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 SPATIAL PATTERNS WHEN PHASES SEPARATE IN AN
 INTERACTING PARTICLE SYSTEM1

 BY A. DE MAsI, A. PELLEGRINOTTI, E. PRESUTTI AND M. E. VARES

 Universita di L'Aquila, Universit& di Roma La Sapienza, Universit&
 di Roma Tor Vergata and IMPA

 We consider a one-dimensional Glauber-Kawasaki process which gives

 rise in the hydrodynamical limit to a reaction diffusion equation with a

 double-well potential. We study the case when the process starts off from a
 product measure with zero averages, which, hydrodynamically, corresponds

 to a stationary unstable state. We prove that at times longer than the
 hydrodynamical ones the reaction diffusion equation no longer describes
 the behavior of the system, which in fact leaves the unstable equilibrium.
 The spatial patterns of the typical configurations when this happens are

 investigated.

 1. Introduction. A gas suddenly cooled below the critical temperature
 becomes unstable whenever its density p lies inside the phase transition
 region. Liquid droplets appear and liquid and vapor separate. No pure phase

 corresponds to the initial density p, and the final state is a mixture of liquid,

 with density PL, and vapor, with density Pv, the total density remaining equal
 to p. Mathematically, the final state is a linear combination of the Gibbs states
 with densities PL and Pv.

 Similar phenomena arise in several branches of science and technology and
 draw considerable interest both theoretically and in applications. Several
 phenomenological equations are used to study these effects. An example [see
 Fife (1979)] is provided by the reaction diffusion equation

 Om 1
 (1.1) = - Am- V'(m), m E [R

 Dt 2

 where A is the Laplacian and V(m) is a double well potential. The reactive
 term - V'(m) describes the drift toward the pure phases, here determined by
 the values of the parameter m corresponding to the two minima of V(m). The
 homogenization phenomena are taken into account by the diffusive term Am.

 The purpose of this paper is to study a stochastic system of interacting
 particles, the Glauber-Kawasaki process, which models (1.1) and to analyze at
 the microscopic level, that is, at the particle level, how phases separate. We
 accomplish this by characterizing, in a one-dimensional model, the phase
 separation and its spatial pattern.

 Received April 1991; revised October 1992.
 'This work has been supported by CNPq, CNR-MMAIT and IBM of Brazil grants.
 AMS 1991 subject classifications. Primary 60K35; secondary 60F05, 82A05.
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 PHASE SEPARATION IN A PARTICLE SYSTEM 335

 In the next section we give the main definitions and results. In Section 3 we
 study the "magnetization fields" and their critical fluctuations, characterizing
 the early stage of the phase separation. In Section 4 we describe the final stage
 of the phase separation, while in Section 5 we prove the probability estimates
 used earlier.

 2. The model and the main results. The model under study consists of
 a family (o-(t)), 0 of Markov processes taking values on XE = {- 1, ljze,
 where /e = Z modulo e'1lln el for 0 <e < 1/2 and such that 1ln 8el e- /.
 Of course, we could take instead Z. = Z modulo [e-11ln el] with any 0 < E <
 1/2 ([ ] denoting integer part). Identifying Xe with {- l~, 1jA where A
 {, 1, ... , g-1'In Ed - 1}, we write the generator of o(e(t) as

 (2.1) Le= 82L + LG

 where, for any o E XE and any function f on {-1, l}A?:

 1
 (2.2a) Lo f (u-) = 2 [f (o X+1) - f (u)]

 xeAe

 (2.2b) LG f(o) = E C(x, )[ f(ox) - f(f)],

 with

 0(crX), if z= x+ 1,

 orX X+l(Z) = o(x + 1), if z =x,

 u(z), otherwise

 (recall that we are identifying 0 and e'I In E8) and

 O'x(Z) o-(Z), if z#x,
 (Z)'= 0-o(x), otherwise.

 The general assumptions concerning cQ, ) are: (i) c(x, o-) = c(O, rxo-), that is,
 they are translationally invariant [ryo-(x) = o-(y + x)]; (ii) c(O, ) is a cylinder
 function, that is, the interaction has a fixed finite range; (iii) c(O, ) is strictly
 positive. The process corresponding to the generator Lo is called the symmet-
 ric simple exclusion process or the stirring process.

 In De Masi, Ferrari and Lebowitz (1986) these dynamics have been studied
 in unbounded volumes; the proofs apply as well to the case we are considering.
 After fixing the basic notation we recall some known results on our model.

 NOTATION. We denote by o-(x), x E AE, both the x-coordinate of o- E Xe
 and the random variable on XE whose value at o- is the x-coordinate of o-. We

 then write ptd f ) for the integral Jfd aI, ,u being a measure on Xe or X. Finally,
 for any n 2 1, Mn is the set of all the n-tuples x = (x1, ..., xn) of distinct sites
 in AE.
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 336 DE MASI, PELLEGRINOTTI, PRESUTTI AND VARES

 Let us now assume that the initial measure fil is a product measure on X,
 with ,u61(x)) = mE(ex), where me is a C3 function from the circle [0, in E1] to
 [-1, 1], with uniformly bounded derivatives, which converges uniformly on

 compact subsets to a limiting function m0-). Then let /ut- denote the law of the
 process at time t. Under these assumptions it -is proven in De Masi, Ferrari

 and Lebowitz (1986) that for any r > 0 and any positive integer n:

 (2.3) lim sup t (HO(x)) - m(Exix t) = 0,
 E ? xE=Mn i=1=1

 V i, ixI <E-ir

 where m (Q, t) is the solution of the reaction-diffusion equation

 d 1 d2

 (2.4) am - 2 a m + F(m), m( ,O) = me(.), at 2adr2

 with periodic boundary conditions on [0, In EII and

 F(m) = -2vm(o(O)c(Oo-)),

 with vm denoting the Bernoulli measure on X = {-1, +1}' such that
 vm(Or(x)) = m. As a consequence, for any r E X,

 lim p(u(C ([ 8 -])) = m ( r, t),

 which solves (2.4) with initial condition m(r, 0) = m(r).

 Our goal is to study the long-term behavior of A-' when F(m) = -V'(m)
 with V being a double-well potential. For this we may choose

 (2.5) c(^O.) = 1 - 'yO (0)[ O(1) + O(-1)] + Y'20f(1)u(-1),

 where -y E (1/2, 1].
 When the intensities are given by (2.5), we have F(m) = -V'(m) with

 ,Gm4 am2
 (2.6) V(m)= 4 - 2 a = 2(2y - 1), ,= 2y2.
 In this case m 0 is an unstable stationary solution of (2.4) and for such an

 initial profile, ut- -> v0 as E -- 0, for any fixed t. The problem we are concerned
 with is the behavior of 4et for t tending to 0o as E -* 0. The first questions in
 this direction are "When does the system escape from v O? How should t -> 00
 when E -* 0?" Some heuristic arguments drawn from the "fluctuating hydro-
 dynamic theory" [see Spohn (1991)] suggest that the deviations of the system
 from (2.4) are described by the stochastic differential equation

 1 d2m

 (2.7) m\2a2 +F(m)Jdt+rdw,

 m (r, 0) = 0,

 where w is a white noise in space and time. Indeed, equations like (2.7) have
 been used to model phase separation phenomena and have their own interest;
 for us here, (2.7) only has the purpose of indicating the right time scale for the
 escape. If we linearize (2.7) around m 0, replacing F(m) by F'(O)m = am,
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 PHASE SEPARATION IN A PARTICLE SYSTEM 337

 we readily see that the right scaling is t = rIln E1. Indeed, for bounded vol-
 umes, that is, if we replace As by {0, .. ,-L - 1) with Le` E A, we already
 know [see De Masi and Presutti (1991)] that

 (2.8a) limo~riinEi ( 1(^ * + ^-m*) for r < 1/2a,
 2~ m+ m) for r >1/2a,

 where the limit is in the w*-topology and m* = a/fl. Furthermore,

 (2.8b) lim7l n8I/(2a)+t = fi At(dm)v.,

 where At(-) is absolutely continuous with respect to the Lebesgue measure. In
 fact, one has something more than w*-convergence, since one can prove the
 convergence of the integrals of any fixed number of spins, uniformly on their
 location. We refer to Calderoni, Pellegrinotti, Presutti and Vares (1989) for a
 discussion of motivation and for the analysis of the case when the potential
 V(m) has a quartic maximum at m = 0. The phenomenology in such a case is
 quite different [cf. also Vares (1990), where (2.7) is studied for the case when
 VQ) is exponentially flat at its maximum and w is a white noise only with
 respect to time, at each time being constant in space, so that (2.7) becomes an
 ordinary stochastic differential equation].

 The case of a potential V with a quadratic maximum [V"(0) < 0] is very
 special. In the proper scale the "escape time" becomes asymptotically deter-
 ministic; in our example, (2.6), it is equal to 1/(2a), in the time scale whose
 unit is Iln e8. Otherwise, the escape time is stochastic, and we observe the
 so-called bimodality effects, that is, at each time, in the proper scale, the state
 of the system is approximated as E -> 0 by a nontrivial convex combination of
 vo and (vm* + v-m*)/2, in agreement with the behavior of the solution of (2.7)
 [see Calderoni, Pellegrinotti, Presutti and Vares (1989) and Vares (1990)].

 We extend here the analysis in De Masi and Presutti (1991) to unbounded
 volumes. For technical reasons it is simpler not to study the system in the
 whole of X, but only in Ae, which is, however, large enough for exhibiting a
 nontrivial spatial structure, as shown in the following theorem. (For further
 comments on this point, see Section 6).

 THEOREM 2.1. Let su be the product measure on X?, with A--(ou(x)) = 0 for
 all x E Ae. Let also suet be the law at time t of the process generated by Le with

 c ) given by (2.5) and initial measure /Z. We set a = 2(2y - 1), f8 = 2y2,
 m* = Ha/l, tf = Iln eI/(2a) + Iln 8I1/3 and, for r > 0, re = re- 1In e1. We
 then have, for any r > 0 and any n ? 1,

 (2.9a) (i) lim sup o-(xi)= 0 if r < 1/(2a),
 V i, Ixl <r_,

 (2.9b) (ii) lim0 sup AQ(tf H (xi)) E( j I IPEl nI El xi) 0,
 V i, lxil<r,
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 338 DE MASI, PELLEGRINOTTI, PRESUTTI AND VARES

 where p(r) = m* sign X(r) and (2(r)),E R is a zero-average Gaussian process
 on some probability space (Q, QS, P) with 9(X(r)X(r')) = e-a(r-r')2/2, for
 r, r' E R.

