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SPATIAL PATTERNS WHEN PHASES SEPARATE IN AN
INTERACTING PARTICLE SYSTEM'

By A. DE Masi, A. PELLEGRINOTTI, E. PRESUTTI AND M. E. VARES

Universita di L’Aquila, Universita di Roma La Sapienza, Universita
di Roma Tor Vergata and IMPA

We consider a one-dimensional Glauber-Kawasaki process which gives
rise in the hydrodynamical limit to a reaction diffusion equation with a
double-well potential. We study the case when the process starts off from a
product measure with zero averages, which, hydrodynamically, corresponds
to a stationary unstable state. We prove that at times longer than the
hydrodynamical ones the reaction diffusion equation no longer describes
the behavior of the system, which in fact leaves the unstable equilibrium.
The spatial patterns of the typical configurations when this happens are
investigated.

1. Introduction. A gas suddenly cooled below the critical temperature
becomes unstable whenever its density p lies inside the phase transition
region. Liquid droplets appear and liquid and vapor separate. No pure phase
corresponds to the initial density p, and the final state is a mixture of liquid,
with density p;, and vapor, with density p, the total density remaining equal
to p. Mathematically, the final state is a linear combination of the Gibbs states
with densities p, and py.

Similar phenomena arise in several branches of science and technology and
draw considerable interest both theoretically and in applications. Several
phenomenological equations are used to study these effects. An example [see
Fife (1979)] is provided by the reaction diffusion equation

1.1 om lA %4 R
(1.1) 5 g am- (m), meR,

where A is the Laplacian and V(m) is a double well potential. The reactive
term —V’'(m) describes the drift toward the pure phases, here determined by
the values of the parameter m corresponding to the two minima of V(m). The
homogenization phenomena are taken into account by the diffusive term Am.

The purpose of this paper is to study a stochastic system of interacting
particles, the Glauber-Kawasaki process, which models (1.1) and to analyze at
the microscopic level, that is, at the particle level, how phases separate. We
accomplish this by characterizing, in a one-dimensional model, the phase
separation and its spatial pattern.
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PHASE SEPARATION IN A PARTICLE SYSTEM 335

In the next section we give the main definitions and results. In Section 3 we
study the ‘“magnetization fields” and their critical fluctuations, characterizing
the early stage of the phase separation. In Section 4 we describe the final stage
of the phase separation, while in Section 5 we prove the probability estimates
used earlier.

2. The model and the main results. The model under study consists of
a family (0°(¢)),., of Markov processes taking values on X, = {-1,1}%,
where Z, = Z modulo ¢ !|ln¢| for 0 <& < 1/2 and such that e llnel € 7.
Of course, we could take instead Z, = Z modulo [¢!|ln ¢|] with any 0 < ¢
1/2 ([-] denoting integer part). Identifying X, with {—1,1})*: where A,

I A

{0,1,...,e In | — 1}, we write the generator of o*(¢) as
(2.1) L,=¢2Ly+ Lg,
where, for any o € X, and any function f on {—1,1}*«
1
(2.2a) Lof(e) =5 L [f(e™=") = f(o)],
xEA,
(2.2b) Lof(o) = X e(x,0)[f(o%) = f(a)],
xEA,
with
a(x), ifz=x+1,
o** Y z) ={o(x+1), ifz=ux,
o(z), otherwise

(recall that we are identifying 0 and ¢ ~!|In ¢|) and

{a-(z), if z # x,
o*(2),= .
—o(x), otherwise.
The general assumptions concerning c(-, - ) are: (i) ¢(x, o) = ¢(0, 7,0), that is,
they are translationally invariant [r,0(x) = o(y + 2)]; (i) ¢(0, - ) is a cylinder
function, that is, the interaction has a fixed finite range; (iii) ¢(0, - ) is strictly
positive. The process corresponding to the generator L, is called the symmet-
ric simple exclusion process or the stirring process.

In De Masi, Ferrari and Lebowitz (1986) these dynamics have been studied
in unbounded volumes; the proofs apply as well to the case we are considering.
After fixing the basic notation we recall some known results on our model.

NotaTioN. We denote by o(x), x € A,, both the x-coordinate of o € X,
and the random variable on X, whose value at o is the x-coordinate of o. We
then write u(f) for the integral [fdu, u being a measure on X, or X. Finally,
for any n > 1, M? is the set of all the n-tuples x = (x,, ..., x,) of distinct sites
in A,.
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336 DE MASI, PELLEGRINOTTI, PRESUTTI AND VARES

Let us now assume that the initial measure p° is a product measure on X,
with u?(o(x)) = m (ex), where m_ is a C? function from the circle [0, |In |] to
[—1,1], with uniformly bounded derivatives, which converges uniformly on
compact subsets to a limiting function m(-). Then let u5 denote the law of the
process at time ¢. Under these assumptions it .is proven in De Masi, Ferrari
and Lebowitz (1986) that for any r > 0 and any positive integer n:

i o)) = Hm(esit)| - o

i=1

(2.3) lim sup
e>0  xeMm:
Vi, x| <elr

where m (-, t) is the solution of the reaction-diffusion equation

24 i L7 F 0
(24) —m = s—m+F(m), m(,0) =m,(),

with periodic boundary conditions on [0, |In ¢|] and
F(m) = -2v,(0(0)c(0,0)),

with v,, denoting the Bernoulli measure on X ={-1,+1}* such that
v,(a(x)) = m. As a consequence, for any r € R,

gliir(l)ui(a([a_lf])) =m(r,t),

which solves (2.4) with initial condition m(r,0) = m(r).
Our goal is to study the long-term behavior of u5 when F(m) = —V'(m)
with V being a double-well potential. For this we may choose

25)  ¢(0,0) =1 - ya(0)[c(1) +o(~1)] + % (L)o(-1),

where vy € (1/2,11.

When the intensities are given by (2.5), we have F(m) = —V’'(m) with

Bm* am?

4 2’
In this case m = 0 is an unstable stationary solution of (2.4) and for such an
initial profile, u5 — v, as ¢ — 0, for any fixed ¢. The problem we are concerned
with is the behavior of 5 for ¢ tending to « as ¢ — 0. The first questions in
this direction are “ When does the system escape from v,? How should ¢ — «
when ¢ — 0?” Some heuristic arguments drawn from the ““fluctuating hydro-
dynamic theory” [see Spohn (1991)] suggest that the deviations of the system
from (2.4) are described by the stochastic differential equation

(26)  V(m) = a=22y-1), B=2y

d LM pemy) dt + Ve d
m—{gm'f' (m)} t + Ve dw,
m(r,0) =0,

where w is a white noise in space and time. Indeed, equations like (2.7) have
been used to model phase separation phenomena and have their own interest;
for us here, (2.7) only has the purpose of indicating the right time scale for the
escape. If we linearize (2.7) around m = 0, replacing F(m) by F/(0)m = am,

(2.7)
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PHASE SEPARATION IN A PARTICLE SYSTEM 337

we readily see that the right scaling is ¢ = 7|ln ¢|. Indeed, for bounded vol-
umes, that is, if we replace A, by {0,...,e 'L — 1} with Le~! € N, we already
know [see De Masi and Presutti (1991)] that

Vo, for r < 1/2a,

(2.8a) S%Mﬂlnel = sV + v_,x), forr>1/2a,

where the limit is in the w*-topology and m* = y/a/B . Furthermore,

., 1
(2.8b) ‘}Erz)#|lns|/(2a)+t = [_1At(dm)vm’

where A,(-) is absolutely continuous with respect to the Lebesgue measure. In
fact, one has something more than w*-convergence, since one can prove the
convergence of the integrals of any fixed number of spins, uniformly on their
location. We refer to Calderoni, Pellegrinotti, Presutti and Vares (1989) for a
discussion of motivation and for the analysis of the case when the potential
V(m) has a quartic maximum at m = 0. The phenomenology in such a case is
quite different [cf. also Vares (1990), where (2.7) is studied for the case when
V(-) is exponentially flat at its maximum and w is a white noise only with
respect to time, at each time being constant in space, so that (2.7) becomes an
ordinary stochastic differential equation].

The case of a potential V with a quadratic maximum [V"(0) < 0] is very
special. In the proper scale the “escape time” becomes asymptotically deter-
ministic; in our example, (2.6), it is equal to 1/(2a), in the time scale whose
unit is |ln ¢|. Otherwise, the escape time is stochastic, and we observe the
so-called bimodality effects, that is, at each time, in the proper scale, the state
of the system is approximated as ¢ — 0 by a nontrivial convex combination of
vo and (v« + v_,.+)/2, in agreement with the behavior of the solution of (2.7)
[see Calderoni, Pellegrinotti, Presutti and Vares (1989) and Vares (1990)].

We extend here the analysis in De Masi and Presutti (1991) to unbounded
volumes. For technical reasons it is simpler not to study the system in the
whole of Z, but only in A_, which is, however, large enough for exhibiting a
nontrivial spatial structure, as shown in the following theorem. (For further
comments on this point, see Section 6).

THEOREM 2.1. Let u° be the product measure on X,, with u*(a(x)) = 0 for
all x € A,. Let also u; be the law at time t of the process generated by L, with
c(-, - ) given by (2.5) and initial measure p°. We set a = 2(2y — 1), B = 2y2,
m* =ya/B, t;=|lnel/(2a) + |In el'? and, for r>0, r,=re 'nel. We
then have, foranyr > 0 and any n > 1,

(2.9a) (i) lim sup
e>0  xem:
Vi, lx,l<r,

/fﬂlnq( I_Ilo'(xi))’ =0 ifr<1/(2a),

1=

(2.9b) (ii) lim sup

e>0 xem:

kS

-

3
e S
B

1‘[la(xi)) - E(ilf[lp(8|ln el"l/zxi))’ =0,
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338 DE MASI, PELLEGRINOTTI, PRESUTTI AND VARES

where p(r) = m* sign X(r) and (X(r)), <y is a zero-average Gaussian _process
on some probability space (0, o7, P) with E(X(r)X(r')) = e =72 for
r,r' eR.

ReMARKS. The convergence in (2.9a) is uniform in 7 < 1/(2a), but we shall
only prove the weaker statement (2.9a). Notice also the difference between the
present result and the corresponding one for the bounded volume case; here
the magnetization at time |In ¢| /(2a) is still infinitesimal, while in (2.8b) it is
already finite.

