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The Annals of P1robabiltty 
1986, Vol. 14, No. 2, 409-423 

ASYMPTOTIC EQUIVALENCE OF FLUCTUATION FIELDS FOR 
REVERSIBLE EXCLUSION PROCESSES WITH 

SPEED CHANGE1 

BY A. DE MASI, E. PRESUTTI, H. SPOHN AND W. D. WICK2 

Universita dell'Aquila, Universita di Roma, UniversittitMinchen and 
Princeton University 

We consider stationary, reversible exclusion processes with speed change 
and prove that for sufficiently small interaction the fluctuation fields con- 
structed from local functions become proportional to the density fluctuation 
field when averaged over suitably large space-time regions. If the exclusion 
process is of gradient type, this result implies that the density fluctuation 
field converges to an infinite dimensional Ornstein-Uhlenbeck process. 

1. Introduction and results. We consider a stochastic lattice gas (exclusion 
process with speed change) on a simple hypercubic lattice Zd in d dimensions. 
We follow the usual notations and denote by Q = {O, 1i}1 the configuration space 
of the lattice gas. - E- stands for a configuration, qA for its restriction to 
A C Z d. -(x) denotes the occupation variable for lattice site x E(7 Zd with 
-(x) = 1 (0) corresponding to x occupied (empty). C(Q) is the space of bounded 
continuous functions on Q and go c C(Q) the space of local functions, i.e., 
functions depending only on finitely many -(x)'s. 

The particles of the lattice gas move by random jumps respecting the hard-core 
exclusion. The dynamics is completely specified by the jump rates c(x, y, a) ? 0 
which give the rate of interchanging the occupations at sites x and y when the 
configuration is a. Clearly, c(x, y, a) = c(y, x, a) and if -(x) = -(y) we may set, 
arbitrarily, c(x, y, a) = 0. We assume that the rates are translation invariant, 
i.e., c(x, y, a) = c(x + z, y + z, Tz) with Tz the shift by z E Z d, and of finite 
range r, in the sense that c(x, y, a) = 0 for lx - yJ > r and that c(O, y, a) 
depends on - only through {q(x): IxI < r}. To avoid degeneracies we also assume 
that 

(1.1) c(x, y, 0) > 0 

for lx - yJ = 1 and -(x) # -q(y). 
We want to ensure that the exclusion process is reversible. We therefore 

impose the condition of detailed balance: 

(1.2) c(x, y, ) = c(x, y. qXY)exp dxyH(q). 

Here -qxy denotes the configuration - with -(x) and -(by) interchanged and for 
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410 DE MASI, PRESUTTI, SPOHN AND WICK 

f E C(2Q) we define 

(1.3) dxyf = - f(iOxy) - f 00 

H( -) is the energy of the configuration A, formally given by 

(1.4) H(-q) = L 4>(x) H -(x) 
XcZdIXI<oo xEX 

with {(4(X)lX C Zd', IXI < X00 a family of potentials. We assume that (F is 
translation invariant and of finite range r, i.e., (4(X) = (D(X + z) and (4(X) = 0 
for diam(X) > r. Then the difference in energy, dXYH1 after and before the jump 
is always well defined. 

The generator of our jump process is given by 

Lf (q) = E c(x, y, I) dxy f 00 
(1.5) x, y 

=2 E Lxy f 00 
x, y 

for f E 9(. Under our assumptions L on go determines uniquely the Markov 
semigroup e Lt = T7 acting on C(Q). In the usual way one constructs then the 
Markov process -t with paths in D([O, ox), Q), see Liggett (1977). 

Let 1 be a Gibbs (DLR) measure associated with (D [Ruelle (1969)]. Detailed 
balance together with the DLR equations imply the symmetry of LXY and of L in 
9( 

(1.6) [( fLxyg) = (9LXY f 
(1.7) k( fLg) = kgLf 
which in turn implies 

(1.8) 1( fTtg) = k(gTtf). 

Tt extends to a self-adjoint contraction semigroup on L2(g, [i). Thus [ is 
reversible and, in particular, invariant under Tt. -qt with starting measure [ is the 
stationary, reversible exclusion process with speed change under consideration. 