 REMARKS. The convergence in (2.9a) is uniform in r < 1/(2a), but we shall
 only prove the weaker statement (2.9a). Notice also the difference between the
 present result and the corresponding one for the bounded volume case; here

 the magnetization at time Iln e1/(2a) is still infinitesimal, while in (2.8b) it is
 already finite.

 We shall prove Theorem 2.1 in the remaining part of the paper. The basic
 techniques we use involve: (a) sufficiently sharp estimates on some sort of
 truncated correlation functions, the v-functions introduced below; (b) separa-
 tion of several time scales. To understand the meaning of such points, we
 recall the bounded volume case [cf. De Masi and Presutti (1991)]. Using the
 estimates mentioned in (a), one can study the stochastic fluctuations at the
 initial stage of the escape, when the typical magnetization grows from 81/2 to

 a for any given a E (0, 1/2) and 8 is small enough. Since the magnetization is
 still infinitesimal, we can safely use only the linear part of the drift and this
 procedure works up to times when the magnetization is "almost finite" in a

 sense to be made precise in Section 4; from then on, one exploits the conver-
 gence of the process to (2.4) to show that the magnetization reaches finite
 values. The first stage of this analysis is similar both in the bounded volume
 and in the present case, except for a few subtle technical points. The main
 difference, however, appears in the last part, since in the bounded volume case
 we could exploit the absence of spatial structures. The typical configurations
 were "flat," and, taking advantage of this, we could see that the deterministic
 evolution is essentially ruled by an ordinary differential equation. Now, in the
 unbounded case, the spatial structure makes the analysis truly infinite-
 dimensional. Another crucial point is that we always have regions of arbitrar-
 ily small magnetization, where the stochastic fluctuations are important; thus

 we must control their influence on any fixed region of the space. It is at this
 point that we use the time lag Iln 811/3 in (2.9b). Such a time interval is chosen
 so long that the magnetization can reach finite values in the "good regions,"
 but also small enough for neglecting the influence of the "bad regions" where
 the magnetization at time d/(2a)Iln 81 is too small. This is, we believe, only a
 technical difficulty, because the same statement (2.9b) should hold for tf -

 i-Iln 81, with any i > 1/(2a). This is peculiar to one dimensional space, as
 mentioned in Section 6; in higher dimensional space, d > 1, the clusters (i.e.,
 the regions with the same magnetization) are expected to move by curvature
 when X increases past d/(2a), which is the time when the escape occurs in d
 dimensions. In one dimension we conjecture that the clusters will not move
 significantly in this same scale, but only after times which grow like some
 positive power of 8-1.

 Before defining the v-functions and stating the basic estimates, we intro-
 duce some notation and definition.
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 NOTATION. Let PD-'E denote the law of (a-(t))t 2o on the canonical space
 D([O, + oo), X8) = {o: [0, + oo) - X l(-) is right continuous and with left limits},
 when SE(O) is distributed according to ,u, where Au is a probability on X., and
 let E' denote the expectation with respect to the law P.'.

 DEFINITION [The functions m8(r, t; A)]. If A is a product measure on X,
 we denote by m (r, t; A) the solution of (2.4) when the initial condition is
 periodic with period Iln e I and its values for 0 < r < Iln cI are

 (2.10) mj(r, 0; A) = A(a&-'r])).

 We are now ready for the definition of the v-functions, which, for our
 purposes here, are introduced in a way slightly different than usual [see, for
 instance, Chapter 9 of De Masi and Presutti (1991)].

 DEFINITION (The v-functions). Let A be any product measure on X.. Then
 foranyc > 0, n > 1xE-M- and t> 0,wedefine

 n

 (2.11) Vn (xt;A) = EA (1 [-(xi, t) m8(cxit; A)]).

 Notice that in particular A may be any measure supported by a single

 configuration of X.. A basic bound on the v-function is proven in Section 7 of
 De Masi and Presutti (1991) and it is reported here without proof.

 PROPOSITION 2.2 [Theorem 9.2.1 in De Masi and Presutti (1991)]. There
 are a*, 8*, /3* positive such that for any n > 1 there is a c such that for any

 E > 0 and any product measure A on X.

 (2.12) sup sup I Vn(x, t; A) I < ce&* ta* = a*In I1.
 * <t <t * XEMn

 REMARK. In Theorem 9.2.1 in De Masi and Presutti (1991), one considers

 the bounded volume case, that is, Z. = 7Z/[-1], but the estimate (2.12) follows
 exactly as in that proof.

 In the next proposition we give an explicit expression for the quantity 5*
 appearing in Proposition 2.2, under the assumption that the initial measure is
 the product probability measure on X, with zero spin averages. We have a
 "good" estimate for v2 in this case, but we have not been able to prove that

 v2n behaves as the nth power of v2, as we expect. More precisely, let AE be as
 in Theorem 2.1. In this case we write for n 2 1 and x E Mn

 (2.13) Vp(x, t) = Ee cn pfal(xi t)p

 Then we can prove the following proposition.
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 340 DE MASI, PELLEGRINOTTI, PRESUTTI AND VARES

 PROPOSITION 2.3. Under the above conditions v- = 0 when n is odd. Other-

 wise, for any rqo < 1/8, r < 1/(2a) and n ? 1, there is c such that

 (2.14) sup IV E(x t)I < C(Ft(_))2n 0 < t < illn 81,
 xM2n(X

 where

 (2.15) Ft(E) = re eat 1 (1 +tno

 Furthermore,

 1
 (2.16) sup I V(x, t) I < ce2 t/ O < t < rln 81.

 X E=M2' ( 1+ t) 2

 REMARKS. The statement that v- = 0 if n is odd holds trivially by the symmetry of the process under the transformation a - -a and the symmetry
 of the initial measure pE under the same transformation; the statement when
 n is even is proven in Section 5.

 Since t < riln E1 and - < 1/(2a), (2.16) tells us that at time t we still have a
 vanishing magnetization. It is then quite natural (since the law should still be
 close to being a product) to expect that v2n should be bounded by the n th
 power of the r.h.s. of (2.16). We were not able to show this but only something
 slightly weaker, according to (2.14), which nevertheless suffices for our pur-
 poses. Notice that (2.14) already gives us (2.8) in Theorem 2.1, for the case
 r < 1/(2a).

 3. The early stage of the escape. In this section we characterize "the
 early stage of the escape" from /a, the product measure with zero spin
 average. As an introduction to such an analysis, we recall that according to
 Theorem 3 in De Masi, Ferrari and Lebowitz (1986), under suitable assump-
 tions on the initial measure, the density fluctuation field

 Zt ( ) = x E b(EX)c(X,t), b E Y(), t ? 0,

 converges in law to a generalized Ornstein-Uhlenbeck process. In particular, if
 we fix t and 4, then the law of Z- (0) is approximated, as 8 -* 0, by a Gaussian
 law with zero average and finite variance Ct(4), and so, for finite times, the
 typical values of the magnetization density 8E)24(8x)oE(x, t) are of the order of
 C. By "early stage of the escape" we mean their growth from re to 8a, for
 some a E (0, 1/2). Applied to our case, the results proven in De Masi, Ferrari
 and Lebowitz (1986) show that Ct(G) grows exponentially. This, however, does
 not imply that the magnetization is also increasing exponentially. In fact, the
 result proven in the above paper is obtained when E -4 0, with time restricted
 to a bounded interval [0, T], while now we want to look at times t, -* + co as
 E -O 0. However, the result suggests that the right time scale for observing the
 escape is tE = ri ln 81, 1 > 0. We prove below that the Gaussian character of the
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 PHASE SEPARATION IN A PARTICLE SYSTEM 341

 suitably resealed magnetization fields is preserved even at these longer times,
 provided r < 1/(2a). For this we introduce the following definition.

 DEFINITION. For q E /(DW), t ? 0 and 0 < 8 < 1/2, we define

 (3.1) XT () = Y1 n El(4), 0 < T < 1/(2a),

 where

 (3.2) yt(6) = 51/28-at E (5x)O(x, t), 8 = Add
 X F~~~~~~11n E

 We remark that the reason for the "anomalous" 8 instead of E in (3.2) is
 simply the longer time scale t = rIln 8l to be used [cf. (3.1)]. The factor emat is
 present to depress the exponential growth of the field, keeping it finite.

 NOTATION. On the path space (1 = C([0, oo), '(D)), or (1 = D([0, co),

 /'([R)), we shall use {XJ(), 4 E -Y(IR)} to denote the canonical (coordinate)
 process, that is, XT(O)(a) = wAr)(0), for all X E fl and r > 0.

 THEOREM 3.1. Let r E (0, 1/(2a)) and let M denote the law of the process

 Xr-(0), < ? < 'r? (when the initial measure is /Z), on the space D([0, c),Y'(D)).
 Let 9 be the probability on C([O, oc), ?$"((R)) concentrated on the deterministic
 evolution satisfying

 (3.3a) XA() = Xo(4T)
 where

 (3.3b) 227(y)=fdz4(z) 2 ( { r )

 and such that under 9?, X0 is Gaussian with
 2 m0

 (3.4) &(X0()) = 0, eX0(46)X0(r)) =1 + ?) dx (x) (x)

 for all 4 and qf in .-$(R). Then, for each ro E (0, I), HEN restricted to
 D([,ro ], J-?'(D)), converges weakly to the restriction of -? to C(kr0, ], /(Dk)).

 REMARKS 3.2.

 (a) The equal time covariances of XT under `? are given by the kernel

 (3.5) C(r,r',r) = (1 + -) exp( (r )

 (b) By the classical central limit theorem, the distribution of X0 converges
 weakly on -Y'(R) to the standard white noise, that is, instead of 1 + 2/a, as in
 (3.4), we have simply 1. Thus the above theorem cannot be extended to
 D([0, r], vY"(D)). That is, our scaling rIln e1 produces an "initial layer," a jump
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 342 DE MASI, PELLEGRINOTTI, PRESUTTI AND VARES

 at time 0, and, after that, the evolution becomes essentially deterministic. This
 is completely consistent with the following intuitive picture: The magnetiza-
 tion field evolves according to a linear stochastic differential equation obtained

 by the addition of a C/ noise to the linearized version of (2.4), namely,

 (1 d2
 dm= - 2 2 + amdt+rdw.

