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Abstract

We study the one-dimensional stationary solutions of the integro-differential
equation which, as proved in Giacomin and Lebowitz (J Stat Phys 87:37–61,
1997; SIAM J Appl Math 58:1707–1729, 1998), describes the limit behavior of the
Kawasaki dynamics in Ising systems with Kac potentials. We construct stationary
solutions with non-zero current and prove the validity of the Fourier law in the ther-
modynamic limit showing that below the critical temperature the limit equilibrium
profile has a discontinuity (which defines the position of the interface) and satisfies
a stationary free boundary Stefan problem. Under-cooling and over-heating effects
are also studied: we show that if metastable values are imposed at the boundaries
then the mesoscopic stationary profile is no longer monotone and therefore the
Fourier law is not satisfied. It regains its validity however in the thermodynamic
limit where the limit profile is again monotone away from the interface.

1. Introduction

When hydrodynamic or thermodynamic limits are performed in systems which
are in the phase transitions regime, we may observe perfectly smooth profiles
develop singularities with the appearance of sharp interfaces. We shall study the
phenomenon in stationary non-equilibrium states which carry non-zero steady cur-
rents; the general context is the one where the Fourier law applies, but here it is
complemented by a free boundary problem due to the presence of interfaces. We
work at the mesoscopic level considering a model which has been derived in [5,6]
from Ising systems with Kac potentials and Kawasaki dynamics, and derive in the
hydrodynamic limit macroscopic profiles with interfaces which satisfy a stationary
Stefan problem and obey the Fourier law.

The mesoscopic model is defined in terms of a free energy functional, the
Lebowitz and Penrose (L–P) functional (see (2.1) in the next section) which is a
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non-local version of the scalar Ginzburg–Landau (or Allen–Cahn or Cahn–Hilliard)
functional. Its thermodynamic free energy density is obtained by minimizing the
L–P functional over profiles with fixed total magnetization density, and then tak-
ing the thermodynamic limit where the spatial size of the system diverges. It is
found that the phase diagram (of free energy density versus magnetization density)
obtained in this way has a non-trivial flat interval [−mβ,mβ ] (indicative of a phase
transition) when the inverse temperature β is above the critical value (equal to 1
here). This is in qualitative and quantitative agreement with the thermodynamics
of the underlying Ising model with Kac potentials; see Chapter 9 in [10] and ref-
erences therein. The axiomatic theory for such phase diagrams predicts that the
values inside (−mβ,mβ) do not appear in any stationary local equilibrium state,
so that a macroscopic magnetization density profile will have a discontinuity if it
assumes values both smaller than −mβ and larger than mβ .

This is just what we see. We fix β > 1 and study the stationary solutions of the

equations of motion
dm

dt
= −div I , that is div I = 0, I the local current (of the

conserved order parameter, the magnetization density m here). By a gradient flow
assumption on its constitutive law, I is supposed proportional to the gradient of the
functional derivative of the L–P functional: due to the non-local structure of the lat-

ter,
dm

dt
= −div I is an integro-differential equation (see (2.19) in the next section),

which is the same as the one derived by Giacomin and Lebowitz from the Ising
system [5,6], and which has been much studied in the past years [1,7,8]. We look
for solutions of div I = 0 with a planar symmetry, thus reducing to a one dimen-
sional problem, and prove existence and smoothness of solutions with a steady
non-zero current. However in the hydrodynamic limit where the size L of the sys-
tem diverges, the stationary profile, once expressed in macroscopic space units (that
is, proportional to L), is proved to converge to a discontinuous limit profile, solution
of a stationary free boundary problem, the stationary Stefan problem, in agreement
with the axiomatic macroscopic theory. The mesoscopic theory is in this respect in
complete agreement with the macroscopic one; the mesoscopic profiles are smooth
versions of the macroscopic ones. They are monotone as well and the current is
proportional to [minus] the magnetization density gradient in agreement with the
Fourier law, which we may then say to be valid at the mesoscopic level as well.

The mesoscopic theory has, however, a richer and more complex structure even
in the macroscopic limit. This is seen for instance if we impose boundary conditions
which force metastable values at the boundaries, the metastable region being made
of two separate intervals called the plus and the minus metastable phases (accord-
ing to the sign of the magnetization) which (together with the spinodal region) are
contained in the “forbidden region” (−mβ,mβ). With boundary conditions, one in
the minus, the other in the plus metastable phases, the mesoscopic stationary mag-
netization density profiles are not monotone anymore. We have the “paradoxical”
result of a positive [magnetization] current when the total magnetization gradient is
also positive, having fixed at the left and right, respectively, a negative and a positive
metastable value of the magnetization. The mesoscopic stationary profile is then
first decreasing, then increasing and then again decreasing. The Fourier’s law is
therefore not satisfied but, in the thermodynamic limit, the region where the profile
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increases shrinks to a point, which is where the limit profile has a discontinuity
(a sharp interface). Elsewhere the profile is always decreasing in agreement with
the Fourier’s law (as the current is positive). The stationary profile, therefore, has
values all in the metastable region (except at the interface, which macroscopically
is only a point). All the issues presented in this introduction are discussed in more
detail in the next section; proofs are given in the remaining ones.

2. Model, Backgrounds and Main Results

The free energy functional to which we have been referring so far is defined on
functions m ∈ L∞(�, [−1, 1]), � a bounded measurable subset of R

d , as

Fβ,�(m|m�c) = Fβ,�(m)+ 1

2

∫
�

∫
�c

J (x, y)[m(x)− m�c(y)]2dx dy

Fβ,�(m) =
∫
�

φβ(m)dx + 1

4

∫
�

∫
�

J (x, y)[m(x)− m(y)]2dx dy,
(2.1)

where J (x, y) = J (|x − y|) is a smooth, translational invariant, probability kernel
of range 1; m�c ∈ L∞(�c, [−1, 1]) is a fixed external profile and

φβ(m) = −1

2
m2 − 1

β
S(m), −S(m) = 1 + m

2
log

(
1 + m

2

)
+ 1 − m

2
log

(
1 − m

2

)
.

(2.2)

To simplify the analysis we suppose � a cube and consider Neumann boundary
conditions, namely the functional

Fneum
β,� (m) =

∫
�

φβ(m)dx + 1

4

∫
�

∫
�

J neum(x, y)[m(x)− m(y)]2dx dy, (2.3)

where J neum(x, y) =
∑

z∈R�(y)
J (x, z) with R�(y) the set image of y under

reflections of the cube � around its faces. In d = 1, if � = ε−1[−1, 1],
J neum(x, y) = J (x, y)+ J (x, 2ε−1 − y)+ J (x,−2ε−1 − y) (ε > 0 is a scaling
parameter which will vanish in the thermodynamic limit). With minor modification
what follows in the next item, “Equilibrium thermodynamics”, holds as well for
general boundary conditions as those considered in (2.1).

2.1. Equilibrium Thermodynamics of the Mesoscopic Model

(The statements in this paragraph are proved in Section 6.1 of [10]). The ther-
modynamic free energy density aβ(s), s ∈ [−1, 1], is defined as

aβ(s) := lim
�→Rd

inf

{
Fneum
β,� (m)

∣∣∣∣
∫
−
�

m dx = s

}
(2.4)

The limit on the right-hand side exists and it is equal to:

aβ = φ∗
β = convex envelope of φβ(·) (2.5)
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φ∗
β ≡ φβ when β � 1 and φ∗

β �= φβ when β > 1. More precisely let mβ be the
positive solution of

mβ = tanh{βmβ}, β > 1, (2.6)

then φ∗
β(s), s ∈ (−mβ,mβ), is constant and strictly smaller than φβ(s), while

φ∗
β(s) = φβ(s) elsewhere. The values of the magnetization in the interval
(−mβ,mβ) are “forbidden”. This is best seen working in the grand canonical
ensemble (in other words, using Lagrange multipliers). To this end we add a con-
stant magnetic field h so that the free energy functional becomes

Fneum
β,h,�(m) = Fneum

β,� (m)− h
∫
�

m dx . (2.7)

The grand canonical thermodynamic pressure pβ(h) is defined by a minimization
problem without constraints:

pβ(h) = lim
�→Rd

sup
{
−Fneum

β,h,�(m)
∣∣ m ∈ L∞(�, [−1, 1])} . (2.8)

Existence of the limit is, again, a fact, and the thermodynamics defined by the free
energy aβ and by the pressure pβ are equivalent, a property called in statistical
mechanics “equivalence of ensembles”. Namely, pβ and aβ are interrelated as in
thermodynamics, one being the Legendre transform of the other:

pβ(h)= sup
{
hs − aβ(s) | s ∈ [−1, 1]}, aβ(s) = sup

{
hs − pβ(h) | h ∈ R

}
.

(2.9)

For any β > 1 and any h ∈ R, any maximizer of (2.8), at least for� large enough,
is a constant function equal to mβ,h where mβ,h is the solution of the mean field
equation

mβ,h = tanh{β(mβ,h + h)}, (2.10)

which minimizes φβ(s) − hs and therefore it is not in (−mβ,mβ), the values in
(−mβ,mβ) “are therefore forbidden”.

2.2. Gibbsian Equilibrium Thermodynamics

The thermodynamics obtained above are in qualitative and quantitative agree-
ment with the thermodynamics of the underlying microscopic model, that is, the
Ising system with Kac potential. The Gibbs canonical equilibrium free energy
fβ,γ (m) is defined as

fβ,γ (m) := lim
δ→0

lim
�n→Zd

−1

β|�n| log Z�n ,β,γ (2.11)

Z�n ,β,γ =
∑

σ�n ∈{−1,1}�n

1

⎛
⎝|

∑
x∈�n

(σ�n (x)− m)| � δ|�n|
⎞
⎠ e−βHγ,�n (σ�n ),
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where �n is a sequence of increasing cubes and

Hγ,�(σ�) = −1

2

∑
x �=y∈�

Jγ (x, y)σ�(x)σ�(y), Jγ (x, y) = γ d Jγ (γ |x − y|).

(2.12)

(The same free energy is obtained for more general regions and boundary condi-
tions). As discussed in Chapter 9 of [10], in d � 2 for any β > 1 and γ > 0 small
enough, fβ,γ (m) is flat in an interval [−mβ,γ ,mβ,γ ] and mβ,γ → mβ as γ → 0
(in d = 1 fβ,γ is instead strictly convex for any γ > 0). The original result has
been proved in [3] and [2] while the fact that in any d � 1, lim

γ→0
fβ,γ (m) = aβ(m)

is much older and proved by Lebowitz and Penrose [9].

