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Abstract. This is the first of three papers on the Glauber evolution of Ising spin systems with
Kac potentials. We begin with the analysis of the mesoscopic limit, where space scales like
the diverging range, ¥ ~!, of the interaction while time is kept finite: we prove that in this
limit the magnetization density converges to the solution of a deterministic, nonfinear, nonlocal
evolution equation. We also show that the long time behaviour of this equation describes
correctly the evolution of the spin system till times which diverge as ¥ — 0 but are small in
units logy~L. In this time regime we can give a very precise description of the evolution and
a sharp characterization of the spin trajectories. As an application of the general theory, we
then prove that [or ferromagnetic interactions, in the absence of external magpetic fields and
below the critical terperature, on a suitable macroscopic limit, an interface between two stable
phases moves by mean curvature. All the proofs are consequence of sharp estimates on special
comelation functions, the v-functions, whose analysis is reminiscent of the cluster expansion in
equilibrium statistical mechanics.

AMS classification scheme numbers: 60K35, 82A05

1. Introduction

The van der Waals theory of phase transitions describes systems with forces which are
repulsive at short distances and have long attractive tails. By scaling the attractive part of
the interaction, it is possible to construct a family of models where the above condition is
satisfied arbitrarily well. This idea was proposed by M Kac in the context of equilibrium
statistical mechanics, where the limit case reproduces exactly the van der Waals phase
diagram, as proven in a wide variety of systems, {17, 20]. Also the metastable effects
predicted by the van der Waals theory are to some extent recovered by this approach [22].

Non equilibrium properties for systems with Kac potentials have been studied in [5, 6,
19] and, more recently, [24]. Inspired by these works, we begin in this paper a systematic
analysis of the Glauber dynamics in Ising spin systems with Kac potentials, which will be
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further developed in two successive papers, [II] and [II], we will refer to this one as [I]. (An
unpublished version of [I] and [II] has appeared a year ago, [IV]: it contains the analysis
of the system with different rates of the Glauber dynamics. It also gives a short survey
of the physical backgrounds and a list of open problems). As we shall see, the model
has a surprisingly rich structure and it exhibits a great variety of physically interesting
effects. Phase separation, development of interfaces and interface dynamics are the main
issues of our analysis. In particular in [III] we study the phase separation after quenching
down, below the critical value, a high temperature state: we observe the development of the
interfaces and characterize their structure. The successive interface dynamics is investigated
here, in the simpler case of a single interface. Fluctuations theory and critical phenomena
also in relation to stochastic quantization are discussed in [IV] and will be the main object
of {I]. i :

We denote by y the scaling parameter of the Kac interaction, that will eventually go to
0. The characteristic feature of a Kac potential is that its range diverges like y ', while the
total interaction energy of any single spin with all the others is kept finite. We first study
the limit when ¥ — 0, scaling the space by the same y: we will prove that the limiting
magnetization density m(r, t) solves the deterministic, nonlocal evolution equation

E;L? = —m + tanh{B(J xm +h)} (Jxm)(r) = f ar'J{[r — r'DHm@"). (1.1)
Times in this limit are not rescaled, so that each individual spin in a time unit undergoes
only a finite, random, number of flips. The deterministic behaviour described by (1.1} is
a mean field effect due to the scaling of the interaction: many spins (infinitely many in
the limit y — 0) feel essentially the same potential and while each of them, individually,
has a random behaviour, the collectivity evolves deterministically, due to a law of large
numbers which dampens the fluctuations. The full effect of the interaction only arises at
longer times, when each spin, after many flips, reaches a (local) equilibrium distribution.

We call the above limit ‘mesoscopic’, with space scaled by y and time kept finite, to
distinguish it from other, macroscopic, limits, where also the time is scaled with ¥. The
equation (1.1) obtained in the mesoscopic limit will be called the mesoscopic equation.
As explained before, we expect the more interesting effects to appear at longer times.
The real question then is whether they are correctly predicted by the mesoscopic equation.
There is no answer valid for all the cases: we have indeed situations where the limits can
be interchanged, thus finding the true behaviour of the Glauber dynamics at times which
diverge as ¥y — 0 by investigating the long time behaviour of (1.1). This happens for
instance in the development of the interfaces (at temperatures below the critical one and
when the magnetization profile is away from its critical value, except on regular surfaces
where the interfaces develop) and also in the successive stage of interface dynamics, at least
when the curvature of the interface is not too smali. In section 5 we will study the laiter
case.

It may also happen that the long time predictions of the mesoscopic equation are wrong:
the spinodal decomposition after quenching a state from high temperature down below the
critical value and the macroscopic fluctuations at the critical temperature are intrinsically
random. The stochastic forces responsible for these effects are absent in {1.1), having
disappeared in the mesoscopic limit. These aspects will be studied in [II] and [III] while
this paper covers cases where the fluctuations are not relevant, as in the mesoscopic limit
that we study first. This is easy to investigate, as it is essentially a mean field limit, but
we are interested in the behaviour of the system past the mesoscopic times and for that
we need sharper estimates. As an outcome of our analysis, we obtain a characterization of
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most of the individual trajectories of the spin process, both .in space and time, proving that
with large probability they only slightly deviate from what is predicted by the mesoscopic
equation, at least when times are small in units log y~!.

The small deviations mentioned above are not only consequence of errors and
approximations in our estimates, but they have an intrinsic origin, related to the buildup of
correlations as time grows and y is kept finite. This issue is treated in [II], in the cantext
of the fluctuation theory for Glauber dynamics with Kac potentials. Here we ignore these
effects considering the deviations of the spins distribution from the product measure as
errors. We prove, with the help of cluster expansion techniques, that these deviations are
small and that, if the evolution described by the mesoscopic equation is sufficiently stable,
then they do not have significant effects. As an application, we study in section 5 the case
of ferromagnetic interactions without any external magnetic field and below the critical
temperature. We fix an initial magnetization profile which decribes an interface between
the two stable phases and prove that, on a suitable macroscopic limit, the interface moves
by mean curvature.

We would like to draw the attenuon of the reader also to the techniques used in proving
the above results as they are based on powerful methods which may be useful also in
other cases. Kinetic theory and cluster expansion play here an important role. The small
parameter of the latter, which is the inverse temperature in statistical mechanics, is here
played simultaneously by y and by the time, which, at first, is supposed vanishingly small,
as ¥ — 0. To obtain estimates at finite and longer times we then work out an iterative
procedure based on special (truncated) correlation functions, the v-functions. This part of the
analysis is common to several other models, see [13] for a survey on the method, which,
in particular, has been applied 10 stochastic, discrete-velocity models of the Boltzmann
equation, hence the relation with kinetic theory.

The paper is organized as follows. Section 2 contains the main definitions, and the
results concerning the derivation of the mesoscopic equation, the interface- dynamics and
the bounds on the v-functions. The ‘short time’ bounds are proven in section 3 and extended,
in section 4, to longer times. In section 5 we apply the previous considerations to prove
that the interface dynamics is ruled by the motxon by mean curvature. In an appendix we
prove proposition 4.8 of section 4.

2. Main definitions and results

This section is divided in three subsections. In the first one, section 2.1, we define the
model and state the theorem on the convergence to the mesoscopic equation. In section 2.2
we consider a class of initial states which describe, in a macroscopic limit, magnetic profiles
with an interface. We then have a theorem which states that in the limiting macroscopic
evolution the interfaces move by mean curvature. Finally in section 2.3 we present results
on the propagation of chaos, that is proven in a very strong form and till times which diverge
as y —> 0 but that are small in units logy~!. In this subsection we define the v-functions
and state bounds on these functions which provide the main techmcal tools for studying the
transition from discrete to continuum.

2.1. The mesoscopic limit

‘We consider an Ising spin system and start by recalling the main notation and definitions.
A spin configuration is a specification of the values of the spins at all the lattice sites, it is
therefore a function o: Z¢ — {—1, 1}, that is an element of {—1, 1}z The value o (x) of
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the spin at x is thus a function of the configuration ¢, thus a random variable on {—1, 1}2"
the space of all the spin configurations. The restriction to A C Z% of a configuration ¢, is
denoted by o4, which is therefore a function on A with values {—1, 1}.

We next recall the definition of Kac potentials.

Definition 2.1.1. A Kac potential (in this paper) is a function J, : Z¢ x Z¢ — R, which
depends on a (scaling) parameter vy and has the form

T, y) =y I (vlx — yD). , .1

We suppose that y varies in the set {27",n € Z,). We assume that J(r) depends on \r|,
J(r) =0 for all |r| > 1 and that J{r) € C*(R?).
Given (a magnetic field) h € R, we define the energy of the spin configuration o as

Hy(on) =—h) okx)— 1, Iy (x, Yo (x)o () 2.2)
2

xeA xEyed

while its energy inclusive of the interaction with the spins in the complement, A°, of 4, is

Hy(osloas) = Hy(oa) = Y Jy(x, D)oo (). (2.3)

XEA, yEA

The class of the Kac potentials is more general than in definition 2.1.1, the only
requirement on J being that it is in L!(dr, R%), see [17, 20]. The restriction on the values
of ¥ is only made with the purpose of simplifying notation when discussing the block spin
variables and could be easily lifted.

Definition 2.1.2. Given (the ‘inverse temperature’ % B > Qandy > 0, we denote by Glauber
dynamics the unique Markov process on {~1, 1)&' whose pregenerator is the operator L,
with domain the set of all the cylinder functions f on which it acts as

Lyf(@) =Y ¢y(x, a)f(e") - Flo)]. _ (2.4)

xeZd
In (2.4) o* is the configuration obtained from o by flipping the spin at x, i.e.

U (o162 fy#x '
o*(y) = {_g ) iy x (2.5)

The ‘flip rate’ ¢, (x, o) of the spin at x in the configuration o is

a—Phy () x}

g~ By (x) L ofliy () (2.6a)

c(x,0) =

hy(x}=h+(Jyoo}x} = (Jyeo)x)= Z Ty (x, y)o(y) (2.6b)
y#Ex

.
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The proof of the existence and uniqueness of the Markov process. used in the above
definition, may be found in [21]. The space of realizations of the Glauber dynamics is
D(Ry, {~1, 1}%"), the Skorohod space of cadlag trajectories, (continuous from the right and
with limits from the left). The value of the process at time ¢, that is the spin configuration
at time ¢, is denoted by o, the value of the spin in x at timé ¢ is o (x, #) which is thus a
random variable on D(R,, {~1, I}Z").

Notice that

6y (3, 0) = Zy ()N FA @
where A, H, (o) is the change of energy due to the spin flip at x, namely

where A is any set which contains x and such that the spin at x does not interact with those
in A°. Z,(0x)"" is the denominator in (2.6a), but, for what we say below, it may be any
other function, provided it is independent of o (x), as implied by the notation. In fact the
important point about the rates is that they verify the ‘detailed balance” condition

cy(x,0%) — ~BAH, @) (2.6¢)
¢y (x, o)

The Glauber dynamics is thus intimately related to the notion of:

Definition 2.1.3. The Gibbs measure pig , Is any probability on {—1, 1}Zd which satisfies
the DLR equations: ramely, such that for any x € Z¢ and any o,

e Rk, (x)
Hphy (0’ () =£1[{e (), y # x}) = PR E L e Kp.n.y almost surely

2.7)

where the left-hand side is the probability that o(x) = L1 conditioned on the o-algebra
generated by all the spins o (y), ¥ # x.

B in definition 2.1.3 has the physical meaning of an inverse temperature and # of an
external magnetic field, J, of the spin—spin interaction strength. Notice that the left- hand
side of (2.7) is a function of o(x) and all o(y), y # x. it is thus a function of the whole
spin configuration o. Then, from (2.6c) and (2.7), it follows that

gy (0 e, ¥ # 2))ey (8, 0) = ppay (™ @Io (), ¥ # x})ey(x, 0%)

so that the operator LE? defined by (2.4) after setting ¢, (y, ¢) = O for all y # x, is self-
adjoint in Lp({—1, 1/, ,hy)- It then follows that also the full generator of the Glauber
dynamics is selfadjoint and that pg, , is stationary, the Glauber dynamics then being a
reversible process. We will not exploit this feature of the dynamics and the associated
theory of Dirichlet forms, which in many instances has been proven to be a very useful and
powerful method. We will use though the existence of the Gibbs measures for a physical
interpretation of the results. Many aspects of our analysis are common to other models,
as for instance the Glauber + Kawasaki dynamics, which is a very well studied model for
reaction-diffusion equations, [8], and phase separation. [13. 12, 15, 16]. The advantage in
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our case is the explicit connection with equilibrium statistical mechanics, so that we can
properly talk of thermodynamic phases, surface tension, critical temperature and so forth.
We finally mention that (2.6¢) does not depend on the choice of Z,, which appears in the
definition of ¢y, thus different choices of Z, define other, equally acceptable, rever51bie
evolutions. The choice (2.6a) gives rise to a simpler limiting mesoscopic equation.

We have so far discussed the Glauber dynamics at the microscopic level, we next turn
to the mesoscopic one. The ‘scale separation’ between the two levels is specified by y: in
the transition micro-mesoscopic

(x, 1) = (r, 1) = (yx,1).

Time is thus unchanged while space is shrunk by y. The microscopic points x € Z¢
are represented in the mesoscopic space R? by the lattice ¥Z¢. It is thus convenient to
partition R? into the ‘elementary squares’ {r : [r], = yx}, with x € Z* and, denotmg by
r-(rl,.,rd) x—(xI,.,x,;), .

rly =yxifxeZand yx; <ri <y +1) foralli=1,.,d (2.8a)
Y

Definition 2.1.4. We denote by M(X), X a measurable space, the space of all the real
valued, measurable functions on X. We then define T, : M(ZH - M(R?) as

Ty (M) = Fx). x =y7'[r], and f € M(Z%) (2.85)
where [rly is defined in (2.8a).
In particular we denote by

oy =Ty (o) oy, =Ty (o) (2.8¢)

ay (r) is thus the image of the spin configuration ¢ in the mesoscopic representation. Qur first
theorem proves that for small y’s, the Glauber dynamics in the mesoscopic representation
is almost deterministic. The statement refers to a smoothened version of o, defined in
terms of the block spin transformation: this amounts to replace the value £ (r) of a function
in M(R?) by its average in a region containing r, made of elementary squares and whose
size vanishes as y -» 0.

Definition 2.1.5. We define forany 0 < o < L and y asin 2.1.1 the block spin transformation
f = @) fand £ poth in MR, as

feney =Ny f ar1({|irly = <y FED (2.94)

N, =fdr’1({[[r]., - [r'}},| < yl'“}). (298 )

We may sometimes use the shorthand notation
e y) (ery}
) o = (oy.) (2.9¢)

cr("‘) (cr},

to avoid redundancy in the formulae.
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The more familiar form of the block spin transformation is recovered when we apply
the transformation to a function g = I',. (), f € M(Z?). In that case gV (r), [r], =: yx,
is given by

1 .
gV (r) = Ayma 1 (f) 1= 3 (2.94d)
IBY—G; yEBya-u_,
where
By, =(ly—x| <y ™™} |By-2| = cardinality of By-« . (2.9¢)

We will use extensively the above notation in section 4, where we work in the microscopic
rather than in the mesoscopic representation. We will prove there the following result.

Theorem 2.1.6. Forany « € (0,1) and ¢ > O, there are a and b positive and for any n and
any k* =2, rherg is ¢ so that the following holds. For all y small erough and, given y, for
allo e {—1, 1Y% and m € M(Z%), |Imllo < 1, for which (see (2.9a-c) for notation)

sip (o)) —m@V ()| <o (2.10a)
irigky—t

we have that (see again (2.9¢) for notation)

P s s ()"0 = mer0, 0] > ) <o (2.108)
ralogy ! IrlStke =1yt

P is the law of the Glauber dynamics when the process starts at time 0 from o and

(e, 1)
mEN G0 = (mt,0) @) < @11)
m(-, t) being the unique solution of the Catichy problem (1.1} with intial datum m.

Observe that, given o, the choice m(r) = o, (r) automatically satisfies (2.10¢). The
proof of theorem 2.1.6 is essentially the same if we replace, in the sup over r, y~! by y 7,
no matter how large is k. ¥~ is however sufficient for our needs here, as it corresponds to
regions unbounded both in mesoscopic and macroscopic units, when the latter are defined
as in section 2.2 below.

Theorem 2.1.6 expresses in a very strong form the deterministic nature of the Glauber
dynamics in the mesoscopic limit. Notice however that theorem 2.1.6 does not say that
my(r, 1) has a limit when y — 0, in fact we are not imposing that the limit exists at time
0. There are many interesting situations, on the other hand, where there is convergence at
time 0, and this will be the main issue in the sequel of the subsection.

We start with a definition:

Definition 2.1.7. A mesoscopic profile is a function my € M(BY), such that its sup norm

[(moliec < 1. We call initial mesoscopic state a family (mg, p¥), where o is @ mesoscopic
profile and, for each y, ¥ is any product probability measure on (—1, 1} such that, setting

0 = Ty (B (09)) (2.12a)

lin% My 0 = Hig Lebesgue almost everywhere (2.126)
b d
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Remarks. There are two typical examples of families (#2g, £¥). In the first one, that we
call the ‘standard initial state’, mp € C(RY) and

E, (o (x)) = mo(yx) : (2.12c)

In the second example, mg is an arbitrary mesoscopic profile and the function m, g that
defines ¥ via {2.12a) is ‘obtained by averaging mo over each elementary square, see (2.8a).
Then, by the martingale convergence theorem, m,, o converges Lebesgue almost everywhere
to my. Observe that this latier example proves that there is an initial state, in the sense
of definition 2.1.7, for any given mesoscopic state mg, so that the definition 2.1.7 is well
posed. '

Theorem 2.1.8. Let (mg, u¥) be an initinl mesoscopic state in the sense of definition 2,1.7.
Lerw, &, a, b, n, k* and ¢ as in theorem 2.1.6. Then

w ( sip |(03) V() = mSP )] < ) Sl-cy" (2.13a)
lrlghey-!
with mgx ) the block spin transform af my.o, defined in (2.12a).

