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The paper is concerned with the asymptotic behaviour of the sclutions to a nonlocal
evolution equation which arises in models of phase separation. As in the Allen—Cahn
eguations, stationary spatially nonhomegenegous solutions exist, which represent the interface
profile between stabie phases. Local stability of these interface profiles is proved.

1. Introduction i
We consider the initial value problem for the following nonlocal differential equation:
dymix, )= —mix, t) + tanh (B(J+m)(x, £)), (x,t)e R+ R?, {1.1a)

m(x, 0) = my(x), {(1.1b)

where m, is a continuous function with sup-norm |myfl, < 1;

(J#m)(x) = J‘J(X~y)m(y) dy, (12)

f is a positive constant such that §J >1; J{-) is an even, non-negative function
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with compact Support. We further assume that J(-) is in %*(R) and that it is
monotonically nonincreasing on the positive axis. Without loss of generality, we
suppose that [ J =1 (correspondingly f > 1) and that supp J is the interval [—1, 17.

The Cauchy problem (1.1) is well posed and has a global solution in the space
%°(R) of continuous bounded functions, as the right-hand side in {1.1a) is uniformly
Lipschitz in the sup-norm. Observe also that, since [tanh z| < 1, for all z & R, the set
{m:m| o = 1}, which contains the initial datum in (1.1b), is invariant. It is possible
to consider the evoiution described in (1.1) in a more general setting but we shall
not elaborate on that.

The main purpose of this paper is to study the stability properties of a special
stationary, spatially nonhomogeneous solution of (1.1a), which thus satisfies the
integral equation:

m(x) = tanh (B(J+m)(x}), xeR. (1.3)

In [2] it is proved that under the above assumptions, there is a unique nonconstant
solution 7 of (1.3) in the class of the odd, strictly increasing functions. Tt is also
shown that

111;1 rx) = tmy, where my;=tanh fm;, m;>0. (1.4)
Observe that m (') = +mj, are also stationary (locally stable) solutions of {1.3), so
that 74(*) can be interpreted as the stationary solution of (1.1a) which interpolates
between the homogeneous solutions m (-). 7 is thus called the “instanton solution”
of (1.1). More comments on the physical interpretation of /@ are given at the end of
this section,

The translation invariance of (1.3) implies the existence of a whole one-parameter
manifold .# of solutions of (1.3), all called “instantons”, obtained by translations of
m which are thus parametrised by « e R, so that .4 = {M (") =m( — ), a = R}.

The main result of this paper is the fellowing: if the initial datum m,(-) is sufficiently
close to the manifeld .4, then the solution is asymptotically attracted by an element
of .#. More precisely, we consider the L, (R, dx) metrix to define a distance between
profiles, namely if m and # are two measurable functions on R, we set

dm, ) [ —¥illy,, if m—feLy(R, dx),
m, i) = )
oo, otherwise.

{1 Iz denotes the L, norm.) We recall also that if G is a set of measurable functions,
the distance of m from G is

dim, G)= inf d(m, ).

MEG
We then have the following theorem:
THEOREM 1.1, There is & > 0 such that if dimy, JZ} < g, then there is a & R such that
hm dim(-, t), m{ )= (1.5)

where m(-, ) is the solution of (1.1); the convergence in (1.5) is exponential,

The function m(-, -) in (1.1) can be interpreted as the magnetisation profile for a
spin model evolving the Glauber dynamics and a local mean field interaction {Kac
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potential), in a suitable scaling [1,3,4,9]. § has then the meaning of an inverse
temperature and f =1 is the (inverse) critical temperature, as proved in [87, where
the equilibrium statistical mechanics properties of the model are established. Thus
the assumption f > 1, see just after (1.3), frames our analysis in the context of the
phase transition phenomena. The thermodynamic equilibrium magnetisations are
Lmy, see [ 8], thus the equilibrivm phases are described by the magnetisation profiles
constantly equal to £m,. In [4] it is proved that when the phases separate the
interface between the +m, phases is described by the function #{-). Therefore the
stability stated in Thecrem 1.1 shows that the shape of the interface is stable. Observe,
however, that the instanton itself is not stable, since its location is only marginally
stable. As a consequence, a profile initially close to a given instanton will indeed
become an instanton, but not necessarily that one.

