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Abstract This paper studies the hydrodynamic limit of a stochastic process describing the
time evolution of a system with N neurons with mean-field interactions produced both by
chemical and by electrical synapses. This system can be informally described as follows.
Each neuron spikes randomly following a point process with rate depending on its membrane
potential. At its spiking time, the membrane potential of the spiking neuron is reset to the
value 0 and, simultaneously, the membrane potentials of the other neurons are increased by an
amount of potential 1

N . This mimics the effect of chemical synapses. Additionally, the effect
of electrical synapses is represented by a deterministic drift of all the membrane potentials
towards the average value of the system. We show that, as the system size N diverges, the
distribution of membrane potentials becomes deterministic and is described by a limit density
which obeys a non linear PDE which is a conservation law of hyperbolic type.
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1 Introduction

This paper studies the hydrodynamic limit of a continuous time stochastic process describing
a system of interacting neurons. The system we consider is made of N neurons whose state
is specified by U N (t) = (U N

1 (t), . . . ,U
N
N (t)), t ≥ 0, U N (t) ∈ R

N+ , for some fixed integer
N ≥ 1. Each U N

i (t)models the membrane potential of neuron i at time t, for i = 1, . . . , N .
Neurons interact either by chemical or by electrical synapses. Our model does not consider
external stimuli.

Chemical synapses can be described as follows. Each neuron spikes randomly following
a point process with rate depending on the membrane potential of the neuron. At its spiking
time, the membrane potential of the spiking neuron is reset to a reversal potential. At the same
time, simultaneously, the other neurons, which do not spike, receive an additional amount of
potential 1

N which is added to their membrane potential.
Electrical synapses occur through gap-junctions which allow neurons in the brain to com-

municate directly. This induces an attraction between the values of the membrane potentials
and, as a consequence, a drift of the system towards its average membrane potential.

Our model is a continuous time version of a new class of biological neuronal systems
introduced recently by [1]. The model considered in [1] is a non Markovian system consisting
of an infinite number of interacting chains where each component has memory of variable
length and where each neuron is represented through its spike train. In the present paper we
add gap junctions to this system and we adopt an equivalent description via the membrane
potential of each neuron, leading to a Markovian process.

The number of neurons in the brain is huge and often neurons have similar properties
(see [2], Chap. 1.5.1). Therefore we assume that we are in an idealized situation where
all neurons have identical properties, leading to a mean field description. The mean field
assumption appears in the following aspects. For the chemical synapses it is translated into
the fact that when a neuron spikes the membrane potential of any other neuron increases by
1/N . For the electrical synapses, the mean field type assumption implies that the drift felt
by each neuron potential is described by a linear attraction towards the average membrane
potential of the system.

We regard the state of the neurons U N (t) = (U N
1 (t), . . . ,U

N
N (t)) as a distribution of

1/N valued Dirac masses placed at the positions U N
1 (t), . . . ,U

N
N (t). The main result of

the present paper, presented in Theorem 2, is that in the limit as N → ∞ this membrane
potential distribution becomes deterministic and it is described by a density ρt (r). More
precisely, in the limit, for any interval I ⊂ R+,

∫
I ρt (r)dr is the limit fraction of neurons

whose membrane potentials are in I at time t . The limit density ρt (r) is proved to obey a
non linear PDE which is a conservation law of hyperbolic type.

The usual approach to prove hydrodynamic limits in mean field systems is to show that
propagation of chaos holds. In our case this amounts to prove that the membrane potentials
U N

i (t) and U N
j (t) of any pair i and j of neurons get uncorrelated as N →∞. However, at

each time that another neuron fires, it instantaneously affects both U N
i and U N

j by changing

them with an additional amount 1/N . Thus U N
i and U N

j are correlated, and propagation of
chaos comes only by proving first that the firing activity of the other neurons—by propagation
of chaos—is essentially deterministic. We are thus caught in a circular argument and it is
not clear a priori that propagation of chaos holds. It is for this reason that in this paper
we introduce an auxiliary process Y (δ) which is a good approximation of the true process
in the N → ∞ limit, and for which it is easy to prove the hydrodynamic limit. Once the
convergence for Y (δ) is proved, we can then conclude by letting δ→ 0.
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868 A. De Masi et al.

Our model is an example of the class of processes introduced by [3] under the name of
piecewise deterministic Markov processes. Processes in this class combine a deterministic
continuous motion (in our case, due to the electrical synapses) with discontinuous, random
jump events (in our case, the spike events). This is not the first time that piecewise determin-
istic Markov processes are used in the modelization of neuronal systems, see for instance [4]
and [5] in which processes of this type appear, however in a different context.

The mean field approach intending to replace individual behavior in large homogeneous
systems of interacting neurons by the mean behavior of the neuronal population has a long
tradition in the frame of neural networks, see e.g. Chap. 6 of [2] or [6] and the references
therein. Most of the models used in the literature are either based on rate models where
randomness comes in through random synaptic weights (see e.g. [7] or [8]); or they are based
on populations of integrate and fire neurons which are diffusion models in either finite or
infinite dimension, see for instance [9] or [10]. The model we consider is reminiscent of
integrate-and-fire models but firing does not occur when reaching a fixed threshold, and the
membrane potential is not described by a diffusion process. In particular, the equation which
we obtain is different from usual population density equations obtained for integrate-and-fire
neurons as considered e.g. in Chap. 6.2.1 of [2].

Our paper is organized as follows. In Sect. 2 we introduce the process and state the main
results, Theorem 1, Theorem 2 and Theorem 3. Theorem 1 guarantees the existence of the
process and gives upper bounds on the values of the potentials U N which are uniform in N.
Theorems 2 and 3 give existence and properties of the hydrodynamic limit.

Proofs are organized as follows: we first study the system under very restrictive assump-
tions on the firing rate f , in such a case the proof of Theorem 1 becomes trivial and is given
in Sect. 3. Even with such an assumption on f the proof of Theorems 2 and 3 remains rather
complex. In Sect. 4, tightness of the sequence of processes indexed by N is proved. Section
5 introduces the sequence of auxiliary processes, and Sect. 6 states the hydrodynamic limit
theorem for this sequence; the proof is postponed to Appendix 3. Section 7 concludes the
proof of Theorems 2 and 3. In the Appendix we extend the result to general firing rates f. The
main point is the proof of Theorem 1 which is given in Appendix 1, together with some upper
bounds for the maximal membrane potential of the process in the case of unbounded firing
rate functions. In Appendix 2 we prove that the auxiliary process is close to the original one,
if both are suitably coupled. Finally, in Appendix 3, the hydrodynamic limit for the auxiliary
process is rigorously proved.

2 Model Definition and Main Results

We consider a Markov process

U N (t) = (U N
1 (t), . . . ,U

N
N (t)), t ≥ 0,

taking values in R
N+ , for some fixed integer N ≥ 1, whose generator is given for any smooth

test function ϕ : RN+ → R by

Lϕ(x) =
N∑

i=1

f (xi ) [ϕ(x +�i (x))− ϕ(x)]− λ
∑

i

(
∂ϕ

∂xi
(x) [xi − x̄]

)

, (2.1)

where

(�i (x)) j =
{ 1

N j �= i
−xi j = i

}

, x̄ = 1

N

N∑

i=1

xi (2.2)
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and where λ ≥ 0 a positive parameter. Assume that

Assumption 1 f ∈ C1(R+,R+) is strictly positive for x > 0 and non-decreasing. More-
over, f (0) = 0 and f is not flat, i.e. for any fixed u ∈]0, 1[,

lim inf
x→0

f (ux)

f (x)
> 0.

The function f (x) = x p, p > 0, satisfies the above assumption. We can also consider
functions f (x) = eνx − 1, for some ν > 0.

In (2.1), the first term describes random jumps at rate f (xi ) due to spiking of neurons
having potential xi . The function f is therefore called firing rate or spiking rate of the system.
The second term, due to electrical synapses (gap junctions), describes a deterministic time
evolution tending to attract the neurons to the common average potential.

Our first theorem proves the existence of the process and gives some a priori estimates on
the maximal membrane potential. In order to state these results, we introduce the following
notation. Let Ni (t), t ≥ 0, be the simple point process on R+ which counts the jump events
of neuron i up to time t and let

N (t) =
N∑

i=1

Ni (t) (2.3)

be the total number of jumps seen before time t . For any x ∈ R
N , we define

‖x‖ = maxi=1,...,N xi . In this way,
∥
∥
∥U N (t)

∥
∥
∥ = max

i=1,...,N
U N

i (t)

is the maximal membrane potential at time t.

Theorem 1 Let f be a firing rate function satisfying Assumption 1.

1. For any N ≥ 1 and any x ∈ R
N+ there exists a unique strong Markov process U N (t)

taking values in R
N+ starting from x whose generator is given by (2.1).

2. Denote by P(N ,λ)x the probability law under which the process U N (t) starts from the
initial configuration U N (0) = x = (x1, . . . , xN ) ∈ R

N+ . Then for any A > 0 and T > 0
there exists B such that

sup
x :‖x‖≤A

P(N ,λ)x

[
sup
t≤T
‖U N (t)‖ < B

]
≥ 1− ce−C N , (2.4)

where c and C are suitable constants.

The proof of Theorem 1 is given in the Appendix 1.
We now give the main result of this paper. It shows that the process converges in the

hydrodynamic limit, as N →∞, to a specified evolution which will be defined below. Since
the space where U N (t) takes values changes with N it is convenient to identify configurations
U N (t) with the associated empirical measure in the following way. Let M be the space of
all probability measures on R+. To any x = (x1, . . . , xN ) ∈ R

N+ we associate the element of
M given by

μx = 1

N

N∑

i=1

δxi . (2.5)
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870 A. De Masi et al.

μx has the nice physical-biological interpretation of being the distribution of membrane
potentials of the neurons.

We suppose that for all N , U N
i (0) = x N

i , i = 1, . . . , N , such that the following assump-
tion is satisfied.

Assumption 2 x N
1 , . . . , x N

N are i.i.d. random variables, distributed according toψ0(x)dx on
R+. Here, ψ0 is a smooth probability density on R+ with compact support [0, R0] such that
the following properties are verified.

1. ψ0 > 0 on [0, R0[.
2. ψ0 ≡ 0 on [R0,∞[.
3. ψ0(x) ≥ c(x − R0)

2, c > 0, in a left neighborhood of R0.

The above assumption can be weakened, see Remark 5 below. Condition 3. could be relaxed
to other rates of decay to 0 near R0. We will eventually extend the definition of ψ0 to the
whole line by putting ψ0(x) = ψ0(0) for all x < 0.

Identifying U N (t) with the associated probability measure μU N (t), we may identify the
process with the element R+ � t → μU N (t) of the Skorokhod space D(R+,S ′), where S is
the Schwartz space of all smooth functions φ : R→ R. We write μU N[0,T ]

for the restriction

of this process to [0, T ] which is an element of D([0, T ],S ′). Our next theorem states that
μU N[0,T ]

converges to a deterministic limit density (ρt (x)dx)t∈[0,T ]. We can easily guess the

equation satisfied by ρt (x). In fact if ρt (x) is the limit density then the limit total firing rate
per unit time pt and the limit average membrane potential ρ̄t are

pt =
∫ ∞

0
f (x)ρt (x)dx, ρ̄t =

∫ ∞

0
xρt (x)dx . (2.6)

Thus

V (x, ρt ) := −λ(x − ρ̄t )+ pt (2.7)

is the velocity field, namely the limit drift that neurons have at time t and at energy x , the
first term being the attraction to the average membrane potential of the system, due to the
gap junction effect, the second one the drift produced by the other neurons spiking. Besides
such a mass transport we have also a loss of mass term f (x)ρt (x) due to spiking so that we
should expect that for smooth ρt (x)

∂

∂t
ρt + ∂

∂x
(Vρt ) = − fρt , x > 0, t > 0. (2.8)

However (2.8) does not determine the solution, it must be complemented by boundary con-
ditions:

ρ0(x) = u0(x), ρt (0) = u1(t). (2.9)

u0 is specified by the problem: u0 = ψ0, u1 instead must be derived together with (2.8). It
turns out from our analysis that

u1(t) = pt

V (0, ρt )
= pt

pt + λρ̄t
. (2.10)

(2.10) follows from conservation of mass as it will be discussed after the definition of weak
solutions of (2.8)–(2.9). Indeed if u0(0) �= u1(0), i.e. ψ(0) �= p0

V (0,ψ0)
, then ρt (x) cannot be

continuous, hence the necessity of a weak formulation of (2.8)–(2.9).
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Definition 1 A real valued function ρt (x) defined on (t, x) ∈ R+ × R+ is a weak solution
of (2.8)–(2.9) if for all smooth functions φ(x), R+ � t → ∫

φ(x)ρt (x)dx is continuous,
differentiable in t > 0 and

d

dt

∫ ∞

0
φ(x)ρt (x)dx −

∫ ∞

0
φ′(x)V (x, ρt )ρt (x)dx − φ(0)V (0, ρt )u1(t)

= −
∫ ∞

0
φ(x) f (x)ρt (x)dx, (2.11)

∫ ∞

0
φ(x)ρ0(x)dx =

∫ ∞

0
φ(x)u0(x)dx,

where V (x, ρt ) is given by (2.7) with pt and ρ̄t as in (2.6).

