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Abstract. This is the fin1 of three papers on the Glauber evolution of king spin systems with 
Kac potentials. We begin with the analysis of the mesoscopic limit, where space scales like 
the diverging range. y-', of the interaction while time is kepi finite: ye prove that in this 
limit the magnetization density converges to the solution of a deterministic, nonlinear, nonlocal 
evolution equation. We also show that the long time behaviour of this equation describes 
correctly the evolution of the spin system till times which diverge as y + 0 but are small in 
units logy-'. In this time regime we can give a "ry precise description of the evolution and 
a sharp characterhion of the spin trajectories. As an application of the general theory, we 
then prove that for ferromagnetic interactions, in the absence of extema! magnetic fields and 
below the critical temperature, on a suitable macroscopic limit an interface between two stable 
phases moves by mean curvature. All ihe proofs are consequek of sharp estimates on special 
correlation functions, the v-functions, whose analysis is reminiscent of the cluster expansion in 
equilibrium statistical mechanics. 

AMS classification.scheme numbers: 60K35, 82A05 

1. Introduction 

The van der Waals theory of phase transiiions describes systems with forces which are 
repukive at short distances and have long attractive tails. By scaling the attractive part of 
the interaction, it is possible to construct a family of models where the above condition is 
satisfied arbitrarily well. This idea was proposed by M Kac in the context of equilibrium 
statistical mechanics,. where the limit case reproduces exactly the van der Waals phase 
diagram, as proven in a wide variety of systems, [17, 201. Also the metastable effects 
predicted by the van der Waals theory are to some extent recovered~by this approach [22]. 

Non equilibrium properties for systems with Kac potentials have been studied in [5, 6, 
191 and, more recently, [24]. Inspired by these works, we begin in this paper a systematic 
analysis of the Glauber dynamics in king spin systems with' Kac potentials, which will be 

The research has been panially supported by CNR. GNFM and by gmnt SCI-CT91-0695 of the Commission of 
European Communities 
5 E-mail: demasi@ vxseq.nquila.infn.it 
/I E-mail: orlandi@ vxscaq.aquila.infn.it 
7 E-mail: presuttie irmtvm5l.bibiet: presutti@mat.utovrm.it 
+ E-mail: triolo@ irmtvm5l.bitnet; triolo@mat.utovrm.it 

0951-7715/94/030633+64$19.50 @ 1994 IOP Publishing Ltd and LMS Publishing Ltd 633 



further developed in two successive papers, [E] and [In], we will refer to this one as [I]. (An 
unpublished version of [I] and [II] has appeared a year ago, [Iv]: it contains the analysis 
of the system with different rates of the Glauber dynamics. It also gives a short survey 
of the physical backgrounds and a list of open problems). As we shall see, the model 
has a surprisingly rich structure and it exhibits a great variety of physically interesting 
effects. Phase separation, development of interfaces and interface dynamics are the main 
issues of our analysis. In particular in [III] we study the phase separation after quenching 
down, below the critical,value, a high temperature state: we observe the development of the 
interfaces and characterize their structure. The successive interface dynamics is investigated 
here, in the simpler case of a single interface. ‘Fluctuations theory and critical phenomena 
also in relation to stochastic quantization are discussed in IIV] and will be the main object 
of [E]. 

We denote by y the scaling parameter of the Kac interaction, that will eventually go to 
0. The characteristic feature of a Kac potential is that its range diverges like y - ‘ ,  while the 
total interaction energy of any single spin with all the others is kept finite. We first study 
the limit when y 0, scaling the space by the same y :  we will prove that the limiting 
magnetization density m(r, t) solves the deterministic, nonlocal evolution equation 

~~ 

am 
at  
- =  -m+tanh(B(J*m+h)]  ( J*m)( r )  =/ dr’J([r- r‘])m(r‘), 

Times in this limit ate not rescaled, so that each individual spin in a time unit undergoes 
only a finite, random, number of flips. The deterministic behaviour described by (1.1) is 
a mean field effect due to the scaling of the interaction: many spins (infinitely many in 
the limit y + 0) feel essentially the same potential and while each of them, individually, 
has a random behaviour, the collectivity evolves deterministically, due to a law of large 
numbers which dampens the fluctuations. The full effect of the interaction only arises at 
longer times, when each spin, after many flips, reaches a (local) equilibrium distribution. 

We call the above limit ‘mesoscopic’, with space scaled by y and time kept finite, to 
distinguish it from other, macroscopic, limits, where also the time is scaled with y .  The 
equation (1.1) obtained in the mesoscopic limit will be called the mesoscopic equation. 
As explained before, we expect the more interesting effects to appear at longer times. 
The real question then is whether they are correctly predicted by the mesoscopic equation. 
There is no answer valid for all the cases: we have indeed situations where the limits can 
be interchanged, thus finding the true behaviour of the Glauber dynamics at times which 
diverge as y + 0 by investigating the long time behaviour of (1.1). This happens for 
instance in the development of the interfaces (at temperatures below the critical one and 
when the magnetization profile is away from its critical value, except on regular surfaces 
where the interfaces develop) and also in the successive stage of interface dynamics, at least 
when the curvature of the interface is not too small. In section 5 we will study the latter 
case. 

It may also happen that the long time predictions of the mesoscopic equation are wrong: 
the spinodal decomposition after quenching a state from high temperature down below the 
critical value and the macroscopic fluctuations at the critical temperature are intrinsically 
random. The stochastic forces responsible for these effects are absent in (l.l), having 
disappeared in the mesoscopic limit. These aspects will be studied in [II] and [III] while 
this paper covers cases where the fluctuations are not relevant, as in the mesoscopic limit 
that we study first. This is easy to investigate, as it is essentially a mean field limit, but 
we are interested in the behaviour of the system past the mesoscopic times and for that 
we need sharper estimates. As an outcome of our analysis, we obtain a characterization of 
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most of the individual trajectories of the spin process, both .in space and time, proving that 
with large probability they only slightly deviate from what is predicted by the mesoscopic 
equation, at least when times are small in units logy-’. 

The small deviations mentioned above are not only consequence of errors and 
approximations in our estimates, but they have an intrinsic origin, related to the buildup of 
correlations as time grows and y is kept finite. This issue is treated in [U], in the context 
of the fluctuation theory for Glauber dynamics with Kac potentials. Here we ignore these 
effects considering the deviations of the spins distribution from the product measure as 
errors. We prove, with the help of cluster expansion techniques, that these deviations are 
small and that, if the evolution described by the mesoscopic equation is sufficiently stable, 
then they do not have significant effects. As an application, we study in section 5 the case 
of ferromagnetic interactions without any external magnetic field and below the cri‘tical 
temperature. We fix an initial magnetization profile which decribes an interface between 
the two stable phases and prove that, on a suitable macroscopic limit, the interface moves 
by mean curvature. 

We would like to draw the attention of the reader also to the techniques used in proving 
the above results as they are based on powerful methods which may be useful also in 
other cases. Kinetic theory and cluster expansion play here an important role. The small 
parameter of the latter. which is the inverse temperature in statistical mechanics, is here 
played simultaneously by y and by the time, which, at first, is supposed vanishingly small, 
as y + 0. To obtain estimates at finite and longer times we then work out an iterative 
procedure based on special (truncated) correlation functions, the v-functions. This part of the 
analysis is common to several other models, see [I31 for a survey on the method, which, 
in particular, has been applied to stochastic, discretevelocity models of the Boltzmann 
equation, hence the relation with kinetic theory. 

The paper is organized as follows. Section 2 contains the main definitions, and the 
results concerning the derivation of the mesoscopic equation. the interface dynamics and 
the bounds on the v-functions. The ‘short time’ bounds are proven in section 3 and extended, 
in section 4, to longer times. In section 5 we apply the previous considerations to prove 
that the interface dynamics is ruled by the motion by mean curvature. In an appendix we 
prove proposition 4.8 of section 4. 

. .  

2. Main definitions and results 

This section is divided in three subsections. In the first one, section 2.1, we define the 
model and state the theorem on the convergence to the mesoscopic equation. In section 2.2 
we consider a class of initial states which describe, in~a  macroscopic limit, magnetic profiles 
with an interface. We then have a theorem which states that in the limiting macroscopic 
evolution the interfaces move by mean curvature. Finally in section 2.3 we present results 
on the propagation of chaos, that is proven in a very strong form and till times which diverge 
as y -+ 0 but that are small in units logy-’. In this subsection we define the v-functions 
and state bounds on these functions which provide the main technical tools for studying the 
transition from discrete to continuum. 

2.1. The mesoscopic limit 

We consider an king spin system and start by recalling the main notation and definitions. 
A spin configuration is a specification of the values of the spins at all the lattice sites, it is 
therefore a function U: Zd + [-1, I], that is an element of (-1, lJzd. The value ~ ( x )  of 
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the spin at x is thus a function of the configuration U ,  thus a random variable on (-1, 
the space of all the spin configurations. The restriction to A c Zd of a configuration U ,  is 
denoted by aA, which is therefore a function on A with values [-I, 1 J. 

A De Masi et a1 

We next 'recall the definition of Kac potentials. 

Definition 2.1.1. A Kac potential (in this paper) is afunction Jy : Zd x Zd + Et, which 
depends on a (scaling) parameter y and has the form 

J y ( A  Y) = Y d J W  - Y l ) .  (2.1) 

We suppose that y varies in the set (2-",n E Z+). We assume that J(r) depends on lrl, 
J ( r )  = 0 for all lr[ > 1 and that J ( r )  E C3(Rd). 

Given (a mgneticjield) h E R, we dejine the energy of the spin configuration aA as 

while its energy inclusive of the interaction with the spins in the complement, Ac, of A, is 

The class of the Kac potentials is more general than in definition 2.1.1, the only 
requirement on J being that it is in L'(dr, IF'), see [17,' 201. The restriction on the values 
of y is only made with the purpose of simplifying notation when discussing the block spin 
variables and could be easily lifted. 

Definition 2.1.2. Given (the 'inverse temperature') fl  0 and y > 0, we denote by Glauber 
dynamics the unique Markov process on 1-1. 1Izd  whose pregenerator is the operator Ly 
with domain the set of all the cylinderfunctions f on which it acts as 

In (2.4) U' is rhe configuration obtainedfrom U by flipping the spin at x ,  i.e. 

(2.5) 
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The proof of the existence and uniqueness of the Markov process. used in the above 
definition, may be found in [21]. The space of realizations of the Glauber dynamics is 
D(R+, {-I, lJZd), the Skorohod space of cadlag trajectories, (continuous from the right and 
with limits from the left). The value of the process at time f, that is the spin configuration 
at time t ,  is denoted by uc, the value of the spin in x at time I is u ( x ,  t) which is thus a 
random variable on D(&, {-1, 1 I Z d ) .  

Notice that 

c y ( x ,  U )  = Z,(u~,.)-'e-~lZA~H~("' 

where AxHy(u)  is the change of energy due to the spin flip at x ,  namely 

AXHy(u)  = Hy((U')n) -&(U*) 

where A is any set which contains x and such that the spin at x does not interact with those 
in Ac. Z,,(uxc)-' is the denominator in (2.6a), but, for what we say below, it may be any 
other function, provided it is independent of u ( x ) .  as implied by the notation. In fact the 
important point ahout the rates is that they verify the 'detailed balance' condition 

(2 .6~)  

The Glauber dynamics is thus intimately related to the notion of: 

Definition 21.3. The Gibbs measure p ~ g , h , ~  is any probability on [-I, l]'* which satisfies 
the DLR equations: namely, such that for any x E Zd and any U ,  

(2.7 

where the le$-hand side is the probability that u ( x )  = 3 ~ 1  conditioned on the U-algebra 
generated by all the spins u ( y ) ,  y # x .  

fl in definition 2.1.3 has the physical meaning of an inverse temperature and h of an 
external magnetic field, Jy of the spin-spin interaction strength. Notice that the left- hand 
side of (2.7) is a function of U @ )  and all u ( y ) ,  y # x. it is thus a function of the whole 
spin configuration U .  Then, from ( 2 . 6 ~ )  and (2.7), it follows that 

P B , h . y ( u ( x ) I ~ ~ ( Y ) .  Y # xI)c,,(x, 0 )  = P@.h.y(ux(x)I~u(Y),  Y # xl)c,(x, O X )  

so that the operator LF) defined by (2.4) after setting c y ( y ,  U )  = 0 for all y # x ,  is self- 
adjoint in Lz([ - l ,  I)@, ~ p , h . ~ ) .  It then follows that also the full generator of the Glauber 
dynamics is selfadjoint and that p ~ , h , ~  is stationary, the Glauber dynamics then being a 
reversible process. We will not exploit this feature of the dynamics and the associated 
theory of Dirichlet forms, which in many instances has been proven to be a very useful and 
powerful method. We will use though the existence of the Gibbs measures for a physical 
interpretation of the results. Many aspects of our analysis are common to other models, 
as for instance the Glauber + Kawasaki dynamics, which is a very well studied model for 
reaction-diffusion equations, [SI, and phase separation. [13. 12, 15, 161. The advantage in  
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our case is the explicit connection with equilibrium statistical mechanics, so that we can 
properly talk of thermodynamic phases, surface tension, critical temperature and so forth. 
We finally mention that ( 2 . 6 ~ )  does not depend on the choice of Z,, which appears in the 
definition of c y .  thus different choices of Z, define other, equally acceptable, reversible 
evolutions. The choice ( 2 . 6 ~ )  gives rise to a simpler limiting mesoscopic equation. 

We have so far discussed the Glauber dynamics at the microscopic level, we next turn 
to the mesoscopic one. The ‘scale separation’ between the two levels is specified by y :  in 
the transition micro-mesoscopic 
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(x, t )  + (r. 0 = W, f ) .  

Time is thus unchanged while space is shrunk by y .  The microscopic points x E Zd 
are represented in the mesoscopic space Rd by the lattice yZd. It is thus convenient to 
partition Rd into the ‘elementary squares’ {r  : [ T I ,  = y x ) ,  with x E Zd and, denoting by 
r = (rl, . . , T d ) ,  x = (XI, . . , X d ) .  

[ r ] ,  = yx if x E Zd and yxi < ri < y(xi + 1) for all i = 1, .., d (2 .8~)  

Definition 2.1.4. We denote by M(X) ,  X a measurable space, the space of all the real 
valued, measurablefunctions on X .  We then &fine r, : M(Zd)  + M(Rd) as 

(ry(f))(r) = f ( x ) .  x = y-’[rly and f E M(Zdd) (2.8b) 

where [rIy is defined in (2.8~). 