 As soon as the magnetization becomes of the order of 8a, a < 1/2, the noise is
 overcome by the effects of the deterministic drift caused by the linear instabil-
 ity am. The larger this is, the shorter is the time it takes to overcome the
 noise, whose effect, in the meantime, is correspondingly smaller, hence
 the dependence on 1/a in (3.5). However, for any finite a > 0 the noise on the
 scale T-IIn 81 is immediately "switched off."

 PROOF OF THEOREM 3.1. Based on the general results of Holley and Stroock
 (1978) and Mitoma (1983), we shall prove: (i) for any fixed 0 < 1o < X < 1/(2a),
 the family 9Y'8 is tight on D([ro, a], /(DR)), and any sequence H n, -n 0,
 has a subsequence which converges to a probability measure concentrated on
 C([Lr, I),- (D)); (ii) any possible weak limit point must be in fact concen-
 trated on the deterministic evolution which solves the heat equation, that is,

 XT(P) = XTO(4T770), where X, is given by (3.3b). Finally, using the fact that
 this holds for r0 arbitrarily small, we will be able to prove the convergence of

 X' which will complete the proof.
 For (i) and (ii) we use the martingale characterization of the limiting process

 and of tightness. According to Mitoma (1983), the family (09)9 E (, 1, is tight on
 D([Lro, H, 1- (D)) if and only if for each 4) E -Y'(R) the laws of the processes

 '(0r):0 ?< < ?) with 8 E (0, 1] form a tight family of probability measures
 on D([,ro ], DR). On the other hand, for each test function 4, the jumps of
 X-(P) on [r0, r] are uniformly vanishing as 8 -> 0; thus for the tightness we
 may just use the usual C-criterion and in the case of an affirmative answer any
 limit point will be supported by the set of continuous trajectories.

 For this we define

 ( 3 .6a) XT aX ,+ (+) T( )X

 (3.6b) y2(i-,4)) =4X (4) -2XT

 with

 (3.6c) In= ln IL8 = In 1[E82Lo + LG]

 Notice that

 To (3.7a) - ds y (s, )
 10
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 and

 ToSY (3.7b) - _dv(S,4
 10

 are martingales which vanish at r0.
 Thus it suffices to show that for any 4 E 9(R) there is a constant c so that

 (3.7c) sup (4yE(Ti, 0))2 < c i = 1, 2,
 To <?? < 1

 (3.7d) sup yE(X. ( C)) .
 Tro < T < Tf

 Indeed, with Doob's inequality, (3.7a)-(3.7c) give us the following. For each
 4 E X, each 7, 8 positive, we may find > 0 so that

 P sp I T- ( XE) > < ) 7)-
 'TO<T, T <T-

 |' T-'r I <

 which together with (3.7d) gives the tightness.

 We now check (3.7c) and (3.7d). The action of Lo is very simple to compute.
 Recall that 8 -211n 81 = 36-2. Then set x+= x + 1 and

 A56+(x) = 62[+(x + 8) + +(x - 8) - 20(x)]

 (sometimes we drop the time from the argument of the spin variables below).
 We then have

 (3.8a) (211n eIL0X.(0) = xr(-0" + R)(8, 4))

 where

 l1/2
 IRo(8 ,ir, b) I < e- t11'~ E I4"(8X) - A84(6x)I

 (3.8b)
 8 1/2

 < e-aTl E|C(40))
 2

 with C(+) < oo, for any 4.
 Similarly, we get

 8 2E|n 1(Lo(Xt () )2) - 2Xt8(4)L0Xt(4)))

 (3.8c) < e 2aIn 126 E +(6X) - +(86X) 12
 x

 < ew-C2() fon r ay .

 with Cj(o) < so, for any 0.
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 To compute the action of LG' we first rewrite the rate function c(x, a) as

 (3.9a) c(x, a) = (1 - 2y) + y[2 - ar(x)a(x+) - or(x)o(x4)]
 + y2cr(X)cr(X+)

 and recall that a = 2(2y - 1). Thus we easily get

 (3.9b) iln EILGX '(0) = aIln E IXrE() + R1(E, r, f) + R2(8,r, b)
 where

 Rl~e,1( , 4) = 2ylln Ee -aTiln eI8l/2 E [2o-(x) - o-(x+) - -(x4)] O(8x),
 x

 so that

 (3.9c) R (Ei, ) I < 2ylln Ele- aTIlnIE85/2 1 A8(8x) I
 x

 yielding

 (3.9d) lim sup IRi(E,r,4)) =O

 and

 R2( r) ) 2 = 2y 2 Iln8E I-eaT Iln E I, 1/2 E(Sx) ( ( X ) ( x + ) (x
 x

 For each 4 E- J(DR) we can take C2(0) < cc in such a way that (x below
 denotes any set of six different sites in AE)

 E8E(R 2E,7,<4)) < 4y41 n E e - 2aTnIC2(AO)(1 + 36 sup v6(x, rlln E81)
 x

 < 4y411n 812e -2aTjln 8IC2(4) + C3(4P)4 y411n E15/2e4arjln ElI2

 where we have used (2.14). Therefore,

 (3.9e) lim sup E(E R2(I , R )2|) = 0.
 ,ro <Tr <T7

 Finally, we compute the contribution to y coming from LG:

 ln 81| LGX1(4)) - 2X1E(4))LGX(4))|

 (3.9f) = 411n Ele -2a1n s13 E 02(8x)|c(x, I() |
 x

 < 411n Ele -2aTjIn eIC 3(),

 where C3(0) < o, for any 4 E -
 From (3.8) and (3.9) we have reduced the proof of (3.7c) and (3.7d), and so of

 tightness on D([i-o, -], -$'(R)), to showing that for any 4 E -

 (3.10) sup y (XE()2) <)o*
 T AT<

This content downloaded from 192.150.195.124 on Tue, 04 Jul 2017 06:27:26 UTC
All use subject to http://about.jstor.org/terms



 PHASE SEPARATION IN A PARTICLE SYSTEM 345

 But

 E (X,(0)2) < e2aIn El[ a E2(6x) + a C4(b) 7 12(xiln El)j

 ? e2aTIlnel[CA(4) + e-'fln Ell/2C2e2afIlnelelln 61 1/2]

 according to (2.16), and (3.10) follows.
 We have just proven that if [H0, r] is fixed as above, any Y which is a weak

 limit of some sequence en, e- 0, must concentrate on C([Tr0, r], c'(D)).
 For the identification of the possible limit points of 4E we need to look at the
 limiting behavior of f 'y[e(s, p) ds, for i = 1, 2, and then use the characteriza-
 tion of 92= lim WAen as a solution of a martingale problem [cf. Holley and
 Stroock (1978) and Rebolledo (1980)]. Here this is particularly simple since
 from (3.8) and (3.9) it follows that under any such 5 the canonical process

 XT( ) satisfies the following:

 (a) For any 4 E -

 XT(7) _ XTo(4) ds Xs(P2")

 is a martingale vanishing at ro.
 (b) (MTo, T(4))2 is also a martingale.

 As is well known, this implies that MTO T vanishes for all r, with probability
 1. This says that with probability 1 (with respect to 9),

 X7(+) = XTO(4T7TO)

 for r E [rr, r] and for ?7 defined as in (3.3b). It remains to prove convergence

 of XT eO() to the Gaussian distribution indicated by (3.5) with r = ro. Given
 any sequence en - 0, we may take by diagonalization a subsequence en such
 that the measures J2E converge on each D([2-m, r], 7"(R)), for all m ? 1
 such that 2-' < #, and by the above argument the limit must satisfy (a) and

 (b) for any ro = 2-m.
 On the other hand, from (3.7) and the Cauchy-Schwarz inequality, we get

 for all so ? 0,

 (3.11) o(+P) - Xs_'01lnEJ(2) |)<n+ dl Y2(8 ' 4)
 < E(To + e-2aso)

 We will eventually let rT -> 0 and so -- oc after e -- 0. But first consider the
 fluctuation field Y7-(4) defined by (3.2a) so that Xso/I neI = Yso and let

 Y ( t, 4) = LeYte () - aYe(0)

 Y2(t, p) = LYtE()2 - 2YtE(0)LEYt(0).
 Proceeding as before, we may prove the tightness of the laws of Ye on

 D([0, T], 1?'(W)). Indeed, just -recall that the i-[ are obtained from the y[F by
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 changing rlln ei to t, Xr.(b) to Yt-(O) and dividing everything by lin ei. The
 verification of the conditions analogous to (3.7c) and (3.7d) is very simple. Now

 Ey(YOg(4)2) < o0 trivially. To identify the possible limit points, we must iden-
 tify the limiting behavior of J '-[ (s, p) ds for i = 1, 2. Usually, the hardest part
 comes from the drift term Y1, which generally is not a function of the
 fluctuation field itself. In order to prove that

 Yt(b) - ft Y(A.,b) ds
 0

 is a martingale (for any limiting process Y), we need to find operators As so
 that

 2

 lim E tds[-(s, b) - Ys(AAsb)] =0.

 This is the so-called Boltzmann-Gibbs principle, and for the models under
 study it has been proven in De Masi, Ferrari and Lebowitz (1986) for the
 standard fluctuation fields. In the present situation notice first that due to
 (3.8a) and (3.8c) we see that the contribution of LO to -[ vanishes for i = 1, 2.
 The reason for this is that we scaled space by 8-1 and not by e1. The
 contribution to Wlt; b) coming from LG' by (3.9b) and (3.9d), is given by

 2y2e 8t l/2 E (8 oX) o-(x?) o- (x-) + Rl(t, E, 4),
 x

 where

 lim sup E>(Rh(t ,c ,)2) = 0.

 Adapting the proof of the Boltzmann-Gibbs principle in De Masi, Ferrari and

 Lebowitz (1986), Theorem 4, we can see that

 lim E( [f ds e -as81/2 E{ 7(ax) -(x, s)u (x, s) x, s) ] ) = 0.

 The contribution of LG to 72 is, by (3.9f),

 Aw(t,) = 4e-2at8E42(8x)c(x, St)
 x

 and, using Proposition 2.3,

 lim Eri, b A-- (t X) - 4e - 2atE 2(x) ] )=O.