Let us now give a heuristic derivation of (2.10). Observe that if ρt is the limit density of
our neuron system then, by definition, at all times t ≥ 0

∫ ∞

0
ρt (x)dx = 1. (2.12)

Recalling that V (x, ρt ) is the limit velocity field, we have that the rate at which mass enters
into (0,∞) is V (0, ρt )u1(t)while the rate at which mass leaves (0,∞) is pt (due to spiking).
Mass conservation then indicates that V (0, ρt )u1(t) = pt for almost all t , hence (2.10).

As we shall see in the next theorem the limit density solves (2.11) and it can be quite
explicitly computed by using the method of characteristics. The characteristics are curves
along which the solution is transported, they are defined by the equation

dx(t)

dt
= V (x(t), ρt ). (2.13)

The solution of (2.13) in the time interval [s, t], 0 ≤ s ≤ t, with value x at time s is denoted
by ϕs,t (x), x ∈ R+, and it has the following expression:

ϕs,t (x) = e−λ(t−s)x +
∫ t

s
e−λ(t−u)[λρ̄u + pu]du. (2.14)

Now our main result reads as follows.

Theorem 2 Grant Assumptions 1 and 2. For any fixed T > 0,

L(μU N[0,T ]
)
w→ P[0,T ] (2.15)

(weak convergence in D([0, T ],S ′)) as N →∞, where P[0,T ] is the law on D([0, T ],S ′)
supported by the distribution valued trajectory ωt given by

ωt (φ) =
∫ ∞

0
φ(x)ρt (x)dx, t ∈ [0, T ],

for all φ ∈ S.
Here, ρt (x) is the unique weak solution of (2.8)–(2.9) with u0 = ψ0 and u1 as in (2.10).

Moreover, ρt (x) is a continuous function of (x, t) in R+ × R+\{(ϕ0,t (0), t), t ∈ R+} where
it is differentiable in x and t and the derivatives satisfy (2.8). Moreover for any t ≥ 0, ρt (x)
has compact support in x and

ρt (0) = pt

pt + λρ̄t
,

∫
ρt (x)dx = 1. (2.16)
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872 A. De Masi et al.

Its explicit expression for x ≥ ϕ0,t (0) is:

ρt (x) = ψ0

(
ϕ−1

0,t (x)
)

exp

{

−
∫ t

0
[ f − λ](ϕ−1

s,t (x))ds

}

, (2.17)

and for any x = ϕs,t (0) for some 0 < s ≤ t,

ρt (x) = ps

ps + λρ̄s
exp

{

−
∫ t

s
[ f (ϕs,u(0))− λ]du

}

. (2.18)

Theorem 3 Grant Assumptions 1, 2 and suppose that

ψ0(0) = p0

p0 + λψ̄0
, where p0 =

∫∞
0 f (x)ψ0(x)dx and ψ̄0 =

∫∞
0 xψ0(x)dx . (2.19)

Then ρt (x) is continuous in R+ × R+.

We give some comments on the above result. We first compare our result with classical
“population density equations” obtained in integrate-and-fire models as for instance described
in [2]. In our second remark, we discuss condition (2.19).

Remark 1 In case λ = 0, (2.8) reads as follows.
{
∂tρt (x) = −pt∂xρt (x)− f (x)ρt (x), x > 0, x �= ϕ0, t (0),
ρt (0) = 1 f or all t ≥ 0.

This equation is different from usual population density equations which are obtained for
integrate-and-fire neurons as considered e.g. in Chap. 6.2.1 of [2], see in particular their
formula (6.14). As in integrate-and-fire models, also in our model spiking neurons are reset
to a reversal potential (which equals 0); but spiking does not create Dirac-masses at the reset
value. This is due to the Poissonian mechanism giving rise to spiking in our model. The loss
of mass at time t due to spiking of neurons having potential height x is therefore described
by the term − f (x)ρt (x).

At the same time, spiking induces a deterministic drift pt dt for those neurons that are
not spiking. In particular, a neuron having initially potential 0 at time t will have potential
≈ pt h after a time t + h, for h << 1 small. Hence, during [t, t + h], there is creation of an
interval [0, pt h] at the beginning of the support in which no non-spiking neurons are present.
At the same time, there are approximately pt h neurons that spike during [t, t + h] which
invade this initial interval. This implies that the initial density of neurons at the border x = 0
is of height 1. This initial condition is different from the usual initial condition obtained in
integrate-and-fire models.

Remark 2 The condition (2.19) ensures that the limit density ρt (x) does not have a disconti-
nuity at the point x = ϕ0,t (0). This point ϕ0,t (0) is the point where two densities are pieced
together: on the one hand the density of neurons that did not yet spike up to time t, which
is given by formula (2.17), and on the other hand the density of neurons that have already
spiked, given by (2.18). Without condition (2.19), the convergence result still holds true, but
ρt (x) will have a (single) jump at x = ϕ0,t (0); in particular, it is not a strong solution of the
nonlinear PDE. However, even without condition (2.19), for any t > 0, (2.16) holds true.

To separate the difficulties we shall first prove Theorem 1 and Theorem 2 under a very
restrictive assumption on f :
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Assumption 3 f is a positive C1−function satisfying Assumption 1. f is non-decreasing,
Lipschitz continuous, bounded and constant for all x ≥ x∗∗ for some x∗∗ > 0. We shall
denote by f ∗ = ‖ f ‖∞ the sup norm of f .

The proof of Theorem 1 under Assumption 3 is easy, it is given in the next section. In
the successive sections we shall prove Theorems 2 and 3 under Assumption 3. In Sect. 4,
tightness of the sequence of processes indexed by N is proved. In Sect. 5 we introduce a
sequence of auxiliary processes which are discrete time models and for which it is easier to
prove the hydrodynamical limit which is done in Sect. 6. Section 7 will then conclude the
proof of Theorems 2 and 3 under Assumption 3.

In the Appendix we shall prove Theorem 1 in its original formulation (i.e. dropping
Assumption 3) and then Theorem 2. However this last step is trivial because the estimate
(2.4) implies that with probability going to 1 as N → ∞ all the membrane potentials are
uniformly bounded in the time interval [0, T ] that we are considering. It is then possible
to replace the true f with one satisfying Assumption 3 and which differs only for potential
values larger than those reached by the true process, so that we can use what was already
proved under Assumption 3. The precise argument is given at the end of the Appendix.

3 Energy Bounds Under Assumption 3

Exploiting Assumption 3 we shall prove a statement stronger than in Theorem 1.

Proposition 1 Let f satisfy Assumption 3 and call f ∗ = ‖ f ‖∞.

1. For any N ≥ 1 and any x ∈ R
N+ there exists a unique strong Markov process U N (t)

starting from x taking values in R
N+ whose generator is given by (2.1).

2. Calling N (t) the total number of fires in the time interval [0, t] we have

N (t) ≤ N∗(t) stochastically (3.20)

where N∗(t) is a Poisson process with intensity N f ∗.
3. sup

t≤T
‖U N (t)‖ ≤ ‖U N (0)‖+ N (t)

N
and for any T > 0 there exist positive constants c and

C such that for any N and any U N (0):

P(N ,λ)
U N (0)

[
sup
t≤T
‖U N (t)‖ ≤ ‖U N (0)‖ + 2 f ∗T

]
≥ 1− ce−CT N . (3.21)

Proof The existence of the process for each fixed N is now trivial as the firing rates are
bounded. The variable N (t) is stochastically upper bounded by N∗(t) :=∑N

i=1 ni (t),where
(ni (t)) are i.i.d. Poisson processes of intensity f ∗. N∗(t) is therefore a Poisson process with
intensity N f ∗. We have

sup
t≤T
‖U N (t)‖ ≤ ‖U N (0)‖ + N (t)

N
,

because each firing event increases the rightmost neuron by 1
N , while, in between firing

events, the rightmost neuron is attracted to the average membrane potential of the process
and thus decreases. (3.21) then follows from item 2. because {N (T ) ≥ B} is an increasing
event and thus the bound is reduced to large deviations for a Poisson variable, details are
omitted. ��
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4 Tightness

With this section we begin the proof of Theorems 2 and 3 (under Assumption 3). We start by
proving tightness of the sequence of laws of μU N[0,T ]

.

Proposition 2 Grant Assumption 3. Suppose that U N (0) = x N is such that Assumption 2 is
verified. Then the sequence of laws of μU N[0,T ]

is tight in D(R+,S ′).

Proof For any test function φ ∈ S and all t ∈ [0, T ], we write,
〈
U N (t), φ

〉
= 1

N

∑

i

φ
(

U N
i (t)

)
=
∫
φ(x)μU N (t)(dx). (4.22)

By [11] it is sufficient to prove the tightness of 〈U N (t), φ〉, t ∈ [0, T ] ∈ D([0, T ],R) for
any fixed φ ∈ S. In order to do so, we shall use a well known tightness criterion, see for
instance Theorem 2.6.2 of [12], which requires that the L2 norms of the “compensators” of
〈U N (t), φ〉 are finite. The compensators are

γ N
1 (t) = L

〈
U N (t), φ

〉
, γ N

2 (t) = L
〈
U N (t), φ

〉2 − 2
〈
U N (t), φ

〉
L
〈
U N (t), φ

〉
,(4.23)

where L is the generator given by (2.1). The criterion requires that there exists a constant c
so that

sup
t≤T

E[γ N
1 (t)]2 ≤ c, sup

t≤T
E[γ N

2 (t)]2 ≤ c. (4.24)

The proof of the criterion is based on the fact that

M N
t = 〈U N (t), φ〉 −

∫ t

0
γ N

1 (s)ds and (M N
t )

2 −
∫ t

0
γ N

2 (s)ds

are martingales. To prove (4.24) we start by calculating γ N
1 (t) = 1

N

∑
i Lφ(U N

i (t)). We
have

γ N
1 (t) =

1

N

∑

i

⎡

⎣
∑

j �=i

f
(

U N
j (t)

) [

φ

(

U N
i (t)+

1

N

)

− φ
(

U N
i (t)

)]

+ f
(

U N
i (t)

) [
φ
(

0)− φ(U N
i (t)

)]]

+ λ
N

∑

i

φ′
(

U N
i (t)

) [
ŪN (t)−U N

i (t)
]
,

where ŪN (t) = 〈U N (t), id〉 is the average of the U N
i (t). Expanding the discrete derivative,

we get

γ N
1 (t) =

〈
U N (t), f

〉 〈
U N (t), φ′

〉
−
〈
U N (t), f φ

〉
+ φ(0)

〈
U N (t), f

〉

+λ
[〈

U N (t), φ′
〉 〈

U N (t), id
〉
−
〈
U N (t), ψ

〉]
+ O

(
1

N

)

,

where ψ(x) = xφ′(x) and

O

(
1

N

)

= 1

N

∑

i

⎡

⎣
∑

j �=i

f
(

U N
j (t)

)
[φ
(

U N
i (t)+

1

N

)

− φ
(

U N
i (t)

)
− 1

N
φ′
(

U N
i (t)

)
⎤

⎦ .
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Since φ, φ′ and φ′′ are bounded as well as f (thanks to Assumption 3) there is a constant
c so that

∣
∣
∣γ N

1 (t)
∣
∣
∣ ≤ c

(
1+ 〈U N (t), id〉 + |〈U N (t), ψ〉|

)
≤ c′

(
1+ 1

N

∑

i

U N
i (t)

2
)
.

By Proposition 1, sup
t≤T

E[γ N
1 (t)

2] ≤ c for a constant c not depending on N .

The proof of (4.24) for γ N
2 (t) is simpler. We write L = Lfire+ Lλ, where Lfireφ and Lλφ

are given by the first, respectively second, term on the right hand side of (2.1). Since Lλ acts
as a derivative we have

Lλ〈U N (t), φ〉2 − 2〈U N (t), φ〉Lλ〈U N (t), φ〉 = 0

as can be easily checked. We have

1

N 2

∑

i, j

Lfire(φ(U
N
i (t))φ(U

N
j (t)))

= 1

N 2

∑

i �= j

[ ∑

k �=i, j

f
(

U N
k (t)

) [

φ

(

U N
i (t)+

1

N

)

φ

(

U N
j (t)+

1

N

)

− φ
(

U N
i (t)

)
φ
(

U N
j (t)

)]

+ f
(

U N
i (t)

) [

φ(0)φ

(

U N
j (t)+

1

N

)

− φ
(

U N
i (t)

)
φ
(

U N
j (t)

)]

+ f
(

U N
j (t)

) [

φ(0)φ

(

U N
i (t)+

1

N

)

− φ
(

U N
i (t)

)
φ
(

U N
j (t)

)] ]

+ 2

N 2

∑

i

[∑

k �=i

f
(

U N
k (t)

) [

φ2
(

U N
i (t)+

1

N

)

− φ2
(

U N
i (t)

)]

+ f
(

U N
i (t)

) [
φ2(0)− φ2

(
U N

i (t)
) ]]

.

