 3 
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The simplest case to consider is one where the initial magnetization 
mo(q)  = mo is spatially uniform. The magnetization at time t/> 0 will then 
be given by 

m ( t )  = m o + ds F ( m ( s ) )  (2.25) 

As t ~ 0% m ( t )  --* rh(y), one of the roots of the cubic polynomial on the 
right side of (2.22), 

~ E ( 2 y  - 1 )  - ~,2r~2 3 = 0 (2.26) 

Clearly r h = 0  is a stationary solution. For  7 < 0 ,  corresponding to 
antiferromagnetic interactions J < 0  for the Glauber dynamics in (2.21) as 
well as for 0 ~< 7 ~< 1/2 = 7c, the rh = 0 solution is unique and stable. When 
1/> 7 >7c,  on the other hand, i.e., for ferromagnetic interactions at low 
temperatures, there are two additional stationary uniform magnetizations, 

rh=  _+7-1 (7 /7 -  1)1/2= _+m* (2.27) 

m* can be thought of as the "spontaneous magnetizations"; for 7 > 7c, 
rh = +m* are the only stable solutions, n~ = 0 becoming unstable at y = 7c- 

This behavior is most readily understood by writing the polynomial 
F ( m )  on the right-hand side of (2.25) as 

F ( m )  = V ' ( m ) =  ---d-ram m 4 - 7 _ 1 m 2 (2.28) 

V ( m )  has the typical form of a mean field free energy with a single 
minimum for fl <~ fl,. and a double well form for fl > tic, than f lcJ  = Yc = 1/2. 
The origin of this behavior lies, of course, in the decorrelation introduced 
by the rapid exchanges. The value of tic here is, however, different from the 
usual Curie-Weiss value f l J =  1/2. Mean field theory is, of course, an 
approximation (a terrible one for d =  1) for equilibrium systems with short- 
range interaction. Its appearance in our system, for e ~ 0, is entirely of 
dynamical origin--we are very far from equilibrium. This leads us to ask 
whether the bifurcation in the solution of the macroscopic equation for the 
magnetization occurs already on the microscopic level before going to the 
limit e ~ 0. We believe, but cannot prove, that the answer is no for our 
one-dimensional example (but is so in higher dimensions); cf. also De Masi 
e t a / .  (18) 

To study microscopic effects in our present formulation we have to 
look at the fluctuations about the deterministic solution rn(q, t). From 

822/44/3-4-21 
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Theorem 3 we have that the "off-diagonal" equal time covariance [see 
Eq. (2.19)] of cb(cb~e-I/2[(cr(q/e, t))~-rn~(q/e, t; ~,)]) satisfies, for our 
example, the equation 

e(q, q'; t) =-~ ~-g-~q, + V-qq ) + [f'(m(q, t)) + F'(m(q', t))] 

+ ~ ( q - q ' ) I - \  dr ] + 2F'(m)(l-m~)+ 2mF(m)+4f(m) 1 

(2.29) 

where 

F'(m)= 2 [ ~ -  l l-672m2 (2.30) 

f(m) = 1 - 7(2 - Y) m2 (2.31) 

Here m(q, t) is the solution of (2.22), and (2.29) is to be solved with initial 
condition g(q, q'; O) = 0. 

Let us now consider the solution of (2.29) around the stationary state 
mo(q) = re(q, t)--0.  It is given by 

?o(q -q ' ;  0 = 8 7  ds(41rs) 1/aexp[-(q-q')2/4s] . e x p [ - 4 ( 1 - 7 / 7 , . ) s  ] 

(2.32a) 

FOT 7<7c,  

,. 7 e x p [ - 2  Iq-q'l (7c-7)  x/z] (2.32b) eo(q-  q ,  t) , ~ ,  (7c-  7) '/2 

so the Gaussian field approaches a stationary state with exponentially 
decaying covariances--on the macroscopic scale. For 7 ~> 7c, on the other 
hand, the covariances given by (2.32) grow without bound, exponentially 
for 7 > 7c, like ~ for 7 = 7c. The macroscopic instability of this solution is 
thus reflected in the fluctuations. In fact, from (2.29) the criteria for growth 
of g, F'(m) >~ 0 is precisely the same as for linear instability of stationary 
solutions of (2.22)--at least for the spatially uniform case. What happens in 
the nonuniform case, particularly that corresponding to traveling solutions 
of (2.22) (2"5) which are of interest in pattern formation, will not be dis- 
cussed here. 
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2.3. O u t l i n e  of  the  Proofs  

The proofs of Theorems 1-4 are based on a duality technique that we 
present in Sec. 3. We refer to Liggett, (37) Sec. 3, for a clear presentation of 
duality. The key idea of duality is that of looking at the process backwards 
in time. When applicable this reduces the study of a Markov process on an 
uncountable space ( { -  I, 1 } z in our case) to the study of its simpler dual 
process which generally is a Markov chain on a countable space, e.g., a 
family of finite subsets of 7/(in our case a slightly more complicated space). 

We proceed now to (informally) present a graphic construction of the 
dual process for the specific example. It is convenient, for this purpose, to 
rewrite the generator of the process L~ as follows: 

L=f(a)= ~ { ~i=, 2il(6 ~ d~(x))[f(~ f(a)] 
g-2 } 

+ ~ -  [f(~r ~'~§ - f ( a ) ]  (2.33a) 

where 

2~ 

{ { o ' e A i } =  1 

= (l "1-~) 2, ,~2= t - - ~  2, 2 3 = ( i - - 7 )  2, 2 i ~ O  (2.33b) 

3 
2 = ~ 2, > 0 (2.33c) 

i--1 

Al(X)={a:a(x--1)=~(x+l),a(x--1)=/=a(x)} (2.33d) 

Az(x) = {a: a(x -- 1) -r o-(x + i)} (2.33e) 

A3(x) = {r r  1) = a(x + 1) = a(x) } (2.33f) 

if cr~A~ and 0 if a ~ A i  (2.33g) 

From Eq. (2.33) we can realize the G.E. process as follows: At each 
site of Z there is a particle with a spin valued + 1 or - 1  according to an 
initial configuration ~o. We now associate with each site of 7/ three 
independent Poisson clocks with intensity 21, 22, and 23. A realization of 
these Poisson processes defines a collection of marks that we call the 
Glauber marks (of type 1, 2, or 3). A mark of type fl at time s means that 
the clock with intensity 2~ rang at time s. Furthermore, to each pair of 
nearest-neighbor sites we associate a Poisson clock with intensity e-2/2. 
Those define the collection of exchange or stirring marks. 

For  a fixed configuration co of marks, we construct the process 
{ = , 0 a  '~ ~<s~<t} on { - 1 , 1 }  ~ x [0, t] as follows. The particle at site x has a 
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spin, say + 1. It stays at site x with spin 1 up to the first time a mark 
appears. Two things can happen: (a) The mark is an exchange mark 
involving (say) x and x +  1; then the particle jumps to x +  1 (at the same 
time the particle sitting at x + 1 jumps to x) carrying its spin. (b) The mark 
is a Glauber mark of type fl, ~ = 1, 2, or 3. Then the particle looks at the 
neighboring sites: if the configuration belongs to the set A~(x), the particle 
nips its spin to - 1. If not, nothing happens. 

This procedure is carried out for all particles independently up to time 
t. Notice that the exclusion interaction appears automatically in this con- 
struction because the particles are using the same exchange marks. This 
implies that at all times there is exactly one particle at each site. 

The Dual Process 

Consider a fixed configuration a0 at time 0 and a fixed realization of 
marks in the interval [0, t]. Suppose that we now want to know if the spin 
at site x at time t, a(x, t) is _1 ;  we first follow the stirring marks 
backwards in time up to the first Glauber mark. Assume that this is 
a type t mark at time s at site y. Then a(x,t)=l iff at time s the 
configuration a s belongs to {a(y- 1)=  1, o(y + 1)=  1 } or to 
{o(y-1)4o(y+l) ,  o ( y ) = l } .  We now have to follow three particles 
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backward in time and keep in mind that the mark producing the branching 
was a type 1 mark. Each of these three particles behaves as the particle 
initially at x. New branches can appear on sites already occupied by an old 
branch. In this case the two branches "move together." Since with 
probability one only a finite number of branches can appear in a finite time 
interval, it is clear that the knowledge of the branching structure (with the 
type of mark that produced each branching) in I-t, O] and the configuration 
ao on the (finite) set determined by the branching at time 0 gives us the 
value of ~(x, t). This is essentially the dual branching process for our G.E. 
dynamics. 

In Fig. 1 a realization co ~ D is represented by marks in Y x ~ +. The 
time is flowing down. The cross marks are the Glauber marks (of 
types 1, 2, and 3), and the double arrows, the exclusion marks. Suppose 
that at t = 0 the initial configuration is ao = { - 2, 0 }, i.e., the spins of a o are 
positive at sites - 2  and 0 and are negative at all the other sites. Then for 
this configuration of marks, 

a , , =  { - 2 } ,  ~r,2= { - 1 } ,  a,3= {0}, o 1 4 = { - 1 ,  O}=o't5=(~t6 

On the other hand, the branching process is realized on the same co as 
follows: Suppose that the initial configuration is Zso = { - 1 }. Then Zs~ = 
{-1}, gs2={-1 ,0 , -2}=Zs,=Zs, ,  and Z s , = { - 2 , - 1 ,  O, 1}=Z, 6. 
Thus knowing ~r o in Zs6 and the branching structure which determines Z,6 
is enough to recover the spin value at time t. 

To compute the correlation function of, say, n spins one looks at the 
motion of n (interacting) branching processes. The interaction appears in 
two ways: (a) by the stirring interaction between the particles, and (b) by 
the superposition of two branches when new particles are created at a place 
already occupied by an old branch. We say in the latter case that a 
Glauber interaction occurred. 

We treat the exclusion interaction by suitably coupling a finite number 
of interacting particles with the same number of independent particles as 
done in Ref. 16, Sec. 3. In that coupling each interacting particle is "close" 
to one of the independent ones. 

To treat the Glauber interaction, we observe that the probability to 
create at a fixed time a new particle at a site already occupied is propor- 
tional to the probability that a simple random walk is at that site at that 
fixed time. In our scale this probability is of the order (e 2t ) - -d /2~  t~ d. We 
therefore generalize the independent process introduced in Ref. 16 defining 
an "independent branching process' (see Definition 3.3) and show that to 
zero order in ~ the distribution at time t of the interacting branching 
process is equal to the distribution of the independent one. At order e a a 
one-body and two-body correlation is present. This is stated in 
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Proposition 3.4 and is proven in the Appendix. The proof of 
Proposition 3.4 uses sharp estimates on the simple exclusion process that 
are a generalization of those obtained in Refs. 15 and 21. 