Observe then that as a consequence of (2.13a) and (2.10b),

u” ([0'0 : P},’ﬂ( sup sup l(ay,,)(a'”(r) —m&EN(r, t)l > }fb) < c}’"})

r€alogyt r|€ R~y ~!
> 1—cy" (2.135)

mY) (., t) being the block spin transformation of m,, (-, t) this latter solving (1.1) with initial
condition m.,(r, 0) = m, o(r).

Furthermore, for any t, m, (v, t} = m(r, 1), Lebesgue almost everywhere, where m(r, t)
is the solution of (1.1) with initial condition my. Finally, let (mq, 1Y) be the standard initial
state defined in the remark following definition 2.1.7. Suppose that mg € C'(R?), with
bounded derivative, then Im,(,“'y) {r, 2) in (2.13b) may be replaced by m(r, 1).

As a straight corollary of (2.135):

IPL,( sup sup I(ay,;)(a'y)(r) - m&N(r, t)| > }’b) <oy (2.13c)
t€alogy™! [rl€kr 1)y~

where ]Pﬁy is the law of the Glauber dynamics starting from p¥. Moreover, if (mg, pt¥)
is a standard initial state with mg € C'(RY) having a bounded derivative, then

IP}.;Y( sp sup|{) ") = mir )| >’y”) <er 2.13d)

tgalogy =t |rl€(k~Dy !

Further results are stated in theorem 4.9. The proofs of all the statements so far are
given in sections 3 and 4. Proposition 4.8 and the appendlx are not needed in this part of
the analysis.
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2.2. Interface dynamics, motion by mean curvature

In this subsection we restrict to J 2 0, # = 0 and § > 1 after having imposed the
normalization condition fdrJ(r) = 1. These assumptions are essential as we expect a
completely different behaviour in the other cases.

B =1 is the inverse critical temperature in the Lebowitz—Penrose 1imi2.20 t, [20]: we
are thus considering temperatures below the critical one. We denote by mg the strictly
positive solution of

mg = tanh{fy,} { recall that fdr.f(r) = 1). (2.14)

The values £my are the magnetizations of the two extremal Gibbs states in the limit y — 0
and are the thermodynamic values of the magnetization, [20]. Thus the function identicaily
equally to mp (or to —mg), which is a stationary solution of (1.1), is interpreted as the mg
(respectively the —mg) pure phase.

The interfaces are then the regions which separate the two thermodinamically pure
phases. We are interested here in the dynamical problem, namely the evolution of an initial
state where the two phases coexist and are separated by an interface. We study the case
when the phase mg occupies a ‘large, but bounded region’, while the outside is filled up by
the other phase —mg. If the region is large and the interface sufficiently flat, then we will
show that the evolution is simply described by the motion of the interface, namely with the
phase mg in the region enclosed by the moving interface and the phase —mg outside. The
dynamics of the interface, as we shall see, obeys the law of motion by mean curvature.

Definition 2.2.1. Let Ag be a compact domain whose boundary, Ty, is a C™ connected
surface in R?. Let

€= Ay A= -1_ . - (2.15)

ylogy~!

We denote hereafter by' u° the product measure on {“1,-1}zd with ]EZ‘ (cr(x)) = mg for all
x in € 1Ay and = —mg in the complement.

The above state does not describe the interface Ty in the sense of definition 2.1.7. In
fact the function

My =Ty (Euc (o ()

converges pointwise to the function constantly equal to mg which is thus the corresponding
mesoscopic profile. The size of the cluster of the phase mg becomes infinite in mesoscopic
variables, which are thus inadequate for describing the interface.

Definition 2.2.2. We denote by £ and T the macroscopic space and time coordinates which
are related to the microscopic ones by

fF=cx =A% (2.16)
and to the mesoscopic ones (r, 1) by

£E=ar T =A%k (2.17)
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We are denoting by A~' the parameter which separates the mesoscopic and the
macroscopic scales. Times are then separated by the factor A=2: this is the right scale
to observe the motion of the interface, in other phenomena the relevant macroscopic scaling
may be different.

The choice (2.15), A = (logy~')""/2, is motivated by [III} where it is proven that
the clusters size after phase separation scales as (logy )72, OQur analysis therefore
describes the interface dynamics right after the phase separation, with the further simplifying
assumption of considering a single interface. The extension to many interfaces, as they
appear in the analysis of [II], should not bring in serious difficulties.

The initial state u¢ in definition 2.2.1 describes a profile with the pure phases my and
—mp respectively inside and outside of €71 Ag. Do is thus the sharp macroscopic interface
between the two pure phases. It is sharp in macroscopic coordinates, as it should, but also
in the mesoscopic ones, which is less realistic. The interface, after the phase separation,
in fact has a different shape, with a smooth profile, in mesoscopic variables, connecting
the values +mg, III. As clear from the proofs in section 5, our analysis applies as well
to this and to any other choice of the initial state, provided its interface becomes sharp in
macroscopic coordinates. The choice 2.2.1 is dictated by the simplicity of its presentation.

Definition 2.2.3. We say that the surface T, evolves according to the classical motion by
mean curvature with parameter 6 > 0 in the time interval 0 £ © < T, if I, for any such
T, is the connected boundary of a compact region A, C R, We also require that there is a
C®, d — 1 dimensional, compact manifold Sy and a C°°([O, "] % So) function £ = E(t, &),
with values in RY, such that T, is equal to the set [ = £(z, &), & € So} and

d§

— =68kv 2.18

" (2.18)
where v is the unit vector normal to B; at £ and pointing toward the interior of ., k is
d — 1 times the (signed) mean carvature of T at §.

If 3 is a sphere of radius Ry, then I is the sphere of radins R;, with

dR;
dt

There is a local existence and uniqueness theorem regarding the motion by mean
curvature, in the context of definition 2.2.3, see [2] and references therein, which follows
from general results on parabolic equations. It is known that in d > 2 singularities may
develop after a finite time, while in d = 2 the only singularity which may arise is the
disappearence of a cluster. More recent results describe what happens after the appearence
of singularities yielding global existence theorems for the evolution, see [14] and references
therein. Our results only cover the classical case. -

1
= — - 1}—
6(d )Rr

Theorem 2.2.4. Let ., be as in definition 2.2.3, with 8 as in (5.2a) and p° as in definition
2.2.1. Then there is ¢ > Q and for any © < t* and any n 2 1 there is ¢, 5o that, for all y
small enough,

1?,{;( sup sup |(a,,,,)(”"”(r) Fmg| < 13/2) >1—cy" (2.192)
r<Ar Irlgy=!

AT, Mzt
where |d(r, \=1X,)| denotes the distance of r from the surface =" Z; the — sign in (2.19a)
is for r inside =15, and the + sign for r outside.
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More expressively, in macroscopic coordinates the set in (2.194a) is’

[swp sup  1foy.) ") T mg| <232} (2.195)
gy eyl
e, B Mk

with ' = A~%7' and r = A7'§. Therefore ‘inside’ and ‘outside’ =, we see respectively
the phases mg and —mg. The quotation marks recall that the statement does not cover the
neighbourhood of %, of the points which are at distance less than A' from .. As the
distance vanishes as ¥ (and A} go to 0, theorem 2.2.4 gives a rather complete description
of the evolution in the macroscopic representation. The resnlt is however completely
unsatisfactory in the mesoscopic description where space is magnified by a factor A™!
Then the size of the strip around the interface that is not covered by theorem 2.2.4 diverges
as ¥ — 0 and since this is where the interface has developed, our result misses entirely
the structure of the interface, which, in macroscopic coordinates, was sunply the sharp
discontinuity that separates the two phases.

The proof of theorem 2.2.4 is given in section 5, it does not use the results stated in
proposition 4.8 and in the appendix, so that it avoids the more refined and certainly more
complex arguments involved in the proof of the statements in section 2.3.

As already mentioned, theorem 2.2.4 describes the evolution of the system right after
the phases separate, (under the assumption that the different interfaces move independently),
The structure of the system much after phase separation should look essentially similar, if
distances are measured in units of $1/2, which is thus the typical size of the clusters of
the two phases. These later stages may be studied, to a first approximation, in the same
context of definition 2.1.1, but with a different choice of A. The regime A = y¢, with ¢ > 0
small, can be treated, we believe, with techniques similar to those employed here. When
the condition that £ is small is relaxed, the analysis becomes more and more complex. As
discussed in [IV], the fluctuations of the interface in a time ¢ and in the simpler case d=2 are
of the order of y¢'/*, They should therefore produce finite displacements of the surface (in
mesoscopic units!) on the time scale t & 4. The space correlations of the displacements
have order #*/2 = y~2, which thus produce local changes of the curvature of the order of
y*. By this argument, at { = 4 there is a competition between fluctuations and the motion
by curvature. When ¢ > 4 the leading contribution on a first time regime is purely due to
stochastic effects, only later the effect of the initial curvature will influence the evolution,
but the way this happens is still not clear to us. The real challenge is when A is independent
of ¥ and we take first A — O and then y — 0: this is the ‘true hydrodynamic limit’,
The interface is still expected to move by mean curvature and, we believe, with the same
parameter. But the mechanism of convergence will be drastically different, because the
stochastic effects to take into account will include events that in our analysis here are large
deviations and have negligibly small probability.

We conclude this subsection with a few bibliographical remarks, As clear from its proof,
given in section 5, theorem 2.2.4 is essentially a coroliary of theorem 2.1.6 and of a result
in [9], where the motion by mean curvature is derived by scaling (1.1) according to (2.17),
Results on convergence to the motion by mean curvature have been obtained for other
models: for the Glauber dynamics in Ising spin systems in 4 = 2, with nearest neighbour,
ferromagnetic, interactions at 0 temperature, [23]; for the Glauber+Kawasaki dynamics in
(1] and [18]. In particular the analysis in [1] allows to characterize the magnetization pattern
also at the interface. In [18], the convergence is that of theorem 2.2.4 (i.e. not as sharp
as required for determining the interface), but the result is proven even past the appearence
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of singularities. The limiting evolution, in this case, is the generalized motion by mean
curvature.

The value of the coefficient & in the motion by mean curvature should be related,
according to {23], to the mobility of the interface and to the surface tension by an Einstein
relation. The validity of such a relation in the present context has been proven in [3].

2.3. Propagation of chaos and bounds on the v-functions

In this subsection we state theorems on the factorization properties of the spin distribution
at any given time ¢ showing that the distribution is close (and converges as y — O} to a
product measure with means given by the solution of the mesoscopic equation (1.1). We
consider the process starting from an arbitrary product measure, in particular from single
configurations. We remain in the lattice, without going to the mesoscopic representation,
and introduce the lattice analogue of (1.1) as follows.

Definition 2.3.1. For ariy y > O the discretized evolution equation is

dm, (x, 1)

” = —m,(x,t) + tanh{B[(J, o m,)(x, t) + i)} (2.20a)

where (f o g) denotes the discrete convolution of f and g, as in (2.6b). We then call
my(x, tio) the solution of (2.20a) with initial condition

my(x,0lc)=o(x)  forallx€Z’and o €{—1,1)¥ (2.200)

If w is a measure, my(x,t|u) denotes the solution of (2.20a} with initial condition
my(x,0lp) = Ey(o(x)), for all x € Z¢.

In section 4, see proposition 4.7.2, we discuss the relation between (2.20a) and (1.1).
Equation (2.204a) and the actnal spin flip dynamics are related because there is ¢ such that,
for all x,

dm,(x, t)
|"d—I ~E (L:,o‘(x))l < eyl (2.21)

if v, is the product measure on {—1, I}Zd with means
E;(c(x) =my(x,£}  forall x in 2’ (2.21b)

In an ideal case where at all times the measure is a product measure, (2.21a) allows to
compute the evolution of the expectations of the spins, hence to determine completely the
distribution of the process at any single time. This property is called propagation of chaos,
because in product measures there are no comelations between the spins, hence no ‘order’
is present. We say ‘propagation’ because factorization is supposed to hold initially. One
can easily check, though, that in our case, and in general, propagation of chaos does not
hold (the condition is verified for the independent partlcles see for instance chapter 11 of
[13], but this is ‘the typical exception’).

If some weak form of propagation of chaos holds, with the measure at any time ¢ suitably
close to a product measure, then, conceivably, the average values of the spins are also close
to the solution of (2.20). We thus introduce ‘a distance’ between the actual measure at time
t and the product measure v, defined so that its averages are m,, (x, t|o'), and we prove that
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this distance vanishes when ¥ — 0. The distance is defined in terms of the v-functions,
i.e. special linear combinations of the correlation functions and the function m, defined
in 2.3.1. We will see that the v-functions satisfy an integral equation, whose solution can
be characterized quite explicitly yielding the desired results. A similar strategy has already
been used in several other models, see [13] for a survey on the method. A refinement of
the v-functions, which leads to the introduction of the o functions, is developed in [II], see
[IV], to characterize the behaviour of the fluctnation fields and to evidentiate the effects of
the random forces which, though infinitesimal as ¥ — 0, are nonetheless present. When
there are instabilities, their effect is amplified and becomes macroscopic, as we shall see
in {Il] in the case of the spinodal decomposition after quenching from a high temperature
pure phase.

Behind the deﬁnmon of the v and of the w-functions there are algebraic considerations
classical in statistical mechanics, that will be made explicit in [II]. Before the definition of
the v-functions we introduce some notation: :

Notation 2.3.2. For any positive integer n we denote by Z‘;‘Z’ the collection of all the sets
x = (xq, ..., %) in Z¢ with n distinct elements and write |x| = n. § is the union of Zd"
over all n 2 0, i.e. it is the collection of all the finite subsets of T, whzle Seo includes also
the subsets of T8 with infinite cardinality.

Deﬁnition 2.3.3. When the Glauber dynamics starts from a single configuration o, the v
Junctions are

W (x, 2)o) = JE‘*’( [Tee, » —m,(x, :Jo)]) 18520 (2.22)

Xex

Analogous expression defines v (-, t|u"), when the process starts from a general product
neasure W,

Theorem 2.3.4.
(i) There are a > 0 and C' and for any n ¢ so that, for all t < alogy ™!,

sup sup |v} (x, tlo)| € ceChiyd2 , (2.23)

7 |xl=n

(i) The same bound holds when the process staris from a product measure | and with
my (X, tlo) (in the espression defining v¥) replaced either by m,(x, t{p¥) or by my(r, 1),
r = yx, with m, solution of (1.1) with initial datum m, , as defined in (2.12a).

(iii) If (mg, £V} is a ‘standard initial state’ (see the remarks after definition 2.1.7) and
mg € CYRYY with bounded derivative, then

Ev(ﬁ"(xff f)) - ﬁm(yxe,t) =0
=1 =1

where m{r, t) solves (1.1) with initial datum mq(r).

lim sup sup (2.24)

¥=+0 pgrgalogyt Ixl=n

Observe that from (2.23) it follows that given any ¢ > 0 there is 2 > 0 and, for any #,
¢ so that

supsup  sup v (x,t|o)] < eyt (2.25)

@ |xl=n rgalogy-!
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More precise estimates when t = tlogy ™', 0 < T € a are reported in theorem 4.9,

The mesoscopic limit is defined by letting ¥ — 0 with the mesoscopic position r and
the time ¢ kept fixed: by (2.24) it then follows that, for the standard initial state and for
any distinct r1, .., ry and for any ¢ .

lm L ([[ot ™'y, 0) = [ ] mG0) (2.26)

=1 i=1

We have thus derived the mesoscopic equation (1.1) also in the sense of (2.26), showing
that in the limit the spin distribution factorizes.

A final remark about (2.23) regarding the fact that the bound improves with n, as ¥ — 0.
This is to some extent surprising, as one would not expect that the average of a product of
n spins converges to the product of the averages faster than its rate when n = 1. This is
indeed so, the whole point here is that we are not taking the average of the product of n
spins, but rather a special combination of averages involving all the products of k £ # spins.
It is just this special combination which makes the convergence faster; notice however that
if we keep y fixed and let 7 — oo, then the dependence of the coefficient ¢ on n will spoil
{at least in our estimates), the decay rate y*/2.

In [II] we will see that there are other combinations of correlation functions which
describe in a more accurate way the factorization properties of the correlation functions.

3. Short time estimates

In this section we prove theorem 3.7, a weaker version of (2.23), where we impose the
restriction ¢ < y® with § any positive number independent of y.