 Therefore, using again the Holley and Stroock theory, we have that if 9 is a

 probability on C([O, T ], ?/'(DR)), which is a limit point of the laws of the Ytb(0),
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 then under -9 the following hold (denote below by 4' the expectation with
 respect to -Q):

 (a) X0(f) is a Gaussian field with

 ?(XO( )) = 0, 4'(X0(4)X0(if)) = f_ dr4(r)fr(r)

 for all b and q1 in -Y'(R).
 (b) X,(O) is a martingale and

 { Xt(k)2 - 4 tds e -2asf dr (r)2} is a martingale.

 But this uniquely determines the process so that we have convergence of the
 Y' to the Gaussian process with law Q. This has zero average and the equal
 time covariance kernel is

 21
 C(r, r', t) = 1 + -(1 - e-2at)j8( -r')

 From this convergence result and (3.11) the conclusion of Theorem 3.1 follows.
 El

 4. The final stage of the escape. In this section we characterize the
 final stage of the escape; this will complete the proof of Theorem 2.1. We first
 introduce some notation: We fix a > 0 in such a way that aa is sufficiently
 small; in particular, we require that aa < 1/8 and that 3a < a*, a* being as
 in Proposition 2.2. For each e > 0, we denote by

 1

 t, = 2 Iln el

 the critical time for the escape (cf. Theorem 2.1), and we set

 (4.1) t* = tc2ta, ta = a ~lnI tf =t + Iln I11/3.
 By the final stage of the escape, we mean the evolution of the system from

 time t* until time tf, when the escape will be completed. Since tf - te < 3t_ <
 ta* (at least for e sufficiently small), we can use Proposition 2.2 to study this
 final stage of the escape. Call F(t*) the o--algebra generated by (o- (t))t < t* and
 r7* the configuration at time t*. Denote by mj(r, t; 8s*) the solution to (2.4)
 with potential given by (2.6) and initial condition periodic with period in et
 and such that

 mj(r, 0; 8,*) = (o*([e-lr]) for 0 r< lln el.
 Then the law of the process at time tf conditioned on F(t*) is approximated,
 in the sense of Theorem 2.1, by a product measure with averages m (ex, tf -

 t*; 80*), x E AE. Since the analogous property also holds for all t* + e < t <
 tf, the final stage of the escape is determined by the behavior of the function

 m(Ex, t - t*; 5,*). The problem is then reduced to an analysis of (2.4) when
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 the initial conditions are the typical configurations at time t*. We first outline
 the main steps, then we give the proofs.

 LEMMA 4.1. For any positive b and u there is c so that for all E,

 (4.2) P,84oe((J( t*) _r* *: JIm(*, 1//4; a *)I( 1 2aa-b) ? 1 - CEu

 where 11 *1 denotes the sup norm with respect to the spatial variable.

 Lemma 4.1 will be proven by showing that until time e1/4 one can neglect
 the reactive term F(m) in (2.4), with an error which becomes negligible when
 E -> 0. As a consequence, me is essentially the solution of a purely diffusive
 equation; hence it is a Gaussian average over o-*. By (3.2) and (3.5) the typical

 size of the magnetization at time t* is e2aalln E -1/4. Then, using (2.14) and
 the Chebyshev inequality, we will take advantage of the factor 8-b in (4.2) and
 prove the statement.

 Notice that the bound in (4.2) must not be sharp. In fact, if m (r, 81/4;
 8r) .2aa-b, then me would already be finite at the end of the time interval

 2ta, because of the exponential growth, and the escape would occur before t,.
 We therefore need to improve the bound in (4.2). We first establish the
 following result.

 LEMMA 4.2. If b < aa and Jm,(, E 1/4; 84*)11 < E2aa-b, then there is c so
 that for all c,

 (4.3a) 1lMe( ta; 5o,*) 1l< CEaa-be

 (4.3b) M 'me, ta; 8f*) - le( * Xta; 8u*)II < C3(aa-b),

 where le solves the linearization of (2.4), namely,

 (4.4) le(r, t; 8a*) = I dr'e atGQ(r - r')o-*([E-lrf])

 and Gt(r) = exp{-r2/2t}(2-t) 1/2 and o*(x), x E Be, is periodic with period
 E-111n 81.

 We therefore know from Lemmas 4.1 and 4.2 that me(r, ta; 8f*) depends on
 aO* approximately as the right-hand side of (4.4), with large probability. The
 important point is that this expression varies slowly so that it will be possible
 to introduce and prove bounds on its sup norm. For this purpose we recall the
 following classical inequality, easily proven using the Cauchy-Schwarz in-
 equality, which expresses the variation of a function in terms of its H2 norm.

 LEMMA 4.3. For any r and L > 0, let

 (4.5) Ne(r, L, t) = sup Ile(r, t; 80*) - 1,r', t; 5,*) 12
 fr-rfL < LV
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 (we omit the dependence of Ne on o* for notational simplicity). Then

 (4,6) N6(r, L, t) < 2L r (drn fr+L In dr')(
 rL mf -nE I

 The right-hand side of (4.6) is a quadratic expression in or*. Using again the
 Chebyshev inequality, (2.14) and (2.16), we shall prove the following result.

 LEMMA 4.4. For any -q < 1/8 and u > 0 there is c so that for any r and E,

 (4.) (t~~N.(r, 12 j2 ta) >ll e l"'1 < clln el|u

 Furthermore, for any > 0 and d > 0 there is L > 0 so that for any r and s,

 (4.8) P.NE(rL,2ta) >d(1< 11/4)) <.

 By using the estimate (2.14) and the Chebyshev inequality to bound the
 right-hand side of (4.4), we will prove the following result.

 LEMMA 4.5. For any -/ < 1/8 and u > 0 there is c so that for any r and a,

 (4.9) P. IIr a A* a 7 < clln El ->>

 where we recall a* = (t*) with t* defined by (4.1).

 Combing (4.7) and (4.9), we will obtain the following result.

 LEMMA 4.6. For any -r < 1/8 and u > 0 there is c so thcat for all E E (0, 1),

 (4.10) ffje (| ta; 8r*)0 1 > ln e" ) < cln e|u.

 We will also show the following result.

 LEMMA 4.7. Assume that (4.3b) holds with b > 0 and 3b < 2aa. Assume
 also that

 aaa

 111J( ta; as || < Iln el"'

 Then there is c so that

 (4.11) I|mE( *, 2ta; b-*) ( | < Cln ?lI-77n
 || M&( ,2ta; if,*) -IE( * 2ta; o,r*) || < clln E|I 3N.
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 This together with (4.10) and Lemmas 4.1 and 4.2 will prove (2.9a), namely
 that A' converges to the Bernoulli measure with zero average, and hence that
 the escape has not yet occurred at time tc.

 To prove that m,(, tf - t*; 8a*) is not infinitesimal, we need lower bounds
 on Iml, hence on lgie at time 2ta. We first give a definition.

 DEFINITION. Given two functions q/ and q/' on R and L > 0, we write

 (4.12a) q =L qY if +f(r) = i/'(r) for all Irl < LIln I,

 (4.12b) q1 2 L V' if i( r ) 2 ql'(r) for all Irl < L o i~e-.

 LEMMA 4.8. Denote by m(r, t; 4) the solution to (2.4)-(2.6) with initial
 condition b. Then for any L > 0,

 lim sup sup 1m(rIln ci,nln l/;q)
 E O 0=1, A ' Jr < L/2

 (4.13) 11* 1' IrIL/<1

 -M(rlln gj, Iln c1/3;')I = 0.

 We fix n distinct sites, xi,..., xn, as in (2.9). Then, because of Lemma 4.8,
 as E tends to 0, mE(Ex0, tf - t*; 8i,*) will be determined by mE(r, 2ta; b8r*) with
 r such that fIr - Exil < L jln el), for any given L > 0, and hence, as we shall
 see, by 16(r, 2ta; 8,*), with r varying in the same interval. On the other hand,
 by (4.4), le(r, 2ta; 8,*) can be expressed as one of the magnetization fields
 studied in the previous section and this will be used in the proof of the
 following lemma.

 LEMMA 4.9. Given any > 0, there is d > 0 (sufficiently small) so that for
 any r,

 (4.14) lim 1al \I1r, 2ta; 50* 4

 By (4.5) and (4.8), given any positive ; and d', there is L > 0 so that for any
 r and 8,

 (4.15) sup il(r, 2ta; 0*) - l.(r', 2ta; *)I < d'lln K1 -1/4,
 r - r'l < L +/j-n-

 with probability larger than 1 -
 From (4.14) and (4.15) it follows that: given any > 0, n ? 1 and any

 n-tuple xi, ..., xn of distinct sites, there are L, d and eo so that for all
 0 < E < E0 the probability of the set

 {llE(r, 2ta; ban*) j> dlln ei -1/4 for all r in all the intervals of
 length LIln Eil/2 centered at the points exi)

 is larger than 1 - A.
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 By (4.11), choosing 3'q > 1/4 (the only constraint on -q, so far, was 'q < 1/8),
 we deduce that lm(r, 2ta; 8,*)1 also satisfies the previous lower bound. Then
 by Lemma 4.8 it will be easy to prove that mj(exj, tf - t*; ax*) becomes close
 (for E small) to +m*, the sign being the same as that of lEexi, 2ta; 5,*). By
 using Theorem 3.1 we shall also determine the limiting distribution of these
 signs, and will be able, in this way, to conclude the proof of Theorem 2.1. The
 proof of Theorem 2.1 appears after those of Lemmas 4.1-4.9, which we
 present next.

 In the sequel we will often use the following classical property of our
 reaction diffusion equation (2.4) [see, e.g., Fife (1979)].

 Monotonicity properties of (2.4). Let m(r, t) and i(r, t) be two solutions
 of (2.4). Suppose that m(r, 0) 2 ih(r, 0) for all r. Then m(r, t) ? th (r, t) for
 all r and t ? 0. The same property holds if the equation is defined in an
 interval with periodic boundary conditions.

 As a consequence, Im(r, t)l < 1 for all r and t ? 0 if Im(r, 0)1 < 1 for all r,
 by the choice (2.6) for the reactive potential.