We shall prove Theorem 2.1 in the remaining part of the paper. The basic
techniques we use involve: (a) sufficiently sharp estimates on some sort of
truncated correlation functions, the v-functions introduced below; (b) separa-
tion of several time scales. To understand the meaning of such points, we
recall the bounded volume case [cf. De Masi and Presutti (1991)]. Using the
estimates mentioned in (a), one can study the stochastic fluctuations at the
initial stage of the escape, when the typical magnetization grows from £/2 to
&% for any given a € (0,1/2) and ¢ is small enough. Since the magnetization is
still infinitesimal, we can safely use only the linear part of the drift and this
procedure works up to times when the magnetization is “almost finite” in a
sense to be made precise in Section 4; from then on, one exploits the conver-
gence of the process to (2.4) to show that the magnetization reaches finite
values. The first stage of this analysis is similar both in the bounded volume
and in the present case, except for a few subtle technical points. The main
difference, however, appears in the last part, since in the bounded volume case
we could exploit the absence of spatial structures. The typical configurations
were ‘“‘flat,” and, taking advantage of this, we could see that the deterministic
evolution is essentially ruled by an ordinary differential equation. Now, in the
unbounded case, the spatial structure makes the analysis truly infinite-
dimensional. Another crucial point is that we always have regions of arbitrar-
ily small magnetization, where the stochastic fluctuations are important; thus
we must control their influence on any fixed region of the space. It is at this
point that we use the time lag [In £|'/ 3 in (2.9b). Such a time interval is chosen
so long that the magnetization can reach finite values in the “good regions,”
but also small enough for neglecting the influence of the “bad regions’ where
the magnetization at time d/(2a)|ln ¢| is too small. This is, we believe, only a
technical difficulty, because the same statement (2.9b) should hold for ¢, —
7|ln e|, with any 7 > 1/(2a). This is peculiar to one dimensional space, as
mentioned in Section 6; in higher dimensional space, d > 1, the clusters (i.e.,
the regions with the same magnetization) are expected to move by curvature
when 7 increases past d/(2a), which is the time when the escape occurs in d
dimensions. In one dimension we conjecture that the clusters will not move
significantly in this same scale, but only after times which grow like some
positive power of ¢!

Before defining the v-functions and stating the basic estimates, we intro-
duce some notation and definition.
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PHASE SEPARATION IN A PARTICLE SYSTEM 339

NoraTion. Let P; denote the law of (0°(¢));., on the canonical space
D([0, +x), X,) = {0: [0, +») = X_|o(+) is right continuous and with left limits},
when 0°(0) is distributed according to u, where u is a probability on X_, and
let £, denote the expectation with respect to the law P;.

DeriNITION [The functions m (r,¢;A)]. If A is a product measure on X,
we denote by m (r,¢;A) the solution of (2.4) when the initial condition is
periodic with period |In ¢| and its values for 0 < r < |In & are

(2.10) m (r,0;1) = A(o([e7'r])).

We are now ready for the definition of the v-functions, which, for our
purposes here, are introduced in a way slightly different than usual [see, for
instance, Chapter 9 of De Masi and Presutti (1991)].

DEFINITION (The v-functions). Let A be any product measure on X,. Then
forany e > 0,n > 1,x € M and ¢ > 0, we define

(2.11) vi(x,t;A) = E§ ﬁ [o(x;,t) — m (ex;,8;0)] |- i
i-1

Notice that in particular A may be any measure supported by a single
configuration of X,. A basic bound on the v-function is proven in Section 7 of
De Masi and Presutti (1991) and it is reported here without proof.

ProposiTION 2.2 [Theorem 9.2.1 in De Masi and Presutti (1991)]. There
are a*, 8%, B* positive such that for any n > 1 there is a ¢ such that for any
€ > 0 and any product measure A on X,

(2.12) sup sup |vi(x,t;A)| <ce®™,  t.=a*lnel.

&P <t <t XEM,

REMARK. In Theorem 9.2.1 in De Masi and Presutti (1991), one considers
the bounded volume case, that is, Z, = Z /[¢ '], but the estimate (2.12) follows
exactly as in that proof.

In the next proposition we give an explicit expression for the quantity &*
appearing in Proposition 2.2, under the assumption that the initial measure is
the product probability measure on X, with zero spin averages. We have a
“good” estimate for v, in this case, but we have not been able to prove that
Uy, behaves as the nth power of v,, as we expect. More precisely, let u° be as
in Theorem 2.1. In this case we write for n > 1 and x € M,

(2.13) vE(x,t) = [Eje(ifllo-(xi,t)).

Then we can prove the following proposition.
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340 DE MASI, PELLEGRINOTTI, PRESUTTI AND VARES

PrOPOSITION 2.3. Under the above conditions vi, = 0 when n is odd. Other-
wise, for any ny < 1/8, 1 <1/(2a) and n > 1, there is c such that

(2.14) sup |vs,(x,t)| < c(I‘,(a))zn, 0<t<r7llnel,
xXeEM;,
where
1
(215) I‘t(s) = \/é_eatm.
Furthermore,
(2.16) sup |vi(x,t)| < cee®* 0<t<7llnel.

xe M5 (1+)V*’

REMARKs. The statement that v: = 0 if n is odd holds trivially by the
symmetry of the process under the transformation o - —o and the symmetry
of the initial measure u® under the same transformation; the statement when
n is even is proven in Section 5. :

Since t < 7|ln g| and 7 < 1/(2a), (2.16) tells us that at time ¢ we still have a
vanishing magnetization. It is then quite natural (since the law should still be
close to being a product) to expect that v,, should be bounded by the nth
power of the r.h.s. of (2.16). We were not able to show this but only something
slightly weaker, according to (2.14), which nevertheless suffices for our pur-
poses. Notice that (2.14) already gives us (2.8) in Theorem 2.1, for the case
1< 1/Qa).

3. The early stage of the escape. In this section we characterize ‘“the
early stage of the escape” from u°, the product measure with zero spin
average. As an introduction to such an analysis, we recall that according to
Theorem 3 in De Masi, Ferrari and Lebowitz (1986), under suitable assump-
tions on the initial measure, the density fluctuation field

Z:($) = Ve Lo(ex)o*(x,t), SeA(R), =0,

converges in law to a generalized Ornstein—-Uhlenbeck process. In particular, if
we fix ¢ and ¢, then the law of Z7(¢) is approximated, as ¢ — 0, by a Gaussian
law with zero average and finite variance C,(¢), and so, for finite times, the
typical values of the magnetization density eX ¢(cx)o*(x, ¢) are of the order of
Ve . By “early stage of the escape” we mean their growth from Ve to &, for
some a € (0, 1/2). Applied to our case, the results proven in De Masi, Ferrari
and Lebowitz (1986) show that C,(¢) grows exponentially. This, however, does
not imply that the magnetization is also increasing exponentially. In fact, the
result proven in the above paper is obtained when ¢ — 0, with time restricted
to a bounded interval [0, T'], while now we want to look at times {, » +® as
¢ — 0. However, the result suggests that the right time scale for observing the
escape is ¢, = 7/ln ¢|, 7 > 0. We prove below that the Gaussian character of the
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PHASE SEPARATION IN A PARTICLE SYSTEM 341

suitably rescaled magnetization fields is preserved even at these longer times,
provided 7 < 1/(2a). For this we introduce the following definition.

DEFINITION. For ¢ € #(R), t > 0 and 0 < ¢ < 1/2, we define
(3.1) Xi($) = Yio(4), 0=7<1/(2a),

where
£

(3.2) Y (o) = 51/2g-afzx)¢(5x)08(x,t), 5= VeV

We remark that the reason for the “anomalous” & instead of ¢ in (3.2) is
simply the longer time scale ¢ = 7|In ¢ to be used [cf. (8.1)]. The factor e™* is
present to depress the exponential growth of the field, keeping it finite.

NoraTioN. On the path space Q = C([0,x), ' (R)), or Q = D([0,»),
'(R)), we shall use {X_(¢), » € #(R)} to denote the canonical (coordinate)
process, that is, X (¢ w) = o(rX¢), for all w € Q and 7 > 0.

THEOREM 3.1. Let 7 € (0,1/(2a)) and let ¢ denote the law of the process
X:(¢), 0 < 7 < 7 (when the initial measure is u°), on the space D([0, ), "'(R)).
Let & be the probability on C([0, ), #'(R)) concentrated on the deterministic
evolution satisfying

(3.3a) X () = Xo(4,),
where

1 . N2
(3.3b) $.(y) = [dzd(2) %exp{—(z-z%)‘}

and such that under &, X, is Gaussian with

2\ o
(39 S(X#) =0, FXBX) = 1+ dro(2))

for all ¢ and ¢ in A(R). Then, for each 7, <€ (0,7), P°, restricted to
D([7q, 7], #'(R)), converges weakly to the restriction of & to C([r,, 7], /' (R)).

REMARKS 3.2.

(a) The equal time covariances of X under & are given by the kernel

1 (r— r')2
L] )

(3.5) C(r,r',7) = (1 + E)

a

(b) By the classical central limit theorem, the distribution of X§ converges
weakly on .'(R) to the standard white noise, that is, instead of 1 + 2 /a, as in
(3.4), we have simply 1. Thus the above theorem cannot be extended to
D(0, 7], ”'(R)). That is, our scaling 7|In ¢| produces an “initial layer,” a jump
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342 DE MASI, PELLEGRINOTTI, PRESUTTI AND VARES

at time 0, and, after that, the evolution becomes essentially deterministic. This
is completely consistent with the following intuitive picture: The magnetiza-
tion field evolves according to a linear stochastic differential equation obtained
by the addition of a Ve noise to the linearized version of (2.4), namely,

1 92
dm={——m+am

3 372 dt + Ve dw.

As soon as the magnetization becomes of the order of €%, a < 1/2, the noise is
overcome by the effects of the deterministic drift caused by the linear instabil-
ity am. The larger this is, the shorter is the time it takes to overcome the
noise, whose effect, in the meantime, is correspondingly smaller, hence
the dependence on 1/« in (3.5). However, for any finite & > 0 the noise on the
scale 7|ln g| is immediately ‘““switched off.”