We use the following notation: for x € § (the set of all the finite subsets of Z¢) we
shorthand

§(x, 1) =[[lotx. &) —my(x, tlo)). 3.1

xex

Recalling that B} is the expectation of the process which starts at time Q from the
configuration ¢, we have

Eg(& x, s)) =EY (&@, 0)) + fo [ds%]Eg (&@, s)). (3.2)
Since

&(x, 0) = Obecause, forallx, m,(x,0|o) = o (x, 0) (3.3)

(3.2) becomes
oid (a x, :)) = fo , dsmg;(z DW5 (x, s)) (3.42)

where, for any function g(o, m), ¢ € {—1, l}zd, me[—1, I]Zd,

dmy (x, 5|o) a
ds am,(x, slo)

D¥g (o, m) = {L,‘f’ " }g(cr, m). (3.4b)
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L is the generator of the process where only the spin at x flips, namely:

iff’f(a) = ¢, (x, ) f(0F) — flo)] (3-5)

We now restrict ourselves to ¢+ < y®. Since the integrand in (3.4a) is bounded uniformly
in ¥. we see right away that |E} (&Q, t))i < ¢y¥, for a suitable constant ¢, The bound
that we want to prove, however, is much better than that and its proof requires more work.
Our strategy is based on an iterative analysis of (3.4). Since each integral which appears
in the iteration is necessarily extended to an interval smaller than y°, the terms with N
integrals are then bounded proportionally to % and, if 8N > nd/2, n the cardinality of
x, we then obtain the desired bound. Unfortunately the argument is not as simple, the
trouble is that the expression on the right hand side of (3.4a) is neither a & (y), nor a linear
combination of them. Therefore when we write the integral equation for such a term, we
obtain a more complex expression with a non zero contribution, in general coming from its
value computed at time 0, unlike in (3.3)—(3.4a). We thus need a good characterization of
the class of functions obtained after the action of products of the operators D) on & (x).
This is accomplished in proposition 3.6 below, but we preliminarily need extra notation and
definitions. They are slightly more complex than what really needed in this section, but
then we have the right setup also for the more delicate case of section 4, where we will
extend the proof to finite and longer times. '

As we often switch from ¢ to =2, it i8 convenient to think of them both in the same
space [—1, 112, even though o belongs to the restricted ensemble {—1, I}Zd.‘ The generic
element of [—1, l]z'i is denoted by A, not to be confused with the A of (2.15), which will
appear again only in section 3.

Definition 3.1. We first define the operators &, y € Z¢, which map [—1, 17 into itself as

EEx) = { i(f) iii i i (3.6)
and then the operators a mapping M({—1, 11%") into itself as
ay fO) = F@5n) (3.72)
We also define, for y € Z¢ and y € S,
_a% =4y x +
dy=y 25— ag=[laf . 8= JNED (3.7b)

yey yey

Moreover, recalling the notation (2.9d) and setting y* = (3, ¥} € Z* x Z% y' € By—=y—y,
e € (0, 1), we define
8y [a;'a; - a;ia; 1 8y = n Bye (3.7¢)

T Apdtl-a
% jreye

where y* = (31, .., ¥;) is a finite collection of elements y}, such that the entries y;, y|, of ¥},
i =1,.., £ are all distinct. Their union is denoted by Z*. We call 52 the set of all z*.

We will also use the convention that when a set isuempiy the corresponding operator is
the identity.
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The operators @y, and &+ play the role of derivatives and indeed they are essentially
derivatives when acting on functions which depend ‘weakly’ on A{y), as shown in lemma

3.3 below.

Definition 3.2. We denote by 5 the set of all £ = (x,zl,zz,zs,z*), x e Z¢ Y € S,
i=1,2,3 z* € S2, with the condition that all the sites in Yp Yy ¥y and 2" are different

from each other. Their union is denoted by V;.

B0 s the subset of B with ¥ =0, in that case we simply write § = (x,,, ¥, ¥,). We
sometimes use the convention of dropping the entries of £ which are emptysets, thus writing

xfor§ =(x,2,8,0, 0) as in the definition:

Fe(3) = tanh{BLY _ Jy (x, )A() + Al}.
y#x

We also define for & = (x,;y_l,_xz, 23,2*),
il = a;l a, By 8y fx (1)
In particular if § € B0, (3.9a) becomes
i) =aja; 8y f: ().
Finally we call
dE) =y, ] + 1y
the ‘number of derivatives in §°.
The Iast notation is justified by the following lemma:

Lemma 3.3. Let £ € E, then
AO) = f de Myt (€)tanh @D (g (1) + €)

where tanh® () is the kth derivative of tanh(-);

V() =B > J,(x, D).

ZEVe

Aiy.by(€) Is a function supported in an interval I, ¢y of R containing the point

BUY =Y My(x,2) + R}

z E_Zl 4 Gzz

and furthermore there is ¢ so that if Y, #=0

Ity lloo < €y~ [Tyt < cy?
while if y, = B and y* # 0

iy slloo < ey 471 eyl < ey@1-e.

foothy =y'= @ then the density in (3.10b) is a delta function at € = 0.

(3.8)

(3.9a)

(3.98)

{3.10a)

(3.100)

(3.10¢)

(3.10d)

(3.11a)

(3.118)
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Proof. As all the sites in oo y* are distinct, by definition, the operators that define f;
in (3.9) commute. We thus start by computing 8 Fe (1), We write ¥ = {¥3,1+... ya.¢} and

By fr(W) =y, 0y, ().
We set, for j =1, .., ¢,

Fi(L) = By, ... 3y, fi(A). _ C(3.12)
We claim that

E(\) = f deh,, ; (¢)tanh Y l,s > T MAG) + B +e (3.13a)
ye¥iH
where
YY) = the complement of {yi,..., yj}inZd .
Ay, ;(€) is supported by an interval I, ; and there is ¢; so that ,
Prilo Scp™ Mpgl<ey®s (3.138)

We will prove the claim (3.13) by induction on j. We thus assume that (3 13) holds
for j < £ and, writing

Vo= Bl Y HLWAOY R Z2=Ysm

yerm

we have

1 . '
3,tanh)(y; + €) = gg{tanhm(wjﬂ e+ Bl (x,2)

— tanh (Y3 + € = 7, 05, 2) |

Blyx2) g )
= f —tanh (g 4 € + ). (3.14)
—Bdy(xz) 2V
Hence
Ar(xz2) de’ ,
Ay i 1(e)=f — A, (e =€) ) (3.15)
v.J+ B (52) 2},,;,: Y
so that
1y (%, 21 '
Ay, j4+1 “oo < 2ﬁ—yzyd—llly,jl]m 1l < |51+ 280, (x, 2)] (3.16)

hence ¢jp1 = (1 + 28|17 |l Ycj.
The same argument shows that

1
dya{€) = WI(IEI Bl v ) ot =[-8y (x, ya.0). By (x, 33.0)) (317

so that the claim (3.13) is proven.

The same argument applies to 3,-. The action of 8., y* = (¥, '), involves a change
in the argument of the function tanh® from —[J,(x, ¥) — J, (x, ¥)] to its opposite. The
difference is bounded proportionally to ¥4+, recalling that, by definition |y —y'| < ¥y ™.
Since a+ simply amounts to setting A{y) = 1 forall y Y and analogously for

the lemma follows, we omit the details. O
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Remark. As is clear from its proof, lemma 3.3 extends to the case when fy is replaced by
any function g € C™ of the argument Zy S (e, Ay + A

Definition 3.4. We call H the collection of all n = (x.y.%. ... &), with x and y in §,
E\...Ep in B and H® the subset of all n = (x, 8. &1, ... &), with & € E% In this case we
simply write n = (x, &1, .., &p)-
We define ‘the order of " as
frl = lxl + [y| + p. (3.13)
We also set

gm=y+p ) ) : (3.19}
and cail it the g-order of n and, finally, recalling (3.10a),

J:)
din) =Y d&) (3.20)
i=1
We need a final definition:
Definition 3.5. Given n € H, we define the function p, € M{{—1, 1}¥ x [-1, 11¥) as
. r
oo, m) = 5@ Y ey @5 @ [ [[falo) — film)] (3.21)
. . z i=1
where, if £:= |yl z € 7t

£ 1
Xz y®@ = H [ | By -] Z: 1(z: € By, fﬁ)] (3.22)

In particular, if n € H®, we restrict to this case in the sequel of this section,

, .
pylo,m) =5@) [ [[fi0) — foulm)] (3.23)
i=1

Finally if all the entries of 11 are the emptyset, we write 1 = @ and define pg = 1.

Proposition 3.6. There is M, (n, 7', m), n, o' in H® me{—1, l]zd, so that, for all v, n, m
and o € {—1, 12,

> DWpo,my= > My, o, m)oy(o, m) (3.24)

xeZd 7 el

with My, (i, 7', m) = O if |¢'|.> Inl + 1 and if d(v'} > d(n) + |n|. Furthermore there
are coeﬁ‘icierits cln,q), n > 0, g =2 0, (independent of y) such that for all y and all
me[—1,1]%

[ccn, Qy*P?  ifp<gn 5.25)

sup [M, (. 7', m)| < : :
dinmg lrép ’ c(n, q) fp=nn+tl
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Proof. We start by computing the action of D™ on a single spin. By (2.20a),
DP&(x) = L% (x) - ( — m(x) + tanh({B[J, o m)(x) + h]})

= —0(x) +[fe(o) = fe(m)]. (3.26)

Notice that if x reduces to x with all & = @, then p, = &(x), hence (3.24) and (3.25) are
verified. To study the general case we first write:

Aoy = (7 4 1278 oy 1o
e
- & + J@(a)+a(x)y"ax;z(cr)
a++ .

TS o) - A+ E oy
+ {a(x)y BaLfi () — feOm)] + &Gy 8 £ ()

+ m(x)y?o, fr (m) +mx)y?8:[fe(a) = fr(m)]}. (3.27)
Therefore
fi(o) = fy(m) = Fix + m(x)y T + 6 (X)y? s + Fed + p¥Ts . (3.280)
ay + a;
Tix= Efelo) = fifm)] ' Tap = 8:[fe(0) — fe(m)]

o = L) — £y 0] Pox = 8: fi(m)
_2q,% +a; d
lsx=1y {—2—~f.;(m) +m(x)y© o, fe(m) — fe(m)}. (3.28b)
The equations (3.27), (3.28) hold for any function f(-), however if f = f; there is a
constant ¢ so that

ar
Iii £c Tsel € uniformly in ¥, m and x (3.28¢)
am(x)

as we are going to prove.
First observe that if x € V; then I's, = 0. We then suppose that x ¢ V¢, then, by
lemma 3.3 there is an interval Iy, ¢ and a function A¢,.¢) supported on I, ¢ and such that

g (m) = f deAgy5)(€)anh®@(y + € + 7, (2, x)m(x))

Ipty

where

E=(53,.3,,3) ¥ =8> LE»m»)+8h

12343

and, for a suitable constant ¢

Iryglloo < ey~ el S ey
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We then have:

Ta= [ debgp@r o (3:29)

Tty

1 . 1 .
D(e) = Etanh(ﬂ’(-ﬂ (v +e+ L& 0)+ Etanhw@ (¥ + € — T, (£, x))

+ m(x) {%tanh“’"” (w +e+ J, (& x) - %tanhﬂ’@)(w +e— Jy(#,x) }
— tanh@® (y 4 € + I, & 0mE). (3.295)

By expanding ® in powers to second order in the small parameter J, (%, x), we readily see
that (3.28¢) holds.

Notation and remarks. We denote by 1"{ si=4.5%and 1l 5 j € p theterm T in
(3.28b) when £ = §;.

We use the notation A + B to denote the union of the sets A and B and A — B for the
set theoretical difference of A and B.

l";' o i =1,..5 does not depend on &{x); I‘, o | € 4, does not depend on m(x), and
the bounds (3.28c) hold for s 5

We hereafter set 1 = (x, £1, .. &), & = (% 3,. 5, 3,)-

‘We write
Y D¥py =3 5~ x)[H Ii 109 (x)
XEZ XEX =l
p H - r
+y4 > 6@ Y [ [T, + T 0PG50 + S+ 5, (3.30a)
xgx i=l jgi .
where
E"(— X) D Bignr (3.305)
s
5, = Zcr(_) 3 A ‘ (3.30¢)
Iﬁx Euats
L|[<p—

the sum s over all the partitions of 1, .., p into five atoms, i;,.., is; |I;| denotes the number

of elements in i;

A

L[.n-.LS.L

= AL HLLHALDL | Pl D(x)[rifxm(x)lizla. ) (3.30d)

where

ry, =[],

lei;
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and
L4 ligl+1id  ifrex

iyl + Jig] frgr’ (3.30e)

k=kix, X, iz +i)= {
By using (3.26), the first term on the right-hand side of (3.30a) can be written as

Z Mo (n, 1, m)py (3.31a)
'?'

where the sum is restricted to |y'| = || and

> (Mo,i(n, o', m) < 21z (3315)
-

In fact the sum in (3.30a) has |x| terms and, using (3.26), each gives rise to two p, functions.
The second term in (3.30q) is also of the form

> Moz (n. ' m)py (3.31¢)
nn’

with |7'| = |7]+ 1 and |7'| = |5|, respectively for ' , and T’y .. We also have, for a
suitable constant ¢,

> I Moa(n, ' m) < cp (3.31d)
r.'l‘

because [}, = I’y . =0 unless |x — &| < y~!: in fact if |x — %] > y —1, then fg () does
not depend on A(x) and 3, ft; = 0. We then have (3.31d) since by lemma 3.3, 8. fi(m) is
bounded.

We are going to prove that also §); and $; can be decomposed as the two terms above
with coefficients which satisfy (3.25), and this will prove proposition 3.6.

We start with some easy algebraic computation: let k 2 1, then

1 —o(x)

500 = (22— ot + T -1 = )
PR it m(x)fF =1 —mx)) }
B 2 2
1
+ P it~ 1 - meat
= & (x}alk, m(x)) + b{k, m(x)) {3.32)

with @ and & defined by the last equality. Thus a(l, m(x)) = 1, (1, m(x)) = 0 and there
are constants &; so that |a(k, m(x))| < b and [b(k, m(x))| < br. ‘

Recalling that k = 1 + |is| + Ii,| if x € x and & = |i3] + |iy[ if x & x, we have

Bipir = 3 [m(x)iizla(k,m(x))FéfxD(x)&(X)

+ 5@ m(x)Sat, mE)TE,Y + [n@=b(e, me)TE,Y |
x ydlalHalHis 2D o x)r%txml“ifx (3.33)



654 A De Masi et al

where given #, k' denotes its derivative with respect to m(x) times ri(x).
We write

81 =S11+ 51,2 ‘ (3.34)

. where the decomposition arises from taking the term with and respectively without &(x) on
the right-hand side of (3.33). Namely

Sla=y. Y, {m(x)l-"a'a(k, m@ENIE, DWG () + & () m () elatk, m(x))rg;y}

XEL [pe-is
yi<p

x y MLl Ashg (x — yrp TR (3.354)
By (3.26),

S11=_ My (. 7', m)py (3.355)
T

with 0’| = |n| — (lis] + lE5]), and, by (3.28¢), for ¢ > 0,

Z |Ml.](17r 77’1 m)[ '-.<., c|£l Z l(lhi + [£5| — q)yd(|h|+|£'3|+|ia|+2|iin < CJL—Elydq/ZV‘UZ

= g1 Ly
[7'1=Inl—q ‘ s

{3.35¢)

with ¢ and ¢’ suitable constants.
We next consider Si 3, which, with the shorthand notation k = [i;] + |5} +1,1s

Sta= Y. 3 m(x)elok, m(e)Te, )y et biHish2isdz (r — yrd . r%, (3.36a)

XEX ) s

which also has the form

S12= E My a(n, ', m)py (3.365)
q’

with |7'] = |9] —(li4]+1is]1+1). These terms are only present when k = |i5|-+[i,l+1 > 2,
because b(l, m(x)} = 0. We have, forg 2 1,

D M m) ezl Y Wil + il 2 L liy +lisl +1=4¢)
ln'i=Inl—q Lty
% yd(ligl+ligl+li4l+2l£5!) < C’[Lh’d(q_”ﬂ}'dﬂ = Cfl&lydqﬂ (3.36¢)

with ¢ and ¢’ suitable constants.
Splitting S as we did for §;, we get S» = S + S22. Recalling that in this case
k = {i5| + |i;|, we have :

Su=y. 3. [m(x)'iz'a(k,m(x))rg'fxp(ﬂ&(x)+&(x)[m(x)'h'a(k,m(x))réfx]’}

xgx L.-is
Iy lSp-2

x At H 2 (o — pyph | Tk ' (3.37a)
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The only contribution to (3.37a) comes from the terms with || + |i,] > 1 because
a0, mx)y=0and k= li| +|i,]. Hiel,, x —%] < L, because of the operator 3, in
T3 and T'; 4. Therefore the sum is ‘only’ over (2y~! + 1) elements, at most.