 PROOF OF LEMMA 4.1. By the monotonicity properties of (2.4), lm E(r, t;
 58*)I < 1. Hence there is a constant c such that

 (4.16) jme(rEl/4;& *) - 1(r, 1"/4; )j < C1/4.
 By the arbitrariness of b > 0 and because 2aa < 1/4, it will be enough to
 prove (4.2) with me replaced by le. To reduce the sup in (4.2) to a sup over a
 countable set, we notice that

 a eat
 (4.17a) djp,(r, t; ,*) = - fdr'Kt(r -

 where

 r -r2 /2t
 (4.17b) Kt(r) = -

 Then

 dr c

 and it follows that for any 8 > 0,

 I| le(,4; 6U*)II sup 1jr E1/4; 5 )
 O<r<Iln Ed

 < sup 1ll(r,8/4; f*)I +8s
 O<r<11nElrE=E17 p1/4

 Therefore, Lemma 4.1 is reduced to the proof that for any positive b and u
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 there is c so that

 sup I,(1/14. E2\I > C (4.18a) (o-, ,t ) - U*: sup | b6(rv E L/*) ?8 2aab) 2?1 -Cu
 O <r<l1n El

 r E- E82

 where

 (4.18b) 8 > + 2aa - b,

 so that e-1/8 < E2aa-b On the other hand, the left-hand side of (4.18a) is

 bounded by

 (4.18c) E 'I n E| sup P6( .. (a@ t* a f |/?r/E/;a* > E ).
 r

 By using the Chebyshev inequality with power 2n, we get that the probability
 in (4.18c) is bounded by

 2n 2n
 In 1/4 ~ 7[G~/(r- 7 (4.19) 8_(2aa-b)2nea2nE/4 dr ...dr2nFIGE 1/4(ro-krEE 11 (E1ri])J.

 i=1Ai1

 We shall use Proposition 2.3 to estimate the expectation in (4.19). For this we
 must split the region of integration according to the number of different sites
 in Z among [eGrj, i =1, .. , 2n. Thus we say that ri is isolated if [e&ri] #
 [V-1ri] (mod lin el) for all j 0 i, and set

 Ak {(r,, . . ., r2n): there are exactly k isolated rj among r1, . . .,r2 }

 for k = 0, ... , 2n, 1Ak being its characteristic function. Then, by (2.14) and the
 definition of t* [cf. (4.1)], for any k there is c so that

 (4.20) lAk(rl,..., r2f) E (fp *([E ri])) < crt*(E) k< CE2aak

 On the other hand, since fGt(r) dr = 1 and Gt(r) ? 1/ I2'-t, we easily see
 that for any k there is a c so that

 2n E (2n-k)/2
 (4.21) fdrl dr2n l1Ak( rl, ..., r2n) 11 G.1/4(r -ri) < c 8 )2 /

 Going back to (4.19) and recalling that (1 - 1/8) ? 2(2aa), by choosing n
 sufficiently large we prove that the expression in (4.18c) vanishes when E -> 0
 as fast as any given power of e; from this the lemma follows. cl

 PROOF OF LEMMA 4.2. We start by proving (4.3a). By the monotonicity

 properties of (2.4), Im.(r, t; 8,r)I is bounded for t 2 v1/4 by z(t - v1/4) where
 z(t) solves

 dz3
 (4.22) dt

 z(0) = .2aa-b
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 Hence

 (4.23) | mjr, t; bin*) I < z(t) < eYtZ (0)
 and this, for t = ta, proves (4.3a).

 We notice that from (2.4) it follows that

 m(r, t; ax*) = fdr e'atGt(r - rI)oT*([-lri])
 (4.24)

 + ftds f dr' ea(t-s)Gt-s(r - r')( -m(r', s;*)3).

 Let

 (4.25) he(t) || me( ,t; b*) -l( ,; 5r )
 Then, using (4.23) and (4.4), we have

 (4.26) he(t) < e )he(E + c| ds ea(ts)[eaSE2aab]3.

 Since, by the choice of a and b,

 h el/4 ) < C81/4 < ce-ataE3(aa-b)

 we then get (4.3b) and complete the proof of the lemma. El

 In Section 5 we shall need the following corollary of the proofs of Lemmas
 4.1 and 4.2.

 LEMMA 4.10. For any 0 < To < r < 1/(2a) and any b and u positive, there

 is c so that, denoting by 6 the configuration at time r0lln el,

 OE( m?( , t; &,) < e 81/4 < t < ( r - r0)lln El) ? 1 - ceu,
 where

 Se = bmax{eaollnel 1/2 81/4}

 PROOF. If 1/(4a) < r0 < 1/(2a), we may write T0 = 1/(2a) - 2a with
 cxa < 1/8 and the estimate follows at once from the proofs of Lemmas 4.1 and

 4.2, since S. = E-b?2a in this case. Otherwise, S. = 81/4-b and the estimate
 follows from (4.16), (4.19) and (4.21) for t = 81/4 and from (4.23) for the other
 values of t. El

 PROOF OF LEMMA 4.4. From (4.17a) we have

 a eat

 (4.27) re(r, t; ?-,*) f < dr'Kt(lr - r'l)o-*([e-lr/]),

 where, according to (4.17b), 0 < Kt(lrl) and there is a constant c so that

 (4.28) supKt(lrl) < T Kt(lrl) dr < c.
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 To prove (4.7), we use the Chebyshev inequality with power n. By (4.6) and
 (4.27) we get

 ( { ~~~~~~aa 2

 P,1Nj(r, L ta) > (ln el"' )
 /aa -2n

 { lln el [2Line r-LllnnEl dr r-LllnEld

 X [ , ]I1Jdri' dri" Kta(lri - r, I) Kta(lr - ri" 1)

 < C8-2nIlin 812nT1( i )2fl2 ( I.a )2f

 n~~~~

 x sup H1 fd<i dr7" Kta(iri - <i')Kta(irj - <' I)

 xE>(E Hu<*([clrI])o*([vlru ]))

 By (4.28), using the same argument as in the proof of Lemma 4.1, we conclude
 that the right-hand side of (4.29) is bounded by

 2n/ 8 \(2n-k)/2 2na k
 E-4n2aalln E12fnl k=O( E in)( I nIn

 Hence, choosing 'q in (2.15) larger than 'q in (4.29), we get (4.7).

 PROOF OF (4.8). The proof of (4.8) is similar: We again use (4.29) with ta
 replaced by 2t a' n = 1 and setting q1- 1/4. We denote by 10 the characteris-
 tic function of ( ). Then the left-hand side of (4.8) is bounded by

 - 2

 11/4 ~ [2L Il El fr+Iln EILn drI
 d1( in~~

 x s t dr' d" K2ta(Iri - rI)K2ta(Ir1 - r"1)

 (4.30) e29su d

 x n 8l1/2 1(Ir - r"I > 8) + 1(Ir' - r"I ?

 ? cdc1lin 2.1L25ln la t(an 81 )2i (4 ;7 +et 8]7
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 where we have used (2.16) and (4.1). Given d > 0, by choosing L small enough
 we can make the expression in (4.30) smaller than any given > 0. Therefore,
 the lemma is proven. E-

 PROOF OF LEMMA 4.5. We again use the Chebyshev inequality with power
 2n. The left-hand side of (4.9) is then bounded by

 aa -2n 2n

 (Iln 8l f | dri dr2n i2anta Ja| dri dri ta(iri - riI)

 2n E (2n-k)/2(8 2aa k
 < C 2na ffi .12nn-2naa kO ilnEI )kl n o)

 where we have used the bound on Gt which is equal to the one in (4.28), and
 we have also used the same estimate as in the proof of Lemma 4.1. By
 choosing n sufficiently large and -qo > -q, we then see that the last expression
 can be made smaller than c ln 8I-', for any given u. The lemma is therefore
 proven. El

 PROOF OF LEMMA 4.6. We have (i below denotes an integer)

 IIl8( ,ta; 8or*) 11 < sup l E (i ine ,ta; ,*)

 + sup [NA(i tlni
 O~~~i? m ll Il o<i<,/__n-

 so that

 Eaa ( rh(I1 Eaa

 (11E?( eta; 50f )> <lE )~Jln Jsup P.6u I r,ta;o0*)I 2 I lnE )

 + sup P/E k2taJ] 2N lnr t7))>

 Hence by (4.7) and (4.9) the lemma follows. r-

 PROOF OF LEMMA 4.7. The hypothesis and (4.3b) imply that there is a c so
 that

 8aa

 I1me( ta; Nor*) 11 - Cln El7"
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 and so, by monotonicity, we then have, as in the proof of Lemma 4.2, for
 t > ta,

 8aa

 |m( ,ta l <ce a(t- ta)E

 which shows the first inequality in (4.11). To prove the second inequality in
 (4.11), we observe that, with the notation introduced in (4.25),

 he(t) < ea(t-ta)h.,(ta) + c ids ea(t-s){Iln } ,

 Now, using (4.3), the lemma easily follows. L-

 PROOF OF LEMMA 4.8. We set

 (4.31) D(r,t) -|m(r,t; q) - m(r,t; Y)I.
 Hence D(r, 0) = 0 for Irl < Lin El since q' =L q. Since Iml < 1 we have that
 there is c so that

 D(r, t) < 2 dr'Gt(r - r') l(Ir'I > L o e)

 (4.32) t
 + c dsfdr'Gt-s(r - r')D(r',s).

 Iterating (4.32) and using the semigroup property of G.(r), we get, for
 Irl < L/2Vjnj,

 e- (L /2 V1,I)2 /2t

 D(r, t) < 2ectf dr' Gt(r - r')1l(lrl > LI in-e) < eect 2od

 The right-hand side vanishes for t = iln 8j1/3 and when E -O 0. The proof of
 the lemma is thus concluded. cl

 PROOF OF LEMMA 4.9. The law of o(-, t) under P,-E? is obviously shift
 invariant and so it suffices to consider r = 0. In this case, we define

 + ( r ) = 1_ er2/4a

 and notice that

 lln E 1 1/4, ,(O n 2ta) 5oE( t*))

 -r2/4ta

 - IlnEll/4e2ata l o ([&lr],t*) dr

 8 2aa fexp(-r2/(4alln El))(,.e([Elr]t*)dr

 l E 11/4 4-n-a

 -2aa I1 Ex?+exp( -r 2/(4alln el))
 l-eln1/14 4-E " dr o--(x, t*),
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 so that we easily see that
 1-2aa

 (4.33) 11/ 41 E(0X 2ta,a0E(. t*)) - yt* < C11 11/4

 In particular, (4.14) with r = 0 follows from Theorem 3.1. D

 PROOF OF (2.9a). For r < 1/(2a), (2.9a) follows at once from (2.14). To
 consider t = tc and t = tf, we write ,/u(H ja(xi)) for t > t* by conditioning
 on the process up to time t* and using the Markov property, that is,

 (4.34) E [ r(x)) EE(E )(F j (xi t - t*)

 Setting o-* = o(-, t*) for a- e D([O, + ??), X), we write

 ( n H a(xj ,t__ t*))

 = E *( fi [o(xix, t t*) - mE(8-x i, t -t; 5*

 +-m (8exjt - t*; a*)I)
 (4.35)

 = E* ( i [o(x , t -t*) -mE(exi, t t*; *)])
 Jc{1...,n} icJ

 Jo0

 x m ,(t-xi,t - t*;8q*)
 ijJ

 n

 + HMr(Exjt -t*; 5*).