In particular we denote by 

U, = ry(u) = ry(q) (2 .8~ )  

uy ( r )  is thus the image of the spin configuration U in the mesoscopic representation. Our first ’ 
theorem proves that for small y ’s, the Glauber dynamics in the mesoscopic representation 
is almost deterministic. The statement refers to a smoothened version of uy, defined in 
terms of the block spin transformation: this amounts to replace the value f ( r )  of a function 
in M(Rd)  by its average in a region containing r ,  made of elementary squares and whose 
size vanishes as y -+ 0. 

Definition 2.1.5. We defrne f o r h y  0 < 01 < 1 and y as in 2.1.1 the block spin rransformation 
f + f f and f@J) both in M(Rd), as 

f(”.Y)(r) = N-’ Jdr’l(ilb-1, -[r’lyI Q ?‘))f(r’) ( 2 . 9 ~ )  

We may sometimes use the shorthand notation 

(U) ._ +a’ := (uy)(a.Y)  Uy.1 .- (uY.I)(‘l.Y) 

to avoid redundancy in the formulae. 

(2.9b ) 

(2.9c) 
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The more familiar form of the block spin transformation is recovered when we apply 
the transformation to a function g = r,( f ) ,  f E M(Zd) .  In that case g@J'(r), [ r ] ,  =: y x ,  
is given by 

where 

= [ly - -X I  < y-"1 IB,-=I = cardinality of By-Y.X. (2.9e) 

We will use extensively the above notation in section 4, where we work in the microscopic 
rather than in the mesoscopic representation. We will prove there the following result. 

Theorem 2.1.6. For any CY E (0,l) and ( > 0; there are a and b positive and for any n and 
any k* > 2, [her? is c so that the foliowing holdr. For all y small enough and given y. for 
a l iu  E (-1, 1)" andm E M(E'), llmllm < 1, for which (see (2.9a-c)fornotation) 

we have that (see again (2.94 for notation) 

K (  SUP sup l(uy,t)(a~y'(r) - m(a,y)(r, t)l yb) < cy". (2.10b) 

P$ is the law of the Ciauber dynamics when the process starts at time Ofrom (r and 

I<n logy-' lrI<(k*-l)y-' 

m(., t) being the unique solution of the Cauchy pmbiem (1.1) with intial datum m. 

Observe that, given U, the choice m(r)  = uy( r )  automatically satisfies (2.10a). The 
proof of theorem 2.1.6 is essentially the same if we replace, in the sup over r ,  y-' by y - k ,  
no matter how large is k.  y-' is however sufficient for our needs here, as it corresponds to 
regions unbounded both in mesoscopic and macroscopic unit?., when the latter are defined 
as in section 2.2 below. 

Theorem 2.1.6 expresses in a very strong form the deterministic nature of the Glauber 
dynamics in the mesoscopic limit. Notice however that theorem 2.1.6 does not say that 
my(r, I )  has a limit when y + 0, in fact we are not imposing that the limit exists at time 
0. There are many interesting situations, on the other hand, where there is convergence at 
time 0, and this will be the main issue in the sequel of the subsection. 

We start with a definition: 

Definition 2.1.7. A mesoscopic profile is a function mo E M(Rd), such that its sup norm 
llmolIm < 1. We call initiai mesoscopic state a family (mo, F L Y ) ,  where mo is o mesoscopic 
profieand, for each y ,  I*.'' is anyproductprobabiiib measure on [-1 ,  1Izd such that, setting 

my.o := r,(.,+(.))) (2.120) 

lim my,o = mo Lebesgue aimost everywhere (2.12b) 
y-0 
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Remarks. There are two typical examples of families (mo, py). In the first one, that we 
call the 'standard initial state', mo E C(Rd) and 
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~E;~(UW) = mo(yx) (2.12c) 

In the second example, mo is an arbitrary mesoscopic profile and the function my,o that 
defines pY via (2.12a) is'obtained by averaging m0 over each elementary square, see (2.8a). 
Then, by the martingale convergence theorem, my,o converges Lebesgue almost everywhere 
to mo. Observe that this latter example proves that there is an initial state, in the sense 
of definition 2.1.7, for any given mesoscopic state mo, so that the definition 2.1.7 is well 
posed. 

Theorem 2.1.8. Let (mo, p y )  be an initial mesoscopic state in the sense of definition 2.1.7. 
Let CY. 5 ,  a, b, n, k' and c as in theorem 2.1.6. Then 

with m:by' the block spin transform of q . 0 ,  defined in (2.12aJ. 
Observe then that as a consequence of (2.13aJ and (Z.lOb),' 

3 1 -cy" (2.13b) 

mFY'(., t )  being the block spin transformation ofmy(., t )  this latter solving (1. I J  with initial 
condition my@, 0) = my,&). 

Furthermore, for any t, my@,  t )  + m(r, t),  Lebesgue almost everywhere, where m(r, t )  
is the solution of (1.1) with initial condition mo. Finally, let (mo, py) be the standard initial 
state defined in the remark following definition 2.1.7. Suppose that mo E C'(Rd), with 
bounded derivative, then ,mPY'(r, t )  in (2.13bJ may be replaced by m(r, t ) .  

As a straight corollary of (2.136): 

PL"( SUP sup I (q , , , ) (~~y) (r )  -mpy)(r ,r) l  > yb) < cy" (2.13~)  

where PLY is the law of the Glauber dynamics starting from MY. Moreover, if (mo, p y )  

r$a log y-' l,l<(k'-l)y-~ 

is a standard initial state with mo E C'(Rd) having a bounded derivative, then 

Pi.( SUP sup l(cy.,)(a'y)(r) - m(r, t)l > yh)  4 cy". (2.134 

Further results are stated in theorem 4.9. The proofs of all the statements so far are 
given in sections 3 and 4. Proposition 4.8 and the appendix are not needed in this part of 
the analysis. 

,<alo:y-' l r ~ < ( P - l ' y - ~  
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2.2. Interface dynamics, motion by mean curvature 

In this subsection we restrict to J 2 0, h = 0 and ,9 > 1 after having imposed the 
normalization condition j d r J ( r )  = I. These assumptions are essential as we expect a 
completely different behaviour in the other cases. 

,9 = 1 is the inverse critical temperature in the Lebowitz-Penrose limi2.20 t, [ZO]: we 
are thus considering temperatures below the critical one. We denote by mg the strictly 
positive solution of 

mg = tanh(,9,,} ( recall that d r J ( r )  = 1). \ (2.14) 

The values *mg are the magnetizations of the two extrema1 Gibbs states'in the limit y + 0 
and are the thermodynamic values of the magnetization, [ZO]. Thus the function identically 
equally to mg (or to -ma), which is a stationary solution of (l.l), is interpreted as the mp 
(respectively the -mg) pure phase. 

The interfaces are then the regions which separate the two thermodinamically pure 
phases. We are interested here in the dynamical problem, namely the evolution of an initial 
state where the two phases coexist and are separated by an interface. We study the case 
when the phase mp occupies a 'large, but bounded region', while the outside is filled up by 
the other phase -mg. If the region is large and the interface sufficiently flat, then we will 
show that the evolution is simply described by the motion of the interface, namely with the 
phase mg in the region enclosed by the moving interface and the phase -mg outside. The 
dynamics of the interface, as we shall see, obeys the law of motion by mean curvature. 

Definition 2.2.1. Let 120 be a compact domain whose boundary, CO, is a Cm connected 
surface in Rd. Let 

1 
€ = A y  A =  

&iT=i 
(2.15) 

We denote hereafter by p' the product measure on (-1 ,~ l}@ with E;' (U(.)) = mg for all 
x in c-'A0 and = -mg in the complement. 

The above state does not describe the interface EO in the sense of definition 2.1.7. In 
fact the function 

converges pointwise to the function constantly equal to mg which is thus the corresponding 
mesoscopic profile. The size of the cluster of the phase mg becomes infinite in mesoscopic 
variables, which are thus inadequate for describing the interface 

Definition 2.2.2. We denote by f and t the macroscopic space and time coordinates which 
are related to the microscopic ones by 

< = E X  t = AZt  (2.16) 

and to the mesoscopic ones (r.  f )  by 

f = Ar t = A2t. (2.17) 
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We are denoting by A-' the parameter which separates the mesoscopic and the 
macroscopic scales. Times are then separated by the factor A-': this is the right scale 
to observe the motion of the interface, in other phenomena the relevant macroscopic scaling 
may be different. 

The choice (2.15), A = (logy-')-'/2, is motivated by [III] where it is'proven that 
the clusters size after phase separation scales as (logy-')-'/2. Our analysis therefore 
describes the interface dynamics right after the phase separation, with the further simplifying 
assumption of considering a single interface. The extension to many interfaces, as they 
appear in the analysis of [JII], should not bring in serious difficulties. 

The initial state fi< in definition 2.2.1 describes a profile with the pure phases mb and 
-mp respectively inside and outside of 6-lAo. CO is thus the sharp macroscopic interface 
between the two pure phases. It is sharp in macroscopic coordinates, as it should, but also 
in the mesoscopic ones, which is less realistic. The interface, after the phase separation, 
in fact has a different shape, with a smooth profile, in mesoscopic variables, connecting 
the values &ma, 111. As clear from the proofs in section 5, our analysis applies as well 
to this and to any other choice of the initial state, provided its interface becomes sharp in 
macroscopic coordinates. The choice 2.2.1 is dictated by the simplicity of its presentation. 

Delinition 2.2.3. We say that the surface Cr evolves according to the classical motion by 
mean curvature with parameter B z 0 in the time interval 0 < r < r*, if E,, for any such 
r, is the connected boundary of a compact region A, C Rd. We also require that there is a 
Cm, d - 1 dimensional, compact manifold So and a C*([O, r*] x So) function t = t ( r ,  to), 
with values in Rd, such that is equal to the set [e = t(z, to), E SO) and 

- = 6 K U  
d r  

(2.18) 

where v is the unit vector normal to Er at $ and pointing toward the interior of C,; K is 
d - 1 times the (signed) mean curvature of Cr at 5. 

If CO is a sphere of radius Ro, then C ,  is the sphere of radius R,, with 

There is a local existence and uniqueness theorem regarding the motion by mean 
curvature, in the context of definition 2.2.3, see [2] and references therein, which follows 
from general results on parabolic equations. It is known that in d > 2 singularities may 
develop after a finite time, while in d = 2 the only singularity which may arise is the 
disappearence of a cluster. More recent results describe what happens after the appearence 
of singularities yielding global existence theorems for the evolution, see [14] and references 
therein. Our results only cover the classical case. 

Theorem 2.2.4. Let C, be as  in definition 2.2.3, with B as in ( 5 . 2 ~ )  and fif as in definition 
2.2.1. Then there is < z 0 and for any 7 < r* and any n > 1 there is c, so that, for all y 
small enough, 

where Id(r, A-'C,)I denotes the distance of r from the suflace A-'&: the - sign in (2.19a) 
is for r inside A-' C, and the + sign for r outside. 
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More expressively, in macroscopic coordinates the set in (2.19a) is 

(2.19b) 

with t' _= A-%' and r ='A-'c. Therefore 'inside' and 'outside' C, we see respectively 
the phases ma and -ma. The quotation marks recall that the statement does not cover the 
neighbourhood of Cr of the points which are at distance less than AT from Cz. As the 
distance vanishes as y (and A) go to 0, theorem 2.2.4 gives a rather complete description 
of the evolution in the macroscopic representation. The result is however completely 
unsatisfactory in the mesoscopic description where space is magnified by a factor A-'. 
Then the size of the strip around the interface that is not covered by theorem 2.2.4 diverges 
as y + 0 and since this is where the interface has developed, our result misses entirely 
the stmctnre of the interface, which, in macroscopic coordinates, was simply the sharp 
discontinuity that separates the two phases. 

The proof of theorem 2.2.4 is given in section 5, it does not use the results stated in 
proposition 4.8 and in the appendix, so that it avoids the more refined and certainly more 
complex arguments involved in the proof of the statements in section 2.3. 

As already mentioned, theorem 2.2.4 describes the evolution of the system right after 
the phases separate, (under the assumption that the different interfaces move independently). 
The structure of the system much after phase separation should look essentially similar, if 
distances are measured in units of t112, which is thus the typical size of the clusters of 
the two phases. These later stages may be studied, to a first approximation, in the same 
context of definition 2.1.1, but with a different choice of A. The regime A = y', with 5 > 0 
small, can be treated, we believe, with techniques similar to those employed here. When 
the condition that { is small is relaxed, the analysis becomes more and more complex. As 
discussed in [NI, the fluctuations of the interface in a time f and in the simpler case d=2 are 
of the order of yt'14. They should therefore produce finite displacements of the surface (in 
mesoscopic units!) on the time scale t % y-4. The space correlations of the displacements 
have order t112 = y-*, which thus produce local changes of the curvatnre of the order of 
y4. By this argument, at 5 = 4 there is a competition between fluctuations and the motion 
by curvature. When { > 4 the leading contribution on a first time regime is purely due to 
stochastic effects, only later the effect of the initial curvature will influence the evolution, 
but the way this happens is still not clear to us. The real challenge is when A is independent 
of y and we take first h + 0 and then y + 0 this is the 'true hydrodynamic limit'. 
The interface is still expected to move by mean curvature and, we believe, with the same 
parameter. But the mechanism of convergence will be drastically different, because the 
stochastic effects to take into account will include events that in our analysis here are large 
deviations and have negligibly small probability. 

We conclude this subsection with a few bibliographical remarks. As clear from its proof, 
given in section 5, theorem 2.2.4 is essentially a corollary of theorem 2.1.6 and of a result 
in [9] ,  where the motion by mean curvature is derived by scaling (1.1) according to (2.17). 
Results on convergence to the motion by mean curvature have been obtained for other 
models: for the Glauber dynamics in king spin systems in d = 2, with nearest neighbour, 
ferromagnetic, interactions at 0 temperature, (231; for the GlaubertKawasaki dynamics in 
[I] and [18]. In particular the analysis in [I] allows to characterize the magnetization pattern 
also at the interface. In [18], the convergence is that of theorem 2.2.4 (i.e. not as sharp 
as required for determining the interface), but the result is proven even past the appearence 
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of singularities. The limiting evolution, in this case, is the generalized motion by mean 
curvature. 

The value of the coefficient 0 in the motion by mean curvature should be related, 
according to [23], to the mobility of the interface and to the surface tension by an Einstein 
relation. The validity of such a relation in the present context has been proven in [3]. 

2.3. Propagation of chaos and bounds on the v-functions 

In this subsection we state theorems on the factorization properties of the spin distribution 
at any given time t showing that the distribution is close (and converges as y + 0) to a 
product measure with means given by the solution of the mesoscopic equation (1.1). We 
consider the process starting from an arbitrary product measure, in particular from single 
configurations. We remain in the lattice, without going to the mesoscopic representation, 
and introduce the lattice analogue of (1.1) as follows. 