Proor oF THEOREM 3.1. Based on the general results of Holley and Stroock
(1978) and Mitoma (1983), we shall prove: (i) for any fixed 0 < 7, <7 < 1/(2a),
the family &?° is tight on D([7,, 7], '(R)), and any sequence &#°», ¢, — 0,
has a subsequence which converges to a probability measure concentrated on
C(ry, 7), ' (R)); (ii) any possible weak limit point must be in fact concen-
trated on the deterministic evolution which solves the heat equation, that is,
X (¢) =X, (¢,_, ), where ¢, is given by (3.3b). Finally, using the fact that
this holds for 7, arbitrarily small, we will be able to prove the convergence of
X: which will complete the proof.

For (i) and (ii) we use the martingale characterization of the limiting process
and of tightness. According to Mitoma (1983), the family (#°), ¢ (o, ; is tight on
D(7,, 7], ”(R)) if and only if for each ¢ € .”(R) the laws of the processes
(Xi(P): 7y < 7 < 7) with ¢ € (0, 1] form a tight family of probability measures
on D([7y,7],R). On the other hand, for each test function ¢, the jumps of
X?(¢) on [r,, 7] are uniformly vanishing as ¢ — 0; thus for the tightness we
may just use the usual C-criterion and in the case of an affirmative answer any
limit point will be supported by the set of continuous trajectories.

For this we define

(3.6a) vi(7,¢) = £ X ($) —aX](P),

(3.6b) v5(1,0) = £ X:($) - 2X:($) £ X:(4),
with

(3.6¢) Z =|lne¢lL, = Ilnel[e 2Ly + Lg].

Notice that

(3.7a) M. ($) = X(¢) = Xi($) — [ dsvi(s, 6)
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PHASE SEPARATION IN A PARTICLE SYSTEM 343

and
(3.7b) (M:.(#)) = [ dsvi(s, $)

are martingales which vanish at .
Thus it suffices to show that for any ¢ € #(R) there is a constant ¢ so that

(3.7¢) sup [Eff(yf(f,¢))2 <e¢, 1=1,2,
Te<T<T
(3.7d) sup ES(X:(¢)) <e.
To<T=<T

Indeed, with Doob’s inequality, (3.7a)-(3.7c) give us the following. For each
¢ € 7, each 7, 6 positive, we may find ¢ > 0 so that

P| sup |X:i(o) - Xi(¢)|>6|<m,

To<T, T <T
lr—7'l<¢

which together with (3.7d) gives the tightness.
We now check (3.7c) and (3.7d). The action of L is very simple to compute.
Recall that £ 2|ln ¢ = 572 Then set x ,= x + 1 and

1
Ash(x) = —(s—z[qb(x +8) + d(x —8) — 2¢(x)]

(sometimes we drop the time from the argument of the spin variables below).
We then have

1
(3.8a) e ?lnelLy X () = Xf(E(ﬁ”) + Ry(e, 7, ¢),

where
1/2

)
|Ro(e,7,¢)| < e_‘"'l”'_z— 2|47 (8x) — Ash(bx)]
(3.8b) *

1/2

—at|lne|______
<e 2 C(9),

with C(¢) < «, for any ¢.
Similarly, we get

|e =2l 6l Lo( X£(4)°) — 2X:(#) Lo X:(9))|
(3.8¢) < e 2e7lnelg =25 3 | (5x) — (8%, )|
< o720y (9),

with C(¢) < «, for any ¢.
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344 DE MASI, PELLEGRINOTTI, PRESUTTI AND VARES

To compute the action of L., we first rewrite the rate function c(x, o) as
o(x,0) = (1 - 27) +7[2 ~ o(x)a(x,) — o(x)o(x.)]
+yho(x_)o(x,)
and recall that @ = 2(2y — 1). Thus we easily get A
(3.9b) |InelLaXf (o) = allnelX;(¢d) + Ry(e,7,9) + Ry(e, 7, ),

where

Ry(s,7,4) = 2ylln ele™ 4152 ¥ [20(x) — o(x,) — o(x_)]$(5%),

(3.9a)

so that
(3.9¢) |Ri(e,7,¢)| < 2ylln ele™ ey 552 A (Sx) |
yielding
(3.9d) lim sup |Ry(e,7,¢)|=0
eV ro<r<7
and

Ry(e,7,4) = 2y%lIn cle~0els1/2 ¥ (8x)or(x)or(x, )or(x_).

For each ¢ € /(R) we can take C,(¢) < » in such a way that (x below
denotes any set of six different sites in A,)

Ece(Ro(e, T, ¢>)2) < 4y*n el2e'2“"’“'C2(¢>)(1 + 87! sup|vg(x, 7lln g]) l)

< 4,)/4,11,1 8|2e—2af|lne|C2(¢) + C3(¢)4y4|ln 8l5/2e4a7|lne|52,

where we have used (2.14). Therefore,

Ry(e,7,4)%]) = 0.

(3.9¢) 511_1)11 sup [E;(

To<T<T

Finally, we compute the contribution to y5 coming from L:
In el| Lo X:(4)® — 2X2(6) Lo X: ()|
(3.9¢) = 4|ln gle 2o els Y $p2(8x)|c(x, o) |

< 4|In gle~2emneIC, (),

where C3(¢) < «, for any ¢ € A(R).
From (3.8) and (3.9) we have reduced the proof of (3.7¢) and (3.7d), and so of
tightness on D([7,, 7], #'(R)), to showing that for any ¢ € A(R),

(3.10) sup [EfLS(Xj(q&)2) < o0,

Te<ST<T
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PHASE SEPARATION IN A PARTICLE SYSTEM 345
But
[EfLe(Xf(¢)2) < e 2ot 3'[5 Y $%(6x) + 87 'Cy(p) sup |vy(x,7lInel) []
x

X\ #x9E€EZ,
< e—2a7|1ne|[c5(¢) + 8—1|1n £|1/2c2e2a7|lne|8|1n 8|—1/2]

according to (2.16), and (3.10) follows.

We have just proven that if [r, 7] is fixed as above, any & which is a weak
limit of some sequence #°~, ¢, — 0, must concentrate on C([7,, 7], ' (R)).
For the identification of the possible limit points of &#°, we need to look at the
limiting behavior of [{y/(s, ¢)ds, for i = 1,2, and then use the characteriza-
tion of &= lim, #*» as a solution of a martingale problem [cf. Holley and
Stroock (1978) and Rebolledo (1980)]. Here this is particularly simple since
from (3.8) and (3.9) it follows that under any such & the canonical process
X () satisfies the following:

(a) For any ¢ € A~ (R),
M, (6) = X,($) - X,(¢) — [ dsX,(3¢")

is a martingale vanishing at 7.
(b) (M, (4))? is also a martingale.

As is well known, this implies that M, _ vanishes for all =, with probability
1. This says that with probability 1 (Wlth respect to &),

XT(¢) = -ro(d)-r—'ro)

for 1 € [7,, 7] and for ¢ defined as in (3.3b). It remains to prove convergence
of X:(¢) to the Gaussian distribution indicated by (3.5) with 7 = 7,. Given
any sequence ¢, — 0, we may take by diagonalization a subsequence &/, such
that the measures 97% converge on each D(27™ 7], ' (R)), for all m > 1
such that 2 ™ < 7, and by the above argument the limit must satisfy (a) and
(b) for any 7, = 2"™.

On the other hand, from (3.7) and the Cauchy—-Schwarz inequality, we get
for all s, > 0,

£ X

(d)) so/Ilne|(¢)| ) < 2TOC + 2/ dTI 72(877l’ d’)

so/IIn &

< (1o + e %),

(3.11)

We will eventually let 7, » 0 and s, — » after ¢ — 0. But first consider the
fluctuation field Y;"(¢) defined by (3.2a) so that X; .. = Y, and let

¥5(t,¢) = LY (¢) — a¥i (),
¥5(t, &) = LY ($)” — 2Y:($) LY/ ().

Proceeding as before, we may prove the tightness of the laws of Y*° on
D(0,T], ' (R)). Indeed, just -recall that the ¥/ are obtained from the y; by
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346 DE MASI, PELLEGRINOTTI, PRESUTTI AND VARES

changing 7|ln ¢| to ¢, X?(¢) to Y,°(¢) and dividing everything by [In ¢|. The
verification of the conditions analogous to (3.7¢) and (3.7d) is very simple. Now
E5(Y(¢)?) < oo trivially. To identify the possible limit points, we must iden-
tify the limiting behavior of [(¥7(s, ¢) ds for i = 1,2. Usually, the hardest part
comes from the drift term %§, which generally is not a function of the
fluctuation field itself. In order to prove that

t
Y($) — [ Yi(A.¢)ds
0
is a martingale (for any limiting process Y), we need to find operators A, so

that

2
= 0.

M £
hgn E;LE

A “ds[7i(s, 6) — Yi(A,$)]

This is the so-called Boltzmann-Gibbs principle, and for the models under
study it has been proven in De Masi, Ferrari and Lebowitz (1986) for the
standard fluctuation fields. In the present situation notice first that due to
(3.8a) and (3.8¢) we see that the contribution of L to ¥; vanishes for i = 1, 2.
The reason for this is that we scaled space by 6! and not by &£~1. The
contribution to ¥{(¢, ¢) coming from L, by (3.9b) and (3.9d), is given by

2y%e 182 Y ¢p(8x)o(x)o(x,)o(x_) + Ry(t,8,4),

where

lim sup E5(Ry(t,e,¢)%) =0.

Iz
£=0 0<t<T

Adapting the proof of the Boltzmann-Gibbs principle in De Masi, Ferrari and
Lebowitz (1986), Theorem 4, we can see that

lim Eﬁs({‘[()tdse_“sél/z Y d(8x)o(x,s)o(x,,s)o(x_, s)] ) = 0.

e—0
The contribution of L to ¥5 is, by (3.90),
Xoy(t, d) = 4e 28 Y ¢2(8x)c(x, 0,)
X

and, using Proposition 2.3,
2
lim nzgs([@(m) — de2es Z¢2(ax)] ) - 0.
x

Therefore, using again the Holley and Stroock theory, we have that if 2 is a
probability on C([0, T'], »#'(R)), which is a limit point of the laws of the Y,?(¢),
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PHASE SEPARATION IN A PARTICLE SYSTEM 347

then under 2 the following hold (denote below by & the expectation with
respect to 2):

(a) X,(¢) is a Gaussian field with

E(Xo(#) =0, (X&) Xo(W) = [ dré(r)u(r)

for all ¢ and ¢ in .A(R).
(b) X,(¢) is a martingale and

{Xt(¢)2 - 4ftdse‘2°‘sf dr ¢(r)2> is a martingale.
0 R
But this uniquely determines the process so that we have convergence of the

Y* to the Gaussian process with law 2. This has zero average and the equal
time covariance kernel is

C(r,r',t) =

2
1+ ;(1 - e‘z‘”)]é(r -r).

