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ABSTRACT. - The one dimensional n.n. simple exclusion process with
generator E - 2 Lo + E -1 La, E > o, is considered, Lo and LQ being respectively
the generators of the symmetric and totally asymmetric simple exclusion
processes. Propagation of chaos and convergence to the Burgers equation
with viscosity are proven in the limit when 8 goes to zero. The density
fluctuation field is shown to converge to a generalized Ornstein Uhlenbeck
process with mean zero. The time asymptotic covariance kernel is explicitly
computed for traveling wave profiles and the result indicates that the
shock profile is stable while its space location fluctuates around its average
position like a brownian motion. Its diffusion coefficient is explicitly
computed.
Key words : Exclusion process, hydrodynamic limit, Burgers equation, shock waves.

RESUME. - On considere le processus d’exclusion simple a de plus
proches voisins de generateur L~ = ~-1 Lo + La, ou Lo et La sont respective-
ment les générateurs des processus d’exclusion simple symetrique et totale-
ment asymetrique. La propagation du chaos et la convergence vers 1’equa-
tion de Burgers avec viscosite sont demontres pour e - 0. On montre que
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2 A. DE MASI et al.

Ie champ de fluctuation de la densité converge vers un processus generalise
de Ornstein Uhlenbeck, de moyenne 0. La covariance asymptotique est
calculee explicitement pour des profils d’ onde en mouvement et les resultats
indiquent que le profil du choc est stable lorsque sa position fluctue comme
un brownien. Autour de sa position moyenne, son coefficient de diffusion
est calcule explicitement.

INTRODUCTION

The one dimensional Burgers equation

(1.1)

r E R, t >_ 0, ~, >_ 0, is one of the simplest equations where the
growth and the propagation of shock waves can be observed, cf for
instance Smoller, [26], and references quoted in. Non linear PDE’s,
like (1.1), describes to some extent and in particular situations the macro-
scopic behavior and the collective phenomena exhibited by several model
systems, like cellular automata and stochastic interacting particle systems.
In the last years such systems have been extensively studied, cellular
automata for very fast computer simulations (cf for instance [21], where
eq. ( 1. 1) was considered) and stochastic interacting particle systems for
the possibility of a mathematically rigorous analysis, which seems beyond
the present techniques for more realistic particles models of physical fluids.
The use of stochastic systems in the study of (1.1) goes back to McKean,

[22], and carried out by Calderoni and Pulvirenti, [6], and Sznitman, [28],
for systems of suitably interacting Brownian particles. In this paper we
shall consider the exclusion process. The relation between such proces and

(1.1) with ~, = 0 is well known, cf [25], [20], [5], [11], [9], and [2], [29],
[3] where a zero range process isomorphic to the exclusion process is
considered.
The derivation of ( 1.1) with ~, > 0 starting from the exclusion process is

in a sense easier. In fact for drift and diffusion to have same strength,
like in ( 1. 1), one must suitably "weaken" the asymmetry in the exclusion
process which can then be studied as a "perturbation" of the symmetric
one. This can be done by applying general methods like the Fritz’s

technique, [14], cf. [15]. Alternatively one can use the Guo Papanicolaou
and Varadhan approach, [17], which has the advantage of expliciting the
connection with the large deviations theory. The derivation of (1.1) with
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3WEAKLY ASYMMETRIC EXCLUSION

such techniques has been recently carried out in [19]. The simplest deriva-
tion of (1.1) is in our opinion due to Gartner [16] who considers a specific
weakly asymmetric simple exclusion process and for this he is able to

exploit at the particles’ level the transformation which maps (1.1) into a
linear differential equation. To conclude we mention that the steady state
solutions to ( 1.1) can be derived directly, cf [8], and that there is an

interesting relation between (1.1) and some interface evolution problem,
cf Spohn [27].

In this paper we rederive (1.1) from the weakly asymmetric simple
exclusion process, we refer to the next section for precise definitions and
results.

We use the correlation functions technique, introducing some special
correlation functions which solve a simplified hierarchy of equations and
allow us to overcome the short time limitations usually present in the
analysis of the hierarchy in the Grad-Boltzmann limit. Our approach is
undoubtly lengthier but it has the advantage of providing very detailed
information on the process, actually more than what needed for proving
( 1.1). This is not purely academic. Our aim is to go further in the analysis
of the weakly asymmetric simple exclusion process beyond establishing
(1.1) and to study the particle model in a much longer time scale than
the one where (1.1) is proven. In particular we want to know at the
particle level the stability properties of the traveling wave solutions to
(1.1). How long does the shock move keeping its shape ? according to
(1.1) it is stationary, is that true for the microscopic model ? Should we
add to (1.1) correcting terms to catch the true limiting behavior ? which
ones in the case ? the problem looks like the following. Consider X to be
the space of all density profiles. Let peX be a traveling wave solution to
(1.1). Hence, as it is well known, the shape of p is determined by two
parameters p- and p+ which denote the asymptotic densities to the left
resp. right of the origin, p _  p + (the drift in the process is directed toward
the right). p is then completely determined by fixing its location in space.
Call finally M (p) the manifold in X obtained by rigidly shifting in all

possible ways the profile p. Any such manifold is invariant under the
evolution described by (1.1) and each point in the manifold moves with
constant speed c =1- p _ - p + . One might argue that the state of the

particle model is only approximately described by the density profile of a
traveling wave p, hence to a better approximation it should be represented
in X by some "thin tube of profiles". In the long time regime such tube
might be amplified and become macroscopic. What really happens is hard
to decide by looking at (1.1) alone. From one side such equation seems
to indicate that each traveling wave p is stable except for a neutral

direction, that of M ( p). This would suggest that the only effect at long
time should be a delocalization of the solution inside M ( p). However such
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4 A. DE MASI et al.

claim comes from the stability analysis w. r. t. localized initial perturb-
ations, a change in the limiting densities does in fact produce a transition
to some new manifold M and such disturbance would never vanish. It is
not clear at all, by the way ( 1. 1) is derived, if the particle system’s
evolution is in any sense related to what predicted by some stability
analysis for the macroscopic equation and, if such is the case, what is the
correct space where the stability problems should be considered.

Partial answers to such questions have been obtained for the asymmetric
simple exclusion, as we report below, for more details we refer to [24]. If
p- = 0 it has been proven, [29] and [9], that M ( p) is stable and that the

shock, moving with average speed c, fluctuates in space keeping the same
shape, its motion being brownian with diffusion coefficient D = c. Even
when p _ > 0 and c = 0 there are indications for the same behavior. Andjel
Bramson and Liggett [1] have in fact proven that asymptotically in time
the state of the system approaches a 1/2-1/2 mixture of the states with
densities p_ and p +, the left and right asymptotic densities at the shock,
just what should be if the profile were rigidly fluctuating with Brownian
motion. Finally we mention that a numerical analysis, [4], shows agreement
with the above behavior also in other cases.