Definition 2.3.1. For any y > 0 the discretized evolution equation is 
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where (f o g )  denotes the discrete convolution of f and g, as in (2.66). 
my(x. tlu) the solution of (2.20~) with initial condition 

We then call 

my(x,O1u) =u(.x) for all x E zd and u E 1-1, I]@ (2.20b) 

i f  j~ is a measure, my (x, tip.) denotes the solution of (2.2OaJ with initial condition 
my(x,0[ f i )  =Ep(o(x)), foraLlx E .@. 

In section 4, see proposition 4.7.2, we discuss the relation between (2.20a) and (1.1). 
Equation (2.20a) and the actual spin flip dynamics are related because there is c such that, 
for all x, 

(2.21~) 

if vt is the product measure on (-1, with means 

(U(.)) = my(x, t )  for all x in zd (2.21b) 

In an ideal case where at all times the measure is a product measure, (2.21~) allows to 
compute the evolution of the expectations of the spins, hence to determine completely the 
distribution of the process at any single time. This property is called propagation of chaos, 
because in product measures there are no correlations between the spins, hence no ‘order’ 
is present. We say ‘propagation’ because factorization is supposed to hold initially. One 
can easily check, though, that in our case, and in general, propagation of chaos does not 
hold (the condition is verified for the independent particles, see for instance chapter I1 of 
[ 131, but this is ‘thi typical exception’). 

If some weak form of propagation of chaos holds, with the measure at any timet suitably 
close to a product measure, then, conceivably, the average values of the spins are also close 
to the solution of (2.20). We thus introduce ‘a distance’ between the actual measure at time 
t and the product measure U:, defined so that its averagesare m,(x, t lu) ,  and we prove that 
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this distance vanishes when y + 0. The distance is defined in terms of the v-functions, 
i.e. special linear combinations of the correlation functions and the function m y  defined 
in 2.3.1. We will see that the v-functions satisfy an integral equation, whose solution can 
be characterized quite explicitly yielding the desired results. A similar strategy has already 
been used in  several other models, see [13] for a survey on the method. A refinement of 
the v-functions, which leads to the introduction of the w functions, is developed in [11], see [m, to characterize the behaviour of the fluctuation fields and to evidentiate the effects of 
the random forces which, though infinitesimal as y --f 0, are nonetheless present. When 
there are instabilities, their effect is amplified and becomes macroscopic, as we shall see 
in [In] in the case of the spinodal decomposition after quenching from a high temperature 
pure phase. 

Behind the definition of the v and of the w-functions there are algebraic considerations 
classical in statistical mechanics, that will be made explicit in [II]. Before the definition of 
the v-functions we introduce some notation: 

Notation 2.3.2. For any positive integer n we denote by Z$' the coflection of all the sets 
& = ( X I ,  . . . , xn) in Zd with n distinct elements and write 1x1 = n. S is the union of Z$' 
over all n > 0, i.e. it is the collection of all thefinite subsets of Z', while S, includes also 
the subsets of Zd with infvlite cardinaliiy. 

Definition 2.3.3. When the Glauber dynamics starts from a single configuration U ,  the U 
functions are 

Analogous expression defines uY(., t l ~ ~ ) ,  when the process starts from a general product 
measure p?'. 

Theorem 2.3.4. 
(i) There are a z 0 and C' and for any n c so that, for all t < a log y-'. 

(2.23) 

(ii) The same bound holds when the process starts from a product measure pY and with 
my(& flu) (in rhe espression defining v y )  replaced either by my(x .  t [ / i ' )  or by my(r ,  t ) ,  
r = yx,  with my  solution of (1.1) with initial datum my,o, as defined in (2.12~). 
(iii) r f  (mo, p") is a 'stan2ai-d initial state' (see the remarks afer definition 2.1.7) and 
mo E C1(Wd) with bounded derivative, then 

where m(r, t )  solves (1.1) with initial datum mo(r). 

Observe that from (2.23) it follows that given any ( > 0 there is a > 0 and, for any n, 
c so that 

(2.25) 
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More precise estimates when t = 5 logy-', 0 -= r < a are reported in theorem 4.9. 
The mesoscopic limit is defined by letting y + 0 with the mesoscopic position r and 

the time t kept fixed: by (2.24) it then follows that, for the standard initial state and for 
any distinct r l ,  .., r. and for any t 

(2.26) 

We have thus derived the mesoscopic equation (1.1) also in the sense of'(2.26), showing 
that in the limit the spin distribution factorizes. 

A final remark about (2.23) regarding the fact that the bound improves with n, as y + 0. 
This is to some extent surprising, as one would not expect that the average of a product of 
n spins converges to the product of the averages faster than its rate when n = 1. This is 
indeed so, the whole point here is that we are not taking the average of the product of n 
spins, but rather a special combination of averages involving all the products of k < n spins. 
It is just this special combination which makes the convergence faster; notice however that 
if we keep y fixed and let n + 00, then the dependence of the coefficient c on n will spoil 
(at least in our estimates), the decay rate yd@. 

In [U] we will see that there are other combinations of comelation functions which 
describe in a more accurate way the factorization properties of the comelation functions. 

3. Short time estimates 

In this section we prove theorem 3.1, a weaker version of (2.23), where we impose the 
restriction t < y' with 6 any positive number independent of y. 

We use the following notation: for g E S (the set of all the finite subsets of Z d )  we 
shorthand 

Recalling that Er is the expectation of the process which starts at time 0 from the 
configuration U ,  we have 

Since 

C(x, 0) =,Obecause, forallx, m y ( x ,  01.) = u ( x ,  0) (3.3) 

(3.2) becomes 

where, for any function g(u, m), U E [-I, m E [-1, I]%", 

(3.4b) 
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L f )  is the generator of the process where only the spin at x flips, namely: 

L y f  ( U )  = c y ( x ,  u ) [ f  (UX) - f ( U ) ]  (3.5) 

We now restrict ourselves to t < y'. Since the integrand in (3 .4~)  is bounded uniformly 
in y ,  we see right away that lIEz(Z(x, t ) ) ]  < cy', for a suitable constant c. The bound 
that we want to prove, however, is much better than that and its proof requires more work. 
Our strategy is based on an iterative analysis of (3.4). Since each integral which appears 
in the iteration is necessarily extended to an interval smaller than y'. the terms with N 
integrals are then bounded proportionally to y N S  and, if $N > ndj2,  n the cardinality of 
- x ,  we then obtain the desired bound. Unfortunately the argument is not as simple, the 
trouble is that the expression on the right hand side of (3 .4~)  is neither a Z(y), nor a linear 
combination of them. Therefore when we write the integral equation for such a term, we 
obtain a more complex expression with a non zero contribution, in general coming from its 
value computed at time 0, unlike in (3.3)-(3.4a). We thus need a good characterization of 
the class of functions obtained after the action of products of the operators D@*) on Z@. 
This is accomplished in proposition 3.6 below, but we preliminarily need extra notation'and 
definitions. They are slightly more complex than what really needed in this section, but 
then we have the right setup also for the more delicate case of section 4, where we will 
extend the proof to finite and longer times. 

As we often switch from U to m, it is convenient to think of them both in the same 
space [-I, even though U belongs to the restricted ensemble {-1, The generic 
element of [-1, 1Izd is denoted by A, not to be confused with the h of (2.15), which will 
appear again only in section 5. 

Delinition 3.1. Wefirst define the operators 6;:. y E E*, which map [-I, 1 I z d  into itselfas 

i f x # y  
i f x = y  

2;A(x) = 

and then the operators a; mapping M([-I, I]@) into i t s e l fq  

a:f(h) = f(6:~) (3 .7~)  

We also dejne, for y E Zd and y E S, - 

(3.76) 

Moreover, recalling the notation (2.9d) andsetting y' = (y. y') c,Zd x Zd, y' E 
01 E (0, I), we define 

- y. 

(3.7c) 

where y* = (y;, .., y;) is afinite collection of elements y;, such that the entries yi, y:, of yr. 
i = 1, .., e, are all distinct. Their union is denoted by y*. We call S2 the ser of all y*. 

We will also use the convention that when a set isempty the corresponding operator is 
the identity. 

- 
- - 
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The operators a, and 8,. play the role of derivatives and indeed they Bre essentially 
derivatives when acting on functions which depend 'weakly' on A(?), as shown in lemma 
3.3 below. 

Definition 3.2. We denote by 3 the set of all f = ( x , ~ , , 1 2 , & , y ' ) ,  x 6 Z', y .  E S, 
i = 1,2,3, y' E S2, with the condition that all the sites in y , y , y and y* are different - -I -2 3 = 
from each other. Their union is denoted by V,. 

= ( x ,  2, , 12, &). We 
sometimes use the convention gdropping the entries of e which are emptysets, thus writing 
x for 

-1 

Eo is the subset of E with y' = 0, in that case we simply write 

. , . ,  , 
= ( x ,  0 , 0 , 0 , 0 )  as in the definition: 

&.p)(c) is a function supported in an interval of W containing the point 

- ~ l J y ( x .  Z) + hll 

and furthermore there is c so that if13 # 0 

Z E y ,  L E 1 ;  

llA(y,f)llcu 6 cy-' lZ(,,f)l 6 C Y d  

while if& = 0 and -. f ~ # 0 ~ 

~ ~~ 

lZ(,.f)I < cyd+'-=. 
-'-I+= 

IlA(y.f)Ilm < CY 
Ifboth = y' = 0 then the density in (3.10b) is a delta function at  f = 0. - 

(3.8) 

(3 .9~)  

(3.9b) 

(3.10~) 

(3.10b) 

(3.10~) 

(3.104 

(3.114 

(3.11b) 
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Proof. As all the sites in y l ,  . . . , y* are distinct, by definition, the operators that define fe 
in (3.9) commute. We thus start by computing a3fx(A).  We write y = (y3.1. .., ~ 3 , ~ )  and 

-3 

a3L@) =a,,, . . .a,, ,fx(U. 
We set, for j = 1, . . ,e ,  

F,  (1) = ay3,, . . . a,., .L W. (3.12) 

We claim that 

where 

Y”)  = the complement of {y,, . . . , yj]inZd 

hy,j(6) is supported by an interval Zy,j and there is cj so that 

IlAy.jIlm < C ~ Y  Izy,jl < CjY d . (3.13b) 

We will prove the claim (3.13) by induction on j .  We thus assume that (3.13) holds 

-d 

for j < and, writing 

$n := 81 C Jy(x9  Y ) ~ ( Y )  + A1 z = Y3.j+l 
Y E W  

we have 

a,tanh(’)($j+e) = -{tanhu)($j+, + 6 + p J y ( x . z ) )  
1 

2Yd 

Hence 

(3.14) 

(3.15) 

so that ’ 

hence cj+j = (1 +2BIIJll,)cj. 
The same argument shows that 

(3.17) 
1 

Ay.i(6) = ~ l ( k I  < BlJy(x,~3.1)1) 
so that the claim (3.13) is proven. 

The same argument applies to &.. The action of ay., y‘ = (y, y’), involves a change 
in the argument of the function tan$) from - [ J y ( x ,  y) - J y ( x ,  y’)] to its opposite. The 
difference is bounded proportionally to yd+’-u, recalling that, by definition Iy - y’l < y-#. 
Since a+ simply mounts to setting h(y) = 1 for all y E y , and analogously for 

0 

1y.1 = [ - B J y ( x .  Y3.1).8Jy(x2 B.i)I 
2Y 

-1 B 
the lemma follows, we omit the details. 
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Remark. As is clear from its pro% lemma 3.3 extends to the case when f x  is replaced by 
any function g E Cm of the argument Cy Jr(x, y)h(y)  + h. 

Definition 3.4. We call H the collection of all q = &, y .  h ,  .., e,,), with r and y in S, 
51 ,.., Cp in B and Ho the subset of all q = &, 0. cl, .., with ti E Eo. In this case we 
simply write q = &, 1 ._, ep) .  

A De Masi et aI 

- - 

We def.le 'the order of q' as 

lrll = 1x1 + 1x1 + P -  (3.18) 

We also set 

g(rl) = 121 + P (3.19) 

and cull it the g-order of q and, finally, recalling (3.10aJ, 

(3.20) 

We need a final definition: 

Definition 3.5. Given 7 E H ,  we define thefunction p,, E M({-1, I}@ x [-1, 11%') as 

P 
~ v ( 0 . m )  = z ~ d C x , . ~ ~ c ~ n [ f i ; ( u )  - -fC,(m)l (3.21) 

I id 

where, at := IyI, - z E Z$, 

In particular, i f q  E Ho, we restrict to this case in the sequel of this section, 
P 

P ~ ( U . ~ )  = 5 O n 1 f ~ ~ - f i ~ ( m ) 1  
i=l 

Finally ifall the entries of q are the emptyset, we write q = 0 and defne pe = 1. 

(3.22) 

(3.23) 

Proposition 3.6. There is M&, q',m), q, if in Ho, m E [-1, 
and U E {-I, 1JZa, 

so that, for a l ly .  q, m 

(3.24) 

are coefficients c(n, 4). n > 0, q 2 0, (independent of y )  such that for all y and all 
m E [-I, 1]Zd 

(3.25) 
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Proof. We start by computing the action of D(') on a single spin. By (2.20~). 

D ( " ) ~ ( X )  = L f ) u ( x )  - (- m(x)  +tanh(j3[Jy o m)(x)  + h ] } )  

= -C(x)  + [f&) - f Z W l .  (3.26) 

= 0, then p,, = C ( x ) ,  hence (3.24) and (3.25) are Notice that if x reduces~to x with all 
verified. To study the general caSe we first write: 

(3.27) 

(3.28~) 

a,' + a; rl.x = - [ftw -fi(m)i ' 

r3,x = a s [ . m )  - ~ 4 1  

r5+ = Y {2 f ~ ( m ) + m ( x ) ~ ~ a ~ f c ( m )  - fc(m)i. 

r2.* = a x [ w )  - ffwi 2 
r4,r = a m m )  

(3.28b) 
a,' +a; 

The equations (3.27), (3.28) hold for any function f(.), however if f = f f  there is a 
constant c so that 

I- I G C  ~ r ~ . ~ i  G C  uniformly in y. m and x (3.28~) ar,, 
am@) 

as we are going to prove. 

lemma 3.3 there is an interval I(,,f) and a function 
First observe that if x E Vf then r5,x = 0. We then suppose that x $ V,, then, by 

supported on and such that 

= / d€A(y,f)(€)tanh(d(f)(?J + E + Jy(.?,  x ) m ( x ) )  
4Y.4,  

where 

f = (.?.i, '&2'&3) ?J = B JvG, YMY) + Bh 
Y!% 

and, for a suitable constant c 

IlA(y,~)Ilm 6 II(,,t)l < C Y d .  



