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Abstract This paper studies the hydrodynamic limit of a stochastic process describing the
time evolution of a system with N neurons with mean-field interactions produced both by
chemical and by electrical synapses. This system can be informally described as follows.
Each neuron spikes randomly following a point process with rate depending on its membrane
potential. At its spiking time, the membrane potential of the spiking neuron is reset to the
value 0 and, simultaneously, the membrane potentials of the other neurons are increased by an
amount of potential % This mimics the effect of chemical synapses. Additionally, the effect
of electrical synapses is represented by a deterministic drift of all the membrane potentials
towards the average value of the system. We show that, as the system size N diverges, the
distribution of membrane potentials becomes deterministic and is described by a limit density
which obeys a non linear PDE which is a conservation law of hyperbolic type.
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1 Introduction

This paper studies the hydrodynamic limit of a continuous time stochastic process describing
a system of interacting neurons. The system we consider is made of N neurons whose state
is specified by UN@) = (UlN(t), e Uf\\,’(t)), t>0,UN@) e Rﬁ, for some fixed integer
N > 1. Each UiN (t) models the membrane potential of neuron i at time ¢, fori = 1,..., N.
Neurons interact either by chemical or by electrical synapses. Our model does not consider
external stimuli.

Chemical synapses can be described as follows. Each neuron spikes randomly following
a point process with rate depending on the membrane potential of the neuron. At its spiking
time, the membrane potential of the spiking neuron is reset to a reversal potential. At the same
time, simultaneously, the other neurons, which do not spike, receive an additional amount of
potential % which is added to their membrane potential.

Electrical synapses occur through gap-junctions which allow neurons in the brain to com-
municate directly. This induces an attraction between the values of the membrane potentials
and, as a consequence, a drift of the system towards its average membrane potential.

Our model is a continuous time version of a new class of biological neuronal systems
introduced recently by [1]. The model considered in [1] is a non Markovian system consisting
of an infinite number of interacting chains where each component has memory of variable
length and where each neuron is represented through its spike train. In the present paper we
add gap junctions to this system and we adopt an equivalent description via the membrane
potential of each neuron, leading to a Markovian process.

The number of neurons in the brain is huge and often neurons have similar properties
(see [2], Chap. 1.5.1). Therefore we assume that we are in an idealized situation where
all neurons have identical properties, leading to a mean field description. The mean field
assumption appears in the following aspects. For the chemical synapses it is translated into
the fact that when a neuron spikes the membrane potential of any other neuron increases by
1/N. For the electrical synapses, the mean field type assumption implies that the drift felt
by each neuron potential is described by a linear attraction towards the average membrane
potential of the system.

We regard the state of the neurons U Ny = U lN @),...,U 11\/\, (1)) as a distribution of
1/N valued Dirac masses placed at the positions U (t), ..., UY (). The main result of
the present paper, presented in Theorem 2, is that in the limit as N — oo this membrane
potential distribution becomes deterministic and it is described by a density p,(r). More
precisely, in the limit, for any interval I C Ry, f ; Pr(r)dr is the limit fraction of neurons
whose membrane potentials are in [ at time 7. The limit density o, (r) is proved to obey a
non linear PDE which is a conservation law of hyperbolic type.

The usual approach to prove hydrodynamic limits in mean field systems is to show that
propagation of chaos holds. In our case this amounts to prove that the membrane potentials
U iN (t)and U jN (t) of any pair i and j of neurons get uncorrelated as N — oo. However, at

each time that another neuron fires, it instantaneously affects both Ul.N and U ]N by changing

them with an additional amount 1/N. Thus UiN and U ]N are correlated, and propagation of
chaos comes only by proving first that the firing activity of the other neurons—by propagation
of chaos—is essentially deterministic. We are thus caught in a circular argument and it is
not clear a priori that propagation of chaos holds. It is for this reason that in this paper
we introduce an auxiliary process Y@ which is a good approximation of the true process
in the N — oo limit, and for which it is easy to prove the hydrodynamic limit. Once the
convergence for ¥ ® is proved, we can then conclude by letting § — 0.
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868 A. De Masi et al.

Our model is an example of the class of processes introduced by [3] under the name of
piecewise deterministic Markov processes. Processes in this class combine a deterministic
continuous motion (in our case, due to the electrical synapses) with discontinuous, random
jump events (in our case, the spike events). This is not the first time that piecewise determin-
istic Markov processes are used in the modelization of neuronal systems, see for instance [4]
and [5] in which processes of this type appear, however in a different context.

The mean field approach intending to replace individual behavior in large homogeneous
systems of interacting neurons by the mean behavior of the neuronal population has a long
tradition in the frame of neural networks, see e.g. Chap. 6 of [2] or [6] and the references
therein. Most of the models used in the literature are either based on rate models where
randomness comes in through random synaptic weights (see e.g. [7] or [8]); or they are based
on populations of integrate and fire neurons which are diffusion models in either finite or
infinite dimension, see for instance [9] or [10]. The model we consider is reminiscent of
integrate-and-fire models but firing does not occur when reaching a fixed threshold, and the
membrane potential is not described by a diffusion process. In particular, the equation which
we obtain is different from usual population density equations obtained for integrate-and-fire
neurons as considered e.g. in Chap. 6.2.1 of [2].

Our paper is organized as follows. In Sect. 2 we introduce the process and state the main
results, Theorem 1, Theorem 2 and Theorem 3. Theorem 1 guarantees the existence of the
process and gives upper bounds on the values of the potentials U which are uniform in N.
Theorems 2 and 3 give existence and properties of the hydrodynamic limit.

Proofs are organized as follows: we first study the system under very restrictive assump-
tions on the firing rate f, in such a case the proof of Theorem 1 becomes trivial and is given
in Sect. 3. Even with such an assumption on f the proof of Theorems 2 and 3 remains rather
complex. In Sect. 4, tightness of the sequence of processes indexed by N is proved. Section
5 introduces the sequence of auxiliary processes, and Sect. 6 states the hydrodynamic limit
theorem for this sequence; the proof is postponed to Appendix 3. Section 7 concludes the
proof of Theorems 2 and 3. In the Appendix we extend the result to general firing rates f. The
main point is the proof of Theorem 1 which is given in Appendix 1, together with some upper
bounds for the maximal membrane potential of the process in the case of unbounded firing
rate functions. In Appendix 2 we prove that the auxiliary process is close to the original one,
if both are suitably coupled. Finally, in Appendix 3, the hydrodynamic limit for the auxiliary
process is rigorously proved.

2 Model Definition and Main Results
We consider a Markov process

uN@ = Wh@,...,ul @), t >0,

taking values in ]Rﬁ , for some fixed integer N > 1, whose generator is given for any smooth
test function ¢ : Rf — R by

N
d
Lox) = > fOi) ok + Ai(x) — o) =2 > (a—fm [xi — i]) .QD

i=1
where
Lo #i -
(Ai(x))jZlN J .], Xzﬁgxi (2.2)

i =1
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and where A > 0 a positive parameter. Assume that

Assumption 1 f € C'(R,,R) is strictly positive for x > 0 and non-decreasing. More-
over, f(0) =0 and f is not flat, i.e. for any fixed u €]0, 1],

lim inf %%

> 0.
=0 f(x)

The function f(x) = x?, p > 0, satisfies the above assumption. We can also consider
functions f(x) = e"* — 1, for some v > 0.

In (2.1), the first term describes random jumps at rate f(x;) due to spiking of neurons
having potential x;. The function f is therefore called firing rate or spiking rate of the system.
The second term, due to electrical synapses (gap junctions), describes a deterministic time
evolution tending to attract the neurons to the common average potential.

Our first theorem proves the existence of the process and gives some a priori estimates on
the maximal membrane potential. In order to state these results, we introduce the following
notation. Let N; (¢), t > 0, be the simple point process on R which counts the jump events
of neuron i up to time ¢ and let

N
N(t) =D Ni(t) 2.3)

i=1

be the total number of jumps seen before time ¢. For any x € R, we define
x|l = max;=1,. . n x;. In this way,

.....

|v¥ 0| = max uN@
i=1,...N

.....

is the maximal membrane potential at time 7.

Theorem 1 Let f be a firing rate function satisfying Assumption 1.

1. Forany N > 1 and any x € R_’;f there exists a unique strong Markov process UN @)
taking values in ]Rﬁ starting from x whose generator is given by (2.1).

2. Denote by PX(N‘)") the probability law under which the process UM (t) starts from the
initial configuration UN (0) = x = (x1,...,xy) € Rf. Then forany A > 0and T > 0
there exists B such that

sup P)C(N’)‘)[sup 1N o)) < B] >1—ceCN, 2.4)

xifxl|<A t<T

where ¢ and C are suitable constants.

The proof of Theorem 1 is given in the Appendix 1.

We now give the main result of this paper. It shows that the process converges in the
hydrodynamic limit, as N — oo, to a specified evolution which will be defined below. Since
the space where UM (¢) takes values changes with N it is convenient to identify configurations
UM (¢) with the associated empirical measure in the following way. Let M be the space of
all probability measures on R;. Toany x = (xq,...,xn) € R_’X we associate the element of
M given by

N
1
e = D0y 25)

i=1

@ Springer



870 A. De Masi et al.

1y has the nice physical-biological interpretation of being the distribution of membrane
potentials of the neurons.

We suppose that for all N, UI.N 0) = xiN ,i=1,..., N, such that the following assump-
tion is satisfied.

Assumption 2 x {V X % are i.i.d. random variables, distributed according to ¥/o(x)dx on
R. Here, v is a smooth probability density on R4 with compact support [0, Rp] such that
the following properties are verified.

1. Yo > 0on [0, Rol.
2. ¥o = 0on [Ry, oo[.
3. Yo(x) = c(x — Rp)?, ¢ > 0, in a left neighborhood of Ry.

The above assumption can be weakened, see Remark 5 below. Condition 3. could be relaxed
to other rates of decay to 0 near Ry. We will eventually extend the definition of v to the
whole line by putting ¥ (x) = ¥ (0) for all x < 0.