2.3. Axiomatic Non-equilibrium Macroscopic Theory

The basic postulates are (i)–(iv).
(i) local equilibrium and barometric formula. The free energy of a macro-

scopic profile m in the macroscopic (bounded) region	 ⊂ R
d is given by the local

functional:

Fmacro
β,	 (m) :=

∫
	

aβ(m) dx, m ∈ L∞(	, [−1, 1]). (2.13)

(ii) gradient dynamics. The evolution equation in the interior of 	 is the con-
servation law (D below denoting functional derivative)

dm

dt
= −∇ · j, j = −χ∇DFmacro

β,	 = −χ∇a′
β, a′

β(s) := daβ(s)

ds
.

(2.14)

(iii) mobility coefficient.χ is a mobility coefficient which depends on the dynamical
characteristics of the system. we take

χ(s) = β
(

1 − s2
)
, (2.15)

as this is what is found when deriving (2.14) from the Ising spins [5,6,8].
In the usual setup for Fourier law 	 is a parallelepiped and different values of

the order parameter are imposed on its right and left faces, while Neumann (or peri-
odic) conditions are imposed on the other faces. By assuming a planar symmetry the
problem becomes one dimensional, and from now on we are restricted to d = 1 tak-
ing	 = [−�, �]. A stationary profile m is then an element of C1((−�, �), [−1, 1])
such that

Dβ
dm

dx
= − j = constant, Dβ(m) = χ(m)a′′

β(m), (2.16)

where j is the constant current flowing in the system. (2.16) is then supplemented
by Dirichlet boundary conditions at ±�, namely m(x) → m± as x → ±�. When
β < 1, Dβ > 0 and the problem has a unique solution, while when β > 1,
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Dβ(m) = 0 when m ∈ (−mβ,mβ) and in the present formulation the problem has
no solution if m− < −mβ and m+ > mβ (or vice-versa). The theory then needs a
further postulate:

(iv) The stationary Stefan problem. Suppose β > 1 and boundary conditions
m− < −mβ and m+ > mβ (the opposite case, m− > −mβ and m+ < −mβ being
recovered by symmetry). We then say that m is stationary if there is x0 ∈ (−�, �) so
that m is stationary in the sense of (2.16) both in (−�, x0) and (x0, �)with boundary
conditions m−,−mβ and, respectively, mβ,m+, with the additional condition that
there is a same current j in both regions. The profile m(x) is therefore discontinuous
at x0 and we say that at x0 there is a sharp interface which separates the positive
and negative phases.

A different formulation of the problem is, however, more convenient for our
purposes. We start by a change of variables, going from the magnetization m to
the magnetic field h. There is a one-to-one correspondence between the two when
{m � mβ} and {h � 0}, as well as when {m � −mβ} and {h � 0}. We set
h = a′

β(m); its inverse gives m as a function of h which is obtained by solving
m = tanh{βh + βm}. Expressed in terms of the magnetic field, (2.16) becomes

h(x) =
∫ x

x0

− j

χ(m)
dx ′, m = (a′

β)
−1(h). (2.17)

In (2.17), χ(m) = χ(m(h)) is regarded as a function of h and (2.17) becomes an
integral equation in h(·) where, however, x0 and j are also unknown; they must be
determined by imposing the boundary conditions h(±�) = h± := a′

β(m±). All this
suggests a new formulation alternative to the Dirichlet problem where we assign
x0 and j instead of m±. In this way the Stefan problem is written in a compact
way as in (2.17) above, which is now a “pure” integral equation for h(·) with x0
and j known data. Clearly any solution of (2.16) defines a solution of (2.17) and
vice-versa. In the sequel we shall mostly use the formulation (2.17) when proving
that the Stefan problem with assigned x0 and j can be derived from the mesoscopic
theory.

As a difference with the Dirichlet problem, in the “x0, j problem” there is no
“global existence theorem”, in the sense that given x0 and j there are no solutions
if � is too large. Take the antisymmetric solution of (2.16) with x0 = 0 and j < 0.
It can be easily seen that Dβ(m) is strictly positive for all m ∈ [mβ, 1] (actually
it can be seen that Dβ(m) → 1 as m → 1) so that m(x) reaches the value 1 at
some � j < ∞, and therefore the problem with (x0 = 0, � > � j ) has no solution. In
conclusion (2.17) with x0 = 0 and j < 0 has a “maximal solution” (m j (x), h j (x)).
Namely, there is a bounded interval (−� j , � j ) such that

lim
x→±� j

m j (x) = ±1, lim
x→±� j

h j (x) = ±∞. (2.18)

Equation (2.17) has no solution if � > � j , while any other solution of (2.17) with
the same j is obtained, modulo translations, by restricting the maximal solution to a
suitable interval contained in (−� j , � j ). The collection of all the maximal solutions
(m j (x), h j (x)) when j ∈ R \ {0} determines, in the sense explained above, all the
possible solutions of (2.17). Since � j → 0 as j → ∞ and � j → ∞ as j → 0, it
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then follows that for any � the Dirichlet problem with data m± at ±� (m+ �= m−,
m± in the complement of [−mβ,mβ ]) can be obtained as described above from the
collection of all the maximal solutions. By taking limits we can also include mβ

and −mβ .
By restricting to intervals strictly contained in the maximal interval [−� j , � j ],

the solution (m, h) of (2.17) is smooth, ‖m‖ < 1, χ(m) bounded away from 0
and ‖h‖ < ∞. These are the properties of the macroscopic solution which will be
repeatedly used in the sequel.

2.4. Mesoscopic Theory and Stationary Profiles

Dynamics are defined using the same postulate of the macroscopic theory, that
is, they are the gradient flow of the free energy functional which, in the mesoscopic
theory is (2.3) (supposing again Neumann conditions). The gradient flow is (D
below denoting functional derivative)

dm

dt
= −∇ · I, I = −χ∇ (DFβ,�

)

I = −χ∇
(

1

2β
log

1 + m

1 − m
−
∫

J neum(x, y)m(y) dy

)
.

(2.19)

With the choice χ = β(1 − m2) (that we adopt hereafter) (2.19) becomes the one
found in [5,6] from the Ising spins. We suppose, again, a planar symmetry to reduce
to one dimension, take� = ε−1[−�, �] interpreting ε−1 as the ratio of macroscopic
and mesoscopic lengths so that (2.19) becomes

dm

dt
= − d

dx

(
−dm

dx
+ β(1 − m2)

d

dx
J neum ∗ m

)
. (2.20)

As in the macroscopic theory, it is now convenient to change variables. Define h(x)
as

h := 1

2β
log

1 + m

1 − m
− J neum ∗ m. (2.21)

Then the current I in (2.19) has the expression

I = −χ(m)dh

dx
, m = tanh{β J neum ∗ m + βh}. (2.22)

The stationary mesoscopic problem in the x0, j formulation. Given any x0 ∈
(−�, �) and j < 0, find

(m, h) ∈ Xε,� := L∞(ε−1(−�, �); [−1, 1])× L∞(ε−1(−�, �); R)

so that

m = tanh{β J neum ∗ m + βh}, h(x) =
∫ x

ε−1x0

−ε j

χ(m)
dx ′. (2.23)
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Denoting by (mε, hε) a solution of (2.23) we define:

(m(ε), h(ε)) ∈ X1,�, (m(ε)(x), h(ε)(x)) = (mε(ε
−1x), hε(ε

−1x)). (2.24)

We first consider the simpler case where x0 = 0 and look for solutions where m
and h are both odd functions.

Theorem 1. Let j �= 0, x0 = 0, � > 0 and smaller than � j (see (2.18)). Then for
any ε > 0 small enough there is a continuous, antisymmetric pair (mε, hε) ∈ Xε,�
which solves (2.23); hε and mε are both strictly increasing if j < 0 and strictly
decreasing if j > 0. Moreover the pair (m(ε), h(ε)) defined in (2.24) converges
as ε → 0 to the pair (m, h) ∈ X1,� solution of the Stefan problem (2.17) in the
following sense: for any δ > 0

lim
ε→0

sup
|x |>δ

(
|m(ε)(x)− m(x)| + |h(ε)(x)− h(x)|

)
= 0. (2.25)

Remarks. (a) Theorem 1 is proved in Section 3 and in Appendices A, B and C. The
proof is based on a fixed point argument. We shall prove that in a suitable subset
of Xε,� the following map is well defined: given a function h, solve the first one in
(2.23) to get m and use the second one to find the new h. Existence of a fixed point
is proved by showing convergence of the iterates hn and of the corresponding mn .
Since x0 = 0, if we start with an antisymmetric function, the whole orbit remains
antisymmetric and indeed the limit macroscopic solution is antisymmetric as well.
As we shall see, restricting to the space of odd functions greatly simplifies the
problem. We start the iteration from a profile m0 which is almost a fixed point: m0
is in fact the [scaled by ε−1] macroscopic solution away from 0, while it is equal to
the “instanton” (the “diffuse interface” defined in Section 3) in a neighborhood of
0 (in sup-norm). We shall prove that all the profiles mn obtained by iterating (2.23)
are contained in a small neighborhood of m0 and that the iterates converge in sup-
norm to a continuous limit profile m. Also, the corresponding magnetic fields hn

converge in sup-norm to a continuous limit h and the pair (m, h) is the desired fixed
point which solves (2.23). The crucial point in the analysis is to control the change
δm of m in the first equality in (2.23) when we slightly vary h by δh. To linear
order, δm and δh are related by (Am,h −1)δm = −pm,hδh where Am,h = pm,h J∗,
J∗ the convolution operator with kernel J , and

pm,h = β

cosh2{β J neum ∗ m + βh} (2.26)

pm,h = χ(m) if m = tanh{β J neum ∗ m + βh}. (2.27)

(The equality pm,h = χ(m) in (2.27) will be often exploited in the sequel). Thus
δm = L−1

m,h(−pm,hδh), provided Lm,h := Am,h − 1 is invertible. In [4] it is shown
that the largest eigenvalue of Lm,h converges to 0 as ε → 0 and that there is a
spectral gap bounded away from 0 uniformly in ε. By restricting to odd functions
the leading eigenvalue disappears (because the corresponding eigenvector is an
even function) and the invertibility problem can then be solved. As is clear from
this outline the proof does not give uniqueness, which is left open.
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(b) With Neumann conditions the non-local convolution term is completely
defined, but since the evolution also involves derivatives other conditions are needed
to determine the solution: our choice was to fix j and x0. Dirichlet conditions would,
instead, prescribe the limits m± of m(x) as x → ±ε−1�. There are two types of
boundary conditions here, those which fix m outside the domain and are used to
define the convolution (in our case replaced by Neumann conditions), and those
which prescribe the values of m when going to the boundary from the interior (in
our case are replaced by j and x0). The distinction is not as clear in other models
as, for instance, in the Cahn–Hilliard equation. We are indebted to N. Alikakos and
G. Fusco for many enlightening discussions on such issues.