The above analysis implies (see Lemma 3.5) that the distribution at 
time t of the Glauber exclusion process is to zero order in ~, equal to a 
product measure. Therefore, to prove Theorems 1 and 2 it is enough to 
consider #~(~[~ lr], t), i.e., the expectation of the spin value at time t at 
the "macroscopic point r." After showing tightness we prove that any limit 
point of the sequence #~(a([e- l r ] ,  t)) satisfies Eq. (2.22) and, therefore, 
convergence is guaranteed by the uniqueness of the solution of Eq. (2.22); 
see Smoller. ~5~ 

The proof of Theorems 3 and 4 is also based on Proposition 3.4. In 
fact, to study fluctuations around the deterministic limit we need to 
estimate the ed-correction. We did not compute explicitly this correction, 
but it can be shown that it is given by the regular part ~, of the equal time 
covariance of the limit fluctuation field [-see Eq. (2.19)]. This has been 
proven in Ref. 15 for the exclusion process (see also De Masi et al., (16), 
Sec. 7). 

Finally we mention that the proof of Theorem 3 uses the 
Holley-Stroock (28) theory of generalized Ornstein-Uhlenbeck processes via 
martingales. That is, we first show tightness for the process Y~(~b) [-see 
Eq. (2.13)] and then, to guarantee uniqueness, we prove that any limit 
point satisfies the martingale condition stated in Eq. (2.14). To show this 
fact, we need Theorem 4. The same techniques are used in Refs. 17, 20, and 
52; see also Ref. 16, Sec. 6. 

3. DUALITY.  THE B R A N C H I N G - E X C L U S I O N  PROCESS 

In this section we consider the one-dimensional G.E. process defined 
via the generator L~ given in Eq. (2.33). We begin by making precise the 
duality relation between the G.E. and the branching process described in 
the last section. 

Def ini t ion 3.1. 

(a) The Branching-Exclusion Process (BEP) 
The BEP is a stochastic process with state space ~ = N z. At t = 0 n 

particles start their motion from the position 

x/E7/, i = 1  ..... n,x~<xj for i < j  (3.1) 
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Each particle (independently of the others) has a clock 8 (a Poisson 
process) of rate 2 where 2 is defined in Eq. (2.33). We call this Poisson 
process a Glauber clock and label each event time of the Glauber clock by 
a Glauber mark. A Glauber mark can be one of three kinds: it is of type 
fi~ {1, 2, 3} with probability ~ /2 ,  where 2~, f ~ {1, 2, 3}, is defined in 
Eq. (2.33). 

Each particle moves on the lattice by simple exclusion (stirring) with 
rate e-2/2. When a Glauber mark appears the (corresponding) particle 
creates two new particles in its nearest-neighbor sites. A new (independent) 
Glauber clock is attached to each of these new particles, which they will 
keep along their motion. If a particle is created at a site already occupied, 
the new particle has the same trajectory and the same Glauber clock as the 
old particle or particles. Therefore, when a Glauber mark appears on this 
"joint" Glauber clock, the two particles created at the nearest-neighbor 
sites are descendants of all the parent particles. We can have any number of 
particles on a given site. We call "first class" (respectively "second class") 
particles those particles which start their motion from an empty site 
(respectively from a site already occupied) and say that there is a Glauber 
interaction if there is at least one second-class particle. In what follows, the 
first- and second-class particles are counted separately even though they 
move together. 

We now define, for any t >~ 0, 

~ ,  total number of particles at time t (3.2a) 

Tt, the time when the/ th  Glauber mark appears on the Glauber 
clock of any of the particles present at time TI 1, To = 0 (3.2b) 

{1, 2, 3} is the type of the lth Glauber mark (3.2c) 

�89 - n), total number of Glauber marks up to time t (3.2d) 
f l /E  

~ =  

Finally 
~ =  

fit = 

{TI, l =  1 ..... JC/t} (3.2e) 

{/~,, l =  1,..., Jdt} (3.2f) 

(b) The Labeled Branching-Exclusion Process (LBEP) 
To establish the duality relationship, we shall label the particles. We 

choose the following prescription. 
Given an initial configuration as in Eq. (3.1), we label with i the par- 

ticle that starts its motion at the site x~eZ, and we call Z n the vector 
Z n = ( x l  ..... xn). 

8 We proceed this way for convenience. It is easy to see that the process constructed with the 
clocks on the sites, described in the last section, is equivalent to the one constructed with the 
clock on the particles. 
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We label n + 1 and n + 2 the two particles created at time T1 [see 
Eq. (3.2)]: n + l  (resp. n + 2 )  is the label of the particle that starts its 
motion at the right (resp. left) of the parent particle. We label n + 3 and 
n + 4 the particles created at time T2 ans so on. We let 

and 

It(i) = 

z( i ,  t ) =  

Observe that 

xk(t)  = position at time t of the kth particle (3.3a) 

and 

IL(i)I = ~( i )  (3.4g) 

~ <  L ~ ( i )  (3.4h) 
i = l  

In Eq. (3.4h) the equality holds if and only if there are no descendents of 
second-class particles. 

We need to define Vt>~0 a random variable ~ =  {~(i), i =  1,..., n} in 
such a way that we can read off from ~ the branching history up to time t 
of all the particles of the ith family for any family i E { 1,..., n }. We avoid 
giving a precise definition of ~ and we refer to Harris, (26) Chapter 6, for a 
possible prescription. In any case, ~ determines also I t ( i )V ie  {1 ..... n}. 
Observe that if ~ ,  ~ and {Z(s), 0 ~< s ~< t} are given, then ~ is known. On 
the other hand, ~/~t, ~-~, and Z( t )  do not specify ~-~. 

Z( t )  = (x l ( t )  ..... xx~(t))  (3.3b) 

We call the particles with label 1,..., n first generation and, Vi ~ { 1,..., n }, the 
descendents of the ith particle of the/-family. Note that the descendents of 
second-class particles may belong to more than one family. For any family 
i 6 { 1 ..... n } and any t >~ 0 we define 

JVt(i) = total number of particles of the ith family at time t (3.4a) 

J/g~(i) = total number of Glauber marks up to time t referring 
to the particles of the ith family (3.4b) 

J~(i) = { Tl(i), l =  1 ..... ~'t(i)} set of times when 
a Glauber mark appears referring to the particles 
of the ith family (3.4c) 

fl,(i) = {fit(i), I=  1 ..... J/gt(i) } set of types of 
the Glauber marks of the ith family (3.4d) 

set of labels of the particles of the ith family (3.4e) 

{x~(t), a ~ It(i)} (3.4f) 
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Finally, for any t >~ 0 we define 

and for each family 

(3.5a) 

~r = (.~t(i), J~(i), fl,(i), @(i)) (3.5b) 

Therefore the LBEP is a process (Z(t), ~r where Z(t)=Uz>~I y_t is 
defined in Eq. (3.3) and ~r is given in Eq. (3.5a). 

We will denote by 
P '  (or simply P~ if no confusion arises) the law of the LBEP (3.6a) Zn 

and by 

~ , ( . )  (or simply ~ ( . ) )  the expectation with respect 
to the measure P~ (3.6b) Zn 

(c) Spin Variables Associated with the LBEP 
Let Zn=(Xl,. . . ,Xn) , t>~O, and a0~ { - 1 ,  1} z be fixed. 
We associate to each particle existing at time s, O<~s<~ t, a spin 

according to the following rule. We begin by giving the spins at time t: all 
particles of Z(t) which are at x take spin value ao(X), for any x e 2. Spins 
can change only at the times T t when Glauber marks appear. Assume that 
we know the values of the spins of all the particles at time "Tt + 0" and that 
particles which are sitting at the same site have the same spin. Then the 
value of the spins at time " T z -  0" are specified as follows. Let k be the label 
of the first-class particle for which the Glauber clock rings at time Tt. Then 
the spin of the kth particle changes at T~ [and with it that of all the 
second-class particles sitting together the kth one] iff the spins of the par- 
ticles created at Tt agree with the type fi2 of the Glauber mark. All the 
other particles keep their spin values [notice, however, that at " T I - 0 "  
there are two particles less than at time "T t+  0," those generated by the 
Tz mark]. In this way the value of the spins of all the particles are specified 
in the whole time interval [0, t]. Notice that, given ~r the actual trajec- 
tory of the particles of the LBEP enter in the specification of the spins only 
through the values Z(t) to choose among the spins of a 0. For the rest, in 
fact ~ completely specifies the descendent relationship among particles 
and which ones are involved at each Glauber mark. 

Finally we write 

ao(Z(i, t ) )=  {ao(X~( t ) ) :V~I , ( i ) }~  {--1, 1} ~'(~ (3.7) 

and we let hi = hi(s~r ~ro(Z(i , t)), i e { 1 ..... n } be the spin value of the par- 
ticles of the first generation at time 0. 



610 De Masi et  aL 

T h e o r e m  3.1. (Duality). For any t~>0, Z ,  = (x~ ..... x,) e T/n,  and 
a e f ,  there exists a joint probabilistic version of the processes (s~r Z( ' ,  t)) 
and a( ' ,  t) with initial configuration Z ,  and a respectively, such that 

f i  a(xi, t)= f i  hi(~ct(i), a(Z(i, t))), 
i = i  i - 1  

P'  a.s. (3.8) 

where P+ is the law of the joint probabilistic version. 

Proof. The proof follows from the joint construction of the G.E. 
process {a,, s ~> 0} and {(Z(s), d+), s ~> 0} on a common probability space 
(12, P~). The space (12, W) is the direct product of 1-[x~ z (12x,x+i, P~,x+l) 

~'22 2 e and 1-[z~ z ( z, Pz), where (f2x.x+j, Px, x+ ~) is a Poisson process with rate 
12~ e 2/2 for each x e Z, and ( ~, P~) is the direct product of the three Poisson 

processes with rate 2~, f ie {1, 2, 3} defined in Eq. (2.33). We write coe12 
and a coz e 12z. We only consider co e 120 c 12, where 12 o is the set for which no 
more than one mark is present at any given time. Since W(12o)= 1, with a 
little abuse of notation we write 12 = 12o- 

As already described informally in Sec. 2, given an co e 12 a trajectory 
of the G.E. process {a+, 0 ~< s ~ t} is given by the following prescription. At 
each site x e 7/ there is a particle with label x. The x-particle follows the 
bondmarks of co, carrying along its motion the clock co x e co. The particles 
of nearest-neighbor (n.n.) sites exchange their positions at time s if and 
only if a mark co occurs on the bond between them at time s. Furthermore, 
the x-particle flips its spin at time s if and only if at that time the co~ mark 
of type fl, fi e { I, 2, 3 } appears and the value of its spin and of its nearest 
neighbor particles at time s is that prescribed by the set A~(z(s; x))[z(s; x) 
is the position at time s of the x particle]. 