This result is analogous to that obtained in [5], where the evolution is given by
the reaction—diffusion (Allen—~Cahn) equation

a!m = axxm“ - Vf(m)s (16)

where V(m) is 2 symmetric double-well free energy density with two minima corre-
sponding to the two different phases. The methods of proof are, however, quite
different; in particular we miss the parabolic character of (1.6) and the neat character-
isation of its stationary solutions. This is reflected in our weaker results, since we
prove only local stability, as compared with the result proved in [3], where a larger
class of initial data is allowed. The extension of this tesult to (1.1) remains an open
problem.,

The paper is organised as follows: first we consider some relevant propertics of
the stationary solutions, then we study the linearised problem ina L, setting. Finally,
we pass to the full problem exploiting the special structure of the nonlinear part,
and improve somewhat the result showing that this behaviour holds in a uniform
setting.

2. Genera) properties of the instanton
Recall that  is the nondecreasing, odd, nontrivial solution of
m{x}=tanh (f(/*m)(x)), x=R, (2.1)

and that —m; < m(x) <my;, x € R. We need some more information on , given in
the following proposition:

ProposSITION 2.1, e €*(R) and its first and second derivatives are bounded.
Furthermore, ' (x) > 0 for ail x e R.

Proof. Since m=tanh f(J /), recalling that |#mj., <m, and that J is m C? we
conclude that /' exists and
' = (1 —m(x)?) BJ #m(x), (22)

— 1

hence 7’ is bounded. The same argument shows that also " exists and it is bounded.
We are going to prove by contradiction that & > 0. From the above expression
for ', we have that

w = (L — ) BT *m). (23)
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Recalling that # and J are non-negative and that 7' is continuous, we have that *
W (x}=10 for all |x—x,l < 1. The same argument applies to x, =X, +1, hence
#(x)=0 for all |x —x,] <2. By iteration, we then get #'(x) =20 for all x, which
contradicts the fact that m is nonconstant. [

Next we show a fast {at least exponential} convergence of # to its limits at + co.
ProposiTioN 2.2, There i3 n > Q0 such that

lim €™ |m(x) F my| = 9. (2.4)
%=t
Proof. Recalling that m Is an odd function, it is sufficient to prove (2.4) for x— oo,
hence hereafter we only consider x > Q.
Since 7a is increasing, from the support properties of J we get

mx — 1= (Jeom(x) S mlx + 1) (2.5)
Therefore
tanh fR(x — 1) < tanh B(J*m)(x) < tanh fm{x + 1), (2.6)
We set
®y(s) = tanh fis (2.7a)
and observe that
Dy(s) 2 Dyls'), s=9, (2.7b)
@p(s)zs, HO0=Zs=m, (2.7¢)
From {2.6) and (2.1} we then get
Qp(mi(x — 1)) = mi(x) S Qplmilx + 1)), {2.8a)

which, by {2.7b), implies that for ail integers k>0
DY) S Hlx + k) < my. (2.86)
Since @y(mg) < 1, by (1.4), there is £ >0 such that Oy{m{X)) < L. Let
Then
T = Qp()ry .., where iy € {@FHoa(x)), mp).
From {2.7¢) and (2.8b) we have for all k
(%) £ Qy(m{R) < OFTHRR) = my, (29)
hence #y, = m(X). We then have
1 S QA (2.10)
hence by (2.8b) and (2.10)
0 < my — (X + ) = my @G (AR, (2.11)

which, by the choice of x, proves (24). [
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Befote concluding this section, we mention that in [6] one can find explicit
expressions for the solutions to (1.3), for a special choice of J: Jxy=2%for ix| <1,
and 0 elsewhere. In this case the instanton is m(x) = rig tanh ( fim, x).

3. Linear stability in L?

The linearisation of the evelution equation (1.1a) around # is

do= v+ (l—m)pT*o = P (3.1)
We shall study this equation in # = I2(R, dv(x)), where
dvioe) = dx
vix)= 1—m2(x)

is equivalent to the Lebesgue measure. The quadratic form associated to . has the
simple expression

(v, #v)= — J~dv{x)v(x)2 + JﬁJ(x — Mo(x)(y) dx dy. (3.2)

Despite the different signs on the right-hand side of (3.2), it is possible to prove that
the spectrum of % lies on the negative axis; more precisely we have:

ProposiTioN 3.1. Let # be the operator on # defined above. Then:
(1) Z is a bounded symmetric operator;
(i} & is negative semidefinite, 0 is a simple eigenvalue and W' its eigenfunction;
(i) (“gap”) property) 0 is an isolated eigenvalue, namely there is >0 such that:

(", Fv') 2 —wlt vh), Vot LKer (&), ie. (vh, ) = 0.