1 1 
2 4 ( ~ )  = -tanh'd(t)(JI+i-E+Jy(2.x))+ Z.tanh(d'~)(JI+E--Jy(2,x)) 

1 
~2 

+m(x){Ztanh(d(O(JI+~+Jy(2r~))  1 - -tanh'"")(JI+E- J y ( 2 , x ) ) \  

- t add( f ) ($  + E  + J&. x)m(x) ) .  (3.296) 

By expanding Q in powers to second order in  the small parameter Jr(2, x ) ,  we readily see 
that ( 3 . 2 8 ~ )  holds. 

Notation and remarks. We denote by ri,z, i = 1, .., 5 and 1 6 j < p .  the term 
(3.28b) when 6 = (j. 

set theoretical difference of A and B. 

the bounds ( 3 . 2 8 ~ )  hold for ri.=. 

in 

We use the notation A + B to denote the union of the sets A and B and A - B for the 

i = 1,  .., 5 does not depend on a(x); I$, i < 4, does not depend on m(x) ,  and 

We hereafter set q = Cc, h, .., eP), ti = ( i i ,  &. &, &). 

We write 

P c D(')pq = c3& - x ) [ n  r{, ,]D(")3(x) 
r €Z *€I j=1 

where 

(3.30b) 

( 3 . 3 0 ~ )  

the sum is over all the partitions of 1, .., p into five atoms, il,.., &; lijl denotes the number 
of elements in ij 
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and 

(3.30e) 

By using (3.26), the first term on the right-hand side of (3 .30~)  can be written as 

where the sum is restricted to 17'1 = lql and 

(3.31b) 

In fact the sum i n  (3 .30~)  has 1x1 terms and, using (3.26). each gives rise to two p,, functions. 
The second term in (3.30~) is also of the form 

(3 .31~)  

with 111'1 = lql + 1 and Iq'l = 1171, respectively for ri., and ri,,. We also have, for a 
suitable constant c, 

(3.316) 

because ri,x = ri,r = 0 unless Ix - it] < y- l :  in fact if li - .til > y-I,  then f i;(h) does 
not depend on h(x)  and & f i j  = 0. We then have (3.316) since by lemma 3.3, a,fij(m) is 
bounded. 

We are going to prove that also SI and S2 can be decomposed as the two terms above 
with coefficients which satisfy (3.25), and this will prove proposition 3.6. 

We start with some easy algebraic computation: let k 2 1 ,  then 

1 -U@) 

[-I - m(x)lk 

[-1 - m(x)]k 1 + a(x) 
2 [1 -m(x)lk + .(x)k = 1 

[I - m(x)lk - 
2 
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where given h, h' denotes its derivative with respect to, m(x)  times k ( x ) .  

A De Masi et al 

We write 

SI = s1.1 + S1.Z (3.34) 

where the decomposition arises from taking the term with and respectively without Z(x) on 
the right-hand side of (3.33). Namely 

(3.35c) 

with c and c' suitable constants. 
We next consider S1.2, ,which, with the shorthand notation k = [i31 + I&[ + 1, is 

which also has the form 

(3.366) 

X Y  d ( k l t ~ l t l L l + Z l & l )  < \ -  ,~ lx l yd (~ - l1 /Zy~ /2  = c ' / x l y d q / 2  (3 .36~)  

with c and c' suitable constants. 

k = 1L31 + I&[, we have 
Splitting Sz as we did for SI, we get SZ = Sz.1 + SZ,~. Recalling that in this case 
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The only contribution to ( 3 . 3 7 ~ )  comes from the terms with Ii31 + lbl 2 1 because 
a(0, m ( x ) )  = 0 and k = Ii31 + lbl. If i E b, Ix - f i l  < y-l. because of the operator 3, in 
rj.3 and r{,4. Therefore the sum is 'only' over (2y-I + elements, at most. 

S2.1 can be written as 
SZ,] = M ~ , ~ ( V ,  ti, m)p,, (3.37b) 

?' 

cyd~lLl+lhl+lLl+zlbl~ < \ c!Yd(q+')/2 

with c and c' suitable constants. 
The last term S2.2 can be written as S Z , ~  = S2.2.1 + Sz.2.2, where 

(3.37c) 

(3.374 

( 3 . 3 8 ~ )  

takes into account the sum of the terms with k = 151 + 
remaining terms have k 2 2, hence 

= 0. Since b(1, m(x) )  = 0 the 

x ~yd(lLI+kI+&l+21bl) < \ C Y  I qdj2  . 
The proposition is thus proven. 

( 3.38b) 

( 3 . 3 8 ~ )  

(3.384 

(3.38e) 

(3.385) 

0 
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Theorem 3.7. For any 8 
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0 and n > 1 rhere is c so that for all U: 

SUP SUP sup I.;&. rlu)l 6 cyd"/'. (3.39) 
.7 Ikl="14Y' 

Proof. By proposition 3.6, for v # 0 

We call qo = Q. 0,0,5), g E S, 1x1 = n and set 
dn 
2 N :  S N P - .  

By iterating (3.40a) N-times we get: 

By (3.25) there is C(n, q), (n, q )  E Z:, such that 

y - i q ' d ' z ~ h & h  v O ~ " l " ~ / ~  4 C(lvl, d h ) )  
n' 

with ky := Mi +A?;. Calling 
C'= max C ( p , q )  

we get from (3.43), after telescopic cancellations: 

d 

IL"+N 
qCln+#)N 

y-i90id/z E,+(,,, , , r ) $ q " ( o ,  0) < c*j+l 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

so that the sum over j on the right-hand side of (3.42) is bounded proportionally to ydni2.  
The last term on the right-hand side of (3.42) is bounded by 

By lemma 3.3 

SUP SUP Ifccul < c  

C ( M Y )  ( V O ,  rl') 4 ci 

A d(OGN(n+N) 

^ I  N 
so that the sup in (3.46) is bounded independently of y .  By (3.25) 

n' 

(3.46) 

(3.47) 

independently of y ,  hence'by (3.41) the expression in (3.46) is bounded proportionally to 
0 ydnI2. The theorem is therefore proven. 
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4. Extension to longer times 

In this section we prove the theorems stated in subsections 2.1 and 2.3 of section 2, extending 
the estimates on the v functions to times t < a logy-' with a > 0 suitably small. 

We postpone to proposition 4.7 the proof of the existence and of the uniqueness of the 
Cauchy problems for (1.1) and (2 .20~)  and of several other properties of these equations, 
in particular that the sup norms of the solutions of ( 1 . 1 )  and (2 .20~)  are bounded by 1, if 
that is so for the initial datum. First we introduce the basic notion of 'quasi-solutions' of 
(2.20~). 

Definition 4.1. Given a configuration U E ( - 1 ,  1lzd and s > 0 we denote by 

my.&, [ l o )  t 2 s (4.1) 
the solution oj(2.20~)  for t 2 s, which starts from U at time s. We set 

tk = k y  k E Z + , 6 > 0  (4.2) 

m,(X7tlblk)) =m, . , ( x , t l~~J ,  t k < f  < t k + l .  (4.3) 

and given any sequence E ( -1 ,  I ) z d ,  k E Z+. we dejine, for t 2 0, 

The junction m y  ( x ,  tl(alk 1) is called a 'quasi-solution' oj(2.2Oa). 

Strategy of proof. We study the Glauber dynamics by successively conditioning the process 
at the times t k .  The conditioning at tk fixes a configuration at& and the evolution in the next 
time step, [ t k .  t k + l ) ,  is well approximated in terms of t 1 o l k ) ,  as it ~ O I I O W S  from the 
analysis of the previous section. At the end of this time interval, i.e. at time tk+[,  we 
replace m,,,(x, tk+l lat&) by one of the true configurations which appear in the conditioned 
process, say u,~+, .  By iterating this procedure we thus construct a quasi solution of (2.2Oa). 
See chapter V of [13] for more comments on this approach. 

Clearly the method will be effective if two conditions are satisfied: first, for each k ,  
ult+, and my.,k(x, tk+[[u,&) should be close (with large probability and in a sense to be 
specified). If this holds we will say that my(x ,  t l ( ~ ~ ~ } )  has 'small discontinuities'. The 
second condition to prove is that a quasi solution with small discontinuities is close to the 
true solution, m y ( x .  t l u o ) .  We start from the latter condition. 

Definition 4.2. Given (Y E (0, 1) and k' > 2, we define the seminorms I1 f 
o j  j E M ( ( - 1 ,  1lzd) as 

and llfllk..o 

where, recalling (2.9d), 

(4.48) 

Thus, given < > 0, we say that a quasi-solution m y ( x ,  ~ I { U , ~ ] )  is <-accurate till time T and 
with respect to the seminorm I/ . 

( 4 . 5 ~ )  

if; for all y small enough, 

Ilmy.,k(., t k + I b Q ) ~ -  azk+l I/$,..u < y T  

[by(., 0) - dix+.., < Y (  

f o r  all tx  < T. 
We also say that it is (-accurate relative to the initial condition my(.. 0) if 

(4.58) 
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Proposition 4.3. Let 0 < 01 < 1, 0 < 6 < <, 0 < bz c min({ - 6, 1 - a], E as in (4.18) 
below and 

(4.6) 

Then for a n y  k* > 2, any my(.,O) E M(Zd) ,  Im,(.,O)I < 1, and any quasi-solution 
(my (., .I(ut,l) which is {-accurate rill time a logy-' with respect to the seminorm 11 . 
and relative to the initial condition my(. .  0), the following bound holds 

A De Masi, et a1 

0 e a < bz/E, 0 c b < b2 -a? 

(4.7) 

(4.10) 

(4.11) 

(4.12a) 

(4.12b) 



Glauber evolution with Kac potentials 659 

Using (4.12) we then obtain (4.11). 

we get, for 1x1 < k*y-' and all y small enough, 
Going back to (4.10), using the assumption that my( . ,  .l[ulk)) is <-accurate, by (4.11), 

where 

(4.13b) 

We define 

W X ,  t )  = L,.,(x, r )  if tw < t < tk+l.  (4.14~) 

We bound Ly,ik-L(x, tw) in (4.134 using the same (4.13~) then, iterating this procedure, we 
get for any t < a logy-' 

Let b2 be as in the text of the proposition, then for all y small enough and all 1x1 < k'y-' 

We now restrict ourselves to 1x1 < (k* -  l)y-'. We can then iterate (4.15) n = [ y - ' / 2 ]  
times. In fact K y ( x ,  z) = 0 if Ix - zI =- 2y-' so that all sites z reached in the iteration are 
such that 

(4.16) 121 < 1x1 + 2y- 'n < (k' - ~ ) y - '  + y-' < k*y-'. 

We then get, for 1x1 < (k* - l)y-', 

We set 

t :=supCK,(O,x) .  
Y x  

(4.18) 

Since L y ( x ,  t )  < 2, see proposition 4.7.1 below, we finally have, for all y small enough, 

(4.19) b ~ ~ ( x ,  t )  < yhe" +2- < y 
n! 

having used the definition of a and b and observed that for any b3 > 0 there is c so that 

(4.19b) 

The proposition is therefore proven. 0~ 
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The following is a corollary of the proof of proposition 4.3: 

Proposition 4.4. Using the same parameters as in proposition 4.3, let m y ( x ,  f) and f i y ( x ,  t ) ,  
t 

~ ~ ~ ~ ( . ~ o ) - f i ~ ( . . o ) ~ ~ ~ , ~  < Y'. (4.20~) 

0, be two solutions of (2.204 such that 

Then 

(4.20b) 

Proof. Replace in the proof of proposition 4.3 m y ( x , f l ( u f a ] )  by I j ly (x , t )  and U, by 
0 

We next prove that with large probability the trajectories of the Glauber dynamics give 

f i r @ ,  fk), for all fk > 0. We then obtain (4.206) from (4.7). 

rise to <-accurate quasi solutions: 

Proposition 4.5. For any k' > 2, 0 < a  c 1,6  > 0, a > 0, n > 1 and 

( < ordl2 (4.21) 

there is c so that, for all uo. 

(4.22a) 

(4.236) 

Then, using the Chebyshev inequality with power 2n, 

If all the xi are distinct, the expectation is a v-function, so that, by (3.39), it is bounded 
by yd". If the sites are not all distinct we use (3.32). We observe that for each sum 
which is missing we gain a factor ydu from the normalization, hence we obtain that the last 
expression is bounded by: 

c.y-"' max(y"", yadn).  

Since a < 1, the max is achieved by the second term, which gives the bound y"("-'{) , and 

proven. 0 
this proves (4.224. A completely similar argument gives (4.22b), the proposition is thus 
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Collecting the above results we have: 

Proposition 4.6. Let k', a, 8, 5, a and b as in proposition 4.3 and such that (4.21) holds. 
Then for any n there is c so that for  all UO: 

. 

Furthermore let py be a product measure, m y ( x ,  0) its means, m y @ ,  t )  the solution of 
(2 .20~)  with initial condition my( . ,  0), then 

Proof. The left-hand side of (4.24) is bounded by 

y-"10gy-' SUP KO( sup lIUf(.) - ~ , ( ~ , t l ~ o ~ l l K - . a  > Yb) .  (4.26) 

We add and subtract my.,,(. ,  tIcf,&) so that the probability in (4.26) is bounded by 

t140 logy-' ir<rss+, 

We use propositions 4.3 and 4.5 to conclude that the first term vanishes faster than any 
power of y .  The factor yb/2  can be easily taken into account by observing that y b / 2  > yb' 
for b' =- b and all y small enough. It is then enough to consider (4.7) with b' in the place 
of b. For the second term in (4.27) we proceed as follows. With a proof similar to that of 
proposition 4.5, we have that for b -= ad/2 and for any n there is c so that 

(4.28) 

We then split the time interval [O, tll in N subintervals of length E ,  E N  = t l .  Let 0 be 
the set of orbits U$, 0 < s < t l ,  for which at least two spins flip in the same subinterval and 
at sites within distance k*y-' from the origin. More precisely, 0 is the set of orbits such 
that there is n < N - 1 and two times, SI and s2, both in (ne. (n + 1 ) ~ )  and two sites X I  

and XZ,  lxil < k'y-' such that u ( x j ,  s:) = - u ( x i ,  s;), i = 1, 2. We denote by 

and by Bc its complement. 
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We claim that for E small enough 

(4.29b) 

To prove the claim we will show that BOc does not intersect the set on the left-hand side 
of (4,296). To this end we observe that my@, tlu) has a bounded time derivative so that 
in a time interval E it varies at most by ce, for some c independent of U ,  y and t .  In Uc 
there is at most one spin which flips in a time interval (nc, (n+ 1 ) ~ )  within distance k'y-' 
from the origin, so that if n6 < t < (n + I)€, 

2 
I+l Iluf(d -my( . ,  t l u ) l l ~ , ~  6 - m y ( . .  nclu)llt+,u + - + CE 

if b and 6 are small enough. (4.29b) is thus proven. 
From (4.29b) and (4.28) it follows that 

(4.29~) 
1 

pg([licr(.) -my(.,n+)llk+,a =- 2 ~ ~ ) )  6 ~ c y n + p ~ ( ~ .  