 Now, if 0 < t - t* < 3ta and a has been chosen in such a way that 3a < a*,
 then, by Proposition 2.2, all the terms in the sum of the r.h.s. of (4.35) must
 vanish as E -O 0. Thus, from (4.35),

 (4.36) limErn *(fi (xi,t-t*)) - Hm,(exi t -t*;8uf*) = 0

 and we need to study the behavior of

 U JE(ii'imE(xi t t - ;

 Let At* be the set {(-, t*) - j*: IImE(,E1/4;8*)11 < 82aa-b} where b > 0.
 From Lemma 4.1 it follows that for any u > 0 there is a c > 0 so that

 PD-(4At*) ? 1 - ce U.

 Now, if t = t,, that is, t - t* =2ta, we get from Lemmas 4.6 and 4.7: If
 q < 1/8,

 lim r (|| m (mJ(., E 5;U*) || > cOln 0K) = 0,

 so that (2.9a) for t = tc follows from this, (4.34) and (4.36). D
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 To prove (2.9b), we first study the behavior of mE(r, t; 8,*) in the time
 interval 2ta < t < tf - t*. We shall see that as E -> 0, mE(r, tf - t*; b8r*) con-
 verges either to m* or to - m* for all r such that mE(-, 2ta; 8,*) is suitably
 bounded away from 0 (and positive, respectively negative) in a sufficiently large
 region around r. The argument will use the monotonicity properties of (2.4).

 After that, we prove that, given any x = (x1,.. ., x,) E M-, the probability
 that mE(, 2ta; 5,*) satisfies the above conditions relative to each point ex
 goes to 1 as E - 0. We will then be close to the end of the proof of (2.9b).

 Given 8, d > 0, L > 0 and x, we introduce the following set of configura-
 tions a* (at time t*).

 d
 c9?+(? d, L, x) = inf IE(r, 2ta; 8,,*) > E 1/4X

 (4.37) 1r-ex1?L11nEI ~ in
 sup IE( r, 2ta; cS,*) - mE(r, 2ta; be*) ? cIln 71

 Ir-Exl<Llln _1l/2

 where c is as in Lemma 4.7, equation (4.11).
 We define X (e, d, L, x) analogously, with the first inequality replaced by

 sup lE(r,2 ta; 8_*) < -dlln8E -1/4.

 LEMMA 4.11. There is Oi(E, d, L), d > 0, L > 0, vanishing as E -> 0 for
 any given d and L, such that for any o-* E 79?(8, d, L, x),

 (4.38) sup mE(r, tf - t*; 801*) + m* I < 01(e, d, L).
 1r-exl<L/(211n eI1/2)

 PROOF. Suppose for notational simplicity that r* Ee S+(E, d, L, x). Then,
 for E small enough and recalling the definition of S,

 (4.39) m* > m(r, 2ta;8*) AL d/(211n 8I- 1/4)

 [see (4.12b) for notation]. Equation (4.38) is then a consequence of Lemma 4.8,
 the monotonicity properties of (2.4) and the fact that

 (4.40) limZ(tf- 2ta) = M*

 where z(t) is the solution of (4.22) with initial condition z(O) = d/(2 Iln 81-1/4).

 We define

 (4.41) c(e, d, L, x) = S+9(e, d, L, x) U v (8, d, L, x)

 and for x E Mn
 n

 (4.42) (8,d, L, x)= n c d, L, xi).
 i=1

 As a consequence of (4.11), (4.14) and (4.15), there is a function 02(E, d, L, n),
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 n ? 1, such that for all n and all x E Me

 (4.43) GjUE?(7(E d, L, X)) 2 1 - 02(E, d, L, n)
 and furthermore, for any n,

 limsup limsup02(E, d, L, n) = 0.
 d+L->O e--0

 PROOF OF (2.9b). We fix below n ? 1 and R > 0. Given L > 0 there is a
 finite set F, which is L/2-dense in [-R, R]. That is, for any Irl < R, there is
 r' E F such that Ir - r'l < L/2.

 Given x e M e and such that Ixjl < RE - n 8- , we denote by x' -
 (x1,... , x') any n-tuple such that for all i = 1,... , n, Ix' - xi ?< e8 in 8 IL/2
 and E8In 8 E i e F.

 We then have, by (4.34),

 A Aff H (1 -(Xi) E=E,(m Ee I(la t* ( )Xi, t (,t*)))
 and, by (4.36),

 I ( i-1 ax) 1 E -l (Xi, t t- t* ; a )|

 where 03(e, n) -> 0 as E 0, for each fixed n. Then, by (4.43),

 |L tf(HO(xi)) A ((E, d, L,x') (J me(exi tf 0t*;81*)))

 < 02(e d, L, n) + 03(e, n)

 and, by (4.38),

 (44) Lutf( Hl a(xi)) - E 1(e1dLx)( J m signf{l(8xi, 2ta; 8,*)1)

 < col(E, d, L) + 02(8, d, L, n) + 03(8, n),

 where c is a suitable constant which depends on n. We thus have, again using
 (4.43),

 (4.45) |f fi-1 i) I A m= sii~eEi 2; *}|

 < c61(e, d, L) + 202(8, d, L, n) + 03(E, n).
 By (4.33) we have

 (4.46) ||n81/4e(8xi, 2ta; 8cy*) - YtE (4r,)| ?CEl2aaln8Il-'4
 where

 (4.47) Or'(r) = 4(r - rf), rf =11n 8! t F
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 By Theorem 3.1 we have

 (4.48) limE (til m sign{Yt (4r)}) (di-1 )

 In fact, sign{XtE*1nE1-'(k)} [cf. (3.1) for notation] is almost surely continuous
 with respect to the limiting law defined by Theorem 3.1, which is the same as
 the law defined in Theorem 2.1.

 By the continuity properties of the limiting process,

 (4.49) IE(1n1 P( rE)) +E([ 11 8( I - ?11Xi )) < 04( LSn ) X

 where, for any n, 04(L, n) 0 as L -O 0. Collecting the above estimates and
 letting first - -E 0 and then L + d -O 0, we obtain the proof of (2.9b), thus
 concluding the proof of Theorem 2.1. M

 5. Estimates of the v-functions. In this section we prove Proposition
 2.3. Its proof is based on the analysis of an integral equation for the v-func-
 tions that we derive in Lemma 5.1 below, but first we need a definition.

 DEFINITION [The stirring process and the transition probability P[E(x - y)].
 For any n ? 1 and for any function f on M-, let

 1 n

 (5.1) Lf(x) = _ E E [f(xi b) f(x)],
 2.i=1 b= +1

 where xi, b = (x1, . . . , x',) is defined below. Let x = (x1,.. . , x). Then if xi +
 b + x; for all j, we set xl = xl for 1 + i, while xi xi + b. If, on the other
 hand, there is j such that x; = xi + b, then ifb= -1, xl = xl for all and if
 b = 1, x =xl for all 1 is i, j, while x' = xi + 1 and x; = x; - 1. We now define
 P[-(x -- y) as the transition probability of the Markov process on Mn with
 generator (E-2 + 4y)L, where y is the parameter appearing in (2.5).

 The process defined above is the stirring process; its marginal over the
 symmetric functions is the symmetric simple exclusion process. For each
 n ? 1 it has the same law as the process on XE with generator (E-2 + 4y)L0 if
 we identify a configuration oa with the set x of the sites in AE where the spin
 has value 1 and if we restrict this process to the set of configurations which
 have just n spins equal to 1. The jump intensities in (5.1) have been chosen in
 such a way that the marginals (x i(t), . . . , xik(t)), for any given subset (il. . . ., i,)
 of (1, ... , n), have again the law of the stirring process (with k particles).

 LEMMA 5.1. For any t > 0 and x E M2n,

 (5.2) VEn(x t) = ftds e 2na(ts) E P (X y)E(y s) 0 0 E t S
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 where

 x (X, t) E[ 2Y 2v +2(X + ?x+1 + AX-1X t)1(x + 1 _ X)

 +-2y E 1(x + b E x)-V2n-2(X -x ax+bX t) - V2En(X t)
 (5.3) b=+1

 - yl(x - b 0 X)V2n(X - 8x+b + x-b, t)

 -yl(x - b E X)V2n-2(X - -x+1 A5x-1t)1],

 where x + by is the configuration obtained from x by adding, respectively
 subtracting, y and 1( ) is the characteristic function of ( ).

 PROOF. Recall that v-(x, t) = E,(H7 L1o(xi, t)) and so
 d
 d vE(x t) = E( (E LO +L 07(xi) t) dt m xt

 Using (2.2) and (2.5) to compute LG(HLT 1u(xi)), after some simple algebra we
 obtain (m = 2n),

 d
 (5.4) -vE(x, t) = (2 + 4y)LOvE(x, t) + amv-(x, t) + ME(x, t).

 dtm

 Since this is a simple algebraic manipulation, we omit the details and refer to
 Chapter 9 of De Masi and Presutti (1991). Equation (5.2) follows at once from
 (5.4) 0

 The proof of Proposition 2.3 is based on (a) proving that the leading
 contribution to (5.2) comes only from the terms on the right-hand side of (5.3)
 which contain v- 2, and (b) proving that the contribution of these terms gives
 the estimates in (2.14) and (2.16). It would not be difficult to see that the term
 V- 21(x + 1 E x) can also be neglected. We start with point (b) -and give the
 following definition.

 DEFINITION (The w-functions). We define w'(x, t) 1 and for any n ? 1,
 x E M-' and t ? 0 we set recursively

 w t(xt) = 2y(l + y)ftds e2na(t-s) , pE (
 (5.5) 0YEMn

 x E 1(jyi - yjj < 2)W2n-2(Y i s)
 i, j

 where yg'J E M~n2 is the configuration obtained from y by dropping yj and
 yi. Notice that the w-functions are nonnegative.