52,1 can be written as

Sa1= ) Moi(n. 1, m)py (3.376)
nl‘

with 7' = I7] — (|i,| + lis| — 1). Recalling that

lZa| + lis| + |isl + i) = 2
becaunse [f,| < p — 2, we have

> Mo (' m)| (@7t DY Y cy“'4'+!4'<cy°’. (3.37¢)
In'l=Inl+1 lig|+lzg =0
lH 2 '

Analogously, forg 2 0 .
Yo Maa(n 0, m) <A@y + 1P} Y Wigl+lisl=g+ 1)

|7 |=Inl—g uﬁ'&fi |

X Cyd(lizl+!£'3|+l§4l+2|g'5[) < nyd(q—!-!)/?. (337d)

with ¢ and ¢ suitable constants.
The last term ;2 can be written as S22 = S22.1 + 52,22, where

Sp21 = Za(x) Z [m(x)Ihlrés:x]fyd(lizl-iﬂlidl)r%lxFil.x (3.38a)
g

takes into account the sum of the terms with & = |i5| + |{;] = 0. Since #(1, m(x)) = 0 the
remaining terms have &k = 2, hence

S22 = ZU(I) Z [m(x)Ll'b(k m(x))l"gsx]’

XEX A is
I_3[+I14132
We have
S221= 3 Maaa(n, 7', m)py (3.38¢).
nf
with {n'l = |] — |i5|. Thus for ¢ > 0 and suitable constants ¢ and ¢’
Y Maas(mm < (pQRy ™! + 1))
7' [=l1l-2 -
Xy 1(lis] = g)ey Ul  fydyed, (3.384)
Lyodabsliallisl22
Finally,
S22 = Z Moaa(n n', mpy (3.38¢)
’]J
with |1’ = || — |i4] + |i5| and, for g = O, with suitable constants ¢ and ¢
Yo Mot n,mI<{p@yT + DY Y Wil lisl =)
lﬂ'|=|’i’]-f? [J_;-Il;l;:isaz B
x cyd(|541+|i3|+|£'4|+21£5|) < C’yqdﬂ_ . (3.380)

The proposition is thus proven. : ‘ O
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Theorem 3.7. For any § > 0 and n = 1 there is ¢ so that for all o:
sup sup sup [v}(x,¢0)| € ¢ eyl (3.39)

¢ |xl=n(<y*

Proof. By proposition 3.6, for n # @

B (pn(o1, my - 110))) = fu ds 3 My (r, 1y 1oL (030 my ()
s

(3.40a)
because g, (v, my (-, Of¢)) = 0, since o = m(-, 0|c). We then write
My Gr.n' m) = M (n, 0, m) + M (n, 9, m) (3.400)
where M, (n, 7', m) =0 if n' =@ and M}/(n, i, m) if o # §. We then define
M (nn) = sup ML Gp 7sm)l ME(n, ') = sup | M)/, ', )| (3.40c)
m m
Wecall no=(x,9,8,8), x5, |x| =n and set
dn
N:dN>—. - - : : (3.41)
By iterating (3.40a) N-times we get:
N-1 }-’5"- .
i ™ oyttt
B (pn (01, mC, 110)) )| < Y G L Y o 1)
»¥ o
+ S 28" o, n) sup |y (o m)| (3.42)
7 .
By (3.25) there is C(n, q), (1, g) € Z3, such that
y 2N " 8, O, 'y M2 < C(Inl, d(m)) (3.43)
n!’
with M, := M/, + J7. Calling
C'= max C(p,q) (3.44)
a&n+ NV
we get from (3.43), after telescopic cancellations:
y IRRIE N N o, oYM G B) < CF (3.45)
rf ¥ ] ¥ ] = B
dn/'Z-

so that the sum over j on the right-hand side of (3.42) is bounded proportionally to ¥
The last term on the right-hand side of (3.42) is bounded by

L Z( HY (o) sup  sup|oy(o,m)). (3.46)
d(meN)
By lemma 3.3
sup sup (M <e (347

A dE)SN@RN)
50 that the sup in (3.46) is bounded independently of y. By (3.25)

Z(ﬂ;)’“wo, 7y <c

independently of y, hence by (3.41) the expression in (3.46) is bounded propomonaliy to
y@n/2 The theorem is therefore proven. O
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4. Extension fo longer times

In this section we prove the theorems stated in subsections 2.1 and 2.3 of section 2, extending
the estimates on the v functions to times ¢ < alogy ™" with a > 0 suitably small.

We postpone to proposition 4.7 the proof of the existence and of the uniqueness of the
Cauchy problems for (1.1) and (2.20a) and of several other properties of these equations,
in particular that the sup norms of the solutions of (1.1) and (2.20q) are bounded by 1, if
that is so for the initial datum. First we introduce the basic notion of ‘quasi-solutions’ of
(2.20a).

Definition 4.1. Given a configuration o € {—1, I}Zd and 5 z 0 we denote by

My (x, t|o) t2s (4.1)
the solution of (2.20a) for t = s, which starts from o at time s. We set

e = ky® keZ,,8>0 (4.2)
and given any sequence o,, € {—1, W ke Z.,, we define, for t 20,

my (x, tl{on}) = my, (%, tloy,), 2 <1 < tigs. 4.3)

The function m, (x, t)foy, }) is called a ‘quasi-solution’ of (2.20a).

Strategy of proof. We study the Glauber dynamics by successively conditioning the process
at the times #. The conditioning at #; fixes a configuration o,, and the evolution in the next
time step, [#, %+1), is well approximated in terms of m,, (x, t{cr,,‘), as it follows from the
analysis of the previous section. At the end of this time interval, ie. at time 4|, we
replace m,, ,, (x, Lesy Ia,k) by one of the true configurations which appear in the conditioned
process, say oy,,,. By iterating this procedure we thus construct a quasi solution of (2.20g).
See chapter V of [13] for more comments on this approach.

Clearly the method will be effective if two conditions are satisfied: first, for each k,
Ty ANA M1y p (x, m) [o‘,k) should be close (with large probability and in a sense to be
specified). If this holds we will say that m, (x,z|{c;,}) has ‘small discontinuities’. The
second condition to prave is that a quasi solution with small discontinuities is close to the
true solution, m, (x, ¢lop). We start from the Iatter condition.

Definition 4.2. Given o € (0, 1) and k* > 2, we define the seminorms || f |[}j'.'a and || flli o
of f € M(I—1, 1}%) as :

1Fla= s AP Iflea=  sip  |4m(p)] (4.42)
: Le|h =2 x|tk =)y -2
where, recalling (2.9d),
1
Aye 1 (f) = > FO). (4.4b)
| By~ YEB . :

Thus, given § > 0, we say that a quasi-solution m, (x, 1|{oy, }) is {-accurate tll time T and
with respect to the seminorm [} - |f;§~,a» if, for all y small enough, )

"m}/.tk('v Let1 Iat*)'—" Orpg “;-“.a -~<‘_ },f fOJ" all I "~<-.. T, (4.5(1)
We also say that it is {-accurate relative to the initial condition my (-, 0) if
[y (-, 0) — Goilis o < ¥° ' (4.5b)



658 A De Masi et al

Proposition 4.3. Let0 < < 1,0 <8 <&, 0 < by < min{¢ — 46,1 —«), & as in (4.18)
below and

O<a<hby/é, 0<b<by—ab (4.6)

Then for any k* > 2, any my{(-,0) € M(Z®), |m, (O] < 1, and any quasi-solution
{my ( [{oy, }) which is ¢-accurate till time a log y ! with respect to the seminorm | - il,"c'l'a,
and relative ta the initial condition m, (-, 0), the following bound holds

sup  fimy (-, tlloy}) = my G )llae o < 92 (4.7)
tZalogy-!

for all y small enough. my(-,t) in (4.7) is the solution of (2.20a) with initial condition
m., (-, 0). :

Proof. For ¢ > t; we define
’Ey.ﬁ, (xv t) = my.:k(xa tldtk) = my (xr t)' (4.861)

We then have

i

' t
£, 4 (x, 1) = [y, (x) — my (x, £)] + f ds [Fy (%, 8) — &y, (x,8)]  (4.8b)
where 7
Fy 1. (x,8) = tanh{B[(Jy o my 4 )(x, 8} + h]} — tanh{B[(Jy o my)}{x, 5) + K]} (4.8¢)
Given any x € Z9, and ¢ > t, we denote by

Ly (6 0) = |A},~a,x(e},,,k(-, ) ] 4.9)

By adding and subtracting »,, s, , (x‘, tk[c,k_l) to the right-hand side of (4.85), we get

L}’.!& (xa I) "-<-. ‘Ay"“.x (O‘tk - my.&-[ ('1 tklo}g-] ))l + Ly,!g_;(xa tk)

t
+ f ds(lA,,-arx (Fpu s))l L, s)). (4.10)
I
We are going to prove that there are ¢; and ¢ so that for all x and 5 |
|Fya(x, )l S 01 3 1y, YLy aly. 1) + ey~ (4.11)
y

We have, in fact,

Py, )] < et (2 0 £) (5, 9) (4.120)

and, for any function f(y),

|32 5 r 0| = | 3096 DUG) = Ay (D) + Apey (P
¥ ¥y

< Y DMy OO+ 1 Flloo |9y 0 ) = Ay (3 5, )
¥ ¥

(4.12bﬁ
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Using (4.12) we then obtain (4.11).
Going back to (4. 10), using the assumption that my( l{o }) is ¢-accurate, by (4.11),
we get, for [x| < k*¥~2 and all y small enough,

?Ik(x t) y +Lyrk |(-x zk)+02}”5+1—a f dSZK}’(x1 Y)Ly,u(y,s) (4.1361) '
I ¥
where
1
Ky 3) =Lpap +a— ¥ 15 M (4.135)
]By_dl ZGBY-—n x ,
We define
Ly(x,t) =Ly, (x,10) i f <t < tfig1. (4.14a)

We bound L, ,,_, (x, %) in (4.13a) vsing the same (4.13a), then, iterating this procedure, we
get for any ¢ < alogy ™!

!
L, t) < ylalogy [y’ + eyt + f ds ¥ Ky (x.2)L, (z.5). (4.14b)
0 z
Let b, be as in the text of the proposition, then for all ¥ small enough and all x| € k*y2
!
L,(x,0) <y" +f ds Y Ky(x,2) Ly(z,9). (4.15)
Y z

We now restrict ourselves to |x| € (&* — 1)y ~2. We can then iterate (4.15) n = [y~ /2]
times. In fact Kp(x,z) =0if [x — z| > 2y ! so that all sites z reached in the iteration are
such that

lz] < x|+ 2y T S F =Dy 2+ i< Ry R {4.16)
We then get, for |x| < (k* — 1)y 73,

n—l ar 51 5i-1 I
L,,(x,:)s,Zf dslf d.s'g...f ds; Y Ky(x,21)... Ky (21, 209
j=1 0 0 1]

T eunidy

¥ Ip—1
+f ds,...f ds, Y Ky(x,20) ... Ky @umts 20) Ly (2o 50). (417)
o o ESLTITIE A"

We set
&:=sup ¥ Ky(0, ). i (4.18)
Yox

Since Ly (x, t} < 2, see proposition 4.7.1 below, we finally have, for all y small enough,

t 71
Ly < et 4280 < (4.19)
having used the definition of & and b and observed that for any b3 > O there is ¢ so that

~ —=1\n
(C a Iong")/ ) < )’b n = []/_1/2} ' (419b)

The proposition is therefore proven. a .



660 A De Masi et al

The following is a corollary of the proof of proposition 4.3:

Proposition 4.4. Using the same parameters as in proposition 4.3, let m,, (x, £) and /2, (x, ¢},
t 2 0, be two solutions of (2.20a) such that

71ty (-, O — ity (-, O)IF 5 < ¥°. {4.20a)
Then
sup [y (o 8) — 72, G, ) lie e < P (4.205)
tgalogy=!

Proof. Replace in the proof of proposition 4.3 m, (x,t[{os}} by /i, (x,?) and oy, by
rity (x, 1), for all £, > 0. We then obtain (4.208) from (4.7). O

We next prove that with large probability the trajectories of the Glauber dynamics give
rise to ¢-accurate quasi solutions:

Proposition 4.5. Forany k* 22, 0 < <1, >0,a>0,n 21 and

r<ad/2 4.21)

there is ¢ so that, for all oy,
]Pao( sup  llon., — My (s rmlcr.r,t)ﬂkﬁ_ﬂ =yt ) < ey” (4.22a)

alogyt

and for any product measure ¥
(o =myC Ol e > ¥F) Ser"  myix,0) =By (o). (4.225)
Proof. We first write

By sup Non, =y Gorilolh . > )

fgalogy~!
< ylalogy 1 [4k*y 2 + 1) supP, (IAN',I > yf) (4.23a)
X0
1
Ayxo > ol n) —my(y, 1)l (4.235)
Byel y5.

Then, using the Chebyshev inequality with power 2n,

|By““ IZu X ek

‘iEBy‘“.x

2n .
Po(|Avsal > V) <= 3 EY([Jlo e ) = myGur ko).
i=1 .

If all the x; are distinct, the expectation is a v-function, so that, by (3.39), it is bounded
by ¥, If the sites are not all distinct we use (3.32). We observe that for each sum
which is missing we gain a factor ¢ from the normalization, hence we obtain that the last
expression is bounded by:

¢y 2% max(y?", y*in).

Since & < 1, the max is achieved by the second term, which gives the bound y"“*=2%) and
this proves (4.22a). A completely similar argument gives (4.225), the proposition is thus
proven. 0,
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Collecting the above results we have:

Proposition 4.6. Let &%, o, 8, ¢, a and b as in proposition 4.3 and such that (4.21) holds.
Then for any n there is ¢ so that for all oy: .

P sp laO)-mGlolea> ) <o @29)

tsalogy™!

Furthermore let u¥ be a product measure, m,(x,0) its means, m,(x,t) the solution of
(2.20a) with initial condition m., (-, 0), then ’

B swp o) = my (Dl > v*) <o (4.250)
15alog i
Blo(foo B s 1000 =myC0llew > v) Sev']) > 1-0p" (4250)
1€alogy-

Proof. The left-hand side of (4.24) is bounded by

y7alogy™ s Po( swp [ai() —myCtloo)lea > 1P). (4.26)

n5alogy? LSS

We add and subtract m,. ., (-, f]oy,) so that the probability in (4.26) is bounded by

1 b
Paof S0P Iy 2100} =ty o e > 57)
SISy

1
+50p Py sup () = my - 1o} > 57°). 427)

O

We use propositions 4.3 and 4.5 to conclude that the first term vanishes faster than any
power of y. The factor y*/2 can be easily taken into account by observing that y#/2 > ¥
for b’ > b and all ¥ small enough. It is then enough to consider (4.7) with &’ in the place
of b. For the second term in (4.27) we proceed as follows, With a proof similar to that of
proposition 4.5, we have that for b < «d/2 and for any n there is ¢ so that

1
sup sup Py (llo:() = my (- HoYin > 77°) S ep™. (4.28)

oSy o
We then split the time interval [, 1] in N subintervals of length €, e N = ;. Let © be
the set of orbits o3, 0 € 5 < £, for which at least two spins flip in the same subinterval and
at sites within distance k*y~2 from the origin. More precisely, @ is the set of orbits such

that there is # € N — 1 and two times, 51 and sz, both in (ne, (n <+ 1)¢) and two sites x3
and Xz, 1x;] < k*y~2 such that o (x;, si'") = = (x;, 57}, [ = 1, 2. We denote by

I .
B= () {lldne(-) — my (- nelo Mgy < 4—)/!’} (4.29a)

neN~1

and by B its complement.
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We claim that for ¢ small enough
1
sup |lov (-} —m, G oM e e > —yb C BfUBO. (4.29h)
s 2z .

To prove the claim we will show that BO° does not intersect the set on the left-hand side
of (4.29b). To this end we observe that m, (x, t|o') has a bounded time derivative so that
in a time interval ¢ it varies at most by c¢, for some ¢ independent of o, ¥ and ¢. In OF
there is at most one spin which flips in a time interval (ne, (r + 1)€) within distance Py~
from the origin, so that if ne <t < (n + L)e,

2
oy () — my (s tlo Mo S 0pe () — my (-, 0|0}l + m—
IBy"“I

1 ! ad I b
4}/ i 2

if b and € are small enough. (4.294) is thus proven.
From (4.295) and (4.28) it follows that

P2 ((10:) =y (. el > 57) < Ney" + By (O). (4:29c)
Since ¢, (x,0) £ 1, fora suitablc constant ¢/,
Po(O) < Ne'T@R' Y2 + 1)es
Thus (4.29¢) is bounded by
e ey™ + e e [[@h YT + 1) en

By taking € = y*, with k sufficiently large, we make the second term vanish as any desired
power of ¥. Given that k, we then choose n so large that also the first term vanishes as
fast as desired. 'We have thus shown that also the second term on the right- hand side of
{4.27)} vanishes faster than any power of y, hence (4.24) is proven.

Proof of (4.25b). We write

b
[ s mG0—clee>ylc{ s myC o) - ol > 5|
tgalopy! Lo t<alogy™!
¥
U { sup |lm}'('!r) "'my(';tlo'O)]k‘.a > ?]
r<alogy?
By (4.24) we then get for all ¥ small enough
b
B s myCtloo) — ol > 5) <o
tgalogy-! 2
Furthermore, if
oo — my (-, Ol e < ¥* {4.30)

by proposition 4.4, for all ¥ small enough,
b

b
sup [y (-, ) — my, (-, tloo) lrre < 5
rgalogy-!

(4.25b) then follows from (4.22b). Since (4.25z) follows immediately from (4.2556) the
proposition is proven. a
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Proposition 4.6 ‘almost’ proves (2.10k) and (2.135). The ‘almost’ is because 1y, (-, £|op)
and m., (-, 1} solve (2.20a) and not (1.1), as required in (2.105) and (2.135}. We fill this gap
in the next proposition, where we also prove several properties of (1.1) and (2.20z). For
case of reference we split the proposition in several distinet statements.