Proof. While (i} is clear by inspection, to see (ii) we find it useful to represent the
quadratic form in another way.
By (2.3), and some straightforward algebra, we find

v

1 v 2
o, L) = — j dx dy (s )i (<) (7) [; () - — (y)} 0. (33)
Hence Ker () is the one-dimensional space generated by #v.

To prove the gap property, we use the decomposition % = Ly + K, where:

Lov(x) = —v(x)+ {1 —my)BI*)(x), Kuv{x)= (5 — MBI *0)(x).  (3.4)

The above decomposition of & foresees the use of Weyl’s theorem, since it will be
easy to determine the spectrum of .%,, which has constant coefficients, while K is
compact on 5,

By Fourier analysis, in fact, we easily localise the spectrum of &, on the negative
real line. Let fe # and consider the equation

Lo —dp=1, forieC, (3.5)

We denote as usual by f(-} its Fouzier transform. Recall that Bl —mg) < 1, J is real
even and |H(e)| <J(0)=1 for ¢ 0. For 1 in the resolvent set of 5, {3.5) has a
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solution that i Fourier form is
_ flo)

(Bl —m)1d(e) 1-2°
In particular, (3.5) has a solution if 2 is such that the denominator in (3.6) is different
from zero for all ¢. This localises the spectrum of %, in the interval:
[—1—B(1—mf),— 1+ Bl - mg)] = (—0,0).

The bounded operator K is compact because it maps the bounded sets of #” inte
relatively compact sets in the same space. Namely for any ¢ such that [¢f =1

we prove:
(1) for all &> 0 there is X, > 0 such that

#o) (3.6)

J IKpltdv<e, if X>X;
jx| > X
(i) for all > 0 there is , >0 such that
J | Kgp(x 4 h) —~ Kgp(x)|* dv(x)<e, if |A] <h,

These properties are easily proved using the regularity of the convelution term
and the fact that (mj — #7(-)}, vanishing at co, has a bounded derivative.

By Weyl's theorem, [10], the essential spectrum is invariant under compact
perturbations. We then conclude that the full operator % has the same essential
spectrum as %, so that its eigenvalue 0 cannot be a cluster point of the spectrum. O

In this way the gap constant e defined in Proposition 3.1(iii) is the distance
between 0 and the negative part of the spectrum. By exploiting more refined proper-
ties of the instanton M, we could give more explicit bounds on the spectral gap,
using the theory developed in [7]. It is also possible to prove the existence of a gap
for & as an operator in some weighted L, spaces; but these properties are more
sophisticated and far from necessary for proving Theorem 1.1, so we omit precise
staternents and proofs.

4. Local nonlinear stability

We return to the full noalinear equation to prove Theorem 1.1, the main result in
this paper.

Proof of Theorem 1.1. From now on, we represent the evolving profile m(*, 1), solution
to (1.1), in terms of a moving instanton and the corresponding variation, by writing

mic, £) =, )+ o(, 1), m(x)=m0x — ), (4.1a)

!

where M, e.# and the variation part v s orthogonal to s, in
L,(R, dx/(1 — m (x))) space, namely

(-, 8, iy (s, = 0. (4.1b)

In the sequel, for notational simplicity we shall omit the explicit dependence of
on t, when confusion will not arise. In the Appendix we prove that any profile m, in
a suitably small neighbourhood of .4, can be uniquely represented as in (4.1). In
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order to use this representation for the actual solution of (1.1), we shall suppose

that the initial profile m, is suitably close to .4, and we prove that at all the later

times it remains close to .7, so that the representation (4.1) is valid at all times.
Whenever the representation (4.1) holds, we can write

ou(m{-, t) =, ) = 8,0 = ~—(,, + v) + tanh BI*(m,, + v) — ad,m,
=%, v+ am, + R[v], (4.2)

where .7, is the operator linearised around the instanton #, and the nonlinear term
R[v] is defined in {(4.3) below. To derive (4.2), we have used that My (%) = filx — o).
By the Taylor expansion of the function tanh ('}, we have

|R[u](e)fe=|tanh B # (7, + v)(x) — iy, (x) — (1 — M2 ()BT *v(x)| < {ﬁJ*v)(X)z-
43)

We next prove that for a suitable ¢ > 0 (L, below denotes L,(R, dx))
Rlv](Jel, and [R[V], Scllel}, (4.4)

since R[v] depends con » through the convolution J+v.