Identifying U™ () with the associated probability measure UN(ry» We may identify the
process with the element Ry 3 # — gy, of the Skorokhod space D(R, Sy, where S is
the Schwartz space of all smooth functions ¢ : R — R. We write p Ul for the restriction

of this process to [0, T'] which is an element of D([0, T'], S’). Our next theorem states that
MU[z(\)/ - converges to a deterministic limit density (p; (x)dx);c[o,7]. We can easily guess the

equaﬁon satisfied by p;(x). In fact if p;(x) is the limit density then the limit total firing rate
per unit time p; and the limit average membrane potential p; are

p,:/o F)pr (x)dx, ﬁt:/o xpi(x)dx. (2.6)
Thus

Vix, p) i=—=Ax = pr) + ps 2.7

is the velocity field, namely the limit drift that neurons have at time ¢ and at energy x, the
first term being the attraction to the average membrane potential of the system, due to the
gap junction effect, the second one the drift produced by the other neurons spiking. Besides
such a mass transport we have also a loss of mass term f(x)p;(x) due to spiking so that we
should expect that for smooth p; (x)

a d
—pr+—Vp)=—fp;, x>0,t>0. (2.8)
at ox

However (2.8) does not determine the solution, it must be complemented by boundary con-
ditions:

po(x) = uo(x), p(0) = ui (). (2.9

ug is specified by the problem: ug = ¥, u; instead must be derived together with (2.8). It
turns out from our analysis that

_ Pt _ Pt
V0, pr) Pt + Apr '

(2.10) follows from conservation of mass as it will be discussed after the definition of weak

solutions of (2.8)—(2.9). Indeed if uo(0) # u1(0), i.e. ¥(0) # 22—~ then p;(x) cannot be

V(0,90)°
continuous, hence the necessity of a weak formulation of (2.8)—(2.90).

uy(t)

(2.10)
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Definition 1 A real valued function p,(x) defined on (¢, x) € R x Ry is a weak solution
of (2.8)—(2.9) if for all smooth functions ¢ (x), Ry > t — fd)(x),o,(x)dx is continuous,
differentiable in ¢ > 0 and

d [ 00
Z/o ¢ (x)pr (x)dx —/0 &' )V (x, p)pi(x)dx — dO)V (0, p)uy ()
= —/O o (x) f(x)pr(x)dx, 2.11)

o0 [e¢]
/ ¢ (x)po(x)dx = / ¢ (x)uo(x)dx,
0 0
where V (x, p;) is given by (2.7) with p; and p; as in (2.6).

Let us now give a heuristic derivation of (2.10). Observe that if p; is the limit density of
our neuron system then, by definition, at all times ¢ > 0

/00 pr(x)dx = 1. (2.12)
0

Recalling that V (x, p;) is the limit velocity field, we have that the rate at which mass enters
into (0, co) is V (0, py)u1(¢) while the rate at which mass leaves (0, 00) is p; (due to spiking).
Mass conservation then indicates that V (0, p;)u(t) = p; for almost all ¢, hence (2.10).

As we shall see in the next theorem the limit density solves (2.11) and it can be quite
explicitly computed by using the method of characteristics. The characteristics are curves
along which the solution is transported, they are defined by the equation

dx (1)
dt

The solution of (2.13) in the time interval [s, t], 0 < s < ¢, with value x at time s is denoted
by ¢ :(x), x € Ry, and it has the following expression:

= Vx(®), pr). (2.13)

P (x) = e My 4 / t e M= py + puldu. (2.14)
s
Now our main result reads as follows.
Theorem 2 Grant Assumptions 1 and 2. For any fixed T > 0,
L(MU[I(\)/.T]) = Po.1] (2.15)

(weak convergence in D([0, T1,S8")) as N — oo, where Pjo, 17 is the law on D([0, T1, S")
supported by the distribution valued trajectory w; given by

0 (@) = /O o) (W)dx. 1 €0, T],

forallp € S.

Here, p;(x) is the unique weak solution of (2.8)—(2.9) with uy = o and uy as in (2.10).
Moreover, p;(x) is a continuous function of (x,t) in Ry x Ry\{(¢0(0),1),t € Ry} where
it is differentiable in x and t and the derivatives satisfy (2.8). Moreover for any t > 0, p;(x)
has compact support in x and

Dt
0)= ——, x)dx = 1. 2.16
p:(0) Py /,Oz( ) (2.16)
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Its explicit expression for x > @ ;(0) is:

t
P @) = o (¢, () exp [— /0 f = o) (x))ds] : 2.17)
and for any x = @ ;(0) for some 0 < s <'t,
s
pr(x) = PRy CXP[ / [f(%u(o))—)»]du] (2.18)

Theorem 3 Grant Assumptions 1, 2 and suppose that

P here po = [ F@)Wox)dx and Yo = [~ xo(x)dx. (2.19)

Yo(0) = PR

Then p;(x) is continuous in Ry x R4.

We give some comments on the above result. We first compare our result with classical
“population density equations” obtained in integrate-and-fire models as for instance described
in [2]. In our second remark, we discuss condition (2.19).

Remark 1 In case 1 = 0, (2.8) reads as follows.

01 (x) = = prdxpr(x) — f(X)pr(x), x> 0,x # ¢, (0),
p(0) =1 forall t > 0.

This equation is different from usual population density equations which are obtained for
integrate-and-fire neurons as considered e.g. in Chap. 6.2.1 of [2], see in particular their
formula (6.14). As in integrate-and-fire models, also in our model spiking neurons are reset
to a reversal potential (which equals 0); but spiking does not create Dirac-masses at the reset
value. This is due to the Poissonian mechanism giving rise to spiking in our model. The loss
of mass at time ¢ due to spiking of neurons having potential height x is therefore described
by the term — f (x) ps (x).

At the same time, spiking induces a deterministic drift p,;dt for those neurons that are
not spiking. In particular, a neuron having initially potential O at time # will have potential
~ p:h after atime t 4+ h, for h << 1 small. Hence, during [, t 4+ k], there is creation of an
interval [0, p;h] at the beginning of the support in which no non-spiking neurons are present.
At the same time, there are approximately p,;h neurons that spike during [¢, ¢ 4+ h] which
invade this initial interval. This implies that the initial density of neurons at the border x = 0
is of height 1. This initial condition is different from the usual initial condition obtained in
integrate-and-fire models.

Remark 2 The condition (2.19) ensures that the limit density p, (x) does not have a disconti-
nuity at the point x = ¢¢;(0). This point ¢q ;(0) is the point where two densities are pieced
together: on the one hand the density of neurons that did not yet spike up to time ¢, which
is given by formula (2.17), and on the other hand the density of neurons that have already
spiked, given by (2.18). Without condition (2.19), the convergence result still holds true, but
pr(x) will have a (single) jump at x = ¢ ;(0); in particular, it is not a strong solution of the
nonlinear PDE. However, even without condition (2.19), for any ¢ > 0, (2.16) holds true.

To separate the difficulties we shall first prove Theorem 1 and Theorem 2 under a very
restrictive assumption on f:
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Assumption 3 f is a positive C! —function satisfying Assumption 1. f is non-decreasing,
Lipschitz continuous, bounded and constant for all x > x** for some x™* > 0. We shall
denote by f* = || f|loo the sup norm of f.

The proof of Theorem 1 under Assumption 3 is easy, it is given in the next section. In
the successive sections we shall prove Theorems 2 and 3 under Assumption 3. In Sect. 4,
tightness of the sequence of processes indexed by N is proved. In Sect. 5 we introduce a
sequence of auxiliary processes which are discrete time models and for which it is easier to
prove the hydrodynamical limit which is done in Sect. 6. Section 7 will then conclude the
proof of Theorems 2 and 3 under Assumption 3.

In the Appendix we shall prove Theorem 1 in its original formulation (i.e. dropping
Assumption 3) and then Theorem 2. However this last step is trivial because the estimate
(2.4) implies that with probability going to 1 as N — oo all the membrane potentials are
uniformly bounded in the time interval [0, T'] that we are considering. It is then possible
to replace the true f with one satisfying Assumption 3 and which differs only for potential
values larger than those reached by the true process, so that we can use what was already
proved under Assumption 3. The precise argument is given at the end of the Appendix.

3 Energy Bounds Under Assumption 3

Exploiting Assumption 3 we shall prove a statement stronger than in Theorem 1.

Proposition 1 Let f satisfy Assumption 3 and call f* = || | co-

1. Forany N > 1 and any x € Rf there exists a unique strong Markov process U™ (t)
starting from x taking values in ]Rﬁ whose generator is given by (2.1).
2. Calling N (t) the total number of fires in the time interval [0, t] we have

N(t) < N*(t) stochastically (3.20)

where N*(t) is a Poisson process with intensity N f*.

N(t)
3. sup [UN @) < 10N 0] +
t<T N

C such that for any N and any U™ (0):

and forany T > 0 there exist positive constants ¢ and

UN(0)

PO IUY O < WX O +27T] 2 1= eV 321
t<T

Proof The existence of the process for each fixed N is now trivial as the firing rates are
bounded. The variable N (¢) is stochastically upper bounded by N*(¢) := Z,N:1 n;(t), where
(n; (r)) are i.i.d. Poisson processes of intensity f*. N*(t) is therefore a Poisson process with
intensity N f*. We have

N(r)

sup [UN ()| < lUN )] + —~
t<T

because each firing event increases the rightmost neuron by %, while, in between firing
events, the rightmost neuron is attracted to the average membrane potential of the process
and thus decreases. (3.21) then follows from item 2. because {N (7') > B} is an increasing
event and thus the bound is reduced to large deviations for a Poisson variable, details are
omitted. O
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4 Tightness

With this section we begin the proof of Theorems 2 and 3 (under Assumption 3). We start by
proving tightness of the sequence of laws of i Ul

Proposition 2 Grant Assumption 3. Suppose that UN (0) = xV is such that Assumption 2 is
verified. Then the sequence of laws of,uulz(\)/ " is tight in D(R4, S").

Proof For any test function ¢ € S and all # € [0, T], we write,
1
(" 0.9) =5 20 (UM o) = / Py (dx). (422)

By [11] it is sufficient to prove the tightness of (UN (1), ¢),t € [0,T] € D(0, T], R) for
any fixed ¢ € S. In order to do so, we shall use a well known tightness criterion, see for
instance Theorem 2.6.2 of [12], which requires that the L> norms of the “compensators” of
(UN (1), ¢) are finite. The compensators are

o =LUYo.¢). Ho =LV, ¢>2 —2(U¥w. )L (U (1), 9).423)

where L is the generator given by (2.1). The criterion requires that there exists a constant ¢
so that

sup E[y{ O1* < ¢, sup E[yy ()]* <c. (4.24)

t<T t<T

The proof of the criterion is based on the fact that
t t
MY = UV, ) — / yi' (s)ds and (M[")* — / ys (s)ds
0 0

are martingales. To prove (4.24) we start by calculating le (t) = ﬁ > qu(UiN (1)). We
have

Wo=3 3|27 (v o) [qs (U,Na) + %) ~¢ (Uﬁ(r))]
i | j#i
+1 (VY 0) [¢ (0 - 0w 0)]]
e 24 (v 0) [Ovo - v 0],

where Uy (f) = (UM (1), id) is the average of the Ul.N (#). Expanding the discrete derivative,
we get

' =(UVo. ) {vYo.¢) - UV 0. fo) + e (U @), 1)
A [<UN(t), ¢’><UN(t), id> - (UN(z), w)] +o0 (%) ,
where ¥ (x) = x¢’(x) and
0 (%) = %Z > r(vfo)ie (U,.N(t) + %) —o(vMw) - %w (v w)
i |y
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Since ¢, ¢’ and ¢" are bounded as well as f (thanks to Assumption 3) there is a constant
¢ so that

‘yl (z)‘ < c(l UMW), id) + (UM @), ¢>|) < c’(l + % ZU,.N(z)2).