Proposition 4.7.1. For any y > 0 and any m € M(Z?), [mle < 1, there is a unique
bounded function m,(x,t) on Z¢ x Ry which is differentiable in t in sup-norm, solves
(2.20a) for all x and all t 2 0 and satisfies the initial condition m, (x,0) = m(x), for all x.
Moreover |m, (-, Dl € 1foralit 20

Analogously, for any m € M(R?), imle < 1, there is a unique bounded function
m(r, 1), which is differentiable in t in sup-norm, solves (1.1) and satisfies the initial condition
m(-, 0y = m(-). Moreover |m(r, )|l < 1forailt 2 0.

Proof. We consider the statement relative to (1.1), the argument for (2.204) is completely
analogous and omitted.
We fix T > 0 and for 0 €t £ T we write the integral version of (1.1)

mir, 1) = e~ m(r, 0) + fo r dse-(f-ﬂ:anh(,s[.r xm(r, s) + h]) (4.31a)
which can be thought of as a fixed point problem for the map
K: {u € M(R® % [0,T)) : ¢l < oo} - iu € MR x [0, T]) : Julleo < 1]
defined as ,

Ku(r.t) = e m(r,0) + fo : dse'(““”tanh(ﬁ[J * u(r, 5) + h]). (4.31b)

For T small enough X is a strict contraction in the sup norm, with therefore a unique
fixed point, m(r, ). Since Ku(r,t) is a differentiable function of ¢ in sup-norm, the fixed
point m(-, ) is differentiable in ¢, hence m{r, t) solves (1.1) for ¢ £ T. Observe also that
m(r,t) —e~m(r,0) is in C'(R? x [0, T]).

As the solution at time T is in the same class as the datum at time 0, by iteration we
have global existence. Uniqueness follows because any solution of (1.1) solves its integral
version, which is a contraction. O

Proposition 4.7.2. There are c; and (-:2 5o that the following holds. Let u,(x, t) be for each
¥ a solution of (2.20a) and denote by ), (r.t) the T, image of uy(x,t). Let my(r,t) solve
{1.1) with initial datum m,(r, 0) = u},(r, 0) and suppose ||u;(-, O)llee & 1. Then

Iy G 8) = w3 (-, Bllce < iy (4.32)

Proof. Observe that ) (r, ) solve (1.1) with J(r — r’) replaced by
Ay r) = J(lr], = [r'1,).
Let
Ly(r,0) o= [0 r, ) = my (1, )]
then
t
Ly(r 0 g/ ds{ﬁ[UI*Ly(r.s)—}—ky]}
0
because, for a suitable ¢,
W =r) =A<y
and, by proposition 4.7.1, e} lloo € 1, limylloo € 1. Hence (4.32). J
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Proposition 4.7.3. Let m, (r, t} solve (1.1), |m, (-, 0Mleo £ L, m,(r, 0) = m(r, 0) Lebesgue
almost everywhere and let |m(-,0}|o < 1. Then, for any t, my(r,t) — m(r, t) Lebesgue
almost everywhere, m(r, t) being the solution of (1.1} with initial condition m(r, 0).

Proof. By proposition 4.7.1
L, t) =[my(rt) =m0} <2

Then

t
Lyr,t) e L,(r,0) + 8 f dse™ 211 % L, {(r, 5)
a

N— " N
<0+ Y : V171w Ly, 0y + 221
- ~ (ﬁtHJ'IIoo)" .y (B loot)”
<e'L,(r,0)+e ,,E..;: f| _rrlgledr Ly, 0) +2-—— =

(4.33)

Giveh any ¢ > 0, we choose N s0 large that the last term is less than €. On the other hand,
by the Lebesgue theorem, for any bounded region A,

lim § drL,(r,0)=0
y—=0 Jfa

It then follows that for all ¥ small enough, also the second term on the right-hand side of
(4.33) is less than €. By the arbitrarity of ¢ we then conclude that L, (r, £) — 0 for all r
for which this happens at t = 0. The proposition is thus proven. O

Proposition 4.7.4. There is c4 so that forany V > 38| | e anty T > Q and any pairm(r, t),
#i(r, £) of solutions of (1. ])such thatm(r, ) = m(r,0) forall |1 < VT and |m(-, D)l < 1,
[, Ol € 1,

|m(0, £) — A0, )] < cae™VIBIV/CEI b} forall t<T (4.34)

Proof. Define L(r,t) = |m(r, t) —mir, t)[, then L(r, t) satisfies the same inequality (4.33)
as Ly (r, £). We write (4.33) with r = 0 and N = 1 4-[VT] {[VT] the integer part of VT).
Then only the last term on the right-hand side of the last inequality of (4.33) survives. Thus
for the Stirling formula, there is ¢4 so that forany t < T

N N
L({0,1) € caex (-N[io —I])\c ex ( Nlo —-——)
e ® B oot o ® 31 oo
Since N 2 VT and V > 38| J ||lo the log is positive and we have an upper bound if we
replace N by VT, The proposition is then proved. O

Proposition 4.7.5. There is ¢s so that if m(r,t} and A(r, t) solve (1.1}, [|m(-, 0]l £ 1
172G, Do < 1 and |m(-, 0) — i, Wlleo < €, then,

lm(, 1) = i, Do < e forallt 2 0.



Glauber evolution with Kac potentials 665

Proof. Defining L(r, ¢) as in the proof of proposition 4.7.4, we obtain the result from the
first inequality in (4.33). |

Proposition 4.7.6. There are c; and cs 5o that the following holds. Let m(r,t) and m(r, 1)
solve (1.1), |m(-, 0o < 1, |7, O)lloo € 1, and suppose that there are 0 <o < 1, b > 0,
i > 0 and &' so that

sup |[DNr' :r—rig 1} €y
reRd

where

D:= {r e R4 ¢ [m™(r, 0) — A (1, 0) || > y"]
(see 2.1.5 for notation). Then

s;lg Im@ (. £) — O, )] € che™ [y? + ¥ 4 y¥]
Proof, We have

(r, 1) = (7. 1) — 7, 0) —~ i, O]

< .[; dse~0|(J wml, ) — (%l )0

We fix r and, setting j(r') = J(r — ¥’), we write the first convolution as -

fdr'j(r’)m(r’, §) = /dr’j(r’) {m(“"’)(r’, Y+ [m(r, s} — mSyI, S)I}

= f dr' jrm @ sy + f dr'm(r', )"y — JO ()]

An analogous expression holds for 7t We then set Ly (r, 1) = [m'®¥)(r, 1) — @V (r, 1),
and, for r € D,

s
L) <€yt + [ dse (1 1uaf267" + sup 12, (] 4 217 Noor
0 HeD

hence the proposition i$ proven. : i

Proposition 4.7.7. There is ¢; so that the following holds. Let m(-,0) € C'(RY), assume
that |m(-, Olleo < 1 and that |mV(-, 0)]lea < 00, mV being the derivative with respect to r
of m. Let m(r, t) be the solution of (1.1) with initial condition m(r, 0), then m(-. ty ¢ C'(R%)
and

IO, Dlleo < & ImDC, O)llen + . (4.35)
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Proof. The statement follows by differentiating (4.31a) with respect to + and using that
17M e < oo and that [[m(-, £)lee < 1. We omit the details. d0

Proposition 4.7.8. There is a constant ¢y so that for any solution m(r.t) of (1.1) with
Im(, Ol € 1, for any r € R? and any £ € R4:

[lr ty —m(r + £, )| < cglé| +2e~". {4.36)

Proof. Let

D, t) =sup|m(r,t) —m{r + £,8).
Then, for a suitable c,
!
D, 1)y <e ' D, 0) —]—f dse~¢¢|g]
0
because
Bl xm(r,s) — Fxm(r+£,8)| < ,der’].f(r ~rY—Jr+E€—r) < clé).

Recalling that |D(£, 0)| £ 2, we then obtain (4.36). ‘ O

Proof of theorem 2.1.6. By (4.24) and using the notation (4.4a) and (2.94), we have

Pg( sup sup Io,;fj.?)(r) _ (Fy(my('- zia)))(ﬂf.}’)(r” £ },’?) =1 —c,py".
talogy! |FISGe-yt

(4.37a)
Recall that m, (x.t|o) solves (2.202) whit initial condition o (). We call (7, 1) the

solution of (1.1) with initiai datum e, =T, 0.
By (4.32) !

Ty Ory (5 o)) = ¥, (5 D lloo < ™y, (4.376)
We need to relate v, (r, 1) to m(r, £), the latter being as in the statement of theorem 2.1.6.
To this end we define ¢, (r, #) as the solution of (1.1) with initial datum equal to o, (r) for

[r] < k*y~! and equal to m(r) for |r] > k*y~!. By proposition 4.7.4 with T = alogy™'
and VT = y~1/2 we get that for ¥ small enough

sup sup | (n 8 — Py lr )] S cqe™ . 4.37¢)

t<alogy=" IrlQe—1/2)p "t
We next compare (¢, (-, r))(“"') and (m(., r))(“"') using proposition 4.7.6. In this case

Dy =y g | Sy~ o)
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In fact, for |r| < k*y~1 —y!~®
|¢}(’a,y)(r) _ m(ct,}’)(r)] = |.‘Ib.}(’0!-]’] (f) —_ m(ﬂ-}’) (r)l < },;

because the block spin transformation involves values of ¢, and m in |r] < k*y~! and for
such r, ¥, (r} = ¢, (r). The bound then follows using (2.10a) recalling that ¥, (r) = o, ().
Outside D and for |r| > k*y~! + p1=2, by the same argument ¢ (r) = m@¥)(r). We
can therefore apply proposition 4.7.6 with b — ¢ and # — 1 — . We then get, recalling
the notation (2.11),

sup [¢5 7, 1) — m@P (r, )] < e [yF + ¥1 (1 4 D). 4379)
reD
Then, by (4.37¢),
sup sip [PV ) ~ mE (D] S cae™ + dy TV + 1A+ )]
t<alogy™t Irl€(kr=1)y~"
(4.37¢)
We finally use (4.375) to recover, from (4.:%741). the bound
Py{ sup sip  [o5 ) = (Cylmy G loN) () < Ay ) 31— cy”
tgalogp=! riste—1yp-!
(4.37)

where
Ay = yb + cfzy—cza.y + C4e-y—l + céy—cﬁa[yt 3 },l—a(l + Cf)].

By chosing a small enough we have A, < v, for all ¥ small enough and a suitable &’ > 0.
‘We have thus proven theorem 2.1.6 with & in the statement of the theorem taken equal to
v O

Proof of theorem 2.1.8. (2.13a) is proven by (4.25a4) and proposition 4.7.2. (2.13h)
is a straight consequence of (2.105) and (2.13a). m,(r,t} converges Lebesgue almost
everywhere to m(r,t) by proposition 4.7.3. The statements in theorem 2.1.8 relative to
my € C'{RY) are proved using that |m, (-, 0) — m(-,0)|ec < Cy. Then, by proposition
4.7.5, '

Iy 1) —m(, o < e Cy [ &P, 1) = m® P, )]l < e Cy

hence (2.13a) with m'™*}, Then, by proposition 4.7.7, the sup-norm of m — m@*) vanishes
as y°, for some b > 0. The proof of theorem 2.1.8 is thus concluded. |

We next extend the bounds on the v-functions proven in section 3 to finite times and to
times ¢  alogy ™!, when a is sufficiently small, proving theorem 2.3.4.

There are two key observations: first, by using proposition 4.6, it follows that the
average of v} (x, ¢|o’) when each x; independently varies in the box By« y; is bounded, for
any given ¥ = (y1, ... ¥»), by cy®®. Second observation is that while the v-functions do not
obey a closed set of equations, the new terms appear as averages or, more precisely, can be
reduced to averages. The right algebra to evidentiate this finer structure is that introduced,
but not fully used, in section 3, to which we refer also for the notation that we will be using
in the sequel. The'main conclusions of our analysis are summarized in a generalization of
proposition 3.6: ’ S
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Proposition 4.8. There are real valued coefficients My, (n, ', m) and M;fg {n, v, m), n and
0 in H, (see definition 3.4), m € [—1, I]Zd, such that for all v, n, m and o € {—1, 1}Zd

> D¥pyemy= Y (My(r. 0. m) + MEG o, m)} pylo,m)  (4.38)
xeZd NeH

(0, as in definition 3.5). The coefficients M, and Mffg satisfy the following support properties
and bounds.
Support properties.

MB(n, o, m) = 0 unless || =[], en) = g(7), d(n) = d(n’) and

glax |Ver| < max | Vel (4.39q)
with Vi as in definition 3.2, § € n meaning that § is an entry of n.
My(n. 7', m} =0 unless || < [n| +2, d(n) —d(n) < Iyl and

rg}ax Vel € max]V,;l + 2. - (4.398)
Bounds.
There is C so that for all n > 1:

sup  sup Z |M(n, ', m)| < (4.40a)

mef=1, 1]1“ Inl=n "y

There is co(n, 1), (n, n') € 72, so that

sup sup 3 My (o' )| < coln, ). (4.400)
me[-1,11%  Inl=ndim=n "y

Moreover for any b > 0 there are coefficients c(n, n’), (n,n") € Z and positive parameters
b3, B3, U™ such that b > b} > b > {* > 0 and the following holds Let (b1, ba, ba, L‘) be
either equal to (d/2, b3, b3 é,‘*) or equal to (0,0,0,0), then

P sup  Ny(m) 3 1My (o, 7' m)INy ()7 < e, )y (4,400
me[—1,1)2 lal=md(n=n' p

N, () 1= p=@r2-b0lnl-bag G+ (4.400)

The proposition is proven in the appendix by computing the left-hand side of (4.38) with
a very careful classification of all the terms which are involved. There are no mathematjcally
sophysticated argument to use, it is only necessary to find out the precise combination of
the terms which leads to the desidered cancellations necessary for proving proposition 4.8,
To make the proof really readable we have found no other way than to report lt in great
details. For its considerable length it is shifted to the appendix.

We proceed by proving (2.23), the proof will make clear the need for the many different
bounds in the statemnent of proposition 4.8.
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Proof of (2.23). Let no # 0, then, using (4.38) and denoting by m, = m, (-, tlo),
4
B (on i) = [ s 08 o) M8 mO T (o). D)
. o =

The term at ¢ = 0 is missing because mg = &, hence p, (o, m) = 0 since ng # B.
As our bounds on the coefficients M, and M,‘fg do not distinguish n’s with the same
values of (|nl, g(n), d(n)), we introduce the following notation:

a=(nm,f) 4.42a)

Vu® = sup [EX (pnytom))| (4.42b)
e

K,mna)= sup Z sup }M (n, 7', m)|. (4.43)

=it |n'|-n'dtrf>-m' m{)e(—1,11%

Then, using (4.40a), we get from (4.41)

3
2 (ontema)| < [ S+ LK Gom W) (444

having denoted by n; = (ng. mo, £5) the triple (|70l, d(no), g{(no)).
From (4.444a) we get

Vi, (1) < fo dseC™ 9> " K, (g, 1y )W, (5)- (4.44b)

As in the proof of theorem 3.6, we split K, = K, +KJ, where K (1. 2"} = 0if n’ = (0,0, 0)
=Pand Kj(n.n) =0if n' # 0. We then 1terate (4 44y N t1mes N as in (4.53) below,
and get:

N

U <Y L +L (4.45a)

b=l
where [, is a shorthand for

Spm1 r pl
I _.f ds.. f dsp exp [Czns-q(&'-l —Si)]{I_[ K@y, n Ky (r, ) B)
i=1 =1

1-Bp1

(4.45b)

where 55 = ¢ and

L=f0:ds;.../os dsy Z exp {CZn,_l(s,_; — 5 }{HKr(_( 1» 203, i)

i=I =1

(4.45¢)
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Observe that

n S n;=ng+2i m; &y = mo 4+ ing - & QE, =n; (4.46)

where the first two inequalities follow from the support properties of M, (n, ', m) (see
proposition 4.8), the third one is true by definition, as g(n) < [n|.

We start by bounding I,. We divide the terms in the sum over ny..n,_, according to
the maximum value u attained by the first entry n; of r; and to j, the label where it is
attained, i.e. #; = u, and j is the first label where this happens. Then

no+2p p=1 P .
L< ), ZGC“’; Ly=u(KY (0, ) (K Y (01, ) KRy, B). (4470)

u=ng j=0 .Y

For (K}’,)f (. n;) we use the bound (4.40b), for (K’)?~'~7 we use (4.40c). We have

Z(K;)p_l—j (‘E'J' B—P-l} K;:(H.p—'l L] E) = Ny (EJJ—IN-F (g)

B,

% My ) 3 ) Ky, BN, @]

P

.

having noticed that N,, defined in (4.404), depends on #r only via the triple r associated
t0 1. Since N, (@) = 1, recalling that by (4.46) (n;, m;, £;) < (A, m;, £;), we have from
(4.40c) with by =ba = b3 =0

< ¢ (wmo+ pu)P Ny ()™ = (e, mo + puyp Iy (4.470)
where we have used the notation

¢*(n,m) = plnax cln’, m’) (4.48q)

with ¢(n, m) as in (4.40¢). We also set

con,m) = max con’, m) (4.48b)

#'gn,m' &
with ¢cp(n, m) as in (4.40b) and have

npd2p p—1 P )
L< ), Zec"';'%(u, mo -+ ju) e*(u, mo + puyP=I y %I, (4.49)

u=ng j=0

The leading term in (4.49), as y — 0, is the one with u = rg. There is therefore a constant
¢(N, ny} such that

N .
> I (N, ng)elreteN ydmi2, , (4.50)
p=l1

We suppose that aC < d/2 (and as usual t < a log ™), then the right-hand side vanishes
satisfying the bound (2.23).
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The bound of L, in (4.454), is analogous. We use (4.40¢), in the version with b = d/2
and (4.46) to get

t SH=1
L  eCtnotaiy f ds;... dsw N () ™" c*(no + 2N, mg + N(ng + 2N))N
¢} 1] .

x y< N sup*{(N, (np )W, (5w)}
By

where the sup*® is over all those n, whose entries are bounded as in (4.46).
We will prove afterwards that there is ¢,y such that

sup  sup*N, ()Y, (1) < Cgyn- {4.51)

t<alogy~! By

Then by (4.51)

P .
L< ec("“"'m)‘ﬁc'(ng + 2N, mo+ Ning + 2N)) Y cp wN, ()~ 8. (4.52)

We then restrict ourselves to n, = (n, 0, 0), as we are interested in the case p,, =5(x, 1),
x = n. With this choice N, (n;) = 1 (recall that we are considering (4.404) with b, =d/2,
by = b3 and by = b3). Then with a such that 2aC < ¢*, we can finally specify the choice
of N, namely such that

N > aC{n+2N)+dn/2. (4.53)
Then, fram (4.52).
L < Cyﬂ’n,fz

with ¢ a suitable constant. This bound together with (4.50) proves (2.23) which is therefore
proven modulo (4.51).