Let us now return to the weakly asymmetric simple exclusion process.
The first step in analysing the stability of the shock is to look at the

density fluctuations and that is what we have done here: we have found
that the density fluctuation field (cf the next section for precise definitions
and results) converges to a generalized Ornstein-Uhlenbeck process with
zero mean. Its covariance kernel diverges when t - oo in the same way it
should if the shock profile were stable but fluctuating around its average
location like a Brownian with diffusion coefficient D. We have

computed D and we have checked that its value agrees with that found in
the asymmetric case for p_=0. We hope to complete the analysis of the
long time behavior of the shocks for the weakly asymmetric exclusion
process in a forthcoming paper.
We conclude this section by mentioning possible byproducts of our

analysis which may be interesting in their own. We could easily consider the
multidimensional case and quite arbitrary particles jumps, for notational
simplicity we have restricted ourselves to the one dimensional case and to
nearest neighbor jumps. We also have the possibility to derive equations
of the form

mER, r E R, f and V smooth real functions. The case V = 0 in ( 1. 2) is
obtained by adding to the symmetric generator of the simple exclusion a
small asymmetric perturbation described by the asymmetric generator of
a "speed change exclusion process", which then determines the form of f:

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



5WEAKLY ASYMMETRIC EXCLUSION

To obtain the full equation ( 1. 2) we interpret particles and empty sites as
1 and -1 spins, respectively. We then add to the previous generator a
"small" generator describing local Glauber interactions among spins,
see [7] where the equation with f = 0 was derived. Our technique should
apply quite straightforwardly also to these cases, we are indebted to
Sznitman for very helpful discussions on these points. It is also worth

mentioning that we can study cases where the "weak" asymmetric part of
the generator of the simple exclusion is multiplied by a "slowly varying"
factor which may depend both on space and time.

In Section 2 we state the main definitions and results and in Sections 3
and 4 their proofs.

2. DEFINITIONS AND RESULTS

Let S~ _ ~ ~, be the set of all particles configuration. We denote by
r; a generic element of n, so ~ _ ~ ~ (x), For any E > 0 and any

cylinder function f on Q let

where

We denote by T£ (t) the Markov semigroup with pregenerator Lg, and
we call such process the weakly asymmetric simple exclusion process
(WASEP). We denote by TO(t) the Markov semigroup with generator Lo,
such process is called the symmetric simple exclusion process (SEP).
We shall use the following notation. p, v denote measures on (.) is

the expectation w. r. t. p while E~ - Jl(T£ denotes the expect-
ation of f w. r. t. the WA SEP with initial measure p. Sometimes we shall
simply write E~ ( f ).

2.1. THEOREM. - Let p be a smooth function on R with values in [0, 1].
For ~ > 0 let ~ be the product measure such that

(11 (x)) = p (E x). Then for any r E Rand t > 0 and uniformly in the compacts
ofRxR+

Vol. 25, n° 1-1989.



6 A. DE MASI et al.

where p solves

For any ~~03A9 define to be the solution of the following
equation

where P~ is the probability kernel of the semigroup TO (t). Therefore

PE (x, t |~) is the discrete approximation to (2 . 4), x and t being "micro-
scopic" variables in contrast to the macroscopic variables appearing in
(2. 4) : namely microscopic space (resp. time) is E -1 (resp. E - 2) times the
macroscopic space (resp. time). Define pg(x, as in (2. 5) with ~ (z) in
the first term in the r. h. s. replaced by (z)) = p(EZ) (cf Theorem 2 . 1).
Define for any t>O, n >_ 2 for any x --_ (xl, ..., where xl, ..., xn are
distinct sites,

and

2.2. PROPOSITION. - With the above notation and definitions, for any
n >_ I and T > 0 there is c such that for any r~

The above Proposition gives the key estimates for our analysis, all the
results we obtain are more or less straight corollaries of Proposition 2. 2.
In fact using such result it is possible to derive a stronger version of
Theorem 2.1 weakening the assumptions on the initial state. For instance
it is possible to consider a family such that for any cp E S (R)

Annales de 1’Institut Henri Poincaré - Probabilités et Statistiques



7WEAKLY ASYMMETRIC EXCLUSION

and the same result as in Theorem 2.1 holds. We shall not discuss further
this kind of generalizations and proceed in our analysis.
Next we define the fluctuation fields. For cp as above and for ~.£ as in

Theorem 2. 1 we set

and let P" be the corresponding law on D(R+ -~S’(R)) induced by the
process with initial measure ~. We then have ,

2.3. THEOREM. 2014 The law P~ defined above converges weakly to the
law of a mean zero generalized Ornstein-Uhlenbeck process with covari-
ancc kernel C~(r, r’) determined by the equation

~C~~, r)

where Ct satisfies

Furthermore let p in Theorem 2.1 be a stationary shock wave solution
to (2. 4) such that

namely p ( r, t) = p (r - c t) where the speed c =1- p _ - p + . Then f or any r
and r’

where p’ is tthe first derivative of p and

Vol. 25, n° 1-1989.



8 A. DE MASI et al.

Notice that the different time covariance solves the linearized equation
[ef eq. (2.10)]. This is a general feature related to the validity of the
Fluctuation-Dissipation theorem and proven rigorously for several stochas-
tich interacting particle systems. The splitting of C* as in (2 . 10 b) appears
naturally when taking the expectation of the square of the fluctuation
field. The diagonal terms when expanding the square give rise to the 03B4-
term in (2 . 10 b). The other term Ct(r, r’) is a smooth function whose
evolution is again determined by the linearized Burgers equation to which
a term is added, the last term in (2 . 10 d) which is responsabile for the
linear growth of Ct as t - oo . To relate such a behaviour to what discussed
in the Introduction we argue as follows.

Let ~,E, r, t be the product measure such that

Theref ore is just the initial measure shifted by E -1 [ct + r]. Let

where 16, (dr) is the law at time t of a Brownian motion starting from 0 and
moving with diffusion coefficient E D, D being the same as in Theorem 2. 3.
Given cp E S (R) let cpt (r) = c~ (r + ct), then, obviously,

Therefore the true covariance of the WASEP is the same as that produced
by hE, t, hence as far as this computation is concerned it is like the initial
measure were only shifted in space by E -1 [ct + r], the law of r being 
The above motivates the conjecture that for any t > 0 and r

where the 1. h. s. denotes the law of the weakly asymmetric simple exclusion
at time E-3 t shifted in space by the integer part if the
initial measure is the same as at the end of Theorem 2. 3 and y~ is the
law of a Brownian motion with diffusion coefficient D.