In the detailed balance condition (1.2) the energy difference does not depend 
on the choice of the chemical potential X = (D({O}). If we denote by [A a Gibbs 
measure associated with (D = {(D({0}) = X, (D(X), IXI ? 2 ), then every [A is a 
reversible measure for -t. Conversely,, the only translation invariant, reversible 
measures for -I are mixtures of the translation invariant [L s. For dimensions 
d = 1,2, the canonical Gibbs measures even exhaust all stationary measures 
[Vanheuverzwijn (1981)]. We refer to Georgii (1980) for a more detailed account. 

In the following we will need strong mixing properties (in space) for [. This is 
ensured if either d = 1 or (D is sufficiently small, cf. (3.2). Under these assump- 
tions there is a unique Gibbs measure associated with (F. We think of (F, and 
therefore A, as fixed. Averages with respect to [ are also denoted by ) V. 

P P(X) = K-(O)), is the average density and X = EXn(x)(xq(O) - p)) is the 
compressibility. We will denote by X(p) the inverse function of p(X) and we will 
write * ) X(,) for the averages with respect to the corresponding Gibbs measure. 
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EQUIVALENCE OF FLUCTUATION FIELDS 411 

To explain the goal of our paper we make the following definition. 

DEFINITION 1. Let h E go with L(h) = 0 and 4 E Y2(Ri8d), the Schwartz 
space of rapidly decreasing functions. Then 

(1.9) Yt(-`; h) = Ed/2 L 4)(Ex)Th(q-2t) 

is called the scaled fluctuation field for h (indexed by t and 4)). If h( -) = -q(O) - p 
we set 
(1.10) Y/(P; q(0) - p) = Yt/(P) 

4)(,-x) determines a spatial average over a region with diameter of the order 
e---'. The prefactor anticipates normal fluctuations and - 2t reflects the scale 
invariance of Brownian motion. 

We are interested in the asymptotic form of the fluctuation fields Yt/(4; h), as 
E -O 0. Among these fields the density fluctuation field YtE(4) plays a special role 
-as the fluctuation field associated with the locally conserved quantity (particle 
number). It is therefore expected to vary on the slowest time scale. Furthermore, 
the other fields should fluctuate "around" the density field i.e., they should be 
asymptotically a multiple of the density field plus a rapidly varying term. These 
considerations are formalized in the following theorem. 

THEOREM 1. Let d = 1 or d ? 2 and the potential 4? and density p satisfy 
the smallness condition (3.2). Let h E go with [L(h) = 0 and let 

(1.11) a(h) = d/dp (h)x(p) = X-E(h -q(x))x(p). 

Then 

(1.12) lim limE ( t AF 2T ds YE(4; h) - a(h)YE/(4))) = 0. 
T - or e-~ 0 2,-T t- ,2T 

The importance of the asymptotic equivalence (1.12) was first realized by Rost 
(1982), and called "Boltzmann-Gibbs principle" there. It is further explained in 
De Masi et al. (1984). It has been proved and employed for the stationary, 
reversible zero-range processes in Brox and Rost (1983), for the nonstationary 
reversible zero-range process with jump rate one in Ferrari et al. (1983), and for 
interacting Brownian particles in Spohn (1986). 

Let us explain on a heuristic level why (1.12) together with the particular 
choice of the constant a(h) should hold. Consider a given bounded region A. 
Assume that at time 0 there is a density fluctuation so that the number of 
particles in A is n(A) while its expected value is pIA j. Then due to the good 
mixing properties of the stochastic time evolution one may hope that there exists 
some time T which is on one hand so short that the number of particles in A at 
time T is essentially unchanged, i.e., still n(A), but on the other hand so long 
that in A equilibrium has itself established corresponding to the new density 
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412 DE MASI, PRESUTTI, SPOHN AND WICK 

n(A)/lAl. Denoting by K * )X(n(A)/IAI) the expectation with respect to the corre- 
sponding Gibbs measure, we have 

(1.13) E JAI-/ E Txh(n)o JAJ-1/2JAJ~h>X(n(A)/1A1)~ 

where E( 1l i)) denotes the conditional expectation having fixed A. We expand 
K h)x( 7(\)/lI~) around X(p) to leading order, 

d n(A) 
(1.14) (h)X(n(A)/IAI) 

- 
(h)x(p) + -( h)x(p) --P. +dp J~(P~ AI 

Since Kh)A(P) = 0 and using (1.11), 

E( IAKI/2 E Txh( T)o) a(h)IAK-'/2(n(A) - pJAI) 
(1.15) X GA 

- a(h)lAl-1/2 E (NT(x) - p). 
x E- A 

In Section 5 we apply Theorem 1 to exclusion processes of gradient type and 
prove that their density field converges as E 0 to an infinite-dimensional 
Ornstein-Uhlenbeck process. 