Let t >i 0, Xl ..... x,  e 7/be fixed. Any given co e 12 determines a path of 
the LEBP starting from Z ,  = (x~ ..... x,) in the time interval [-0, t]. Consider 
that &, (5 is obtained from co by restricting co to [0, t] and reversing the 
time from t to zero, then use the prescription given in Definition 3.1. (Time 
reversal is the same as reflection se  [0, t ] - - ,T=  ( t - s ) e  [0, t].) We now 
observe that in the G.E. process, the value of the spin at site x~ at time t, 
a(x~; t), depends on the value of the spins at time zero in the series x~(t), 
eel,(i) (see Definition 3.1) and on the "branching history" sgt(i). This 
dependence is just that given by the function h~ defined in 
Definition 3.1c). | 

Remark 3.2. (i) The duality relation (3.8) is different from the one 
frequently used. Equation (3.8) implies the following: There exists a 
function H(a; Zn) - I],". 1 a(xi) in 5f x 2 ,  where ~ is the set of all subsets 
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of 7/, and a function H(d,  Zn(t), a) in f2 x Y', where (2 is the path space of 
the LBEP such that 

PF~o(H(at; Zn)) = ~-zo(H(sr Zn(t), ao)) 

The difference from the usual definition of duality is that in Eq. (3.2) of 
Definition 3.1, Chapter 2, of Liggett (37) the function H is still a function on 

x s it is in fact equal to H. Our duality is, therefore, more difficult to 
deal with. We do not know if it is possible to define some "dual process" in 
such a way as to obtain the usual duality relationship with the G.E. 
process. 

Independent Branching Process 
As noted in Sec. 2c, it is quite natural to compare the BEP with an 

independent branching process, that is, a process in which the particles 
move as in a random walk and create particles independently of the others. 
Proposition 3.4 below states that to zero order in e the two processes are 
the same; the correction is of order e. 

De f in i t i on  3.3. We define directly the labeled independent 
branching process (LIBP), the definition of the IBP being easily recovered. 

For  any integer n~> 1 and vector Z,=(xl , . . . , xn)cZ as in Eq. (3.1), 
the independent /-particle starts its motion at site xl e 2, i =  1,..., n. Each 
particle has a Glauber clock of rate 2 and the Glauber marks can be of 
three different species as in Definition 3.1. Each particle moves on the lat- 
tice via a random walk with rate 5-2/2. When a Glauber mark appears, the 
(corresponding) particle creates two new particles in its n.n. sites. These 
new particles carry along their motion a Glauber clock and so on. The 
labeling is given with the same prescription as in Definition 3.1. 

We call the independent/-family the LIBP starting with the/-particle 
at time zero and we denote Vt >~ 0 by 

x~ = position at time t of the independent k-particle (3.9a) 

and 
Z~ = {x~ k = 1 ..... j~o} (3.9b) 

We define 

d o  ( : ~ o , ~ o  o = ~ , ,  fit, j o )  and sg~ (3.9c) 

in the same way as in Eqs. (3.5). Note, however, that in the LIBP all par- 
ticles are first-class particles. Finally, using the same rules as in 
Definition 3.1c, we associate a spin variable h ~ i e  {1,..., n} to each particle 
of the first generation. 

In the Appendix we will prove the following proposition. 
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Proposi t ion  3.4. Let {#~}, e e ( 0 , 1 ]  be a family of (initial) 
measures on Y defined as in Theorem 2.1. Let t~>0 and n>~l be fixed. 
Then there exists a constant c > 0 such that the following holds. For any 
x~,..., x ,  distinct integers and ee (0, 1], there are two families of numbers 
7~,i, i ~ j ,  i , j~  {1,..., n} and 7~, ie  {1 ..... n} such that 

~#, a(Xi, t = EO(a(X i, t))+ e 7~ I~ ~~ t)) 
i = i  i = 1  k ~ i  

+ ~ ~ YT, j [I  ~-o(a(Xk, t)) + r~ (3.10) 
i , j =  l k r i , j  

i # j  

with 

and 

sup 1~71 ~ c  and sup I~,~jI ~ c  (3.11a) 
i i , j  

lim e-1 lr~[ = 0  (3.11b) 
e ~ 0  

In Eq. (3.10) ~:o denotes the expectation of the r.h.s, of Eq. (3.8) with 
respect to the law of the IBP. 

The proof of Eq, (3.10) is based on a generalization of the coupling 
techniques and the probability estimates for the exclusion process given in 
De Masi et al. (16) and in Ferrari et al. (21). 

Proposition 3.4 implies that to zero order in s the distribution at time t 
of the G.E. process factorizes, while to first order in ~ both a one-body and 
two-body interaction is present. In the next lemma we state and then prove 
this property. 

kemma 3.5. Let {#~} be a family of measures on Y" satisfying 
Definition 2.2. Let t t> 0 be fixed. Then the following holds: 

lim sup sup [~-l~,,((~r(xl, t ) - p l ) (a ( x2 ,  t ) - p 2 ) [ < ~  (3.12a) 
~ 0  0 ~ s ~ t  X I , X 2 G 2  z 

,im ,31 b  
s ~ O  Xl, . . . ,XnG Z i =  

xi q- xj  

where 
Pi = F-~'(a(Xi, t)) 

ProoL From Eq. (3.11a), it follows that 

(01 ) ~_~ (G(x , ,  t ) )  - p i  

(3.12c) 

n_l f i  = [I  ( p ~  p,) + ~ ~ (pO_ pk) 
i = 1  i = 1  k ~ i  

+~ ~ 7i~,j IJ ( p ~  (3.13a) 
i , j  = l k va i, j 
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where 

pO = ~o(o(xi, t)) (3.13b) 

For n = 2 we apply Eq. (3.10) twice to (pO_ pl) and (pO_ P2); the first two 
terms in the r.h.s, of Eq. (3.13) give a number r', which by Eq. (3.11a) 
verifies Ir',l ~< g2, while the third term in (3.13a) gives Y~,2. Equation (3.12a) 
then follows from Eq. (3.11a). For n ~> 3 we apply Eq. (3.10) three times 
and we obtain a number r'~ which verifies Ir'~] ~<e z and so Eq. (3.12b) 
follows. | 

Remark 3.6. The proof of Theorem 3.1 does not use the particular 
form of the rates c(x, o) or even the fact that our example is one dimen- 
sional: for any finite-range function c(x, o) the construction of the BEP can 
be done in the same way as in Definition 3.1. 

4. P R O O F  OF T H E  T H E O R E M S  

We prove Theorems 1-4 for the one-dimensional example, but the 
proofs can be easily extended to the general case. All the proofs follow 
easily from Lemma 3.5. 

Proof of Theorem I. From Eq. (3.12) it follows that 

~ : ~ 0  i =  i = 1  

Therefore to prove Eq. (2.8) it is enough to show that Vr~>0, 

lim W~(o(x, t ) )=  m(r, t) (4.2a) 
g ~ O  

~ x ~ r  

where m(r, t), r ~ ~, t >~ 0 is the unique solution of the following differential 
equation: 

0m 1 ~2m 
~t - 2 0r ~ 4- 2(2y - 1) m - 272m 3 (4.2b) 

m(r, O) = mo(r ) 

To prove (4.2), we first show that { ~ ( o ( [ ~  l r ] , t ) ,  r ~ ,  t > 0 }  ([q] 
denotes the integer part of q) is an equicontinuous family of functions and 
therefore it has a limit by subsequences. Afterwards, we will show that 
every limiting point satisfies Eq. (4.2b) and so uniqueness follows. 
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Proof of Equicontinuity. We have to show that Vr/> 0 there exists 
6 > 0 such that Vr ~ ~, Vt' ~> 0 with 141 ~< ~, t' < 6 the following holds: 

sup sup sup IE, , (a([e- lr] ,  t ) ) - E , , ( a [ s  l ( r + ~ ) ] ,  t + t ' ) l  <r/ (4.3) 
r c l ~  t~>0 

We shall use duality. We consider two particles with labels 1 and 2. They 
are independent and each one moves according to the BEP as described in 
Definition 3.1. Particle 1 starts at time 0 from the position [ e - l ( r + ~ ) ]  
while particle 2 starts at time t' from Ee-lr] .  We denote by xl(s) ,  Xz(S) the 
positions at time s of the 1-particle and the 2-particle respectively, letting 

x2(s) = [ e - l r ]  Vs<~ t' 

We shall prove that 

I ~,(~( [ e - l r ] ,  t)) -- E~,(a([e-l(r + 4)], t + t'))] ~< c1 t' + e2(6) 

+ (c3t 1/2 + c4)(1~1 + (t ') 1/4) (4.4a) 

and also that 

1.h.s. of Eq. (4.4a) ~< cl( t  + t') + c2(6) + Cs(t 1/4 Jr (t') U4 Jr t~1) (4.4b) 

lim c2(6) = 0 (4.4c) 

The first inequality will be applied for "large" t, the second one for "small" 
t, and together they imply equicontinuity. Hence we are left with the proofs 
of Eqs. (4.4). 

We first reduce ourselves to the equal time case, t ' = 0 .  Let T~ 
[resp. T2] be the time when the first Glauber mark appears in the history 
of particle 1 [resp. 2]; then there exists ca so that 

For k > 0, let 

P(T1 ' 1 t' ~< t ) ~< 7cl (4.5) 

A l ( t ' , e , k ) = { I X l ( t ' ) - e  l ( r + ~ ) l < ~ k e - l , , / - f }  (4.6a) 

then there exists ~b(k) such that 

lira ~b(k) = 0 (4.6b) 
k ~  

and 

P(AI( t ' ,  e, k)) ~> 1 - ~b(k) (4.6c) 
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By duality we then have 

1.h.s. of Eq. (4.4a)~< IE~(~ ({T~ >1 t', A~(t', ~, k) } )[~-,~(a(Xz( t'), t) 

- a(x~(t'), t))])[ + el t' + 2~b(k) (4.7) 

We first consider the case when t is "large." The estimate is based on 
the fact that if 6 is small enough then with large probability Xl(S) and Xz(S) 
will meet each other before t + t' and before the appearance of a Glauber 
mark. Such events do not contribute to the r.h.s, of Eq. (4.7). We therefore 
introduce 

So = inf{s/> t': xl(s)  = Xz(S) } (4.8a) 

T =  min(T1, T2) (4.8b) 

P(so>~t'+t,  A x ( t ' , e , k ) ) < ~ c 3 [ ( l e - J ~ + e - l k x / T I ) / ~ ]  (4.8c) 

P(so>~ T, A,( t ' ,  a, k))~<c422 fo ~ dse 2x'[(1r + k  xftsl) /xfs? (4.8d) 

Theretore 
l.h.s, of Eq. (4.4a) ~< (c~ t ' +  2~b(k)) + c3[(f~1 + k x / 7 ) / x / t ]  

+ c4(1~1 + k x /7)  (4.9) 

By choosing k = ( t ' )  -1 /4  and setting c2(a ) = 2~b(a 1/2), we obtain Eq. (4.4a). 
For t small we shall use the fact that both Xl(S) and x2(s) do not move 

"too much" and that the initial datum is smooth. We set 

A 1(/§ l', C, k) = { Ixa(t + t') -- a-  ~(r + r ~< ~ lk ,,/t + t'} (4.t0a) 

A2(t + t', e, k ) =  { [x2(t § t ' ) -  e-~r[ <~ e -  lk x/-t (4.10b) 

and as before 

P(AI( t  + t', ~, k)c~ A2(t + t', 5, k))>~ 1 -2~b(k) (4.1 la) 

P ( T  <~ t + t') <~ Cl(t + t') (4.1 lb)  

1.h.s. of Eq. (4.4a) ~< cl(t + t') + 2~b(k) + sup Imo(ea ) - m0(eb)[ (4.12a) 

where the sup is taken with respect to all a and b such that 

la-bl<<.e l ( l r  

Equation (4.12a) gives Eq. (4.4b) because dmo/dr is uniformly bounded 
and we now choose 

k = m a x ( t  2/4, (t,)-1/4) (4.12b) 
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Remark. The definition of So in d > 1 is a bit more complicated. We 
construct a coupling (_X(t), _Y(t)) on (zd) 2 in such a way that each marginal 
is a continuous time random walk on Z a. If we define 
s~=inf{t:  xi(y)=y~(t)}, i= 1 ..... d, the coupling is constructed in such a 

i and x~(t) - y~(t) for way that x~(t) and y~(t) are independent for t<,s o 
Thus, after So, X ( t )=  Y(t) and it t/> s~. Then we define so = max~  {a,...,d} So. 

is easy to see that, as in one dimension, So satisfies Eq. (4.8). 