From this convergence result and (3.11) the conclusion of Theorem 3.1 follows.
O

4. The final stage of the escape. In this section we characterize the
final stage of the escape; this will complete the proof of Theorem 2.1. We first
introduce some notation: We fix @ > 0 in such a way that aa is sufficiently
small; in particular, we require that a«a < 1/8 and that 3a < a¢*, a* being as
in Proposition 2.2. For each & > 0, we denote by

t, = —Il
¢ 2a|n8|

the critical time for the escape (cf. Theorem 2.1), and we set
(4.1) t*=t,—2t,, t,=allnel, t;=¢ +]n e/,

By the final stage of the escape, we mean the evolution of the system from
time ¢* until time ¢, when the escape will be completed. Since ¢, — t* < 3¢, <
¢t (at least for ¢ sufficiently small), we can use Proposition 2.2 to study this
final stage of the escape. Call #(¢*) the o-algebra generated by (o°(¢)), _,« and
o* the configuration at time ¢*. Denote by m (r,t; §,+) the solution to (2.4)
with potential given by (2.6) and initial condition periodic with period |In |
and such that

m,(r,0;8,+) =o*([e"'r]) for0<r<|lnel.

Then the law of the process at time ¢, conditioned on F(¢*) is approximated,
in the sense of Theorem 2.1, by a product measure with averages m (ex,t, —
t*;8,+), x € A,. Since the analogous property also holds for all #* + &¢#* < ¢ <
t, the final stage of the escape is determined by the behavior of the function
m (ex,t — t*;8,+). The problem is then reduced to an analysis of (2.4) when
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the initial conditions are the typical configurations at time ¢#*. We first outline
the main steps, then we give the proofs.

LEmMA 4.1.  For any positive b and u there is ¢ so that for all ¢,
(42)  Pu(o(-,t*) =0*:|m,(-,e¥48,4)| < ¥ ?) = 1 - ce¥,
where || - || denotes the sup norm with respect to the spatial variable.

Lemma 4.1 will be proven by showing that until time ¢!/ one can neglect
the reactive term F(m) in (2.4), with an error which becomes negligible when
e — 0. As a consequence, m, is essentially the solution of a purely diffusive
equation; hence it is a Gaussian average over o*. By (3.2) and (3.5) the typical
size of the magnetization at time t* is £2*¢|In &| "'/, Then, using (2.14) and
the Chebyshev inequality, we will take advantage of the factor £~ in (4.2) and
prove the statement.

Notice that the bound in (4.2) must not be sharp. In fact, if m (r, &'/
8,+) = £2%2~b then m, would already be finite at the end of the time interval
2t,, because of the exponential growth, and the escape would occur before ¢,.
We therefore need to improve the bound in (4.2). We first establish the
following result.

LEMMA 4.2. If b <aa and ||m (-, 46,0l < £2%97%, then there is c so
that for all &,

(4'33) I|me("ta;5 *)” < cgaa_b’

(43b) “ me( ) ta; 60*) - le( T ta; 60*) || < CSS(aa_b))

where 1, solves the linearization of (2.4), namely,
(4.4) 1(r,t;8,+) = /dr'e""Gt(r -ra*([e7'r'])

and G(r) = exp{—r2/2t}27t)~ /% and o*(x), x € Z,, is periodic with period
e n €.

We therefore know from Lemmas 4.1 and 4.2 that m (r,¢,; 8,+) depends on
o* approximately as the right-hand side of (4.4), with large probability. The
important point is that this expression varies slowly so that it will be possible
to introduce and prove bounds on its sup norm. For this purpose we recall the
following classical inequality, easily proven using the Cauchy-Schwarz in-
equality, which expresses the variation of a function in terms of its H, norm.

LeEmMA 4.3. For any r and L > 0, let

(4.5) N(r,L,t) = sup  |1,(r, t;8,4) — 1,(r,t;8,4) [
[r=r'|<Lylln gl
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PHASE SEPARATION IN A PARTICLE SYSTEM 349

(we omit the dependence of N, on o* for notational simplicity). Then

(46)  N(r,L,t) <2L/lnél f’*L el g '(a 1.(r',1; 8, ))2

|In €|

The right-hand side of (4.6) is a quadratic expression in o*. Using again the
Chebyshev inequality, (2.14) and (2.16), we shall prove the following result.

LemMA 4.4. Forany n <1/8 and u > 0 there is ¢ so that for any r and &,
aa 2
(4.7) P:E(Ns(r,1/2,ta) > {m} ) <cllnel™".

Furthermore, for any { > 0 and d > 0 there {s L > 0 so that for any r and e,
1 2
4.8 PeIN(r,L,2t,) > d{ —— <{.
( ) 13 ( 8( ) {Iln8'1/4} ) {

By using the estimate (2.14) and the Chebyshev inequality to bound the
right-hand side of (4.4), we will prove the following result.

LemMa 4.5. Forany n <1/8 and u > 0 there is ¢ so that for any r and e,

(4.9) P’f( . @855 | > n) <cllnel™¥,
where we recall o* = o(t*) with t* deﬁned by (4.1).
Combing (4.7) and (4.9), we will obtain the following result.

LEMMA 4.6. Forany n < 1/8 and u > 0 there is c so that for all € € (0, 1),

(4.10) Pj( Sty 8 )||> )sollnel_“.

We will also show the following result.

LeEMMA 4.7.  Assume that (4.3b) holds with b > 0 and 3b < 2aa. Assume

also that
1 s 8,0) [ < ——
. 30 % < —.
e( sbasr Yo )I ]ln 8'11
Then there is ¢ so that
m.(+,2t,;8,+)|| <cllnel™7,

o (-2, )
||me("2ta’ cr*) le("zta’ o* )” <C|1n8' 71
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This together with (4.10) and Lemmas 4.1 and 4.2 will prove (2.9a), namely
that u} converges to the Bernoulli measure with zero average, and hence that
the escape has not yet occurred at time ¢,.

To prove that m (-, ¢ £t 8,+) is not infinitesimal, we need lower bounds
on [m,|, hence on ll l, at time 2i,. We first give a definition.

DEerFiNITION. Given two functions ¢ and ' on R and L > 0, we write

(4.12a) Y=, ¢ ify(r)=y'(r)foralllrl < Lyllnel,
(4.12b) W=, 0 ifg(r) > ¢'(r) forall 7 < Lyin g .

LEMMA 4.8. Denote by m(r,t; ¢) the solution to (2.4)-(2.6) with initial
condition ¢. Then for any L > 0,

lirr(l) sup sup |m(rlln el, |ln "3, )
€20 y= ¢ |rl<L/2
(4.13) ol 191l < 1

—m(rllnel, In s|1/3;1//’)l =0.

We fix n distinct sites, xl, .., %,, as in (2.9). Then, because of Lemma 4.8,
as ¢ tends to 0, m (ex,;, ¢, — t*; 8,+) will be determined by m (r, 2¢,; §,+) with
r such that {|r — ex,| < Lv| ln £ } for any given L > 0, and hence as we shall
see, by I (r,2t,; U*) with r varying in the same interval. On the other hand,
by (4.4), 1 (r,2t,; 0*) can be expressed as one of the magnetization fields
studied in the previous section and this will be used in the proof of the

following lemma.

Lemma 4.9. Given any { > 0, there is d > 0 (sufficiently small) so that for
anyr,

1
(4.14) lim P i (,)|<d | <&

By (4.5) and (4.8), given any positive { and d’, there is L > 0 so that for any
r and &,

(4.15) sup  |1(r,2t,;8,«) — L (r,2t,;8,+)| < d'llng| "%,
|[r—=r'|<Lylln ¢

with probability larger than 1 — {.

From (4.14) and (4.15) it follows that: given any { >0, n > 1 and any
n-tuple x,,...,x, of distinct sites, there are L, d and e, so that for all
0 < ¢ < g, the probability of the set

{1.(r,2t,; 5,+) |> dlln &| ~*/* for all r in all the intervals of
length Llln ¢|"/ 2 centered at the points ex;}

is larger than 1 — .
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By (4.11), choosing 31 > 1 /4 (the only constraint on 7, so far, was n < 1/8),
we deduce that |m (r,2t,;5,+)| also satisfies the previous lower bound. Then
by Lemma 4.8 it will be easy to prove that m (ex;,t; — t*; 8,+) becomes close
(for ¢ small) to +m*, the sign being the same as that of [ (ex;,2¢,;5,+). By
using Theorem 3.1 we shall also determine the limiting distribution of these
signs, and will be able, in this way, to conclude the proof of Theorem 2.1. The
proof of Theorem 2.1 appears after those of Lemmas 4.1-4.9, which we
present next.

In the sequel we will often use the following classical property of our

reaction diffusion equation (2.4) [see, e.g., Fife (1979)].

Monotonicity properties of (2.4). Let m(r,t) and m(r,t) be two solutions
of (2.4). Suppose that m(r,0) > m(r,0) for all r. Then m(r,¢t) > m(r,t) for
all » and ¢ > 0. The same property holds if the equation is defined in an
interval with periodic boundary conditions.

As a consequence, |m(r,t)| < 1 for all r and ¢ > 0 if |m(r,0)| < 1 for all r,
by the choice (2.6) for the reactive potential.

Proor or LEMMA 4.1. By the monotonicity properties of (2.4), |m (r,¢;
8,+)| < 1. Hence there is a constant ¢ such that
(4.16) |m (7, 645 8,4) — L,(r,8Y/%;8,+)| < ce'/*.