2. Outline of the proof of Theorem 1. To prove Theorem 1 we square out 
(1.12). Then we are left to show that for f, g E 90 with ,i( f ) = 0 = Al(g) 

(2.1) lim (f rTTtg) = 1/X(E( f -(x)))(E(g71(x)).- 
t- oc- 1X 1 

[See Brox and Rost (1983).] 
To understand how we tackle (2.1) let us first consider the simpler case of 

showing 
(2.2) lim <fTtg) = Kf )Kg). 

t- oo 

Since Tt is a self-adjoint contraction semigroup on L2(Q2, [) the limit (2.2) exists. 
Therefore we only have to show that the Tt invariant subspace of L2( ,1i) 
consists of constant functions. 

For bounded subsets A t7 Z d let 

(2.3) LA= Lxy 
x, y A 

and let FA be the projection in L2(Q, [i) defined by the conditional expectation 

(2.4) FAg = [(gln(A), rAc) 

Here [( *ln(A), rAw) is the canonical Gibbs measure in A with boundary condi- 
tions A i.e., p. conditioned on the number n(A) of particles in A and the 
configuration -qA" in the complement of A. By (1.6) LA is self-adjoint. For fixed 
T, LX generates a finite Markov chain. By (1.1) for fixed n(A) this chain is 
irreducible and therefore FA is the projection onto the subspace correspond- 
ing to the eigenvalue zero of LA. Let h E L2(g, ,i) be such that Lh = 0. Then 
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EQUIVALENCE OF FLUCTUATION FIELDS 413 

(hLsh) = 0 because in (hLAh) + (h(L - LA)h) = 0 both terms are nonposi- 
tive. Therefore for any g E90 

(2.5) )2 < hLAh)gLAg) = 0. 

In particular, the choice g = LK-'(g - FAg) implies that 

(2.6) (hTAg) = (hg). 

Let A T d. Then, by the equivalence of ensembles, see e.g., Georgii (1980), 
(hFrg) -< (h)(g) and (2.6) implies h = constant. 

To imitate this approach, in view of (2.1), it is natural to define a Hilbert space 
_f as the completion of 90 with the (degenerate) scalar product 

(2.7) KfIg) = E(<TXg) - Kf )Kg)). 
x 

Clearly, to make (2.7) meaningful we need mixing for A, cf. Section 3. T, is still a 
self-adjoint contraction semigroup in X. Therefore the limit (2.1) exists and we 
only have to identify the T7 invariant subspace P3V' of X. We prove in Section 3 
the analogue of (2.6): namely that for every 4 Ee PX' and any g E 90 

(2.8) (4irAg) = K9lg). 
Let A T d * and note that -q(O)lq(O)) = X and that in -X, JAI-'Ex E A(X) =? 
Then we are left to prove that for any g E 90 

(2.9) limd L(gln(A), qAC) - a(g)IAK- E (71(X) - p)x = 
A TZ x E=A 

in K, where a(g) is defined in (1.11). (2.9) will be established in Section 4 under 
a strong mixing condition for [. (2.9) is the reduction of the dynamical problem 
(2.1) to a purely static, equilibrium problem. 

We summarize our discussion in Proposition 1, which will be proved in the 
following two sections. 

PROPOSITION 1. Let PX' be the Tt invariant subspace of X. Then P is the 
one-dimensional projection onto X - 1/2 (0). 

3. Reduction to an equilibrium problem. Let X = 4f({0}) and 

(3.1) 11?1DI= L I ID(X). 
X3O, 1X1j2 

Then if d ? 2 we require that 

(3.2) expA. expII(DII * [exp(expljjDj - 1) - 1] < 0.1. 