The same arguments used earlier show that the L2-norm of this term is bounded uniformly in
t ∈ [0, T ] and in N. The L2-norm of−2〈U N (t), φ〉Lfire〈U N (t), φ〉 is also bounded uniformly
because |〈U N (t), φ〉| ≤ c and we have already proved the bound for Lfire〈U N (t), φ〉. We
have thus proved (4.24) and finished the proof. Observe that taking into account the signs we
could prove that γ N

2 (t)→ 0 as N →∞. ��

5 Coupling the True with an Auxiliary Process

The natural step after having proved tightness is to prove propagation of chaos. This is however
not so simple in our model because the firing of a neuron (i.e. when its membrane potential
jumps) affects simultaneously the state of the other neurons and not just their jumping rates,
as usual in mean field models. For this reason we follow a different strategy here. In order
to overcome this difficulty, we introduce an auxiliary process which is from one side a good
approximation of the true one in the N →∞ limit, and which, from the other side, is easy
to handle in the same limit. The auxiliary process is defined in the present section where we
prove that it is close to the true process uniformly in N. In Sect. 6 we study the hydrodynamic

123



876 A. De Masi et al.

limit for the approximating process. Section 7 will then conclude the proof of Theorems 2
and 3.

5.1 The Auxiliary Process

We work under Assumption 3 throughout the whole section. We fix a time mesh δ > 0 and
approximate the process U N (t) for fixed N by a process which is constant on time intervals
[nδ, (n + 1)δ[, n ≥ 0. Since N is fixed we shall drop the superscript N from U N (t) unless
ambiguities may arise.

The auxiliary process is denoted by Y (δ)(nδ) and is defined at discrete times nδ, n ∈ N,

such that (Y (δ)(nδ))n∈N is a Markov chain. Its transition probability describes a process where
neurons fire with constant firing rate f (yi ) in the time interval [nδ, (n + 1)δ[. Moreover, all
firing events after the first one are suppressed. Finally, the new configuration of neurons at
time (n+ 1)δ is obtained by first letting the neurons evolve (for a time δ) under the action of
the gap-junction interaction and then taking into account the effect of the firings at the end
of the time interval. The precise definition is given now.

We put Y (δ)(0) = U (0) and then proceed by induction on n. Conditionally on Y (δ)(nδ) =
y = (y1, . . . , yN ), we choose N independent exponential random variables τ1, . . . , τN ,

which are independent of anything else, having intensities f (yi ), i = 1, . . . , N , respec-
tively. We put

�i (n) = 1{τi≤δ}, 1 ≤ i ≤ N , q = 1

N

N∑

i=1

�i (n); (5.25)

hence neurons i such that�i (n) = 1 spike during [nδ, (n+1)δ[, all other neurons do not spike
during that interval. Notice that we keep constant the firing intensity of the neurons. We write

ϕȳ,t (yi ) = e−λt yi + (1− e−λt )ȳ, 0 ≤ t ≤ δ, ȳ = 1

N

N∑

i=1

yi (5.26)

for the deterministic flow attracting position yi to ȳ and set

Y (δ)i ((n + 1)δ) = ϕȳ,δ(yi )+ q, for all i such that �i (n) = 0. (5.27)

Thus neurons which do not fire follow the deterministic flow. Moreover, we suppose that
they feel the additional potential q, generated by spiking of other neurons, only at the end of
the interval [nδ, (n + 1)δ[.

Let us now describe the evolution of the Nq neurons that fire. Let i1, . . . , iNq be the labels
of neurons such that �i j (n) = 1, j = 1, . . . , Nq, ordered in such a way that τi j > τi j+1 .

We then assign the position

Y (δ)iNq
((n + 1)δ) = ϕȳ,δ(0)+

(

q − 1

N

)

= (1− e−λδ)ȳ +
(

q − 1

N

)

(5.28)

to the first neuron which has fired. This is the position of a neuron starting from potential
0 at time nδ, evolving according to the flow and receiving an additional potential q − 1

N at
time (n + 1)δ, due to the influence of the other spiking neurons (whose number is Nq − 1).

The remaining Nq − 1 neurons that spike are distributed uniformly in the following
manner. We put

dn =
ϕȳ,δ(0)+

(
q − 1

N

)

Nq − 1
, if Nq − 1 > 0, dn = ϕȳ,δ(0), if Nq − 1 = 0, (5.29)
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and

Y (δ)i j
((n + 1)δ) = ( j − 1)dn, j = 1, . . . , Nq − 1. (5.30)

Remark 3 The definition of the auxiliary process Y (δ) has to be such that Y (δ) is δ−close to
the original process. Therefore, we have some freedom in choosing the distribution of the
spiking neurons in the auxiliary process and the above definitions (5.29) and (5.30) could be
changed. However, the above choice is convenient for our purpose; we will see later that this
precise choice enables us to produce strong convergence of the associated empirical measures
to the limit equation, see also Remark 4 below.

The analogue of Proposition 1 holds for the auxiliary process as well and it is straightfor-
ward to see that

Proposition 3 The variables
∑N

i=1�i (n) are stochastically bounded by Poisson variables
of intensity N f ∗δ, f ∗ := ‖ f ‖∞.

As a consequence, proceeding as in the proof of Proposition 1, for any T there is C so
that for any initial datum x with Y (δ)(0) = x ,

Px

[
sup

n:nδ≤T
‖Y (δ)(nδ)‖ ≤ ‖x‖ + 2 f ∗T

]
≤ e−C N T . (5.31)

5.2 Coupling the Auxiliary and the True Process

In order to show that Y (δ) is close to the original process, we couple the two Markov chains
(U (nδ))n≥0 and (Y (δ)(nδ))n≥0 in such a way that neurons in both processes spike together as
often as possible and such that the pair (U (nδ), Y (δ)(nδ)), n ∈ N, is a Markov chain taking
values in R

N×N+ .

We start with Y (δ)(0) = U (0). For any n = 0, 1, . . . , given (U (nδ), Y (δ)(nδ)), the values
of (U ((n+ 1)δ), Y (δ)((n+ 1)δ)) will be chosen according to the simulation algorithm given
below. The algorithm uses the following variables.

• (x, y) ∈ R
N+ × R

N+ and x̄ = 1
N

∑N
i=1 xi . The strings x and y represent the state of the

neurons in the two processes and x̄ gives the average potential of x .
• Independent random times τ 1

i ∈ (0,+∞), τ 2
i ∈ (0,+∞) and τi ∈ (0,+∞), for all

i = 1, . . . , N . These variables will determine the times of possible updates.
• m = (m1, . . . ,m N ) ∈ {0, 1}N . The variable mi indicates the occurrence of a spike for

neuron i in the auxiliary process.
• K ∈ {0, . . . , N }. The variable K counts the number of spikes in the auxiliary process.
• j = ( j1, . . . , jN ) ∈ {0, 1, . . . , N }N . The variable ji is the label of the neuron associated

with the i−th occurrence of a spike in the auxiliary process.
• L ∈ [0, δ]. The variable L indicates the remaining time after every update of the variables.

The simulation algorithm stops when L = 0.

The deterministic flow attracting position xi to the average potential x̄ , given in (5.26),
will appear in the algorithm. For convenience of the reader we recall its definition here

ϕx̄,t (xi ) = e−λt xi + (1− e−λt )x̄, 0 ≤ t ≤ δ, x̄ = 1

N

N∑

i=1

xi .

Before proceeding further, let us explain the coupling. Given U (nδ) = x = (x1, . . . , xN )

and Y (δ)(nδ) = y = (y1, . . . , yN ), we start by associating to each neuron i two independent
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stopping times τ 1
i and τ 2

i . Here, τ 1
i has intensity f (ϕx̄,t (xi )) ∧ f (yi ) and τ 2

i is of intensity
| f (ϕx̄,t (xi )) − f (yi )|. Stopping times associated to different neurons are independent. If
τ 1

i rings first, then Ui and Y (δ)i spike together, and the coupling is successful. However, if

τ 2
i rings first, then either Ui spikes and Y (δ)i does not (this happens if Ui > Y (δ)i , details

are given in lines 17 − 22 of the algorithm) or vice versa. Once neuron i has spiked in the
auxiliary process we set mi = 1 and do not consider any spikes for neuron i in the auxiliary
process any more. Therefore, the next time to be considered for neuron i is simply the next
spiking time in the original process which is of intensity f (ϕx̄,t (xi )). This time is called τi in
our algorithm. All stopping times are only taken into account if they appear during the time
interval [0, δ] that we consider.

Our algorithm is given below. In the remainder of this section we shall prove that this is
indeed a good coupling of the two processes.

Algorithm 1 Coupling algorithm

1: Input: (U (nδ), Y (δ)(nδ)) ∈ R
N+ × R

N+
2: Output: (U ((n + 1)δ), Y (δ)((n + 1)δ)) ∈ R

N+ × R
N+

3: Initial values: (x, y) ← (U (nδ), Y (δ)(nδ)), K ← 0 , L ← δ ,mi ← 0, for all i = 1, . . . , N , ji ← 0,
for all i = 1, . . . , N

4: while L > 0 do
5: For i = 1, . . . , N , choose independent random times

• τ1
i ∈ (0,+∞) with intensities f (ϕx̄,t (xi )) ∧ f (yi )

• τ2
i ∈ (0,+∞) with intensities | f (ϕx̄,t (xi ))− f (yi )|

• τi ∈ (0,+∞) with intensities f (ϕx̄,t (xi ))

• R = inf
1≤i≤N ;mi=0

(τ1
i ∧ τ2

i ) ∧ inf
1≤i≤N ;mi=1

τi .

7: if R ≥ L then
8: Stop situation:
9: xi ← ϕx̄,L (xi ) for all i = 1, . . . , N
10: L ← 0
11: yi ← ϕȳ,δ(yi )+ K

N for all i = 1, . . . , N such that mi = 0

12: y j1 ← ϕȳ,δ(0)+ K−1
N , if K ≥ 1

13: y jk ← (K − k)
[
ϕȳ,δ (0)+(K−1)/N

K−1 1{K>1}
]

for all k = 2, . . . , K

14: else if R = τ1
i < L then

15: mi ← 1, K ← K + 1, jK ← i, L ← (L − R)
16: xi ← 0 and x j ← ϕx̄,R(x j )+ 1

N , for all j �= i

17: else if R = τ2
i < L then

18: if f (yi ) > f (ϕx̄,R(xi )) then
19: mi ← 1, K ← K + 1, jK ← i, L ← (L − R), x j ← ϕx̄,R(x j ) for all j
20: else if f (yi ) ≤ f (ϕx̄,R(xi )) then
21: L ← (L − R), xi ← 0 and x j ← ϕx̄,R(x j )+ 1

N , for all j �= i
22: end if
23: else if R = τi < L then
24: L ← (L − R)
25: xi ← 0 and x j ← ϕx̄,R(x j )+ 1

N , for all j �= i
26: end if
27: end while
28: (U ((n + 1)δ), Y (δ)((n + 1)δ))← (x, y).
29: return (U ((n + 1)δ), Y (δ)((n + 1)δ)).
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5.3 Closeness Between the Auxiliary and the True Process

The main result in this section, Theorem 4 below, states that the auxiliary and the true
processes are close to each other. This means that for most neurons, the potentials in the two
processes are close to each other (proportionally to δ), while the remaining ones constitute a
small fraction of the totality (also proportional to δ).

Definition 2 A label i ∈ {1, . . . , N } is called “good at time kδ” if for all n = 1, . . . , k the
following is true.

Either �i (n − 1) = 0 and Ui has not fired during the whole time interval [(n − 1)δ, nδ].
Or �i (n − 1) = 1 and Ui has fired exactly once in the time interval [(n − 1)δ, nδ].
We call Gn the set of good labels at time nδ and Mn = N − |Gn | the cardinality of its

complement. If i ∈ Gk we call Di (k) := |Ui (kδ)− Y (δ)i (kδ)|. Finally, we set

θn = max{Di (k), i ∈ Gn , k ≤ n}.
Then the following holds.

Theorem 4 Under Assumption 3, for any fixed T > 0, there exist δ0 > 0 and a constant C
depending on f ∗ and on T such that for all δ ≤ δ0, with probability ≥ 1− e−C Nδ2

,

θn ≤ Cδ and
Mn

N
≤ Cδ f or any f i xed n such that nδ ≤ T .

Strategy of proof It is clear that Mn−1 ≤ Mn ≤ · · · , because there is no recovery
from not being a good label. We shall first prove that till when θn ≤ cδ the increments
Mn−Mn−1 ≤ c′δ2 N . In fact a label i becomes bad at nδ if in the time interval ((n−1)δ, nδ)
there are either two or more fires of Ui (·) (which cost O(δ2)) or else the clock τ 2

i (recall the
algorithm given in Sect. 5.2) rings, which also costs O(δ2). Since nδ ≤ T the sum of the
increments is then bounded by cδ as desired. Thus there may be of order cδN neurons which
fire quite differently in the two processes but this produces a change for the potential of the
good labels of the order of 1

N (cδN )T which is also what is claimed in the theorem. The
above heuristic argument can be made rigorous; the precise proof is given in the Appendix 2.