 Therefore, w E satisfies the equation obtained from (5.2) by neglecting the

 terms with v2 and v2n+ 2 and by suitably bounding the others. More precisely,
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 call - n(x, t) the solution of

 dt d WiZn(x~ t) = (E~ + 4y)LoiZ~n(x, t) + RE(x, t), iZ'~n(X, 0) 0 ,

 where

 R(x, t) E 2) E 1(x+bex){W2nf2(X - ax ax+b t)
 XEX b=_1

 +y(x-bEx)W2n-2(X - - + t )a }

 Then W2n(X, t) < W2-n(X t) for all n, all x and all t.

 LEMMA 5.2. For all 80 > 0, n ? 1 and r < 1/(2a), there exists a constant c
 such that

 (5.6a) sup (Ft(_))2n || w (t)I ?c,
 t<rIIn dI

 where

 (5.6b) wn(t) 1= sup W2-n(X t)
 x E M2nE

 and

 Ft(8) = v/;eat(1 + t)-1/8+3o
 Furthermore,

 2at -

 (5.7) SU P (1 t)1/2) (W2-(t) II < C.

 PROOF. From (5.5) we get

 w2n(X t) < 2y(l + y)f |ds ea2n(ts) pE y)

 (5.8) 2n
 x E i(jy1 -yj < 2)| W2n-2(S) 11

 i, j

 We have that given any r > 0 there is c so that for all t < r In El,

 E Pt (x -> y) 1(lyi - yjI < 2)
 yM2n

 (5.9) E Pt ((Xi, xj) - (yi, yj))1(ly -yj 2)
 Y1 SYJ

 c CE

 V'82(t?+1) t

 where c is a suitable constant (the value of the constant c will be changing
 from line to line). Equation (5.9) follows from classical estimates on random
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 walks. In fact, Ixi(t) - xj(t)l has the law of the distance between two symmet-
 ric random walks on the circle with 8-1 In -I sites, each jumping by ? 1 with
 intensity 8-2 + 4y when Ixi(t) - xj(t)l > 1. When they are at distance 1, they
 leave this state to go to {lxi(t) - x(t)l = 2} with intensity e-2 + 4y. For
 t < rIln eI the fact of being on the circle is not relevant; in fact, the bound (5.9)
 is the same as for unbounded volumes. The estimate (5.7) is then a straightfor-
 ward consequence of (5.8) with n = 1 (recall that wO = 1) and (5.9). Iter-
 ating (5.8), we would easily get the estimate (5.6) but without the factor
 (1 + t)2n(1/8 -o). The whole problem is to recover such a factor.

 From (5.5) we obtain

 wen(x, t) < c tdsi e2na(t-si)f 1ds2 e2(n-l)a(s152) eO. sn d 2 S)
 2n(X1 0 0

 (5.10) x E E y1) sn-P-sn(Yn-l y)
 Yi1 .. * Yn (il 9 ...s * * (in 1in)

 X F1 l10Yi, - Yj~l= 1),

 where (i1,, j1,... , (in, in) vary over all the partitions of {1,...,2n} into dis-
 joint sets of two elements.

 We call - the contribution to the right-hand side of (5.10) for sI < T,
 where T < t will be specified later on. We then denote by 02 the contribution
 coming from s1 > T, so that

 w2n(x, t) < '01 + - 2

 To bound 0 2, we fix GIt, jil), .. . (in) in)) S 1 .. * Sn) SI > T. and yl,.., yn. We
 then use (5.9) to estimate the sum over yn, obtaining an estimate uniform in
 yn After iterating this procedure we get

 t e- 2a(s, - T) Sn-1 e- 2n-2
 .f2 < CEne2nated2aTftdsi d e

 T At -ts1 0 -sIn_ -Sn

 < CIFt(E) 2ne-2aT(1 + t)2n(1/8-50)

 where c and c' are suitable constants. We choose T = x for t > 2 (and = t/2
 when t < 2), so that Jf2 has the desired bound, because

 sup e-2av(1 + t)2n(1/8-80) < 00
 t

 To estimate - we split the transition probability

 Pt--s-(X y1) = EPt-T(X -> Z)PT-S1(z -
 z

 recall that in this case T > sI. We then introduce the characteristic functions:
 n

 X(T) = HJX(T), xl(T) = 1(lzi, - zjl ?<E-1T 1/2+)
 1 =1
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 where 8 > 0 will be specified later on. For any fixed (i1, ij) ... , (in, Jn) and
 T > s, > ... > Sn, we have that

 n

 (1 - X(T)) E P - y1) * P -1 n) H i(Iyih YJh' < 2)
 Y1, -,Yn h=1

 n < i, (1 Xl(T)) E P -lZ yl) 1(1yi, yjll < 2)
 1=1 yl

 n I E_2T 1+25
 < c exp - 4(E-2 + 4y)T

 which follows from classical estimates on random walks [see the remark just
 after (5.9)]. Therefore, the contribution of the above term vanishes faster than
 any given power of 1/T = 1/ F as t -? oo; hence this term is also bounded as
 desired.

 We are left with the contribution to A coming from configurations z such
 that x(T) = 1. Proceeding as when estimating A2, we get the bound

 T e-2as1 n- e - 2asn
 c e n2nat dsI .._ I Nds Ept T(x -Z)X(T).

 0 VT -8, Sn - 18 n z
 To bound the last factor, we recall a suitable coupling between the stirring
 process x(t) on M~n and independent random walks x0(t) = (x 0(t), . .. , x (t))
 with the same one-dimensional marginals, that is, each x 9(t) describes a
 symmetric random walk on AE with rate (E2 + 4)).

 It has been proven in De Masi, Ianiro, Pellegrinotti and Presutti (1984) [cf.
 also Proposition 6.6.3 in De Masi and Presutti (1991)] that for any x E M2n
 and x0 E 7n a coupling Rx#? &o can be constructed in such a way that for any
 8 > 0 and k > 0 there is a c depending on 8, k and n so that uniformly in
 t> 0:

 Rx~x~llx~t - x - x?() -X?)JJ 2 (6-2t)'/4+8) < C(E- 2t -k

 where Jxl = maxilxil. Choosing 8 < 1/4, we have

 -'T1/2+3 + [E-2( t-T) -

 LPZtT(X ' z)T(T) ? [-lt - TT)1/2 I

 with 280 - 8/2 > 0, and the lemma follows. D

 To prove Proposition 2.3, we derive first a bound for v2n(X, t) of the form
 cgne2nat. Once we have such a bound we will then easily reduce the estimate of

 v2 to that of w-. We start by proving the bound for t <of w3 with 83* as in
 Proposition 2.2. After that we extend it first to t < aIIn El with a > 0 small
 enough, and then, by an induction argument, to all t < rlln -l, r < 1/(2a).
 This is done in the following lemmas.
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 LEMMA 5.3. For any n ? 1 there is a constant c so that for all xE M2e n and
 t <813

 (5.11) |v ~(x t)I < CO.

 PROOF. Let us consider an arbitrarily fixed value of n. We define

 sup || Vm(t) ||m, if m < n,

 (.)M i sup 14Vem(t) IIe-n+(m-n) otherwise

 [recall that llv-m(t)ll denotes the sup norm of v-m(x, t)]. We choose 0 K << 3*
 and we let N be the first integer such that ;(N - n) 2 n. With this definition
 dN < 1. Finally, define

 (5.13) d= max diM.
 1<m<N

 From (5.2) and (5.3) we have for a suitable constant c (do 1 below),

 IVm(x, t)I < ce 2matftds e2mas [2m11 2m+2(S)

 (5.14) +E EPt-s(x -- y) i(ly - yj ? 2)
 iJ y

 X { V2m-2( S) 1+1 VV2m( S)]

 From (5.14) with m < N, using (5.9), we get, for a suitable constant c, which
 depends on n through N and I,

 (Ce13 / [dm-1 + 8dm] + 8,13 dm+?1 if m < n,

 (5.15) dm < C 13/ [dn-1 + Edn] + 8?/ *dfl, if m = n,
 c8b /2[81+dm-l + 8dm] + *-dm+l, if m > n.

 Notice that the right-hand side of (5.15) is strictly smaller than d for 8
 small enough, if 2 < m < N - 2. Therefore, for all 8 small enough, d =
 max(d, dN-l) < d1 + dNl, and by (5.15) for m = land m =N- Iwe have

 d < c{13* /2 [1 + Ed] + En *ld + 8E /2 [d + Ed] +

 Therefore, d vanishes when 8 -> 0 and the lemma is proven. El

 LEMMA 5.4. There is a > 0 such that the following holds. For any n > 1
 there is a constant c so that for all x E M28n and t < aIln e1,

 ( 5.16) |VenX )|<c 2natt?n.,

 PROOF. We proceed as in the proof of Lemma 5.3. We fix n and introduce

 the new coefficients dM as follows (b < 1 below is a positive number which will
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 be specified later on):

 b 'sup sup e-a2mt| Vs(X t)IzVm if m < n
 { xeM2m t<alln el

 sup sup e-a2mtl Vsm(X t) 8-n-8*(m-n) otherwise,
 x C-M28m t<alln el

 with a < a* and a* and P* being as Proposition 2.2, and we also assume that
 3* < 1. Then by (2.12) (when E P* < t < a* Iln Ed) and by Lemma 5.3 (when
 t < EP* ), we deduce the existence of an integer N such that dN < 1, for E small
 enough. We define d = maxl < m < N d m, and from (5.14) we then get

 (cbdm 1 + 8Iln81d + b-le2aalnI8ed if m <n,

 (5.18) dm < cbdn-1 + 8ln81dn + b-le 2aallnEI86*d if m = n,
 cbe 1 m*dM-1 + E8vlln eI dm + b-le2aajlns8,68*di+l, if m > n.

 We choose a > 0 so small that 2aa <36*. By choosing b small enough we can
 make the right-hand side of (5.18) strictly smaller than d when 2 < m < N - 2
 for 8 small enough. As in the proof of Lemma 5.3, we can then conclude that d
 is bounded, and this proves the lemma. R

 LEMMA 5.5. Assume that for some r < 1/(2a) the following holds: For any
 n ? 1 there is c so that ll v -(t)l < cene2nat for all t < rlln e1. Then there is
 ;> 0 and for each n > 1 there is cn so that for all x E M -P and all t < rIln 81,

 (5.19) I v8(x t)I ? wn(x t) + C <8[8ne2nat].