Ps(O) < Nc'L(4k'y-Z + l)dEt112. 

E-ltlCy" + €-'r,C'[(4k'y-Z + l)d€tiIZ. 

Since cy(x, U )  < 1, for a suitable constant c', 

Thus (4.29~) is bounded by 

By taking E = y k ,  with k sufficiently large, we make the second term vanish as any desired 
power of y .  Given that k, we then choose n so large that also the first term vanishes as 
fast as desired. We have thus shown that also the second term on the right- hand side of 
(4.27) vanishes faster than any power of y ,  hence (4.24) is proven. 

Proof of (4.2%). We write 

Y b  [ SUP - Ilmy(., t) - U~I I~ . .~  =- y b }  c [ SUP - Ilmy(., tlm) -of I I ~ + . ~  > -} 
. ,  K o l o g y  ' 2 f<alogy ' 

By (4.24) we then get for all y small enough 

Furthermore, if 

lluo -my(., o)ll;,a < yc 

by proposition 4.4, for all y small enough, 

(4.30) 

Y b  
SUP Ilmv(.. 0 -my(. ,  tlu~o)Il~.~ 6 1. 

I<o log y-' 

(4.25b) then follows from (4.2B). Since (4.254 follows immediately from (4.25b) the 
proposition is proven. 0 
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Proposition 4.6 ‘almost’ proves (2.10b) and (2.13b). The ‘almost’ is because my(., r lu~ )  
and my(.. t )  solve (2.20a) and not ( l . l ) ,  as required in (2.106) and (2.13b). We fill this gap 
in the next proposition, where we also prove several properties of (1.1) and (2.20~). For 
ease of reference we split the proposition in several distinct statements. 

Proposition 4.7.1. For any y > 0 and any m E M(Zd),  ijmlj, < 1, there is a unique 
bounded function m,(x, t )  on Zd x R+ which is differentiable in t in sup-norm. solves 
(2.2Oa) for all x and all t > 0 and satisBes the initial condition my ( x ,  0) = m(x) ,  for all x. 
Moreover Ilmy(., t)Ilm < 1 for all t 2 0. 

Analogously, for any m E M(Rd),  IlmlI, < 1, there is a unique bounded function 
m(r, t). which is differentiable in t in sup-norm, solves (1.1) andsatisfies the initial condition 
m(., 0)  = m(.). Moreover Ilm(r, t)Ilm < 1 for all t > 0. 

Proof. We consider the statement relative to (1.1).  the argument for (2.20a) is completely 
analogous and omitted. 

We fix T > 0 and for 0 < t < T we write the integral version of (1.1) 

dse-“-’)tanh(p[J *m(r,  s) + h ] )  m(r, t )  = e-’m(r, 0) + (4 .31~)  LC 
I {  
l 

which can be thought of as a fixed point problem for the map 

K : {U E M ( k d  x [0, T I )  : Ilull, e M + U E M(Rd  x [O, TI)  : /lullm < 1) 

defined as 

Ku(r. t )  = e-’m(r, 0)  + dse-“-”’tanh(p[J * u(r. s) + h ] ) .  (4.31b) 

For T small enough K is a strict contraction in the sup norm, with therefore a unique 
fixed point, m(r, t ) .  Since Ku(r, t )  is a differentiable function of t in sup-norm, the fixed 
point m(.. t )  is differentiable in t ,  hence m(r, t )  solves (1.1) for f < T .  Observe also that 
m(r, t )  - e-‘m(r, 0) is in c1(Rd x [O, TI) .  

As the solution at time T is in the same class as the datum at time 0, by iteration we 
have global existence. Uniqueness follows because any solution of (1.1) solves its integral 
version, which is a contraction. 0 

Proposition 4.7.2. There are c; and cz so that the following holds. Ler u y ( x ,  t )  be for each 
y a solution of (2 .20~)  and denote by U; (r, t )  the r,, k g e  of u y  (x , I ) .  Let my  (r, t )  solve 
(1.1) with initial datum m,,(r3 0) = u;(r, 0) andsuppose I[”;(., O)II, < 1. Then 

(4.32) limy(.. I )  -U;(., I I I I ,  < ckecar). 

Proof. Observe that u;(r. t )  solve (1.1) with J(r  - r’) replaced by 

Let 

then 

Ay@. r‘, := J ( [ r l y  - [r’ly). 

Ly ( r , t )  := l ~ ~ ( r , t ) - m y ( r , t ) l  

Ly(r .  2) < L‘ds(B[IJI *L,(r.s) + 2 v l }  

because, for a suitable c, 

and, by proposition 4.7.1, Ilu;Ilm < 1, llmYllm < 1. Hence (4.32). 
IJ(r - r’) - A J r ,  r’)l < cy  
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Proposition 4.7.3. Let my(rr  t )  solve (M), Ilmy(., O)ll, 6 1, my@, 0 )  -+ m(r, 0) Lebesgue 
almost everywhere and let Ilm(., O)llm 6 1. Then, for any t, mY(r, t )  -+ m(r, t )  Lebesgue 
almost everywhere, m(r, t )  being the solution of (1.1) with initial condition m(r, 0). 

Proof. By proposition 4.i.i 
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Ly(r, t )  := [m,,(r, t )  -m(r, t)l < 2. 

Then 

Ly(r ,  t )  < e-'Ly (r, 0) + ,3 I J I  * LY(r. s) 

(4.33) 

so large that the last term is less than E. On the other hand, Given any E z 0, we choose 
by the Lebesgue theorem, for any bounded region A, 

lim / drL,(r, 0) = 0. 
Y+O A 

It, then follows that for all y small enough, also the second term on the right-hand side of 
(4.33) is less than E .  By the arbitrarity of E we then conclude that Ly(r, t )  -+ 0 for all r 

0 

Proposition4.7.4. There is cd so thatforany V z 3fi11J11,, any T z Oand anypairm(r, t ) ,  
k ( r ,  t )  ofsolutionsof(I.I)such rhat m(r, 0) = k ( r ,  0)forall lrl 6 V T  and Ilm(.. O)lI, < I ,  
ll*(., 0)Ilm < 1, 

(4.34) 

for which this happens at t = 0. The proposition is thus proven. 

Im(0, t )  - liZ(0, t)l < c,e-rvlo~[v'~~'lrl '~)) for all t < T 

Proof. Define L(r, t )  = [m(r, t )  - k ( r ,  t ) ] ,  then L(r, t )  satisfies the same inequality (4.33) 
as Ly(r ,  t). We write (4.33) with r = 0 and N = 1 + [ V T ]  ([VT] the integer part of V T ) .  
Then only the last term on the right-hand side of the last inequality of (4.33) survives. Thus 
for the Stirling formula, there is c4 so that for any t 6 T 

Since N > V T  and V > 3811511, the log is positive and we have an upper bound if we 
replace N by V T .  The proposition is then proved. 0 

Proposition 4.7.5. There is c5 so that i fm(r ,  f )  and k ( r ,  f )  solve (f.l), Ilm(., O)II, < 1, 
Ilk(., O)llm 6 1 and Ilm(., 0) -e(., O)llm < E, then, 

Ilm(., t )  - liZ(., r)[I, < ecs'E for all t 2 0. 
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Proof. Defining L(r, t )  as in the proof of proposition 4.1.4, we obtain the result from the 
first inequality in (4.33). 0 

Proposition 4.7.6. There are ck and cg so that the following holds. Let m(r, t)~and %(r, t )  
sobe f l . l ) ,  Ilm(., O)II, < I ,  IIfi(., O)Ilm < 1, and suppose that there are 0 < 01 < 1, b > 0, 
U > 0 and c' so that 

Proof. We have 

lm(r, t )  - *(r, 1 )  - e-'[m(r, 0) - %(r, O ) I ~  

~ ~ r d s e - ( r - " ) ~ l ( ~ t m j . , s ) ) ( r ) -  ( J* f i ( . , s ) ) ( r ) l .  

We f ix  r and, setting j ( r ' )  = J ( r  - r'), we write the first convolution as 

1 dr'j(r')m(r', s) = 1 dr'j(rf){m(e.yj[r', s)' f [m(r', s) - mta.")(r', s)]} 

= 1 dr'j(r')m(=.Y)(r', s) + 1 dr'm(r'. s ) [ j ( r ' )  - j( 'J)(r')]. 

An analogous expression holds for fi. W e  then set L&, t )  = Im(Q')(r, t )  - fi('.Y) ( r 7 91, 
and, for r D, 

LY(r, t )  < e-'yb + 
hence the proposition is proven. 0 

Proposition 4.7.7. There is c, so that the following holds. Let m(., 0) E C'(Rd), assume 
that Ilm(., O)ll, < 1 and that llm(')(., O)II, < W. m(') being the derivative with respect tor  
of m. Let m[r, t )  be the solution of (1.1) with initial condition m(r, O), then m(., t )  6 C1(Rd) 
and 

1 

dse-"-"B( IIJllm[2cfyU + sup lLy(r',s)l] + 211J'llm~'-~} 
?'$D 

IIm(')(., t)IIm 6 e-'IIm(')(., 0111, + c7. (4.35) 
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Proof. The statement follows by differentiating (4.3la) with respect to r and using that 
0 

Proposition 4.7.8. There is a constant cg so that for m y  solution m(r, f )  of (1.1)  with 
Ilm(., 0) ]Im < 1, for any r E Rd and any 2 E Rd: 
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llJ(')Ilm <CO and that lim(.,t)Ilm < 1. We omit the details. 

Im(r.t) - m ( r  +e,  t)l < cs l t l  +2e-'. (4.36) 

Proof. Let 

D ( e ,  t )  = sup Im(r, I) - m(r + e ,  t)l. 

Then, for a suitable c, 

because 

BIJ * m(r, s) - J * m(r + t, s) I < B 

Recalling that ID(-% 0)I < 2, we then obtain (4.36). 

Proof of theorem 2.1.6. By (4.24) and using the notation (4.4a) and (2.94, we have 

dr'lJ(r - r') - J ( r  + e - r')l < cltl. 

O 

s 

(4.37a) 

Recall that my@. flu) solves (2.20a) whit initial condition U ( . ) .  We call q y ( r ,  I) the 
solution of (1.1) with initial datum uy = ryu. 

By (4.32) 

l l ry (my( . ,  tb)) - @y(.9  t)Ilm < c;ec2'y. (4.37b) 

We need to relate qy(r .  t )  to m(r, t ) ,  the latter being as in the statement of theorem 2.1.6. 
To this end we define &(r, t )  as the solution of (1.1) with initial datum equal to uy(r)  for 
lrl < k*y-' and equal to m ( r )  for lrl z k*y- ' .  By proposition 4.7.4 with T = a logy-' 
and V T  = y " / 2  we get that for y small enough 

SUP sup I ep ( r ,  t )  - 4y (rr t )  I < c4e-Y'' . (4.37c) 
, s a  log y-1 lrI<(k+-l/2)y-~ 

We next compare (&,(., t))(m") and (m(., I))'~'') using proposition 4.7.6. In this case 

D c (k'y-I - yl-" < lrl < k*y-' + y ' - " ) .  
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In fact, for lr[ < k*y-' - Y'-~ 

1@.qr) - ,(".V)(,)l = I@.qr) - m(u.Y) (r)l < y t  

because the block spin transformation involves values of 4, and m in lrl 6 k'y-' and for 
such r .  @,(r) = @,(r). The bound then follows using (2.10~) recalling that @,(r) = u,(r). 
Outside D and for lrl > k*y-' + Y'-~, by the same argument @ p ) ( r )  = m(a.,)(r). We 
can therefore apply proposition 4.7.6 with b -+ 5 and U + 1 - CL. We then get, recalling 
the notation (2.11). 

(4.374 sup l@?y)(r ,  t) - m(=,Y)(r, t)[ < c;iec6'[yc + y1-"(1 + c')].  
reD 

Then, by (4.374, 

sup SUP ~ + y ) ( r ,  t) - m@.,)(r, t)l < c4e-Y-' + cky-~6"[y' + y'-a(~ + c')] .  
6 0  log ,-' Irl<(k*-l),-' 

We finally use (4.376) to recover, from (4.37a). the bound 

(4.37e) 

(4.3751 

where 

A ,  = yb + c' zy  y + c4e-Y-I + cky-c6a[yc + yl-@(l + c ' ) ] .  

By chosing a small enough we have A, < y', for all y small enough and a suitable b' > 0. 
We have thus proven theorem 2.1.6 with b in the statement of the theorem taken equal to 
b'. U 

Proof of theorem 2.1.8. (2 .13~)  is proven by (4.25a) and proposition 4.7.2. (2.13b) 
is a straight consequence of (2.10b) and (2.13a). my@, t )  converges Lebesgue almost 
everywhere to m(r. t) by proposition 4.7.3. The statements in theorem 2.1.8 relative to 
mo E C'(Rd) are proved using that Imy(.. 0) - m(., 0)lm < C y .  Then, by proposition 
4.7.5, 

llm,(., r )  -m(., t)Ilm < e's'cy [[m~'"(~. t) - m(n*y)(., t)1lm < e'5 '~y 

hence (2.13a) with rn(=.y). Then, by proposition 4.7.7, the sup-nom of m - 
as yb ,  for some b z 0. The proof of theorem 2.1.8 is thus concluded. 

vanishes 
0 

We next extend the bounds on the v-functions proven in section 3 to finite times and to 
times t < a logy-', when a is sufficiently small, proving theorem 2.3.4. 

There are two key observations: first, by using proposition 4.6, it follows that the 
average of U:@, t[u) when each xi independently varies in the box By,,, is bounded, for 
any given y = ( y l ,  .., y"), by cybn. Second observation is that while the v-functions do not 
obey a closed set of equations, the new terms appear as averages or, more precisely, can be 
reduced to averages. The right algebra to evidentiate this finer smcture is that introduced, 
but not fuIly used, in section 3, to which we refer also for the notation that we will be using 
in the sequel. The'main conclusions of our analysis are summarized in a generalization of 
proposition 3.6: 
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Proposition 4.8. There are real valued coefficients M y ( q ,  q'. m) and M,ds(q, q', m), q and 
q' in H, (see defrnition 3.4), m E [-1, 1 I z d ,  such thatforall y. q, m and o E [-1, llzd 
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D ( ~ ) P ~ ( O ;  m) = 
.r€W ?)<EH 

(MY(qr vi, m) + ~ + ( q ,  71, m ) ]  p,,.(u, m )  (4.38) 

(po as in dejnition 3.5). The coefficients My and M? satisfy the following supportproperties 
and bounds. 