By the arbitrariness of b > 0 and because 2aa < 1/4, it will be enough to
prove (4.2) with m_ replaced by /.. To reduce the sup in (4.2) to a sup over a
countable set, we notice that

ad e .
(4'173) ;le(r’t;s(r*) = - "/?fdr' K,(r — r')o'*([g_lr’]),

where
r e—r2/2t
4.17b K = — .
( ) A7) VE Vomt
Then
7 ‘ i ! é c
(4.17¢) p™ A1, t8,4)| < 7
and it follows that for any § > 0,
||l€(',51/4;80*)|| = sup |l€(r,£1/4;50*)|
O0<r<l|lneg|
c
< sup 1(r,e"*;8,+)| + &° .
05r$|lne|r€552| ( )‘ “51/4

Therefore, Lemma 4.1 is reduced to the proof that for any positive b and «
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there is ¢ so that

(4.182) Pa|o(-,t*) =0*: sup |l(r,eY%8,4)] <e2*7t| > 1 - ce¥,
O0<r<l|lne|
ree’z

where

(4.18b) 8> % + 2aa - b,

so that €27 1/8 < ¢22¢=% QOn the other hand, the left-hand side of (4.18a) is
bounded by

(4.18c) enelsupP(o(-,t*) = o*: |1,(r,e'*8,4)| > £2*7?).
) r

By using the Chebyshev inequality with power 2n, we get that the probability
in (4.18c¢) is bounded by

2n 2n
(4.19) a—<2aa—b>2"e“2”€”“[dr1 voodry, T1Gan(r — ri)[E;s( I1 a*([a‘lri])).
i=1 =1

We shall use Proposition 2.3 to estimate the expectation in (4.19). For this we
must split the region of integration according to the number of different sites
in Z, among [¢~'r;],i = 1,...,2n. Thus we say that r, is isolated if [¢ ~'r;] #
[¢7'r;] (mod |In ¢|) for all j + i, and set

A, = {( ry,...,Ty,): there are exactly k isolated r; among ry, ..., r2n}

fork=0,...,2n,1 A, being its characteristic function. Then, by (2.14) and the
definition of #* [cf. (4.1)], for any & there is ¢ so that

ti( Lol

(4.20)  1,4(r1,...,720) < cT(e)" < ce?ak,
On the other hand, since [G(r)dr =1 and G(r) < 1/V2nt, we easily see

that for any k& there is a ¢ so that

2n £ 2n—k)/2
(4.21) [dry...dry, 1a(ryees75,) [1Gan(r = 1) < c(—)
i=1 gl/4

Going back to (4.19) and recalling that (1 — 1/8) > 2(2aa), by choosing n
sufficiently large we prove that the expression in (4.18¢) vanishes when ¢ — 0
as fast as any given power of ¢; from this the lemma follows. O

Proor orF LEmMMA 4.2. We start by proving (4.3a). By the monotonicity
properties of (2.4), Im (r,¢;8,+)| is bounded for ¢ > &/ by z(¢ — &'/*) where
2(¢) solves

dz
— =az — B28,

(4.22) dt
2(0) = g2ea~?,
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Hence
(4.28) [m (r,t;8,+)| <z(t) <e*z(0)

and this, for ¢ = t,, proves (4.3a).
We notice that from (2.4) it follows that

ms(r’t;aa*) = fdr’e‘”Gt(r — r')o*([e_lr'])

(4.24)

+j;) dsfdr’e"‘(“s)Gt_s(r - r’)(—Bme(r',s;Sa*) )
Let
(4.25) ho(8) =[lm (-, 8;8,4) = L.(*,¢;8,4)|-

Then, using (4.23) and (4.4), we have
(426)  h(t) s e Oh () +of dsectt-[ewspra ]
Since, by the choice of a and b,

h,(e'*) < ce¥/* < ceagd@a=b)

we then get (4.8b) and complete the proof of the lemma. O

In Section 5 we shall need the following corollary of the proofs of Lemmas
4.1 and 4.2.

LemMa 4.10. Forany 0 < 7y < 7 < 1/(2a) and any b and u positive, there
is ¢ so that, denoting by & the configuration at time 7y|ln ¢/,
Po(|m (,t;85) | <e*S,, eV <t <(r—1y)llnel) >1—ce¥,

where

Ss — S_b max{eafolln £|81/2’ 81/4} .

Proor. If 1/(4a) < 714<1/(2a), we may write 7, = 1/(2a) — 2a with
aa < 1/8 and the estimate follows at once from the proofs of Lemmas 4.1 and
4.2, since S, = ¢ ®*2% in this case. Otherwise, S, = ¢1/47% and the estimate
follows from (4.16), (4.19) and (4.21) for ¢ = £!/* and from (4.23) for the other
values of ¢. O

Proor oF LEMMA 4.4. From (4.17a) we have

Fl eat

R . - ’ ! sk -1
(4.27) |arle(”’ £9,)| < = [dr' K (r = rl)e*([er]),
where, according to (4.17b), 0 < K,(|r|) and there is a constant ¢ so that

(4.28) sup K (rl) < —‘2_— [K ) dr <c.
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To prove (4.7), we use the Chebyshev inequality with power n. By (4.6) and
(4.27) we get

aa 2
&
Pﬂe(Ne(r,L,ta) > {W} )

aa —2n
e

[In & ~Llln 5| r—Liln ¢l

%]n [ drt dr? B (i, - ri) Ko i, — 1)

(429 < To([etrl)o ([e747))

1 2n

2n

< c£—2naa|ln £|2n17( Iln El) E—Znaa -
[In &

X sup n fdr dr! K, (Ir, = r{)K,(Ir, — /)

S TRE r,i=1

x{E;(i]f[la*([s‘lr{])G*([ o "]))

By (4.28), using the same argument as in the proof of Lemma 4.1, we conclude
that the right-hand side of (4.29) is bounded by

2n £ (2n—k)/2 82naa k
ce 4 ln ¢|**" Y ( ) — .

o\ VInel [In g|"°

Hence, choosing 7, in (2.15) larger than 7 in (4.29), we get (4.7).

Proor oF (4.8). The proof of (4.8) is similar: We again use (4.29) with ¢,
replaced by 2¢,, n = 1 and setting n = 1/4. We denote by 1(-) the characteris-
tic function of (-). Then the left-hand side of (4.8) is bounded by

1 1/2
] e

—|ln e|1/2L

2
X —] fdr’ dr' Ky, (Iry — ') Ky (Iry — 1)

(4.30) e,
X {er' — M >e) + 1 - < e)}

1 2 glaa £
< cd ™ YIn &|Y?L2|In €] g 4aa + ,
|In & Viln €| Vln &
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PHASE SEPARATION IN A PARTICLE SYSTEM 355

where we have used (2.16) and (4.1). Given d > 0, by choosing L small enough
we can make the expression in (4.30) smaller than any given { > 0. Therefore,
the lemma is proven. O

Proor orF LEMMA 4.5. We again use the Chebyshev inequality with power
2n. The left-hand side of (4.9) is then bounded by

{l—hii;;}_zn [dry... [dry, e2w"ai12=‘n[1 [ dridriG,(ir; = rl)
[ (1o (1e7)

2n s @n-k)/2(  2aa k
Scs—Znaallnglzn‘ng—2naa Z ( I l ) ( ) ,

k=0 Ine Iln Elno

€
xEs| TT

where we have used the bound on G, which is equal to the one in (4.28), and
we have also used the same estimate as in the proof of Lemma 4.1. By
choosing n sufficiently large and n, > 1, we then see that the last expression
can be made smaller than c|ln ¢| ™“, for any given u. The lemma is therefore
proven. O

Proor oF LEMMA 4.6. We have (i below denotes an integer)

lE(i Inel,t ;6 )

ybar Yo*

1Z.(-5tas8,4) [l < sup

0<i<y|lneg|

1 1/2
+  sup [Ne(i\/llnel,g,ta” ,

0<i<v|ln ¢l

so that

pe.

aa . 1 8aa
ta; 8n )||> < Vllneg| { supPz| |7, @3 8,%)| >

2lln£|17
1 V2 o1 eee
Nir,=,t > —
E(r’z ") 211ne|’7)

Proor or LEMMA 4.7. The hypothesis and (4.3b) imply that there is a ¢ so
that

+ sup Py
r

Hence by (4.7) and (4.9) the lemma follows. O

aa

E
[m (- t,;8,+)| < Tn el
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356 DE MASI, PELLEGRINOTTI, PRESUTTI AND VARES

and so, by monotonicity, we then have, as in the proof of Lemma 4.2, for
t>t,,

aa
Ine|”’

which shows the first inequality in (4.11). To prove the second inequality in
(4.11), we observe that, with the notation introduced in (4.25),

[mo( 85 8,4) | < ceat

, eas£2aa
he(t) < ea(t—ta)he(ta) + Cj; dS ea(t—S){ “n 8]’7 } :

Now, using (4.3), the lemma easily follows. O

Proor or LEmMMA 4.8. We set
(4.31) D(r,t) =|m(r,t;¢) —m(r,t;¢")].

Hence D(r,0) = 0 for |r| < Ly|ln ¢| since ¢’ = ¢. Since |m| < 1 we have that
there is ¢ so that

D(r,t) <2[dr' G(r—r)1(ir| > Lyilnel)
(4.32) t
+cj0 ds [dr' G,_,(r = r')D(r,s).

Iterating (4.32) and using the semigroup property of G.(r), we get, for

Irl < L/2y[Inel,
e—(L/z\/une|)2/2t
D(r,t) < 2ec‘f dr' G(r — r)1(Ir'l > Lylln ] ) < Ge® ——=———

2t

The right-hand side vanishes for ¢ = |In ¢|*’® and when ¢ — 0. The proof of
the lemma is thus concluded. O

Proor or LemmA 4.9. The law of o(-,¢) under P; is obviously shift
invariant and so it suffices to consider r = 0. In this case, we define

_ —r2/4a
r) = e
é(r) I
and notice that
1/4
lln 8| / lg(O’Zta’ 60'5(‘,t*))
_7'2/4ta

e

Vart,

g% _exp(—r?/(4allnel))

= |In 8{1/4e2°"af of([e~'r],¢*) dr

of([e7'r], t*) dr

- IIn e|*/* 4ma
g 2@ 1 .ex+eexp(—r2/(4alln &l

—¢ 1/4 —f Xp( /( )) dr O'S(x,t*),
[In g| x \ € Jex 47a
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PHASE SEPARATION IN A PARTICLE SYSTEM 357

so that we easily see that
1 2aa -

(4.33) Iln e741,(0, 2, 8, 1)) — Yi&(&)| = e/

In particular, (4.14) with r = 0 follows from Theorem 3.1. O
Proor oF (2.9a). For 7 < 1/(2a), (2.9a) follows at once from (2.14). To

consider ¢ = ¢, and ¢ = ¢, we write u3(I'T}_,0(x,)) for ¢ > t* by conditioning
on the process up to time #* and using the Markov property, that is,

(4.34) (no(x )) = E2

i=1

n

gm( na(xi,t - t*))).