Proof of (4.51). Let n = (x, y. &1, ., Eph then ‘

p ] '
lontam)| < 22 [ 156@) = A [ TT (e GON + 27 )} 54)
=t i=1

{4.54a) 15 straightforward consequence of the definition (3.21), with the last factor obtained
as follows,
We write

2={21, 20 Y=y Y =0t Yo 2= (@1, Zer).
Then, recalling (3.22),

Xey (@ = Xey @) Xxrz .y, (26)
s0 that

Y X0y @F@ =) xey @@ Y Xerr @D (2)
z I z
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and
I Z Xx+z,y (2)G (z)l < [Ape iy ()| + (1 + o2y

hence (4.54a).

We next show that the differences | f;; (¢) — fi{(m)| can be also bounded in terms of
the averages Ay—=.{5(-)). ‘

By lemma 3.3 there is c(d(§)) so that, forany &, & = (x, 3, ¥,. ¥,, ")

[fe(o) — fe(m)] < c(d(£)) sup Jtanh“EP (y, + €) — 1anh @SNy, + €) (4.54b)
R

where

V=B J(x, Y.
eV
Since in (4.51) we have a sup*, we may restrict in (4.545) to d{€) € Ay = N(ng + 2N),
by (4.46), and to | V| < 2N, because in 1 no £ is present and, by proposition 4.8, the
transitions n — %' in M}‘f“”(n, ', m) do not increase the max of |Ve|, see (4.39a), while
those due to M, make the max of | V| increase at most by 2, see (4.390).
There is therefore a constant ¢, which depends on ng and ¥, such that

i (@) = felm)l S c| Y Ty e, )E0L 0] < cy“EZIV;IIlJlloo]+C|ZJ(x N, 1)
YEVE
and
= ] | 7!
l;fy(x,y)aw,r)l lZ_{zeg:; B FG, 0]+ 27" oo

The first term on the right-hand side is equal to

|3 55, DAy (56, 0)| < e (4.54¢)
Z

and the inequality, by proposition 4.6, holds for all t € alogy ™!, with probability that
vanishes faster than any power of y, as ¥ —» (. Observe that we are not supposing that
Ix) € (* — 1)y %, however the processes

[ 3 5y ) Ay (50, D), 12 o}
) Z
starting from op and

[ DI 0, DA (1), 2 2 0}

starting from oy, o3(y) = op(y + x), have the same law. For the latter we can apply
proposition 4.6. The same argument applies to the other averages in (4.54a), we thus
conclude that with probability that vanishes faster than any power of y, py(or, m,) is
bounded proportionally to y?8%) with a proportionality constant which depends, via (4.46),
only on ng and N. The factor N, () in (4.51) has an exponential factor y ~##®), so that
by -choosing &3 equal to b in (4.54¢) we obtain a bound independent of y, in the set where
(4.54¢) holds. The complement of this set has a probability which vanishes faster than any
power of y, hence the proof of (4.51) is completed. O
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Proof of theorem 2.3.4. We have already proven (2.23), so that (i) is proven.

Proof of (ii). the same proof applies to the case when the process starts from a product
measure g7 and m, (x, f|c) {that enters in the definition of the v—funcnon) is replaced by
my (x, t|u?), see definition 2.3.1 for notation.

If m, (x, tio) is replaced by m, (yx, 1), as in the statement (ii), we use proposition 4.7.2

to prove that
sup  sup [my, (x, 7|p?) ~ my, (yx, | € iy ot
t€alogy~! X

Hence for 2 small enough (2.23) remains valid even with m, (¥ x, ¢) in the definition of the
v-functions. The proof of (ii} is therefore completed.

Proof of (§ii). We have just proved the validity of (2.23) with m, (yx, ), m,(r, t} being the
solution of (1.1) with initial datum m, (r, 0) = mo(yr), see (2.12a) and the definition of the
standard initial state, (remarks after definition 2.1.7). Since mqo € C'(R?), by assumption,
and [Imglleo < 00, we have that for some ¢

llmy (-, 0) — mo(Yleo < C¥- . (4.554)
Then by proposition 4.7.5
iy (o 8) = m( ) loo < ™y (4.55b)

so that if £ < alogy™ and a > 0 is small enough, (2.23) holds with m(yx, t) replacing
my(x, t| ,u,’*’) in the definition of the v-functions. We write

Ha(x,, 0= {io e & - mvxi, 01+ m(yx, D) (4.564)
j=1
so that
Hcr(x,,r)— Hm(yx; =Y {[Tew.n-moyx l{[]mex. ). ©@s6p)
i=l el il ig]

By taking the expectation and using the version of (2.23) proved with m(yx, ¢), we then
obtain (2.24) so that theorem 2.3.4 is proved. ]

We actually have stronger results:

Theorem 4.9. Let (myg, u¥) be an initial state in the sense of definition 2.1.7 and assume
that there are 0 < « < 1 and b’ > O such that, for all y smail enough

I = mg oo < ¥ . . (4.57)
where mi,“b") is the block spin transform of m., q, the latter being as in (2.12a), while m&*"

is the block spin image of mg.
Then there are ¢ > 0 and giver any v > 0 there is b > 0 so that the following holds.
For any n and k™ there is ¢ so that

P, ([0’0 :JP’;’O( sup
Irl eyt

O—y(?::}Iogy“f (r) —m{r, Tlog;v’"’)[ > ;Vb) 5 C}/n}) 21—cy”
(4.58)

where m{r, t) is the solution of (1.1) starting from my.
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Remark. the two examples mentioned in the remarks following definition 2.1.7 fulfil the
conditions of theorem 4.9.

Proof. By (2.13b), (4.58) holds with m(t log ™) replaced by m7 (r, 7 log =) which is
the block spin transform of m, (-, v log ¥~ 1), solution of (1.1) starting from m, g. Denoting
by m@¥)(r, t) the block spin transform of m(., ¢), by proposition 4.7.6 and (4.57) we can
then replace mS*" by m@)(r, 7 log y 1), their difference being bounded by c,e%* 198" ¢y,
where ¢y bounds their difference at time 0. By proposition 4.7.8, m®"(r, zlogy ™) is,
for any given 7, y¥', " > 0, close to m(r, tlogy™") (if T < @ and a is suitably small).
theorem 4.9 is therefore proven. O

5. Motion by mean curvature

In this section we restrict ourselves to ferromagnetic interactions, J 2 0, in the absence
of magnetic fields, & = 0, and below the critical temperature, £ > 1, having imposed the
normalization condition [drJ =1

The proof of theorem 2.2.4 is based on an iterative procedure similar to that used in
[18] to prove convergence to the motion by mean curvature in the Glauber + Kawasaki
spin dynamics. The single steps of the iteration exploit the results in [9] and the previous
estimates on the Glauber dynamics valid for 7 < alogy ™.

‘We start by recalling some definitions and results in [9] that we wiil use in the following.

Definition 5.1. The instanton m : R — [—1, 1] is an antisymmetric, strictly increasing

function such that m“(r) == m(r)) (r the first coordinate of r) is a stationary solution of

({.1). The instanton solution exists and it is unique, see {7, 9, 10] and [11], furthermore
lim m(r) =xmg, exponentially fast (5.1)

ri—rtco

with mg as in (2.14).

In [9] it is proven that under the macroscopic scaling defined in (2.17) the mesoscopic
equation (1.1) gives rise to the motion by mean curvature of definition 2.2.3 with parameter

A
—ry
m'(r1)
r1 denoting the vector in the plane perpendicular to the first coordinate axis; N is the
normalization constant: ’

= 2
Nl = f dr )" - (5.26)
r 1 —m(n)?

In [9] as well as in the analysis of the Allen—Cahn equation, see for instance [4], a
fundamental role is played by the ferromagnetic inequalities. At the level of the mesoscopic
equation (1.1), they say that if A(r, £) and m(r, 1) solve (1.1) and m(r, 0) = m(r, 0) for all
r, then @(r, £) 2 m(r, t) for 2l r and ¢. Here it is essential the assumption that J > 0. A
variant of the above inequality is based on the notion of super- and subsolutions of (1.1},
namely functions which satisfy (1.1} with 2> instead of ==, for the supersolutions, and with
£ for the subsolutions. Such functions are then respectively upper and lower bounds for the
true solution, if they are so at time 0. The whole game is then to find super- and subsolutigns
which, in the limit ¥ — 0, squeeze (in macroscopic coordinates) the true solution toward
a function which describes the interface moving by mean curvature. This is what done in
[91, here we describe the supersolution, as the subsolution is defined symmetricaily.

§=N f drym'(r )8 f aridro I (I(r) — r¥ +riV3 2 (5.2a)
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Definition 5.2.1. Let T denote a C® surface which is the boundary of a compact, connected
region A C R®. Let d(£,T), & € RY be the distance of & from %, if £ € A, and
minus the distance, if £ ¢ A. The signed distance in mesoscoptc coordinates is then
d(r,A71E) = A71d(E, T), where & = Ar.

Definition 5.2.2, For each ) we set
mis n(r) = m{d(r, A1 B)) for |d{r, ' B)| € Ryloga™ (5.3a)

with Ry, > 0 the constant Ry defined in (34a) of [9]. The definition of m‘(*'z‘}_)(r) is then
completed by setting

mi () =xmg+1**  for d(r,A7'E) 2 £Rjloga™ (5.35)

The definition of me, 1y {r} differs from the above ore only in (5.35), where we subtract.
instead of adding, A¥2. mZ; ,,(r) are then super- and subsolutions provided ¥; moves
according to the following:

Definition 5.3. Given A and T > 0, we consider the two biased motions by mean curvature
EEE'J)’ in the time interval 0 € T < T, T > 0, defined as follows. For each 1, Eé.l) isa
connected C surface which has a C® parametrization

£ = &‘i(r, £0.A), &g € S, So aC™, d — 1 dimensional, compact manifold

and

de+ ‘
j—r = @kv F hv. (5.4)

We hereafter fix @ as in (5.2) and # = A%?, where § > 0 is the same as in section § of
[9]. We next state a classical result on parabolic equations, see [2] and references therein:

Theorem 5.4. Let B, 0 € T < T°, be a motion by mean curvature as in definition 2.2.3 and
let & = E(v, &), & € So, be the corresponding parametrization. Then, given any Ry > 0
{we shall use the result with Ry as in 5.2.2), for all & small enovigh,

SE ) 1= {& 1 d(£, To) = F2RoA log A~}

is also a C™ surface. Moreover, for any T < t*, for all h small enough and for all A small
enough, there is a h-biased motion by curvature Zcf' ay 05 T < T, In the sense of definition
5.3, starting at T = 0 from )3?6‘_1_) and with parametrization §<(t. Eg, M), where £ € Sy and
So is the same manifold used for the parametrization of L,. Furthermore there is ¢, that
depends only on T and Ty, so that

(6% o, T, Ay — £, T)| < ch 0<r <A (5.5)
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We next recall a result proven in [9]:

Theorem 5.5. Let T, O < © < ©*, as in theorem 5.4 and § as below definition 5.3. Ther
there is w > 0 and ¢ so that for all u € [1, 2] the following holds.

Recailing definition 5.2.2, let © be as in theorem 5.4 and for all A small enough and all
0<s <A, et

my (7, 5) 1= m () = z(m 2 (5.6a)

where T7:,, are the motions by curvature with bias b = 32 starting from T,y as in
theorem 5.4. If my(r, t} solves (1.1) for t = 5 and

m_ (r,8) < mu(r, s) S mi(r,s) forallr e B4 (5.68)
then

m; (r, s+uk"5)+l“’ my(r, s+ ud” 8 g ;f'(r,s-i-uh"s) — 2% (8.7a)

By repeated use of theorem 5.5 with suitably different values of « we also have that for
all ¢ such that s + A% < ¢ < A72E,

my(n D)+ 22 < m(n ) < mi(, ) — A%, (5.78)

We have now all the ingredients for proving theorem 2.2.4. The idea of the proof is
actually rather simple. We know already that for times a log !, @ small, the spins and the
solution of (1.1) remain close (with large probability) if they are so initially. As the error at
the final time alogy ™! is of the order of 3%, b > 0, we can then exploit the (much larger)
extra term A? = (log ¥ ~F)* in (5.7) to bound it and to conclude that the spin configuration
at this time is squeezed between the sub- and supersolutions mf, if it was so initially.
This property is obviously preserved under finitely many iterations and since the sub- and
supersolutions disagree only by A2 outside of a macroscopically infinitesimal strip around
the moving interface ¥., we then obtain the result stated in theorem 2.2.4.,

When carrying out this strategy of proof we meet two kinds od complications, that we
have already met in section 4. The first one is an ultraviolet problem, and it is dealt with
by using averages, as we do not have a control in sup-norm of the difference between the
spins and the solution of (1.1). The second one is an infrared problem, we do not have
closeness of the averages everywhere so we need to contro] the propagation of the errors
unavoidably present at large distances.

Let v > 0 be as in theorem 2.2.4. We then take T = t in theorem 5.5, Let o, £, @ and
b as in theorem 2.1.6, with 2 > 0 so small that (5.21) below holds and such that t/a =: N
is a positive integer. Setting

sp =nalogy™ R,=(N+1=n)p! 7 a non — negative integer 5.8)

we first define for any 32 U and ‘any spin trajectory (o) is0 M (1. 1) 1o be the solution of
(L.1) for t > s, and such that my)(r, 5;,) =0y 5, (r), Torall r € R, see (2.8¢) for notation.
Then we introduce the set

Gy =,[(.:J’r 30 - | }f"?(r) mg]y)(r I b Sp SIS Snr1s IFIS Rn} (5.9a)
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with mgjy) as in definition 2.1.5. We finally set

o={e}N|

with my g as in (2.12a).
By theorem 2.1.6, for any & there is ¢ so that

o350 =m0 < 1< Ro) G20)

Pi(G) = 1—cyt. : (5.10)

We will prove theorem 2.2.4 by showing that for all y small enough, any spin trajectory in
G is in the set appearing on the right-hand side of (2.194).

We first prove a weaker version with the sup over ¢t in (2.194) restricted to 7 ¢
(Sns S +A78), forany 0 < n < N — 1. For n > 1 we define

Mn-1) (ry 3a) if [r] < Ry

1/)‘(,,)(1") = { (511)

—mg otherwise

and ¥my (¥, 1), £ 2 $u, a8 the solution of (1.1) such that ¥y (r, sx) = P (r), forali r € R4,
We also define Wy (r) = my,0(r) for all r € R? and vy(r, t) the solution of (1.1) for ¢ > 0
with initial datum gy (:).