Proof of Uniqueness. Let m(r,t) be a limiting point of 
Eu,(a([e-~r],  t)). We will show that m(r, t) satisfies the integral equation 
(2.23). It is well known (see, for, instance Cannon (1~ that there is a unique 
solution of Eq. (2.23) which is equal to the unique solution of the reaction- 
diffusion equation (4.2b). From this uniqueness will follow. 

To prove that any limiting point of ~_~,(a([~-~r],t)) satisfies 
Eq. (2.23), we use the following identity. For  any continuous function f 
on Y" 

fo S~f(a)= T~f(a) + ds S~_sL~(T~f(a)) (4.13) 

where T~ is the semigroup with generator e 2L E and S~ is the one with 
generator L a + e  2L E. To check Eq. (4.13) it is enough to consider 
functions f in a core D common to all the generators, La ,  e 2L E and 
L a  + e - 2 L E  . It is not difficult to see that such a core D does exist (see 
Liggett, (37), Chapter 1, Sec. 3). For  f in D, Eq. (4.13) follows from the 
integration-by part formula. 

We use Eq. (4.13) with f ( a )  = a ( [ e -  mr]) and, observing that Vz E 7/ 

T~a(z) = ~ G~,(z, x) a(x) (4.14a) 
x 

we obtain (see the definition of L~) 

E ,~(a(e- l r ] ; t )  = ~ G~(Ee lr],x) mo(eX)+ ds ~ G~([e l r ] , x )  
x E Z  x ~ E  

x [ - 2E,~(a(x; t - s) + 27(E,~(a(x - 1; t - s)) 

+ E.0(G(x + 1; t--s)) 

- 272E~(a(x-  1; t - -  s) a(x + 1; t - s) a(x; t - -  s))]  (4.14b) 

Here G ; ( [ e - l r ] ,  x) is the probability that a random walker starting from 
[5 lr]  and moving with r a t ee  Z is at x at time s. 
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From classical estimates on the sum of independent random variables 
(see, for instance, Petrov (44)) we have Vz E 

J i m ~  y ) - ~ e x p  - ( e 2 ]  = 0  (4.15) 

From Eqs. (4.14) and (4.15) and the Lebesgue dominant convergence 
theorem, we obtain the first term in the r.h.s, of Eq. (2.23). 

From Lemma 3.5 [see also Eq. (4.1)], Eq. (4.14), and the equicon- 
tinuity, it follows that along subsequences 

lim I Eu4LG~(x, s ) ) -  2 ( 2 y -  1) m(~x, s ) -  2yZm(ex, s)3][ = 0 (4.16) 
e ~ 0  

From Eqs. (4.15), (4.16), and the Lebesgue dominant convergence 
theorem, we have that the expression in the r.h.s, of Eq. (4.14) converges 
along subsequences (as e--, 0) to the second term on the r.h.s, of Eq. (2.23). 
Therefore Theorem 1 follows. | 

Remark 4.1. For any 2 > 0, let Tt '~ be the semigroup with generator 
e-2L E + 2 i.e., T~ ,~- = e x p ( - 2 t )  T~. Then the same argument as before shows 
that 

;o S J ( a ) = e  ~' T~f(a)+ dse -xs S~_,(LG+2)(T~,f(a)) 

Theretore f o r f ( a )  = ~([e lr])  we obtain 

(4.17a) 

E~,(a([e- lr l ,  t ) ) = e  -At ~ G~([e- l r ] ,  x) mo(eX) 
x c Z  

+ ds ~ G~([e lrl, x) e ~'~_~,(L~a(x,t-s) 
x E Z  

+ 2~(x, t -  s)) (4.17b) 

If we choose 2 as in Eq. (2.33c), eq. (4.17b) can be interpreted in the 
following way. A particle with label 1 starts at time 0 from position [ e - t r ]  
and moves according to the BEP described in Definition 3.1. We denote by 
x(s) its position at time s. Let TI be the time when the first Glauber mark 
appears: T~ is distributed according to a Poisson measure of parameter 2. 
Theretbre e -;~t= P(TI > t) and since in the set {T1 > t} the particle moves 
up to time t according to a continuous time random walk of intensity e 2, 
we easily get the first term in the r.h.s, of Eq. (4.17b). The second term in 
the r.h.s, of Eq. (4.17b) is obtained by looking at the event {T~ ~<t}. In 

822/44/3-4-22 
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fact, at time T 1 the spin value of the particle changes [does not change] 
according to both the type of the Glauber mark and the spin values of the 
particles created in its n.n. sites. 

Finally we observe that from Eq. (4.17b) we get that any limiting 
point m(r, t) of ~uo(a([e-lr]; t) satisfies the following integral equation: 

m(r,t)=e ~"If dqG(q-r , t )  mo(q) 

+ Io t ds f dq G(q-r,  t - s )  e ~S F~(m(q, s)) 1 (4.18a) 

where G(q, t) is defined in Eq. (2.24) and 

F;~(m) = [2(27 - 1) + 2] m - 272m 3 (4.18b) 

Obviously the solution of Eq. (4.18) is equal to that of Eq. (2.23). 

Theorems 2 and 3 deal respectively with the study of the 
magnetization field defined by 

X~(qk) = ~ ~ ~(ex) a(x, t) (4.19) 
x 

and of its fluctuation field defined by 

Y~(~b) = e -1/2(X~(~b) - ~:~(Jf~(~b)) (4.20) 

Both {X,~(.)} and { Y~(')} are considered as distribution-valued processes, 
i.e., in the Skorohod space D([0, oc), 5~ To study these processes we 
use martingale techniques as presented in Holley and Stroock (28) (see also 
Metivier c38)) and widely used in the study of hydrodynamical properties of 
many-particle systems (see De Masi et al., Chapters 4 and 6 and references 
therein). Even if these arguments are by now standard, we briefly sketch 
them here for the sake of clarity. 

In the proofs of Theorems 2 and 3 we use the following criterion of 
tightness. 

T h e o r e m  4.1. (Holley-Stroock, ~28) Metivier, (38) and Mitoma(39)). 
Let pc, e~ (0 ,1 ] ,  be a family of processes on D([0, oe),SP'(N)). Let 
{r } be the canonical coordinates on D. Assume that the following three 
conditions are verified. 

(i) For every r ~> 0 and ~b e 5Q(N) there exists a constant c(~, ~b) > 0 
such that 

sup sup P~(~,(O)2)<~c(z, (~) (4.21) 
e O ~ t ~ < z  
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(ii) There are 2~(r ~), Y2(r r), r e o~(R), ~ ~> 0 such that 

M(O, r) - ~,((b) - ds 7~((b, s) (4.22a) 

m ~ 8  N(r r) = M(r z) 2 ds 72(r s) (4.22b) 

are P~-martingales with respect to the canonical filtration { ~ } ,  [i.e., Jg~ is 
the o--algebra generated by {~(r  0 ~< s ~< r, 0 e 5~ ]. Furthermore 
V~/> 0, Vr ~ ;7 (~)  there are constants c1(r ~) > 0, c2(r ~) > 0 such that 

sup sup P~(7~(r 0 2) ~< ce(r, r i =  1, 2 (4.23) 
e O ~ < t ~ < ~  

(iii) For every CeS"(N),  r>~O there exists 6(~, r e) so that 

lim 6(r, r e )=  0 
e ~ O  

and 

lim P~( sup I~,(r162162 >6( t ,  r e ) )=O (4.24) 
c ~ O  O ~ < t ~ < ' c  

Then for every r > 0, P~ is tight in [0, r ]  and any limiting point P has 
support on C([0, oo), 5P'(N)). 

Proo f  o f  Yheorom 2. From Theorem 1 it follows that the process 
{X~(r converges as e ~ 0 to the "deterministic process" ~ dr cb(r)re(r, t) 
on the finite distributions. In fact, by Theorem 1 and the Lebesgue 
dominant convergence theorem, we have 

lim rF ,(X~(r = f dr m(r, t) r (4.25a) 
8 ~ 0  

and 

lim E~([X~(r - E~(Jf~(~b))] 2) = 0 (4.25b) 
8 ~ 0  

From Eqs. (4.25) it follows that Vn~>0, Vr Cneq0(E) Vtl ..... tn>~0 and 
V~>O, 

~ 0  



620 De Masi et  al. 

Therefore to obtain the proof of Theorem 2 we need to show tightness. 
This can be done using Theorem 4.1. The proof of (i)-(iii) of Theorem 4.1 
is quite similar but much simpler than the one we shall give for the fluc- 
tuation field; therefore we omit the details. | 

Proof of  Theorem 3. We use the same argument as the one used in 
Ref. 20 and in Ref. 15, Sec. 6 to which we refer for the details. 

Let GeC~(~) .  For  any r~>0 and ~b~Se(~) we have that 

G(Y~(O))- ds L~G(Y~(~)) (4.27a) 

is a P"-martingale. In Eq. (4.27) L~ denotes the generator of the process. 
From easy computations it follows that 

L~ G(Y;(~b)) = (L: Y;(~b)) G'(Y~(~b)) + ~72(~b, z) G"(Y~(~b)) 

where 

+ r, (4.27b) 

dG d2G 
G' = - -  G" - (4.27c) dq' dq 2 

l ime  1 [r~l = 0 (4.27d) 
e - - ~ 0  

~ - 2  
72(~b, ~) = e ~, ~b(ex) 2 4c(x, a~) + e ~ ~ (q~(~x) - (b(e(x + 1)) 2 

x x 

• (a(x, ~) - o-(x + 1, z)) 2 (4.28) 

Furthermore 

where 

L~ Y~(~b) = 7](~b, ~) + r~ (4.29) 

• (4.30) 7~(~b, z) = 2(27 - 1) Y{(~b) - 2~ 2 Y{(~b; f )  + 2 -~v- , 

f ( a )  = ~ ( -  1) a(0) a ( 1 ) -  ~ ,~(a( -  1) a(0) a(1)) (4.31a) 

y ~  , , ( ~ b , / ) = , , / - s  xf(o'T) ~-,~(Z_xf(a~))] (4.31b) 
x 

l ime  ~ ] r ] l = 0  (4.31c) 
g ~ 0  

We first show tightness; then we prove that if P is a limiting point of 
P~ then P satisfies the martingale condition stated in Eqs. (2.14). Uni- 
queness follows from a general theorem proven in Holtey and Stroock (28) 
(see also Stroock and Varadhan(54)). 
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Proof of Tightness. We use Theorem 4.1. Equation (4.21) follows 
from Eq. (3.12a). To prove (ii) we observe that from Eq. (4.27) with 
G(q) = q and G(q)= q2 we obtain Eqs. (4.22a) and (4.22b) respectively, the 
functions 7~ and ~ being given in Eqs. (4.30) and (4.28) respectively. 
Equation (4.23) for 72 trivially holds since 

7~(~b, r) ~< c max{sup (1 + r 2) I~b(r)21, sup (1 + r 2) I~b'(r)2[ } (4.32) 
r r 

for a suitable c > 0. 
Equation (4.23) for ~ follows from Lemma 3.5. 