We have a slightly weaker result when x0 �= 0 (as we do not have a full control
of the zeros of m and h).

Theorem 2. Let j �= 0 and x0 �= 0 in (−�, �) with dist(x0, {±�}) < � j . Then
for any ε > 0 small enough there is a pair (mε, hε) ∈ Xε,� which solves (2.23)
in ε−1(−�, �) with the following properties: (mε, hε) is continuous, there is xε ∈
ε−1(−�, �) such that hε(xε) = 0, εxε → x0 (see (G.26) in Appendix G), the pair
(m(ε), h(ε)) defined in (2.24) converges as ε → 0 to the pair (m, h) ∈ X1,� solution
of the Stefan problem (2.17) in the sense that for any δ > 0

lim
ε→0

sup
|x−ε−1x0|>δ

(
|m(ε)(x)− m(x)| + |h(ε)(x)− h(x)|

)
= 0. (2.28)

Remarks. (a) Theorem 2 is proved in Section 4 and in Appendices D, E, F and
G, where we derive explicit bounds on the speed of convergence. The idea of the
proof is as follows. By Theorem 1 we can construct a quasi-solution (m0, h0) of
(2.23) with an error which around the interface ε−1x0 is exponentially small in ε−1

(we shall exploit this with the introduction of suitable weighted norms). (m0, h0)

is then used as the starting point of an iterative scheme similar to the one in the
proof of Theorem 1, from which, however, it differs significantly due to the absence
of symmetries. The problem is that we can no longer restrict to the space of anti-
symmetric functions, and thus need to check that the maximal eigenvalue of the
operator L obtained by linearizing the first equation in (2.23) is non-zero. We know
however from [4] that it is indeed dangerously close to zero and that it actually
vanishes as ε → 0. In our specific case, though, we can be more detailed as we
shall prove that it is negative and bounded away from 0 proportionally to ε. Thus we
can invert L but get a dangerous factor ε−1 in the component along the direction of
the maximal eigenvector, which spoils the iterative scheme as it is; it thus needs to
be modified. The idea, roughly speaking, is to slightly shift from ε−1x0 to make the
component along the maximal eigenvector smaller, which we enforce by requiring

that
∫ ε−1�

−ε−1�

hu∗dx = 0, where u∗ (whose dependence on ε is not made explicit) is

a suitable positive function on R, symmetric around ε−1x0 and which decays expo-
nentially as |x −ε−1x0| → ∞ uniformly in ε. (If u∗ was a delta at ε−1x0 we would
then recover the condition h(ε−1x0) = 0). In this way the iteration converges but
we do not have a sharp control of the zero of the magnetization profile, which may
not coincide with the zero of the magnetic field.
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Fig. 1. On the right a sketch of the diagram of φβ(m) at β > 1 where −mβ , −m∗, m∗ and
mβ are successively indicated. On the left a sketch of the stationary magnetization m(x)
when m− ∈ (−mβ,−m∗) and m+ = −m−. The profile m(x) decreases to ≈ −mβ , then
(in an interval called Iε ) increases to ≈ mβ and decreases again to m+

(b) By Theorem 1 and 2 it then follows that there are solutions of the stationary
mesoscopic equation which converge as ε → 0 to the solution of any Dirichlet
problem with m− < −mβ and m+ > mβ , or vice-versa. At the mesoscopic level,
though, the boundary values may differ from the prescribed ones but the difference
is infinitesimal in ε. We thus have a complete theory of the derivation of the Stefan
problem from (2.23), gaining a deeper insight on the sense in which the values in
(−mβ,mβ) are forbidden. At the mesoscopic level, in fact, such a restriction is
absent and in the approximating profiles (mε, hε), which at each ε solve (2.23),
the values in (−mβ,mβ) are indeed present in mε . However, the fraction of space
where they are attained, which we shall prove to go as ε log ε−1, becomes negligible
as ε → 0. They concentrate at the interface, which in macroscopic units becomes a
point and in mesoscopic units is described to leading order by the instanton which
converges exponentially fast to ±mβ .

2.5. Limits which do not Satisfy the Stefan Problem

So far, we have studied cases where the mesoscopic stationary solution con-
verges in the limit ε → 0 to the solution of the macroscopic Stefan problem. We
shall see next that it may happen that the limit exists but does not satisfy the Stefan
problem. There will be cases where the limit profile is monotone, as in Theorem
3 below, but also cases where it is not, see Theorem 4. The physical origin of the
pathology comes from under-cooling and over-heating effects which are related to
the structure of the “mesoscopic free energy”φβ(m) for m in the “forbidden” region
(−mβ,mβ). We distinguish two regions inside (−mβ,mβ), the first one [−m∗,m∗],
m∗ = √

1 − 1/β, is called “spinodal”, the other one, {mβ > |m| > m∗}, is called
metastable, see Fig. 1.

The latter splits according to the sign of m into two disjoint intervals, the plus
and minus metastable phases. In the spinodal region φβ is concave, see (2.2), while
in (m∗, 1) [as well as in (−1,−m∗)] φβ is strictly convex. At the mesoscopic level
the metastable phases look as if they were pure thermodynamic phases, as shown
in the next theorem where, for the sake of definiteness, we restrict to the negative
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phase (by symmetry the result extends to the positive one). We state without proof
the following theorem:

Theorem 3. Let j �= 0 and � > 0 small enough. Then for any ε > 0 small
enough there is a pair (mε, hε) ∈ Xε,� which solves (2.23) with mε < −m∗ in the
whole interval ε−1(−�, �) and having values in (−mβ,−m∗). The pair (m(ε), h(ε))
defined in (2.24) converges in sup-norm as ε → 0 to the pair (m, h) ∈ X1,� where

D∗
β

dm

dx
= − j, D∗

β(m) = χ(m)φ′′
β(m) = 1 − β(1 − m2). (2.29)

Thus the limit profile m satisfies a macroscopic stationary equation where the “true
free energy” aβ is replaced by the “metastable free energy” φβ , from which it
differs in the non-empty region where m ∈ (−mβ,−m∗). As its name suggests,
metastable behavior is expected only on “short time scales”. In Ising spin systems
with Kawasaki dynamics and Kac potentials on a suitable scaling limit, it is proved
in [8] that if the initial datum is in (−1,−m∗), then the limit is also in (−1,−m∗)
and it satisfies

∂m

∂t
= ∇ ·

(
D∗
β ∇ m

)
, D∗

β = 1 − β
(

1 − m2
)
. (2.30)

On much longer times, which scale exponentially in ε−1, large deviations and tun-
nelling effects enter into play with the metastable phase becoming unstable, see [1].
Such effects are lost in the mesoscopic description, where Theorem 3 shows that
there is a stationary solution which lives entirely in the negative metastable phase.

The above results refer to cases where the profile is in only a single phase,
either the plus or the minus metastable phase. Metastable behavior is not, in gen-
eral, expected when the two phases coexist. Theorems 1 and 2 go in this direction,
as they show that the whole interval (−mβ,mβ) shrinks in the thermodynamic
limit to a point, not distinguishing between metastable and spinodal values (thus
in agreement with the macroscopic thermodynamics of the model). Our next the-
orem proves that there are also stationary solutions of (2.23) where the plus and
minus metastable phases coexist; the stationary profile however is not monotonic,
see Fig. 1.

Theorem 4. Let j > 0. Then for any � small enough there is an antisymmetric pair
(mε, hε) ∈ Xε,� which solves (2.23) and such that (m(ε), h(ε)) defined in (2.24)
converges as ε → 0 and in the sense of (2.25) to (m, h) ∈ X1,� solution of the
“metastable” Stefan problem:

h∗(x) =
∫ x

0

− j

χ(m)
dx ′, m = φ′−1

β (h∗) in(−�, �) \ {0}. (2.31)

While hε is strictly decreasing, mε , instead (to leading orders in ε), first decreases
then increases (around the origin) and then again decreases. The interval where it
increases has length Iε and ε Iε → 0 as ε → 0.
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The proof of Theorem 4 is completely similar to the proof of Theorem 1 and
is therefore omitted. We did not check that the result extends to the case x0 �= 0.
Notice finally that while the current is positive the magnetization at the right end-
point is larger than the magnetization at the left endpoint (m+ > m−) in apparent
contrast with the Fourier’s law. However, in agreement with the Fourier’s law, in
most of the space the magnetization decreases and it is only at the interface (which
shrinks to a point) that the profile increases.

3. Proof of Theorem 1

In this section we shall prove Theorem 1, which will be a corollary of three
theorems stated below and proved later in three successive appendices. For nota-
tional simplicity we suppose j < 0 and, as discussed in Remark (a) after Theorem
1, we restrict to odd functions, so that by default in this section all functions are
antisymmetric. The analysis is based on an iterative scheme which is outlined in the
next two paragraphs. We shall define a sequence (mn, hn)which for each n satisfies
the equality mn = tanh{β J neum ∗ mn +βhn} and prove that (mn, hn) converges as
n → ∞ in sup-norm to a limit (m, h) which is the desired solution of (2.23).

3.1. The Starting Element

We define h0 using (2.21) with m set equal to m0, m0 the odd function defined
for x > 0 as

m0(x) = m̄(x)1[0,ξε ](x)+ u(ε[x − ξε])1(ξε ,ε−1�](x), (3.1)

where m̄ is the instanton (see the paragraph Instanton: notation and properties in
Appendix A); ξε = xε+2n0, xε : m̄(xε) = mβ −ε, n0 a large integer independent
of ε, its value will be specified in the course of the proof of Lemma 9; as shown
in Appendix A xε scales as log ε−1. Finally, u(r), r ∈ [0, �− εξε], is the solution
of the macroscopic equation (2.17) (which in(2.17) is denoted by m). Since h0 is
obtained from m0 by (2.21) then

m0 = tanh
{
β J neum ∗ m0 + βh0

}
, (3.2)

a property which will be satisfied by all the elements of the sequence (mn, hn).
Moreover, denoting by ‖ · ‖ the sup-norm,

sup
ε

‖m0‖ � c(3.3) < 1, (3.3)

because ‖m̄‖ � mβ and ‖u‖ < 1 since � < � j , see (2.18) and the paragraph
Axiomatic non-equilibrium macroscopic theory in Section 2.
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3.2. The Iterative Scheme

As discussed in Remark (a) after Theorem 1, the idea is to define a transforma-
tion h → T (h) [from antisymmetric into antisymmetric functions] in two steps.
We first find an antisymmetric function m such that m = tanh{β J neum ∗ m + βh}
and then define for x � 0

T (h)(x) = −ε j
∫ x

0
χ(m(y))−1, m = tanh{β J neum ∗ m + βh}. (3.4)

(Here and in the sequel we drop dy from the integral). The definition of T (h) thus
rests on the possibility of finding an “auxiliary function” m which solves the second
equality in (3.4) and is such that χ(m)−1 is integrable. By construction we already
know that the auxiliary function m0 associated to h0 exists and ‖m0‖ � c(3.3) < 1
uniformly in ε. The crucial step will then be to prove that if h is “close” to h0, then
(at least for ε small enough) there is a unique m “close” to m0 so that the second
equality in (3.4) is satisfied. ‖m‖ < 1 and T (h) is thus well defined (we do not have
general uniqueness as we are in the phase transition regime: we cannot exclude that
there are other solutions not close to m0). We shall then prove recursively that all
images hn = T n(h0) are well defined and close to h0, while the auxiliary functions
mn are close to m0; moreover (mn, hn) → (m, h) in sup-norm as n → ∞. h will
then be a fixed point of T with auxiliary function m and Theorem 1 will be proved.