By Proposition 1, sup E [le (1)*] < c for a constant ¢ not depending on N.
t<T

The proof of (4.24) for y, N(t)is simpler. We write L = Lgye + L, where Lge¢ and L; ¢
are given by the first, respectively second, term on the right hand side of (2.1). Since L, acts
as a derivative we have

Li(UN @), ¢)* —2(UN (1), o) Li(UN (1), ¢) = 0

as can be easily checked. We have

1
2 2 Lie@ W )9 W] )
L]

= %Z[ Z f(U;fv(t)) [05 (UiN(Z)—i- %)(ﬁ(U/N(t)-F%)

i#] TkFL]
—¢ (v w)e(vrw)]

+7 (UM w) [¢(O>¢ (U;v )+ %) o (UV®) 9 (UN(o)]

)
+7 (Vo) [¢(0>¢ (U,»N(t) - %) o (UM ) o (UM )} ]
Zy [Z ) [ (UN(t) - ) o (UN(Z))}

i Lk
+f (U 0) [#20 - ¢? (v ) ]]

The same arguments used earlier show that the L-norm of this term is bounded uniformly in
t € [0, T1andin N. The L2-norm of —2(UN (¢), ¢) Lare (U™ (¢), ¢) is also bounded uniformly
because [(UN (¢), ¢)| < ¢ and we have already proved the bound for L (UN (1), ¢). We
have thus proved (4 24) and finished the proof. Observe that taking into account the signs we
could prove that y, N(@) — 0as N — oo. O

5 Coupling the True with an Auxiliary Process

The natural step after having proved tightness is to prove propagation of chaos. This is however
not so simple in our model because the firing of a neuron (i.e. when its membrane potential
jumps) affects simultaneously the state of the other neurons and not just their jumping rates,
as usual in mean field models. For this reason we follow a different strategy here. In order
to overcome this difficulty, we introduce an auxiliary process which is from one side a good
approximation of the true one in the N — oo limit, and which, from the other side, is easy
to handle in the same limit. The auxiliary process is defined in the present section where we
prove that it is close to the true process uniformly in N. In Sect. 6 we study the hydrodynamic
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limit for the approximating process. Section 7 will then conclude the proof of Theorems 2
and 3.

5.1 The Auxiliary Process

We work under Assumption 3 throughout the whole section. We fix a time mesh § > 0 and
approximate the process U™ (¢) for fixed N by a process which is constant on time intervals
[1d, (n + 1)38[, n > 0. Since N is fixed we shall drop the superscript N from UN (r) unless
ambiguities may arise.

The auxiliary process is denoted by ¥ ® (n8) and is defined at discrete times 18, n € N,
such that (Y® (n8)),,e is a Markov chain. Its transition probability describes a process where
neurons fire with constant firing rate f(y;) in the time interval [n§, (n + 1)3[. Moreover, all
firing events after the first one are suppressed. Finally, the new configuration of neurons at
time (n + 1)§ is obtained by first letting the neurons evolve (for a time &) under the action of
the gap-junction interaction and then taking into account the effect of the firings at the end
of the time interval. The precise definition is given now.

We put Y®(0) = U(0) and then proceed by induction on n. Conditionally on Y®(ns) =
y = (y1,...,YnN), we choose N independent exponential random variables 71, ..., Ty,
which are independent of anything else, having intensities f(y;),i = 1,..., N, respec-
tively. We put

®;(n) =1 I1<i<N —licb()' (5.25)
i) =ly<s, 1 <i < ,q—N‘lzn, .
1=
hence neurons i such that ®; (n) = 1 spike during [n§, (n+1)4[, all other neurons do not spike
during that interval. Notice that we keep constant the firing intensity of the neurons. We write

N
_ _ 1
g ) =e My +(1—e ™)y, 0<1 <8, §= ~ 21 Vi (5.26)
1=

for the deterministic flow attracting position y; to y and set
Y2 ((n + 1)8) = ¢5.5(3i) + ¢, forall i suchthat ®;(n) = 0. (5.27)

Thus neurons which do not fire follow the deterministic flow. Moreover, we suppose that
they feel the additional potential ¢, generated by spiking of other neurons, only at the end of
the interval [n6, (n + 1)4[.

Let us now describe the evolution of the N g neurons that fire. Let iy, . . ., iy, be the labels
of neurons such that Dy, (n)y=1,j =1,..., Ng, ordered in such a way that Ti; > Tijy-
We then assign the position

Vi ((n+1)8) = ¢5.5(0) + (q - %) =(1-e")y+ (q - %) (5.28)
to the first neuron which has fired. This is the position of a neuron starting from potential
0 at time nd, evolving according to the flow and receiving an additional potential ¢ — % at
time (n + 1)3, due to the influence of the other spiking neurons (whose number is Ng — 1).

The remaining Ng — 1 neurons that spike are distributed uniformly in the following
manner. We put

_ 95.5(0) + (- =)
- Ng —1

dy Vit Ng—1>0, dy = 95,500), if Ng—1=0, (5.29)

@ Springer



Hydrodynamic Limit for Interacting Neurons 877

and

YO+ 18) = (= Dy j=1,....Ng — 1. (5.30)

Remark 3 The definition of the auxiliary process ¥ ® has to be such that ¥® is §—close to
the original process. Therefore, we have some freedom in choosing the distribution of the
spiking neurons in the auxiliary process and the above definitions (5.29) and (5.30) could be
changed. However, the above choice is convenient for our purpose; we will see later that this
precise choice enables us to produce strong convergence of the associated empirical measures
to the limit equation, see also Remark 4 below.

The analogue of Proposition 1 holds for the auxiliary process as well and it is straightfor-
ward to see that

Proposition 3 The variables ZIN: 1 ®i(n) are stochastically bounded by Poisson variables
of intensity Nf*8, f* := || flloo-

As a consequence, proceeding as in the proof of Proposition 1, for any 7T there is C so
that for any initial datum x with Y (0) = x,

P sup IYO@d)) < el + 27T | < N (5.31)

n:nd<T

5.2 Coupling the Auxiliary and the True Process

In order to show that ¥® is close to the original process, we couple the two Markov chains
(U(né))n=0 and x® (n8))n>0 in such a way that neurons in both processes spike together as
often as possible and such that the pair (U (nd), Y® n8)), n € N, is a Markov chain taking
values in R_Al N

We start with ¥ ®)(0) = U (0). For anyn =0,1,...,given (U(nd), Y@ (ns)), the values
of (U((n+ 1)8), Y@ ((n+ 1)8)) will be chosen according to the simulation algorithm given
below. The algorithm uses the following variables.

e (x,y) € ]Rﬁ X Rﬁ and x = ﬁ ZlNzl x;. The strings x and y represent the state of the
neurons in the two processes and x gives the average potential of x.
e Independent random times rl.l € (0, +00), rl.z € (0,400) and t; € (0, +00), for all

i =1,..., N. These variables will determine the times of possible updates.
e m= (my,...,mpn) € {0, l}N . The variable m; indicates the occurrence of a spike for
neuron / in the auxiliary process.
e K €{0,..., N}. The variable K counts the number of spikes in the auxiliary process.
e j=(j,.---,jN)€{0,1,..., N}N. The variable j; is the label of the neuron associated

with the i —th occurrence of a spike in the auxiliary process.
e L € [0, §]. The variable L indicates the remaining time after every update of the variables.
The simulation algorithm stops when L = 0.

The deterministic flow attracting position x; to the average potential x, given in (5.26),
will appear in the algorithm. For convenience of the reader we recall its definition here

N
1
prale) = e M+ (1= DE 018, K= Z}xi :
1=

Before proceeding further, let us explain the coupling. Given U (né) = x = (x1, ..., XN)
and Y@ (n8) = y = (y1, ..., yn), we start by associating to each neuron i two independent
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stopping times ril and tiz. Here, rl.l has intensity f (¢ :(x;)) A f(yi) and tiz is of intensity
| f(pz.:(x;)) — f(yi)|. Stopping times associated to different neurons are independent. If
‘L'il rings first, then U; and Yi(‘s) spike together, and the coupling is successful. However, if
‘L’iz rings first, then either U; spikes and Yl.(g) does not (this happens if U; > Yl.(s) , details
are given in lines 17 — 22 of the algorithm) or vice versa. Once neuron i has spiked in the
auxiliary process we set m; = 1 and do not consider any spikes for neuron i in the auxiliary
process any more. Therefore, the next time to be considered for neuron i is simply the next
spiking time in the original process which is of intensity f (¢x ;(x;)). This time is called 7; in
our algorithm. All stopping times are only taken into account if they appear during the time
interval [0, §] that we consider.

Our algorithm is given below. In the remainder of this section we shall prove that this is
indeed a good coupling of the two processes.

Algorithm 1 Coupling algorithm

1: Input: (U (n8), Y (n8)) € RY x RY

2: Output: (U((n +1)8), YO ((n + 1)8)) e RY x RY

3: Initial values: (x,y) < (U08), YO n8), K < 0,L < §,m; < 0, foralli =1,...,N, j; < 0,
forall i=1,...,N

4: while L > 0 do

5: Fori=1,..., N, choose independent random times

° ril € (0, +o0) with intensities f(¢z ;(x;)) A f(¥;)
riz € (0, +00) with intensities | f (@5 ; (x;)) — f (i)l
7; € (0, +00) with intensities f (¢z ;(x;))
R = inf (T} ATHA inf 7.
1<i<N;m;=0 1<i<N;m;=1

7: if R > L then

8: Stop situation:

9: xj <@g () foralli=1,...,N

10: L<«0
11: yi < ¢5,50i) + % foralli =1,..., Nsuchthatm; =0
120y, <0550+ EFLifk > 1
5.8(0)+(K—1)/N
13w e K =k [OREE T foratl k=2, K
14:  else ifR:ri1 < L then
15: mij <1, K< K+1, jg<«<i, L~ (L—R)
16:  x; < 0 and x; < @z g(x;) + 7. forall j #i

17: elseif R=1? < L then
18: if f(yi) > f(pz r(x;)) then

19: mi <1, K < K+1, jg < i, L < (L—R), xj < ¢z g(x;)forall j
20: elseif f(y;) < f(pz r(x;)) then

21: L < (L—R),x; < Oandx; <—¢);,R(xj)+%, forall j #i

22: end if

23: elseif R =1; < L then

24: L« (L—R)

25: x; <=0 and x; < @z g(x;) + % forall j #i
26: end if

27: end while

28: (U((n+ 1)8), YO ((n + 1)) < (x, y).