Condition (3.2) is sufficient for the convergence of the cluster expansion, Del 
Grbsso (1974). Since the density p is an increasing function of X, (3.2) holds for p 
and 111jj sufficiently small. Let A be the set of functions depending only on qA. 
Then by Del Grosso (1974), cf. also (4.8) in Di Liberto et al. (1973), there exist 
positive constants A, a depending only on X and (D such that for all bounded sets 
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414 DE MASI, PRESUTTI, SPOHN AND WICK 

A1, A2 C Zd (we denote by K1A) = <I1XAq1(X))) 

(3.3a) K qAUA2) - 1 ? Amin(I8A1I, IA2I)ead(A A2), 

where dA, denotes the boundary of Ai, i = 1,2, and d(Al, A2) is the distance 
between the sets A1 and A2. (3.3a) will be used in the sequel to derive (4.12), 
(4.25), (4.26), (4.29) as well as in Definition 2 and Lemma 2. Another (easy) 
consequence of (3.3a) is that for fi e SAI, K fi) = 0, i = 1,2, 
(3.3b) K < f I12)1 < 11 111211 f2II2A min(IdA 1, I8A21)e-ad(AI, A2) 

which will be used to prove Lemma 3, cf. (4.3). 
For d = 1 (3.3) is proved in Cassandro and Olivieri (1981) and Dobrushin 

(1973). 
The estimates (3.3a) and (3.3b) with I d1AI I and I d A21 replaced by I A 1I and I A21, 

respectively, hold for the larger class of potentials defined by Dobrushin's 
uniqueness criterion (1968). Although this would suffice for the proofs of the 
lemma mentioned, we need condition (3.2) not only for deriving (3.3) but also for 
the local central limit theorem estimates of Proposition 3. We do not know 
whether they keep their validity within the Dobrushin uniqueness region. 

In view of (3.3) the following definition is meaningful. 

DEFINITION 2. Of is the Hilbert space obtained as the completion of 90 with 
scalar product (2.7) modulo { f l( f I f ) = ?}. 

LEMMA 1. (i) Let f, g E -90. Then there exist positive constants cl(t), c2(t) 
such that 

(3.4) K< fTxTtg) - Kf I)Kg) < cl(t)e-c2(t)I 

(ii) ?t is a strongly continuous, self-adjoint contraction semigroup on dX. On 
-9( the generator, L, of Tt is given by (1.5). -90 is a domain of essential 
self -adjointness for L in dX. 

PROOF. Let 9 be the set of functions f e C(Q) such that there exist positive 
constants cl and c2 with 

(3.5) sup f(-) - f(-q') < cle-C2 
7,) ?)' 

(x) ='(x) for Ix I <? 

for all e ? 0. Then Tt C 9. This can be proved by the methods of Holley and 
Stroock (1976a, b). Part (i) follows then from (3.3) and (3.5), since any function in 
9 can be approximated uniformly by functions fA E A such that the error is 
exponentially small in the diameter of A. 

To prove part (ii) we note that for f E -90 with K I) = 0 

(3.6) KfIf) - lim AI`l E KrxfTyf) 
AITZd x,yeA 
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EQUIVALENCE OF FLUCTUATION FIELDS 415 

Since ?t is a self-adjoint contraction in L2(A, [), we conclude that for f e 9 

t f ITtf)= Alimd(Tt I A 1)2 

(3.7) 

< lim((IAI1/ r )) = K< f If 

The symmetry of T, follows by the same argument. 
9() is in the domain of the generator of Tt on L2(A, p) [Liggett (1977)]. 

Therefore for f e 90 
(3.8) t- '(Tt - ) = ft- |ds TLf 

which tends to Lf as t -> 0 in JX' by (3.4). By Theorem X.49 of Reed and Simon 
(1975), 9 is a domain of essential self-adjointness for L in dX. But for f e 90, by 
(3.3) and (3.5), there exist functions fA eJA C 9 such that fA -> Tt f and 
Lf\ - Tt Lf in 1 as A 7Z d. [1 

From the spectral theorem we conclude that for every f 
(3.9) lim Ttf = e Pdr 

t- oo 
exists. 

LEMMA 2. Let A be a hypercube and let rA be as defined in (2.4). Then for 
any 4 e Pe'' and any g e 90 
(3.10) (AIrAg) = K9Ig). 