3.3. Notation

Our basic accuracy parameter will be εa , a ∈ (0, 1). εa defines quantitatively
the a-priori closeness to h0 (the elements hk in the iteration will actually be much
closer to h0, ‖hk − h0‖ � cε log ε−1):

‖h − h0‖ � εa, ‖ f ‖ := sup
|x |�ε−1�

| f (x)|, (3.5)

being understood that all functions we deal with in this section are odd. While the
basic accuracy parameter clearly depends on ε, a ∈ (0, 1) above as well as all the
constants that we shall write in the sequel, denoted by a, b, c and C with or without
suffixes, will be independent of ε. The existence of the auxiliary function m in (3.4)
is established next:

Theorem 5. There are constants c(3.6) > 1, α(3.6) > 0, c′
(3.6) := 2c(3.6)

α(3.6)
so that for

all ε small enough the following holds. For any h : ‖h −h0‖ � εa there is a unique
mh in the ball {m : ‖m −m0‖ � c′

(3.6)ε
a} such that mh = tanh{β J neum ∗mh +βh}

and for any h′ : ‖h′ − h0‖ � εa

|mh(x)− mh′(x)| � c(3.6)

∫ ε−1�

0
e−α(3.6)|x−y||h(y)− h′(y)|, x � 0. (3.6)
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We postpone to Appendix A the proof of Theorem 5 and proceed with the proof of
Theorem 1, observing that as a consequence of Theorem 5 if ‖h − h0‖ � εa then
T (h) is well defined (for all ε small enough) because χ(m) in the first of (3.4) is
bounded away from 0. To prove this it suffices to show that ‖m‖ < 1. By (3.6) with
mh = m and mh′ = m0,

‖m − m0‖ � c′
(3.6)‖h − h0‖ � c′

(3.6)ε
a . (3.7)

Then by (3.3) ‖m‖ � c(3.3) + c′
(3.6)ε

a < 1 for ε small enough.

Theorem 6. There are constants c(3.8) and c(3.9) > 0 so that for all ε small enough

the following holds. Let m′ and m′′ be both in the ball
{

m : ‖m − m0‖ � c′
(3.6)ε

a
}

,

then denoting by h′ =
∫ x

0

−ε j

χ(m′)
, h′′ =

∫ x

0

−ε j

χ(m′′)
,

|h′(x)− h′′(x)| � c(3.8)ε| j |
∫ x

0
|m′(y)− m′′(y)|, x > 0 (3.8)

‖h1 − h0‖ � c(3.9)ε log ε−1, h1 = T (h0). (3.9)

We postpone to Appendix B the proof of Theorem 6 and observe that since the
transformation T is well defined in the ball ‖h − h0‖ � εa we are in business
once we show that any iterate of T is in the ball ‖h − h0‖ � εa . We postpone to
Appendix C the proof of:

Theorem 7. There is a constant c(3.10) > 0 such that the following holds. Suppose
there is n such that for all k < n, hk = T k(h0) is well defined, ‖hk − h0‖ � εa

and ‖mk − m0‖ � εa, mk the auxiliary function in the definition of T (hk). Then
hn is well defined and

‖hk+1 − hk‖ � c(3.10)

(
1

2

)k

‖h1 − h0‖, k < n. (3.10)

It is now easy to prove Theorem 1. We restrict to ε > 0 so small that

2c(3.10)c(3.13)c(3.9)ε log ε−1 < εa (3.11)

(with c(3.13) defined in (3.13) below) and prove by induction that (mk, hk) exists
for all k and, moreover, ‖hk − h0‖ � εa and ‖mk − m0‖ � εa . Since the statement
is obviously true for k = 0 we only need to prove that if it is verified for k < n,
then it holds for n as well. By (3.10) and (3.9) for all k < n,

‖hk+1 − hk‖ � c(3.10)

(
1

2

)k

c(3.9)ε log ε−1, (3.12)

which, by (3.11) shows that ‖hn −h0‖ < εa (for ε small enough). Then by Theorem
5 mn is well defined and by (3.6) for all k < n

‖mk+1 − mk‖ � c(3.13)‖hk+1 − hk‖, c(3.13) = max{1, c′
(3.6)}. (3.13)
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Then, using (3.12),

‖mk+1 − mk‖ � c(3.10)c(3.13)

(
1

2

)k

c(3.9)ε log ε−1, (3.14)

which by (3.11) proves that ‖mn − m0‖ � εa . Thus the induction is proved and we
know that for all k, (mk, hk) exists, ‖hk − h0‖ � εa and ‖mk − m0‖ � εa .

As a consequence of (3.14) and (3.12), (mn, hn) → (m, h) in sup-norm with
h = T (h), m = tanh{β J neum ∗ m + βh}, and

‖h − h0‖ � cε log ε−1, ‖m − m0‖ � cε log ε−1. (3.15)

Making explicit the dependence on ε we write the limit as (mε, hε) in agreement
with the notation in Theorem 1. Recalling the definition of (m0, h0), see (3.1), we
then obtain the proof of Theorem 1 except for the statement about the monotonicity
of mε which is proved at the end of Appendix D.

4. Outline of the Proof of Theorem 2

4.1. The Macroscopic Solution

For the sake of definiteness we suppose j < 0 and x0 > 0, and for nota-
tional simplicity that the interval (−�, �) is just the interval (−1, 1). By assumption
(−1, 1) is then strictly contained in the interval of length 2� j and center x0, that
is the maximal interval where the macroscopic problem with parameters ( j, x0)

has solution (see the paragraph Axiomatic non-equilibrium macroscopic theory in
Section 2). We then write �∗ = 1+2x0 so that x0 is the middle point of the interval
[−1, �∗] and, for what said above, �∗ + 1 < 2� j so that the macroscopic problem
has a solution (mmac(x), hmac(x)), x ∈ (−1, �∗) with the following properties: it
is a smooth pair of functions antisymmetric around x0 such that ‖mmac‖ < 1 and
‖hmac‖ < ∞ (so that inf χ(mmac) > 0).

4.2. The pairs (m∗, h∗) and (mε, hε)

By Theorem 1 for any ε > 0 small enough there is a pair (m∗(x), h∗(x)),
x ∈ ε−1[−1, �∗] (dependence on ε is not made explicit) which solves (2.23) and
is antisymmetric around ε−1x0. Then there is c(4.1) > 0 so that

β � pm∗,h∗ � c(4.1) for all ε > 0 small enough. (4.1)

β � pm,h is true in general, see (2.26); instead pm∗,h∗ � c(4.1) because by (2.27)
pm∗,h∗ = χ(m∗) = β(1 − (m∗)2) and ‖m∗‖ < 1 uniformly in ε. This follows
from the inequality ‖mmac‖ < 1 because, by Theorem 1, limε→0 ‖mmac(x) −
m∗(ε−1x)‖ = 0. We next define (mε, hε):

mε(x) = m∗(x), hε(x) = h∗(x)+ Rε(x), x ∈ ε−1[−1, 1]

Rε(x) =
∫ ε−1+1

ε−1
J (x, y)[m∗(y)− m∗(2ε−1 − y)] dy.

(4.2)
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We have added the “correction” Rε to have:

mε = tanh{β[J neum ∗ mε] + βhε}. (4.3)

Lemma 8. There are r(4.4) > 0, c(4.4) > 0 and c′
(4.4) > 0 so that

∥∥∥∥dm∗

dx

∥∥∥∥ � c′
(4.4), sup

|x−ε−1x0|�r(4.4) log ε−1

∣∣∣∣dm∗(x)
dx

∣∣∣∣ � c(4.4)ε. (4.4)

As a consequence |Rε(x)| � cε1ε−1−1�x�ε−1 .

Proof. By differentiating the equality m∗ = tanh{β J neum,∗ ∗ m∗ + βh∗} (valid in
the whole interval ε−1(−1, �∗), J neum,∗ the kernel with Neumann conditions at its
endpoints) we get

∥∥∥∥dm∗

dx

∥∥∥∥ � β

(∥∥∥∥dJ neum,∗

dx

∥∥∥∥
∥∥m∗∥∥+

∥∥∥∥dh∗

dx

∥∥∥∥
)

� c,

because ‖dh∗/dx‖ � cε (as h∗ solves (2.23)), hence the first inequality in (4.4).
The second one is not as easy; it will be proved at the end of Appendix D. Using
this inequality in (4.2) we readily see that |Rε(x)| � cε1ε−1−1�x�ε−1 , c = c(4.4).

��
Thus Rε is “a small boundary field” and except for the small error Rε , χ(mε)

dhε
dx =

−ε j so that the pair (mε, hε) is “almost a solution” of the stationary problem (which
could be interpreted as a true solution of a problem with suitably redefined boundary
conditions).

4.3. An Interpolation Scheme

A natural way to obtain a true solution from a quasi-solution is via the implicit
function theorem after writing (2.23) as a single equation f (m, h) = 0 on the
space of pairs of L∞ functions. Unfortunately we do not have good control of the
derivative of f (m, h) which may, in principle, vanish. The problem simplifies if
we try to solve only the first one in (2.23) and then use the second one to rede-
fine h, which opens the way to an iterative scheme as the one used in Section 3.
The crucial step is the following: find m̃ such that m̃ = tanh{β J neum ∗ m̃ + βh̃}
knowing h̃ and that h̃ is “close” to another field ĥ, for which there is m̂ such
that m̂ = tanh{β J neum ∗ m̂ + βĥ}. To solve this problem we interpolate writing
h(t) = t h̃ + (1 − t)ĥ, t ∈ [0, 1], and pretending that for all t there is m(t) such
that m(t) = tanh{β J neum ∗ m(t)+βh(t)}, we differentiate and get an equation for

dm/dt . Its solution will then allow us to obtain m̃ as m̃ = m̂ +
∫ 1

0

dm

ds
ds.