5.4 Corollaries

We conclude the section with a corollary of the above results which will be used in the
analysis of the hydrodynamic limit N → ∞. Recall that by considering the associated
empirical measures (2.5), we interpret U (t) and Y (δ)(t) as elements of S ′.

Definition 3 We introduce the space F of smooth functions φ(m), m ∈ S ′, which have the
form

φ(m) = h(m[a1], . . . ,m[ak]), k a positive integer, (5.32)

where h(r1, . . . , rk) is a smooth function on R
k, uniformly Lipschitz continuous with Lip-

schitz constant ch, i.e.

|h(r1, . . . , rk)− h(r ′1, . . . , r ′k)| ≤ ch

( k∑

i=1

|ri − r ′i |
)
. (5.33)

The functions ai , i = 1, . . . , k, in (5.32) are C∞−functions on R, each one with compact
support contained in {|x | ≤ c}, c > 0.
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Let c′ be an upper bound for the derivatives |a′i (r)|, i = 1, . . . , k. We also introduce

T =
{

t ∈ [0, T ] : t = n2−k T, k, n ∈ N

}
. (5.34)

Recall that P(N ,λ)x denotes the law under which U (·) starts from U (0) = x . Denote by
S(δ,N ,λ)x the law under which its approximation Y (δ)(·) starts from x at time 0, and write
Q(δ,N ,λ)

x for the probability law governing the coupled process defined above. By abuse of
notation, we shall also denote the associated expectations by P(N ,λ)x , S(δ,N ,λ)x and Q(δ,N ,λ)

x .

Proposition 4 Let t ∈ T , δ ∈ {2−l T, l ∈ N} such that t = δn for some positive integer n.
Let φ as in (5.32) with constants ch, c and c′. Then, with C as in Theorem 4 (C is independent
of δ)

|P(N ,λ)x [φ(μU (t))] − S(δ,N ,λ)x [φ(μY (δ)(t))]| ≤ kchc′ C
δ2 e−Cδ2 N c + δ(2kchc′C). (5.35)

Proof The left hand side of (5.35) is not changed if we replace U (t) and Y (δ)(t) by U∗(t)
and Y (δ),∗(t) which are defined by setting

U∗i (t) = min{Ui (t), c}, Y (δ),∗i (t) = min{Y (δ)i (t), c},
c as in Definition 3. Let φ be as in (5.32), then by (5.33)

|φ(μU (t))− φ(μY (δ)(t))| = |φ(μU∗(t))− φ(μY (δ),∗(t))| ≤ kchc′ 1

N

N∑

i=1

∣
∣
∣U∗i (t)− Y (δ),∗i (t)

∣
∣
∣ .

Hence

|P(N ,λ)x [φ(μU (t))] − S(δ,N ,λ)x [φ(μY (δ)(t))]| ≤ kchc′Q(δ,N ,λ)
x

[
1

N

N∑

i=1

|U∗i (t)− Y (δ),∗i (t)|
]

.

Let e−Cδ2 N be the bound on the bad events in the estimates of the coupled process, obtained
in Theorem 4. Then

Q(δ,N ,λ)
x

[
1

N

N∑

i=1

|U∗i (t)− Y (δ),∗i (t)|
]

≤ C

δ2 e−Cδ2 N c + 2Cδ (5.36)

where we used that |U∗i (t)− Y (δ),∗i (t)| ≤ c. ��

6 Hydrodynamic Limit for the Auxiliary Process

The main result of this section is given in Theorem 5 below. It states that the auxiliary process
converges in the hydrodynamic limit to the evolution defined in Sect. 6.1. When necessary
we shall make explicit the dependence on N writing Y (δ) = Y (δ,N ). We then suppose that
for all δ ∈ {2−l T, l ∈ N}, Y (δ,N )(0) = x N , where x N satisfies Assumption 2 of Sect. 2. We
will then show that the law of μY (δ,N ) converges weakly to a process supported by a single
trajectory.
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6.1 The Limit Trajectory of the Auxiliary Process

In this subsection we describe the limit law ofμY (δ,N ) denoted by ρ(δ)δn (r). We start with some

heuristic considerations which will motivate the expression which defines ρ(δ)δn (r) and which

foresee the way we shall prove convergence to ρ(δ)δn (r).
Heuristics Consider an interval I = [a, b] ⊂ R+ of length � and center r . We choose

� = N−α , α > 0 and properly small. The density of the initial configuration x N in I is the

average μx N (I ); our Assumption 2 ensures that μx N (I ) = |x N∩I |
N ≈ ψ0(r)|I |. At time δ the

neurons initially in I and which do not fire will be in the interval J = [a′, b′] having center
denoted by r ′. Here, recalling (5.25) and (5.26) for notation,

a′ = ϕx̄ N ,δ(a)+ q N , b′ = ϕx̄ N ,δ(b)+ q N ,

where q N = q is the proportion of neurons that have fired, see (5.25). By the definition of
ϕx̄ N ,δ , |J | = b′ −a′ = e−λδ|I |. The only neurons in J at time δ are those initially in I which
do not fire, hence their number is approximately |x N ∩ I |e− f (r)δ . Thus

ρ
(δ)
δ (r ′)|J | ≈ μ

Y (δ,N )δ

(J ) ≈ e− f (r)δψ0(r)|I |, ρ
(δ)
δ (r ′) ≈ eλδe− f (r)δψ0(r),

which gives ρ(δ)δ (r ′) in terms of ρ0(r) = ψ0(r), once we consider r = r(r ′) which is given
by

r = ϕ−1
x̄ N ,δ

(
r ′ − q N

)
≈ ϕ−1

ψ̄0,δ

(
r ′ − p(δ)0 δ

)
= ϕ−1

ψ̄0,δ
(r ′)− eλδ p(δ)0 δ,

where ψ̄0 =
∫

xψ0(x)dx , p(δ)0 =
∫
ψ0(x)

1−e−δ f (x)

δ
dx are obtained by letting N →∞. The

inverse of ϕx̄,δ(·), see (5.26), is

ϕ−1
x̄,δ(x) = eλδ

(
x − (1− e−λδ)x̄

)
. (6.37)

The above gives a formula for ρ(δ)δ (r ′) for all

r ′ ≥ r ′0 = ϕx̄ N ,δ(0)+ q N = (1− e−λδ)x̄ N + q N ≈ (1− e−λδ)ψ̄0 + p(δ)0 δ;

r ′0 is the same as in (5.28). The definition of Y (δ,N )δ is such that all the neurons which have
fired are put uniformly in [0, r ′0], thus

ρ
(δ)
δ (r ′) ≈ p(δ)0 δ

p(δ)0 δ + (1− e−λδ)ρ̄0

, r ′ ≤ r ′0.

Definition of the limit trajectory The definition of ρ(δ)nδ (r) will extend and formalize the

above definitions to all nδ ≤ T . We put ρ(δ)0 (x) = ψ0(x), where ψ0 is a smooth probability
density on R+ satisfying Assumption 2. We then proceed inductively in n such that nδ ≤ T .
Suppose that ρ(δ)nδ has already been defined. Then we put

p(δ)nδ :=
∫ ∞

0
ρ
(δ)
nδ (x)

1− e−δ f (x)

δ
dx, (6.38)

ρ̄
(δ)
nδ :=

∫ ∞

0
xρ(δ)nδ (x)dx, (6.39)
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and we define for all x ≥ rn = (1− e−λδ)ρ̄(δ)nδ + p(δ)nδ δ,

ρ
(δ)
(n+1)δ(x) = eλδ ρ(δ)nδ

(

ϕ−1
ρ̄
(δ)
nδ ,δ

(x)− eλδ p(δ)nδ δ

)

e
− f

(

ϕ−1

ρ̄
(δ)
nδ ,δ

(x)−eλδ p(δ)nδ δ

)

δ

. (6.40)

Finally we put

ρ(n+1)δ(x) ≡ p(δ)nδ δ

p(δ)nδ δ + (1− e−λδ)ρ̄(δ)nδ

for allx ∈] −∞, rn[. (6.41)

In this way, ρ(δ)(n+1)δ are probability densities on R+ for all n, i.e.

1 =
∫ ∞

0
ρ
(δ)
(n+1)δ(x)dx . (6.42)

Remark 4 The fact that we have extended the definition of ρ(n+1)δ(x) to R− will be useful in

the sequel. Notice that as δ→ 0, (6.41) reads as ρ(n+1)δ(0) ∼ p(δ)nδ

p(δ)nδ +λρ̄(δ)nδ

which corresponds

to (2.16).

Notice that if ρ(δ)nδ has support ] − ∞, Rn], then the support of ρ(δ)(n+1)δ is included in
] −∞, Rn+1], where

Rn+1 = e−λδRn + p(δ)nδ δ + (1− e−λδ)ρ̄(δ)nδ .

This leads to the following definition.

Definition 4 (Edge) We call R0 the edge of the profile ρ0 and

Rn = e−λδRn−1 + p(δ)(n−1)δδ + (1− e−λδ)ρ̄(δ)(n−1)δ (6.43)

the edge of ρ(δ)nδ .

Noticing that

p(δ)nδ ≤
∫
ρ
(δ)
nδ (x)

1− e−δ f ∗

δ
dx = 1− e−δ f ∗

δ
≤ f ∗ and ρ̄

(δ)
(n−1)δ ≤ Rn−1, (6.44)

it then follows that

Rn ≤ Rn−1 + f ∗δ ≤ R0 + f ∗nδ ≤ R0 + f ∗T, (6.45)

since nδ ≤ T . Hence the supports of ρ(δ)nδ are uniformly bounded. By iterating (6.40) and by
using the explicit form of the inverse flow ϕ−1

x̄,δ(x), we get the explicit representation

ρ
(δ)
(n+1)δ(x) = eλ(n+1)δ ψ0

(

eλ(n+1)δx − (1− e−λδ)
n∑

k=0

eλ(k+1)δρ̄
(δ)
kδ −

n∑

k=0

eλ(k+1)δ p(δ)kδ δ

)

exp

{

−
n∑

k=0

δ f
(

eλ(h+1−k)δx − (1− e−λδ)
n∑

h=k

eλ(h+1−k)δρ̄
(δ)
kδ −

n∑

h=k

eλ(h+1−k)δ p(δ)hδ δ
)
}

,

(6.46)
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for all

x ≥ x∗n+1 = e−λ(n+1)δ

(

(1− e−λδ)
n∑

k=0

eλ(k+1)δρ̄
(δ)
kδ +

n∑

k=0

eλ(k+1)δ p(δ)kδ δ

)

, (6.47)

where ψ0 is the initial density. Notice that for all x > x∗n+1, ρ
(δ)
(n+1)δ(x) is continuous in x .

On [0, x∗n+1[, however, discontinuities are introduced. The following proposition shows that
they are of order δ.

Proposition 5 There exists a constant C depending only on f ∗, ‖ f ‖Lip, T and R0, such
that

∣
∣
∣p(δ)nδ − p(δ)(n−1)δ

∣
∣
∣+

∣
∣
∣ρ̄(δ)nδ − ρ̄(δ)(n−1)δ

∣
∣
∣ ≤ Cδ,

for all n such that nδ ≤ T .

Proof The proof is straightforward, using the Lipschitz property of f and the fact that the
supports of ρ(δ)nδ are uniformly bounded. ��

The following is a direct consequence of the definition of ρ(δ)nδ and of Proposition 5.

Corollary 1 There exists a constant c such that for any δ = 2−k T with k large enough, for
any n, l with nδ ≤ T, lδ ≤ T,

∣
∣
∣ρ(δ)nδ (x)− ρ(δ)nδ (y)

∣
∣
∣ ≤ c(|x − y| ∨ δ) for all x, y ∈ [0, x∗n [, (6.48)

and
∣
∣
∣ρ(δ)nδ (x)− ρ(δ)nδ (y)

∣
∣
∣ ≤ c|x − y| for all x, y ∈ [x∗n ,∞[.

Moreover, for all n, l ≥ 0,
∣
∣
∣ρ(δ)nδ (x)− ρ(δ)lδ (x)

∣
∣
∣ ≤ c|n − l|δ for any fixed x ∈ [x∗n ∨ x∗l ,∞[ ∪ ]0, x∗n ∧ x∗l [. (6.49)

Finally, if ψ0 satisfies the additional assumption (2.19), then also
∣
∣
∣ρ(δ)nδ (x

∗
n+)− ρ(δ)nδ (x

∗
n−)

∣
∣
∣ ≤ cδ

and
∣
∣
∣ρ(δ)nδ (x)− ρ(δ)lδ (x)

∣
∣
∣ ≤ c|n − l|δ

for all x > 0.

Finally, the following result will also be used in the sequel.