PROOF. Let f, g e 90 with K I) = (g) = 0. Then, using detailed balance 
(1.2) and Schwarz's inequality, 

2 

<fI Lxyg) 2 (c(x, y, )axyg( d xyzf)) 

(311) ~~~~ < ((~ (xyg E d(xYT N( x~ 

< i~gLxYg)K fIL)f 
In the last step we used the identity 

K ILf) = K ((zf )Lzyf) 
z' z, y 

(3.12) =2 K(z zt -xLzyt - -xf) 
z', z,y 

= E ( TzKfLxyTzf) 
Zbt Zt y 

by the translation invariance of p. 
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416 DE MASI, PRESUTTI, SPOHN AND WICK 

Let L \ be defined as in (2.3). Since by Lemma 1, 90 is a domain of essential 
self-adjointness for L, for any f E Xr and any g E 90 

(3.13) I KTt f JLAg) | < IAI(gLAg)(Ttf ILTtf), 
t > 0, and in the limit as t -x o 

(3.14) (4JLAg) = 0 

for any 4 e Pu'. By the argument given in Section 2 g = 1(R - FAg) E 9( 
for g E -9(, Inserting this g in (3.14) results then in (3.10). D 

4. Equivalence of ensembles and the local limit theorem. In this section 
we establish the validity of (2.9). 

PROPOSITION 2. Let either D satisfy (3.2) or d = 1. Then in Xr 

lim [FAg - a(g)((1/IAI)n(A) - p)] = 0 
A TZ(' 

for every g e -9). 

The proof of Proposition 2 is based on some refined version of the equivalence 
of ensembles imposed by the necessity of proving convergence in dX rather than 
in the usual L2-sense. To get a feeling for the meaning of convergence in dX we 
state a criterion which will be used extensively in the sequel. 

LEMMA 3. Let 4 satisfy (3.2). For a sequence {A} of cubes centered at the 
origin let f\ X E A with K fA) = 0 and such that 

(4.1) lim IAI( fA2) = 0. 
A T zd 

Then 
(4.2) lim < fAfA) = 0. 

A T Zd 

PROOF. Let 1 be the side of the cube A. Then by (3.3) 

fAI fA) E < fATx fA) 
x 

(4.3) + E JATx A ) + E JATx JA) 
Ixl>2{ Ix?<2{ 

< 2d 'AIf<A2) + <fA2)AIdAI L exp(-a[Ixl - t]), 
IxI>2{ 

which proves (4.2). D 

The proof of Proposition 2 is obtained in two steps. In the first one we show 
that Fr(g):= px(gln(A), rA) and 1X(n(A)/jAj)(g) with X(p) implicitly defined by 

x(t,)(,q(O)) = p are close, in the sense that 

lim JAI((A(g) - 1x(n(A)/IAI)(g))2) =? 

This content downloaded from 192.150.195.23 on Mon, 20 Jan 2014 05:29:50 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


EQUIVALENCE OF FLUCTUATION FIELDS 417 

By Lemma 3 this implies closeness in Xi. In the second step, we expand 
,(,,( 0)/l XI)(g) in powers of ((n(A)/IAI) - po). Here po is the density of the Gibbs 

state we are considering and which was previously denoted by p. X( is the 
corresponding chemical potential, i.e., A(po) = AO. We have [for small 
((n(A)/IAl) - po), the other values will be neglected because of large deviation 
estimates], 

___) n(A) 
2 

(4.4) iX(fl(A)/IAI)(g) = /I,(g) nA+ ( AJX. ) 2 
where MA' and pi'A denote the first and the second derivatives of /i(p)(g) with 
respect to p and X0 is some value between Ao and X(n(A)/IAI). By assumption 
,Af ,(g) = 0 and it will be easy to show that the last term in the r.h.s. of (4.4) 
vanishes as A T Z d in 9X'. The above strategy can be straightforwardly imple- 
mented when d = 1. The crucial point is that the dependence of FA(g) on qA' in 
one dimension goes like 1/IAI hence can be neglected by Lemma 3. In d ? 2 the 
same estimates show that FA(g) changes with SAC of the order I dA 1/1 A J JA - 1/2. 
At first sight, one would conclude that FA(g) - /X(n(A)/1A1)(g) does not tend to 
zero in the sense of Lemma 3. But we will show that FA(g) can be approximated 
by X(n(A)/IA, 71\{)(g) where A(n(A)/IAI, '1A') still depends on rlA' cf. Proposition 
3 and (4.7). We expand then /X(n(A)/IAjqA1,)(g) in powers of ((n(A)/IAI) - po) and 
compare the terms of this expansion with those arising from expanding 
PX(n(A)/1\)(g). Their difference will be shown to be negligible in the sense of 
Lemma 3. 