The main point in this procedure is therefore the analysis of the equation for
dm/dt . This is (E.2) in Appendix E; here we just say that it has the form ψ =
(Am,h−1)−1φ (ψ the unknown), where Am,h = pm,h J neum∗, pm,h as in (2.26) (and
pm,h = χ(m) = β(1 − m2) because m = tanh{β J neum ∗ m + βh}), J neum∗ is the
convolution operator with kernel J neum. The non-linearity of the problem reflects
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in the fact that (m, h) above is actually (m(t), h(t)), which is itself unknown, but
the whole problem boils down to an accurate analysis of the operator Am,h in a
suitably large set of pairs (m, h) (the set A in Appendix D). The same problem has
appeared in the proof of Theorem 5, where, however, we had the great simplifica-
tion of restricting to the space of antisymmetric functions. In such a restricted space
‖An0

m,h‖ < 1 for a suitable integer n0 uniformly in ε (see Appendix A). (1− Am,h)
−1

is then equal to the convergent sum
∑

An
m,h and the bound (A.13) holds. In the

case considered in Theorem 2 we do not have symmetries, and the invertibility of
Lm,h := Am,h − 1 becomes a serious issue.

In Appendix D we shall establish fine spectral properties of Am,h for all (m, h)
in a set A. We shall prove a Perron–Frobenius theorem for Am,h regarded as an
integral operator on L∞(ε−1[−1, 1]) showing that it has a maximal eigenvalue
λ > 0, that its eigenvector u (called the ”maximal eigenvector”) has a definite sign
(taken positive) and, see Proposition 12, that there are positive constants c, c′ and
a so that for all ε small enough

0 < λ < 1 − cε, 0 < u � c′e−a|x−x0|. (4.5)

Actually, to leading order in ε, λ = 1 − C(D.9)ε, see (D.9). λ is separated from the
rest of the spectrum (spectral gap) as stated in Proposition 13.

Our strategy therefore will be to reduce to pairs (m, h) ∈ A, a task accom-
plished by showing that we can actually reduce to functions h in the very small
neighborhood G of hε defined next.

4.4. The Set G

Let b(4.7) and a(4.6) be positive parameters (specified in Appendix F), and for
any f ∈ L∞(ε−1[−1, 1])

N ( f ) := sup
|x |�ε−1

Eε(x)| f (x)|; Eε(x) :=
{

ea(4.6)(ε
−1−x) x � ε−1x0

ea−
(4.6)(x+ε−1) x < ε−1x0

(4.6)

with a−
(4.6) such that a−

(4.6)(x0 + 1) = a(4.6)(1 − x0). Recalling that hε is defined in

(4.2) and denoting by u∗ ∈ L∞(ε−1[−1, �∗],R+) the “ maximal eigenvector” of
Am∗,h∗ we define G as

G := {h : N (h − hε) � b(4.7),

∫ ε−1

−ε−1
hu∗ = 0

∥∥∥∥d(h − hε)

dx

∥∥∥∥ � ε sup
|x−ε−1x0|�(log ε−1)

2

∣∣∣∣d(h − hε)

dx

∣∣∣∣ � ε2

⎫⎬
⎭. (4.7)

4.5. The Iterative Scheme

We shall prove in Proposition 16 that if h ∈ G, then there is m such that
m = tanh{β J neum ∗ m + βh} and, moreover, (m, h) ∈ A, where A is the nice
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set with good spectral properties mentioned earlier. Thus Am,h has a maximal
eigenvalue λ with maximal eigenvector u, Am,hu = λu. In Corollary 19 we shall
prove that u is “very close” to the restriction of u∗ to ε−1[−1, 1], u∗ the maximal
eigenvector of Am∗,h∗ relative to the problem in ε−1[−1, �∗]. All this collects the
properties needed to define the iterative scheme and to prove its convergence. We
define recursively hn+1 := T (hn), n � −1, h−1 := hε , as

hn+1 = ĥn+1 −

∫ ε−1

−ε−1
ĥn+1u∗

∫ ε−1

−ε−1
u∗

, ĥn+1(x) := −ε j
∫ x

ε−1x0

χ(mn(y))
−1, (4.8)

(recalling that χ(mn) = pmn ,hn by (2.27)). The definition is well posed once we
prove that hn ∈ G for n � 0, so that there is a unique mn such that (mn, hn) ∈ A.
We shall indeed prove in Proposition 22 that N (hn+1 − hn) � cεN (hn − hn−1).
Here we use, in an essential way, the subtraction in (4.8) which subtracts [most of]
the component along the maximal eigenvector u of Amn−1,hn−1 of the “forcing term”
pmn−1,hn−1(hn − hn−1). In this way we shall prove iteratively that hn ∈ G so that
there is mn with (mn, hn) ∈ A; moreover, we shall see in Appendix G that hn → h

and mn → m as n → ∞ with m = tanh{β J neum ∗ m + βh}, h = ĥ −
∫

ĥu∗∫
u∗ ,

ĥ(x) := −ε j
∫ x
ε−1x0

χ(m(y))−1. As a consequence the pair (m, h) satisfies (2.22)
with h(xε) = 0 where xε is such that:

∫ xε

ε−1x0

χ(m(y))−1 =
∫

u∗(x)
∫ x
ε−1x0

χ(m(y))−1

∫
u∗ . (4.9)

The proof of Theorem 2 will then be completed by showing at the end of Appendix
G that xε exists and that εxε → x0 as ε → 0, see (G.26).
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A Proof of Theorem 5

Before proving Theorem 5 we introduce some notation and definitions which will
be used throughout the whole sequel.
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An Auxiliary Dynamics

To construct and compare solutions of m = tanh{β J neum ∗m +βh} for given h,
we introduce some artificial dynamics. Suppose (m(t), h(t)), t ∈ [0, 1], are smooth
functions of t and that for all t

m(t) = tanh{β J neum ∗ m(t)+ βh(t)}. (A.1)

By differentiating (A.1) with respect to t we get the identity

dm

dt
= At

dm

dt
+ pt

dh

dt
, Lt

dm

dt
= −pt

dh

dt
, Lt = At − 1, (A.2)

where pt = pm(t),h(t), pm,h as in (2.26), and At = pt J neum∗, J neum∗ the operator
on L∞(ε−1[−�, �]) with kernel J neum.

By a change of perspective we now regard (A.2) as an equation for the unknown
dm
dt with pt and dh

dt considered as “known terms”. We shall prove in this appendix
that, under suitable assumptions on h, a solution exists and it is unique. We then

“construct” m(t) := m(0)+
∫ t

0

dm

ds
and check that it verifies (A.1). The important

point is that the whole procedure works in the same way even if we ask that (A.1)
holds only at time t = 0, being a by-product of the analysis that it remains valid
for all t ∈ [0, 1]. In the actual applications, m(0) = m0 is a given, known function
which solves m0 = tanh{β J neum ∗ m0 +βh0}, h(t) = h1t + (1 − t)h0 with h0 and
h1 also known and m(t) the unknown. In particular we are interested in its value m1
at time t = 1 when h(1) = h1. (A.2) then becomes a non-linear evolution equation
and it will be crucial to prove first that Lt is invertible, so that the equation can be
written in normal form

dm

dt
= L−1

t

(
−pt

dh

dt

)
, (A.3)

and then that L−1
t
(−pt

dh
dt

)
is a Lipschitz function of m.

The Operator Am,h

The whole analysis relies on properties of the spectrum of the operator Am,h =
pm,h J neum∗ (called At when (m, h) = (m(t), h(t)) as above). We shall study Am,h

in a L∞(ε−1[−�, �]) setting and, since we want to prove that Am,h −1 is invertible,
it is crucial to prove that 1 is not in the spectrum of Am,h . Regarded as an operator

on L2
(
ε−1[−�, �], p−1

m,h(x)dx
)

, Am,h is self-adjoint; it has a maximal eigenvalue

λm,h which is positive and the corresponding eigenvector um,h , called the maximal
eigenvector, can and will be chosen as strictly positive, see [4]. Further assumptions
on h and m will allow us to prove that λm,h � 1 − cε, c > 0, and that the rest of
the spectrum is strictly below 1 uniformly in ε. The bound on λm,h will not be used
in this appendix, see the proof of (A.8) below.
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Instanton: Notation and Properties

The instanton m̄ is a solution of the local mean field equation m̄(x) = tanh{β J ∗
m̄(x)}, x ∈ R, with the following properties (see Section 8.1 and 8.2 of [10]).
m̄(x) is a strictly increasing, antisymmetric function which converges to ±mβ as
x → ±∞, more precisely there are c(A.4) and a(A.4) both positive so that for all
x � 0

0 < mβ − m̄(x) � c(A.4)e
−a(A.4)x ,

dm̄(x)

dx
� c(A.4)e

−a(A.4)x . (A.4)

We write

p̄ = β(1 − m̄2), Ā = p̄ J∗, m̄′ = dm̄

dx
, m̃′ = m̄′

(〈(m̄′)2〉∞)1/2 , (A.5)

where 〈 f 〉∞ =
∫

R

f p̄−1. In [4] and Section 8.3 in [10] it is proved that there are

a(A.6) > 0 and c(A.6), so that for any bounded function f
∣∣∣∣
∫

Ān(x, y) f̃ (y)dy

∣∣∣∣ � ‖ f̃ ‖ c(A.6)e
−a(A.6)n, f̃ = f − 〈 f m̃′〉∞m̃′. (A.6)

We can now turn to the proof of Theorem 5 and restrict hereafter in this appendix
to the space of antisymmetric functions. After observing that by (A.4)

xε � c log ε−1, (A.7)

we complete the definition (3.1) of m0 by fixing the integer n0, chosen so that

‖ Ān0ψ‖ � e−a(A.8)‖ψ‖, a(A.8) > 0, (A.8)

where ψ above is any bounded antisymmetric function, recall that ‖ f ‖ denotes
the sup-norm of f . Existence of n0 follows from (A.6) because m̄′ and p̄x0 are
symmetric and ψ antisymmetric so that 〈ψm̃′〉∞ = 0.