3. SHORT TIME ESTIMATES

In this section we prove Proposition 2.2 for times t  s- ~ + ~, [3 > 0. We
start with Lemma 3. 1 where we derive an integral equation for the v-
functions defined in eqs. ( 2 . 6), ( 2 . 7) . To simplify notation we just write
vn (x, t) for either vn (x, t Ti) or v~ (x, t ~E); the statements below hold for

Annales de I’Institut Henri Poincare - Probabilites et Statistiques



9WEAKLY ASYMMETRIC EXCLUSION

both. We also define 1, as the set of all n-tuplets of ordered distinct
sites of Z, x = (xi, ... xn) denoting the generic element in N" and Ex the
expectation w. r. t. the SEP starting from x. 

~

where

and

We are using the following notation:

for x E zn, x (i) --_ xB{ xi} and x (i, j) -_- xB{ xi, xj} (3 . 3 a)
is the unit vector in the positive i-direction, i = l, ... , n.

~ is the sum over all disjoint pairs i and j in { 1, ..., n ~ (3. 3 b)
i, j

Vol. 25, n° 1-1989.



10 A. DE MASI et al.

Proof - By definition for any t > 0, 

We use (2. 2) and (2. 5) distinguishing the cases when particles are n. n.
from the others. We get terms containing products of the occupation
number functions 11 (correlation functions) with n, n+ 1, n-l and n - 2-
body. To recover the v functions we add and substract the missing 03C1~’s
and we get

For t >__ 0 let _vt be the following function defined on the subset

of configurations with n particles. If then

Vt (11) = vn (x, t) where n is the number of particles in the configuration 11
and x are their positions. Since vn is symmetric under permutations of the
Xi in x the above is well defined. For simplicity we identify the elements
of with points and write the first term in ( 3 . 5) as ( Lo v") (x, t).
It is easy to see that the second one is (R vn) (x, t). We consider next the
terms with Vn-1’ By adding and subtracting PE (xi, t) Vn-1 (x (j), t) we rewrite

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



11WEAKLY ASYMMETRIC EXCLUSION

the fourth sum in (3. 5) as a sum of a "gradient" of Vn-1 plus (x (j), t)
times ce, as defined in ( 3 . 2 d). The gradients of vn _ 1 are multiplied 
as defined in (3 . 2 c). From the above observations it follows that the time
derivative of vn (x, t) is equal to (Lo vn) (x, t) plus the other terms. Therefore
we can use the process with generator Lo to write an integral equation
for vn. We therefore get (3.1) since

3. 2. NOTATION. - We can interpret the right hand side of (3. 1 a) as the
expectation with respect to a process describing n labeled stirring particles
which starts from x move for a time t - s and then undergo a branching
process. [We are thinking of the degree of the v-function as a number of
particles, their positions being specified by the arguments of the v-

functions]. We recall that the stirring process is realized by independently
exchanging the occupation numbers at all pairs of nearest neighbor sites
after an exponential time of mean 2. The induced motion on the particles
is the SEP, if the labels of the particles are ignored.

Since W can be expressed as a linear combination of v-functions the
different terms are interpreted as the outcome of the branching. To describe
this structure we specify first of all the initial and the final number of
particles. So the terms appearing in R vn are all of "type (n, n)", those in
the first sum of ( 3 .1 b) are ( n, n + 1 ), the successive ones are ( n, n - 2),
(n, n-1) and (n, n) respectively. A finer description is needed to classify
the single terms in each type. We start with the ( n, n - 2) terms. We need
two more labels which denote the particles appearing in the characteristic
function in (3.1 b). Hence each of these terms is determined by the multi-
index ( n, n - 2, j, i). The ( n, terms are singled out by adding the
multi-index (j, i, c) where j as before, denote the particles involved
in the characteristic function appearing in (3.1 b) while 03C3 equals ± 1 or 0.
If a = 1 we are considering the first term with (x (j), s), the
term with vn _ 1 (x (i), s), if 03C3 = 0 the last term with v" _ 1 (x (j), s).
The terms of type (n, n) are divided into two classes. Those in the first

one are singled out by specifying a pair (j, i), cf (3 .1 b). The others come
from R vn. To classify them one needs the pair (i, ?). The first index, i,
labels a particle, cf (3 . 2 a), while ~ =1 refers to the first term in ( 3 . 2 a),
o = 2 to the second, ..., 6 = 5 to the fifth one.

Finally the (n, n+ 1) terms can be written as

Vol. 25, n° 1-1989.



12 A. DE MASI et al.

where the sum over ... , ik is over all the subset with k elements of the
set (1, ..., n). Therefore these terms are classified by the specification
( i 1, ..., ik, cr), where fi, ... , ik are as above and a =1 selects the first
term in the above sum while c = 2 the second one.

Therefore the branching process occurring at time ( t - s) describes births,
the ( n, n + 1) terms, deaths, the ( n, n - 2) and ( n, n -1 ) terms, as well as
terms with same number of particles, the (n, n) terms. In some of these
cases particles after the branching are displaced, and, as we shall see

below, it will be convenient to relabel some of the particles after the

branching. Of course new labels are needed for the newly born particles.
One more notation: to classify the various terms above we introduce a

label X which can take any of the multi-indexed values we have introduced
above to single out the terms in (3.1). Therefore a value of 03BB specifies
one of the terms in (3 . 1), in particular a v-function and a function of E, x
and a which multiplies the v-function. This function will be denoted as

s, 03BB). For instance if 03BB = (n, n - l, j, i, 0) then the corresponding d-
function is xi, s).