PROPOSITION 3. Let D satisfy (3.2). For every outside configuration rlA we 
define the function p - Xp, PAA 0 < P < 1, implicitly by 

(4.5) |A| IPX(p 7N C(n(A)|NA') = P- 

Then for every bounded A c Zd there exist a bounded set AO, and constants 
z, k > 0, independently of rqAC such that the following holds: for any A D A(, 
for any px = n(A)/JAI such that 

(4.6) IPA - POI < Z, 

and foranyg eJA, IgI < 1, 

(4.7) |FA(g) - P(PAA) (g) ? < kjAJ/jA 
and X( pA, A) satisfies (3.2). 

REMARKS. (i) The dependence of the canonical measure on rA'X given n(A), 
is not exponentially small as it is for the corresponding Gibbs measure in the high 
temperature, low density domain. In fact it behaves as IdA I/IA I: first note that 
XA p\, q ( ) changes with rlA' of the order I dAI/IAI and then use (4.7) together with 
the smooth dependence of pX(g) on A. 

(ii) If we keep rlA fixed and vary N by AN, pX(gjn(A) = N, rlA ) changes by 
order AN JAI-'. Thus for typical fluctuations of the particle number, i.e., 
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418 DE MASI, PRESUTTI, SPOHN AND WICK 

AN A Il72, the change is of order IAKI-/2. As a consequence the choice of the 
Gibbs measure which approximates the canonical measure with error - JAI` 
requires a very accurate choice of the chemical potential [the one of (4.5), which 
cannot be taken independently of SAC and of N]. 

PROOF OF PROPOSITION 3. The proof uses a local central limit theorem 
estimate with a sharp control on the error term. The connection with the local 
theorem comes from the remark [Dobrushin and Tirozzi (1977)] that 

(4.8) ~ A = (f}I{n(A) = N}, 81A ) _,X({n(A) = N}J{71A = (X},77A ) 

(4.(8T)= WI}qf) iA({n(A) = N}JIrA') 

for a given configuration (A in A and for N < IAI. 
The local theorem estimate gives for the denominator in the r.h.s. of (4.8) 

(2,IAI) 12 exp{ - (N - N )2/2a 1 AI} (1 + error), 

where N is the mean of n(A). 
In order to have the accuracy dictated by (4.7) we can only allow for an error 

which goes as I A I-1. The usual error bound proven in local theorems is of the 
order I A K'7l/2 and is uniform in N. However, in computing probabilities near the 
mean (N = N + 0(1)) the error drops to IA I-1. This result-well known for 
Bernoulli random variables-extends also to weakly dependent Gibbs random 
fields [Del Grosso (1974), lagolnitzer and Souillard (1979), and Pogosian (1979)]. 

We choose X for each given value of N and SA C so that N = N [cf. (4.5) with 
p = N/IAI.] If N and 71A in (4.8) are such that the chemical potential 
X(N/I A I, 'A) defined in (4.5) falls in the range specified by (3.2), then we have 
[Del Grosso (1974)], A 0 0, 

(4.9a) (n(N/1A1,qIC)(f(A) = NJqAC) - (2 aI2JAI) 1/2 ?< aJAK"-3/2 

(4.9b) P'X(N/1A _qAc)(f(A) = NIqAc, M = 
- 

1 

< alAJ AAIK32 

(4.9c) alF= tLX(N/1Alnc)(AI- (n(A) - N)2 IAC), 

where a is a constant, the same for all cubes A centered at the origin. (4.7) now 
follows from (4.8) and (4.9). 

To conclude the proof of the proposition we must show that X(n( A)/IAl, qA ) 
satisfies (3.2) whenever n(A) fulfills (4.6). We take z so small that for all ji with 
I - PI < 2z, the corresponding X defined by i-Aq (0)) = P satisfies (3.2). [Such a z 
exists because pA(-q(O)) = p and X satisfies (3.2).] Then for A sufficiently large 

(4.10) {X: I1X(PAIT1A`) P < Z} C {X: IJX - PI < 2z} 

uniformly in ?lA" since for A large 

(4.11) 1IX(PA I1A") - X(iq(O)) I < (const.) IAI/IAI < z 

uniformly in X and 81A - 
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We conclude that in Xr 

(4.12) lim (FAg - = 0p,\,n,\.)(Il A )) 
A T Z 

If n( A) satisfies (4.5), this follows from Proposition 3 and Lemma 3. Otherwise, 
by large deviations results [Ellis (1984)], the probability is exponentially small in 
Al. 