Proof of Uniqueness. We need to prove that if pc converges weakly 
to P, then the term in Eq. (2.14a) is a P-martingale. 

Therefore it is enough to show that 

lim rF,(lT~(~b, ~) - I lB~r  (4.33) 
e ~ O  

and V0 ~< a ~< ~, for every bounded continuous function 0~ measurable with 
respect to the a-a lgebra/ / / ,  (dr/, is defined in Theorem 4.1), 

l i m [ , ( @ { f f  dt[-Y~(AtO)+7~l(r (4.34) 
~ 0  

Equation (4.33) follows from Lemma 3.5 and Theorem 1, while Eq. (4.34) 
follows from Theorem 4 that we prove below (see Ref. 16, Sec. 6, 
pp. 249-250). | 

Proof of Theorem 4. We will use the same argument (and also the 
same notations!) as in the proof of Theorem (0.4)' in Sec. 2 of Ferrari et 
aL (2~ We prove Theorem 4 for the correlation functions, i.e., for functions 
fn given by 

[0, ,)] f . ( a , )  = a(x,,  t ) -  ~ .  ~ ( x .  t , 
i i 

xl,..., x ,~E,  x i#xj ,  V i # j  (4.35) 

The general case will follow straightforwardly. 
First of all we show that 

1 I,+.2T L~(a.~)) 2) 
lim lim sup ~"  , n 

T . . . .  0 ,'<~t<~ g2TJt d s ( Y ; ( O ; f n ) -  

lim lim sup 0 ~ ( ~ 1  ; ' + ~ 2 r .  ~ .  ds ~ ~ . . )2 = Ys(~b~,,, IAI) T . . . .  o ~.<,_< ~ 2 . +  _ 
"r A ~ { 1, . . . ,n} 

~ ' ~  4.36a) I A I > I  
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where IAI = cardinality of the set A, a~O=nm(r, s) ~ 1 ~b(r), 

~A.,(r) = ~)(r) m(r, t)" iai (4.36b) 

Y~(O'k)=e~k(ex)([Ilx i= (~(x+xe, s ) -p~(x , s ) ) )  (4.36c) 

p~(x, s) = ~ ( a ( x  + xi, s)) (4.36d) 

Equation (4.36) follows from the following identity: 

f i  a(x+x~,s)= ~. H p~(x,s) H [~r(x+xi, s ) -p~(x ,s)]  (4.37) 
i =  1 A = {1 , . . . ,n}  j (~A i E A  

In fact, the term with A = ~ cancels out with the expectation of the quan- 
tity in the l.h.s, of Eq. (4.37). Let us consider the terms with IAI = 1. 

[I p~(x, s)(~(x + ~i, ~)-  p~(x, ~)) 
i = 1  j r  

= ~ (~r(x + xi, s) -- p~.(x, s)) H (p;(x, s) -- m(ex, s)) + m(ex, s)"- '  
i = l  j ~ - i  

x ~ (~(x + xi, s) - p~.(x, s)) (4.38) 
i = t  

The same argument used in the proof of Theorem 3.1 (see proof of 
equicontinuity) shows that, given ~>0 ,  there exists a constant c ( z )>0  
such that for all x e Z and s we have 

sup Ip~(x, s ) -  m(ex, s)l ~< ec(z) (4.39) 
j v~ i  

Therefore from Eqs. (4.38) and (4.39) we have that the contribution of the 
y ~  . 8 n . terms with IAI = 1 to the quantity ~((~,f,) cancels out with Y~(asCk), in fact 

(J(~x) H p~(x, s)(a(x + x .  s ) -  p~(x, s)) 
i 1 j:/=i 

-- nm(ex, s) n i (cr(x, s)--p~(x, s)) 

1 
<<. c ( t ) ~  (SUPr I ~ b ( r ) ( l + r 2 ) ] ) e ~ l + ( e x )  2 

+ ~ ~ O(ex)m(ex, s)" 1( ~ (~r(x +xi, s)-- p~(x, s)) 
x \ i = 1  

-- n(a(x, s) -- p~(x, s))~ 
/ 
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= 

i = I  x 

- n ~ O(ex) m(ax, s)"-I  (~(x, s) - -  pe(x, S)) 
x 

x 

where 

L ~ q~(a(x - xi) ) m(e(x + xi), s) ~-1 (a(x, s) - p~(x, s)) 

(4.40a) 

~9(r, z) = sup d O(r') m(r', 1:) ~- 1 
r : l r  r ' t  ~< 1 

(4.40b) 

From Eq. (4.36) it follows that Theorem 4 is a consequence of Lemma 4.2 
below. 

Lernma 4.2. For any z > ~ ' > 0 ,  for any n>~2, xl, . . . ,xn distinct 
integers 

lira ,im s . .  ds Y~s(O,n)" = 0  (4.41) 
T ~ o o  a ~ O  z ' < ~ t < ~  ~ t  

where Y~s(~b,' n) is defined in Eq. (4.36c) 

Proof. We let 

f , (x)  = ( I  (a(x + xi, s ) -p~ (x ,  s)) (4.42) 
i = 1  

The expectation in Eq. (4.41) can be written as 

2 (,+~:r 1 (~:r+t s 
eZTj ' ds e ~ O(ex) ~ J o  ds' ~ (5(ey) N~(f~(x)fs +,,(Y)) 

x y 

Therefore, we have to estimate the following quantity: 

(4.43) 

Y~ ck(~y) ~ ( f A x )  A + s,(y) ) (4.44) 
Y 

First of all we notice that in (4.44) the time s' ranges in a microscopic time 
interval while the time t is "macroscopic." Therefore it may be quite 
"natural" to use the following argument in estimating (4.44). Use duality 
until time s', i.e., consider n particles that, starting from x~ + y, i = 1 ..... n, 
move according to the BEP for a time interval s': since s' is of order e2T, 
no Glauber marks appeared in that time interval. Then, one is left with 
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~(f~(x)f~(y)),  where ~ = (yl(s') ..... y,(s')) gives the positions at time s' of 
the n particles. Then, using the fact that [see Eq. (3.12b)] 
lim, ~ 0 e -  l~'(f~(x) fs(.V)) = 0, Lemma 4.2 follows. The above argument is 
correct only if [ y - x l  is big enough. In fact, if l y - x ]  is small, then the 
probability that at time s' the particles are in the positions x~ + x, i = 1,..., n, 
is not negligible and so we cannot apply Eq. (3.12b). For  [ y - x l  small we 
use another argument; i.e., we use duality for the time interval s. At 
this time the process is in local equilibrium in the sense of Theorem 1 
and during the microscopic time s' the equilibrium profile remains 
unchanged. Therefore we fix a number R > 0 and we divide the sum (4.44) 
in two parts as follows: 

~b(ay) ~ ( f s ( X ) f ~  + ~,(y)) = C~(x, s, s') + D~(x, s, s') (4.45a) 
Y 

where 

IC~(x, s, s ' ) -  

where Vg 

C~(x,s,s')= ~ qk(~(x+ y))~( f , (x) f~+s, (x+ y)) (4.45b) 
lyt<~R 

D](x,s ,s ' )= E ~(a(x+Y))~(f~(x)f~+~'(x+Y)) (4.45c) 
[yt~R 

We will estimate C~ and D~ separately and will consider first the limit 
e ~ 0, then the limit R ~ ~ ,  and finally let T ~ ~ .  

Estimate of C~(x, s, s'). From Theorem 1 we have that 

O(e(y+x))Vm(~x.~2~)(jT(O)jT~,(y))<~(e,R,s ') (4.46a) 
lYI<~R 

JT~(z) = (I  (~r(xi + z, ~) - m(ex, ~2s)) (4.46b) 
/ = 1  

and {0(e, R, ")} is uniformly bounded on [0, T] with 

lim 0(e, R, s ' ) = 0  (4.46c) 
e ~ 0  

Let T1 be the time of the first Glauber mark (see Definition 3.1); then there 
exists a constant c > 0 such that 

P(TI < a2T) ~< ce2T (4.47) 

Therefore 

E ~(~(y+x))vm~x;,~(7(0)L,(y))- E ~(~(y+x)) 
tyl  ~< R [y{ ~< R 

�9 vm(,x.~2,~(f(O)(Sf, f (y)))  <~ (eZT (4.48a) 
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where ~ is a suitable positive constant and 

S~ is the semigroup of the simple exclusion process with generator Le 
(4.48b) 

We have that, since n > 2 ,  W~>0 there exists a function ~(~) such that 
Vme [ - 1 ,  1], 

~ (~(x~)-m)(Sf j=l  f i  (a ( x j+y ) -m) ) )  ~<~(r) (4.49a) 

and 

Therefore 

lira q}(r) = 0 (4.49b) 
r ~ o o  

1 I e2T+t-s 
~ ~o as' IC~(x, s, s')l ~< &2T 

F• ] + L 2rJo supr I (r)+ll (4.50) 

From Eqs. (4.46c) and (4.49b) it follows that the contribution of C% is 
vanishingly small. 