Lemma 9. There is a(A.9) > 0 so that for any c, a > 0 and all ε small enough

‖An0
m,hψ‖ � e−a(A.9)‖ψ‖, if ‖m − m0‖ � cεa, ‖h − h0‖ � cεa, (A.9)

for any bounded odd function ψ .

Proof. As we shall see (A.9) is a straight consequence of (A.8) and of
∥∥∥∥ pm,h

pm0,h0

− 1

∥∥∥∥ � c′εa, (A.10)

which follows directly from (3.3) and the assumptions on h and m. We distinguish
“small” and “large” values of x0 in An0

m,hψ(x0).

(i). x0 ∈ [0, xε + n0]. We write
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An0
m,hψ(x0) =

∫
ψ(xn0 )

n0∏
k=1

{pm0,h0 (xk−1)J
neum(xk−1, xk)

pm,h(xk−1)

pm0,h0 (xk−1)
}dx1 · · · dxn0 .

(A.11)

Since J neum has range 1, |xi | � xε + 2n0 for all i = 1, . . . n0. Then by (A.7)
for ε small enough, J neum(xi , xi+1) = J (xi , xi+1). Moreover pm0,h0(xi ) = p̄(xi )

(because m0(x) = m̄(x), h0(x) = 0 for |x | � xε + 2n0 ). Thus by (A.10)
∣∣∣An0

m,hψ(x0)− Ān0ψ(x0)

∣∣∣ � c′n0ε
a‖ψ‖,

and using (A.8), for all ε small enough
∣∣∣An0

m,hψ(x0)

∣∣∣ � e−a(A.8)‖ψ‖ + c′n0ε
a‖ψ‖ � e−a(A.9)‖ψ‖.

(ii). x0 ∈ [xε + n0, ε
−1�]. We then write

An0
m,hψ(x0) =

∫
ψ(xn0)

n0∏
k=1

{pm,h(xk−1)J
neum(xk−1, xk)dx1 · · · dxn0 ,

(A.12)

and since J neum has range 1, xi � xε in (A.12) for all i = 1, . . . n0. When xi ∈
[xε, ξε], pm0,h0(xi ) = p̄(xi ) � β(1− m̄(xε)2) and by the definition of xε , m̄(xε) =
mβ − ε. Hence if b′ is such that β(1 − m2

β) < b′ < 1, then for all ε small

enough, pm0,h0(xi ) � b′ < 1. When xi > ξε , pm0,h0 = β(1 − u2) and since
u � mβ , pm0,h0(xi ) � β(1 − m2

β) < b′ < 1. Thus by (A.10) pm,h(xi ) � b < 1

|An0
m,hψ(x0)| � bn0‖ψ‖. ��

By (A.9), Lm,h = Am,h − 1 is invertible and

L−1
m,h = −

∞∑
n=0

An
m,h, ‖L−1

m,h‖ � c(A.13)

1 − a(A.9)
, (A.13)

where c(A.13) bounds
∑n0

n=1 ‖An
m,h‖. Moreover:

Lemma 10. There exist α(3.6) > 0, (which defines the parameter introduced in

(3.6)), c(A.14) and c(A.15), both larger than max

{
1,

c(A.13)

1 − a(A.9)

}
, so that for any c

and all ε small enough

|L−1
m,hψ(x)| � c(A.14)

∫ ε−1

0
e−α(3.6)|x−y||ψ(y)|, ‖m − m0‖ � cεa, ‖h − h0‖ � cεa,

(A.14)

for any x � 0. Moreover, if also m′ : ‖m′ − m0‖ � cεa, then

‖L−1
m,h − L−1

m′,h | � c(A.15)‖m − m′‖. (A.15)
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Proof. To prove (A.14) we write An
m,h(x, y) as the kernel of An

m,h and have by
(A.13)

L−1
m,hψ(x) = −

∞∑
n=0

∫
An

m,h(x, y)ψ(y) = −
∫ ∞∑

n=n(x,y)

An
m,h(x, y)ψ(y),

where n(x, y) � |y − x | because Am,h(x, y) = pm,h(x)J neum(x, y) is supported
by |x − y| � 1. (A.14) then follows from (A.9). To prove (A.15) we write

L−1
m,h − L−1

m′,h = L−1
m,h

(
Am,h − Am′,h

)
L−1

m′,h,

using (A.13) and that ‖Am,h − Am′,h‖ � c‖m − m′‖. ��
We shall study (A.3) with

h(t) = th′′ + (1 − t)h′, h′and h′′ in the ball ‖h − h0‖ � εa (A.16)

so that ‖h(t) − h0‖ � εa and ‖dh(t)

dt
‖ � 2εa . The initial datum m′ is chosen so

that m′ = tanh{β J neum ∗ m′ + βh′} and ‖m′ − m0‖ � c′εa where c′ := βc(A.14).
To prove existence of solutions of (A.3) we need to control the “velocity field”

V (m, h, ḣ) = −L−1
m,h

(
pm,h ,̇h

)
(A.17)

where m, h, ḣ are antisymmetric functions. To this end we specify the “free param-
eter” c, which appears in the previous two lemmas, so that c > 3c′, c′ := βc(A.14).

Lemma 11. For all ε small enough, the Cauchy problem in the interval t ∈ [0, 1]
dm(t)

dt
= V

(
m(t), h(t),

dh(t)

dt

)
, m(0) = m′ (A.18)

has a unique solution m(t) such that ‖m(t) − m0‖ � 3c′εa. Moreover, m(t) =
tanh{β J neum ∗ m(t)+ βh(t)} for all t ∈ [0, 1].
Proof. When ‖m − m0‖ � 3c′εa , ‖h − h0‖ � εa the velocity field V (m, h, ḣ) is
bounded (by (A.13)) and Lipschitz (by (A.15)), recall that by (A.16) ‖ḣ‖ � 2εa .
We thus have local existence and uniqueness till when ‖m − m0‖ � 3c′εa . Till this
time ∥∥∥∥dm(t)

dt

∥∥∥∥ � β

∥∥∥∥L−1
t

dh(t)

dt

∥∥∥∥ � β
c(A.13)

1 − a(A.9)
2εa � 2βc(A.14)ε

a

(recalling from Lemma 10 that c(A.14) � max{1, c(A.13)

1 − a(A.9)
}). Hence ‖m(t) −

m(0)‖ � 2c′εa which ensures existence till t = 1. Recalling (A.17) we get from
(A.18) that

d

dt

(
m(t)− tanh{β J neum ∗ m(t)+ βh(t)}) = 0

m(t) − tanh{β J neum ∗ m(t) + βh(t)} is thus constant and being 0 initially, it is 0
at all times. ��
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By taking h′ = h0 in (A.16) by Lemma 11 we conclude that for any h : ‖h −h0‖ �
εa there is m which satisfies m = tanh{β J neum ∗ m +βh} and ‖m − m0‖ � 3c′εa ,
c′ = βc(A.14).

Finally, to prove (3.6) we write h(t) = th + (1 − t)h′ so that

mh − mh′ =
∫ 1

0

dm(t)

dt
= −

∫ 1

0
L−1

t pt (h − h′)

and (3.6) follows from (A.14). The proof of Theorem 5 is complete.

B Proof of Theorem 6

By (3.3) there is b < 1 so that for all ε small enough ‖m‖ � b < 1 in the
ball {m : ‖m − m0‖ � c(3.6)ε

a}; (3.8) then readily follows. To prove (3.9) we
observe that h0(x) = 0 for x ∈ [0, xε + 2n0] because in such interval m0 = m̄ and
m̄ = tanh{β J neum � m̄}. Thus, if h1 = T (h0) by (A.7)

|h1(x)− h0(x)| � cε log ε−1, |x | � ξε := xε + 2n0.

Define for x > ξε

h(x) =
∫ x

ξε

−ε j

χ(u)
=
∫ x

ξε

−ε j

χ(m0)
, (B.1)

then m0(x) = u(ε[x − ξε]) = tanh{βu(ε[x − ξε] + βh(ε[x − ξε])}, hence

m0(x) = tanh{β J neum � m0(x)+ β(u(ε[x − ξε ])− J neum � m0(x)+ h(ε[x − ξε ]))}.
(B.2)

Since m0(x) = tanh{β J neum � m0(x)+ βh0(x}, by (B.2)

|h0(x)− h(ε[x − ξε])| � cε, and by (B.1) |h0(x)−
∫ x

ξε

−ε j

χ(m0)
| � cε,

Since h1(x) =
∫ x

0

−ε j

χ(m0)
, |h1(x)− h0(x)| � |h0(x)−

∫ x

ξε

−ε j

χ(m0)
| + cεξε hence

(3.9).

C Proof of Theorem 7

By assumption for x � 0, 0 � mk(x) � m0(x) + εa , k < n. By By (3.3)
‖m0‖ < 1 so that for all ε small enough, pmk ,hk is uniformly bounded away from
0. There is, therefore, C < ∞ (recall the current j is a constant) such that

|hk+1(x)− hk(x)| � Cε
∫ x

0
|mk(y)− mk−1(y)|. (C.1)
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By (3.6) for any y ∈ [0, ε−1],

|mk(y)− mk−1(y)| � c
∫ ε−1�

0
e−α|y−z||hk(z)− hk−1(z)|, (C.2)

where we have dropped the suffixes from c and α. We define ψk+1(x) =
|hk+1(ε

−1x)− hk(ε
−1x)|, x ∈ [0, �] and by combining (C.1) and (C.2) we get

ψk+1(x) � c′
∫ x

0
dy

∫ �

0
e−ε−1α|y−z|ψk(z)ε

−1dz. (C.3)

Define vk(x) = e−bxψk(x), b > 0 a large constant whose value will be specified
later. We have:

vk+1(x) � c′
∫ x

0
e−b(x−y)dy

∫ �

0
e−ε−1α|y−z|+b(z−y)vk(z)ε

−1dz. (C.4)

For ε so small that ε−1α > b we have

‖vk+1‖ � c′
∫ x

0
e−b(x−y)dy

2ε−1

ε−1α − b
‖vk‖ � c′

b

2ε−1

ε−1α − b
‖vk‖. (C.5)

We choose b so that
4c′

αb
= 1

2
. Then for all ε so small that

ε−1

ε−1α − b
� 2

α

‖vk+1‖ � 1

2
‖vk‖ which yields ‖ψk+1‖ � eb�

(
1

2

)k

‖ψ1‖.

D Spectral Properties of Am,h

In this appendix we shall first define a set A by weakening properties of the
pair (mε, hε), and then prove spectral properties of Am,h when (m, h) is in a small
neighborhood of A.