29: return (U ((n + 1)8), YO ((n + 1)8)).
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5.3 Closeness Between the Auxiliary and the True Process

The main result in this section, Theorem 4 below, states that the auxiliary and the true
processes are close to each other. This means that for most neurons, the potentials in the two
processes are close to each other (proportionally to §), while the remaining ones constitute a
small fraction of the totality (also proportional to §).

Definition 2 A label i € {1, ..., N} is called “good at time k§” if foralln = 1, ..., k the
following is true.

Either ®; (n — 1) = 0 and U; has not fired during the whole time interval [(n — 1)§, nd].

Or ®;(n — 1) = 1 and U; has fired exactly once in the time interval [(n — 1)8, né].

We call G, the set of good labels at time né and M,, = N — |G,| the cardinality of its
complement. If i € Gy we call D; (k) := |U;(k§) — Yi(‘s) (kd)|. Finally, we set

0, = max{D;(k), i € G, ,k < n}.
Then the following holds.

Theorem 4 Under Assumption 3, for any fixed T > 0, there exist §y > 0 and a constant C
depending on f* and on T such that for all § < 8y, with probability > 1 — e_CN52,

M,
6, <Cé§ and Wn < Cé forany fixednsuchthatnd <T.

Strategy of proof 1t is clear that M,,_; < M, < ---, because there is no recovery
from not being a good label. We shall first prove that till when 6, < ¢4 the increments
M, —M,_; < ¢'8*N.Infact alabel i becomes bad at 8 if in the time interval ((n — 1)8, n8)
there are either two or more fires of U; (+) (which cost O(82)) or else the clock ‘L'iz (recall the
algorithm given in Sect. 5.2) rings, which also costs O(8%). Since n8 < T the sum of the
increments is then bounded by ¢§ as desired. Thus there may be of order ¢§ N neurons which
fire quite differently in the two processes but this produces a change for the potential of the
good labels of the order of %(C(SN )T which is also what is claimed in the theorem. The
above heuristic argument can be made rigorous; the precise proof'is given in the Appendix 2.

5.4 Corollaries

We conclude the section with a corollary of the above results which will be used in the
analysis of the hydrodynamic limit N — oo. Recall that by considering the associated
empirical measures (2.5), we interpret U () and Y@ (¢) as elements of S'.

Definition 3 We introduce the space F of smooth functions ¢ (m), m € S’, which have the
form

¢(m) = h(mla1], ..., mlar]), k apositive integer, (5.32)
where h(ry, ..., r¢) is a smooth function on R¥, uniformly Lipschitz continuous with Lip-
schitz constant ¢y, i.e.

k
(1 om0 = Bl < (DI = 1) (5.33)
i=1
The functions a;,i = 1, ..., k, in (5.32) are C*°—functions on R, each one with compact

support contained in {|x| < ¢}, ¢ > 0.
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Let ¢’ be an upper bound for the derivatives |a!(r)|, i =1, ..., k. We also introduce
T = {t €l0,T]: 1 =n27 T, k,n e N]. (5.34)

Recall that PX(N”\) denotes the law under which U (-) starts from U(0) = x. Denote by
(8,N,%)
Sx

)(CS’N’)“) for the probability law governing the coupled process defined above. By abuse of

the law under which its approximation ¥ (®(-) starts from x at time 0, and write

notation, we shall also denote the associated expectations by P;N‘)‘), SﬁS’N’)‘) and Q)(CS’N’)‘).

Proposition4 Lert € T, 8 € {27!T, 1 € N} such that t = n for some positive integer n.
Let ¢ as in (5.32) with constants cy,, ¢ and ¢'. Then, with C as in Theorem 4 (C is independent

of §)

C 2
1PN P19 (o] = SPN P19 (yor)]] < kene' e Ve +5(2kenc'€). (5.35)

Proof The left hand side of (5.35) is not changed if we replace U () and Y@ (r) by U*(¢)
and Y ®-*(r) which are defined by setting

U () = min{U; (1), ¢}, Y2 * (1) = min{y " (1), ¢},

¢ as in Definition 3. Let ¢ be as in (5.32), then by (5.33)

N
1
1610 = 9 Utyi)| = [9G1u-0) = Utyons ) < ke’ 3 [U7 @0 =¥ ).
i=1
Hence

N

1
1PV (6 ()] — SEN D 1y o)l < kchc’QEf’N’“[ﬁ PAAGE Y,-“”’*(m}.
i=1

2 . . .
Let e~“%"N be the bound on the bad events in the estimates of the coupled process, obtained
in Theorem 4. Then

N
1 C
QBN |:N Z \UA(t) — yl,(‘”’*(t)|j| < 87267C82Nc +2C8 (5.36)
i=1
where we used that |U(r) — Yl-(a)'*(t)l =c. o

6 Hydrodynamic Limit for the Auxiliary Process

The main result of this section is given in Theorem 5 below. It states that the auxiliary process
converges in the hydrodynamic limit to the evolution defined in Sect. 6.1. When necessary
we shall make explicit the dependence on N writing Y@ = Y& We then suppose that
forall§ € {27/T,1 e N}, Y@M (0) = xV, where x” satisfies Assumption 2 of Sect. 2. We
will then show that the law of 1y .5 converges weakly to a process supported by a single
trajectory.
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6.1 The Limit Trajectory of the Auxiliary Process

In this subsection we describe the limit law of 11y ,~) denoted by p M) (r). We start with some
heuristic considerations which will motivate the express1on which defines pan) (r) and which

foresee the way we shall prove convergence to ,o (r)
Heuristics Consider an interval I = [a, b] C ]R+ of length ¢ and center r. We choose
¢ = N"% a > 0 and properly small. The density of the initial configuration x" in I is the

average i~ (I); our Assumption 2 ensures that v (1) = ‘x}j\,iml ~ Yo(r)|I]. At time § the
neurons initially in 7 and which do not fire will be in the interval J = [a’, '] having center
denoted by r’. Here, recalling (5.25) and (5.26) for notation,

a =g s@+q", b =g b)) +q"

where ¢V = ¢ is the proportion of neurons that have fired, see (5.25). By the definition of
N g5 1| = b —a' = e *|I|. The only neurons in J at time § are those initially in / which
do not fire, hence their number is approximately [x™ N I|e=/ )% Thus

8 —f $ —f
£y O % pryon (1) % eSO, p? () & X Oy ),

which gives p; )(r ) in terms of po(r) = ¥o(r), once we consider r = r(r’) which is given
by

—1 — )

where Yo = [ xyo(x)dx, p(()a) = t/fo(x)]_%wdx are obtained by letting N — oo. The
inverse of ¢z 5(-), see (5.26), is

oh(n) = e (x — (- e—M);). (6.37)
The above gives a formula for p )(r’ ) for all

2= 50)+ g = (1 —e )V + gV ~ (1= e ) + pg)s;
r(’) is the same as in (5.28). The definition of Y ls(é’N)
fired are put uniformly in [0, r{], thus

is such that all the neurons which have

®
POy ~ 09

, ' =<rp.
py)8 + (1 —e7%) g

Definition of the limit trajectory The definition of p,(;z) (r) will extend and formalize the

above definitions to all n§ < T. We put p, )(x) Yo(x), where ¥ is a smooth probability
density on R satisfying Assumption 2. We then proceed inductively in n such that n§ < T.

Suppose that ,o,(l‘? has already been defined. Then we put

1 — e 0f)
pr(l(? _/0 lOn(S)( )7dxs (638)
pay = /0 xp (x)dx, (6.39)
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and we define for all x > r,, = (1 — e”\‘s)p,(l‘? + p(s)é

f(w @, 2z (;a)a

) —1 )

PO s () = € plY) (wﬁ@-)a(x)—e *py >6) . (640)
ns

Finally we put
(5) s

P+ns(x) = for allx €] — o0, ry[. (6.41)

Pys + (1= )5

In this way, ,o((ﬁ)ﬂ) s are probability densities on R for all n, i.e.

o0
1= / Py (X)dx. (6.42)
0

Remark 4 The fact that we have extended the definition of p(,1)5(x) to R_ will be useful in

®
the sequel. Notice that as 6 — 0, (6.41) reads as p(,+1)s(0) ~ % which corresponds
Pns
to (2.16).

Notice that if pé‘? has support ] — oo, R, ], then the support of p((gl 1) is included in
] — 00, Ry+1], where

Rui =€ Ry + pyis+ (1= e 7).
This leads to the following definition.
Definition 4 (Edge) We call Ry the edge of the profile pp and
Ry=e MRy +pl 6+ —e )50 (6.43)
the edge of p,(l?

Noticing that

1—e " 1—ed" _
Py < —/Pna)( ) =y = ad Pl < Ruo1. (6.44)

it then follows that
Ry <Rp_1+ f*§ < Ro+ f*'nd <Ry + f'T, (6.45)

since né < T. Hence the supports of p,(l‘;) are uniformly bounded. By iterating (6.40) and by
using the explicit form of the inverse flow go;(ls (x), we get the explicit representation

n n
’ s D3 —A8 k+1)8 ~(8 k+1)s (8
p((nl—l)é('x) = ek(n+ ) Yo (e}n(n+ ) x—(1—e A )Ze)»( +1) plié) _ Zek( +1) P/E(g)(s)
k=0 k=0

n n n
_ _ k)8 =8 - s
exp‘_ Zaf(ex(h+l RSy _ (1 — ¢4 ZewH k)aplga) _ Ze,\(h+1 k)(Sp}(La)a)] !

k=0 h=k h=k
(6.46)
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for all

n
x> x:f+1 — o HMnt+13 ((1 _ e—Aa)zex(k+1)8 ~(8) + Zek(k+1)5 (5)8) (6.47)
k=0

k=0

where g is the initial density. Notice that for all x > x 1 p((ji_l) 5(x) is continuous in x.
On [0, xn 1 [, however, discontinuities are introduced. The following proposition shows that
they are of order §.