Estimate of D~(x, s, s'). Let TI be the time of the first Glauber mark; 
then by Eq. (4.47) we have 

t~(f , (x) fs+, ,(  x + Y))[ ~< I~ (L(x )L+, , ( x  + y) I((T~ > s'}))l + & 2 r  

(4.51) 

Let xi(s'), ie {1,..., n} be the position at time s' of the particles starting at 
time zero from the positions xi + y, i e { 1,..., n }. Let 

B(y) = ~({3i, j e  { 1,.., n}: x~(s')= xj + x}) (4.52) 

Then for [Yl > R  and R large enough we have 

P(B(y) ~ ( { TI > e2T} )) ~< const P(~*/2 < T) (4.53a) 

where ~* is the hitting time at the origin of a random walk which starts at 
x. We have that 

P(~*/2 < T) <<, A( R2/T) (4.53b) 
lyt>~R 
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with 

lim A(x) =0  
x ---~ oo 

(4.53c) 

From Lemma 3.5 it follows that Vs ~< ~, 

lim Y' I~b(x + Y)I I~"(L(x)f,+s,(X+ Y)~ {T1 >s'} 1 - B(y)I 
e ~ 0  

~< l i m e Z l ~ ( x + y ) l  sup e - l l ~ f i  (a(yi, s) 
y Yi, Y2n i = 1 

yi=~ yj ,  i ~ j 

2n 

- s)) 1-[ s) 
j = n + l  

- N ~ ( y  + xi, s + s'))=O (4.54) 

From Eqs. (4.51), (4.52), (4.53), and (4.54) we have that for R large 
enough and ]Yl > R, 

lim ,~(f,(x)fs+s.(X+y)),<<.constA(R---T) (4.55) 
a ---~ 0 

From Eq. (4.53c) it follows that the r.h.s, of Eq. (4,55) vanishes when 
R ~ oo and this concludes the proof of Lemma 4.2. | 

A P P E N D I X  

To prove Proposition 3.4 we need to compare the branching-exclusion 
and the independent branching processes, defined in Definitions 3.1 and 3.3 
respectively. For this purpose we couple the two processes, that is, we 
introduce a suitable joint realization (coupling) Q~ of the LBEP and the 
LIBP. Initially we shall only use the fact that Q~ is a coupling, hence we 
postpone the precise definition of Q~ to the time when its particular proper- 
ties will be needed. 

By definition [see Eq. (3.8)], to prove Eq. (3.10) we need to compute 

S ==- Q~(H--H ~ ) (A. 1 a) 

H =  f d#~ f i  h,(set(i); a(Z(i, t))) (A.lb) 
i = 1  

H ~  d# ~ f i  h~(d~ r176 t))) (A.lc) 
i = l  
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Q~(') is the expectation with respect to the coupling Q,. We prove 
Eq. (3.10) in the case where the initial measures /z *, ee(0,  1] are product 
measures such that 

f f (a(x))  = mo(eX), Vx e Z (A.2a) 

The proof in the case of measure #~, e e (0, 1 ] satisfying Definition 2.2 is 
technically more complicated but uses essentially the same arguments (see 
Remark A.5). 

We let 
m+(~x) = �89 -t- mo(eX)) (A.2b) 

Notice that 

f f ({a(x)  : _+ 1 }) = m_+ (ex) (A.2c) 

To compute S we first consider the case where a Glauber interaction is 
present. Therefore we first give a precise definition of Glauber interaction 
and in Lemma A.2 below we estimate its probability. In the sequel we need 
to distinguish the cases in which there is Glauber interaction between the 
components of a family and/or between different families. We indicate with 

the characteristic functions of the "bad" events and with cd the "good" 
ones. 

D e f i n i t i o n  A.1. All the quantities that are not defined here are 
defined in Sec, 3, Definition 3.1. 

When we want to distinguish second class from first-class particles we 
use greek letters for the former and latin for the latter. 

We let 

(g(t) = ~ {Vk e { 1,..., AS, }, k is a first-class particle } (A.3) 

For any i, j e { 1,..., n }, we let 

~ i j ( t )  = ~ {there is only one second-class particle, 

e It(i ) and there is k e It(j) such 

that x~(t) = xx(t)} (A.4a) 

and we set 

and 

~s, j ( t )=~i , j ( t )+~j . i ( t  ) for i # j  

= N , , , ( t )  

(A,4b) 
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The remaining cases are given by 

~( t )  = { {there are at least two second-class particles} (A.4c) 

Therefore 

1 - ~(t) = ~ (~e(t) + ~ ~;o(t)) + ~(t) 
i=1 j = l  

j # i  

Finally for any set of labels J c { 1 ..... n } we let 

(A.5) 

~,(t)={ {Vk~ U I,( i), k is a first-class particle } (A.6) 
i e 3  

l . e m m a  A.2. There is a positive d =  d(t) such that the following 
holds. 

PF(c~(t)) ~> 1 - da (A.7a) 

~_(~i.9(t))<~&, Ai, j e  {1,..., n}, i • j  (A.7b) 

W(~i(t))<~de , Vie { 1,..., n} (A.7c) 

~z(~(t)) ~< &2 (a.Vd) 

Proof. First of all, we observe that Eq. (A.7a) follows from Eq. (A.5) 
and Eqs. (A.7b)-(A.Td). 

Let (see Definition 3.1) J{, = 1/2(JV~t-n ) be the number of Glauber 
marks up to time t, ~ being the number of particles present at time t. Let 
T O = 0 and Te, e = 1 ..... M, be the times when the Glauber marks appear. 
We let/~(-) be the expectation w.r.t, the law of JV~, {Te, e =  1 ..... Jgt}, and 
E~( . )  be the expectation w.r.t, the law of the LBEP conditioned to 
JVt,{T~,e=l, . . . ,Jgt}.  Here we let Jgt=M. A ~ ( t ) = $ { T e - T e  l ~ g  2, 
e = l  ..... M}. 

We have that 

P(A'(t)) >1 1 - be 2 

where b is a suitable positive constant. 
To prove Eqs. (A.7) we observe that Vi, j e  {1,..., ~/~}, iC j ,  

( - ) E 
k l , k2  = 1 
k l  r k2 

E(~n(t))  ~< r.h.s, ofEq. (A.8a) 

(A.8a) 

(A.8b) 
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[E(~'(t))~<P A'(t) ~ E~(~{x,(T~)=xj(TM),xk(TM) 
i,j,k,h = 1 
i~-j~k 

= xh(T~)}) + be 2 (A.8c) 
/ 

From the definitions it follows that Vi, j ~  {1 ..... ~A{;} 

~-eM(~ {xi( TM) = Xj( TM) } ) ~ ~-~M(~ { Ix~( T~_ I)-- x;( TM_ I)I >1 1} 

• 1)}) (A.9) 

where P~(i,j;M) is the probability that two particles starting from 
x~(TM_ 1) and xj(T~t_ 1) and moving by eclusion with intensity e -2 are at 
distance one at time TAt-- T~t i. It is possible to show that there is a con- 
stant b >  0 such that 

P~(i,j; M)<<, eb(TM- TM 1)-1/2-~ ~({TM - T M -  1 ~:2))  (A.10a) 

Therefore, iterating Eq. (A.9a) up to time 0, from Eqs. (A.8a) and (A.10a) 
it follows that 

~(Ni(t))~e6p(A~(t)jV,, ~ (Te+l-Te)1/2)+e2b (A.10b) 
e=l 

Using estimates on the branching process we show that 

) ~tt E (Te+l - T e ) - l / 2  ~C([)<--}-o0 
e=l 

and from this Eqs. (A.7b) and (A.7c) follow. 
To show Eq. (A.7d) we use Eq. (A.Sc) and an iterative argument 

analogous to the previous one. The key estimate are the following. There is 
a positive constant/~ such that for any distinct i, j, k, h, 

P~(i, i, k; M) ~< e2/~(TM - TM_1)-1/2+~ {TM-- TM_I <~e 2 } (A.11a) 

P~(i,~k, h; M) ~<r.h.s. of Eq. (A.11a) (A.11b) 

where P~(i, j, k; M) (resp. P~(i, j, k, h; M)) is the probability that three par- 
ticles (resp. four particles) moving by exclusion with intensity e -2 are at 
distance one at time TM-- TM_ 1. I 

Proof o[ Proposition 4. We separate in S [-given in Eq. (A.1)] the 
contribution due to the Glauber interaction from the one due to the 
exclusion. Therefore we let 
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S = SG + SE 

Sc = O~((1 - cg(t))(H- H~ 

SE = Q~(cK(t)(H- 1t~ 

and we will prove that for q = E, G 

Sq = e ~ Fq(i) [I E~ t)) +e ~ Fa(i, j) 
i=1 j v~ i  i , j =  l 

i ~ j  

x 1~ W~ t)) + Rq(C.) 
k ~ i , j  

where the sequence of numbers Fq(i), F;(i, j), Rq(e) verifies 

sup IFq(i)l ~< c, sup Ira(i, J)l <~ e, q = E, a ,  ve > 0 
i i , j  

lira e ~ IRq(e)l = O, q = E, G 
~ 0  

(A.12a) 

(A.12b) 

(A.12c) 

(A.13a) 

(A.13b) 

(A.13c) 

From Eqs. (A.13), Eq. (3.10) follows. 
In what follows we call a remainder a sequence of numbers R(g), 

e~(0, 1] which verifies Eq. (A.13c) and we call the one-body (resp. two- 
body) term a sequence of numbers F~(i), ie {1,..., n}, ee(0,  1] (resp. 
F~(i,j), i, j6  {1,..., n}, ee(0,  1]) which verifies Eq. (A.13b). 

Observation A.3. We emphasize a property of the difference H - - H  ~ 
that we are going to use often. 

Let J c  {1,..., n}, let Nj(t) be the characteristic function defined in 
Eq. (A.6), and let N =  JV~,. We denote by 

Nj= ~ JV~,(j) (A.14a) 
j E J  

N -  Nj= ~ JVjt(i) (A.14b) 
iq~ J 

For a e { - 1, 1 }N we let [see Eq. (3.4) for the definition of I(i)] 

ai=(a~,eeI(i)), ie  {1,..., n} (A.14c) 

a(J) denotes the set {a i, ie  J}, where ai= (a~, ~eI(i)), a~= +1. We define 

a(J) i ~ J  i ~ J  c~El(i) 

(A.15a) 
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v q 
g~ = ~ / l - I  hi(~~ I-[ I-[ m~(ex~ (A.15b) 

a{J) ]-i~J -] icJ r 

where ~,~{j) means the sum over all the values of the set a(J) c { - 1, 1 }us 
Then the following holds. 