Instanton: Additional Notation

Referring to Appendix A for definition and properties of the instanton m̄, we
denote by m̄x0 , x0 ∈ (−1, 1), the translate of m̄ by ε−1x0:

m̄x0 (x) = m̄(x − ε−1x0), m̄′
x0

= dm̄x0

dx
, p̄x0 (x) = β(1 − m̄x0 (x)

2), Āx0 := p̄x0 J ∗ .
(D.1)
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Properties of the Pair (mε, hε)

– mε = tanh{β J neum ∗ mε + hε}, see (4.3).
– There are r > 0 and b > 0 so that pε(x) � e−b for all |x − ε−1x0| � r .

– ‖dmε

dx
‖ < c′

(4.4) (proved in Lemma 8) and for any c > 0 there is c′ > 0 so that

for all ε small enough

sup
|x−ε−1x0|�c log ε−1

|mε(x)− m̄x0(x)| < c(D.2)ε log ε−1, (D.2)

because by (3.15), ‖m∗ − m0‖ � cε log ε−1.

– Since
dhε
dx

= −ε j

pε(x)
and inf pε > 0 then ‖hε‖ � c1, ‖dhε

dx
‖ < cε and, by

(D.2),

sup
|x−ε−1x0|�c log ε−1

∣∣∣∣dhε(x)

dx
− −ε j

p̄x0(x)

∣∣∣∣ < c′
1ε

2 log ε−1.

The Set A
By default all coefficients a, c, C with or without a suffix are meant to be

positive and independent of ε; we shall indicate below by item n the nth property
of (mε, hε) as listed in the previous paragraph and introduce the quantities (with b
in (D.3) below the parameter entering in item 2)

C(D.3) > 1 : e−aC(D.3)(1−x0) log ε−1 = ε2, a := min

{
b

4
, a(A.6), a(A.4)

}
(D.3)

I = {x : |x − ε−1x0| � 2C(D.3) log ε−1}, I ′ = {x : |x − ε−1x0| � C(D.3) log ε−1}.
(D.4)

(I ′ will be used later in Proposition 12). With this notation we define A as the col-
lection of all pairs (m, h) such that m = tanh{β J neum ∗m +βh}, and the following
three inequalities hold:

pm,h(x) = β
(

1 − m(x)2
)

� e−2a(D.5) , |x − ε−1x0| � r(D.5) (D.5)∥∥∥∥dm

dx

∥∥∥∥ � C(D.6), sup
x∈I

|m(x)− m̄x0(x)| � c′
(D.6)ε log ε−1 (D.6)

‖h‖ � C(D.7),

∥∥∥∥dh

dx

∥∥∥∥ � C(D.7), sup
x∈I

∣∣∣∣dh(x)

dx
− −ε j

p̄x0(x)

∣∣∣∣ � c(D.7)ε
2 log ε−1,

(D.7)

where C(D.7) > 2 and:

– r(D.5) > r and 2a(D.5) = b/2, b and r are as in item 2,
– C(D.6) > 2c′

(4.4) and c′
(D.6) > 2c(D.2) (see item 3),

– C(D.7) > 2 max{c, c1} and c(D.7) > 2c′
1 (see item 4).

With the above choice of parameters (mε, hε) ∈ A.
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Spectral Properties in a Neighborhood of A
We continue the analysis of the spectrum of Am,h started in Appendix A, assum-

ing that (m, h) is in the δ ball of A defined as
⋃

(m,h)∈A Bδ(m, h), Bδ(m, h) :=
{(m′, h′) : ‖h − h′‖ � δ, ‖m − m′‖ � δ}. Using the notation: 〈 f 〉∞ =

∫
R

f p̄−1

and 〈 f 〉m,h =
∫

R

f p−1
m,h we have:

Proposition 12. There are positive constants C(D.8), c(D.9), c′
(D.10), c(D.11) so that

for any ε small enough there is δ = δ(ε) > 0 such that for any (m, h) in the δ ball
of A

pm,h � C(D.8) (D.8)

|λm,h − [1 − C(D.9)ε]| � c(D.9)(ε log ε−1)2, C(D.9) = | j | 〈m̄′〉∞
〈(m̄′)2〉∞ > 0.

(D.9)

Moreover, let um,h > 0 be normalized as 〈u2
m,h〉m,h = 1 and I ′ is as in (D.4), then

sup
x∈I ′

|um,h(x)− m̃′
x0
(x)| � c′

(D.10)ε(log ε−1)2 (D.10)

um,h(x) � c(D.11)e
−a(D.5)|x−ε−1x0|. (D.11)

Proof. We shall first prove, with slightly better coefficients, the inequalities
(D.8)–(D.11) when (m, h) is in A and then use a continuity argument to extend the
analysis to a δ ball of A. We thus fix (m, h) ∈ A and drop the suffix (m, h) when
no ambiguity may arise.

• Proof of (D.8). We bound |m(x)| � tanh{β J neum ∗ ‖m‖ + β‖h‖} and ‖h‖ �
C(D.7), hence pm,h � 2C(D.8), with 2C(D.8) = β(1 − s2), s the positive solution
of s = tanh{βs + βC(D.7)}. (D.8) then follows in a δ ball of (m, h) if δ is small
enough.

We shall next prove some rough bounds on λ and u, which will then be improved
as required in the proposition. We take here (m, h) in a δ-ball of A with δ small
enough. We are going to use repeatedly variants of the obvious equality:

〈 f Am,h g〉m,h = 〈 f Am′,h′ g〉m′,h′ =
∫

f J neum ∗ g. (D.12)

We have the lower bound λ �
〈m̄′

x0
Am̄′

x0
〉m,h

〈(m̄′
x0
)2〉m,h

, A ≡ Am,h and m̄′
x0

, here restricted

to � = ε−1[−1, 1]. Using (D.12) we can rewrite the numerator as

〈m̄′
x0

Am̄′
x0

〉m,h =
∫
�×�

m̄′
x0
(x)J neum(x, y)m̄′

x0
(y) =

∫
R×R

m̄′
x0
(x)J (x, y)m̄′

x0
(y)+�

=
∫

R

m̄′
x0
(x)2/ p̄x0 +� =

∫
�

m̄′
x0
(x)2/ p̄x0 +�′

= 〈(m̄′
x0
)2〉m,h +

∫
�

m̄′
x0
(x)2

p − p̄x0

p p̄x0

+�′, p ≡ pm,h,
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where by (A.4) and (D.3), |�| and |�′| are both bounded by � ce−a(A.4)ε
−1(1−x0) �

cε2. The denominator in the last integral is bounded from below because p ≡
pm,h � C(D.8), ((D.8) has already been proved) and p̄x0 � β(1 − m2

β) (as m̄(x)
converges monotonically to mβ as x → ∞). By (D.6) and for δ small enough
|p(x) − p̄x0(x)| � 2c′

(D.6)ε log ε−1 when x ∈ I , while in the complement we
bound m̄′

x0
as in (A.4) (recalling (D.3)) and use that |p − p̄x0 | � β. In conclusion,

we get

λ � 1 − c(D.13)ε log ε−1, (D.13)

with c(D.13) dependent on C(D.7), c′
(D.6), a(D.5).

• Proof of (D.11). We use (D.13) and the identity u(x) = λ−n(Anu)(x) to get
upper bounds on u. With n = 1 we obtain

‖u‖ � λ−1‖J‖β√
2

(∫
u2
)1/2

� λ−1‖J‖β√
2

(∫ ‖p‖
p

u2
)1/2

�c〈u2〉1/2
m,h

(D.14)

(having used Cauchy–Schwartz and that ‖p‖ � β). By tuning n with the distance
from ε−1x0 we get, using (D.5),

u(x) � [1 − c(D.13)ε log ε−1]−ne−2a(D.5)n‖u‖, when |x − ε−1x0| � n + r(D.5),

(D.15)

which together with (D.14) proves (D.11) for (m, h) ∈ A.
To prove (D.10) we need an upper bound on λm,h that we shall prove in (D.20)

below. Preliminary to the proof of (D.20) is the following estimate
∣∣∣∣ 〈u2〉
〈u2〉∞ − 1

∣∣∣∣ � cε2 + cε log ε−1, (D.16)

which we prove next. Recalling that p � C(D.8), p � β, p̄x0 � β(1 − m2
β) and

p̄x0 � β, we have

c−1
(D.17) � 〈u2〉

〈u2〉∞ � c(D.17). (D.17)

Then, by (D.11)

u(y)

〈u2〉1/2∞
� ce−a(D.5)|y−ε−1x0|, y ∈ � \ I ′. (D.18)

Hence by (D.3) and since a(D.5) = b

4
,

∫
�\I ′

u2/ p̄x0 � c(D.19)〈u2〉∞ε2, 〈u2〉∞ >

∫
I ′

u2/ p̄x0 � (1 − c(D.19)ε
2)〈u2〉∞.

(D.19)
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We also have∣∣∣∣∣
〈u2〉

〈u2〉∞ −
∫

I ′ u2/p

〈u2〉∞

∣∣∣∣∣ � cε2,

∣∣∣∣∣
〈u2〉

〈u2〉∞ −
∫

I ′ u2/ p̄x0

〈u2〉∞

∣∣∣∣∣ � cε2 + cε log ε−1

∣∣∣∣ 〈u2〉
〈u2〉∞ − 1

∣∣∣∣ � cε2 + cε log ε−1.

In the first inequality above we have used (D.18), in the second (D.6) and in the
third (D.19). (D.16) is proved.

We are now ready for the proof of (D.20). Let λ ≡ λm,h and (m, h) in a δ-ball of
A, δ suitably small. We start from the operator Āx0 = p̄x0 J∗ acting on L∞(R) and

since 1 is its maximal eigenvalue (with eigenvector m̄′
x0

), 1 � 〈u Āx0 u〉∞
〈u2〉∞ where we

choose u = um,h on� = ε−1[−1, 1] and u = 0 on�c. Denoting 〈 f 〉∞ =
∫

R

f

p̄x0

,

we then have

〈u Āx0 u〉∞ =
∫
�×�

u(x)J (x, y)u(y) =
∫
�×�

u(x)J neum(x, y)u(y)+ R,

with R = −
∫
�×�c

u(x)J (x, y)u(y�), y� the reflection of y into � through its

endpoints. By (D.11) |R| � ce−a(D.5)|ε−1(1−x0)‖u‖2, hence writing hereafter 〈·〉 =
〈·〉m,h ,

〈u2〉∞ � 〈u Āx0 u〉∞ � 〈u Au〉 − ce−a(D.5)|ε−1(1−x0)‖u‖2

= λ〈u2〉 − ce−a(D.5)|ε−1(1−x0)‖u‖2.