Proposition 5 There exists a constant C depending only on f*, || fllLip, T and Ry, such
that

(©)] (©)]
Pps — Pu— 1)5“"

~(8) ~(8)
Pps — Piu—1ys| = €9,
forall n such thatné <T.

Proof The proof is straightforward, using the Lipschitz property of f and the fact that the
supports of p,(li) are uniformly bounded. O

The following is a direct consequence of the definition of pn s ) and of Proposition 5.

Corollary 1 There exists a constant ¢ such that for any 8 = 2~KT with k large enough, for
anyn,lwithns <T,1§ <T,

P& () — ,g?(y)‘ <c(x —y| V) forallx,y € [0, x1, (6.48)

and

P;fs)(x) Png)(y)‘ <clx —ylforallx,y € [x), ool.

Moreover; for alln,l > 0,

,oms)(x) pm)(x)‘ <cln —1|8 forany fixed x € [x;; V x;', 00[ U 10, x;i A x/[. (6.49)

Finally, if ¥ satisfies the additional assumption (2.19), then also

§
oA ) — ol )| = 8

and

Py @) = o) ()| = eln — 113
forall x > 0.

Finally, the following result will also be used in the sequel.

Proposition 6 There exists 5o > 0 and a constant C depending on f*, 8, | fllLip, T and
Ro, such that

pA% (0) = Co(0),
foralln > 0 such that né < T, forall 5 < .
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Proof In what follows, C will be a constant that might change from line to line. Thanks to
our assumptions imposed on the function f, there exists a constant C such that

fux) > Cf(x) forall x € [0, Ry + f*T), u € [e %, 1]. (6.50)
Then, using (6.38) and (6.40) and the fact that f is non decreasing, for all § < 4§y,

(8)
Py = / f(x)p<n+1)a(x)dx
oo
> c/ F (700 + (1= e + ps) ol (e dx
0

> Ce/ / Fle™x)p ) = Ce™ " / f@pR @) = Cply.
In particular,
P(? > Cpo,
where C depends on § and where pg = fooo JF(xX)¥o(x)dx. On the other hand, Proposition 5

implies that

P < po+Cns. 52 < o+ Cn,

for all n with né < T, which implies that

()
Pus Po

8 s zC 7,
P +apy ~ po+ Mo +CT

P (0) = =C = Cy(0).

6.2 Discretization of the Membrane Potentials

Let (Y® (n8))n<r/5 be the auxiliary process defined in Sect. 5.1, starting from x = xN
according to Assumption 2 such that ||x|| < Rp. Recalling the definition of ®;(n) in (5.25)
we put

(8)
SN @) qd) ) >, v )
5 ===——V@ns , YW ==""—— 6.51
q(nd) N (nd) = — (n) = N (6.51)
and then define the sequence of random edges R, = Ro,
R :=e¢ ™R | +V(n—18)5+ (1 —e YO ((n—1)9). (6.52)

We will compare ¥ ® (n8) and the limit ,or(fs) within small intervals, starting to explore the
respective supports [0, R, ] and [0, R, ] from the right border of the support (edge). Doing so,
we are sure to compare configurations of neurons in both process that correspond and that
have evolved in the same fashion in the two processes, with high probability.

In order to do so, we introduce a mesh of Ry which depends on N and on time, where
times have the form ¢t = nd, t < T. The meshes at different times will be related as in the
heuristic considerations in the beginning of this section.

Definition 5 (Membrane potential mesh) Let 0 < o < é. Given N, letr € [%, 1] be such
that Ry is an integer multiple of r N ~%. We then partition (—oo, Rg] into intervals

To={lio.i =1}, Lijo=IRo—il,Ro— (G — DL, £€=rN"%, (6.53)
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and define 7)), = {I’O,l > 1} by setting 1 0 = I; so that at time 0, Z;, = Zp. At times n§
we define Z,,s = {I; ,, i > i} and I/s = {I’ i > 1} as the sequences of intervals

Lip :=IRy — e "l Ry — e — )], I, =R, — e it R, — e " (i — 1)].
(6.54)

The strategy is to compare the “mass” of fLy ) (5 in 1, !, and the mass in the corresponding

interval [; , (with same i) for the limit p( ). We shall prove that for most intervals the
corresponding masses are close to each other in a sense to be made precise below. In order
to do this properly, we need to specify the mass distributions in {x < 0} and to define “bad”
intervals where the masses may differ. We start with the former. We have already extended
the density p, 5) (x) tox < 0, see (6.41). For the neurons we proceed analogously and extend
Hy ) (ns) to the negative axis by adding an infinite mass

(y® )| o001 Z(S id,, n8<T (6.55)

where in agreement with (5.29)
(1 —e YO 0s) + (8V(nd) — +)
NSV (ns) — 1 '

Notice that the choice (6.55) corresponds exactly to the initial configuration given in (5.30).
We introduce the following quantities for all i, n.

dy = (6.56)

N, = Nityorsy (I)s Niw = N / POy dx, w; = / Vo) dx,  (657)
Iin

where we extend the definition of vy to R_ by putting ¥o(x) = ¥(0) for all x < 0. Notice
that since 9 > c(x — Ro)2, ¢ > 0, in a left neighborhood of Ry,

w; > cl’, (6.58)

while, “away” from Ro, w; > ¢, for some ¢ > 0. Finally we define the “bad” intervals as
follows.

Definition 6 (Bad intervals) I; , is bad, if there is ng < n such that (at least) one of the
following four properties holds.

Iing N{x <0} #¥and I; ,, N {x > 0} # .
Ii”no N{x <0} # @ and Ii/,no N{x >0} £0.

I n, C {x <0} and Il-”no C {x > 0}.
I/, C{x <0}and I; 5, C {x > O}.

1,ng

I! isbadif I; , is bad. An interval is good if it is not bad.

i,n

L e

6.3 Hydrodynamic Limit

(8)

In order to compare ¥ ® (n8),n < §~'T, and p©® := (Pps 1 =< §~1T), we introduce the

following distance.
Definition 7 (Distances) We define for any n < § -7,
B,, := number of bad intervals inZ, (6.59)

@ Springer



886 A. De Masi et al.

and set

|N‘/ - Ni n|
d,(Y® 0¥y .= p LU
n( P ) nt Iin gog},al);nCR+ W,'NE
v (8 ~(3)
5 o YO ) — p,5
+ - |V((n—1)5) — P(n71)3| + (6.60)
L l
d,,(Y(‘S), ,o(‘s)) depends on the times 7;(k), j = 1,..., N,k < n — 1, where the 7; (k) are
the times which enter in the definition of @ (k), see (5.25). Let

Fo=oltjk),j=1,....N,k<n—1)

be the o-algebra generated by these variables. Observe that Y«S(i) , YO 0s) and V((n — 1)8)
are F,,-measurable. We prove in Theorem 5 below that with large probability (going to 1
as N — oo) the distances d,, (Y ®, p®) are bounded for all n such that n§ < 7. Loosely
speaking this is due to the fact that the auxiliary process is defined in terms of independent
exponential random variables and that the initial configuration is made of i.i.d. random
variables. The bounds on d,, (Y ®, p(‘”) are given by coefficients k, which do not depend on
N but have a very bad dependence on § for small §. § however is a fixed parameter in this
section and by the way d,, is defined, the bounds imply that ¥ ® and p® become very close
in most of the space as N — oo (and keeping § fixed).

Theorem 5 Grant Assumptions 2 and 3. There exist k,, > 0, y €]0, 1[, a sequence c1(n) €
R4 which is increasing in n, and a constant c; > 0 such that

SOV I[4, 0D, p) <] 2 1= cx(e, (6.61)
for all n such thatné < T.
The proof of Theorem 5 is given in the Appendix 3.

Remark 5 We prove Theorem 5 under the strong Assumption 3 which can be weakened.
Indeed, it is sufficient to impose (6.61) for n = 0. Recalling that by the definition of Z all
its intervals are good at time n = 0, Assumption 3 clearly implies (6.61) for n = 0.

Remark 6 Theorem 5 gives strong convergence of Hy®) () to pt(s) (x)dx. Indeed, (6.61)

’

. . .. N .
implies the convergence of the “densities” —z+ (notice that w; < £ — 0as N — 00).

As a corollary of Theorem 5 we obtain the desired convergence

Corollary 2 (Hydrodynamic limit for the approximating process) Under the conditions of
Theorem 5, lett € T, § € {27/ |1 € N} such that t = 8n for some positive integer n. Then
almost surely, as N — o0,

)
Hyo = o (Odx.

7 Hydrodynamic Limit for the True Process
We can now conclude the proof of Theorem 2. The convergence in the hydrodynamic limit

will be proved as a consequence of Proposition 2 and of Corollary 2, which proves the
convergence for the approximating process, of (6.48), (6.49).
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GivenT >0let7 :={nd <T:ne€N, §= 27KT,k e N}. Since 7 is countable and
p,(a), ,5,(5) are bounded, there exist bounded functions p,(o) and [),(0) on 7 and a subsequence
(kn)n so thatforallt € T

©

. 27y (0 . @k
P = lim p T 5O e,
n—oo

50 = lim 5
n—00

By Proposition 5 p,(o) and ,6,(0) are continuous in 7" and thus extend uniquely to continuous

functions on [0, 7] which are denoted by the same symbol; moreover, using again Proposition
5 and denoting below by § elements of the form 2% T':

. 8 0 —(8 -0
tim sup sup (1p%) = 01+ 155 - 5”1) =o0. (7.62)

=008 <T tens, (n+1)8)

Define for any ¢ € [0, T]

t t
x,*’o —e M (A/ e“ﬁs(o)ds +/ e“ps(o)ds)
0 0

and, to underline the dependence on 8, rewrite the x;; defined in (6.47) as x:(’s‘s. Then, using
(7.62),

lim sup sup i — X0 =0. (7.63)
=008 <T te[ns, (n+1)8)

Denoting below by ¢ elements in {27, k € N}, by (7.63) for any such € there is 8, so that
for any § < 8. the following holds. For all 1 = n§ < T if |x — xt*’0| > ¢ then x — xt*"S
has the same sign as x — x;k . We can then use (6.48) and (6.49) and a Ascoli-Arzela type
of argument to deduce that p,(‘s) (x) converges in sup norm by subsequences to a continuous
function p;(x),t € T, |x — x,* ’O| > € with compact support. By continuity p;(x) extends to
allt € [0, T], |x — x,* ’0| > €. By a diagonalization procedure we extend the above to all x, ¢
witht € [0, T] and x # x,*’o. Then by (6.42), (6.38) and (6.39) forany t € 7

l:/0 pr(x)dx, p?:/o pr(x) f (x)dx
and

o _ [
s :/0 xpp(x)dx,

which, by continuity extend to all # € [0, T']. Thus p? and ﬁt(o) coincide with p; and p; given
in (2.6) and we shall hereafter drop the superscript 0. Finally by taking the limit § — 0 in
(6.40) and (6.41) we prove that p; (x) satisfies (2.17)—(2.18).