Proposition 6 There exists δ0 > 0 and a constant C depending on f ∗, δ, ‖ f ‖Lip, T and
R0, such that

ρ
(δ)
nδ (0) ≥ Cψ0(0),

for all n > 0 such that nδ ≤ T, for all δ ≤ δ0.
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Proof In what follows, C will be a constant that might change from line to line. Thanks to
our assumptions imposed on the function f, there exists a constant C such that

f (ux) ≥ C f (x) for all x ∈ [0, R0 + f ∗T ], u ∈ [e−δ0λ, 1]. (6.50)

Then, using (6.38) and (6.40) and the fact that f is non decreasing, for all δ ≤ δ0,

p(δ)(n+1)δ ≥ C
∫ ∞

0
f (x)ρ(δ)(n+1)δ(x)dx

≥ C
∫ ∞

0
f
(

e−λδx + (1− e−λδ)ρ̄(δ)nδ + p(δ)nδ δ
)
ρ
(δ)
nδ (x)e

− f (x)δdx

≥ Ce− f ∗δ
∫ ∞

0
f (e−λδx)ρ(δ)nδ (x) ≥ Ce− f ∗δ

∫ ∞

0
f (x)ρ(δ)nδ (x) ≥ Cp(δ)nδ .

In particular,

p(δ)nδ ≥ Cp0,

where C depends on δ and where p0 =
∫∞

0 f (x)ψ0(x)dx . On the other hand, Proposition 5
implies that

p(δ)nδ ≤ p0 + Cnδ, ρ̄(δ)nδ ≤ ψ̄0 + Cnδ,

for all n with nδ ≤ T, which implies that

ρ
(δ)
(n+1)δ(0) ≥

p(δ)nδ

p(δ)nδ + λρ̄(δ)nδ

≥ C
p0

p0 + λψ̄0 + CT
= C ≥ Cψ0(0).

��
6.2 Discretization of the Membrane Potentials

Let (Y (δ)(nδ))n≤T/δ be the auxiliary process defined in Sect. 5.1, starting from x = x N

according to Assumption 2 such that ‖x‖ ≤ R0. Recalling the definition of �i (n) in (5.25)
we put

q(nδ) =
∑N

i=1�i (n)

N
, V (nδ) = q(nδ)

δ
, Ȳ (δ)(nδ) =

∑N
i=1 Y (δ)i (nδ)

N
(6.51)

and then define the sequence of random edges R′0 = R0,

R′n := e−λδR′n−1 + V ((n − 1)δ)δ + (1− e−λδ)Ȳ (δ)((n − 1)δ). (6.52)

We will compare Y (δ)(nδ) and the limit ρ(δ)nδ within small intervals, starting to explore the
respective supports [0, R′n] and [0, Rn] from the right border of the support (edge). Doing so,
we are sure to compare configurations of neurons in both process that correspond and that
have evolved in the same fashion in the two processes, with high probability.

In order to do so, we introduce a mesh of R+ which depends on N and on time, where
times have the form t = nδ, t ≤ T . The meshes at different times will be related as in the
heuristic considerations in the beginning of this section.

Definition 5 (Membrane potential mesh) Let 0 < α � 1
6 . Given N , let r ∈ [ 12 , 1] be such

that R0 is an integer multiple of r N−α . We then partition (−∞, R0] into intervals

I0 = {Ii,0, i ≥ 1}, Ii,0 =]R0 − i�, R0 − (i − 1)�], � = r N−α, (6.53)
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and define I ′0 = {I ′i,0, i ≥ 1} by setting I ′i,0 = Ii,0 so that at time 0, I ′0 = I0. At times nδ
we define Inδ = {Ii,n, i ≥ i} and I ′nδ = {I ′i,n, i ≥ 1} as the sequences of intervals

Ii,n :=]Rn − e−λδni�, Rn − e−λδn(i − 1)�], I ′i,n :=]R′n − e−λδni�, R′n − e−λδn(i − 1)�].
(6.54)

The strategy is to compare the “mass” ofμY (δ)(nδ) in I ′i,n and the mass in the corresponding

interval Ii,n (with same i) for the limit ρ(δ)nδ . We shall prove that for most intervals the
corresponding masses are close to each other in a sense to be made precise below. In order
to do this properly, we need to specify the mass distributions in {x < 0} and to define “bad”
intervals where the masses may differ. We start with the former. We have already extended
the density ρ(δ)nδ (x) to x < 0, see (6.41). For the neurons we proceed analogously and extend
μY (δ)(nδ) to the negative axis by adding an infinite mass

(
μY (δ)(nδ)

)
| ]−∞,0[ :=

1

N

∞∑

i=1

δ−idn , nδ ≤ T (6.55)

where in agreement with (5.29)

dn =
(1− e−λδ)Ȳ (δ)(nδ)+ (δV (nδ)− 1

N

)

NδV (nδ)− 1
. (6.56)

Notice that the choice (6.55) corresponds exactly to the initial configuration given in (5.30).
We introduce the following quantities for all i, n.

N ′i,n = NμY (δ)(nδ)(I
′
i,n), Ni,n = N

∫

Ii,n

ρ
(δ)
nδ (x) dx, wi =

∫

Ii,0

ψ0(x) dx, (6.57)

where we extend the definition of ψ0 to R− by putting ψ0(x) = ψ0(0) for all x < 0. Notice
that since ψ0 ≥ c(x − R0)

2, c > 0, in a left neighborhood of R0,

wi ≥ c�3, (6.58)

while, “away” from R0, wi ≥ c�, for some c > 0. Finally we define the “bad” intervals as
follows.

Definition 6 (Bad intervals) Ii,n is bad, if there is n0 ≤ n such that (at least) one of the
following four properties holds.

1. Ii,n0 ∩ {x < 0} �= ∅ and Ii,n0 ∩ {x > 0} �= ∅.
2. I ′i,n0

∩ {x < 0} �= ∅ and I ′i,n0
∩ {x > 0} �= ∅.

3. Ii,n0 ⊂ {x < 0} and I ′i,n0
⊂ {x > 0}.

4. I ′i,n0
⊂ {x < 0} and Ii,n0 ⊂ {x > 0}.

I ′i,n is bad if Ii,n is bad. An interval is good if it is not bad.

6.3 Hydrodynamic Limit

In order to compare Y (δ)(nδ), n ≤ δ−1T, and ρ(δ) := (ρ(δ)nδ , n ≤ δ−1T ), we introduce the
following distance.

Definition 7 (Distances) We define for any n ≤ δ−1T,

Bn := number of bad intervals inIn (6.59)
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and set

dn(Y
(δ), ρ(δ)) := Bn + max

Ii,n good,Ii,n⊂R+

|N ′i,n − Ni,n |
wi N�

+ δ

�
|V ((n − 1)δ)− p(δ)(n−1)δ| +

∣
∣
∣Ȳ (δ)(nδ)− ρ̄(δ)nδ

∣
∣
∣

�
. (6.60)

dn(Y (δ), ρ(δ)) depends on the times τ j (k), j = 1, . . . , N , k ≤ n − 1, where the τ j (k) are
the times which enter in the definition of � j (k), see (5.25). Let

Fn = σ {τ j (k), j = 1, . . . , N , k ≤ n − 1}
be the σ -algebra generated by these variables. Observe that Y (δ)δn , Ȳ (δ)(nδ) and V ((n − 1)δ)
are Fn-measurable. We prove in Theorem 5 below that with large probability (going to 1
as N → ∞) the distances dn(Y (δ), ρ(δ)) are bounded for all n such that nδ ≤ T . Loosely
speaking this is due to the fact that the auxiliary process is defined in terms of independent
exponential random variables and that the initial configuration is made of i.i.d. random
variables. The bounds on dn(Y (δ), ρ(δ)) are given by coefficients κn which do not depend on
N but have a very bad dependence on δ for small δ. δ however is a fixed parameter in this
section and by the way dn is defined, the bounds imply that Y (δ) and ρ(δ) become very close
in most of the space as N →∞ (and keeping δ fixed).

Theorem 5 Grant Assumptions 2 and 3. There exist κn > 0, γ ∈]0, 1[, a sequence c1(n) ∈
R+ which is increasing in n, and a constant c2 > 0 such that

S(δ,N ,λ)x

[
dn(Y

(δ), ρ(δ)) ≤ κn

]
≥ 1− c1(n)e

−c2 Nγ

, (6.61)

for all n such that nδ ≤ T .

The proof of Theorem 5 is given in the Appendix 3.

Remark 5 We prove Theorem 5 under the strong Assumption 3 which can be weakened.
Indeed, it is sufficient to impose (6.61) for n = 0. Recalling that by the definition of I0 all
its intervals are good at time n = 0, Assumption 3 clearly implies (6.61) for n = 0.

Remark 6 Theorem 5 gives strong convergence of μY (δ)(t) to ρ(δ)t (x)dx . Indeed, (6.61)

implies the convergence of the “densities”
N ′i,n
N� (notice that wi ≤ �→ 0 as N →∞).

As a corollary of Theorem 5 we obtain the desired convergence

Corollary 2 (Hydrodynamic limit for the approximating process) Under the conditions of
Theorem 5, let t ∈ T , δ ∈ {2−lT , l ∈ N} such that t = δn for some positive integer n. Then
almost surely, as N →∞,

μY (δ)(t)
w→ ρ

(δ)
t (x)dx .

7 Hydrodynamic Limit for the True Process

We can now conclude the proof of Theorem 2. The convergence in the hydrodynamic limit
will be proved as a consequence of Proposition 2 and of Corollary 2, which proves the
convergence for the approximating process, of (6.48), (6.49).
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Given T > 0 let T := {nδ ≤ T : n ∈ N, δ = 2−k T, k ∈ N}. Since T is countable and
p(δ)t , ρ̄(δ)t are bounded, there exist bounded functions p(0)t and ρ̄(0)t on T and a subsequence
(kn)n so that for all t ∈ T

p(0)t = lim
n→∞ p(2

−kn T )
t , ρ̄

(0)
t = lim

n→∞ ρ̄
(2−kn T )
t .

By Proposition 5 p(0)t and ρ̄(0)t are continuous in T and thus extend uniquely to continuous
functions on [0, T ]which are denoted by the same symbol; moreover, using again Proposition
5 and denoting below by δ elements of the form 2−kn T :

lim
δ→0

sup
n:nδ≤T

sup
t∈[nδ,(n+1)δ)

(
|p(δ)nδ − p(0)t | + |ρ̄(δ)nδ − ρ̄(0)t |

)
= 0. (7.62)

Define for any t ∈ [0, T ]

x∗,0t = e−λt
(

λ

∫ t

0
eλs ρ̄(0)s ds +

∫ t

0
eλs p(0)s ds

)

and, to underline the dependence on δ, rewrite the x∗n defined in (6.47) as x∗,δnδ . Then, using
(7.62),

lim
δ→0

sup
n:nδ≤T

sup
t∈[nδ,(n+1)δ)

|x∗,δnδ − x∗,0t | = 0. (7.63)

Denoting below by ε elements in {2−k, k ∈ N}, by (7.63) for any such ε there is δε so that
for any δ < δε the following holds. For all t = nδ ≤ T if |x − x∗,0t | ≥ ε then x − x∗,δt

has the same sign as x − x∗,0t . We can then use (6.48) and (6.49) and a Ascoli-Arzelà type
of argument to deduce that ρ(δ)t (x) converges in sup norm by subsequences to a continuous
function ρt (x), t ∈ T , |x − x∗,0t | ≥ ε with compact support. By continuity ρt (x) extends to
all t ∈ [0, T ], |x − x∗,0t | ≥ ε. By a diagonalization procedure we extend the above to all x, t
with t ∈ [0, T ] and x �= x∗,0t . Then by (6.42), (6.38) and (6.39) for any t ∈ T

1 =
∫ ∞

0
ρt (x)dx, p0

t =
∫ ∞

0
ρt (x) f (x)dx

and

ρ̄
(0)
t =

∫ ∞

0
xρt (x)dx,

which, by continuity extend to all t ∈ [0, T ]. Thus p0
t and ρ̄(0)t coincide with pt and ρ̄t given

in (2.6) and we shall hereafter drop the superscript 0. Finally by taking the limit δ → 0 in
(6.40) and (6.41) we prove that ρt (x) satisfies (2.17)–(2.18).

We shall next prove that ρt (x) is a weak solution of (2.8)–(2.9) with u0 = ψ0 and u1 as
in (2.10).

Lemma 1 If ρt (x) is given by (2.17)–(2.18) then for any test function φ
∫ ∞

0
φ(x)ρt (x)dx =

∫ ∞

0
ψ0(x)e

− ∫ t
0 f (ϕ0,s (x)ds)φ(ϕ0,t (x))dx

+
∫ t

0
pse−

∫ t
s f (ϕs,s′ (0)ds′)φ(ϕs,t (0))ds. (7.64)
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Proof Calling x∗t = ϕ0,t (0) we write

∫ ∞

0
φ(x)ρt (x)dx =

∫ x∗t

0
φ(x)ρt (x)dx +

∫ ∞

x∗t
φ(x)ρt (x)dx . (7.65)

In the second integral on the right hand side we make the change of variables x → y where
ϕ0,t (y) = x . Recalling (2.14), we have

dx

dy
= e−λt .

Using that ρt (x) is given by (2.17) we can then check that the second integral on the right
hand side of (7.65) is equal to the first integral on the right hand side of (7.64).

In the first integral on the right hand side of (7.65) we make the change of variables x → s
where ϕs,t (0) = x . Using once more (2.14), we have

dϕs,t (0)

ds
= −V (0, ρs)e

−λ(t−s).