Because of the presence of the terms ( n, n + 1 ) the equation relating the
v-functions is an infinite hierarchy of equations: the expression for vn
involves Vn+1 which in turns involves Vn+2 and so on. By looking at times
smaller than E - 2 + ~, j3 > o, it is possible to control the above hierarchy.
This is a consequence of the integral in ( 3 . 1 a) : the time interval E - 2 + ~ is
"so short" that the successive iterates of ( 3 . 1 a) eventually become negligi-
ble. So we fix ~3 > 0 and the degree m of the v-function for which we want
to prove (2. 8). We then iterate (3 . 1 a) N times, where N depends on m
and fi in a way which will be specified later on. At most, therefore, there
will be m + N particles, but we may need to introduce other particles, at
most N, so that the set of necessary labels for all these particles is

(1, ..., m, m + 1, ..., 2 N). The first m labels are used for the initial m
particles, hereafter referred to as the "old particles"; then each new particle
appearing at a branching is named by using the next available label in the
above list. According to the particular branch that we consider we may
or may not use all the labels in the list. In particular no new label is
needed for all the ( n, n - 2), (n, n -1 ), (n, n, j, i) and ( n, n, i, ~ = 5) terms.
For all the other (n, n) terms we add an extra particle. For the term
(n, n, i, 1) the particle i is at Xi - 1 and the new particle is placed at Xi’ If
~ = 2 the new particle is placed at if 6 = 3 the i particle is at 
while the new particle is placed at xi. Finally if cr=4 the new particle is
placed at Xi+ 1.
For the ( n, n + 1 ) terms we always add 2 particles one at the beginning

of the cluster the other at its end, cf Notation 3. 2 above. One of them is
"real", i. e. it appears in the argument of the v-function, the other one is
fictitious.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



13WEAKLY ASYMMETRIC EXCLUSION

One final notation which refers to the (n, n - l, j, i, a) when j _ m and
i>m or j > m and In the first case if a =1,0 we label the particle in
xi as j particle and that in x~ (which is missing from the argument of the
v-function) as particle i, so that the "old" particle survives. If j > m, i  m
and a = -1, we again switch labels between i and j.
Using the above notation we have

where the functions are defined at the end of Notation 3. 2; notice also
that for notational simplicitly we have not explicited the degree of the
v-functions which can be desumed from their argument. If k  N then the
sum is meant to be restricted to Àk such that the final number of particles
(after the k-th branching) is 0 hence at the end there is no v-function. If
k = N then the final number of particles, as specified by might be
different from 0, namely the configuration x (t - +, appearing after the
last branching may be non empty. The sum in (3.7) is over all such

possible À1, ..., Àk and the expectation refers to the stirring process in
the time intervals plus branchings at the times t-si as
specified by the values of The labels of the particles are given according
to the notational convention described before.

A separate bound on each of the terms in (3. 7) would give the wrong
result since there are important cancellations among the different terms.
These origin from the differences among v-functions appearing in (3.1)
and (3. 2). We need to estimate differences like

The case 1~ =1 appears in some of the ( n, n -1 ), (n, n) and ( n, n ~-1 ) terms,
while k> 1 occurs in the terms (n, n + 1, ii, ..., ik, s), cf (3. 6).
From (3.1 a) we then have

where x (t - s) (i) is a configuration of n -1 stirring particles obtained from
the configuration x(t-s) by subtracting particle i; x (t - s) j) is defined
analogously. Here we have used the fact that the marginal over the motion
of a subset of stirring particles is still a process of stirring particles.
To estimate (3.9) we use a coupling between stirring and independent

particles, cf [12].

Vol. 25, n° 1-1989.



14 A. DE MASI et al.

Coupling n stirring with n independent particles

Let a + , ~, a _ , 1, i =1, ..., n be the following operators on Nn = the subset
of Z" of n ordered distinct sites.

x+ei if for all j
a I, i x = x +_ ei - ( ± e~) if there is j such that i ( 3 .10)

’ ~ x if there is j such that x; ± 1= x~ and j  i

If f is a real valued function on Nn, define Gn f as

then Gn is the generator of a Markov jump process whose law is the same
as that of the stirring and the exclusion processes, for the last one the
labels of the particles are neglected. In fact the marginal of such process
over functions invariant under permutation of the labels is the SEP, since
Gn f (x) = Lo f (x) if f is symmetric.
The independent process has a generator G~ which acts on the functions

Define a generator G~ on N" x N~ as follows:

It is easily seen that the marginals of the Markov process with

generator G,* on Nn (resp. N~) have same law as the stirring (resp.
independent) process, hence the joint process is a coupling of the two. In
particular from (3.13) it follows that with probability 1 for any i and t

Xi (t) is completely determined by the specification of

(s), j = l, ..., i and 0 _ s _ t ~. In fact from (3 . 13) it follows that any
jump of the stirring particle i necessarily induces a jump at the same time
of some independent particle xJ with j  i. The rule is that whenever an
independent particle, say particle i, jumps by +1 then the stirring particle i

also jumps by ± 1, unless it would go to a site occupied by some particle
j with j  i. In such case the jump is suppressed. On the other hand if j > i
the jump takes place and the stirring particle j makes the opposite jump,
i. e. it moves by - ( ± 1). We shall therefore say that particle i is of first
class [or that it has priority] w. r. t. particle j if j > i. In this case we also
say that j is second class w. r. t. i. Particle 1 is first class w. r. t. all the
others and it moves just the same as the independent particle 1.

Annales de l’lnstitut Henri Poincaré - Probabilites et Statistiques



15WEAKLY ASYMMETRIC EXCLUSION

Other couplings can be introduced by simply changing the priority list:
... , ~ (n) ~ be a permutation of {1, ..., n ~. Define

G,* ,~ is easily seen to define again a coupling of the stirring and
independent processes, which will be called the x-coupled process. In such
process particle ~ ( 1) has the highest priority, it moves the same as the

independent particle ~ ( 1). Then comes particle ~ (2) with second highest
priority and so on. Therefore x,~ ~i~ (t) is specified (modulo zero) by
(xn ~ 1 ~ (s), ..., (s) for all 0 __ s  t).
We now go back to ( 3 . 8) and introduce f or i, j, k as in ( 3 . 8) and any

s > 0 the following stopping time on the space (Nn 

and for T > s we set

Then from (3.6), setting 

where the expectation refers to the coupled process with i and j having
top priority; x° is an arbitrary configuration of n independent particles.
To prove (3.16) we observe that the displacements of Xi and x~ are the

same as those of x? and x° till time (0), since the particles i and j have
top priority. At time (o) + the distribution of the stirring particles is
symmetric under the permutation of particles i and j. Therefore if

then the distribution of x ( t - s) is symmetric under the
permutation of the positions of i and j, hence such a subset of trajectories
does not contribute to the difference vm (x (z), t) - vm (x (j), t). A fortiori this
occurs when i~k~ y (o)  (t - s)/2, so that ( 3 .16) is proven.
We can now write ( 3 . 7) as
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where the following notation have been used: firstly g(h) stands for
where i, j, k are specified by ?~h if ~,h refers to a branch-

ing where a difference of v-functions appears, otherwise it equals 1. 8 x
denotes the expectation with respect to a process whose law is specified
once ~,1, ... , Àk and are given. In the time intervals

this is a coupled stirring + independent process whose

priority list is specified by Àh. If at t - sn there was not a v-difference then
the priority list is chosen in an arbitrary but fixed way. If on the contrary
there was a difference of v-functions then two particles are involved in
such a difference and the priority list has these 2 particles with highest
priority. The independent and the stirring particles start both from x. The
branching for the stirring particles is specified by the values Àh as described
above. The whole process is then determined by saying that when a new
stirring particle is added at some of the branchings then an independent
particle with same label is added on the same site and when a stirring
particle dies the corresponding independent particle also disappears. The
fictitious particles, which are added to take into account the v-differences,
play a role only in the time intervals t - Sh + (sh - sh + 1)I2~ if at the
h-th branchincing such a v-difference was present. So we say that they
disappear/die at the end of this time interval.
We use the following key estimate proven in [10]:

3. 3. PROPOSITION. - Fix n, x=(xi, ..., xn) E Nn, oc > 1 /4 and let Px be
the law of any of the couplings previously defined between the stirring and
the independent processes, both starting from x. Then for any m there is c
independent of x such that for all T > 0

As a corollary of the above Proposition we have

3 . 4. COROLLARY. - Let k _ N, s 1, ..., sk, 03BB1, ..., 03BBk, Ex be as in

(3. 17). Let a be any positive number. Then for any n there is c so that

where h is the characteristic function of the event

We fix a sequence s i, ... , s~, ..., Àk and denote by J the correspond-
ing term in (3.17). Calling G the set of values of Ài for which there is a
difference of v-functions, then using the Corollary 3. 4
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where

and

The contribution to ( 3 . 17) of the second term in ( 3 . 19) is bounded by
c 2N, since there are at most N integrals each ranging in the interval [0,
£ - 2 + a]. Hence choosing n large enough this can be made smaller than the
left side of (2. 8), so we can ignore it in this proof. Our aim now is to
estimate J~ uniformly on the conditioning so that, after inserting this

bound, the expectation in (3.19) only involves independent random walks.
The main difficulty consists in taking proper advantage of those charac-
teristic functions which may appear in dE and which require that certain
pairs of particles should be at neighbor sites. We shall use Corollary 3. 4
to reduce these to conditions involving independent particles. Even after
this, however, the analysis will not be very simple because of the branching
structure of the process which creates correlations in the motion of the

particles. To have a simpler structure we shall get rid of some of these
conditions. We can do this in some of the terms without affecting the
bound we aim to prove. With this in mind we give the following

DEFINITION. - (i) A particle is called auxiliary if it is not "old" and it
dies together with an old particle. Particles which are neither old nor

auxiliary are called "normal".
(ii) Let e£ (x, s, À) be the function obtained from d~ (x, s, À) by dropping

those characteristic functions possibly present in the latter which only
involve normal particles.

(iii) Let i be the label of an auxiliary particle, then o (i) denotes the
label of the old particle which dies with particle i. Furthermore t (f) denotes
the time when i was born, t’ (i) when it dies and xi, the position at
time t (i) of particles i and o (i).
We can now relax the conditions on the death of the old and the

auxiliary particles, remind that we have dropped the conditions on the
normal particles. Let us consider for instance a condition referring to the
death of an old and an auxiliary particle, say i, o (i) and let t (0, t’ (i) be
as in the definition above. Then if h =1 and t’ (i) - t (i) >__ £ -a
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where Ax? and are respectively the increments of the independent
particles i and o (Q in the time interval t (i), t’ (i). Analogous expression
holds for the condition involving two old particles, the initial positions
being however fixed by x. If t’ (i) - t (i) _ E - a we just drop the characteristic
function which is therefore bounded by 1.
What we have now is not yet an expression involving only the evolution

of the independent particles since the stirring particles still appear in

(3. 22). We consider then the largest among the times t (0, let it be t (j).
We condition on the whole process up to time t (j); we also condition on
all the increments of the independent particles after time t (j), except for
the increments of the independent particle j. After such conditioning, using
the fact that t (j) is the largest time of birth (for auxiliary particles), then
all the characteristic functions are fixed except for the following one:

where C is a suitable constant specified by the conditioning, and c is a
constant related to that appearing in Corollary 3.4. Since we are also
conditioning on G the variable is the sum of two quantities: one is
the sum of the increments in the time intervals t-si, 
with t (j)  t - si  t’ (j) and i is such that These increments are fixed

by G, while the others have the distribution of a symmetric nearest
neighbor random walk with intensity 1 which moves for a time not
smaller than [t’ j) - t (j)J/2. Therefore the contribution of this event to the
conditional expectation is bounded by

uniformly on x j’ and the conditioning in G. Note that if

t’ ~’) - t (j) _ s -a then the characteristic function has been dropped, accord-
ing to what said before. However we can always write the following bound
valid in both cases

We further increase the above bound by replacing t’ {j) - t (j) by the length
of the interval which starts at t (j). Since the dependence on x, and 
has now disappeared we can iterate the above procedure to the next
auxiliary particle. We keep doing this till all the characteristic functions

concerning auxiliary particles have been estimated. We may still have
characteristic functions involving deaths of old particles alone. But now
the branching structure of the process has been lost and we can proceed
like in [10], we omit the details and simply refer to [10]. We need the
following estimates on the coefficients appearing in (3 . 1). These are obtain-
ed by studying the equation satisfied by pE, we refer to Section 4 for a
detailed analysis from which it is easy to derive the bounds below which
hold uniformly on the initial configuration 11 (c here and in the sequel
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denotes a constant whose value changes from line to line)

If the initial measure is ~,E then

(i. e. the same E-dependence holds also at small times !). Recalling that
we then have from ( 3 . 19)

where A 1 denotes the terms of type ( n, n-l) where an old particle dies,
(and by our conventions this was close to another old particle, so that the
characteristic function of the corresponding event was not dropped) A~
the others. For the (n, n - 2) terms B1 refers to cases where 2 old particle
dies while B~ covers the remaining cases. The ( n, n) and ( n, n + 1 ) terms
are grouped in C=C1 +C2 and C1 refers to the case when an auxiliary
particle is born. The factor arises from the fact that some of the
characteristic functions might be missing if the time intervals between

branching is too short, (less than E -a) see above. We have also used that
for 

since this estimates the probability that two random walks starting at fixed
distance do not meet before time (si - si + 1)/2.
The analysis follows now very closely that in [10]. We distinguish the
case (i) when k  N or k = N and ÀN determines a branching where no
particle survives from the other case (ii) when after ÀN there are particles
which survive. In the first case all the old particles die and we get after
some simple algebra the following bound for the corresponding integral
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over sl, ... , s~ (the bound can be easily understood by using a dimensional
analysis)

This gives the desired estimate if C I > 0, after choosing a small enough
since m, the total number of old particles equals + in
fact in the case we are considering all the old particles die and they can
die only in the B 1 and Ci cases, two particles die in the Bi terms (the
"worst case"). On the other hand if y C ~ = 0 the branching is the same as
in the symmetric simple exclusion so we can refer to [10] where (2. 8) was
proven for the SEP.