~ j ( t ) { H - H  ~ [g~(8) o o o = -- h~M~(J ) 
a(J e) 

+ hOEM (j )_ o o M~(J )] (A.16a) 
a(J c) 

where J~= {1,..., n}\J, Z~{J~) means the sum over all the values of the set 
a(Y)c  { - 1 ,  1} u-N~ and 

h% = I-I h,(d~ a9 (A.16b) 
iCJ 

M~(J~ = I] [I m,]{ex~(t)) (A.16c) 
i~J cr 

M~ J~)= H [I ma~(ex~ (a.16d) 
iCJ o~[(i) 

The proof of Eq. (A.16) uses the particular form of the coupling Q~. In fact, 
since #~ is a product measure, it is easy to see that from the definition of 
the function H it follows that 

~'j(t) H =  gj(8) Z hj"M,(Jc) 
a(d c ) 

where 
hjc = ~ h~(a~,(i); a t) 

i~J 

The coupling Q, will be defined (see Definition A.3 below) in such a way 
that ~j( t )hec=~j( t )h~ Therefore Eq. (A.16) follows by adding and sub- 
tracting gs(8) Za(jc) h%M~ Finally we observe that 

a e ( [ g J ( g ) - g ~  [a(~jc) h ~ 1 7 6  

= Q,(gs(e) -- g~ I] ~-~ t)) (A.17) 
i~J 

Computation of S c. We use the partition given in Eq. (A.5); 
therefore we have 

SG = L Q~(~iv(t)(H- H~ + R~(e) A.lSa) 
i - - 1  

Q~(Mi(t)(H- H~ + L 
i,j= 1 
i5~ j 
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where 

R~(~) = O~(~( t ) (H-  H~ (A.18b) 

From Lemma A.2, Eq. (A.7d), it follows that 

hR~(~)[ ~< 2d~ 2 (A.19) 

Therefore R~(e) is a remainder. To compute the first and second term in 
the r.h.s, of Eq. (A.18), we use Eq. (A.16) with J =  {i} and J =  {i, j}  
respectively. Therefore we have [see also Eq. (A.17)] 

Q~(~i( t ) (H- H~ = e ~ F~(i) YI W~ t)) + R2(~) (A.2Oa) 
i = 1  i j ~ i  

Q,(~i , j ( t ) (H- H~ = ~ ~ F~(i, j) ~ E~ t)) + R3(e) (A.20b) 
i = 1 i , j  k ~ i , j  

where 

F~(i) = e -1Q~(gi(~) _ gO(z)) (a.20c) 

F~(i, j) = e-1Q~(g{~,j}(e) _ g~i,j}(z)) (A.Z0d) 

R2(e)= ~ Q~(gi(e) ~ h~176 (A.20e) 
i =  1 a ( { i }  c) 

M o i "~ R3(e) = ~ Q~(g{i,J}(~) ~'~ h~ - ~({,y} ) ] )  
i , j =  1 a ( { i , j }  c) 

;~J (A.20f) 

From Lemma A.2, Eqs. (A.7b) and (A.7c), it follows that 

IF~(i)[ ~< 2d, IF~(i, j)l ~< 2d 

Therefore we are left with the proof that R~(~) and R~(e) are remainders. 
This proof uses an estimate on the difference between the position at time t 
of particles moving by exclusion with the corresponding ones moving by 
random walk. This estimate follows from the definition of Q~ : therefore we 
give the proof that R~(e) and RZ(e) are remainders after Definition A.3 
and Lemma A.4. 

D e f i n i t i o n  A .3 .  

(a) Construction of  the coupling Q~. The coupling Q is defined by 
matching the trajectories of the labeled IBP to the trajectories of the 
labeled BEP. At each trajectory {(Z~ do) ,  se  [0, t]} we associate a tra-  
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jectory (Z(s), ds), s e  [0, t] in the following way. We let Z ( 0 ) = Z ~  '. By 
the definition of the IBP at the times ~ e 5  ~  I=  1,..., 1 0 7 ( Y , -  n), two 
independent particles are created by, let us say, the kth independent par- 
ticle. Then two interacting particles are created at time T~t if and only if the 
kth interacting particle is a "first class" particle, otherwise nothing happens 
at time 7fit for the interacting process. 

In each time interval (T~t, ~ +  1) we let Q~ = Q, where Q is the coupling 
defined in Ref. 16, pp. 189-191. This coupling can be realized as follows. 
We can define a one-to-one correspondence between the displacements of 
the independent and interacting particles during the time intervals 
(Tfft, ~+1),  l =  1 ..... i o ~(JV t - n )  as follows. The interacting kth particle has 
the same displacements as the kth independent one with two exceptions. If 
the kth interacting particle is a second-class particle, then it moves together 
with the "corresponding" first-class particle and therefore it is not coupled 
to any of the independent particles. If the kth independent particle has a 
displacement that would take the kth interacting one in top of, let us say, 
the j th  interacting particle, then, if k > j (resp. k < j), nothing happens 
(resp. the kth and j th  particles interchange positions). 

At time t we label the particles in such a way that the ~ independent 
and interacting particles have the same labels given according to the order 
with which they are created, i.e., with the same rules as in Definitions 3.1 
and 3.3. The "exceeding" JV ~ - ~ t t  independent particles have a label dif- 
ferent from the others. 

Finally, we observe that the distribution of Jg ~ can be explicitly com- 
puted in the following way (see, for instance, Chapter 2, p. l I1 of Snyder). 
For m = 2N + n, N = 0, 1, 2,..., we define 

Pro(t) = P ( X  ~ = m) (A.21a) 

then P~(t) satisfies 

fo Pm(t) = 2(rn-- 2) ds P~ 2(s) e -mJ'('- ") (A.21b) 

Now it is easy to check that the solution of Eq. (A.21b) is given by 

P(JV~=2N+n)=e-Xt"Cu(1 - -e-Zn)  N, N = 0 ,  1, 2,... (A.21c) 

n +  ( 2 N -  2) 
N =  1, 2,..., c o = 1 (A.21d) C N  = C N - -  1 2N ' 

From Eq. (A.21), it follows that for any integer q/> 0 

( (N~ q) < oo (A.21e) 

822/44/3-4-23 
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where ( - )  denotes expectation with respect to the law given in 
Eq. (A.21c). Equation (A.21e) will be used often in what follows. 

(b) Now we.define a way to measure the distance in 7/between the 
positions at time t ~> 0 of the interacting and independent particles that are 
coupled to each other. 

Let ~r be given. We let _ 1  o N - ~ ( , # ' t - n )  and ~ U + l = t .  For any 
l =  1,..., N and for any given configuration ( Z ( ~ ) ,  Z ~  we define a 

t 7? family of random variables Dkl,k2(t+l) for any k~ and k2 such that kl >k2 
and both the k i th  and k2th interacting particles are first-class particles. 
The D~l,k2(~+~) are r.v. measurable with respect to the a-algebra generated 
by {(Z(s), Z~ 7fft<s<~ 7fft+~ }. 

t The definition of Dkl,k 2 is the same as that given in Definition 3.6 of 
Ref. 16 and we report it with the same notations. The variable D~I,~ 2 counts 
as positive or negative the times s in the interval [7"l, Tt+l]  when 

(A.10) (a) [Xk~(S)--Xk2(S)I = 1 

(b) either x~ or x~ has a displacement at time s 

(c) either XkI(S) + [X0I(S+ ) -- X~ - )] = Xk2(S) or 
xk~(s) + [x~ + ) - x~  )3  = x~,(s) 

We then define for each such times s 

D~, .k2 (s )=  D~,,k2(S + ) 

D~,.k2(S + ) --  Dlkl.k2(S - -  ) = [Xk,  (S + ) - -  Xk, (S --  ) ] + [XOk, (S q- ) --  XOk, (S --  ) ] 

Finally, we observe that by definition of the coupling, for any "first class" 
particle k~ 

x ~ , U ) - x ~ 1 7 6  Z ~ t Dk,,k2( ) (A.22a) 
k2<kl 

and iteratively 

x,~, (~)  - x ~  = x k , ( ~ _  ,) - x ~  ,) + 
l 

k2<kl 

(A.22b) Vl  >~ lk~ 

where l~ is such that the k~ th particle starts its motion at time ~/kl, and 
Y'/ means the sum over the labels of all the "first-class" particles k2<kl 
present at time T~t. We observe that Eq. (A.22b) can be iterated up to time 
0. In fact, let k be the label of the first-class parent particle of the kl par- 
ticle; then 

xkt(T~t,~ t) - -  x~ = xk(T~tk, ) - -  Xk(T~t~,) ( A . 2 2 c )  
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Lemma A.4. 

(i) For any fl, �89 < fl < 1, there are constants d 2 > 0, d; > 0 such that 
the following holds. Define 

g,(fl) = ~ ({Vk such that k is a first 
Ixk( t ) -  x~ ~ W,2e-a)}) 

Then 

class particle, 

(A.23a) 

Q~(~(fl)) ~> 1 - d 2 exp{ -d '2e - (~ -  1/2~} (A.23b) 

(ii) For any bounded function f 

lira fE~(f(Z,( t )))  - E~176 = 0 (A.24) 
8 ~ 0  

Proof. 

(i) From the definitions it follows that the inequality (A.23b) can be 
proved in the same way as for the exclusion process and, therefore, it is a 
straightforward consequence of Eq. (3.11) of Ref. 16. We briefly sketch the 
main arguments used in the proofs and we refer to the above paper for the 
details. From Eqs. (A.22) it follows that we have to estimate the random 
variable D~d(TI ). Let k and j be given. 

We take conditional expectation with respect to d o and with respect 
to the trajectory of the coupled process for all the times s ~ (7~t, 7fit + 1)- Then 
define 

nkd=--nkd(l) = -- # {Se [T~t, T~t+l]: ]Xk(S)--X/S)[ = 1} (A.25a) 

where # {. } is the cardinality of the set {. }. One observes that typically 

nk,;~ (e 2(T~+~- T~l)) a/2 ~ e  -1 ~ (A.2Sb) 

On the other hand, the law of the random variable Dtkj conditioned to nk,j 
is the law of a continuous-time simple random walk at time nkd; therefore 
Dkd behaves like (n~j) m. Then from Eq. (A.25b) 

Dkj  "~ ~ - 1 / 2  (A.25c) 

The dependence on ~ in Eq. (A.23a) is due to the sum over l and ove r j  in 
Eq. (A.22), the exponential bound on the probability that D~d > e -a/2 con- 
ditioned to ~r and the history outside the time interval (T~t, T~+I ) being 
independent of d o . 
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(ii) Using Lemma A.2, the proof of Eq. (A.24) can be done in the 
same way as for the exclusion process (see Ref. 16, Proposition 3.3, p. 193). 
For d > 1 we use an argument analogous to the remark after the proof of 
equicontinuity in Theorem 1. | 

Proof that R 2 and R~ [see Eq. (A.20)] are remainders. We give the 
proof for R~(~), the one for R3(~) being the same. 