Using this and recalling that that ρt (x) is given by (2.18) we then complete the proof of the
lemma. ��

It follows from (7.64) that for any test function φ,
∫
φρt dx is differentiable in t and that

its derivative satisfies (2.11). Moreover by choosing φ = f and φ = x in (7.64) we then
deduce that pt and ρ̄t are differentiable and from this that ρt (x) is differentiable in t and x in
the open set R+ × R+\{(t, x) : x = ϕ0,t (0)}. Hence by (2.11), ρt (x) satisfies (2.8) in such
a set and the boundary conditions (2.9) with u0 = ψ0 and u1 as in (2.10).

We shall next prove uniqueness for (2.11). As a consequence the limit ρt (x) we have
found using compactness does not depend on the converging subsequences, we therefore
have full convergence. It is convenient to rewrite (2.11) as follows. For all φ ∈ C1(R+,R),
putting g(t, dx) = ρt (x)dx,

∂t

∫
φ(x)g(t, dx) =

∫
[φ(0)− φ(x)] f (x)g(t, dx)+

∫
φ′(x)[λρ̄t + pt − λx]g(t, dx)dx,

g(0, dx) = ψ0(x)dx, pt =
∫

f (x)g(t, dx), ρ̄t =
∫

xg(t, dx). (7.66)

Proposition 7 ρt (x)dx is the unique solution of (7.66) solving the initial condition ρ0(x) =
ψ0(x) for all x and

1 =
∫ ∞

0
ρt (x)dx, pt =

∫ ∞

0
f (x)ρt (x)dx, ρ̄t =

∫
xρt (x)dx .

Proof We address the uniqueness of the solution. Any law g(t, dx) solving (7.66) is the law
of the Markov process U (t), t ≥ 0, which is solution of the non-linear SDE

dU (t) = (−λU (t)+λE(U (t))+E( f (U (t))))dt−U (t−)
∫

R+
1{

z≤ f (U (t−))
}N (dt, dz).

(7.67)

Here, N (ds, dz) is a Poisson random measure on R+×R+ having intensity dsdz. It suffices
to show the existence of a unique strong solution of the above non-linear SDE on a fixed time
interval [0, T ].

123



Hydrodynamic Limit for Interacting Neurons 889

Let U and V be two solutions starting from U (0) = V (0), and write for short at =
E(λU (t)+ f (U (t))), and a′t for the corresponding quantity for V .

We start by giving a priori bounds on U (t) and V (t). It follows directly from (7.67) that

E(U (t)) ≤ E(U (0))+ f ∗t ≤ R0 + f ∗T,

for all t ≤ T . But clearly

U (t) ≤ U (0)+
∫ t

0
E(λU (s)+ f (U (s)))ds ≤ U (0)+ f ∗T + λ

∫ t

0
E(U (s))ds ≤ CT ,

for all t ≤ T, where the constant CT depends only U (0), R0, f ∗ and λ and where we recall
that R0 is the support of ψ0. The same upper bound holds obviously for V (t).

Coupling U and V such that they have the most common jumps possible, we obtain

d

dt
E |U (t)− V (t)|

= −E( f (U (t)) ∧ f (V (t))|U (t)− V (t)| + | f (U (t))− f (V (t))|(U (t) ∧ V (t)

− |U (t)− V (t)|)
− λE(sign(U (t)− V (t))(U (t)− V (t))

+ λE(sign(U (t)− V (t))(at − a′t )).

Since f is non-decreasing, the first line is equal to

E(U (t) ∧ V (t))| f (U (t))− f (V (t))| ≤ CCT E |(U (t)− V (t)|,
since U (t) ∧ V (t) ≤ CT . Moreover, it is evident that the second and third line are bounded
from above by

C E |U (t)− V (t)|.
Hence,

d

dt
E |U (t)− V (t)| ≤ C E |U (t)− V (t)|,

for all t ≤ T, implying that U (t) = V (t) almost surely, for all t ≤ T . ��
We shall now prove that the true process converges to ρt (x)dx in the hydrodynamic limit.

Call P N the law of the measure valued process μU N (t), t ∈ [0, T ]. By the tightness proved
in Proposition 2, we have convergence by subsequences P Ni to a measure valued process P.
We will show that any such limit measure P is given by the Dirac measure supported by the
single deterministic trajectory ρt (x)dx, t ∈ [0, T ], where ρt (x) is the limit of ρ(δ)t (x) found
above.

First of all we state the following support property.

Proposition 8 Any weak limit P of P N satisfies

P(C([0, T ],S ′)) = 1,

where C([0, T ],S ′) is the space of all continuous trajectories [0, T ] → S ′.

Proof The proof is analogous to the proof of Theorem 2.7.8 in De Masi and Presutti (1991).
��
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Let us denote the elements of C([0, T ],S ′) by ω = (ωt , t ∈ [0, T ]) and let t ∈ [0, T ].
Suppose P is the weak limit of P Ni . We shall prove that P is supported by {ω : ωt = ρt (x)dx}.
Thus P coincides with ρt (x)dx on the rationals of [0, T ] and by continuity on all t ∈ [0, T ]
and therefore any weak limit of P N is supported by ρt dx .

The marginal of P at time t is determined by the expectations
∫

h
(
ωt (a1), . . . , ωt (ak)

)
dP =: Pt (h)

where, as in Definition 3, h is a smooth function on R
k , k ≥ 1, and ai are smooth functions

on R+ with compact support. We need to show that

Pt (h) = h
( ∫

a1(x)ρt (x)dx, . . . ,
∫

ak(x)ρt (x)dx
)
. (7.68)

In the sequel, t ∈ T and δ ∈ {2−n T, n ≥ 1}. For any ε > 0 there exists n0 such that for
all n ≥ n0,

∣
∣
∣
∣h
( ∫

a1ρt dx, . . . ,
∫

akρt dx
)
− h

( ∫
a1ρ

(2−n T )
t dx, . . . ,

∫
akρ

(2−n T )
t dx

)∣∣
∣
∣ ≤ ε.

Moreover there exists N∗ so that for all Ni ≥ N∗,
∣
∣
∣P Ni

t (h)− Pt (h)
∣
∣
∣ ≤ ε,

where P Ni
t (h) := P(Ni ,λ)

x (h(μU (t))), see (5.35). By (5.35) for δ small enough and Ni large
enough

|P(Ni ,λ)
x (h(μU (t)))− S(δ,Ni ,λ)

x (h(μY (δ)(t)))| ≤ ε.
Applying Corollary 2 for Ni large enough,

∣
∣
∣
∣S
(δ,Ni ,λ)
x (h(μY (δ)(t)))− h

( ∫
ρ
(δ)
t a1, . . . ,

∫
ρ
(δ)
t ak

)∣∣
∣
∣ ≤ ε.

Collecting the above estimates and by the arbitrariness of ε we then get (7.68). This finishes
the proof of Theorem 2.

Finally, to prove Theorem 3 we need to show that

lim
x↗x∗t

ρt (x) = ψ0

(
ϕ−1

0,t (x
∗
t )
)

exp

{

−
∫ t

0
[ f − λ](ϕ−1

s,t (x
∗
t ))ds

}

(7.69)

where x∗t = ϕ0,t (0). For x < x∗t we use (2.18)

ρt (x) = ps

ps + λρ̄s
exp

{

−
∫ t

s
[ f (ϕs,u(0))− λ]du

}

with s such that ϕs,t (0) = x . By continuity

lim
s→0

ϕs,u(0) = ϕ0,u(0) = ϕ−1
u,t (x

∗
t ).

Moreover, since we have proved earlier the continuity of ps and ρ̄s

lim
s→0

ps

ps + λρ̄s
= p0

p0 + λρ̄0

so that (7.69) follows from (2.19).
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Appendix 1: Proof of Theorem 1

We are working at fixed N and therefore drop the superscript N from U N . Recall that the
average potential of configuration U (t) is given by ŪN (t) = 1

N

∑N
i=1 Ui (t) and let

K (t) =
N∑

i=1

∫ t

0
1{Ui (s−)≤2}d Ni (s) (8.70)

be the total number of fires in [0, t] when Ui ≤ 2. Recall (2.3). The key element of our proof
is the following lemma which is due to discussions with Nicolas Fournier.

Lemma 2 We have

ŪN (t) ≤ ŪN (0)+ K (t)

N
,

N (t)

N
≤ ŪN (0)+ 2

K (t)

N
(8.71)

and

‖U (t)‖ ≤ 2‖U (0)‖ + 2
K (t)

N
. (8.72)

Proof Suppose Ui fires at time t , then

ŪN (t) = 1

N

∑

j �=i

(

U j (t−)+ 1

N

)

= ŪN (t−)+ N − 1

N 2 − Ui (t−)
N

.

Thus the average potential decreases if Ui (t−) ≥ 1 (and a fortiori if Ui (t−) ≥ 2) which
implies the first assertion of (8.71). Concerning the second assertion of (8.71), we start with

ŪN (t) = ŪN (0)+ 1

N

N∑

i=1

∫ t

0

(
N − 1

N
−Ui (s−)

)

d Ni (s),

which implies, since ŪN (t) ≥ 0 and N−1
N ≤ 1, that

1

N

N∑

i=1

∫ t

0
(Ui (s−)− 1)d Ni (s) ≤ ŪN (0).

We use that x − 1 ≥ x
2 1{x≥2} − 1{x≤1} and obtain from this that

1

N

N∑

i=1

∫ t

0

Ui (s−)
2

1{Ui (s−)≥2}d Ni (s) ≤ ŪN (0)+ 1

N

N∑

i=1

∫ t

0
1{Ui (s−)≤1}d Ni (s)

≤ ŪN (0)+ K (t)

N
.
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Observing that 1 ≤ x
2 1{x≥2} + 1{x≤2}, we deduce from the above that

N (t)

N
= 1

N

N∑

i=1

∫ t

0
d Ni (s) ≤ ŪN (0)+ K (t)

N
+ K (t)

N
,

implying the second assertion of (8.71).
Since between successive jumps the largest Ui (t) is attracted towards the average potential

we can upper bound its position by neglecting the action of the gap junction, implying that

‖U (t)‖ ≤ ‖U (0)‖ + N (t)

N
,

which, together with (8.71), gives (8.72), since ŪN (0) ≤ ‖U (0)‖. ��
Proof of Theorem 1 By (8.72) we have

‖U (t)‖ ≤ 2‖U (0‖ + 2
K (T )

N
,

for all t ≤ T . But the process K (t) is stochastically bounded by a Poisson process with
intensity N f (2). Therefore, there exists a constant K such that

P
[
|K (T )| ≤ K N

]
≥ 1− e−C N T .

This implies (2.4). Finally, notice that the above arguments give implicitly the proof of the
existence of the process U (t), since the process can be constructed explicitly, by piecing
together trajectories of the deterministic flow between successive jump times, once we know
that the number of jumps of the process is finite almost surely on any finite time interval. ��

Appendix 2:Proof of Theorem 4

In what follows, C is a constant which may change from one appearance to another.

The Stopped Process

A technical difficulty in the proof of Theorem 4 comes from the possible occurrence of
an anomalously large number of fires in one of the time steps [(n − 1)δ, nδ]. To avoid the
problem we stop the process as soon as this happens and prove the theorem for such a stopped
process. We then conclude by a large deviation estimate for the probability that the process
is stopped before reaching the final time T .

Recalling from Proposition 1 and Proposition 3 that the number of fires in an interval
[(n − 1)δ, nδ] in either one of the two processes is stochastically bounded by a Poisson
variable of intensity f ∗δN we stop the algorithm defining the coupled process as soon as
the number of firings in either one of the two processes exceeds 2 f ∗δN in one of the time
steps [(n − 1)δ, nδ]. We call E the event when the process is stopped before reaching the
final time. Then uniformly in the initial datum Y (δ)(0) = U (0) = x ,

Px (E) ≤ 2
T

δ
e−C Nδ. (8.73)

By an abuse of notation we denote by the same symbol the stopped processes and in the
sequel, unless otherwise stated, we refer to the stopped process. We fix arbitrarily A > 0 and
consider the process starting from Y (δ)(0) = U (0) = x with ‖x‖ ≤ A.
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Writing B∗ := B + A + 2 f ∗T, we have by (3.21) for all t ≤ T and all nδ ≤ T

‖U (t)‖ ≤ B∗, ‖Y (δ)(nδ)‖ ≤ B∗ for the stopped processes. (8.74)

It follows that the same bounds hold for the unstopped process with probability≥ 1−e−C Nδ .
Thus by restricting to the stopped process we have

• the firing rate of each neuron is≤ f ∗ and the number of fires of all neurons in any of the
steps [(n − 1)δ, nδ] is ≤ 2 f ∗δN .
• The bounds (8.74) are verified and as a consequence the average potentials in the U and

Y (δ) processes are ≤ B∗ so that the gap-junction drift on each neuron is ≤ λB∗.

Bounds on the Increments of Mn

We write Mn = Mn−1 + |An ∩ Gn−1| + |Bn ∩ Gn−1| ≤ Mn−1 + |An | + |Bn ∩ Gn−1| where
recalling the algorithm given in Sect. 5.2 and Definition 2

• An is the set of all labels i for which a clock associated to label i rings at least twice
during [(n − 1)δ, nδ].
• Bn is the set of all labels i for which a clock associated to label i rings only once during
[(n − 1)δ, nδ], and it is the clock τ 2

i .