It remains therefore only the case when after ÀN there are still particles.
This can be treated just as above the only difference is that we might miss
a factor ~ arising from the last difference of v-functions (if ÀN refers to
this case). Here we do not have anymore the small factor arising from the
death of all the old particles what is now small is the factor (E t~~2)~ ~ ~ I
which gives the desired estimate after choosing N sufficiently large. In fact
by definition

The total number of particles is bounded by m + C hence

From (3.26) and the last inequality we get

[the first factor comes from the already remarked fact that we might be
missing a factor e because of a possible v-difference after the last N
branching the second one is an obvious bound for the second factor in
( 3 . 26) ].
By choosing N large enough and a sufficiently small we derive the

desired estimate so ( 2 . 8 a) is proven at times smaller than s - 2 + ~.

4. PROOFS

NOTATION. - Throughout this section r will denote an arbitrary but
fixed positive number.
We shall extend the estimates of the previous section to the whole time

interval [0, c - ~ i], firstly by proving that for some ~ > 0 and for any n
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there is c (depending on n and 5) such that for all initial configuration 11

From this Theorem 2.1 and then Proposition 2. 2 will follow;
Theorem 2. 3 will be easy consequence of (2. 8).

Let f3 be a positive number less than 2. We divide R + into intervals
( t (k), t (k + 1 )] where

(we are dropping the dependence on E to have lighter notation). For any
integer k >_ 0 we denote by llk the configuration at time t (k), i. e.

Sketch of the Proof of (4.1)

First of all we observe that in Section 3 it has been proven that

Let ~ (k) be the a-algebra that specifies the hystory of the process up to
time t (k) and let E.~, k ( . ) be the ~ (k)-conditional expectation with respect
to the process starting at time 0 with the configuration 11. Given t > 0 let
k be such that t (k)  t _ t (k + 1 ). Let pe (.,. l11k) [respectively pe (.,. 
be the solution to (2. 5) with initial value 11k at time t (k) (resp. ~0 at
t = o). Then, by definition and by (4. 4) we have that

Therefore, in order to prove (4.1) we need to estimate the expectation in
the r. h. s. of (4. 5). It would be sufficient to prove that for some § > 0

Prob ~ sup t I r~x)
te{l, ..., H} }
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We have imposed that the probability in (4. 6) goes to one faster that any
power of E because we want an estimate of the expectation in the r. h. s.
of (4. 5) of the form E’‘ ~" - ~ ° ~~ with some ~, > o. For the same reason we
need the sup over ... , n ~ .
To understand why (4.6) is true, let us consider the difference in the

modulus in (4. 6) and let us rewrite it using (2. 5). [We add and subctract
pe (., t (k) r~k _ 1) in (4. 7) below where Ps (., t ~ ~k- I) is defined analogously
to pE ( ~ ~ t ~lk)~~

where

Of course the difference r~ (z, t (k)) - pE (z, t (k) I ~k-1) is not small, but if
we rewrite the first term in the r. h. s. of (4. 7 a) as follows

then the sum over z in (4. 8) is indeed small with probability that goes to
one faster than any power of E, [this follows from Chebishev’s inequality
and from (4. 4)]. In order to write (4. 8) we need t > t (k) + E-1~2 but this
is not a problem as we shall see. Notice that the value E -1/2 is not the

only possible, any negative power of s would be sufficient. If for all

~C _ k llh is such that the sum over z in (4. 8) is less then, say, r5 with § > 0,
then the fact that the difference in the l.h.s. of (4. 7 a) is small is a property
of the viscous Burgers equation which can be proven iterating (4. 7 a).

Sumarizing we proceed as follows. For any and any x E Z, we
define below (see Definition 4. 1) the set i(03B6, T, x) of "good configur-
ations", i. e. of trajectories ~~{~k, k~T} for which the sum over z in
(4. 8) is less than E~ uniformly in k __ T and in all w with [it
is obvious that the typical w in (4.8) are at distance of order E -1 from x,
therefore is more than what needed]. We therefore prove, in
Lemma 4. 2 below that the "good configurations" have a probability that
goes to one faster than any power of E. In Definition 4.1 we also introduce
the function which is the solution to (2. 5) with initial value llk
at t (k) if and then in Lemma 4 . 3 below we prove that

T, x) then is sufficiently close to pE ( . , t ~ ilo) for all
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t __ T. Finally we notice that the proofs would be simpler if we were

considering the process in the "finite volume" [0, c - ~] with periodic
boundary conditions.

4.1. DEFINITION. - We set fi (cf Section 3) so small that there is ~ > 0
for which

and ç will be chosen smaller than 1 (the reason for such choices will
8

become clear in the sequel).
For define an integer number N (T) >_ 1 such that

We let

For such 11 we define x E Z, t _ T, as follows. When tE(t(k),
t (k + 1)] and k  N (T), then p~ (x, is the solution to (2. 5) with initial
value r~~ at time t (k) and for t E (t (N (T)), T] it is again solution to (2 . 5)
with value ~N ~T~ at time t (N (T)) [it is important to remember that accord-
ing to our notation pE ( . , t (k) I r~) ~ r~k ( . )]. We denote by 
r~ E ~ 0,1 ~Z, t __ T, the solution to’(2.5) with initial condition 11 at time
f=0. In Lemma 4 . 3 below we shall compare pg(x, t/llo) and pi (X, till)
for special choices of r~, namely 11 belonging to the set 

~

where for any two functions g and g’ on Z

(again, to have lighter notation we do not explicit the dependence on E).

4.2. LEMMA. - Let 03B2 and 03B6 be as in 4.9. Then for any n there is c such
that

uniformly in x~Z and ~~{0,1}z, P~~ being the law of the WASEP starting
at time zero from r~, obviously same inequality holds for T _ E- 2 i.

Proof - For notational simplicity we set x = 0 and simply write i (~)
for i (~, E - 2 i, 0). We have, (A~ denoting below the complement of the
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set A),

where t as usual denotes the solution to (2.5) with initial

datum r;’. To bound the above probability we use Chebishev inequality
with power 2 m; we get

By our choices of p and § if m is large enough we get (4. 13), so the
Lemma is proven.