Observe that the definition of the y,y’s depends upon the trajectory (a,) rp0r e start
by proving that in G, foral 0 < n < N — 1,

my (- $a) € Y () < mi G, 50). (5.12)

We prove (5.12) by induction. Since it is evidently true for n = 0, wé need only shov‘ur that
if (5.12) holds for n < N — I, then it also holds for n + 1. By (5.75)

my (7, Sasa) + A < Yoo (7 Spwr) € 1Y (7, S — A2, : {5.13)

Then (3.12) with n 4 1 follows from (5.13) and the following bound, that we will prove
next. There are ¢ > 0 and ¢ so that

My (s Snit) — Yy, Sur)| < ¥ for all |r| < Rps1- (5.14)

Analogously to (5.11) we define:

O‘}’.J'n(r) if a[r[ ‘é. Rn

B
—mg otherwise (5.15)

() = {

and zguy(r, £), t 2 Su, as the solution of (1.1) with z¢,) (-, 5,) = 2 (). Then, by proposition
4.7.4, for any k there is ¢ so that

L) (1, 1) — My (T, t)| < oyt 7] € Ror1, 8n St < Spp {5.16a)

28, 1) — mEP, t)[ <oyt (< Rogtr 50 St Snr. (5.166)
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By the definition of G,

|Z(n)y)(r) “:b‘((:)”(r)] r ¢ D., D= {r . Rn _ yI"“ g |r[ é Rn _{_,yl—ot}'
(5.17)

We then apply proposition 4.7.6 t0 z¢;y and ¥, with  and b and D as above, u =1 — @
and ¢’ a suitable constant, Therefore

Z(n)y)(-" £) — w((‘t;}')(r‘ t)l o csfl—s,,)[yb + yl—a -I—C’]/]—“]
[rl < Rus1, Sp S 7 Spat- (5.18)

On the other hand, by proposition 4.7.8, for all r € RY,

e, Sap1) — 2, Sn)| < csy % 207 (5.19)

The analogous inequality holds for ¥, as well. Hence, from (5.18), (5.19) and (5.16a)
My (s Sat1) — Yim (1 Sn+1)l < oy + 2[egy '™ + 297]
+cge By 4y Y] ] < Run (5.20)
We choose a as
a € c;' min{l — e, B} (5.21)
Then (5.14) holds with # > 0 and with cy® an upper bound for the right-hand side of

(5.20). We have thus complctcd the proof of the induction and of (5.12).
By (5.16} and (5. 18) we have forany 0 g n € N — 1,

G e e O e S AR e
Irl = n-{‘l, L) <sn+l- (5.22)

By (5.12) and (5.75)
MDA S Y ) S M) =20 s+ A <t s 523)
Hence, by (5.22) and (5.23), there are ¢’ and 5" > O so that
(@) o_ b o R NCo2 r b
(ml) D+ — 'Y < mE 00 < (mk) (o) — 2% +cy
S -+ }' t < Sntls lrl ‘-<... Rn+1 (52451}
and, by (5.9),

(a.y) . b (e, ) .
(m;) (r,ty =A% = c’yb —yh g oy ,)(r) (mi") (r2) — A% +cy? 4 9P
S+ A < Sty |r] € Ruqa. (5.24b)



Glauber evolution with Kac potentials 679

For y small enough A > ¢'y¥ + y*. Then for ¢+ < A%, |d(r, ATIES, A))[ >
2R logAr™" and for all ¥ small enough

(e y) . '
(m;) r, )+ A% — 'y — yb 3 dmy — A2 (5.25)

for r inside, respectively outside, A~ By
By (5.5), expressed in mesoscopic coordinates,

[ 3725, )| > [d (2718 - ex 7, (5.26)
Hence (5.25) holds for all » such that
ld(r, WU | 2 2R log AT A eam e 3 2eA T4 (5.27)

(for all ¥ small enough). Recall that & = A%2,
By (5.24p), for all r as in (5.27) and all ¥ small enough we prove the lower bound in
the following inequality

£y — A LoD r) < Emg + 237 (5.28)

The upper bound is proven by similar arguments. Recall that (5.28) holds for all ¢ as in
(5.23). We choose ¢ < /2 in (2.19a) so that we have the desired estimate, but only at
the times considered in (5.23). We can however repeat the previous proof with snitably
different values of a, we derive the bound (5.28) for all A= < ¢ € A7%%. In the ‘short’
time interval [0, A~%) we can afford a very rough estimate: by proposition 4.7.4, in fact, for
any k there is ¢, so that (¥y(r, t) being defined below (5.11))

[v@@. ) £ms| <ey® <A, dr A8 2 A8 (5.29)
for r respectively outside and inside A~!Zp. By theorem 2.1.6 and choosing ¢ in (2.19a)
so that 1 — { > 28 we then complete the proof of thecrem 2.2.4. m
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Notes added. Katsoulakis and Souganidis in a recent paper [25] have generatized our results
of subsection 2.2 by proving that the interface dynamics in the limit is ruled at al] times by
the ‘generalized motion by mean curvature’. The macroscopic scaling parameter A, involved
in ‘this result, has the form X = y¥, ¢ > O and small encugh.

The global (in time) convergence to a motion by mean curvature in 4 = 2 by scaling
(1.1) has been proven earlier by Butta, [26].

In this case the only singularities which develop from an initially regular surface are
due to its disappearence.
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Appendix

In this appendix we prove proposition 4.8. The notation is taken from section 3 and the
strategy of proof is similar to that of proposition 3.6 but considerably more complex.

When we compute ¥, D® p, (g, m) we find many terms, we first group them together
according to the values of x in 3 classes giving rise to an expression of the form Y, 77,
with i = 1,2, 3. The terms in each T; are still too many to be estimate convenientely and
after some manipulation we write 7; = Zj Tu.jy- We keep doing this kind of operations till
we have a decomposition where each T, ¥ a multi-index, is such that

Te=Y M(m.n',mpy (A.la)

?1‘

or

To= Y Mc(p, 1, m)py ' (A.15)
qJ

with M52 and M, having the right support propertles ag in proposition 4.8 and satisfying
the bounds (4.40). Since the number of subcases necessary to reach the situations (A.la)
and (A.18) are finite, we will then have proved proposition 4.8.

The above classification has a branching structure, each branch ends when we reach an
expression compatible with (A.1). ObScrve that we are not making explicit the dependence
on y which is however present in MEE and M,.

Notation. We write
n = @?lv Sly"! Sp); Ei = ('f.l') -24',1’2[',2’ 2‘-.31 _Jz:) (A'ZJ
and denote by Vg, the collection of all the sites in &;, see definition 3.2.

The set y, which is the second entry in 1, will be written as y = (y1, .., yz); we also
denote 7 = (z1, .., z¢) and recall that .

Koy @ = 1‘[ { 5,1 € B —y} (A3)

i=1]

with A+ B being the union, respectively the difference of the sets A and B.
We will also use the shorthand notation

Fp= fEi (o) — fé’.‘(m)- , (Ad)

As already mentioned, we start with

' 3
> D®py(o,m) =3 Ty (A.5a)

X i=1
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where the terms Ty, are identified by the following identity with the labelling corresponding
to the order of appearance:

ED% =Y D¥p +5@) me@ > . D¥E R HF]

Xex X€L

+&@ 2 Xey@E@ Y DY H Fi. (A.55)
- .

xéx+z i=1
Analysis of Tyy. We have
Ty = Tan + Ta (A.6a)

where, recalling (3.28) and (3.304)-(3.30¢)

Tan = Z Ky (@) Zt]‘[ Il 16 +z - x)DW&(x) (A.6b)
T(1.2}=Z {6~ x)ZXxy(&)JUZAll,_six (A.6¢c)
XEx |5

lpl=p

We start from I7,1- We write D% (x) using (3.26) and we get

Ty = Tan+ Tane (A7a)
Tflll)——ZU(_)ZXnyO'(Z) ]—[Fu (A7h)
xex

T.1,2) is defined in (A.8) below. The right-hand side of (A.75) can already be written as

Toan = ZM&LI)(”. 1. mypy.
'?’

The sum is restricted to [7'] = |, g(n") = g(n) and 4(') = d(n). Moreover

S OIM o, m) < izl
Tl.l
but
W=y 8,5 with§ =T,

Hence, according to the value of x, it may be that |Viy| = |Vg [ + 1. Thus M* is neither of

the form M, (4.40c) is not satisfied with £ = ™) nor Mf‘g' , ((4.39a} does not hold).
To solve this problem we go back to (3.28a) that we read as a relation which expresses
I“; , in terms of F; and l"é‘x,..,l"g’x. We then distinguish the term with F; for all { and the

remaining ones, thus writing

Toan =Tun +Ta1 Taay = —|x|py (A7)
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Tarin =) {5’(& — X)) xey@)E(2) Y (—1)PTE
z :

XEX T eends

x y ikt 2 [ T] ]S, .. pgfxa(x)k]] (ATe)

=

with k = i3] + |ig] + 1.
We rewrite & (x)* using (3.32) and distinguish the terms with and without &(x), thus
obtaining Ti1,1.1.2 = To1,1.1,2,0 + Tron,1,22 with

Tua121) = E F(x) Z Xey (D5 Q) Z (—1) P+ d AL I -+ 21D
xex i

Lpveds
legbep

x a(k, m()[[ | FIrg,...rs, (A7)

jei)

T2 = Za—(£ —x) Z X2.5(DE (@) Z (= 1)P I+, d QI+ sl 21D
xex z

{gunis
lizl<r

x bk, mOO)[ | FyIrg,...TS, (ATg)

JELy
By (A 7d) T(]_]J‘]) is like in (A.1a) with
4,
M(Ig.l.l.l) = —x|8p,7
and it thus satisfies the conditions of proposition 4.8.
The two other terms Tyr,1,1,2,1) and Tqp,1,1.2,2) Will be examined together with some of

the terms arising from Tj; 2.
‘We next consider

r
Taim =) 8@ —x} Y xey@e@I[ [T IA©) - film].  (A8)
XEX z =1

This term has the ‘wrong” x-function because in (A.8) there is &(x — x) instead of &(x).
We thus add and subtract x;_xy(2), getting

Tainy =Tui120+ Toazy (A9)

with T(1,1,2,2 as in (A.115) below and

1
Tapan = 6@—x) Y 6@Xemry @I | T} felo) — felm)]
XEX z i=]
(A.10a)
which has therefore the form (A.15) and

> IMa 2001, m)] < Izl ) . (A.10B)
n}
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Moreover, since |n] = [, d(n) = d(n") and g(0') = g(m) + 1,
Ny Y IMa 120G, 1, mIN, ()7 < lxly® < lxlyf. (A.10c)
nl

Thus M1 2.1 satisfies the bounds (4.40} and the support properties mentioned in proposition
4.8.
Recalling that £ = |y|, writing 2 :=z— 2z, Y '==y — %

Xey (@ — Xz—xy (@ = Zl(z, =x)p 1 € Byey ) xsy @) (A.lla)

we then have

T(i 1.2,2) ——ZZ

xex =1

- - F -
1(x € By )50 Y xey @@ [ T} LAY ~ frlm)]
;i =1
(A.115)

which is also of the form (A.15). For a suitable constant ¢, (proportional to |xl{y], this is
why these terms are not M9 terms),

Ny () D M sz, 7, mIN, )™ Sey®™ < et (A.lLo)
rl‘.’

Observe that |} = 7’|, gOn) = g(n'), d(n) = d(n'), N, (DN, (')~ = 1, hence M(y,122
satisfies both (4.406) and (4.40¢). For the last inequality to hold we must choose b < do,
which implies {* < du.

We next examine Ti; 5y together with the remaining terms Ty 11,2, and Te11,1,2,2), thus
completing the analysis of T(qy. By comparing (A.6¢) and (3.308),

Tap =3 Xey@E DS (A124)
P4

The decomposition (3.34) gives rise to
Toz =Tuz2y + Tu22 (A.12D)

where Ty 2.1y, given in (A.12¢)-(A.12d) below, and Tj1,2,2), see (A.17) below, are obtained
from (A.12a) with §; replaced respectively by S| 1, see (3.35a), and by 5 ,, see (3.36a).
With respect to the analysis of section 3 we need to distinguish the two terms that arise
using (3.26) for D(’”)E'(x) in (3.354). We obtain Ty 21y = Ty2.1.0 + Tg.2.1,2), with

Taziny = ZO-U E Xs, y(Z)o'(__) Z be.. yd(Lzl+|_a|+|_4|+2|_er‘l l'*rx (A.120)
xex Efamds
Ly l=p -
Tnz1z = Z &(x —x) Z Xey (D)5 (@) Z V.. },d(|!_g|+ll_3|+[_41+2|_5|)
L vk
liyl<p

X T} o T [ f(0) — fr(m)] (A.12d)
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where, recalling that in the following expressions k = |i,] + [i,] + 1,

x,.. = —m(x)la(k, m(x))l";;fz + [m(xYela(k, M(X})l"gfx]' (A.12e)
V.. = mx)Elagk, m(x)rs,. _ (A.120)
By changing

Ti,=F ¢ — (DP9t me)rs,

we obtain Tiy,1,1,2,1y) from T1.2,1,1), see (A.7H). The bounds for these terms are identical, and
we will only consider Ti1 5 1,1y in the following.
The right-hand side of (A.12¢) has the form (A.1f) with

'l =Inl= Uil +1ish &) = gl — (il + lis) d(n) = d(n) + (i) + (i51)

and
V() S V) + (i + il + (5D

so that the support properties stated in proposition 4.8 are satisfied by M1 .21, 1y. Moreover

> M0 m) € clxl (A.13a)
rI?

with ¢ a consant dependent on n, and

Ny D IMa (s o, mIN, (Y < Yy pAGis) (A.136)
[ 4

1o

where

Ally, oy is) = —(d/2 = b)(Iiy] + lis]) — B2(lisl + lis))
= b3 (Ep] + 13D + d(iy| + gl + 1] + 2lig])
= (@/2 + by = b)(i4] + lisl) + (d — ba)(lLa] + I13]) + lis)- (A.13¢)

If by = by = b3 = 0, then A > d/2(|i,]| + li5]) and (4.40¢) is satisfied. If on the other
hand by = d/2, by = b3, b3 = b, by the first equality in (A.13¢) we have (4.40c) satisfied,
choosing {* < d — b3 — bj: the left-hand side of (A.135) is then bounded by cy*”, having
recalled that i,| + ...+ i5| 2 1 (because |i;] < p).

Proceeding as in (A.11), we decompose T(12,12 into the sum of the following two
terms:

Tazi2y = 6@— %)Y Xezy @D
xex z

X Y P,y LA P e () — £ ()] (A.14q)

......
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Tao12y = —ZZ |By~=| x € B,,-a,y,)&(g)Zx_{‘l.@)&(gf)
”

XEX [=

X 3 Y,y EHBRGREDDY | e [£(0) = futm)] (A.14b)

Liweni§
Ell<p

(recall that z' = z — z; and y‘ = y — yi). The representation (A.1b) holds as well for
both terms, the coefficients M, satisfying the support properties of proposition 4.8 and the
bound (4.406). Moreover, recalling (A.13c),

Ny D I Mazazn, 1 m)N,y ()T S e Yy yAbmith oyt (A15)
7 £l
sz l<p

‘We have, in a similar way,

Ny D | Maztan(n s ) Nyt) ™ S 0 3 pAleiobde 7, (A.16)
4 s
The term
Tunm = Zxx,z(z) > @ =x5F@ Y m(x)Eok, m)Is, 1
Xex Lpomis
liglea
x ydUarlsHLHAD L | Pl (A.17)

is obtained from (A.12a) with S; replaced by Si 2, the latter as in {3.36a).
By changing in (A.17)

Le—> B [m(oRb{k, m))TE,Y = (=P bk m(x))Ts,

we obtain Ty 1,1,2,2) 50 that the bound for this term is reduced to that for 17; 2.2.

By using again the decomposition (A.11a), we get T22 = Ti22.1) + Ta,2,2.2 which
both have the representation (A.15). The support properties and (4.40b) are verified and
since b(1, m(x)) = 0 and &k = |i5| + iyl + 1,

Ny ) Moo n,mIN, 0N <e ] pAlemim@o (A1)
’]f

liy 1L 121

Recalling (A.13¢) we have that in each term of the sum there is y raised to the power

af2iz| + iyl = 1) + (b1 ~ ba)liy| + (3d/2 — bo)lis| 4 (d/2 — b3) i)

+ (d — b3)ligl + &1 (1 + is)). (A.135)
Since |i5]+1i4] 2 1, (A.18a) is bounded proportionally to ¥*" if b = d/2 and to a constant
if by = 0 (recall that if by = O then also by = bs = ¢ = (). This is due to the term liy) =1,

lis| = li5] = |i5| = O; all the other terms have a factor y raised to some positive power.
With similar arguments, we also get

Ny(m) ) IMu 2220, mIN, ()™ Ko D il -r2-bitda=ty (A.18¢)
o I3 Hlis 21

which is bounded proportionally to 4%, because we have already seen that the right-hand
side of (A.184) is bounded by a constant.
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Analysis of Tzy. We ha_ve

Ty = Teny + Tea (A.19)
where
Ty =6() Z Xey (@ Z ]"[ r! 16@)D¥s(z) (A.20a)
i=l j=I
T —GUZxxy(zJ Zcr(;‘) > Aniza (A.208)
£y omds
ltyl<p

with A as in (3.30d—€) and z' =z — z;. _
We start with Tig,1). Like in (A.7d) we write T'{ , in terms of F; and I"E sr€=2,...,5

Tony =Teany + Ter (A.21)

£ 2
Toan =60 Y x3@ Y @I | F1D¥é () (A220)
: z i=I Jj=1

and calling x :=z;

T(212) szry(x)ld(—)z}(x-i-x )"(Z_‘)O'(Z[) Z(__UP"'M;

-5
L|I<p

v, Vd(lh[+l£4|+|i4l+2lisl)[1—[ F}]r'éi‘x__rgr:xg(x)ulﬂklp(x}&(x)}_ (A.225)

igi;

By (3.26), Tia.1,: = T2y + T2,1,2,2 where |

Toi2y = ZZ){LM (x)[cr(_) ZXx+x . (z‘)g(z_‘) Z( 5L 1 1+1

x y el bt 20 ([T £1rk, 1% a(x)lfsl+li¢l+ll (A.22¢)

I:Et

Tei2y = ZZ Xy (x)[a(_) ZXx+x #@Ha (@) Z (- l)p I

Leais
ri=m
x yd(l_t'.zI+Lz;1I+Ii4l+2I£5I)[H E]r%x_‘p?x&(x)lial+lal(f:r(o.) — f:t(m)} (A.22d)

el
We use (3.26) to write

Toan =T+ 1oy ' (A.23a)
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Toan = -_‘Epm Mffl,l‘])(??, 1?', m) = ~£&, . (A.23b)
As in (A.8), Tiz1,1.2 has the wrong x function, then, as in (A.11),

Tea1n =Tea20 + T2y ‘ (A.24a)

where

4 4
Toaizn = _Z Z Xy (%) [&@ Z Xy (@)E @)[H Fil( felo) = fx(m)]] (A.24b)