We shall prove that (for the stopped processes)

P
[
|An | > N (δ f ∗)2

]
≤ e−C Nδ2

, (8.75)

P
[
|Bn ∩ Gn−1| > 2C Nδ

[
θn−1 + δ

] ] ≤ e−C Nδ2
(8.76)

(recall C is a constant whose value may change at each appearance).
It will then follow that with probability ≥ 1− 2e−C Nδ2

Mn ≤ Mn−1 + N (δ f ∗)2 + 2C Nδ
[
θn−1 + δ

] ≤ Mn−1 + C Nδ
[
θn−1 + δ

]
. (8.77)

Iterating the upper bound and using that nδ ≤ T,we will then conclude that with probability
≥ 1− 2ne−C Nδ2 ≥ 1− C

δ
e−C Nδ2

, where C depends on T ,

Mn

N
≤ Cδ

n−1∑

k=1

θk + Cδ ≤ C(θn−1 + δ) for all n ≤ T

δ
, (8.78)

having used that, by definition, θk ≤ θn−1.

Proof of (8.75).
|An | is stochastically upper bounded by S∗ := ∑N

i=1 1{N∗i ≥2}, where N∗1 , . . . N∗N are
independent Poisson variables of parameter f ∗δ, f ∗ = ‖ f ‖∞. We write p∗ = P(N∗i ≥ 2)
and have

e−δ f ∗ 1

2
δ2( f ∗)2 ≤ p∗ ≤ 1

2
(δ f ∗)2, p∗ ≈ 1

2
(δ f ∗)2 as δ→ 0.

S∗ is the sum of N Bernoulli variables, each with average p∗. Then by the Hoeffding’s
inequality, we get (8.75).

Proof of (8.76).
We shall prove that the random variable |Bn ∩ Gn−1| (for the stopped process) is stochas-

tically upper bounded by
∑N

i=1 1{N̄i≥1}, where N̄i , i = 1, . . . , N , are independent Poisson
variables of parameter C(θn−1 + δ)δ. (8.76) will then follow straightly.
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We shorthand

y := Y (δ)((n − 1)δ), x := U ((n − 1)δ), y(δ) := Y (δ)(nδ),

x(t) := U ((n − 1)δ + t), t ∈ [0, δ],
and introduce independent random times τ 2

i , i = 1, . . . , N , of intensity | f (yi ) − f (xi (t)|,
t ∈ [0, δ[. Then |Bn | is stochastically bounded by

∑N
i=1 1{τ 2

i <δ} because we are neglecting
some of the conditions for being in Bn . We also obviously have

|Bn ∩ Gn−1| ≤
N∑

i=1

1{τ 2
i <δ,i∈Gn−1} stochastically.

To control the right hand side we bound

| f (xi (t))− f (yi )| ≤ ‖ f ‖Lip|xi (t)− yi |,
‖ f ‖Lip the Lipschitz constant of the function f. Denote by N j (s, t) the number of spikes of
U j (·) in the time interval [s, t], then analogously to (5.26),

|xi (t)− yi |≤|xi − yi |+
∫ t

0
λe−λ(t−s)|x̄(s)− xi |ds + 1

N

∑

j �=i

N j ([(n − 1)δ, (n − 1)δ + t]).

We have |x̄(s) − xi | ≤ B∗ and
∑

j �=i N j ([(n − 1)δ, (n − 1)δ + t]) ≤ 2 f ∗δN because we
are considering the stopped process. Then if i ∈ Gn−1,

|xi (t)− yi | ≤ θn−1 + B∗δ + 2 f ∗δ

and therefore

| f (xi (t))− f (yi )| ≤ ‖ f ‖Lip
(
θn−1 + B∗δ + 2 f ∗δ

) ≤ C(θn−1 + δ)
so that

N∑

i=1

1{σi<δ,i∈Gn−1} ≤
N∑

i=1

1{N̄i≥1} stochastically,

where the N̄i are independent Poisson random variables of intensity C(θn−1+δ). This proves
(8.76).

Bounds on θn

The final bound on θn is reported in (8.87) at the end of this subsection. We start by charac-
terizing the elements i ∈ Gn as i ∈ Gn−1 ∩ (Cn ∪ Fn) where:

1. Cn is the set of all labels i for which a clock associated to label i rings only once during
[(n − 1)δ, nδ], and it is a clock τ 1

i .
2. Fn is the set of all labels i which do not have any jump during [(n − 1)δ, nδ].

In other words, we study labels i which are good at time (n− 1)δ and which stay good at
time nδ as well. We shall use in the proofs the following formula for the potential Ui (t) of a
neuron which does not fire in the interval [t0, t]:

Ui (t) = e−λ(t−t0)Ui (t0)+
∫ t

t0
λe−λ(t−s){Ū (s)ds + 1

λN
d N (s)}, (8.79)
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N (t) denoting the total number of fires till time t . For the Y (δ) process we shall instead use
(5.26) and the expressions thereafter.

• Labels i ∈ Cn ∩ Gn−1.

For such labels i there is a random time t ∈ [(n − 1)δ, nδ[ at which a τ 1
i event happens.

Then by (8.79)

Ui (nδ) =
∫ δ

t
λe−λ(δ−s)ŪN (s)ds + e−λδ 1

N

∫ δ

t
eλsd N (s),

because Ui (t+) = 0. Since we are considering the stopped process, Ū (·) ≤ B∗ and N (nδ)−
N ((n−1)δ) ≤ 2 f ∗δN so that Ui (nδ) ≤ Cδ. In the same way, Y (δ)i (nδ) ≤ Cδ, and therefore

Di (n) = |Ui (nδ)− Y (δ)i (nδ)| ≤ Cδ, for the stopped process. (8.80)

Notice that the bound does not depend on Di (n − 1).

• Labels i ∈ Fn ∩ Gn−1.

This means that i is good at time (n − 1)δ and does not jump, neither in the U nor in
the Y (δ) process. Let U ((n − 1)δ) = x and Y (δ)((n − 1)δ) = y. By (8.79) and (5.27)
|Ui (nδ)− Y (δ)i (nδ)| = Di (n) is bounded by

Di (n) ≤ e−λδ|xi − yi | + (1− e−λδ)|x̄ − ȳ| +
∫ nδ

(n−1)δ
λe−λ(nδ−t)|ŪN (t)− ŪN (0)]dt

+ 1

N
|
∫ nδ

(n−1)δ
e−λ(nδ−t)d N (t)− Nq| (8.81)

where Nq is the total number of fires in the process Y (δ) in the step from (n − 1)δ to nδ.
We bound the right hand side of (8.81) as follows. We have e−λδ|xi − yi | ≤ θn−1.

Moreover,

(1− e−λδ)|x̄ − ȳ| ≤ λδ
(
θn−1 + B∗Mn−1

N

)
, B∗ as in (7.74),

and
∫ nδ

(n−1)δ
λe−λ(nδ−t)|ŪN (t)− ŪN (0)]dt ≤ λδ 1

N
N ((n − 1)δ, nδ),

where N ((n − 1)δ, nδ) = N (nδ)− N ((n − 1)δ). Writing
∫ nδ

(n−1)δ
e−λ(nδ−t)d N (t) = N ((n − 1)δ, nδ)+

∫ nδ

(n−1)δ
{e−λ(nδ−t) − 1}d N (t),

we bound the last term on the right hand side of (8.81) as

1

N
|
∫ nδ

(n−1)δ
e−λ(nδ−t)d N (t)− Nq| ≤ 1

N

(
|N ((n − 1)δ, nδ)− Nq| + λδN ((n − 1)δ, nδ)

)
.

Collecting all these bounds we then get

Di (n) ≤ θn−1(1+ λδ)+ λδB∗Mn−1

N
+ 2λδ

1

N
N ((n − 1)δ, nδ)

+ 1

N
|N ((n − 1)δ, nδ)− Nq|,
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and since we are considering the stopped process

Di (n) ≤ θn−1(1+ λδ)+ λδB∗Mn−1

N
+ 2λδ2 f ∗δ + 1

N
|N ((n − 1)δ, nδ)− Nq|. (8.82)

By the definition of the sets An, . . . , Fn we have

|N ((n − 1)δ, nδ)− Nq| ≤
∑

j∈An

N j ((n − 1)δ, nδ)+ |Bn |. (8.83)

What follows is devoted to the control of the rhs of (8.83). We start with |Bn |.With probability
≥ 1− e−Cδ2 N

|Bn | ≤ |Bn ∩ Gn−1| + |Bn ∩ Mn−1| ≤ 2C Nδ2 + 2C Nδθn−1 + |Mn−1|2 f ∗δ, (8.84)

having used (8.76) and that the number of neurons among those in Mn−1 which fire in a time
δ is bounded by a Poisson variable of intensity f ∗δ|Mn−1|. Moreover,

P
[ ∑

j∈An

N j ((n − 1)δ, nδ) ≥ 4( f ∗δ)2 N
]
≤ P

[ ∑

j∈An

N j ((n − 1)δ, nδ)

≥ 4( f ∗δ)2 N ; |An | ≤ ( f ∗δ)2 N
]
+ P

[
|An | > ( f ∗δ)2 N

]
.

(8.85)

The last term is bounded using (8.75).
We are now going to bound the first term in (8.83). For that sake, let A ⊂ {1, . . . , N },

|A| ≤ ( f ∗δ)2 N , then

P
[ ∑

j∈An

N j ((n − 1)δ, nδ) ≥ 4( f ∗δ)2 N | An = A
]
≤ P∗

[∑

j∈A

(N∗j − 2) ≥ 2( f ∗δ)2 N
]
,

where P∗ is the law of independent Poisson variables N∗j , j ∈ A, each one of parameter f ∗δ
and conditioned on being N∗j ≥ 2. Thus the probability that N∗j − 2 = k is

P∗[N∗j − 2 = k] = Z−1
ξ

ξ k

(k + 2)! , Zξ = ξ−2
(

eξ − 1− ξ
)
, ξ = f ∗δ.

Denote by X j independent Poisson variables of parameter ξ. Then it is easy to see that
N∗j − 2 ≤ X j stochastically for ξ small enough, hence for δ small enough. Notice that

X = ∑ j∈A X j is a Poisson variable of parameter |A|ξ ≤ ( f ∗δ)2 N f ∗δ having expectation

E∗(X) ≤ ( f ∗δ)2 N for δ small. As a consequence we may conclude that

P∗
[∑

j∈A

(N∗j − 2) ≥ 2( f ∗δ)2 N
]
≤ P∗

[
X ≥ 2( f ∗δ)2 N

]
≤ e−C Nδ2

.

In conclusion for i ∈ Fn ∩ Gn−1:

Di (n) ≤ θn−1(1+ Cδ)+ Cδ
Mn−1

N
+ Cδ2 (8.86)

with probability ≥ 1 − e−Cδ2 N . Together with (8.80) this proves that with probability ≥
1− e−Cδ2 N

θn ≤ max

{

Cδ; θn−1(1+ Cδ)+ Cδ
Mn−1

N
+ Cδ2

}

. (8.87)

123



Hydrodynamic Limit for Interacting Neurons 897

Iteration of the Inequalities

By (8.78), Mn
N ≤ C(θn−1 + δ) for all nδ ≤ T with probability ≥ 1 − T

δ
e−C Nδ2

. By (8.87),

with probability ≥ 1− T
δ

e−Cδ2 N we have

θn ≤ max

{

Cδ; θn−1(1+ Cδ)+ Cδ
Mn−1

N
+ Cδ2

}

.

Thus

θn ≤ max
(

Cδ, [1+ Cδ] θn−1 + Cδ2
)
,

since θn−2 ≤ θn−1. Iterating this inequality we obtain

θn ≤ C
n−1∑

k=0

[1+ Cδ]k δ2 + (1+ Cδ)nCδ = C
[1+ Cδ]n − 1

Cδ
δ2 + (1+ Cδ)nCδ

≤ CeCT δ,

where we have used once more that nδ ≤ T . Hence

θn ≤ Cδ

for all δ ≤ δ0, with probability ≥ 1− C
δ2 e−C Nδ2

. This finishes the proof of Theorem 4.

Appendix 3: Proof of Theorem 5

The proof is by induction on n. Firstly, (6.61) holds for n = 0, since B0 = 0 and x N
1 , . . . , x N

N
i.i.d. according to ψ0(x)dx . We then suppose that (6.61) holds for all j ≤ n. We condition
on Fn and introduce Gn =

⋂

j≤n

{d j (Y
(δ), ρ(δ)) ≤ κ j }. Then

S(δ,N ,λ)x

[
dn+1(Y

(δ), ρ(δ)) > κn+1

]

≤ S(δ,N ,λ)x

(
1Gn S(δ,N ,λ)x

[
dn+1(Y

(δ), ρ(δ)) > κn+1 | Fn

])

+ nc1(n)e
−c2 Nγ

. (8.88)

Therefore, we need to prove that for some constant c

S(δ,N ,λ)x

[
dn+1(Y

(δ), ρ(δ)) > κn+1 | Fn

]
≤ ce−c2 Nγ

, on Gn. (8.89)

From the conditioning we know that d j (Y (δ), ρ(δ)) ≤ κ j for all j ≤ n; we know also the
value of Y (δ)(nδ), say Y (δ)(nδ) = y, we know the location of the edges R′j , j ≤ n, and we
know which are the good and the bad intervals at time nδ.