Namely since |0y, < 15, |o)r, and [Jxol,, 7)o 2,72 it follows
that, [117, |J*vle L,n L, for p=2. (We have used that J is bounded and the
Schwartz inequality to estimate Efidyv( ¥).) Therefore (4.4) easily follows, with ¢
depending on the function J.

By taking the time derivative in {4.1b) {the bracket in the scalar product without
subscripts in the following refers to L,(R, dx)), we obtain;

(Gev, 77, )y + dllv, Dy} =0, (4.5a)
where
Ty
Co=Ou 1 (4.5b)

is continuous, bounded and in L.
From (4.5a), using (4.2) and the fact that m,, € Ker (£, ), we get

Ll 13+ (0, @), Jo = —(R[v], ), (4.6}
By taking the scalar product of both sides of (4.2) with 2v, we get, using (4.1b),
2(1’: at”)ex = Z(Ua “{'z?av)a + 2(!), R[U])w (47)

Since « depends on t, the left-hand side of (4.7) is not just equal to the derivative of
the squared norm: namely

d
2(05 atu)a = d—l ” v ”5 - 20&(1021 ‘Pa): (48&)
where
¥, = m is a bounded continuous function. (4.8b)
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From (4.6), (4.7), (4.8) and (4.4) we get a system of differential inequalities:
£ 10125 —20051E + ky oI+ el 512, (499)
|3 [ N7 12— 1o, O | S ks [ v ]3- (4.90)
We choose the initial datum m, so that vy:=mg — i, satisfies the bound
190 e =31 Dol 75 2, (4.102)
We denote by
o =sup {2 o0, ), S 409 15 17, 1), (4.10)
Then, by (4.9), thete are positive constants ¢; and ¢, so that for all ¢ <¢*
Ug —20U+c¢, U+ c,U% where U(t)=| v, )2, {4.11)

From this we get U= c2e™?, for a suliable ¢y, which implies that t¥ = o and
Ho(, ), S coe™ ® i |ugll,, is sufficiently small, as in (4.10a). Moreover, from the

estimate on |¢,| we have that for any ¢ > 0 there is T, so that fer all ¥ 2" > T,,

oy — | < g, (4.12)
hence the convergence to the limiting instanton;

lim &, = . (4.13)

i~ oo

From (4.9b) and the estimate on [ (-, £}|,, we have an exponential convergence
in (413). O

5. Appendix

(1) We first check that the claim made at the beginning of the proof of Theerem 1.1

in Section 4 is correct. Let us first change notation slightly, by writing
{=g—uy, p=m—m (5.1}

and consider the equation defining the new coordinates:
F(p, ¢, 0) =0, (5.2)
whete F:l, x R x I, » R x [, is defined as F(p, £, v) = (F,, F,), where
. Py 1 £(X) S .
Fy= jdxﬁ“%f:mv(x), Fy=p+ iy — My ys—v. (5.3)
The properties of F are studied in the following proposition;

ProrosITION Al The map F: Ly x R x L,—»R x L, is ¥ and such that:

(1) F{0,0,0)=0;

(i1} the partial derivative F} (0,0, 0) is boundedly invertible.
Proof. The ¥* property and {i) are easily checked by inspection, while (ii) is verified
by direct computation of the solution to the linear equation:

F (0,0, 0)(, 6) = (b, w), (5.4a
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that is
dxie) o e 54b
e (54b)

By taking the scalar product of both sides of the last equality with Ty, We obtain

b+ (. w)

; B+ (7, W,
AR

= EAE

, b= —w+m

- (5.5)
As fj#_|* is a positive constant, we get the result.

Then we can apply the implicit function theorem in Banach spaces {see for instance
F107]): we get the (local) existence of a %' map

a=alp), v=uv(p), pel;=l, (5.6)

with the desired properties.

(2) We get the uniform convergence by the following argument. If the initial
datum is a bounded function in %> with bounded derivative, then it is easy to see
that the first derivative of the solution is uniformly bounded. Then the claim follows
from this and the following estimate, proved in [5],

LA S50 1 IR, (57)

Acknowledgments

We are indebted to Giorgio Fusco for many useful suggestions and comments. Two
of us (A.D. and E.P) acknowledge very kind hospitality at the Department of
Mathematics of the Rutgers University.

MNotes added in proof

We have recenily extended the results of this paper proving uniqueness and global
stability of the instantons: A. De Masi, E. Orlandi, E. Presutti, L. Triolo, Unigueness
and global stability of the instonton in non local evolution equations, preprint {1994).
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