Tor122 = ZZXxy,(x)ZX;_,y,(x) aL'*'x)ZXx-i-xy'JL }

=t x RE

x [H Filfe(o) = fx(m)]) (A240)
i=1 .

where z/ = z — z; — z; and, analogously, ¥/ = y — y; ~ ;. Then (A.1a) holds with
k=(2,1,1,2,1) and

N =&y 6 b)) G =(2.8,9,0.9) (A25a)

S OAME i m)] < L (A.25b)
qr

The representation (A.15) is valid for « = (2,1, 1, 2, 2) and we have

Z |M.11.250, 7, m) < £y% {A.26a)
PG

Ny S (Mz1,1.22)0n, 7'y m)INy () ™)  £2y brte (A.26b)
7

bounded by ¢y*" having supposed da > {* 4 b3.
We next consider the term T(2.12.2), see (A22d). We use (3.32) and get Toy1200 =
Teaz221n + L1222, where

Taraan = ZZXI y.(x>[aL+x)Zxx+x # @) 3 (=1l

= i
x y SN (5 1 |1, [, mO0)([ ] FICE, T, (5(0) — fetm) |-

iei,

{A.260)

For the first term the representation (A.15) holds, (4.406) is satisfied and, recalling (A.12¢)-
{A.13b), for a suitable constant ¢

N, (n)Z[M(zlzzl)(?? Bom)N, (Y e Yy pAlm R, (A.26d)

Lyunis
liyl<p
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Thus, using (A.13¢), we prove that for this term (4.40¢) holds. We then consider Tip12.2.2)
that has the same expression (A.26¢) except for &(x + x} — &{x) and a(l_i_3| + 4l m(x))
— b([g'_3| + i4)s m(x)). Since now there is just &{x), the x function is the wrong one and
we need to pIOCEBd like in (A.]. 1). We then write ’1}2‘5‘2_2‘2} = T\E,I.I,Z,Z.i) -+ Tﬁ'\_z'l‘gj) with

Tea222.0 -—ZZX:.}.(I){U(_) Z:Xxy )5 &) Z( Lyl

Fleds
leyl<p

x yd(lial+IL;l+IL41+215|)b(]i3| + |£4I, m(x))
x ([ FITE,-TE, (fe() = et} (A27a)

(=)

Taisn2m = Z TV Ken ey @{F@ 0 Z Xatay (@)5 ()

i=1 j&i ox
w Z(_DP—IL;I 1},d(ll_;l+L;I+L4I+2L5l)b(|£3l+[£4|’m(x))
s
x ([ FIrE,- T8, () = futmd}. (A276)

ici,

For the last two terms the fepresentaﬁon (A1) holds, (4.40b) is satisfied and, for a suitable
constant ¢,

N, (n)ZlMcz.:zzzn(n ', m)| N (1) e Z yAleds) (A.27¢)
g i

Ny(n) Z |Me122220. 7, MmN, @Y <c Z p Al dsltda=bn (A.27d)
7’ Iyonis

L l<r

The term Ti2,1.2,13, see {A.22¢), will be studied together with the term Ti 2y, see (A.205).
This can be written as

T = E : § :X,'l_:y (x)[a(_) § :Xx-i-xy (ZJ)J(Z[) § ﬂt,..is.ztﬁx.x}- (A27e)
=] X Lfenis
legl<p

For any fixed { in (A.27e) we write

¥ =x4x .}i! — z:' 7 =, Zf’ Ey, .0 Ep). (A.28)

Then the curly bracket in (A.27e} is equal to the curly bracket in {A.6c), when the latter
is defined starting from »’ instead of #. The same remark applies to Tis,1.2,1y Which, via
{A.28), is identified to the term (A.7e), its estimate is omitted and we will only consider
the latter. Proceeding as in (A.125)-(A.18) we have

Tez = To21.n + Teatay + Teate + T2 (A.29)
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All these terms have the form (A.15), the bound (4.405) holds for each of them_and, with

A=A(,,....i5) as in (A.13¢),

Ny (1) Y 1Mo Cr, s )| Ny ()™
rl,.'

ZVA if € =(2,2,1,1), see (A.135)
3y if k= (2,2, 1,2, 1), see (A.15)
ZyA+d“ if £ =1(2,2,1,2,2), see (A.16).

For & = (2,2,2) we get ¥~ times the bound in (A.18¢).
We have thus completed the analysis of T(y.

Analysis of Tezy, We write
Ty = Ton + Tap

7. 1)—6(_)Zxxy(§)0(§) > Z[]’[r VTS, + T D5 (x)
gy =1 A

T3.2) =ZX£._y_(§){ Z G(x+2) Z Azi, x+;):]
z

xéx+g Lots
= |:.|<w—

(A.30)

(A.31a)

{A.31b)

(A31c)

The ananlysis of T2y is postpened to the end of this appendix and it is similar to that of
the other terms already considered. The analysis of T3y instead brmgs new difficulties not

already met before, as we are going to see. We write

Tan =Ton+ 16,12

Taun ﬂZy ZGUZXx+;yUO'Q[nFKF + T )DWé (x)
Xgx I

Taiy = Z?’ ZO'(_)Zqukxl(_)o'(i)

=1 xix
% Z (_1)P+l—lzl|yd(l_¢|+l_3|+_4|+2|L5|)[1_[FE]I" F.s DWE (x).
|:'f|r|a|;;l igi
L1l<p=

By (3.26) we write
Ta,n=Tarn+ Te01.

where

Tisa.0m ——Zy ZGL+X)Zxx+“(;JU(;)[]_[F (T4 + T8
i=l XEx Jeti

(A.32)

(A.32a)

(A.326)

(A.33)

(A.33a)
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Teiin =— Zy Zaumeyoo@[l‘[F (T4, + T L (o) = flm)).

i=1 x¢x &
(A.33b)

By (3.28b), I's x + T4 = 8, fe(o). We wﬂl use this in the analysis of {A.33a) together
with the identity:

wh@ =g ¥ Ah@+gs Y BA@-afe) a9
vl 4€B e, Ul Iy i
We then have
Taary = T + Teaaa + Taiuy (A.35a)
where |

T(31111)=“Z}’ ZIUUZXxy+u(;+x)U(L+x)[HF BA@] (A3

J#

and, recalling the definition of V; in definition 3.2,

Taaaay = ZV Z |By-ﬂl

=1 x¢x

2. WY ey @FQ

HEBY-alx—V.

X [H F;lo (x)[9: — 8u]fe o) (A.35¢)
g5

Ta1y = —Zy Z|B ]

xgx

a{x) Z X£+:,Z(§)5'(.§)
z

HEB},-::_anj

x [[ ] 7116 ()3 £z, (@) (A.35d)
Jeh

because 4, fg‘ =0ifu e V.

..........

Je (o), obtammg

Tauuiun =— Z Y Zcr(_) > Xeyn@+ 08 @+ 0 [ o, (A 36a)

i+x JFEE

T2 = —Zy Zac_) > e y+u<;+x)a(g+x){1'[maufe. (m). (A.365)

X J#i

Then {A.18) holds with = (3,1, 11,1, 1) and, for a suitable constant ¢, which depends
on 1,

> My, ml <ec ' (A.36¢)
rrF
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N, D IMa 1100 7 m) N, ()™ ey @bkt (A.36d)
7

which, for &) = d/2 is bounded by ¢y*’, provided b, — b3 > *.
We next write T(3.1.1.1,1.2) = T(3|1|1'1,1|2'1) o= T(3'1'1'1'1|2|2), collecting in the first term the
labels 7 such that d(&;) = 0 (see (3.10a) for notation) and in the latter the other values of i:

Toaattzn == 9. ¥ D 0famE® Y xeyn@+DF@+D][F]  (A37)

id(g)=0  u zhx J#
Tonniizn =— 9. ¥ 4fa(mE@ Y Xeyn@+ 05+ [FL  (A38)
£ (k) >0 u +x J#E

Thus (A.1g) holds with «x = (3,1, 1,1,1,2,1) and (A.16) with « = (3,1, 1,1.1,2,2) We
have

S TIME 112 7 mt < @y 1 pC©0) (A.39a)

rl,l
where C(k)} is such that, for any &,

sup  supla, f(m)] < C(d(E)) (A.395)

mef—1,11%¢ ¥

Z: |Ma 12007, m)| < 2y~ + 1yy*p E?f} CdENn (A.39¢)
7 =1,

Ny ) 3 1M1 220@, 1, mIN, ()7 < pRIQy T 4 Dy p max CAE). -
= =

(A.394)
To estimate Tia 3 1.1.2), We Wwrite
—a,% T 8% T 4 yi0 @D — Yo @A,
= ii—d[aja; —ataZl+ y%lo(u) — o (x)]8,0: 7
= p1 8,0 + ¥*lo (1) — 0 ()18,8; (A.400)

see (3.7¢) for notation. Thus
5 (OB — 8] = FY 8 + ¥ {F@E W) + § (1)2m(x) — 1+ m(x)*}8,8:.  (A400)

We then have

4
Tei111,2 = ZTG.LI,[,Z,:') (A4l
i=l
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where i labels the four terms on the right-hand side of (A.408), in the order of appearence.
By adding and subtracting f; (m) to f; (¢), we get

Taannzs = Tean120 + Tooa.202 (Ad2a)

the first term being the one with F;. ]
Apain the decomposition (A.1%) holds with x = (3,1,1,1,2,{, /), i = 1,..,3 and
Jj = 1,2, For all such « and for a suitable constant ¢:

> M 11120 p0 0 m) < ¢ (A42b)
n!
and
cyl—ﬂ-l'(dfz—b[)—b; iff =1
Ny () Z: |M@,100.2,:000, 7, m) N, (7)™ § opdt2di2=b)-25 ifi=2 (A420)
M cyHHEbn =20 if i =3.

Fork =(3,1,1,1,2,{, 2) we obtain the previous bounds times the factor
y /b0 =batls for i = 1 and y~W@/2-b)-tat25 fori =2,3. (A.424)

When i = 4, we have 5(x) instead of &(x + x), hence the wrong x function. We write, as
in (A.11),

1 & .
Xetey@ = X2y @ ~ 75— D 1@ = X)grry @) (A.43)
P jul

and we correspondingly write

Toanaz4n = Teant24.) + T@0,1,1,2,4.52 (A.d4)
where
P
1 - -
Taa12,4L0) =Z}’dz 3 Z a(x) EX;,;(_?JU(Z)
i=1  xéx |By-al 4€B a, z
x [[ T Ay me)® — 13,8 Fi1 . (A45a)
J#

Pk
1"(3,1.!.1.2.4.1.2)=ZZJ’dZX5.y;(x)IBfI—| Z o (x +x)
' x y_ﬂ

i=1 j=1 u€B,a,
X ) Xabey @FCHI] | Fly  (m(x)? — 1)8,8, Fil. (A45b)
o Jeti
The terms Ti3,1,1,1,2,4,2,) are those in (A.45) with F; replaced by fi,(m). Thus we have
that (A.15) holds for « = (3, 1, 1, 1, 2,4, i, ) and, for a suitable constant ¢,

Z IMa, 11124000 0, m) € c (A.46a)
nl
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Ny Y IMa 3,000 ' m)IN Oy

n

cy?= ifi=1j7=1
d—by=12b i o
cy ifi=2j=1
< A.A6b
ey @/2mb) fi=1j=2 (A.465)
eyt @R fi=2, j =2,

We next consider Tiz ,1,1,3). See (A.354), that we rewrite as the sum of T(3,1,1,1,3,1) <+
T3.1.1.132), by adding and subtracting’ fi (m), (T(3,1,1,1.3.1y corresponds to F). ‘The
representation (A.1p) then holds for « = (3, 1,1.1,3,), and, for a suitable constant ¢,
and for i =1, 2,

P ERRRETICN IR (A47a)
"I

aj2—by—byda .lfi = 1

- c
Ny (m) Z \Mat1an0. 1 mIN, 6™ < { C;_bﬁdw £ (A47b)
r.‘l —— -

We now go back to Tis1,1.), see (A.33b), that we write as

Te112 = Z Z Taaa2.00 (A.48)

k=l j=I

where & = 1 comes from selecting Fg’x in (A.33b), h =2 from T} ,; j = 1 corresponds to
the first term on the right-hand side of (A.43) and j = 2 to the second one. Therefore

Te.l,l.z,l.n-zwz[auwa@a@[Hmrﬂm(o) £} (A490)

i=1 xéx JEI

po£ , _
Toii2an =~ Z Z Exz-y; (x){b"@+ x) Z Xatx,y! ())& (z9)
i=1 j=1 X z

x [[ [ £ L[ fio) — fx(m)]] (A.495)
e

Tmmn-Zy"ZP“{& Y k@S FIA@ - £em)] (4490

i=l #X 4 JHE

Te.11220 = -ZZy >t y,<x)r4x[a<_+x)Zxx+W(;J)a(;f)

i=l j=1

x [ Fllfeto) — £u(m)l} (A.494)
JH#
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The representation (A.16) holds for « = (3,1, 1,2, 1,i), (3,1, 1,2,2,2) and

DM, 7 m) < e (A.50)
=

for a suitable constant ¢ moreover
Ny(m) Y 1M (n, 0, m) Ny ()™
nl

y@/2=bitba—by when « = (3,1,1,2,1,1)

e yl/i-b-tatd when « = (3,1,1,2,1,2) (A3D)
y ot when x = (3,1,1,2,2,2).
We write
Taiz220 = Teaz2n +Te 12,21, (A.52a)
Tasiazin= Y. v 3 i {6 Zx,”@a@ [1asE) - fx(mn] (A.525)
diE)=0  x¢x J#F
Torzzn= 2 ¥ [6@ )3 x”g)au[]‘[ B (o) - £utm)}  (A520)
d(EN>0 XEX J#F

Therefore (A.la) holds withx =(3,1,1,2,2,1, 1) andkalso‘ for this term the bound (4.404)
holds. The representation (A.1&) holds for « = (3, 1, 1,2, 2, 1, 2), (A.40b) is satisfied and

Nym) Y IMaaa22120, 7, mIN, ™ < ey < oyt (A.53)
7;"

The only terms which still need to be estimated are T3 3y and T3,y Except for constant
factors, the terms in Z(3 |2y are identified with terms which are present in T(z 2, in analogy
with similar identifications in the analysis of Tj1y and Tip, we omit the details and just
consider T3 2.

The curly bracket term in (A.31c) is the term S; in (3.30¢) with x - x + z. The
decomposition of S; in section 3, see(3.37), (3.38), will be repeated here, but the special
role of z will require a finer classification of the terms.

We write

Tao =Ta2n + Te22 + 1623 (A54)

according to the presence of &(x) (the first one), the presence of [ fr (o) — fr(m)] (the last
one), or the absence of both (the second one):

Toan =3 XM@{ S etz n Y yd(lizi+|i3|+li4|+2lis|)Gx'-_pi;1'x..Pifx}
i .

TRy -]
x¢x+z Lu'. : {“,L_s2

{(A.55a)

Toaz = Z Yy @ [ Y et 3 yd(Ezl+ligl+|£4|+2i£;sl)mer‘%ix-_r‘i‘jx} (A.55b)

1l lis]
gz p;’,lsnLLsz
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To23 =Zx£-z@[ Z 5(x+2) Z o ALz HEs 425D
4

TRt s :
X L. T{, T L) = Frm)] | (A.550)
where, see (3.37a) : _
Ge.. = (m@x)2alk, mx))TE,) — (m(x)lak, mx)rs ) (A.56a)
with & = |i] + ],
Hy.. = (m@) 2ok, m(x)Ts,) (A56b)
Ls.. = m(x)¥a(e, m(x)I¥,. (A.56¢)

Ti3a,n is already of the form (A.1b) and, for a suitable c,

3 M 2000 m < eyt 4+ Dy (A.57a)
"f

because |i,|+.+2|i5| 2 2. We also have

Ny(m) Y Mo, 0 mIN, ()T ey 4+ 1)1 Y pAlt@2oh) (A 57p)
7 1zl des]
lejlep-2

with A(-) as in {A.13¢). A(") can be also written as

A() = 1d/2 = ba)(liy| + |i3]) 4 [By — B2] (L] + 1551 + (o[ + lis| + [L41 + 21Es)d /2

(A.57c)
and, sinee [{,] -+ + |i5| 2 2, we have that )
A()Y—d/2—by 2d/2—b; +2min{[d/2 — b5]. [b) — ba]}. (AS7d)
The bound (4.40c¢) thus holds for M3, 1.
Both (32,2 and 132 3 have the wrong y-function. As before we write
F @) Xatr,y (DT (@) = & (D A,y DF () — Ze:xi.y, ®)o(E+ D Xerep @) | . (ASY)

i=l

and using this in the expressions for Ti322 and T3 we obtain Ta o220 and Ta23.6.
[ =1, 2, for the first and the second term in (A.58). These are finally of the form (A.1b),
the bound (A.57a) holds for these terms as well and

Ny(m) D IMea 2 i (n. 1, m)INy (7)™
~

{doe~bn) —— _
fo v 4 if j=2,h=2 ) .
<e yAGds) by L (A59)
|izl-Z;".sl y A=t ifj=3k=1
Tyl€p=2 y(d/2—-b|)+a'a if j=3h=2

that, recalling (A.57¢)-(A.57d), proves the validity of (4.40c) aiso for these terms.
Proposition 4.8 is therefore proven, 0.
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