Consequences of Being in Gn

The condition to be in Gn does not only allow to control the quantities directly involved in
the definition of dn but also several other quantities. The first one is the difference |R′n− Rn |.
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Indeed, recalling (6.43) and (6.52),

|R′n − Rn | ≤ e−λδ|R′n−1 − Rn−1| + |V ((n − 1)δ)− p(δ)(n−1)δ|δ
+ (1− e−λδ)|Ȳ (δ)((n − 1)δ)− ρ̄(δ)(n−1)δ|.
≤ e−λδ|R′n−1 − Rn−1| + κn�+ λδκn−1�. (8.90)

Iterating this argument yields

|R′n − Rn | ≤
( n∑

j=1

κ j

)
(1+ λδ)�.

Writing Ii,n = [ai,n, bi,n] and I ′i,n = [a′i,n, b′i,n], we obtain in particular

|ai,n − a′i,n | = |b′i,n − bi,n | ≤
( n∑

j=1

κ j

)
(1+ λδ)�. (8.91)

We also get a bound on the increments of the number of bad intervals. Recalling (6.59)
for notation we have indeed

Bn ≤ Bn−1 + 1+ |Rn − R′n |
�

. (8.92)

We finally have bounds on N ′i,n . Firstly we suppose that Ii,n is a good interval such that
Ii,0 ⊂ R+. Then N ′i,n ≤ N ′i,0, whence for N large enough, since Nwi = Ni,0,

N ′i,n ≤ Ni,0 + κ0wi N� ≤ (1+ κ0�)Nwi ≤ 2Nwi . (8.93)

We also have a lower bound. By (6.46), Ni,n ≥ Ni,0e− f ∗δn , hence

N ′i,n ≥ Ni,n − κnwi N� ≥ wi N
(

e− f ∗T − κn�
)
≥ cwi N ≥ c�3 N = cr3 N 1−3α, (8.94)

for N large enough.
Now consider a good interval Ii,n ⊂ R+ such that Ii,0 ⊂ R−. Then there exists k ≤ n such

that Ii,k−1 ⊂ R− and Ii,k ⊂ R+. Recalling the definition of dk in (5.29) and the definition
(5.30) we notice that dk ≥ 1/N , if NδV (kδ) ≥ 2, i.e. in case that at least two neurons spike.
At step k, the number of neurons falling into the interval Ii,k is upper bounded by �

dk
+ 1,

if NδV (kδ) ≥ 2, otherwise, there is at most one neuron falling into it. In both cases, this
yields the upper bound �N + 1 for the number of neurons falling into the interval. After time
k, neurons originally in Ii,k can only disappear due to spiking. Hence,

N ′i,n ≤ N ′i,k ≤ N (�+ N−1) ≤ C Nwi , (8.95)

by definition of wi . In order to obtain a lower bound, we first use that

N ′i,n ≥ Ni,n − κnwi N�.

Since Ii,k−1 ⊂ R−, we have that ρ(δ)kδ ≡ ρ
(δ)
kδ (0) on Ii,k, hence Ni,k = Nρ(δ)kδ (0)�e

−λδk .
Using Proposition 6 and (6.46),

Ni,n ≥ Ni,ke− f ∗δ(n−k) ≥ Nρ(δ)kδ (0)�e
−λT e− f ∗T ≥ C Nψ0(0)� = C Nwi ,

where C depends on T, which allows to conclude as above.
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In case that Ii,n is a bad interval it is easy to see that the upper bound

N ′i,n + Ni,n ≤ C N� (8.96)

holds.

Expected Fires in Good Intervals

Recall that we are working on Gn and conditionally on Y (δ)(nδ) = y. Using (5.25) and
(6.51), we write

V (nδ) = 1

δN

∑

i

�i , where �i =
∑

j :y j∈I ′i,n

� j (n), (8.97)

and call 〈�i 〉 its conditional expectation (given Fn, and hence given that Y (δ)(nδ) = y).
Then

〈�i 〉 =
∑

j :y j∈I ′i,n

(
1− e−δ f (y j )

)
.

Write I ′i,n = [a′i,n, b′i,n]. Since f is non decreasing, we have

〈�i 〉 ≤ N ′i,n(1− e−δ f (b′i,n)) ≤ N ′i,n(1− e−δ f (a′i,n))+ N ′i,n
∣
∣
∣e−δ f (b′i,n) − e−δ f (a′i,n)

∣
∣
∣ .

Moreover, f (b′i,n) ≤ f (a′i,n)+ ‖ f ‖Lip �, which implies that

∣
∣
∣e−δ f (b′i,n) − e−δ f (a′i,n)

∣
∣
∣ ≤ δC�.

Suppose first that I ′i,n is good so that |N ′i,n− Ni,n | ≤ κnwi N�. Then by (8.93) and (8.95),

〈�i 〉 ≤ {Ni,n + κnwi N�}(1− e−δ f (a′i,n))+ δC�Nwi

≤ Ni,n(1− e−δ f (a′i,n))+ C(κn + 1)δwi N�.

Write Ii,n = [ai,n, bi,n], so that by (8.91), |a′i,n − ai,n | ≤ Kn�, where Kn = (
∑n

j=1 κn)

(1+ λδ). Then

〈�i 〉 ≤ Ni,n(1− e−δ f (ai ))+ (Kn + C(1+ κn)
)
δwi N�.

Since f is non decreasing and Ni,n = N
∫

Ii,n
ρ
(δ)
nδ (x) dx,

〈�i 〉 ≤ N
∫

Ii,n

ρ
(δ)
nδ (x)

(
1− e−δ f (x)

)
dx + (Kn + C(1+ κn)

)
δwi N�. (8.98)

An analogous argument gives

〈�i 〉 ≥ N
∫

Ii,n

ρ
(δ)
nδ (x)

(
1− e−δ f (x)

)
dx − (Kn + C(1+ κn)

)
δwi N�. (8.99)
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Fires Fluctuations in Good Intervals

Hoeffding’s inequality implies that for any b > 0,

P
[
|�i − 〈�i 〉| ≥ (N ′i,n)b+

1
2

]
≤ 2e−2(N ′i,n)2b

. (8.100)

We introduce the contribution of Ii,n to p(δ)nδ

p(δ)i,nδ =
N

δ

∫

Ii,n

ρ
(δ)
nδ (x)(1− e−δ f (x))dx .

We then use (8.93), (8.94) and (8.95) together with (8.98) and (8.100) to get

P

⎡

⎣
⋂

Ii,n good

{

�i ≤ δp(δ)i,nδ +
(
Kn + C(1+ κn)

)
δwi N�+ (C Nwi

) 1
2+b

}
⎤

⎦

≥ 1− 2mne−2(cr3 N 1−3α)2b
, (8.101)

where mn is an upper bound on the number of good intervals which can be upper bounded
by

mn ≤
(

Rn

e−λnδ�
∨ R′n

e−λnδ�

)

+ 1 ≤ C

⎛

⎝ Rn

�
+ [

n∑

j=1

κ j ]
⎞

⎠+ 1 ≤ C Nα,

because Rn ≤ R0 + c∗T and nδ ≤ T . As a consequence, the right hand side of (8.101) can
be lower bounded by 1− C Nαe−C(N 1−3α)2b

. By an analogous argument

P

⎡

⎣
⋂

Ii,n good

{�i ≥ δp(δ)i,nδ −
(
Kn + C(1+ κn)

)
δwi N�− (2Nwi

) 1
2+b}

⎤

⎦

≥ 1− C Nαe−C(N 1−3α)2b
. (8.102)

Now we choose b and α sufficiently small such that for N large enough, (C Nwi )
1
2+b ≤

Cδ(1+ κn)
)
wi N�. Then

P

⎡

⎣
⋂

Ii,n good

{
|�i − δp(δ)i,nδ| ≤

(
Kn + 2C(1+ κn)

)
δwi N�

}
⎤

⎦

≥ 1− C Nαe−C(N 1−3α)2b ≥ 1− Ce−C Nγ

, (8.103)

where γ = (1− 3α)2b and C a suitable constant.

The Bounds on V (nδ) and on Bn+1

By (8.96) and (8.103), with probability ≥ 1− Ce−C Nγ
,

|δV (nδ)− δp(δ)nδ | ≤
⎡

⎣
∑

Ii,n good

(Kn + 2C(1+ κn)) δwi�

⎤

⎦+ C N�

N
Bn ≤ κ ′n+1�. (8.104)

Hence, we have proven the desired assertion for Vn at time (n + 1)δ.
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To bound Bn+1, the number of bad intervals at time (n + 1)δ, we use the first inequality
in (8.90) with n→ n + 1 together with (8.104), so that by (8.92)

Bn+1 ≤ Bn + 1+ |Rn+1 − R′n+1|
�

≤ Bn + 1+
( n∑

j=1

κ j + κ ′n+1 + κn

)
(1+ λδ),

whence the assertion concerning Bn+1.

Bounds on |N ′i,n+1 − Ni,n+1|

Let Ii,n be a good interval at time nδ which is contained in R+. Then it is good also at time
(n + 1)δ and we have

N ′i,n+1 =
∑

j :y j∈I ′n,i

(1−� j (n)) = N ′i,n −�i and Ni,n+1 = Ni,n − δp(δ)i,nδ.

Thus

|N ′i,n+1 − Ni,n+1|
wi N�

≤ κn +
|�i − δp(δ)i,nδ|

wi N�
,

and the desired bound follows from (8.103).
It remains to consider a good interval I ′i,n+1 such that I ′i,n ⊂ R− (and hence also Ii,n ⊂

R−). Thus I ′i,n+1 consists entirely of “new born” neurons which arise due to firing events
where the energies are reset to 0. For such an interval,

N ′i,n+1

N�
∈ [ 1

Ndn
e−λδn, 1

Ndn
e−λδn + 1].

But, recalling the definition of dn in (5.29) and of ρ(δ)(n+1)δ(0) in (6.41), by continuity of

(u, p)→ pδ
pδ+(1−e−λδ)u , we have

∣
∣
∣
∣

1

Ndn
− ρ(δ)(n+1)δ(0)

∣
∣
∣
∣ ≤ Cκn�. (8.105)

Since ρδ(n+1)δ(x)1Ii,n+1(x) ≡ ρ(δ)(n+1)δ(0) on this interval, this implies that also for such inter-
vals,

1

N�

∣
∣N ′i,n+1 − Ni,n+1

∣
∣ ≤ Cκn� = Cκnwi ,

by definition of wi . This concludes the bound of |N ′i,n+1 − Ni,n+1|.
The bound on |Ȳ (δ)((n + 1)δ) − ρ̄(δ)(n+1)δ| follows from the bounds on |N ′i,n+1 − Ni,n+1|

and Bn+1; details are omitted. This concludes the proof of Theorem 5.

Appendix 4: Proof of Theorem 2 for General Firing Rates

Let f , T , A, B as in Theorem 1, x N the initial state of the neurons as in Theorem 2 and such
that ‖x N‖ ≤ A. Letψ be a bounded continuous function on D([0, T ],S ′). We need to prove
that

lim
N→∞P N

[0,T ](ψ) = ψ(ρ)
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where P N
[0,T ](ψ) is the expected value ofψ under the law of (μU N )[0,T ] when the process U N

starts from x N andψ(ρ) is the value ofψ on the element ρ := (ρt dx)t∈[0,T ] of D([0, T ],S ′).
Let 1U be the characteristic function of the event {‖U N (t)‖ ≤ B, t ∈ [0, T ]}. Then by

Theorem 1

lim
N→∞

∣
∣P N
[0,T ](ψ)− P N

[0,T ](ψ1U )
∣
∣ = 0. (8.106)

By an abuse of notation we call P∗,N[0,T ] the law of the process with a firing rate f ∗(·) which
satisfies Assumption 3 and coincides with f for x ≤ B. Then

P N
[0,T ](ψ1U ) = P∗,N[0,T ](ψ1U ). (8.107)

Since we have proved Theorem 2 under Assumption 3, we have convergence for the process
with rate f ∗(·) to a limit density that we call ρ∗ = (ρ∗t )t∈[0,T ], so that

lim
N→∞P∗,N[0,T ](ψ1U ) = ψ(ρ∗1U ). (8.108)

As a consequence of (8.106) and (8.107),

lim
N→∞P N

[0,T ](ψ) = ψ(ρ∗1U ).

By the arbitrariness of ψ , ρ∗ = ρ∗1U . Indeed, taking ψ(ω) = sup{ωt (1), t ≤ T } ∧ 1,
we have limN→∞ P N

[0,T ](ψ) ≡ 1, which implies that ρ∗ must have support in [0, B]. As a
consequence,

lim
N→∞P N

[0,T ](ψ) = ψ(ρ∗1U ) = ψ(ρ∗),
and the limit ρ∗ is equal to the solution of the equation with the true firing rate f . This
concludes the proof of the theorem.
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