4. 3. LEMMA. - Let ~3, ~ and T be as in Definition 4 . 1. Referring below
to Definition 4.1, eqs. (4. 2) and (4. lo) for notation, we set

then there is c such that for all x

Proof - Let t (k) + E-1~~ _ t  t (k ~-1), k  N (T) or, when k = N (T),
t(k)+~-1/2  t _ T . Then for any y~Z we have

where

and
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On the other hand if I y - x I _ 2 e - 2

because ~ e ~ (~ T, x) and the probability that a random walk moves by

-8’~ in a time ~s’~ r is smaller than any power of s, as 8 -~ 0. Therefore
posing

we get

(according to our notation c is a constant whose value changes from line
to line, so:)

We denote below by Ey the expectation w. r. t. the law Py of a single
random walk x (t) which at time 0 starts from y and we set

Then by iterating (4.15) we get for I y-x |1 2~-2

where t above and below shorthands t (T).
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If |y-x |~1 4~-2 -and not-here! then it is convenient to bound
as follows, using for this purpose (4.16) and recalling that 

!~(~)!~8-’N(~-’T)[~P,(T=~)]+C8’
~

where

The factor E-1 appearing in the first term comes from bounding each
integral in the sum over k in (4. 9 b) by c E - 2, which, being multiplied
by E, behaves like ~ -1. Such term bounds also the second term in the

- 1. h. s. of (4.16 b). Since Py (r = k), for any k, vanishes faster than any power
of s ( because the times involved are _ E - 2 i and x2014y!-~’~) we then
have

We can use again (4.17) if z and z + 1 are closer to x than 1 4~-2 and for
notational simplicity we only give the argument as if hE. (z + 1, s) were not
present at all. Then we get ( all the integrals below are extended to domains
contained in t)

The first term vanishes like ~s, since

For the second term we notice that if z - x ~ 1 E- 2 then there is ~j  k4
such that
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This term in (4. 18) is therefore bounded by

where k counts the possible values of j, E -1 exp ~ . ~ bounds the contribu-
tion coming from the integral over sJ. The other factor in (4.19) arises
from the following estimate, uniform in and s > o,

It is easy to see that the r. h. s. in (4. 19) vanishes faster than any power
of E and this completes the proof that I hE (x, t) I  c Es.

4. 4. LEMMA. - Let 03B2 and 03B6 be as in Definition 4 . 1 

(cf. Lemma 4. 3). Then for any n there is c such that for all x E and for
all t: 2 £ - 2 + ~ _ t _ E - 2 i (the case t  2 c - ~ + ~ is included in the estimates of
Section 3)

where vn is defined for a process which starts from a single configuration
r~ E ~0, l~Z and c does not depend on the choice of r~.
Proof - Given t as in the Lemma and N (t) as in Definition 4 . 1

we define E (N (t)) as the a-algebra generated by ~~ (x, s), x E Z,
s _ N (t) E - 2 + ~ ~ . We then have

/ /

We expand the product in (4.20), the factors coming from the second
square bracket are constant w. r. t. the conditional expectation, those from
the first one can be bounded using the estimates of Section 3, hence
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We set

and the Lemma follows from Lemmas 4. 3 and 4. 1.

Proof of Theorem 2 . l. - Let p (r) and p,E be as in Theorem 2 . 1. Let
p£ ( x, t) - pE (x, t cf ( 2 . 5) and below. Then for all m there is c so that

With arguments used for proving Lemma 4. 3 we easily get that for any
positive r

Hence by Lemma 4 . 4, choosing m > S and, as usual, letting c be a constant
whose value changes from inequality to the other, we get

To prove Theorem 2.1 therefore we need only to show that

P£([E-1r], E 2 i) converges uniformly on the compacts to p (r, t), solution
to (2. 4) with initial datum p (r). We define

when E -1 r E Z and linearly interpolate for the other values of r.
Obviously t) _ 1 and proceeding like before it is easy to see that
a£ (r, t) is also equicontinuous as E -~ 0. Hence it only remains to prove
that as (r, t) - p (r, t) for any fixed (r, t). Let 0 be a smooth function on
R with compact support and let 0  T  t _ r. Then

Using the fact that, ( i) for any t > 0, ( ii) the
first derivative of 03A6 is continuous, (iii) the local central limit theorem, we
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have that for any limiting point a ( . , . ) of aE ( . , . ) [denoting below by
Gt (r --~ r’) the heat kernel]

Since a (r, t) and are both continuous functions, and the
above inequality is true for any smooth ~, we have

Letting T - t we then see that a (r, t) solves (2. 4), hence Theorem 2 . 1 is
proven

Proof of Proposition 2. 2. - So far we have proven that vn is bounded
by with S > 0. To prove Proposition 2. 2 we need to show that we
can improve the above result and have a bound like in (2. 8 a) and (2. 8 b).
We shall only prove (2. 8 b), the proof of (2 . 8 a) being analogous. We
shall need later the estimate in (2. 8 b) to prove Theorem 2. 3 on the

convergence of the fluctuation field.

The proof of (2 . 8 b) is obtained bu iterating eq. (3 . 1), we do not have
problems of convergence [of the iteration] because we can use Lemma 4. 4
when the number of bodies is large. In this way we can avoid the "short
times assumption" of Section 3. We prove below only (2. 8 b) the proof
of (2. 8 a) being analogous. We fix a T > 0 and for any we define

for all 

where the sup is over all We use (3 . 1) to write an integral equation
for the a’s. It is convenient to rewrite the first two terms in (3. 1) after
"integrating by parts", as it is going to be explained below. From ( 3 . 2 a)
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we get

while for the second term in ( 3 . 1 b) we get

We shall prove below that ‘d i = l, ..., n

Recalling that ( p£ (z, ce and that

- - v

we get a bound for (4. 17) and (4.18) which goes like

Notice that E  c [t - s + 1] - ~~2 so that we can and will drop the term with
E in (4. 28) from now on. From ( 3 . 1), ( 3 . 7), (4. 28) and (4. 26) it follows
that for any 

while

To write an integral equation for d (E, n, t) we use eqs. (3.13) and (3.1)
(we do not need to "integrate by parts" as we did before) so we get for
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We condition on the a-algebra which specifies x (s’) for s’  (t - s)/2. We
set y = x ((t - s)/2) and we proceed like before, with y in place of x. We
obtain a bound independent of y and then we estimate the probability
that 2(0, t - s) > (t - s)/2 ~ bounding it by assuming
that x2 = 1. Therefore we get for any 0  t * _ t

The eq. ( 2 . 8 b) easily follows from eqs. (4.29) and (4.31). We give below
one possible way to show the estimate ( 2 . 8 b).
We fix ~, > 0 small enough (how small will become clear later) and, to

simplify notation we choose it so that ~, -1 i is an integer. Let n be the
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integer for which we wish to prove Proposition 2. 2. Set

and

We shall only consider m _ N + 1 where

and 8 is given in Lemma 4. 4. Hence

for k = ~, -1 i ( hence for all k  ~, -1 i) and uniormly in E. We shall now

find bounds for m _ N. From (4 . 22) and (4 . 24) with t* = E- 2 k ?~ and
t = E - 2 (k + 1 ) ~, we get for m _ N

where a* (e, - 1, k) = o, a* (e, N + 1, k) and d* (e, N + 1, k) are bounded as
in (4 . 35). We can rewrite (4. 36) in vector form. Let x~ (k) be the vector
whose first N component are a* (E, 1, k), ..., a* (s, N, k) and the second
N components are d* (E, 1, k), ..., d* (s, N, k).