My ( q ,  q', m)  = 0 unless 171 = 17'1, g(q) = g(q'), d(q)  = d(q') and 
Support properties. ~~ 

d8 

ma]!Ib,lgmaxlV:I (4 .39~)  
I'EV 5-l 

with Vt as in defrnition 3.2; f E r j  meaning that f is an entty of q. 
My(v. q'. m) = 0 unless Iv'1 < 1q1 + 2, d(q') - d(v )  6 1q1 and 

max IVY1 < m a [  V,l f2.~ f'w FER 
(4.396) 

Bounds. 
There is C so that for all n > 1: 

There is co(n, n'), (n, n') E Z:, so that 

(4 .40~)  

(4.40b) 

Moreoverfor any b > 0 there are coefficients c(n,  n'), (n,  n') E E:, andpositive parameters 
b;, b;, {' such that b > b; {* > 0 and the following holds. Let (bl ,  bz, b3, t) be 
eirher equal to (d/2,  b;, b;. {*) or equal to (0, 0, 0, 0), then 

b; 

(4 .40~)  

The proposition is proven in the appendix by computing the left-hand side of (4.38) with 
a very careful classification of all the terms which are involved. There are no mathematically 
sophysticated argument to use, it is only necessary to find out the precise combination of 
the terms which leads to the desidered cancellations necessary for proving proposition 4.8. 
To make the proof really readable we have found no other way than to report it in great 
details. For its considerable length it is shifted to the appendix. 

We proceed by proving (2.23), the proof will make clear the need for the many different 
bounds in the statement of proposition 4.8. 
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Proof of (2.23). Let qo # 0, then, using (4.38) and denoting by m, = my(., tlu). 

The term at t = 0 is missing because mo = U ,  hence pqo(u, m) = 0 since qo # 0. 

values of (1171, g(q);d(q)), we introduce the following notation: 
As our bounds on the coefficients M y  and M,dp do not distinguish q's with the same 

. .  

- n = (n. m, e )  ( 4 . 4 2 ~ )  

(4.42b) 

(4.43) 

(4.44a) 

(4.446) 

As in the proof of theorem 3.6, we split K, = Kh+K;', where K;@, E') = 0 if E' = (0, 0,O) 
= 0 and K;'@. E') = 0 if E' # 0. We then iterate (4.44b) N times, N as in (4.53) below, 
and get: 

(4.45a) 

where I, is a shorthand for 

(4.45b) 

where so = t and 

(4.45c) 
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Observe that 
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ni < i i i  = no + 2i mi < mi E mo + iti 
~ ei < ii ,E ni (4.46) 

where the first two inequalities follow from the support properties of M y ( q ,  q', m) (see 
proposition 4.8), the third one is true by definition, as g(q) < lql. 

We start by bounding I,. We divide the terms in the sum over t ~ ~ . . ~ ~ ~ ,  according to 
the maximum value U attained by the first entry ni of 3 and to j ,  the label where it is 
attained, i.e. nj = U, and j is the first label where this happens. Then 

For (Kb) j&,  r ~ ~ )  we use the bound (4.40b), for (K')p-'-J' we use (4:40c). We have 

x ( K y )  t p-I - j  ( B , 7 ~ p - ~ )  K!(BpL~,O) = NY(iij)-'Nv(0) 

E*-, 

x { N y h j )  ~ ( K $ p - l - j ( B j .  r~ , , -~)  K ; ( E ~ - ~ .  0)Ny(0 ) - I ] ,  
54 

having noticed that Ny.  defined in (4.404, depends on q only via the triple associated 
to q. Since Ny(0)  = 1, recalling that by (4.46) (nj, mj, l j )  < ( t j ,  f i j ,  i,), we have from 
(4.40~) with bl = b2 = b3 = 0 

< c*(u, mo + pu)P- '~ , , h~) - '  = ?(U, mo + p u ) ~ - j y ~ " / ~  (4.471.) 

where we have used the notation 

with c(n, m) as in (4.40~). We also set 

c:(n, m) = max co(n', m') 
n'<",".* 

with CO(% m) as in (4.40b) and have 

(4.486) 

The leading term in (4.49), as y -+ 0, is the one with U =no. There is therefore a constant 
c ( N ,  3) such that 

We suppose that aC 2 d/2 (and as usual t < a logy-'), then the right-hand side vanishes 
satisfying the bound (2.23). 
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The bound of L,  in (4.454, is analogous. We use (4.40c), in the version with bl = d/2  
and (4.46) to get 

L < \ eC("a+zN) '~rdr l  ...~'~N-' dsniNy(L)a)-'c*[lio+ZN.mof N ( ~ o + ~ N ) ) ~  

x Y'"suP*(Ny b,v)d'h ( S N )  1 
"N 

where the sup* is over all those rzN whose entries are bounded as in (4.46). 
We will prove afterwards that there is C*,N such that 

Then by (4.51) 

L < eC(no+2N)l- c (no + 2 N ,  mo + N(no + 2 N ) ) N ~ & . N N y & ) - '  y ' ". (4.52) 

We then restrict ourselves to $ = (n.  O,O)? as we are interested in the case ,ono = ~ 5 ( ~ ,  t ) .  
L = n. With this choice Ny&) = 1 (recall that we are considering (4.40d) with bl = d/2,  
bz = b; and b3 = 6;). Then with a such that 2aC e (*, we can finally specify the choice 
of N ,  namely such that 

N !  

( 'N  > uC(n + 2 N )  + dn 12. (4.53) 

Then, from (4.52). 

L < cydn/Z 

with c a suitable constant. This bound together with (4.50) proves (2.23) which is therefore 
proven modulo (4.51). 

Proof of (4.51). Let q = (z, - y. t,, .., tp), then 

(4.54~)  is straightforward consequence of the definition (3.21), with the last factor obtained 
as follows. 

We write 

Z=(ZI,..,Z~; _ Y = ( Y I ,  ..,ye); Z '=(YI .... ye-11; d = (ZI. ... ze-i). 

Then, recalling (3.22), 

~ & 9  = x:.);'(L')X~+~,.yz(ze) 

so that 
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and 
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I CX~+~, .~~ (Z )~ (Z ) I  < I-%-=,yc(5(.))l  + &I + O 2 P  

hence (4.544. 

the averages d,,-=,.(5(.)). 

Iff(.) - f f (m) l  < c(d(c))sup Itanh(d(c))($c + E )  - t&h@(*))($bm + E ) [  

where 

We next show that the differences [ff,(~) - fe.(m)l can be also bounded in  terms of 

By lemma 3.3 there is c(d(.$)) so that, for any 5 ,  E = (x. y, ,  12.13,y'), 

(4.546) 
f ER 

Since in (4.51) we have a sup', we may restrict in (4.546) to d(c) < GN = N(no + 2 N ) ,  
by (4.46), and to [Vel < ZN, because in qo no 6 is present and, by proposition 4.8, the 
transitions q -+ q' in @(q. q', m) do not increase the max of [Vel, see (4.39a), while 
those due to My make the max of 1 V, I increase at most by 2, see (4.39b). 

There is therefore a constant c, which depends on no and N, such that 

I&(.) - f t ( m ) l <  cI 

and 

J ~ ( X , Y ) ~ ( Y , ~ ) ~  < C~~[~IV,IIIJII,I+~~CJ,(~,Y)~(~,~)~ 
Y W ,  Y 

The first term on the right-hand side is equal to 

(4.544 

and the inequality, by proposition 4.6, holds for all f < n logy- ' ,  with probilbility that 
vanishes faster than any power of y. as y -+ 0. Observe that we are not supposing that 
1x1 < (k' - l)y-', however the processes 

starting from 00 and 

starting from G;, ui(y) = U& + x ) .  have the same law. For the latter we can apply 
proposition 4.6. The same argument applies to the other averages in (4 .544  we thus 
conclude that with probability that vanishes faster than any power of y ,  p 7 ( ~ , , n a , )  is 
bounded proportionally to ybg(n) with a proportionality constant which depends, via (4.46), 
only on no and N .  The factor Ny(q) in (4.51) has an exponential factor y-bix('ll, so that 
by .choosing 6; equal to b in (4.54~) we obtain a bound independent of y. in the set where 
(4.54~) holds. The complement of this set has a probability which vanishes faster than any 

0 power of y ,  hence the proof of (4.51) is completed. 
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Proof of theorem 2.3.4. We have already proven (2.23), so that (i) is proven. 

Proof of (ii). the same proof applies to the case when the process starts from a product 
measure py and my@,  tlu) (that enters in the definition of the v-function) is replaced by 
m y @ ,  t lpy) .  see definition 2.3.1 for notation. 

If my@. t lu)  is replaced by m,(yx, t ) ,  as in the statement (ii), we use proposition 4.7.2 
to prove that 

sup sup Im,(x, t l p y )  -m,(yx,t)I 5 c ; y - ~ ~ + l .  
t<ulogy-'  x 

Hence for a small enough (2.23) remains valid even with m,(yx, t )  in the definition of the 
v-functions. The proof of (ii) is therefore completed. 

Proof of (iii). We have just proved the validity of (2.23) with m,(yx, t ) ,  my(r, t )  being the 
solution of (1.1) with initial datum my(r ,  0) = mo(yr), see (2.12a) and the definition of the 
standard initial state, (remarks after definition 2.1.7). Since mo E C'(lRd), by assumption, 
and llmbllm < CO. we have that for some c 

(4.55a) llmy(.9 0) - mo(.)Ilm < CY. 
Then by proposition 4.7.5 

Ilm,(.. t )  - m(., t))Ilm < cecs'y (4.55b) 

so that if f 6 a logy-' and a > 0 is small enough, (2.23) holds with n i ( y x ,  t )  replacing 
m,(x, t lpy)  in the definition of the v-functions. We write 

(4.56a) 

so that 

By taking the expectation and using the version of (2.23) proved with m(yx ,  t ) ,  we then 
U obtain (2.24) so that theorem 2.3.4 is proved. 

We actually have stronger results: 

Theorem 4.9. Let (mo, p,) be an initial state in the sense of defrnition 2.1.7 and assume 
that there are 0 < 01 < 1 and b' > 0 such that, for all y small enough 

(4.57) 

where m:b") is the block spin transform ofmy,o. the latter being as in (2.12a), while m:") 
is the block spin image of mo. 

Then there are a > 0 and given any T > 0 there is b > 0 so that the following holds. 
For any n and k* there is c so that 

(a.Y) (cl.Y) 11 < b' Ilmy,o - mo . Y 

(4.58) 

where m(r, t )  is the solution of (1.1) starting from mo. 
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Remark. the two examples mentioned in  the remarks following definition 2.1.7 fulfil the 
conditions of theorem 4.9. 

Proof. By (2.13b), (4.58) holds with m(s logy-') replaced by m$?"(r, s log which is 
the block spin transform of my(.', T log y- ' ) ,  solution of (1.1) starting from my.o. Denoting 
by m(a+')(r, t )  the block spin transform of m(., t ) ,  by proposition 4.7.6 and (4.57) we can 

where cy  bounds their difference at time 0. By proposition 4.7.8, m('J)(r, zlogy-I) is, 
for any given s, yb". b" z 0, close to m(r, r logy-I )  (if r < Q and a is suitably small). 

0 
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then replace m p y )  by m(aJ)(r, 7 log y- l ) ,  their difference being bounded by cAec6r'ogy-' CY. 

theorem 4.9 is therefore proven. 

5. Motion by mean curvature 

In this section we restrict ourselves to ferromagnetic interactions, J 2 0, in the absence 
of magnetic fields, h = 0, and below the critical temperature, > 1, having imposed the 
normalization condition J dr J = 1. 

The proof of theorem 2.2.4 is based on an iterative procedure similar to that used in 
[I81 to prove convergence to the motion by mean curvature in the Glauber + Kawasaki 
spin dynamics. The single steps of the iteration exploit the results in [9] and the previous 
estimates on the Glauber dynamics valid for t < Q log y-l . 

We start by recalling some definitions and results in [9]  that we will use in the following. 

Definition 5.1. The instanton iii : 1w -+ [-I, I] is an antisymmetric, strictly increasing 
function such that m'"(r) := iii(r1) (rl thejrst coordinate o f r )  is a stationary solution of 
(f.1). The instanton solution exists and it is unique, see [7, 9, IO] and [111,furthermore 

lim m(rl) = &ma, exponentinllyfast (5.1) 
r,-*m 

with m6 QS in (2.14). 

In [9] it is proven that under the macroscopic scaling defined in (2.17) the mesoscopic 
equation (1.1) gives rise to the motion by mean curvature of definition 2.2.3 with parameter 

r l  denoting the vector in the plane perpendicular to the first coordinate axis; N is the 
normalization constant: 

(5.2b) 

In [9] as well as in the analysis of the Al lenzahn equation, see for instance [4] ,  a 
fundamental role is played by the ferromagnetic inequalities. At the level of the mesoscopic 
equation (l.l), they say that if k(r, t) and m(r, t )  solve (1.1) and G(r,  0) > m(r. 0) for all 
r ,  then h(r,  t )  2 m(r, t )  for all r and t .  Here it is essential the assumption that J 3 0. A 
variant of the above inequality is based on the notion of super- and subsolutions of (l.I), 
namely functions which satisfy (1.1) with 2 instead of =, for the supersolutions, and with 
< for the subsolutions. Such functions are then respectively upper and lower bounds for the 
true solution, if they are so at time 0. The whole game is then to find super- and subsolutions 
which, in the limit y --f 0, squeeze (in macroscopic coordinates) the true solution toward 
a function which describes the interface moving by mean curvature. This is what done in 
[9], here we describe the supersolution, as the subsolution is defined symmetrically. 
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Definition 5.2.1. Let C denote a Cm suqace which is the boundary of a compact, connected 
region A C Rd. Let d ( ( ,  C), 6 E Rd be the distance of from C, i f (  E A, and 
minus the distance. tf t 6 A. The signed distance in mesoscopic coordinates is then 
d(r, A-lE) = A- 'd ( f ,  E), where 

Definition 5.2.2. For each A we set 

= Ar. 