Setting o* = o (-, t*) for o € D([0, +x), X,), we write

o PLotone— )

i=1

n
= Ega*( 11 [cr(xi,t —t*) —m (ex;,t — t*;8,%)
i=1
+m (ex;,t — t*;&a*)])
Y Ego*(]_[[a(xi,t—t*) —me(sxi,t—t*;éa*)])
jed

Jc{l,...,n} 1€
J#+=D

X [Tm (ex;, t — t*;8,+)

l$J
+ l—[m (le,t , 0*)

Now, if 0 < ¢t — t* < 3t, and a has been chosen in such a way that 3a < o™,
then, by Proposition 2.2, all the terms in the sum of the r.h.s. of (4.35) must
vanish as ¢ — 0. Thus, from (4.35),

n n
Ego*(na(xi,t—t*)) = TIm.(ex;,t —t*;8,4)| =
A i=1

i=1

(4.35)

It

(436) lim

and we need to study the behavior of

n
Eie(iz[-[lms(axi,t -t 60*)).

Let A, be the set {o(:,t*) = o*: |m,(-,&'/% 8, )l < g22a=b) where b > 0.

From Lemma 4.1 it follows that for any u > 0 there is a ¢ > 0 so that
P:E(At*) Z ]. - ch.

Now, if t =¢,, that is, ¢ — t* = 2t,, we get from Lemmas 4.6 and 4.7: If

n <1/8,

lim P m(-, &4 8,4)| > cllnel ™) = 0,

so that (2.9a) for ¢ = ¢, follows from this, (4.34) and (4.36). O
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358 DE MASI, PELLEGRINOTTI, PRESUTTI AND VARES

To prove (2.9b), we first study the behavior of m (r,t;6,+) in the time
interval 2¢, <t < t; — t*. We shall see that as ¢ - 0, m (r,t,— ¢*;5,+) con-
verges either to m* or to —m™ for all r such that m (-, 2¢,;8,+) is suitably
bounded away from 0 (and positive, respectively negative) in a sufficiently large
region around r. The argument will use the monotonicity properties of (2.4).

After that, we prove that, given any x = (x;,...,x,) € M, the probability
that m (-, 2t,;8,+) satisfies the above conditions relative to each point ex;
goes to 1 as ¢ — 0. We will then be close to the end of the proof of (2.9b).

Given &, d > 0, L > 0 and x, we introduce the following set of configura-
tions o* (at time #*).

d

&, (¢,d,L,x) = inf L(r,2t,;8,+) > TeWEEE

r—ex|<Lllng|"1/?
(4.37) |r—ex|<Ll|ln |
sup [1.(r,2¢t,;8,%) — m(r,2t,;8,+)| <clln sI_S"},
Ir—ex|<Llln &*/2
where c is as.in Lemma 4.7, equation (4.11).

We define & (¢, d, L, x) analogously, with the first inequality replaced by
sup l (r,2¢,;6,+) < —d|In ¢ —14,

o

LEmMA 4.11. There is 6(¢,d, L), d > 0, L > 0, vanishing as € = 0 for
any given d and L, such that for any o* € & (e,d, L, x),

(4.38) sup |me(r, tp—t%;8,+) F m*| <64(e,d,L).

Ir—ex|<L/(2|n ]?)

Proor. Suppose for notational simplicity that o* € £, (¢,d, L, x). Then,
for £ small enough and recalling the definition of &<,

(4.39) m* > m(r,2,;8,+) =, d/(2nel~*)

[see (4.12D) for notation]. Equation (4.38) is then a consequence of Lemma 4.8,
the monotonicity properties of (2.4) and the fact that

g

(4.40) lin%z(tf— 2t,) = m*,
where z(¢) is the solution of (4.22) with initial condition z(0) = d /(2[In &| ~*/*).
O
We define
(4.41) Z(e,d,L,x) =Z,(¢,d,L,x) UL (¢,d,L,x)
and for x € M;,
(4.42) G(e,d,L,x) = (F(e,d, L,x;).
i=1

As a consequence of (4.11), (4.14) and (4.15), there is a function 6,(¢,d, L, n),
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PHASE SEPARATION IN A PARTICLE SYSTEM 359

n > 1, such that for all n and all x € M¢,
(4.43) Fe(Z(e,d,L,X)) >1—0y(e,d, L,n)
and furthermore, for any n,

lim sup lim sup@,(e,d, L,n) = 0.
d+L—->0 £-0

ProOF OF (2.9b). We fix below n > 1 and R > 0. Given L > 0 there is a
finite set I', which is L/2-dense in [—R, R]. That is, for any |r| < R, there is
r' €I’ such that |[r — r'| < L/2.

Given x € M; and such that |x,] <R, = ¢ 'Y/|lne|, we denote by x' =
(x3,...,x;,) any n-tuple such that forall i = 1,...,7, |x} — x;| <& Y/lne[L/2
and ¢|ln al_l/zxi erl.

We then have, by (4.34),

Mf( no(x )) = Egs(Ega*(lﬁo(xi,tf— t*)))
and, by (4.36),
,u,tf(l_[a(x )) ie(izfl—[lmg(axi,tf—t*;ﬁa*))
where 03(e,n) — 0 as ¢ — 0, for each fixed n. Then, by (4.43),
I'l'tf( ]._Io(x )) l.f(e,d,L,x')(iIf.[lms(exi’ tp—t%; 50*)))’

< 02(8, d, L,n) + 03(8,";)
and, by (4.38),

:“'tf( ]—[cr(x )) lf(e,d‘,L,x’)(izl—Ilm* Sign{ls(gxwzta’ 60*)})'
<cly(e,d,L) + 0y(e,d,L,n) + 04(e,n),

where c is a suitable constant which depends on n. We thus have, again using
(4.43),

< 04(e,n),

(4.44)

i T = 2 TTm st o, 2055,
i=1 ] i=1

<cby(e,d,L) +20,(¢,d,L,n) + 04(e,n).
By (4.33) we have

(4.45)

(4.46) |l el (e}, 2¢,;8,4) — Y5 < cel 20|l ¢ TV/4,
where
(4.47) b (r)=¢(r—r), r/=cllnel % .
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360 DE MASI, PELLEGRINOTTI, PRESUTTI AND VARES

By Theorem 3.1 we have
(4.48) E%Ez(ljlm* sign{Yti(qbr;)}) = E(Ep(r{)).

In fact, sign{X,-1(¢)} [cf. (8.1) for notation] is almost surely continuous
with respect to the limiting law defined by Theorem 3.1, which is the same as
the law defined in Theorem 2.1.

By the continuity properties of the limiting process,

E( I—Ip(ri’)) - E( [Tp(cn 81_1/29%))
i=1 i=1
where, for any n, 6,(L,n) - 0 as L — 0. Collecting the above estimates and

letting first ¢ > 0 and then L + d — 0, we obtain the proof of (2.9b), thus
concluding the proof of Theorem 2.1. O

(4.49) <6,(L,n),

5. Estimates of the v-functions. In this section we prove Proposition
2.3. Its proof is based on the analysis of an integral equation for the v-func-
tions that we derive in Lemma 5.1 below, but first we need a definition.

DeFINITION [The stirring process and the transition probability Pf(x — y)l.
For any n > 1 and for any function f on M, let

12 .
(5.1 =5 X T [16D) -],

b=+1

1

where x>% = (x/,...,x,) is defined below. Let x = (xy,...,x,). Then if x; +
b+ x; for all j, we set x; =x, for [ +i, while x; = x; + b. If, on the other
hand, there is j such that x; = x; + b, then if b = —1, x; = x; for all / and if
b=1,x,=x forall { #i,j, while x; = x;, + 1and x} = x; — 1. We now define
Pf(x — y) as the transition probability of the Markov process on M, with
generator (¢ =2 + 4y)L, where v is the parameter appearing in (2.5).

The process defined above is the stirring process; its marginal over the
symmetric functions is the symmetric simple exclusion process. For each
n > 1 it has the same law as the process on X, with generator (¢ ™2 + 4y)L,, if
we identify a configuration o with the set x of the sites in A, where the spin
has value 1 and if we restrict this process to the set of configurations which
have just n spins equal to 1. The jump intensities in (5.1) have been chosen in
such a way that the marginals (x,(?), ..., x; (1)), for any given subset (Bgseeeyip)
of (1,...,n), have again the law of the stirring process (with % particles).

LemMa 5.1. Foranyt> 0 and x € M3,

(5.2) va(x,1) = [(dse?ne@) ¥ P (x - y)R(y,5),
0 yeMs,
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PHASE SEPARATION IN A PARTICLE SYSTEM 361

where

@, 1) = L [~2y205, n(x+ 8,00 +8, 1, O1(x £ 1 £ %)
XEX

+27 Z l(x +be X){U;n_z(x - Bx - 6x+b’t) - v;n(x, t)
(5.3) b=+1

_yl(x -b¢ X)U;n(x - 8x+b + 8x—b’t)
7w =8 € Xugo(x = 5y = 00 0)]
where X + 8, is the configuration obtained from x by adding, respectively

-y
subtracting, y and 1(-) is the characteristic function of ().

Proor. Recall that vy (x,1) = E;(I17%,0(x;, 2)) and so
d B m
Et_vf”(x’t) =E&|(e7 2L,y + LG)iI;[lo-(xi,t)]. ‘

Using (2.2) and (2.5) to compute L;(I1" ;0(x,)), after some simple algebra we
obtain (m = 2n),

d
(5.4) gt-vfn(x,t) = (672 4+ 4y)Lovi(x,t) + amui(x,t) + R°(x,t).
Since this is a simple algebraic manipulation, we omit the details and refer to
Chapter 9 of De Masi and Presutti (1991). Equation (5.2) follows at once from
(5.4) O

The proof of Proposition 2.3 is based on (a) proving that the leading
contribution to (5.2) comes only from the terms on the right-hand side of (5.3)
which contain v _,, and (b) proving that the contribution of these terms gives
the estimates in (2.14) and (2.16). It would not be difficult to see that the term
vi_,1(x + 1 € x) can also be neglected. We start with point (b) and give the
following definition.