 REMARKS. By Lemma 5.2, under the assumptions of Lemma 5.5, it follows
 that for each n ? 1 there is c so that for all t < rIln E8,

 (5.20) |V2n( t)1 ? cE(t)2n.
 From Lemmas 5.5 and 5.4 it follows that (5.20) holds for all t < aIln E1, with

 a as in Lemma 5.4.

 PROOF OF LEMMA 5.5. We prove (5.19) by induction on n. From (5.2) with

 n = 1 we get

 |- v(X7 t) I < w-'(X, t)

 + ce 2taftds e -2sa{E (-- ~~y y~ ) (s) 1 +I1v--(s)~} + ce | ds e Pt I, Xi--s (xY) 1 (IY 1 Y2 1 < 2) || v2 ( |+| 4 (s)|
 Y

 recalling that llv-(s)ll is the sup norm of v-(x, s). By using (5.9) and the
 assumption that llv-n(t)ll < cene2na't, it follows that

 | v(x, t) I < w-(x, t) + cle2ta[82x + 82e2ta]

 We have therefore proven (5.19) for n = 1 and any ; < 1 [having chosen
 r < 1/(2a)]. We now assume (5.19) for n - 1 and want to prove it for n. The
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 argument is completely analogous to the previous one. We use (5.2) and (5.3).
 The terms with v8 -2' by the induction assumption, reconstruct w' plus the

 term

 tds e2na(t1s)2y(l + y) EPt-8s(x -- y)1(lyi - Yjl < 2)cn- leen-le2(n-l)1as
 0 ij

 which by (5.9) is compatible with (5.19). For the terms with v8 we use Lemma
 5.4 and then again (5.9); for the term with v8 we use Lemma 5.4. In both
 cases it is easy to see that we obtain a bound compatible with (5.19) if ; is
 suitably small, depending on T. We omit the details. E

 LEMMA 5.6. For any T < 1/(2a) and n > 1 there is c so that for all

 x E M2n and all t ?< TIln el,

 (5.21) |V2n(X ) | I cr(t)2n

 REMARK. By using (5.21), (5.19) and (5.7) we derive (2.16); therefore, the
 proof of Proposition 2.3 is completed once we prove Lemma 5.6. -

 PROOF OF LEMMA 5.6. Given T < 1/(2a) we consider a so that a -' is a
 positive integer and a < a*, where a* will be chosen in the sequel. By
 choosing a* as required for applying Lemma 5.4, by the remarks after Lemma
 5.5, we know that (5.21) holds for t < aIln el. We are going to prove that if
 (5.21) holds for t < kIln e , it also holds for t < (k + 1)lln el, provided that
 k + :1i< km,3X, where kma = r. Given any n > 1, we set for m > 1, x E M28m
 and tk < t < tk + 1

 (5.22) u8m(X, t) = v8m(X, t) - e2ma(t tk) t
 y

 t &_ sup e 2matIl U (t)IIl,- if m < n
 (5.23) dm = tk <t~tk?1

 ( sup e-2matI u (t) ||n-(mn) if m > n,
 tk <t <tk+1

 where > 0, 1 > 0 > 0 and furthermore

 (5.24) < 2aa, ; < I - 2(k + I)aa, 0 > 2(k + I)aar,
 (5.24) 0 - 2kaa < 28*, 0 - 2(k - 1)aa < 1/12.

 Indeed, since k + 1 < kmax 2(k + 1)aa < 2kmaxaa = 2ra < 1. Hence for any
 given a we can find > 0 so that the first two inequalities in (5.24) are
 satisfied. On the other hand, the conditions on 0 are

 2kaa + 2aa < 0 < 2kaa + 28*, 0 < 2kaa - 2a + 1/12,

 which can be fulfilled if a is so small that 2aa < 28* and 4acx < 1/12. Thus
 for any a sufficiently small (a < a*), there are solutions ; and 0 to (5.24) for

 all k < kmax We shall choose any a < 1/100 in this set and for which we can
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 apply Lemma 5.4. We also require that a < a*/2, a* being as in Proposition
 2.2.

 We shall prove that dn < 1 for 8 small enough, and hence that there is c' so
 that dn < c' for all 8 < 1/2. By the arbitrariness of n, this proves the
 induction argument. In fact, by (5.22) we have

 (5.25) || Im(t) || < || um(t) ?l + e2m(ttk) Vm(t) 11
 Putting m = n and assuming that dn < c', we then get by the induction
 assumption

 | I ,(t)II || <c_+ne2nat + cr.(t)2.

 Therefore, to prove the lemma, it is enough to show that the coefficients dm in

 (5.23) are bounded by 1 for 8 small enough. We postpone the proof of the

 existence of an integer N > n such that dN < 1 for ? small enough. From
 (5.2), (5.9) and (5.22) we get

 I U M(X t) I < ce 2mA] ds e -2mas 2m+2(S)II +
 (5.26) kJ -

 x 0l V2m-2( S) || + ll 2m( S)111 }

 From (5.25) and (5.26), using the definition (5.23) of the d m's, we have that for
 m <n,

 dm < c[e-2atk[dmi + 8]

 (5.27) +8t?k?1[dm + 8 ] + ee 2atk+l[dm+l + 8-]J

 For m = n we get

 (5.28) dn < c[e 2atk[dn-1 + E ;]

 +8 tk?1 [dn + 6-;] + e2atk+1[80dn+l + 81-II.

 For m > n we get

 d m < c[e 2atk 81dm1 + 8- +(1-0)(m-n)

 (5.29) +8 tk+1 [d + (1-0)(m-n)-aI
 +e 2atk+l[EOdm+l + 1-;+(1-0)(m-n)

 We define d as the sum of dm from m = 1 to m = N - 1, so that d is
 bounded by the sum of the right-hand sides of (5.27), (5.28) and (5.29). We
 start by proving that the coefficients which multiply the dm's vanish as 8 0.
 This is so because (a) 8 exp{2atk l} -* 0, as 8 -? 0 (recall that k + 1 < kax);
 (b) 80 exp{2atk + )- 0, by the third inequality in (5.24). The terms which do
 not contain any dm also vanish when ? -- 0. In fact, (c) -; exp{-2atk} -> 0,
 by the first inequality in (5.24); ; < 1, by the second inequality in (5.24), (d)

 E1_; exp{2a tk+ 11 - 0, again by the second inequality in (5.24).
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 The lemma is therefore proven once we show the existence of N such that
 dN < 1 for E small enough. By Lemma 5.5 we easily see that, when the
 right-hand side of (5.22) is substituted for uV in (5.23), the contribution of the
 second term on the right-hand side of (5.22) vanishes as E -*> 0. We therefore
 need only show that there is N such that

 (5.30) limE . (1O0)n sup 11v 2N(t)e2atON = 0.
 tk <t<tk+1

 We denote by o* the random configurations at time tk-1 and call EE* the
 expectation when the process starts at time 0 from ov*. Setting t* = t - tk-1)
 we get

 2N

 V2N(X, t) = E>([E0,* (11 [H{o(xi, t - m(exi , t'; 8,* )}
 (5.31)

 +mj(?X t';s,*)])

 where mE is defined as in Proposition 2.2.
 We now expand the product obtaining a sum of terms which are products of

 curly brackets and me's: the latter are constant with respect to the expectation
 EDI*; the others, by (2.12), give a contribution bounded by cek8, if there is a
 product of k curly bracket terms. By Lemma 4.10 we have that for any u
 there is c so that

 (5.32) I m( t -tk1; a*) II > Ej bmax{8 1/2e at El/l2ea(t-th-1)}) < CEU

 for all tk < t <tk+
 We thus get from (5.31) a vanishing contribution because of the last two

 inequalities in (5.24).

 6. Concluding remarks. The extension of our results to the case when
 the system is defined in the whole space for all the values of E is an interesting
 but rather technical question, as we do not expect physically relevant changes.
 For this reason and to make the paper shorter, we have avoided the issue. The
 really interesting question, in our opinion, concerns the behavior of the system
 at longer times. Interactions between clusters of different phases and tun-
 nelling effects should then have a relevant role, but the techniques we have
 presented here do not seem adequate for such an analysis.

 In a paper in preparation by De Masi, Orlandi, Presutti and Triolo, the same
 phenomenology of phase separation is observed in a spin system which evolves
 by the Glauber dynamics with Kac potentials. For the definition of the model,
 see Penrose (1991).

 The behavior should be quite different, however, when, for the same
 interaction, the dynamics are conservative Kawasaki dynamics [see Penrose
 (1991) for the definition of the process]. The analysis is then much harder and
 no results are known so far.
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 A short survey on phase separation phenomena has been presented by
 Pellegrinotti (1991). Giacomin (1991) has generalized our techniques and
 results to two and three dimensions. The conclusions of Giacomin (1991) are
 similar to those found here. The phases separate on the time scale Iln El into
 clusters which, in units ?1 Iln El , have smooth boundaries. Their geometry is
 described in terms of a Gaussian distribution, as in Theorem 2.1.

 As already mentioned, the most interesting open question concerns the
 motion of the clusters after the phases separate. This problem has been
 studied by Bonaventura (1992), who considers the spin model presented here
 in two dimensions. The initial state is again a product measure. The average
 spin at x equals m(E1 +bx), for b > 0 and sufficiently small. The function m(r)
 is chosen close to +m* inside, respectively outside, of a smooth region A.
 There are technical conditions on m(r) for which we refer to the original
 paper.

 At times te-2b, Bonaventura (1991) proves that ,4t-2b is still close, in the
 sense of our Theorem 2.1, to a product measure with averages close to +m*

 inside, respectively outside, of At. At is obtained from A by letting the points
 of the boundary move with velocity proportional to the curvature and directed
 toward the interior of the region. We refer to the original paper for a precise
 statement.

 It is conjectured that -the behavior found by Bonaventura (1991) also
 describes the evolution of the clusters of the different phases after they
 separate, but no proof has appeared so far.

 Acknowledgments. We thank M. Bramson and R. Holley for valuable
 discussions, G. Giacomin for pointing out some mistakes present in a previous
 version of the paper, and a referee for a very careful reading and useful
 criticism.
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