We shall next prove that p,(x) is a weak solution of (2.8)—(2.9) with ug = ¥ and u; as
in (2.10).

Lemma 1 If p;(x) is given by (2.17)—(2.18) then for any test function ¢
/ ) (x)dx = / Po(aye™ o £ (g (x))dx
0 0

t
+ / pye™ i 1000 ©d) g (0))ds. (7.64)
0
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Proof Calling x;" = ¢, (0) we write

/0 ¢ (x)pi (x)dx :/0 t ¢>(X)pz(X)dX+/* ¢ (x)pr (x)dx. (7.65)

In the second integral on the right hand side we make the change of variables x — y where
¢0.:(y) = x. Recalling (2.14), we have

dx iy
dy
Using that p;(x) is given by (2.17) we can then check that the second integral on the right
hand side of (7.65) is equal to the first integral on the right hand side of (7.64).
In the first integral on the right hand side of (7.65) we make the change of variables x — s
where ¢; ;(0) = x. Using once more (2.14), we have

dos (0
4010V _ 0, poye-9).
ds
Using this and recalling that that p;(x) is given by (2.18) we then complete the proof of the
lemma. O

It follows from (7.64) that for any test function ¢, f ¢p,;dx is differentiable in 7 and that
its derivative satisfies (2.11). Moreover by choosing ¢ = f and ¢ = x in (7.64) we then
deduce that p; and p; are differentiable and from this that o, (x) is differentiable in # and x in
the open set Ry x Ry \{(#, x) : x = ¢o(0)}. Hence by (2.11), p;(x) satisfies (2.8) in such
a set and the boundary conditions (2.9) with ug = 1 and u as in (2.10).

We shall next prove uniqueness for (2.11). As a consequence the limit p;(x) we have
found using compactness does not depend on the converging subsequences, we therefore
have full convergence. It is convenient to rewrite (2.11) as follows. For all ¢ € C 1 R+, R),
putting g (¢, dx) = p;(x)dx,

d, / $()g(t, dx) = / [B(0) — (0)1f (V)g(t. dx) + / & OB, + pr — Axlg(t, dx)dx,
4(0, dx) = Yo(r)dx, py = / F)e(t dx), pr = / xg(t, d). (7.66)

Proposition 7 p,(x)dx is the unique solution of (7.66) solving the initial condition po(x) =
Yo(x) for all x and

1:/0 pr(x)dx, p; :/0 f)p(x)dx, p :/x,o,(x)dx.

Proof We address the uniqueness of the solution. Any law g(z, dx) solving (7.66) is the law
of the Markov process U (), t > 0, which is solution of the non-linear SDE

dU(t) = (= U +LEWU®)+E(f(U®))dt—U(t—) N(dt, dz).

1
R, {szw(r—))}
(7.67)

Here, N (ds, dz) is a Poisson random measure on R4 x R having intensity dsdz. It suffices
to show the existence of a unique strong solution of the above non-linear SDE on a fixed time
interval [0, T'].
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Let U and V be two solutions starting from U(0) = V(0), and write for short a;, =
EQU @) + f(U(1))), and g, for the corresponding quantity for V.
We start by giving a priori bounds on U () and V (¢). It follows directly from (7.67) that

EWU®) < EWUO) + f*t <Ro+ f'T,

for all + < T. But clearly

t

t
U@) =U(0) +/ EQU(s) + f(U(s))ds <U©O) + f*T —H»/ EU(s)ds = Cr,
0 0

forall ¥ < T, where the constant C7 depends only U (0), Rp, f* and A and where we recall
that Ry is the support of ¥9. The same upper bound holds obviously for V (¢).
Coupling U and V such that they have the most common jumps possible, we obtain

d
EEIU(I) -Vl
=—E(fUO)ANfFVENIU@ —VOI+IfU@) — fFVENIWU @) AV(@)
—|u@ —-vmh
—AE(sign(U(1) = V)(U (1) — V(1))
+AE(sign(U(t) — V(t))(ar — at/)).
Since f is non-decreasing, the first line is equal to

EWU@ AV)IfU@) = (V)| = CCTE[(U@) — V@),

since U (t) A V(t) < Cr. Moreover, it is evident that the second and third line are bounded
from above by

CE|U(t) = V().

Hence,
d
EEIU(I) VOl = CEIU@) — V@),
for all t < T, implying that U (¢) = V (¢) almost surely, forall t < T. O

We shall now prove that the true process converges to p; (x)dx in the hydrodynamic limit.
Call PV the law of the measure valued process Hyn @)t € [0, T]. By the tightness proved
in Proposition 2, we have convergence by subsequences P to a measure valued process P.
We will show that any such limit measure P is given by the Dirac measure supported by the
single deterministic trajectory p; (x)dx, t € [0, T'], where p;(x) is the limit of p,(‘s)(x) found
above.

First of all we state the following support property.

Proposition 8 Any weak limit P of PV satisfies
P(C(0,T],8)) =1,
where C([0, T, S') is the space of all continuous trajectories [0, T] — S'.

Proof The proof is analogous to the proof of Theorem 2.7.8 in De Masi and Presutti (1991).
O
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Let us denote the elements of C([0, T],S’) by w = (wy,t € [0, T]) and let ¢ € [0, T].
Suppose P is the weak limit of 7. We shall prove that P is supported by {® : @, = p, (x)dx}.
Thus P coincides with p;(x)dx on the rationals of [0, 7] and by continuity on all ¢ € [0, T]
and therefore any weak limit of PV is supported by p;dx.

The marginal of P at time ¢ is determined by the expectations

/h(w,(al), L w,(ak))dp — P, (h)

where, as in Definition 3, / is a smooth function on R¥, k > 1, and a; are smooth functions
on R with compact support. We need to show that

Pi(h) = h(/m () pi(x)dx, ... ,/ak(x)p,(x)dx). (7.68)

In the sequel, t € 7 and § € {27"T,n > 1}. For any ¢ > 0 there exists ng such that for
all n > ny,

h(/alp,dx,...,/akp,dx) _h(/al,ol(zf”)dx,...,/akpt(T"T)dx)

Moreover there exists N* so that for all N; > N*,

<eé&.

P =P < e,

where PV (h) := PN (h(uuy o). see (5.35). By (5.35) for 8 small enough and N; large
enough

[P () = SO (g )] < e

Applying Corollary 2 for N; large enough,

S)(Cé,Ni,)»)(h(/,Ly(a)(t))) — h(/ Iot( )al, e, / pt(5)ak)

Collecting the above estimates and by the arbitrariness of ¢ we then get (7.68). This finishes
the proof of Theorem 2.
Finally, to prove Theorem 3 we need to show that

<e.

t
lim_pr (¥) = v (¢, (<)) exp [— / Lf = Ay (x,*))ds] (7.69)
X ,/x; 0
where x;" = ¢ ;(0). For x < x;" we use (2.18)

Ps
pr(x) = PR seXpl /[f(%u(O))—)\]du]

with s such that ¢, ;(0) = x. By continuity
}g% (ps,u(o) = ¢0,u(0) = ﬁau_,t (xl*)

Moreover, since we have proved earlier the continuity of ps and p;
. Ps Po
lim — = -
s—0 ps +Aps  po+Apo
so that (7.69) follows from (2.19).
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Appendix 1: Proof of Theorem 1

We are working at fixed N and therefore drop the superscript N from U N Recall that the
average potential of configuration U (¢) is given by Uy (1) = % ZZNZ 1 Ui () and let

N
ISOEDY / Lw;s—)<2)d Ni (s) (8.70)
i=170

be the total number of fires in [0, ] when U; < 2. Recall (2.3). The key element of our proof
is the following lemma which is due to discussions with Nicolas Fournier.

Lemma 2 We have

_ _ K@) N@) - K(1)
Un() < Uyn(0) + N N < Un(0) +2T 8.71)
and
K(t
U@ = 21U + 2#. 872)
Proof Suppose U; fires at time ¢, then
_ 1 o i_- B N—I_U,-(t—)
UN(I)—NZ(UJ(I >+N)_UN<r )+ —

J#
Thus the average potential decreases if U;(r—) > 1 (and a fortiori if U;(t—) > 2) which
implies the first assertion of (8.71). Concerning the second assertion of (8.71), we start with

- . I < [T(N—1
UN(l‘)ZUN(O)-l-NZ/O( —Ui(s—))dNi(S),
i=1

N

which implies, since U N () > 0and % <1, that

1< N
> / (Ui(s—) = DdN;(s) < Un(0).
N

We use that x — 1 > %l{xZZ} — l{x<1) and obtain from this that

—1 NE /t 7[(5 )1 — dN, (.S) <U (0) + 71 NE /t 1 — dN, (3‘)
Ui(s—)>2 i = N Ui(s—)<l i
N ol 0 2 is=)=2) N P 0 Uis—)=1}
K (l)

< Un(0) + N
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Observing that 1 < %1{)@2} + l{x<2j, we deduce from the above that

N
N() 1 /’ - K@) K@)
— = dN;(s) <Un(O0) + — + —,
N N; | ANis) < On(0) + == + =1
implying the second assertion of (8.71).
Since between successive jumps the largest U; (¢) is attracted towards the average potential
we can upper bound its position by neglecting the action of the gap junction, implying that
N(n)

IOl =1vOI+ ——

which, together with (8.71), gives (8.72), since Uy (0) < U ). ]
Proof of Theorem 1 By (8.72) we have

K(T)
U@ < 21Ul +ZT’

for all + < T. But the process K () is stochastically bounded by a Poisson process with

intensity N f(2). Therefore, there exists a constant K such that
P[|K(T)| < KN] > 1 CNT,

This implies (2.4). Finally, notice that the above arguments give implicitly the proof of the
existence of the process U (), since the process can be constructed explicitly, by piecing
together trajectories of the deterministic flow between successive jump times, once we know
that the number of jumps of the process is finite almost surely on any finite time interval. O

Appendix 2:Proof of Theorem 4
In what follows, C is a constant which may change from one appearance to another.
The Stopped Process

A technical difficulty in the proof of Theorem 4 comes from the possible occurrence of
an anomalously large number of fires in one of the time steps [(n — 1)8, nd]. To avoid the
problem we stop the process as soon as this happens and prove the theorem for such a stopped
process. We then conclude by a large deviation estimate for the probability that the process
is stopped before reaching the final time 7.