DeriNiTION (The w-functions). We define wi(x,#) = 1 and for any n > 1,
x € M3, and ¢ > 0 we set recursively

¢ -8 £
wh,(x,t) = 2y(1 +y) [ dse®=¢= ¥ Pg (x>y)
0 yEMS,

(5.5) -
X Zl(lyz - yjl < z)wgn—Z(yl’J’ S),
t,J

where y“/ € M3, _, is the configuration obtained from y by dropping y, and
¥;- Notice that the w-functions are nonnegative.

Therefore, w, satisfies the equation obtained from (5.2) by neglecting the
terms with v§, and v, , , and by suitably bounding the others. More precisely,
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call s, (x,¢) the solution of

d .
awgn(x,t) = (7% + 4y) L5, (x,t) + R°(x, 1), ws,(x,0) =0,

where

Re(x’ t) = Z 27 Z 1(x+b€x){w§n—2(x - 6x - 8x+b’t)

xXEX b=+1
+71(x—bex)w§n—2(x — 0,41 — 6,1, t)}
Then w§,(x,1) < ws,(%,¢) for all n, all x and all ¢.

LeEmMA 5.2. Forall §,> 0,n > 1 and 7 < 1/(2a), there exists a constant c
such that

—2n e
(5.62) sup (L(e)) fws(D) e,
t<t|ln g
where
(5.6b) ws, (t)|| = sup ws,(x,¢)
xEM;,
and

T(e) = Vee® (1 +1t) /%",

Furthermore,

celat -1
(5.7) up (—) (o)l <.

t<7lln g (1 + t)1/2
Proor. From (5.5) we get

wi(x,t) < 2y(1 + y)fotds e¥2nt=s) ¥ pr (x—>y)
(5.8) yEM;,
X 21(lyi -yl < 2)“w§n—2(s)”°
i,j

We have that given any 7 > 0 there is ¢ so that for all ¢ < 7|ln &,
P Pi(x - Y)I(Iyi _yjl < 2)

yEM;,

=X Pf((xi,xj) - (yi’yj))l(lyi -yl < 2)
Yirdy

(5.9)
< c _ ce
T e 2t+1) e+l

where ¢ is a suitable constant (the value of the constant ¢ will be changing
from line to line). Equation (5.9) follows from classical estimates on random
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PHASE SEPARATION IN A PARTICLE SYSTEM 363

walks. In fact, |x,(¢) — x; (¢)] has the law of the distance between two symmet-
ric random walks on the circle with £~ ![In ¢| sites, each jumping by +1 with
intensity ¢~ + 4y when |x,(#) — x,(z)| > 1. When they are at distance 1, they
leave this state to go to {Ix (t) — x,()] = 2} with intensity & ~2 + 4y. For
t < 7/ln g/ the fact of being on the c1rcle is not relevant; in fact, the bound (5.9)
is the same as for unbounded volumes. The estimate (5.7) is then a straightfor-
ward consequence of (5.8) with n = 1 (recall that w§ = 1) and (5.9). Iter-
ating (5.8), we would easily get the estimate (5.6) but without the factor
(1 + ¢)?r(1/8=%0) The whole problem is to recover such a factor.
From (5.5) we obtain

t $1 Sn-1
wgn(x’ t) < cfo dSl eZna(t—s1)]0 dSz e2(n—1)a(s1—82) N /(.) d-S'n e2a(sn_1=55)

(5.10) X X r C(Xoy) Py (Va1 ™ V)

Yi5--s¥Yn (il,jl),-n,(in,]n)

X l_[ll(,yiz _yj:l = 1)’
where (iy, jo),...,(i,,J,) vary over all the partitions of {1,...,2n} into dis-
joint sets of two elements.

We call .#; the contribution to the right-hand side of (5.10) for s, < T,
where T' <t will be specified later on. We then denote by %, the contribution
coming from s, > T, so that

Wia(X, 1) < Ay + Sy

To bound %, we fix (i, ji),- .., (i, Jn), S1re-v»Sps §1 > T,and yy,...,y,. We
then use (5.9) to estimate the sum over y,, obtaining an estimate uniform in
¥,_1- After iterating this procedure we get

—2a(s;—-T) —2as,
S, < n 2nat —2aT d € s"_ld e
9 ce’e S1 ——_’_‘/? Sn —
S1 0 S,-1 S,

<ec F(E)Zn —2aT(1 + t)2n(l/8-—30),

where ¢ and ¢’ are suitable constants. We choose T = V¢ for ¢ > 2 (and = t/2
when ¢ < 2), so that .#, has the desired bound, because

sup e_2a‘/t_(1 + t)2n(l/8—80) < o
t

To estimate .#;, we split the transition probability
P; (x> y1) = LP p(x~>2)Pi_(z = y1);
z
recall that in this case 7' > s;. We then introduce the characteristic functions:

x(T) = l_l—llxl(T), Xi(T) = 1z, — 2] < 7' T/2%%),
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where 8 > 0 will be specified later on. For any fixed (i, j;),...,(i,, j,) and
T>s;> -+ >s,, we have that

(1 - X(T)) Z PT sl(z - yl) s,, 1=Sn (yn 17 yn) 1—[ l(b’th yjh| < 2)

Yireoes Y
n
< ¥ (1= x(T) LPi_y(z = y)1(ly;, — 3, < 2)
=1 y:
n 8—2T1+25
< Y cexp{———5—— 1},
l§1 { 4(e72 + 4y)T}

which follows from classical estimates on random walks [see the remark just
after (5.9)]. Therefore, the contribution of the above term vanishes faster than
any given power of 1/T = 1/ V¢ as t — «; hence this term is also bounded as
desired.

We are left with the contribution to .#; coming from configurations z such
that x(T') = 1. Proceeding as when estimating .#,, we get the bound

—2as; e —2as,

2”“”"[ ds; ——=— r_____ : f" 'd ——‘/_=S’Z§,Pf_T(x—> z)x(T).

To bound the last factor, we recall a suitable coupling between the stirring
process x(t) on Mg, and independent random walks x°(¢) = (x{(¢), ..., x3,(t))
with the same one-dimensional marginals, that is, each x2(¢) descrlbes a
symmetric random walk on A, with rate (2 + 47y).

It has been proven in De Masi, Ianiro, Pellegrinotti and Presutti (1984) [cf.
also Proposition 6.6.3 in De Masi and Presutti (1991)] that for any x € M3,
and x, € Z" a coupling & o can be constructed in such a way that for any
86> 0 and % > 0 there is a ¢ depending on §, 2 and n so that uniformly in
t>0:

ZeJlx(t) = %) = (x°(1) = =) = (7)) < 07
where |x| = max;|x;|. Choosing § < 1/4, we have

—1p1/2+8 [8_2(t _ T)]1/4+5

e Yt —T)"?

LP p(x->2z)x(T) <

with 26, — §/2 > 0, and the lemma follows. O

To prove Proposition 2.3, we derive first a bound for v3,(x,t) of the form
ce"e?"*t. Once we have such a bound we will then easily reduce the estimate of
v, to that of ws,. We start by proving the bound for ¢ < ¢?*, with g* as in
Proposition 2.2. After that we extend it first to ¢ < a|ln ¢| with a > 0 small
enough, and then, by an induction argument, to all ¢ < rlln¢l, 7 < 1/(2a).
This is done in the following lemmas.
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PHASE SEPARATION IN A PARTICLE SYSTEM 365

LEmMA 5.3. For any n > 1 there is a constant ¢ so that for all x € M5, and
t <ef”

)

(5.11) |vs.(x,8)] < ce™.

Proor. Let us consider an arbitrarily fixed value of n. We define

sup |vs,.(¢) le™™, ifm<n,
<gﬁ*

5.12 d, ={"'

(5.12) i sup [|vs,.(¢)le 4™, otherwise
t<ef

[recall that ||v5,,(¢)|l denotes the sup norm of v§,,(x, #)]. We choose 0 < { < g*
and we let N be the first integer such that {(N — n) > n. With this definition
dy < 1. Finally, define

(5.13) d= max d,.

l<m<N

From (5.2) and (5.3) we have for a suitable constant ¢ (d, = 1 below),
o (,0)| 5 e ! dse = 2 o) |
0
(5.14) + L EP (x> 91y -yl <2)
iy
X {” vgm—Z(S) ” + ” U;m(S‘) "} *

From (5.14) with m < N, using (5.9), we get, for a suitable constant ¢, which
depends on n through N and ¢,

ce? ?d,,_, +ed, ]+ 7d,, if m<n,
(5.15) d,, < {ce®/’[d,_, +ed,] +77d, if m=n,
cef 2el*d, _ +ed,,| +eF 4, ifm>n.
Notice that the right-hand side of (5.15) is strictly smaller than d for &

small enough, if 2 <m < N — 2. Therefore, for all ¢ small enough, d =
max(d,,dy_{) <d; +dy_;, and by (5.15) for m = 1 and m = N — 1 we have

d<cfef/?[1+ed] + e id + e /?2[d + ed] + P 7¢).
Therefore, d vanishes when ¢ — 0 and the lemma is proven. O
LeMvA 5.4. There is a > 0 such that the following holds. For any n > 1
there is a constant c so that for oll x € M5, and ¢t < alln ¢,
(5.16) [vs.(X, 8)| < ce®mlem,

Proor. We proceed as in the proof of Lemma 5.3. We fix n and introduce
the new coefficients d,, as follows (b < 1 below is a positive number which will
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be specified later on):

b™ su sup e *2™ys (x,t)|e™™, if m<n,
2m
(5 17) d XEM;S,, t<allnel
. - _ 8% _ N
™ |b™ sup sup e ™|y (x,t)|e """~  otherwise,
xeM;,, t<alln ¢l

with a < ¢* and a* and 6* being as Proposition 2.2, and we also assume that
8* < 1. Then by (2.12) (when " < ¢ < a*|In¢|) and by Lemma 5.3 (when
t < £#"), we deduce the existence of an integer N such that d ~ < 1, for £ small
enough. We define d = max, _,, .y d,,, and from (5.14) we then get

ebd,,_; +efllneld,, + b~ 1le2enelgqd | if m<n,
(5.18) d,, <{cbd,_; +¢&llneld, + b~ le2ealnelgdy if m=n,

.

cbe'%d _ +efllneld,, + b le2ealnelgdy i m > n.
m—1 m m+1

We choose a > 0 so small that 2aa < §*. By choosing b small enough we can
make the right-hand side of (5.18) strictly smaller than d when2 <m < N — 2
for ¢ small enough. As in the proof of Lemma 5.3, we can then conclude that d
is bounded, and this proves the lemma. O

LEMMA 5.5.  Assume that for some 1 < 1/(2a) the following holds: For any
n > 1 there is ¢ so that ||vs, ()| < ce™e®"** for all t < 7|ln &|. Then there is
{ > 0 and for each n > 1 there is c,, so that for all x € M§, and all t < 7|In g,

(5.19) [05,.(x, £)| < wE, (X, ¢) + c,ef[eme2me].