~,) xE (k) + uE (k) (componentwise)
where uE (k) is the vector arising from the terms with a* (E, 0, k),
a* (E, N + 1, k) and d* (e, N + 1, k), the other terms are defined so to make
this inequality valid. From (4. 36 a) the first component of uE(k) equals 0,
the second one c ~,1~2, the [cf. (4.35)]. From (4 . 29 b) the
(N + l)-th component equals 0 the (N + 2)-th c (log E -1) -1 the 2 N-th equals
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By choosing X small enough (I A (E, ~,) II - - 1 2 uniformly
in E as s ~ 0. Furthermore and each component of u~ (k) is less
than some constant c, uniformly in E. From this it easily follows that all
the components of are uniformly bounded in E and for all k - ~,-1 i.
To conclude the proof of Proposition 2. 2 we need to prove (4. 26). We

go back to the definition of the Stirring Process, cf. Section 3. It is

convenient to realize such process as follows.. We consider products of

independent Poisson processes of mean 1 2 indexed by (x, x+1), xeZ. An
event at (x, x + 1) is the time when a "mark" between x and x + 1 appears.

With probability - the mark is "active" and with same probability "pas-
sive". All such events are mutually independent. The Stirring Process is
then obtained by stating that a particle at (x, t) moves if at time t there is
an active mark involving x, namely an active mark at (x - l, x) resp.

(x, x + 1). In such case the particle goes to x-I, resp. x + 1. Notice that
in this way we may realize in the same space all stirring processes with
different number of particles. We denote by Y (x, s) the position at time s
of the stirring particle which at time 0 was in x, i. e. Y (x, 0) = x. For any
given t > o, we set Z (z, s) = Y (x, t - s), where z is such that Y (z, t) = x,
the law of ~ Z (x, s), xeZ, is then the same as that of

~ Y (x, s), xeZ, s - t ~. We set i = 1 in (4 . 19) for notational simplicity. We
then use the translational invariance property of the process to write

Call g = ~ there is a first time t’  t such that t’) - Z ( 1, t’) =1 and at
t’ there is a mark, either active or passive, at the t’), Z(l, t’) ~.
Then
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We sum first over z2, ..., zn keeping zi fixed. Since by definition the
event

and the are disjoint for different

z2, ... , z" we get

Proof of Theorem 2 . 3. - We shall prove that defined in (2 . 9)
converges weakly in the space D (R + - J’(R)) to a generalized Ornstein-
Unhlebeck process with the covariance given in ( 2 . 10) . With the estimates
on 03BD~n obtained in Lemma 4. 4 it is easy to prove that the moments of X t,
at each fixed t, converge to those of the limiting process as described in
Theorem 2. 3. The proof however for the moments at different times is
more involved, so we prefer to use the more "traditional" theory of Holley
and Stroock, [18]. We need to prove the following 3 statements.

S 1. The sequence ~E --_ ~ X~ (cp), cp E ~ (R) ~ is tight in

D (R + ~ ~’ (R)) and any limiting point X is supported by
C° (R + ~ ~’ (R)).

S 2. Any limiting point X of ~E satisfies the following "martingale
problem". For any and any F « C’ (R)

is a martingale with respect to the canonical filtration in C° (R + - g/ (R)).
In (4.37) F’ (resp. F") denotes the first (resp. the second) derivative of
the function F, while the operators AS and B~ are the following.

S 3. The law of X o (i. e. the law of the limiting process at time 0) is

gaussian with covariance kernel C$(r, r’), cf Theorem 2. 3, eq. (2.10).
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Once S 1 to S 3 are proven we know that X is a gaussian process and
all its moments are finite. So we can rewrite (4 . 37) with F (r) = r2 and r
to derive an explicit expression for the covariance which is readily seen to
agree with the desired expression. For the reader’s convenience we report
some details of the computations. From the martingale equation we have

where A. is the adjoint of the linearized Burgers operator, i. e.,

Taking the time derivative in the above equation and using eq. (2. lOb)
we get

where L~ is the linearized Burgers operator acting on Ct as a function
of r’. Now using the following identities

it is easy to reconstruct the S-term in the equation (2. 10 d).
We are left with the proof S 1 to S 3. S 3 is obviously satisfied. The

support properties of the limiting measure follow from standard arguments
after noticing that the jumps of are bounded by c s1~2. To prove
the remaining statements in S 1 and S 2 we notice that
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is a martingale, L£ being the generator of the process as defined in (2.1).
Hence

where

and

Tightness follows from the fact that by (2. 8 b) the L2 norms of y~, i =1, 2,
are bounded uniformly in E and t _ i, cf [23]. Using (2 . 8) and the same
argument introduced in [13] it is possible to show that

From (4.45) eq. (4. 37) follows, we omit the details and refer to [13].
To conclude the proof of Theorem 2. 3 we prove (2.12). To this purpose

notice that the solution of (2. 10) can be written as follows.

where p’ is the first derivative of the function p and K~ (r - z) is the

probability kernel for a Brownian motion with diffusion coefficient 1 and
drift 1- 2 p - c, namely as a function of r solves the forward Kolmogorov
equation

The drift 1- 2 p (r) - c is strictly decreasing (resp. increasing) when r  0
(resp. r > o) so there is a unique invariant measure ~ for this evolution
and convergence to p is exponentially fast. To find J.1 we notice that since
p is a stationary traveling wave solution to the Burgers equation then its
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space derivative p’ solves the linearized equation hence

Therefore

An explicit computation of the integral in dz shows that eq. (2. 12) holds
with D given by (2. 13).
Remark. - The good mixing properties of the operator K have a

microscopic counterpart and can be exploited to investigate the long time
behavior of the v-functions. This is the main ingredient that we use in
trying to prove the conjecture formulated in (2.17).
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