Note that if X(PA, q1A") satisfies (3.2) then by (3.3a) we may replace in (4.12) 
MA(P\, 7. )(gI1Ae) by Pxp 11\()(g) since their difference is exponentially small. o 

We next expand A 1\)(g) around iP 11\(g) where, to simplify notation, 
we denote by X0 the chemical potential of our (fixed) Gibbs state i(= fix,), and 
by p() its density. 

We denote the zero order term by: 

(4.13) AA =A(PO, 71A")(g) 

and first show that {A does to zero in dX. Since tt,()g) = 0 we have 

(4.14) {A = WX(g)[X(P0,'qAN) -Ao 

where ' refers to the derivative with respect to X and X is suitably chosen 
between X( and X( p0, -A ). According to Lemma 3 we have to center {A and then 
to estimate its L2-norm. Since by centering the norm decreases and since tt4X(g) is 
bounded, it suffices to estimate the L2-norm of X(p0, qA') - X0. 

LEMMA 4. For a hypercube A let dA be its boundary and 

(4.15) 3A = {x E A: d(x, dA) < (logIA 1)2}. 

Then there exists a constant a, independent of A, such that 

(4.16) (1X(Po, qA ) - ?o)2 < a(ISAI/A1)2 
and therefore 
(4.17) lim K4AIA) = 0. 

A T1d 

PROOF. Let F(-, qA') be the inverse function of p X(Pp, qA') i.e., 

(4.18) F(, -qAt) := [tjn(A)/JAJ I-A')- 

We already know that when A T Zd, X(p0, MAc') goes to X0 uniformly in qA' We 
expand 
(4.19) F(X, ?1A') = F(X0, ?1A') + F'(X, ?1A")(x - X0) 

where X is between X and X0. Since 

(4.20) F'(X, qA'') = E IA| 1A(n(XA(Y))INA") 
.x, y E A 

with 7(x) = 71(X) - yj(X)I7jA), and since 

(4.21) -X(((7 ) Po)(7q(x) - p0) > 0, 
x 
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F'( X, - a. ) is bounded away from zero uniformly in -qA' for large A, provided in 
(4.19) A is in a suitably small neighborhood of A. From (4.19) and (4.18) for A 
large enough and all qA' we have 

(4.22) M(pox 81A') - A0 = K(A(po0, , A, l AC)( PO - F(A7,, T()) 
with K((A, A, NA') = F'(, BA')-1. K is uniformly bounded in qA. 

We have to show then that there exists a constant a I, such that 

(4.23) K(F(AoX 7,A ) - P ?)2 < a1(kSAI/IAI)2. 

We have 

((F(X0, 71A)) - ) 

(4.24) = A2 1 tx:J)--Po~M) (4-24) = JIA E (['X(,(71(X) - POI71A")PA(,(7(Y) P()I71A'))- 
x, yE A 

Because of the exponential decay of the correlations there exists a2 such that 

(4.25) L -1'Xj(7(X) POI-qAC) ? < a2IA \ 8A1/1A12, 
xE A\8A 

Therefore 

(F(X0, ?)A) - ) 2a2/lA12 + JAI A2 ( ( E (n(x) Po)| 1Ac), 

(4.26) ?2?11211 \[ xE3A ] I )j/ 

? 2a21A12+ 
IA2~LX([ XE 3A] 

< 2a2/ A12 + a3IAI2ISAI2. [ 

PROOF OF PROPOSITION 2. Using (4.12), Lemma 4 and Lemma 3 we only have 
to show that 

(4.27) lim IAI([A(p\6)(g) - /A(,4\/)(g) - a(g)(pA - Po)I2) = 0- 

We denote by X(PA, NA() the characteristic function of the event "A(PA, NA(') 
satisfies (3.2)." In the set {X(PA, 1A~) = 1} we expand pA~(px n)(g) - y~( )g 

around p0) and we obtain 

(4-#28) x(PAX1A')[Ap~(P,,<AC)(g2(PA Po) + PJAI,721c)(g)(PA - Po)21 

where OF, " denote the first and second derivatives of n )(g) with respect to 
p and ? is suitably chosen between pA and PA = n( A )/I Al. A large deviation 
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result, Ellis (1984), shows that we can neglect 