?n&,U(r) = m(d(r, A-'C)) for Id(r, A-!C)l < Ro'1ogA-l (5.3a) 

with R; > 0 the constant Ro defined in (34aJ of [9]. The definition of m&(r) is then 
completed by setting 

m$Al(r) = f m ,  +A3'' for d(r,A-'C) 2 zkt%.logA-' (5.3b) 

The definition of m&(r) differs from the above one only in (5.3b), where we subtract, 
instead of adding, A3/'. m&,A)(r) are then super- and subsolutions provided Cz moves 
according to the following: 

Definition 5.3. Given A and i: > 0, we consider the two biased motions by mean curvature 
is a 

connected Cm sulface Mhich has a Cm parametrization 

t* = ( * (S.  to, A), <o E So, So aCm, d - , I  dimensional, compact manifold 

and 

in the time interval 0 < r < ?, T > O,, defined as follows. For each s, 

(5.4) 

We hereafter fix 8 as in (5.2) and h = A'lf, where 8 > 0 is the same as in section 8 of 
[91. We next state a classical result on parabolic equations, see [Z] and references therein: 

Theorem 5.4. Let Cz, 0 < r < t', be a motion by mean curvature as in defrnition 2.2.3 and 
let ( =~ ( ( s ,  (o), (0 E So, be the corresponding parametrization. Then, given any Ro > 0 
(we shall use the result with R: as in 52.2). for a[[ A small enough, 

:= [< : d ( t ,  CO) = ~2RoAlogA-I) 

is also a Cm suqace. Moreover, for any 7 e r*, for all h small enough and for all A small 
enough, there is a h-biased motion by curvature E&), 0 < r < I?, in the sense of defrnition 
5.3, starting at I = 0 from E&, and with parametrization ('(r, (0, A), where 60 E SO and 
So is the same manifold usedfor the parametrization of E,. Furthermore there is c, that 
depends only on and CO, so that 

[(*(to, r,  A) - ((to, T)( < ch 0 < s < 7. (5.5) 



676 A De Masi et a1 

We next recall a result proven in [9]: 

Theorem 5.5. Let E,, 0 < z < r*, as in theorem 5.4 and 8 as below dejinition 5.3. Then 
there is o > 0 and c so that for all U E [ 1.21 the following holds. 

Recalling definition 5.2.2, let ? be as in theorem 5.4 and for all h small enough and all 
0 < s < let 

( 5 . 6 ~ )  

are the motions by curvature with bias h = hs12 starting from E&) as in 

(5.6b) 

* rt 
mf(r ,  s) := mCzz)(r) z c (12s.h) 

where 
theorem 5.4. I fmi (r ,  t )  solves (1.1) fort s and 

m;(r, SI.< mA(r, s) < nzz(r, s) for a11 r E R~ 

then 

m;(r, s t u ~ - ~ )  + A" < mA(r, s + U A - ~ )  < m:(r, s + U A - ~ )  - A". ( 5 . 7 ~ )  

By repeated use of theorem 5.5 with suitably different values of U we also have that for 
all t such that s +A-' < t < A-27, 

m;(r, r )  +A" < mA(r, t )  < m:(r, t )  -A". (5.7b) 

We have now all the ingredients for proving theorem 2.2.4. The idea of the proof is 
actually rather simple. We know already that for times a logy-', a small, the spins and the 
solution of (1.1) remain close (with large probability) if they are so initially. As the error at 
the final time a log y-' is of the order of yb, b 2 0, we can then exploit the (much larger) 
extra term hw = (logy-')" in (5.7) to bound it and to conclude that the spin configuration 
at this time is squeezed between the sub- and supersolutions mf, if it was so initially. 
This property is obviously preserved under finitely many iterations and since the sub- and 
supersolutions disagree only by A312 outside of a macroscopically infinitesimal strip around 
the moving interface C,, we then obtain the result stated in theorem 2.2.4. 

When carrying out this strategy of proof we meet two kinds ad complications, that we 
have already met in section 4. The first one is an ultraviolet problem, and it is dealt with 
by using averages, as we do not have a control in sup-norm of the difference between the 
spins and the solution of (1.1). The second one is an infrared problem, we do not have 
closeness of the averages everywhere so we need to control the propagation of the errors 
unavoidably present at large distances. 

Let r > 0 be as in theorem 2.2.4. We then take ? = r in theorem 5.5. Let a, {, a and 
0 so small that (5.21) below holds and such that r /a  =: N b as in theorem 2.1.6, with Q 

is a positive integer. Setting 

s, = nu log y-' (5.8) 

we first define for any n'> 0 and-any spin trajectory ( u ~ ) , ~ ~  m(n)(r. t )  to be the solution of 
(1.1) for t > s, and such that m(n)(r, sn) = ~ ~ , ~ ~ ( r ) ,  for all r E Rd, see (2.8~) for notation. 
Then we introduce the set 

(r. 01 < yb, sn < t < 

R, = ( N  + 1 - n )  y-' II a non - negative integer 

I ~ I  < R"} (5.9a) 
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m(w (") as in definition 2.1.5. We finally set 

with my,o as in (2.12~). 
By theorem 2.1.6, for any k there is c so that 

(5.10) 

We will prove theorem 2.2.4 by showing that for all y small enough, any spin trajectory in 
G is in the set appearing on the right-hand side of (2.19~). 

We first prove a weaker version with the sup over t in (2 .19~)  restricted to t 
(sn, sn +A-'), for any 0 6 n < N - 1. For n > 1 we define 

F $ ( G ) > l - c y .  k 

(5.11) 

and @(,,)(r, t ) ,  t sa, as the solution of (1.1) such that @(")(r, sn) = @(")(r),  for all r E Ed .  
We also define @(oj(r) = my&) for all r E Rd and @(ol(r3 t )  the solution of (1.1) for f > 0 
with initid datum @CO)(.). 

Observe that the definition of the @(.)'s depends upon the trajectory (u,),~,,. We start 
by proving that in G, for all 0 6 n < N - 1, 

< < m:(.,sn). (5.12) 

We prove (5.12) by induction. Since it is evidently true for n = 0, we need only show that 
if (5.12) holds for n c N - 1, then it also holds for n + 1. By (5.76) 

mh(r, &+I) + .la < @(n)(r. & + I )  < mT(r, sn+d - Am. (5.13) 

Then (5.12) with n + 1 follows from (5.13) and the following bound, that we will prove 
next. There are 19 > 0 and c so that 

, /m(n)(r,  sn+l) - @(n)(r, s.+l)l < cy  for all lr/ < R,+~. (5.14) 

Analogously to (5.11) we define: 

(5.15) 

and z(a)(r, t). t > s,, as the solution of (1.1) with Z ( ~ ] ( . , S " )  = z(,)(.). Then, by proposition 
4.7.4, for any k there is c so that 

lz(,,)(r. t )  - q n ) ( r ,  r)l < cyk 

lzi:iy)(r, t )  - m::jy)(r, t ) (  < cy' 

lrl < &+I .  s, < t <$,+I (5.164 

lrl < %+I,  s, < f < % + I .  (5.16b) 
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By the definition of 8, 
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We then apply proposition 4.7.6 to z(,) and $I("), with a! and b and D as above, U = 1 -a! 
and c' a suitable constant. Therefore 

a < c;' min{l- a, b}. (5.21) 

Then (5.14) holds with 9 > 0 and with cy@ an upper bound for the right-hand side of 
(5.20). We have thus completed the proof of the induction and of (5.12). 

By (5.16) and (5.18), we have for any 0 < n < N - 1, 

(5.22) 

(5.23) 
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ld(r,A-'Z;2,,A))l > For y small enough Am > c'yH + y b .  Then for t < 
2R; logh-' and for all y small enough 

(m;)(''y)(r, t )  + AW - c'yb' - y b  > i m g  - A3/' (5.25) 

for r inside, respectively outside, A-' 
By ( 5 . 3 ,  expressed in mesoscopic coordinates, 

ld(r. h-'Z&)l > k ( r . A - ' X , ) l  - cA-'h. 

Hence (5.25) holds for all r such that 

(5.26) 

Id(r, l.-'Z,)l > 2R;logA-' +cA-'h > ~ c A - ' + ~ / ~  (5.27) 

(for all y small enough). Recall that h = As/'. 

the following inequality 
By (5.246), for all r as in (5.27) and all y small enough we prove the lower bound in 

+ mg - k3l2 < o$)(r) < *mg + h3l2 (5.28) 

The upper bound is proven by similar arguments. Recall that (5.28) holds for all t as in 
(5.23). We choose { < 6 / 2  in (2.19a) so that we have the desired estimate, but only at 
the times considered in (5.23). We can however repeat the previous proof with suitably 
different values of U ,  we derive the bound (5.28) for all A-4 < t < A-'?. In the 'short' 
time interval [0, A-6) we can afford a very rough estimate: by proposition 4.1.4, in fact, for 
any k there is c, so that (@(O)(r, t )  being defined below (5.1 I)) 

l@(o)(r, t )  i mgl < cy! r < A?, d(r ,  A-'.Zo) > A-26 (5.29) 

for r respectively outside and inside A- '& By theorem 2.1.6 and choosing < in (2.19a) 
so that 1 - 0 > 26 we then complete the proof of theorem 2.2.4. 
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Notes added. Katsoulakis and Souganidis in a recent paper [25] have generalized our results 
of subsection 2.2 by proving that the interface dynamics in the limit is ruled at all times by 
the 'generalized motion by mean curvature'. The macroscopic scaling parameter A, involved 
in this result, has the form A = y f .  < > 0 and small enough. 

The global (in time) convergence to a motion by mean curvature in d = 2 by scaling 
( 1 . 1 )  has been proven earlier by Butt&, [26]. 

In this case the only singularities which develop from an initially regular surface are 
due to its disappearence. 
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Appendix 

In this appendix we prove proposition 4.8. The notation is taken from section 3 and the 
strategy of proof is similar to that of proposition 3.6 but considerably more complex. 

When we compute E, D(x)pn(u, m) we find many terms, we first group them together 
according to the values of x in 3 classes giving rise to an expression of the form xi Z, 
with i = 1,2,3. The terms in each Z are still too many to be estimate convenientely and 
after some manipulation we write Z = cj T(i,j). We keep doing this kind of operations till 
we have a decomposition where each T,, K a multi-index, is such that 
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or 

(A.la) 

(A.lb) 

with M$ and M,  having the right support properti& as in  proposition 4.8 and satisfying 
the bounds (4.40). Since the number of subcases necessary to reach the situations (A.la) 
and (A.lb) are finite, we will then have proved proposition 4.8. 

The above classification has a branching structure, each branch ends when we reach an 
expression compatible with (A.I), Observe that we are not making explicit the dependence 
on y which is however present in M? and M,. 

Notation. We write 

and denote by Vtj the collection of all the sites in f ; ,  see dejinition 3.2. 

denote = (z,,  .., ze) and recall that 
The set y, which is the second entty in q, will be written as - y = ( y l ,  ._, ye ) :  we also - 

with A i B being the union, respectively the difference of the sets A and B. 
We will also use the shorthand notation 

F; := fi)(.) - fi;(ifz). 

As already mentioned, we start with 

(A.5a) 
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where the terms T(;) are identified by the following identity with the labelling corresponding 
to the order of appearance: 

Analysis of T(1). We have 

T,l, = q1.1, + q1.2, 
where, recalling (3.28) and (3.304-(3.30e) 

(A.64 

(A.66) 

(A.6c) 

We start from ?,.I). We write D(")cr(x) using (3.26) and we get 

q1.1, =: ql.1.1) + ql , l ,z)  (A.7a) 

T(~.~.~) = -C~.oC~~,~o~ornr ! ,~ .  (A.7b) 

T(l.1.2) is defined in (A.8) below. The right-hand side of (A.7b) can already be written as 

P 

X @  L i = l  

q1.1.1) = ~ ~ ~ , l , l ) ( v .  V I .  m ) w .  
'I' 

The sum is restricted to lq'l = [ql, g ( r f )  = g(q) and d ( f )  = d(q). Moreover 

but 

7' = (x ,~,  ti, ..CL) with 6; = ri,x. 

Hence, according to the value of I, it may be that I Vc; I = I V ,  I + 1. Thus M' is neither of 
the form M, (4.40~) is not satisfied with 5 = <*) nor A&, ((4.394 does not hold). 

To solve this problem we go back to (3.28~) that we read as a relation which expresses 
ri., in terms of fi  and riX,..&. We then distinguish the term with F, for all i and the 
remaining ones, thus writing 

q1.1.1) = q l , l , l . l )  + T(l,l,l,2) T(1.1.1.1) = -IXlP'I (A.74 
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(A.7e) 

with k = li31 + lid1 + 1. 
We rewrite Z ( X ) ~  using (3.32) and distinguish the terms with and without 5(x),  thus 

obtaining F1.1.1.2) = ~ I , I . I . z .  I) + T(1.1.1.z.z) with 

and it thus satisfies the conditions of proposition 4.8. 

the terms arising from T(I,z,. 
The two other terms T(I,J,,,Z,J and q l , l , l , z , ~ )  will be examined together with some of 

We next consider 

This term has the 'wrong' x-function because in (AA) there is 5& - x) instead of z&). 
We thus add and subtract x6-x,y0, getting - 

(A.lOa) 

which has therefore the form (A.lb) and 

(A.lOb) 



Glauber evolution with Kac porentiaLs 683 

Moreover, since 1171 = lq‘l, d(q) =if($) and g(q’) = g(q) + 1, 
N m c  l‘wl,*.z.l,(v,~ v‘, ” v r l ‘ ) - l  < Izlyb’ < ILIYC. (A. 1 Oc) 

n’ 

Thus M ~ I J , ~ , ~ ~  satisfies the bounds (4.40) and the support properties mentioned in proposition 
4.8. 

Recalling that l = IyI, writing p := z - z’, y‘ := y - yi - - -  

we then have 

(A.1 Ib) 

which is also of the form (A.lb). For a suitable constant c, @roportional to Ixllyl, - this is 
why these terms are not Mdg terms), 

N,(v) ~ I M ( , . , . 2 , 2 ) h  v‘, m)INAv’)-l < cydu < cyT’. (A.llc) 

Observe that lrll = Iv’L d r l )  = g(v’), 4 r l )  = d(rl’), Ny(q)Ny(rl’)-’ = 1, hence M(1.1.2.2) 
satisfies both (4.40b) and (4.40~). For the last inequality to hold we mu,$ choose, b < dor, 
which implies <’ c dor. 

rl‘ 

We next examine T(1.2) together with the remaining terms T(~.L.I.Z.I) and T(I,I,I,z.z), thus 
completing the analysis of T(l1. By comparing (A.6c) and (3.30b), 

The decomposition (3.34) gives rise to 

T,,,, = T(I,Z,l) + T(l,Z,Z) (A.12b) 

where T(,,Z,J, given in (A.IZc)-(A.l2d) below, and T(I,z,z), see (A.17) below, are obtained 
from (A.124 with SI replaced respectively by SI.I, see (3.35a), and by S1.2, see (3 .36~) .  
With respect to the analysis of section 3 we need to distinguish the two terms that arise 
using (3.261 for D(”’E(x) in (3.354. We obtain T,L,z,I) = T(1.2.1~) + T(1.z.1.2). with 
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where, recalling that in the following expressions k = 151 + [&I + 1, 
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+x,... = - m ( x ) h ( k ,  m(x))rt, + [m(x)%(k. ~ ( x ) ) r ~ ~  (A.12e) 

(A.12f) 
i 

$&.. = m(x) '4z (k .  m(x))i-&. 