Recalling from Proposition 1 and Proposition 3 that the number of fires in an interval
[(n — 1)é, né] in either one of the two processes is stochastically bounded by a Poisson
variable of intensity f*SN we stop the algorithm defining the coupled process as soon as
the number of firings in either one of the two processes exceeds 2 f*8 N in one of the time
steps [(n — 1)§, n§]. We call E the event when the process is stopped before reaching the
final time. Then uniformly in the initial datum Y ®0)=U(0) = x,

T
P(E) < 2§e—m. (8.73)

By an abuse of notation we denote by the same symbol the stopped processes and in the
sequel, unless otherwise stated, we refer to the stopped process. We fix arbitrarily A > 0 and
consider the process starting from Y®(0) = U©) = x with || x| < A.
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Writing B* := B+ A 4+ 2f*T, we have by (3.21) forallz < T andallnd < T

U@ < B*, [|Y®0s)|| < B* for the stopped processes. (8.74)
It follows that the same bounds hold for the unstopped process with probability > 1 —e~CN?,

Thus by restricting to the stopped process we have

e the firing rate of each neuron is < f* and the number of fires of all neurons in any of the
steps [(n — 1)8, n]is < 2 f*SN.

e The bounds (8.74) are verified and as a consequence the average potentials in the U and
Y® processes are < B* so that the gap-junction drift on each neuron is < AB*.

Bounds on the Increments of M,
We write Mn = Mnfl + |An N gn71| + |Bn N gn71| = Mnfl + |An| + |Bn N gn71| where
recalling the algorithm given in Sect. 5.2 and Definition 2

e A, is the set of all labels i for which a clock associated to label i rings at least twice
during [(n — 1)4, nd].

e B, is the set of all labels i for which a clock associated to label i rings only once during
[(n — 1), né], and it is the clock riz.

We shall prove that (for the stopped processes)
PlIAl > N@Fo?] < =N, (8.75)
P[|B,, NGu1l > 2CNS [6h 1 + 8]] < ~CN& (8.76)
(recall C is a constant whose value may change at each appearance).
It will then follow that with probability > 1 — 2¢=¢V 8
My < My_y + NBf*)? +2CN8 [0,—1 +8] < My—y + CN8 [6,—1 +8]. (8.77)

Iterating the upper bound and using that né < T, we will then conclude that with probability

2 2
>1—2ne CN >1— %e_CN‘S , where C depends on T,

M n—1
W” <caZek+C3 < C(y—1 + ) foralln

%\'\]

(8.78)

having used that, by definition, 6; < 6,,_1.

Proof of (8.75).

|Ay| is stochastically upper bounded by S* := ZlNzl I{N[*z2}s where N, ... Ny are
independent Poisson variables of parameter 8, f* = || flloo. We write p* = P(N} > 2)
and have

« 1 1 1
I <Pt SO PR S (GF) ass - 0,

S* is the sum of N Bernoulli variables, each with average p*. Then by the Hoeffding’s
inequality, we get (8.75).

Proof of (8.76).

We shall prove that the random variable | B, N g,, 1| (for the stopped process) is stochas-
tically upper bounded by Z, 1 15,51y, where N;,i =1,..., N, are independent Poisson
variables of parameter C(6,_1 + 5)8 (8.76) will then follow stralghtly
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We shorthand
y =Y ((n = 1)8), x :==U((n—1)8), y©) =Y ns),
x@):=U((m—-15+1),te]0,46],
and introduce independent random times riz, i =1,...,N,of intensity | f(y;) — f(xi(?)],

t € [0, 8[. Then |B,]| is stochastically bounded by ZZNZI 124
some of the conditions for being in B,,. We also obviously have

} because we are neglecting

N

[By NGu—1l| < Z 1.2 5icg, , Stochastically.
i=1

To control the right hand side we bound
[fCei @) = fFOI < W flLiplxi @) — yil,

| fllLip the Lipschitz constant of the function f. Denote by N; (s, t) the number of spikes of
U;(-) in the time interval [s, ], then analogously to (5.26),

! 1
i (1) = yil <lxi = yil+ / heHIE(S) — xilds + - DTN (= DB, (n — 15 + 1)),
0 J#
We have [X(s) — xi| < B*and 3, ; N;j([(n — )3, (n — 1)8 +1]) < 2f*8N because we
are considering the stopped process. Thenifi € G,_1,
|x;(t) — yil <6p—1+ B*8+2f"5

and therefore

|f i) = FODI < 1 lLip (Ba-1 4 B8 +2£*8) < C(Or-1 +6)

so that
N

N
Z 1,<s,ieG, 1) < Z I{N,-zl} stochastically,
i=1

i=1

where the N; are independent Poisson random variables of intensity C (6,— +§). This proves
(8.76).

Bounds on 6,

The final bound on 6, is reported in (8.87) at the end of this subsection. We start by charac-
terizing the elements i € G, asi € G,—1 N (C, U F,;) where:

1. C, is the set of all labels i for which a clock associated to label i rings only once during
[(n — 1)8, nd], and it is a clock 7.
2. F, is the set of all labels i which do not have any jump during [(n — 1)8, né].

In other words, we study labels i which are good at time (n — 1)6 and which stay good at
time né as well. We shall use in the proofs the following formula for the potential U; (¢) of a
neuron which does not fire in the interval [fg, 7]:

t
Ui(t) = e 0 Ui (19) + / re MU (s)ds + ﬁdN(s)}, (8.79)

fo
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N (r) denoting the total number of fires till time ¢. For the ¥ ® process we shall instead use
(5.26) and the expressions thereafter.

e Labelsi € C, N G,_1.

For such labels i there is a random time ¢ € [(n — 1)3, nd[ at which a ril event happens.
Then by (8.79)

§ _ 1 §
U; (n8) = / ,\e—“‘S—S)UN(s)dere—“N / AN (s),
t

t

because U; (t7) = 0. Since we are considering the stopped process, U(-) < B*and N(né) —
N((n—1)8) <2f*5N sothat U;(nd) < C§.In the same way, Yi(s) (nd) < C§, and therefore

Di(n) = |U;(né) — Yi(a)(n8)| < C4, for the stopped process. (8.80)
Notice that the bound does not depend on D;(n — 1).
e Labelsi € F,NG,_1.
This means that i is good at time (n — 1) and does not jump, neither in the U nor in

the Y@ process. Let U((n — 1)8) = x and Y®((n — 1)§) = y. By (8.79) and (5.27)
|U; (n8) — YV (n8)| = D; (n) is bounded by
né

Di(n) < e — yil + (1 — e )% — | + / he 0D (1) — Oy (O))di
(n—1)8

1 né
+ —| e MMDIN (1) — Ng| (8.81)
N Ju-1s

where Ng is the total number of fires in the process ¥ ® in the step from (n — 1)8 to né.
We bound the right hand side of (8.81) as follows. We have e Mx; — yil < Oh_1.
Moreover,
—A\|= _ = « Mn—1 ¥ o
(1= )5 = j| < m(en_l +B T) B* as in (7.74),

and
né _ _ 1
/ re 20100 (1) — Un(0)]dt < A8—N((n — 1)8, nd),
(n—1)8 N
where N((n — 1)8, n8) = N(n8) — N((n — 1)8). Writing

né

né
/ e*)\(naft)dN(t) — N((n _ 1)8, né) +/ {e*)»(f’lsfl) _ l}dN(t),
(n—1)8 (n—1)8

we bound the last term on the right hand side of (8.81) as

1 " —A(né—t) 1

— e — < — n—1)38,nd) — n—1)8,nd)).
AN (1) — Ng| < (|N(( 1)8, n8) — Ng| + AN ((n — 1)8 5))

N Jau-ns N

Collecting all these bounds we then get

M,
Di(n) < 6u_1(1 4+ 28) + A8 B* !

1
+228- N((n = 1)3. né)

1
+ NIN((H —1)8,nd8) — Nq|,
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and since we are considering the stopped process

M, _
Di(n) < 6,—1(1 + A8) + A8B* ——— N +2)L$2f s+ — IN((n—l)S,nB)—qu. (8.82)

By the definition of the sets A,, ..., F,, we have
IN((n — 1)8,n8) = Ng| < D" Nj((n — 1)8,n8) + | Bul. (8.83)
J€An

What follows is devoted to the control of the rhs of (8.83). We start with | B, |. With probability
>1— e—C(SzN

|Bn| = |Bn N gn71| + |Bn N Mn71| = 2CN82 + 2CN59n71 + |Mn71|2f*8» (884)

having used (8.76) and that the number of neurons among those in M,,_; which fire in a time
8 is bounded by a Poisson variable of intensity f*8|M,_1|. Moreover,

P D0 N = D5 ns) = 4(£76°N] < P[ D0 Nj((n = 15, nd)
JEA, JEA,
> 4(F78PN: | Aul = (FR8PN ] + P[IAal > (£8)2N].
(8.85)
The last term is bounded using (8.75).

We are now going to bound the first term in (8.83). For that sake, let A C {1, ..., N},
|A| < (f*8)2N, then

P[0 Ni = 108.18) = 492N | Ay = 4] = P DNy =2 = 259N ],
jehn jea

where P* is the law of independent Poisson variables N7, j € A, each one of parameter f*§
and conditioned on being N]’f‘ > 2. Thus the probability that N}‘ —2=kis

gk
2 @i
Denote by X; independent Poisson variables of parameter &. Then it is easy to see that
Nj* — 2 < X stochastically for & small enough, hence for § small enough. Notice that
X = ZjEA X is a Poisson variable of parameter |A|§ < (f*8)2Nf*8 having expectation
E*(X) < (f *$)2N for § small. As a consequence we may conclude that

P*[Z(N}‘ -2) > 2(f*5)2N] < P*[X > 2(f*8)2N] < N8

JjeA

P*INT —2=k]= zgzgfz(ef—l—g), £ = f*s.

In conclusion fori € F, NG, _1:
Di(n) < 6,_1(1+C8) + coMn-t N Ly cs? (8.86)

with probability > 1 — e~C8N, Together with (8.80) this proves that with probability >

1 — e*CBZN

6On §max[C8 On— 1(1+C8)+C5 +C82] (8.87)
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Iteration of the Inequalities

By (8.78), M < C(6,—1 + 8) for all n§ < T with probability > 1 — ge—cwz. By (8.87),

with probability > 1 — %e—cam we have

Mnfl

On Smax[CS;On_l(l—i-CS)—i—C(S +c52].
Thus

6, < max (C(S, [1+ C8) 6,1 + C82),
since 6,2 < 0,_. Iterating this inequality we obtain

n—1

O < C O [1+CoF 6% + (14 C8)"Cs =
k=0

1+C81" -1
cUrcl=1pn (1+C8)"Cs
Cs

< CeCTS,
where we have used once more that nd < T. Hence

O <Cés

forall § < 89, with probability > 1 — Ge™¢ N5* This finishes the proof of Theorem 4.