IR2(e) l<  ~, Q~ ~i(t) ~ m~(exk(t)) 
i = 1  a({i} c) k(El(i) 

- 1-I mo~(~x~ (A.26) 
k r l(~) / 

Equation (A.26) follows from the fact that 

Ih~,}l ~ 1 

Since 0 ~< m+ (r)<~ 1, Vr e ~, it is not difficult to show that 

k~i)r mak(SXk(t))- k CHI(i) m~(sx~ <~ kmaxr i(,/ [mak(Sxk(t)) 

I n n 
kl r I(i) k~ r 1(i) 

(A.27) 

Since Vr ~ ~, m + (r) + m_ (r) = 1, we have that 

[ [ I  makl(SXk~(t)) + ~I mak~(ex~ (A.28a) 
a({i} c) klr  kl~I(i)  

Let f l>1 /2  and let gt(fl) be the characteristic function defined in 
Eq. (A.23a). We have that 

max [mak(SXk( t ) -- mak(ex~ t ) )[ 
k 

/~(e 1 P + m a x  ]m~k(exk(t))--m~k(sx~ (1-- gt(fl))) (A.28b) 
k 

where 

r h = s u p  max ~rrm+(r) 'drrm-(r)  
r 
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From Lemma A.4, Eq. (A.23b) and Eqs. (A.27), (A.28) and Lemma A.2, 
Eq. (A.7c), 

e.h.s, of Eq. (A.26) ~< be ~-8 ~ ~(M~(t)) ~</~a2-8 
i = 1  

where b, /~ are suitable positive constants. | 

(A.29) 

Computation of SE. From Eqs. (A.15), (A.16), and the definition of 
Q~ it follows that 

a ~ { - - 1 , 1 }  N = 1  k = l  

(A.30) 

_ o h o where N - ~ / ' ,  and =y[~lhi(d~ We fix fle(1/2,2/3] and we 
expand the function ~a h0 FIN= lma~(ax~ up to the third order around 
the point (exl(t) ..... ZXNO(t)). We obtain 

s~= s~:+ s~+ R~(~) + R~(a) (A.31) 

where 

S~==-Q,(CY(t) ~ h~ ~ [I m.~(eXk~(t)) 
k=l  klvZk 

• m(lk)(SXk(t))  8(Xk( t  ) --  • 

S2=-Q~(Cg(t)~h~ ~ I-[ m~kl(eXk~(t)) 
k = l  kl=~k 

• m~)(axk(t)) a2(xk(t) -- x~ 2) 

( R~(e)- Q, cg(t) h~ ~ I] mak(~xk(t))m~)(ex(t)) 
i # j = l  k# i , j  

~2 
x m~)(axj(t)) -~ (xi(t) -- x~ -- x~ 

R~(e) =- Q~ (~(t) 2 k~ 2 
\ a {hi} 

) • [I m2~)(eXi) -~ (8(xi(t) - -  xO(t))) ni 
i=l 

(A.32a) 

(A.32b) 

(A.32c) 

(A.32d) 
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m~ ) is the kth derivative of m e ;  ( 2 1  . . . . .  X N )  is a point in between 
(Xl(t) ..... XN(t)) and (x~ x~ ~2{,4 means the sum over all integers 
ng, i = 1 ..... N such that Zi  n~ = 3. 

We estimate the quantities in the right-hand side of Eq. (A.31) 
separately: we show that R1(8) and R2(e) are remainders while S 1 and S 2 
are given by 

S~=e ~ [~;(i) F I E~ t ) ) + e  ~ [~(i,j) 
i= 1 iq~j i , j= 1 

x 1-[ E~ t)) + RuE(e), q = 1, 2 (A.33) 
k r  

where/~q(i) (resp./~q(i, j))  is a one-body (resp. two body) term and RUE(8) is 
a remainder, q = 1, 2. From this Eq. (A.13) follows. 

Proof that R~(e) is a Remainder. First we observe that for any {ni} 
such that 52~ ni = 3, 

N 

Z F[ m(~)(e2D ~< ~23 (A.34a) 
a e { - - 1 , 1 } N  i ~ l  

where 

rh= max (sup m~)(r)) (A.34b) 
k e  { 1,2,3 } r 

Therefore we have 

[R~(8)l <~ rh {Q~(C~(t) ~ (81x~(t)-x~ gt(fl)) 
{-i} 

+E~(cg(t)  ~ (~,xi(t)--x~ } (A.35a) 
{n;} 

Using Eqs. (A.7a) and (A.23b), we have 

-1 I R~(8)I ~< b82- 3~((yo)3 ) (A.35b) 

where b is a positive constant and ( (Y,)~  3 ) < o o .  [see Eqs. (A.21)]. 
Therefore, since fl < 2/3, R~(8) is a remainder. 

Proof of Eq. (A.33) for S~. We take conditional expectation with 
_ n respect to sr ~ and we write Y~v= 1 -~2i= ~ S'.~o(0; therefore we have n(5 ) 

S~=e ~ f' Q~ F)[x~(t)-x~ (A.36) 
i =  1 ~ (i) 
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where 

QO(.)= Q ~ ( ] d o )  

/~ is the law of d o 

F~ = Z h~ I~ m~k(gXk(t)) m~)(gx=(t)) 
a k ~ o ~  

To compute Q~176 we use 
Therefore, we have to compute 

D ~,k ( T~t + 1 ) 
k,<ct. 

and 

iteratively 

(A.37a) 

(A.37b) 

(A.37c) 

Eq. (A.22). 

n,(0{, k )  = ~ ( { s @  (T~/,  T~/+ 1): I X e t ( S ) - - N k ( S ) I  = 1 } )  ( A . 3 9 b )  

and 
Z,(c~,k)={ 1 ~f sgn[x~(~)--xk(T~t)]=sgn[x=(~+l)--xk(~+~)] 

-- otherwise (A.39c) 

sgn r = sign of r. 
Equation (A.39) concludes the estimate of S~. In fact, from Eq. (A.39), 

it follows that at the end of the iteration we are left with 

S~ = s [' ~ Q~ F~ 2,(a~, ~2)) 
i = 1  ~1 ~2~/0(i) l = 1  

ct2 <~ ~1 

( ) + s ~ P 2 ~ Q~ F~;{,(~,, a2)) (A.40) 
i , j =  1 ~1 c lO(i) ct2 e lO(j)  = 
i ~ j  c~2 <: ~ 1 

where 

Q~ F~ [x~(T~t~) - x~ ] ) (A.38b) 

To compute (A.38b) we have to consider x a ( ~ ) - x ~  where ~ is the 
parent particle of the e-particle. Since, by definition, ~ e/~ the iteration 
on (A.38b) gives still quantities like (A.38a). Therefore we have to evaluate 
only (A.38a). On the other hand, since there is oK(t), (A.38a) can be com- 
puted in the same way as for the exclusion process. Therefore, from 
Lemma 5.2 of Ref. 15 it follows that 

Q~ F' ~ D:,k(T~+~)) 
k<o~  

= ~ O~ k)>l}))~,(c~,k)) (A.39a) 

for l>>.l:, (A.38a) 
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where N =  1(St~ - n) and )?t(a~, 0~2) is a bounded function of the trajectories 
of the el and 0~ 2 interacting particles. Note that in writing Eq. (A.40) the 
fact has been used that if a2 < c~1 then the ~2 particle starts its motion 
before the ~ particle, i.e., l~:<<.l~ [see Eq. (A.22)]. Furthermore, the 
function ~/((X1, ~2) can be explicitly computed: 2t(al, ~2)=~ {nt(al, c~2)~> 
1} gt(al, a2), for l>~l~; for l~l<<.l<<.I~, we have Zt(al, a2) = 0  if ct2 > ~1 and 
)?l(~1, a2) = ~ {nt(cil, 0~2) ~ 1 } Zl(0ix, cq) if c~ 2 < 0~ 1 (~1 is the parent particle of 
the al particle), and so on. 

Since F~ and )?~ are bounded functions, from Lemma A.2, Eq. (A.7a) 
and Lemma A.4, Eq. (A.24), it follows that 

lim IQ~ 1 .  F, Z,(cq, cs176 2~ ~2))1 = 0  (A.41) 
~ 0  

where F~ and 2o are the same functions as F~ and 2z but evaluated in the 
configuration of the independent process. Finally, since o 2 ( ( ~ / ' t ) ) < 0 0  [ s e e  

Eq. (A.21)], by the Lebesgue dominant convergence theorem, from 
Eqs. (A.40) and (A.41), Eq. (A.33) for S 1 follows. | 

Proof of Eq. (,4.33) [or S~. We use the same argument as in the 
estimate of S 1. 

S2=e ~ P (  ~ Q~176 (A.42) 
i = 1 a ~/0(i)  

where QO and P are defined in Eqs. (A.37a) and (A.37b) respectively and 

F~t = ~ h~ 1~ mak(eXk(t)) m~)(~x~(t)) 
a k ~ a  

We use Eq. (A.22); therefore we have to compute 

(A.43) 

Q~ ~ ' ) (A.44a) D~.k(Tffl+,) 2 
k < a  

) D~,kl( Tff~ + 1 ) D~,k2( T~ + 1) eQ ~ (cg(t) F~ ~ 
k l < ~  k2 "< o: 

k 2 r  

( , ) eQ ~ c~(t)F~,(x~(T~t)- x~(T~t)) ~ D~,k(T~t+l) 

(A.44b) 

(A.44c) 

We show that only (A.44a) gives a nonvanishing contribution to S~. From 
Lemma 5.2 of Ref. 15 it follows that 

QO(Cg(t ) l 2 o 1) ) =  Q~(~(t) k)) F~t eD~.k(T~t + F~, ~n,(~, (A.45a) 
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e I Q~ F~, D~.<(T% ~) D~,kz(T % 1)) ~< 2eQ~ fF~,]) (A.45b) 
0 l aQ~ F~, (xa(T~t) - x~(T~t)) D~,k(T~t+ ~)) 

= Q~ F~,(x~(T~) - x~ 1] {n,(~, k) ~> 1 } z,(a, k)) (A.45c) 

where nt(a, k) and Zl(a, k) are defined in Eqs. (A.39b) and (A.39c) respec- 
tively. 

From Eq. (A.45b) it follows that there is b > 0 such that 

I(A.44b)l ~< sQ~ I~1) ~ ~b (A.46) 

From Eq. (A.45c) and Lemma A.4, it follows that 

I(A.44c)] <.sQ~ Ix=(;q',)-xg(~)l 4(/~)) 
+ ~ r  d , e - ( ~  1/2)} 

~</~e 1 ~ (A.47) 

where 3, d', and/~ are suitable positive constants. To evaluate (A.44a), we 
use Lemma 5.4 of Ref. 15 where it has been proven that for any bounded 
function f ,  

lim o o 0 Q~ (f~ent(o~, k) - f , en I (~, k)) = 0 (A.48a) 
g~O 

and 
lim o o o (A.48b) Q~( f  tenl(~, k ) ) <  oo 
~ 0  

where fo  is the same function as f ,  but evaluated in the configuration of the 
independent process. We use Eqs. (A.48) for ft=-cg(t)F~t. From 
Eqs. (A.45a) and (A.48) it follows that the same argument used in the 
estimate of S~ shows that Eq. (A.33) for S 2 holds. 

Proof That R{(e) [see Eq. (A.32c)] is a remainder. The proof 
follows by using Eq. (A.22) and the same iterative argument used in the 
estimate of S~. In fact, the iteration gives quantities like the ones in (A.44b) 
and (A.44c) and also the following: 

eQ~ F, ~ ~ D:I,,I(T~t+I)D~2.,2(T~t+I)) (A.49) 
r/I<~ I ~2<~ 2 

In Lemma 5.2 of Ref. 15 it has been proven that 

Q~ F ' D' ,D=I,,I(T,+ 1) a2,rl2(Tl+ 1) )  = Q~ r f i  {n,(~i,/11) ~ 1 

Z,(~l, ql) 1] {n,(%, q2)/> 1 } Z,(~2, r/2)) (A.50) 

Therefore from Eq. (A.50) it follows that R~(s) is a remainder. | 
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Remark A.5. In the same way as for the exclusion process (see 
Theorem 5.1 of Ref. 15) it can be proven that Yt >~ 0 fixed, the distribution 
at time t of the G.E. process with starting measure /~ satisfying 
Definition 3.2 (also at first order in e) is equal to the distribution at time t 
with starting measure a product measure satisfying Eq. (A.2). Therefore the 
proof of Proposition 3.4 in the general case follows from the one given 
above. 
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