By changing 

rl,, + F, +x.... -, (-i)p-~~J+la(k, m(x))r$, 

we obtain T(~.~.i.z.i) from T(i.z.i.1). see (A.78. The bounds for these terms are identical, and 
we will only consider T(1.2.1.i) in the following. 

The right-hand side of (A.12~) has the form (A.lb) with 

Id1 = 1q1 - (ILI + lbl) ' g ( d )  = - ( I d  + IL.551) d h ' )  = d(tl) + (IizI + 1&l) 

and 

V(rl') < V ( d  + ( I l l  + 1LI + ILI) 

so that the support properties stated in proposition 4.8 are satisfied by M(I ,~ , I ,~>.  Moreover 

(A. 1 3 4  l ~ ( l , Z , I , l ) ~ ~ .  Ill. m)l < clxl 
'i' 

with c a consant dependent on q,  and 

If bl = bz = 63 = 0, then A 2 d/2(1&1 + lisl) and (4.40~) is satisfied. If on the other 
hand bl = d/2, bz = b;, 4 = b;, by the first equality in (A.13~) we have (4.40~) satisfied, 
choosing (* < d - b; - b;: the left-hand side of (A.13b) is then bounded by cy",  having 
recalled that 1i21 + . . . + 1Ll 2 1 (because lil I < p ) .  

Proceeding as in (A.Il), we decompose T~1.2.1.2) into the sum of the following two 
terms: 
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x k.P' ,l+l~l+iL1+21~,1)rfl,,,,r~ 4r [f x - fx (m) l  (A.14b) 
I,..,.U 
W < P  

(recall that z' := z - z; and := y - y j ) .  The represenetion (A.lb) holds as well for 
both terms, the coefficients My satis6ing the support properties of proposition 4.8 and the 
bound (4.40b). Moreover, recalling (A.l3c), 

N,(rl) IM(1,2,1,2,l)(rl, II'. m)INJII')-l < c yAh-b)+h < cy<' .  (A.15) 
i, .... 7 
r M < n  

'I' 

We have, in a similar way, 

Wtl) lM(1.2.1,Z.Z)(rlr '7'. m)lN;(tlJ)-1~< c yA&-2')+dO < cy<'. (A.16) 
Il....U 
L,l<,? 

'I' 

The term 

y~((&I+I~I+ILI+21bI)ri~ 1.r. .Gx (A.17) 

is obtained from (A.12~)  with SI replaced by S1.2, the latter as in (3 .36~) .  
By changing in (A.17) 

ri,, + F, [m(x)~b(k,m(x))r~x]' + (-l)p-lLll+lb ( k 7 m ( x )) rk 
we obtain T(1,1,1,2,2) so that the bound for this term is reduced to that for T(,,2). 

By using again the decomposition (A.lla), we get T(I,I,z) = T(r.2.z.1) + Tc1.2.2.2) which 
both have the representation (A.lb). The support properties and (4.40b) are verified and 
since b(1, m ( x ) )  = 0 and k = Ihl -t ILl+ 1, 

(A. 18a) A&,..&)-(d/Z-b,) NY(7l)~IM~1,2*.1)(rl. r l ' 3  m)lNY(II')-l < c Y 
'I' l&l+lLl>l 

Recalling (A.13~) we have that in each term of the sum there is y raised to the power 

dD(li3l + 1LJ - 1) + (bi - bz)ILl + ( 3 d P -  bz)lisl + (d/2 - b3)ltl 
+(d-b3)li2l+bl(l +lisl). (A. 18b) 

Since I&]+ [&I 2 1, (A.18~)  is bounded proportionally to y" if 61 = dj2 and to a constant 
if b, = 0 (recall that if bj = 0 then also b2 = b3 = < = 0). This is due to the term li+ = 1, 
1i21 = [Ll = [isl = 0; all the other terms have a factor y raised to some positive power. 

With similar arguments, we also get 

which is bounded proportionally to 
side of (A.18~)  is bounded by a constant. 

because we have already seen that the right-hand 



(A. 19) 

(A.20~)  

(A.20b) 

We start with 2"(z,I). Like in (A.74 we write r:,, in term of F, and r!, , e  = 2 . .  . . , 5 :  

(A.21) 

(A.22a) 

(A.226) 

(A.22~)  

(A.224 

(A.23a) 
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q2.1.1.1) = -@,, ~ & , , ~ ) ( v ~  m )  = - e ~ , , ( .  (A.23b) 

As in (A.@, T~z,I,I,z) has the wrong x function, then, as in (A.Il), 

q2.I.l.2) = qz.1.1.2.1) + q2,1.1,2.2)' (A.24~) 

where 

(A.24~)  

where z',' = z - zi - z j  and, analogously, - 9j = - y - yi - y j .  Then ( A l a )  holds with 
K = (2,l .  1,2. 1) and 

l l ' = ~ , y i , ~ ~ , . . , ~ ~ , ~ ~ + l )  - f p + ~  = ( ~ , 0 , 5 , 0 . 0 )  (A.25a) 

c I ~ ~ l , l , 2 , l ) ( v ~  11'. m)l G e. (A.25b) 
'I' 

The representation (A.lb) is valid for K = (2, 1, 1,2,2) and we have 

(A.26a) 2 do c l~(2,1,1,2,z)(113 11'. m)l < e Y 
'I' 

(A.26~) 

For the first term the representation (A.lb) holds, (4.40b) is satisfied and, recalling (A.12c)- 
(A.13b), for a suitable constant c 



688 

Thus, using (A.13c), we prove that for this term (4.40~) holds. We then consider T(z.1.2.z.2) 
that has the same expression (A.26~) except for Z k + x )  -+ Z(x) and a(Ii3l + ILI, m(x)) 
+ b(1i31 + I&l, m(x)).  Since now there is just ?.(x) ,  the x function is the wrong one and 
we need to proceed Iikein(A.11). Wethenwrite Tt2.1.2.2.2, = T~2,1,2.2,2.~~+T~~.1.2,2.2.2) with 
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The term T(z,I,z,I), see (A.22~1, will be studied together with the term Tp.2). see (A.20b). 
This can be written as 

For any fixed i in (A.27e) we write 

- x ’ = g + x  - y ’ = x i  qr = k‘, Y’. - tl, ... t,J. (A.28) 

Then the curly bracket in (A.27e) is equal to the curly bracket in (A.&), when the latter 
is defined starting from q‘ instead of q. The same remark applies to q2.1.z.1) which, via 
(A.28), is identified to the term (A.7e), its estimate is omitted and we will only consider 
the latter. Proceeding as in (A.12b)-(A.18) we have 

T(22) = T(Z,Z,l.l) + q2.2,1,2.1) + T(Z.Z.l,Z.Z) + T(Z.2.2) (A.29) 
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All these terms have the form (A.lb), the bound (4.40b) holds for each of them and. with 
A = A(L2, . . . , &) as in (A.13c), 

if K = (2,2, 1, l), see (A.13b) 

if K = (2,2. 1.2. I), see (A.15) 

if K = (2,2, 1.2,2), see (A.16).~ 

< cy-b  (A.30) 

For K = (2,2,2) we get y-bi times the bound in (A.18c) 
We have thus completed the analysis of T(z). 

(A.31a) 

(A.31~) 

The ananlysis of q3.2) is postponed to the end of this appendix and it is similar to that of 
the other terms already considered. The analysis of T,,,,) instead brings new difficulties not 
already met before, as we are going to see. We write 

q3.1) = q 3 , l . l )  f q3.1.21 (A.32) 

By (3.26) we write 

where 

(A.33) 
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P 
q3.1.1.2) = - Cyd C3.o Cx,+,.,o6wrfl F~I(~;, ,  + r6,z)rfx(~) - fx(m)l. 

i = l  .x$, 1 j#i 

(A.33b) 

= a,ft(u). We will use this in the analysis of (A.33~) together By (3.28b), rS,* + 
with the identity: 

We then have 

T(3.1.1.1) = q3.1.1.1.i) + T(3.1.1.1.2) + T(3.1.1.1.3) 
where 

(A.35~) 

and, recallin,o the definition of Vt in definition 3.2, 

(A.35~) 

Then (A.lb) holds with K = (3, 1, 1, 1, I ,  1) and, for a suitable constant c, which depends 
on q3 

~ I ~ O , l . I . I . I . l ) ~ t l . ? ’ . ~ ~ l  s c  (A.36~) 
D’ 
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N ~ ( v )  IM(u,i,i,i,i)(q, 11'. m)lNy(q')-' 6 cy (d/Z-bI )+at-& (A.364 
d 

which, for bl = d/2 is bounded by cy<', provided bz - b; > t*. 
We next write Tp.1.1.1,1,2) = T(3.1.1.1.1,2,1) + T(3.1.1,1.1,2,2), collecting in the first term the 

labels i such that d((i) = 0 (see (3.10a) for notation) and in the latter the other values of i :  

T(;.~,I.I.I.z.I) = - y d  Ca,ft,(m)zm C X ~ . ~ + ~ ( Z + X ) G . ( Z + X ) I ~  F ~ I  (A.37) 
Z+X J i i  

Thus (A.la) holds with K = (3, 1, 1, 1,1,2,1) and (A.lb) with K = (3, 1 ,  1, l .  1,2,2) We 
have 

I ~ ~ ~ , ~ . ~ , ~ , ~ , ~ ~ ~ ~ ,  v', m)l 6 (2y-I + I ) ~ ~ ~ P c ( o )  (A.39~) 
n' 

where C ( k )  is such that, for any 6, 

(A.39b) 

We then have 

(A.41) 
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where i labels the four terms on the right-hand side of (A.40b), in the order of appearence. 
By adding and subtracting j$(m) to ff((u), we get 
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%I,I,I.z.~) = To,I,I,I,z,~,I) + ~~.I.I.I.z.I.z) (A.42~) 

the first term being the one with F;. 

j = 1.2. For all such K and for a suitable constant c: 
Again the decomposition (A.16) holds with K = (3 ,1 ,1 ,1 .2 ,  i. j ) ,  i = 1 .  _., 3 and 

When i = 4, we have Z@ instead of Z&+X), hence the wrong x function. We write, as 
in (A.ll), 

(A.45~)  

x x ~ + ~ . ~ ;  w ) z G ~ ) [ ~  F ~ W ' ( ~ ( X ) ~  - i ) a , a ~ .  (A.45b) 

The terms T(3.1.1.1.z.4.z.i) are those in (A.45) with Fi replaced by fe!(m). Thus we have 

1 j # i  4 

that (A.lb) holds for K = (3, 1, 1, 1,2,4, i ,  j )  and, for a suitable constant c, 
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We next consider q3,1,1,1,3), see (A.354, that we rewrite as the sum of ~3.1.1.1.3.1) + 
~ ( 3 . l . 1 ~ . 3 , ~ ) ,  by adding and subtracting' &(m),  (~3 ,1 , l ,1 .3 .1)  comesponds to Fi). me 
representation (A.1b) then holds for K = (3, 1 , ~ l .  1 , 3 ,  i f ,  and, for a suitable constant c,  
and for i = 1.2, 

We now go back to T(3.1,1,2), see (A.336), that we write as 

(A.48) 

where h = 1 comes from selecting ri,, in (A.336), h = 2 from Fix; j = 1 corresponds to 
the first term on the right-hand side of (A.43) and j = 2 to the seiond one. Therefore 
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The representation (A.lb) holds for K = (3, 1, 1 ,2 ,1 ,  i). (3.1, 1,2,2,2) and 
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IMA~, vr, m)l G c 
'I' 

for a suitable constant c: moreover 

~ ~ ( 7 )  IMAV, v', m)INy(7')-' 
llf 

(A.50) 

y(d'Z-bl)+h-bp when K = (3,1,1,2,1,1) 
when K = (3,1,1,2,1,2) (A.51) 
when K = (3,1,1,2,2,2). 

We write 

Therefore (A.la) holds with K = (3. 1, 1,2,2, 1, 1)  and also, for this term the bound (4.40~) 
holds. The representation ,(A.lb) holds for K = (3, 1 ,  1,2,2,  1,  Z), (A.40b) is satisfied and 

Ny(V) lM(3.1.1.2.2.1.2)(% V' ,  m)lNy()7)-' < Cyba < CY". (A.53) 
'I' 

The only terms which still need to be estimated are T(3.2) and T(3.1.2). Except for constant 
factors, the terms in q3, l .z )  are identified with terms which are present in q3.2) .  in analogy 
with similar identifications in the analysis of q 1 )  and we omit the details and just 
consider Te.2). 

The curly bracket term in (A.31~)  is the term S2 in (3.30~) with x + & + z. The 
decomposition of Sz in section 3, see(3.37), (3.38), will be repeated here, but the special 
role of z will require a finer classification of the terms. 

We write 

TC3.2) = TO;2.1) f q3.2.2)  + q3 . .  2 3) (A.54) 

according to the presence of 6 ( x )  (the first one), the presence of [ fL(u)  - fx(m)] (the last 
one), or the absence of both (the second one): 

(A.55~)  
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where, see (3.37a) 

T(3.2.1) is already of the form (A.lb) and, for a suitable c, 

lM(3,2,l)(?, 7 ' 9  m)l < C(2Y-' I )dy2d 
R' 

because ~ ~ 2 ~ + . . + 2 ~ ~ 5 ~  > 2. We also have 

(A.57a) 

with A(.) as in (A.13~). A(.) can be also written as 

A(.) =[d/2-b3l(l~~l+1~3,1)+[1.1 ~ b ~ 1 ~ l ~ l + l & l ~ + ~ I ~ l + 1 i ~ 3 + + . ~ 4 / + ~ 1 i ~ l ~ d / ~  
(A.57~) 

and, since 1i2[ + . . . + 1 & 1  > 2, we have that 

A ( . ) - d / 2 - b l  > d / Z - b l  +2min([d/2-b31.[bl -1.21). (A.57d) 

The bound (4.40~) thus holds for Mt3.2,~). 
Both q3,2,2, and q, , , )  have the wrong x-function. As before we write 

t 
6 w x , + , , y o  - =Wx,.,O~O -~x,.,(~)u&+~)Xh+~.r'(Li) - , . ~ (A.58) 

and using this in the expressions for T(3.2.2) and T(3.23) we obtain T(3.2.2.i) and T0.2.3.i)~ 
i = I ,  2, for the first and the second term in (A.58). These are finally of the form (A.I1.), 
the bound (A.57a) holds for these terms as well and 

i = I  

Ny(?) lM(3,2,j,h)(73 ?', m)INy(q')-'~ 
R' 

if j = Z , h = l  

that, recalling (A.57c)-(A.57d), proves the validity of (4.40~) also for these terms. 
Proposition 4.8 is therefore proven. 0~ 
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