REMARKS. By Lemma 5.2, under the assumptions of Lemma 5.5, it follows
that for each n > 1 there is ¢ so that for all ¢ < 7|ln &,

(5.20) lvsa(®)]] < eL(8)*".
From Lemmas 5.5 and 5.4 it follows that (5.20) holds for all ¢ < alln ¢, with
a as in Lemma 5.4.
Proor or LEMMa 5.5. We prove (5.19) by induction on 7. From (5.2) with
n =1 we get
lus(x, )| < wi(x, t)
t
+ ce%‘f0 ds e‘zs“{ LP(x = YLy, — ol < 2)[vs(s)] +[vis) II},
y
recalling that |[vi(s)l| is the sup norm of vi(x,s). By using (5.9) and the
assumption that ||v§, (DIl < ce™e®"*, it follows that
lus(x,t)| < wi(x,t) + e [e2Vt + %],

We have therefore proven (5.19) for n =1 and any ¢ < 1 [having chosen
7 < 1/(2a)). We now assume (5.19) for n — 1 and want to prove it for n. The
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argument is completely analogous to the previous one. We use (5.2) and (5.3).
The terms with v, _,, by the induction assumption, reconstruct wj, plus the
term :

[ dse2nat=92y(1 + y) T PE(x = y)1(ly, — ;| < 2)c,_yebenleXnDes,
0 i,Jj

which by (5.9) is compatible with (5.19). For the terms with v§, we use Lemma

5.4 and then again (5.9); for the term with v, , we use Lemma 5.4. In both

cases it is easy to see that we obtain a bound compatible with (5.19) if ¢ is

suitably small, depending on 7. We omit the details. O

LEMMA 5.6. For any 1 <1/(2a) and n > 1 there is ¢ so that for all
xeM;, and all t < 7|ln €|,

(5.21) |vsa(X,2)| < T, (2)*".

ReEMARK. By using (5.21), (5.19) and (5.7) we derive (2.16); therefore, the
proof of Proposition 2.3 is completed once we prove Lemma 5.6. .

Proor oF LEMMA 5.6. Given 7 < 1/(2a) we consider a so that a™!r is a
positive integer and @ < o*, where a* will be chosen in the sequel. By
choosing a* as required for applying Lemma 5.4, by the remarks after Lemma
5.5, we know that (5.21) holds for ¢ < alln ¢]. We are going to prove that if
(5.21) holds for ¢ < k|ln €|, it also holds for # < (2 + 1)|In ¢|, provided that
k+ 1<k, where k. a = 7. Given any n > 1, we set for m > 1, x € M,
and ¢, <t <t,,q,

(5:22)  uhu(x,t) = v5,(x,t) — e CTWYPE (% > ¥)V5,(Y, 1),
y

e ¢ sup e 2| ug, (¢)|e™ ™, if m<n,
ty<t<ty,,
523) d,, =
(528) dp, e ¢ sup e 2m||ub, ()|, if m>n,
th<t<ty,,

where { > 0,1 > 0 > 0 and furthermore

{ < 2aa, {<1-2(k+1)aa, 6>2(k+ 1)aa,

(6:24) 0 — 2kaa < 28%, 60— 2(k — 1)aa < 1/12.

Indeed, since £ + 1 <k, 2(k + Daa < 2k, aa = 27a < 1. Hence for any
given a we can find { > 0 so that the first two inequalities in (5.24) are
satisfied. On the other hand, the conditions on 6 are

2kaa + 2aa < 0 < 2kaa + 26%, 0 < 2kaa —2a + 1/12,

which can be fulfilled if a is so small that 2e¢a < 26* and 4aa < 1/12. Thus
for any a sufficiently small (a < a*), there are solutions ¢ and 6 to (5.24) for
all k2 <k,,,. We shall choose any a < 1/100 in this set and for which we can
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apply Lemma 5.4. We also require that a < a*/2, a* being as in Proposition
2.2,

We shall prove that d,, < 1 for ¢ small enough, and hence that there is ¢’ so
that d, < ¢ for all ¢ < 1/2. By the arbitrariness of n, this proves the
induction argument. In fact, by (5.22) we have

(5.25) lo5m(®) | < lusn(@) || + e* = vg,(£:) |-
Putting m = n and assuming that d, < ¢, we then get by the induction
assumption

[v5.(2) || < c'ef*me2me + eI, (£)*".

Therefore, to prove the lemma, it is enough to show that the coefficients d,, in
(5.23) are bounded by 1 for £ small enough. We postpone the proof of the
existence of an integer N > n such that dy < 1 for ¢ small enough. From
(5.2), (5.9) and (5.22) we get

€
€ , )| < ceZmat tdS e—2mas Uem s +
g N5, Netmeato) 1+ 7

% (05 —a(5)] +uv;m<s>n}].

From (5.25) and (5.26), using the definition (5.23) of the d,,’s, we have that for
m<n,

d, < c[e‘z"‘t’e[dm_1 +e7¢]

5.27
(5.27) teytyar [d, + 78] +ee®n(d,, , +e7¢]].

For m = n we get

d, < c[e_z"‘tk[dn_1 +e7¢]

(5.28)
teftpeg [d, +e7¢] + e2hn[efd,, | + et

For m > n we get

d <c[e—2atk[£1—0d ) +E—£+(1—6)(m—n)]
m — m—

(529) +8\/K[dm + 8(1—0)(m—n)—l]
+ez°‘t’““[89dm+1 + 81‘“(1‘9)(’”"‘)”.

We define d as the sum of d,, from m =1 to m =N — 1, so that d is
bounded by the sum of the right-hand sides of (5.27), (5.28) and (5.29). We
start by proving that the coefficients which multiply the d,,’s vanish as ¢ — 0.
This is so because (a) ¢ exp{2at,,,} = 0, as ¢ > 0 (recall that 2 + 1 < %k, ,.);
(b) &% exp{2at,, } — 0, by the third inequality in (5.24). The terms which do
not contain any d,, also vanish when ¢ — 0. In fact, (c) ¢ ¢ exp{—2at,} — 0,
by the first inequality in (5.24); { < 1, by the second inequality in (5.24), (d)
e' Y exp{2at,, } - 0, again by the second inequality in (5.24).
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PHASE SEPARATION IN A PARTICLE SYSTEM 369

The lemma is therefore proven once we show the existence of N such that
dy <1 for & small enough. By Lemma 5.5 we easily see that, when the
right-hand side of (5.22) is substituted for ©°¢ in (5.23), the contribution of the
second term on the right-hand side of (5.22) vanishes as ¢ — 0. We therefore
need only show that there is N such that

(5.30) lime=¢~0-9" gsup [Jvsy(2)[le 2NN = 0.
-0 t,<t<tp,,

We denote by o* the random configurations at time ¢,_; and call E5« the
expectation when the process starts at time 0 from o*. Setting t* = ¢ — ¢,_,
we get

vin(x,t) = [E;([Ef,*( ii[V [{o(x,-, ¥) —m,(ex;,t;8,+)}
(5.31) -t

+m (ex;,t'; 80*)])),

where m, is defined as in Proposition 2.2.

We now expand the product obtaining a sum of terms which are products of
curly brackets and m’s: the latter are constant with respect to the expectation
E2.; the others, by (2.12), give a contribution bounded by c£*", if there is a
product of %2 curly bracket terms. By Lemma 4.10 we have that for any u
there is ¢ so that

(5.32) P

m (¢t = ty_1;8,+)|| > £7° max{e'/Ze*, '/ 122" %-D} ) < ce®

forall ¢, <t <t,, ;.
We thus get from (5.31) a vanishing contribution because of the last two
inequalities in (5.24).

6. Concluding remarks. The extension of our results to the case when
the system is defined in the whole space for all the values of ¢ is an interesting
but rather technical question, as we do not expect physically relevant changes.
For this reason and to make the paper shorter, we have avoided the issue. The
really interesting question, in our opinion, concerns the behavior of the system
at longer times. Interactions between clusters of different phases and tun-
nelling effects should then have a relevant role, but the techniques we have
presented here do not seem adequate for such an analysis.

In a paper in preparation by De Masi, Orlandi, Presutti and Triolo, the same
phenomenology of phase separation is observed in a spin system which evolves
by the Glauber dynamics with Kac potentials. For the definition of the model,
see Penrose (1991).

The behavior should be quite different, however, when, for the same
interaction, the dynamics are conservative Kawasaki dynamics [see Penrose
(1991) for the definition of the process]. The analysis is then much harder and
no results are known so far.
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A short survey on phase separation phenomena has been presented by
Pellegrinotti (1991). Giacomin (1991) has generalized our techniques and
results to two and three dimensions. The conclusions of Giacomin (1991) are
similar to those found here. The phases separate on the time scale |In ¢| into
clusters which, in units £ ~!y/|In ¢| , have smooth boundaries. Their geometry is
described in terms of a Gaussian distribution, as in Theorem 2.1.

As already mentioned, the most interesting open question concerns the
motion of the clusters after the phases separate. This problem has been
studied by Bonaventura (1992), who considers the spin model presented here
in two dimensions. The initial state is again a product measure. The average
spin at x equals m(e!*%x), for b > 0 and sufficiently small. The function m(r)
is chosen close to +m™* inside, respectively outside, of a smooth region A.
There are technical conditions on m(r) for which we refer to the original
paper.

At times ¢¢~2°, Bonaventura (1991) proves that u% - is still close, in the
sense of our Theorem 2.1, to a product measure with averages close to +m*
inside, respectively outside, of A,. A, is obtained from A by letting the points
of the boundary move with velocity proportional to the curvature and directed
toward the interior of the region. We refer to the original paper for a precise
statement.

It is conjectured that the behavior found by Bonaventura (1991) also
describes the evolution of the clusters of the different phases after they
separate, but no proof has appeared so far.

Acknowledgments. We thank M. Bramson and R. Holley for valuable
discussions, G. Giacomin for pointing out some mistakes present in a previous
version of the paper, and a referee for a very careful reading and useful
criticism.
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