Appendix 3: Proof of Theorem 5

The proof is by induction on n. Firstly, (6.61) holds for n = 0, since Bg = 0 and x fv e xll\,v

i.i.d. according to 9 (x)dx. We then suppose that (6.61) holds for all j < n. We condition
on F;, and introduce G, = ﬂ {dj(Y(‘S), ,0(‘3)) < «;j}. Then

Jj=<n
SN dyr (Y@, pD) > |
< SOV (16, SOV P [d (VD 0@) > kg | 7]
+ ner(mye= 2N, (8.88)
Therefore, we need to prove that for some constant ¢

SONP 1 (9, pO) > sy | Fo| < ce™N, on Gy, (8.89)

From the conditioning we know that d; (Y @ p®) <k j forall j < n; we know also the
value of Y& (né), say Y(‘S)(nS) =y, we know the location of the edges R;, j <n, and we
know which are the good and the bad intervals at time n4.

Consequences of Being in G,

The condition to be in G,, does not only allow to control the quantities directly involved in
the definition of d, but also several other quantities. The first one is the difference |R), — R,|.
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Indeed, recalling (6.43) and (6.52),
IR, = Ral < e IR, = Ruot| + [V ((n = 1)8) = pgy) ;418
+ (1= e M) TO (= 1)8) — 5 151-
< e ™R, _| — Ry—1| + knl + A8kp—1 L. (8.90)

Iterating this argument yields
n
R, — Ral < (2/(/)(1 +A8)L.
j=1

Writing J; » = [@in, bin] and I}, = [a; . b; ], we obtain in particular

n
lain —al | = B, — binl < (Z Kj)(l +AS)L. (8.91)
j=1
We also get a bound on the increments of the number of bad intervals. Recalling (6.59)
for notation we have indeed
|Ry — Ry

BnSBn—l+1+ ]

(8.92)

We finally have bounds on N/ . Firstly we suppose that /; , is a good interval such that
Iio CRy.Then N/, < N/, whence for N large enough, since Nw; = N; o,

N]

\n

< Njo+koW;Nl < (1 +kpl)Nw; <2Nw;. (8.93)
We also have a lower bound. By (6.46), N; , > Ni,oe_f*‘s”, hence
Ni, = Niy—kaWiNC > w,-N(e_f*T — Knﬁ) > cw;N > cl3N = cr’ N3 (8.94)

for N large enough.

Now consider a good interval /; , C Ry such that [; o C R_. Then there exists k < n such
that [; y—1 C R_ and [; x C R4. Recalling the definition of dj in (5.29) and the definition
(5.30) we notice thatdy > 1/N, if N6V (k§) > 2, i.e. in case that at least two neurons spike.
At step k, the number of neurons falling into the interval I; x is upper bounded by dik + 1,
if N6V (k8) > 2, otherwise, there is at most one neuron falling into it. In both cases, this
yields the upper bound ¢ N + 1 for the number of neurons falling into the interval. After time
k, neurons originally in ; x can only disappear due to spiking. Hence,

N/, <N <NE+N')<CNw;, (8.95)
by definition of w;. In order to obtain a lower bound, we first use that
N/ > Nin —kaW;NE.

nn

Since I; -1 C R_, we have that P}Eg) = p,ﬁ‘;)(O) on [; x, hence N;; = Np,i‘?(O)Ze’”k.
Using Proposition 6 and (6.46),

Nin = Nigxe 000 > Np @ 0)ee™ =T > CNyo(0)¢ = CNw;,

where C depends on T, which allows to conclude as above.
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In case that I; , is a bad interval it is easy to see that the upper bound
N{,+ Nin <CN¢ (8.96)

holds.

Expected Fires in Good Intervals

Recall that we are working on G, and conditionally on Y® (n8) = y. Using (5.25) and
(6.51), we write

1
Vns) = D A, where A= D" ®j(n), (8.97)

-
JYj 6Ii,n

and call (A;) its conditional expectation (given F,, and hence given that ¥® (n8) = y).
Then

mr= S (1),

Jvietl,
Write Il/’n = [alf,n, i 1. Since f is non decreasing, we have
(A)) < N, (1 —e Oy < NI (1 — ey 4 N ‘e_sf Gi) _ g8
Moreover, f(bz{,n) < f(alf’n) + Il fllLip €, which implies that

e L) _ o= @)] < sce.

Suppose first that Ii/,n is good so that |Nl.”n — Ninl < kywi N£. Then by (8.93) and (8.95),

(A7) < (Ni + knwi N1 — e @in)y 4 5CoNw;
< Nip(1—e Gy 4 Cliey + 1)8w; NE.

Write I;, = [ain, binl, so that by (8.91), |alf’n —ajn| < Knt, where K, = (27:1 Kn)
(1 + 16). Then

(A1) = Nig(1 = &™) 4 (Ky + C(1 + 1)) dw; NE.
Since f is non decreasing and N; , = N fl,- /’ns) (x)dx,
A < N/ pf,‘?(x) e*sf(x)) dx + (Ky + C(1 4+ k,))8wi N, (8.98)
An analogous argument gives

A > N/ p,ﬁ‘?(x) 5f<")) dx — (Ky + C(1 4+ 1,))8w; N, (8.99)
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Fires Fluctuations in Good Intervals

Hoeffding’s inequality implies that for any b > 0,
P [|Ai — (A = (N,{,,)”Jf%] < 272N (8.100)

We introduce the contribution of I; ,, to pi‘?

N -
Pins =5 / P& ()1 — ™ W) dx
I

in

We then use (8.93), (8.94) and (8.95) together with (8.98) and (8.100) to get

PN ‘Ai < 6pfons + (K + C(1+ 1)) 8wi NE + (CNwi)%+b]
I; , good

> 1 — 2m,e AN (8.101)

where m,, is an upper bound on the number of good intervals which can be upper bounded
by

R R R d
n n
”’”f(mvﬁ)“fc RPN R

Jj=1

because R, < Rg + ¢*T and né < T. As a consequence, the right hand side of (8.101) can
be lower bounded by 1 — CN%e~CV' ) By an analogous argument

Pl () {28 =6p0) — (Kn+ C(1+kn)owiNC — (2Nw,~)%+h}
I; » good

> 1 — CN%e CN'% (8.102)

Now we choose b and « sufficiently small such that for N large enough, (CN W,‘)%+b <
C8(1 4 k,))w; N L. Then

Pl N {lAi —sp®i) < (K, +2€(1 +/<,,))5wi1ve}

i,né
I; » good

> 1= CN% CV'T? 5 | ce=CNY, (8.103)
where y = (1 — 3)2b and C a suitable constant.

The Bounds on V(1) and on B, 41

By (8.96) and (8.103), with probability > 1 — Ce=CN"

8V (08) —8pyg| < | D (Kn+2C(1+ k) Wil | + B Skl (3104
I; » good

Hence, we have proven the desired assertion for V,, at time (n + 1)3§.
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To bound B, 1, the number of bad intervals at time (n + 1)§, we use the first inequality
in (8.90) with n — n + 1 together with (8.104), so that by (8.92)

|Rn+1 -

R/ | n
1
=t = Byt 1 (Do) + Ky K ) (14 28),

j=1

Bn+l§Bn+l+

whence the assertion concerning B, 1.

Bounds on |N il — Nint1l

Let 1; , be a good interval at time n§ which is contained in R . Then it is good also at time
(n + 1)§ and we have

5
Ny = 2. (1=®;m) =N, —Ajand Ni i1 = Niy — 8p;s.
Jyvj€l;
Thus
|Ni/,n+1 = Nint1l <k, + 1A _apz mﬁl,
W,‘N@ W,'NE

and the desired bound follows from (8.103).

It remains to consider a good interval I; ! ntl such that 1] , ! ~C R_ (and hence also I; ,
R_). Thus 1 " 41 consists entirely of * ‘new born” neurons Wthh arise due to firing events
where the energies are reset to 0. For such an interval,

Ni/,n+1 c [Le—)\én, Le—kén +1].
NY Nd, Nd,

But, recalling the definition of d, in (5.29) and of py,) ,5(0) in (6.41), by continuity of

pé
(u, p) — (e we have

()
Nd 'O(n+1)8(0) < Crut. (8.105)

Sirllce p?ﬂ +1) s, () = ,o(n +1)8 (0) on this interval, this implies that also for such inter-
vals,

L
- ’N[’n+] - Ni,n+l| < Ckpl = Ckpwi,

by definition of w;. This concludes the bound of |Nl w1 — Nintil.

The bound on |Y® ((n + 1)8) — p((S)Jrl)8| follows from the bounds on |NZ ne1 — Nint1l
and B, 41; details are omitted. This concludes the proof of Theorem 5.

Appendix 4: Proof of Theorem 2 for General Firing Rates
Let f, T, A, B asin Theorem 1, x¥ the initial state of the neurons as in Theorem 2 and such

that |x" || < A. Let ¥ be a bounded continuous function on D([0, T'], S’). We need to prove
that

Jim Py () = ¥ (p)
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where P[ZX’T] () is the expected value of ¥ under the law of (1t~ )[0,7] When the process U N

starts from x?V and v (p) is the value of ¥ on the element p := (prdx)ier0.r10f D([0, T1, 8.
Let 1;; be the characteristic function of the event {|[UN (t)|| < B, t € [0, T1}. Then by
Theorem 1

Jim [P 7y (¥) = Pg ()| = 0. (8.106)

By an abuse of notation we call Pfko’f;] the law of the process with a firing rate f*(-) which
satisfies Assumption 3 and coincides with f for x < B. Then

P (L) = Pl (). (8.107)

Since we have proved Theorem 2 under Assumption 3, we have convergence for the process
with rate f*(-) to a limit density that we call p* = (p;)/¢[0,7], so that

Jim P (0 1) = ¥ (0" L), (8.108)
As a consequence of (8.106) and (8.107),
Jim P () = (0" L),

By the arbitrariness of ¥, p* = p*1y. Indeed, taking ¥ (w) = sup{w;(1),r < T} A1,
we have limy_ o P[]g T](l/f) = 1, which implies that p* must have support in [0, B]. As a
consequence,

Jim P () = ¥ (0" 1) = ¥ ("),

and the limit p* is equal to the solution of the equation with the true firing rate f. This
concludes the proof of the theorem.
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