(1 - X(PA, nA')) A(p()q\jc)(PA 
- PO) + (A-(p\,n)(9) AX(,\,)(g)) 

since its L2-norm is exponentially small in JAI. (4.27) follows then from the fact 
that there exists a constant a > 0 so that [A'((g) = a(g) = d/dpyx(p,(g)Jp=p( 
below] 

(- 1x((g) < aldAJ/JAJ, 

X(PAO, n) 1X(g0,?))(g) ? < a 

(4.29) K(PA - po)2) ? aIAK1 
((PA - PO) < aJAJ-2 

KPA - ?O) aJA -2. 
For d = 1 we follow the same proof and use (i) the analyticity of the pressure 

in a complex neighborhood of the chemical potential X uniformly in the region A 
and (ii) the exponential decay of the correlations [Cassandro and Olivieri (1981) 
and Dobrushin (1973)]. E1 

5. Equilibrium fluctuations for exclusion processes of gradient type. 
We want to prove that for exclusion processes with speed change 

(5.1) lim Yq() 

exists as a process with values in 5'(R d) and that the limit is an infinite-dimen- 
sional Ornstein-Uhlenbeck process. In general even in one dimension or with the 
smallness condition (3.2) this problem is open. However with a further condition, 
called gradient type, (5.1) can be established. All zero-range processes and 
Brownian particles interacting by a pair potential are of gradient type [Brox and 
Rost (1983) and Spohn (1986)]. The meaning of this condition is more fully 
explored in De Masi et al. (1984). 

To motivate our definition let us first consider the simple symmetric exclusion 
process defined by 

(5.2) c(x, y,) =2p(x -y)(n(x) - 

with p(x) = p(-x). Then 

(5.3) L-(O) = Zp(x)(-q(x) - (0)). 

A more general class of systems is obtained by requiring (5.3) but with q(x) 
replaced by Th for some h E 90. 

DEFINITION 3. An exclusion process with speed change is said to be of 
gradient type if there exist hm E 90 and functions Pm on Z d of bounded support 
with ZXp,7,(x) = 0, EXXPm(X) = 0, m = 1,..., M such that 

M 

(5.4) L-q(0) = E Epm(x)Txhm(l). 
m=1 x 
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422 DE MASI, PRESUTTI, SPOHN AND WICK 

In one dimension with nearest-neighbor jumps depending on the nearest 
neighbors of the bond only, for a given temperature the jump rates satisfying 
detailed balance depend on four free parameters. The gradient condition then 
singles out a two-dimensional hypersurface in this parameter space [Katz et al. 
(1983) and Spohn (1982)]. 

For a gradient system the bulk diffusion matrix is given by: 

(5.5) Dij = (4X)Z 1xixc(,x,)((x) - ())2 
x 

i, I = 1,.. ., d with x = (x1,..., Xd) [Spohn (1982)]. D > 0, as a matrix because 
of (1.1). Given D we define the Gaussian kernel 

d 
(5.6) C1(q) = x(2rgtl) d/2(det D) 1/2exp[ E qiDiJl1q/2JtJ]. 

THEOREM 2. Let the jump rates of the exclusion process -t be of gradient 
type. Let either d = 1 or d ? 2 with the potential ( and p satisfying the 
smallness condition (3.2). Then: 

(i) 

(5.7) lim E (Yt/((P 1) Ys ( 02)) ddR Jdq'(PI(q)C1t-1(q - q')cP2(q') 

with Ct(q) given by (5.6) and D by (5.5). 
(ii) Let PF be the path measure of Yt-(*) considered as a stochastic process on 

D(R , -,92'(Rd)) and let P be the path measure of the Gaussian process on 
D(R , f,'(R d)) with mean zero and covariance (5.7). Then weakly 

limPF = P. 
? 0 

PROOF. Given (2.1) and the gradient type assumption part (i) follows by the 
same argument as in Brox and Rost (1983), cf. also De Masi et al. (1984), Section 
5, and Holley and Stroock (1978). Assuming Theorem 1 and the gradient type 
assumption, Part (ii) is proved in De Masi et al., Section 6. E 
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