Thus, by (D.14), λ � 〈u2〉∞
〈u2〉 + ce−a(D.5)|ε−1(1−x0). By (D.16) and (D.13)

1 − c(D.13)ε log ε−1 � λ � 1 + c(D.20)ε log ε−1, (D.20)

with c(D.20) dependent on C(D.7), c′
(D.6), a(D.5).

We shall next prove (D.10), which we split into an upper and a lower bound for
u = um,h . We take here (m, h) in a δ-ball of A with δ small enough

• Proof of (D.10) (the upper bound). Let y ∈ I ′, then, writing below y0 ≡ y,

λnu(y) =
∫

u(yn)

n∏
k=1

{
Āx0(yk−1, yk)

p(yk−1)

p̄x0(yk−1)

}
dy1 · · · dyn . (D.21)

We again choose n = C(D.3) log ε−1, observing that since y0 ∈ I ′ all yk are in I . We
bound λ−n � (1 − c(D.13)ε log ε−1)−n � (1 + ncε log ε−1) � (1 + c′ε[log ε−1]2).
Since all yk are in I , by (D.6) and for δ small enough,

n∏
k=1

p(yk−1)

p̄x0(yk−1)
� 1 + cε[log ε−1]2,
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hence (with a new constant c)

u(y) � [1 + cε(log ε−1)2]
∫

u(yn)

n∏
k=1

{ Āx0(yk−1, yk)}}dy1 · · · dyn . (D.22)

We define ũ so that u(yn) = 〈m̃′
x0

u〉∞ m̃′
x0
(yn)+ ũ. By (A.6)-(D.3) and for all

y ∈ I ′

u(y) � m̃′
x0
(y)[1 + cε(log ε−1)2]〈m̃′

x0
u〉∞ + cε2‖u‖, (D.23)

which by (D.14) can be rewritten as

u(y)

〈u2〉1/2 �
{
[1 + cε(log ε−1)2] 〈m̃

′
x0

u〉∞
〈u2〉1/2

}
m̃′

x0
(y)+ cε2. (D.24)

By Cauchy–Schwartz,

u(y)

〈u2〉1/2 �
( 〈u2〉∞

〈u2〉
)1/2 {

[1 + cε(log ε−1)2]m̃′
x0
(y)
}

+ cε2, (D.25)

which, by (D.16), proves

u(x)

〈u2〉1/2 � m̃′
x0
(x)+ c′

(D.10)

2
ε(log ε−1)2. (D.26)

• Proof of (D.10) (the lower bound). Proceeding in a similar way we get the
lower bound:

u(y)

〈u2〉1/2 �
{
[1 − cε(log ε−1)2] 〈m̃

′
x0

u〉∞
〈u2〉1/2

}
m̃′

x0
(y) − cε2. (D.27)

To bound the curly bracket from below, we multiply both sides of (D.23) by p̄−1
x0

u
and integrate over I ′. By (D.19):

(1 − c(D.19)ε
2)〈u2〉∞ � 〈m̃′

x0
u〉2∞[1 + cε(log ε−1)2] + cε2 log ε−1‖u‖2.

By (D.14), (1 − c(D.19)ε
2) �

〈m̃′
x0

u〉2∞
〈u2〉∞ [1 + cε(log ε−1)2] + cε2 log ε−1, hence

1 − cε(log ε−1)2 �
〈m̃′

x0
u〉2∞

〈u2〉∞ � 1, (D.28)

which by (D.27) yields
u(y)

〈u2〉1/2 �
( 〈u2〉∞

〈u2〉
)1/2

[1 − cε(log ε−1)2]m̃′
x0
(y)− cε2.

Using (D.16) we then get

um,h(x) � m̃′
x0
(x)− c′

(D.10)

2
ε(log ε−1)2. (D.29)
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• Proof of (D.9). We first suppose (m, h) ∈ A and use, for the first time, the
conditions on dm/dx and dh/dx contained in the definition of A. Writing f ′
for the derivative of f with respect to x , we differentiate m(x) = tanh{β J neum ∗
m(x)+βh(x)} and get m′ = p J neum∗m′+ ph′, hence Lm′ = −ph′, L = A−1.
We multiply both sides by p−1u and integrate over x . Recalling that L is self-
adjoint in the scalar product with weight p−1, we then have

(λ− 1)〈um′〉 = −〈uph′〉. (D.30)

By (D.11), |〈um′〉 −
∫

I ′
p−1um′| � cε2, having used that |m′| is bounded, and the

first inequality in (D.6). Since m′ = p J neum ∗m′ + ph′, using the second inequality
in (D.7),

|m′(x)− p(J neum)′ ∗ m(x)| � sup
y∈I ′

|ph′| � cε, x ∈ I ′.

Then, by the second inequality in (D.6),

|m′(x)− p J neum ∗ m̄′(x)| = |m′(x)− p
(
J neum)′ ∗ m̄(x)| � cε log ε−1, x ∈ I ′

and by (D.10) and (D.11),

|〈um′〉 − 〈m̃′m̄′〉∞| � cε log ε−1. (D.31)

Analogous estimates hold for 〈uph′〉 and we get

|λ− [1 − C(D.9)ε]| � c(D.9)

2
(ε log ε−1)2. (D.32)

To conclude the proof of the Proposition we need to extend the previous bounds to
(ĥ, m̂) in a δ-ball around (m, h). By (D.12)

λ̂

λ
� 〈u2〉

〈u2〉ĥ,m̂

� cδ. (D.33)

The analogous bound can be proved for λ/λ̂ and (D.9) follows if δ is small enough.
The proof of Proposition 12 is complete. ��

The rest of the spectrum is separated from λm,h by a spectral gap, see [4].

Proposition 13. There are c(D.34), a(D.34) > 0, c(D.35) and a(D.35) > 0 so that for
all ε small enough the following holds. For any (m′, h′) ∈ A there is δ = δ(ε) so
that for all (m, h) in a δ-ball around (m′, h′), for all bounded ψ

‖An
m,hψ̃‖ � c(D.34)e

−a(D.34)n‖ψ‖, ψ̃ = ψ − 〈ψum,h〉m,h

〈u2
m,h〉m,h

um,h (D.34)

|L−1
m,hψ̃(x)| � c(D.35)

∫
e−a(D.35)|x−y||ψ̃(y)| dy. (D.35)
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The Operator A∗ and its Spectral Properties

We conclude this appendix with a simple extension of the previous results which
will allow us to complete the proof of Theorem 1 and of Lemma 8. Let (m∗, h∗) be
the solution of the antisymmetric problem in ε−1[−1, �∗], with x0 the middle point
in [−1, �∗]. We denote by A∗ the operator p∗ J neum,∗∗ acting on L∞(ε−1[−1, �∗])
with p∗ = pm∗,h∗ and kernel J neum,∗(x, y) (defined with Neumann conditions
on ε−1[−1, �∗]). We denote by 〈·〉∗ the integral over ε−1[−1, �∗] with respect to
the measure (p∗)−1dx . We first observe that the pair (m∗, h∗) satisfies the same
properties (with the same parameters) as the pair (mε, hε) (recall that mε is the
restriction of m∗ to ε−1[−1, 1] and that hε is the restriction of h∗ except for the
additive term Rε). It then follows that λ∗ and u∗ satisfy the same properties as λm,h

and um,h stated in Proposition 12. (Without loss of generality we may suppose with
the same coefficients). Also, Proposition 13 remains valid; indeed, its validity is
quite general as discussed in Section 8.3 of [10].

Conclusion of the proof of Theorem 1 In order to keep the notation used so far, we
replace the original interval ε−1[−�, �] in Theorem 1 by the interval ε−1[−1, �∗]
and denote the solution (mε, hε) of Theorem 1 by (m∗, h∗). Recalling that it only
remains to prove that m∗(x) is an increasing function of x (we are supposing j < 0),
we shorthand ψ = dm∗

dx and shall prove that ψ(x) is strictly positive at all x . We
have

ψ = L−1
(

−p∗ dh∗

dx

)
= L−1(ε j), (D.36)

where L = A∗ − 1. The positivity of ψ then follows from

L−1(ε j) =
∞∑

n=0

(A∗)n(−ε j), (D.37)

once we prove that the series converges (as all its elements are positive). Conver-
gence follows because there are a = a(ε) and c = c(ε) positive such that for
all n,

‖(A∗)n‖ � ce−an, (D.38)

which would be easy if this were the L2 norm, as we know that λ∗ is the maximal
eigenvalue and λ∗ < 1 − cε.

• Proof of (D.38). With λ∗ and u∗ the maximal eigenvalue and eigenvector of
A∗, u∗ normalized, 〈(u∗)2〉∗ = 1, we have

(A∗)nψ = (λ∗)n〈u∗ψ〉∗u∗ + (A∗)nψ̃, ψ̃ = ψ − 〈u∗ψ〉∗u∗. (D.39)

We have λ∗ < 1 − Cε, C > 0, (by (D.9)), we bound u∗ using (D.11), then by
(D.34)

‖(A∗)nψ‖ � c(λ∗)n‖ψ‖ + c(D.34)e
−a(D.34)n‖ψ‖, (D.40)

hence (D.38). ��
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Conclusion of the proof of Lemma 8 It only remains to prove the second
inequality in (4.4). With ψ = dm∗

dx , by (D.36), and using the previous notation,

ψ =
(

[λ∗ − 1]−1ε j
∫ ε−1�∗

−ε−1
u∗
)

u∗ + L−1φ, φ = (ε j)− (ε j
∫

u∗)u∗,

(D.41)

|[λ∗ − 1]−1ε j | � c by (D.9) and by (D.11):∫
u∗ � c, sup

|x−ε−1x0|�r(4.4) log ε−1
u∗(x) � c(D.11)e

−a(D.5)r(4.4) log ε−1
.

By choosing a(D.5)r(4.4) > 1, the first term on the right-hand side of (D.41) is
bounded by cε when |x − ε−1x0| � r(4.4) log ε−1. The last term is bounded using
(D.34) by

� c(D.34)

∞∑
n=0

e−a(D.34)n‖φ‖ � c′ε

because ‖φ‖ � cε. Lemma 8 is proved. ��

E Auxiliary Dynamics

We return in this appendix to the analysis of the auxiliary dynamics introduced
in Appendix A. We shall study the case where initially (m0, h0) ∈ A and prove
a local existence and uniqueness theorem under suitable assumptions on h(t). We
would like to work in A, but A itself is not nice in the L∞ topology we are using,
as it involves derivatives. For this reason we introduced the δ-balls of A in the
previous appendix, which will play an important role here as well. Our first result
is a straight consequence of Proposition 12 and Proposition 13, and its proof is
omitted:

Proposition 14. There is c > 0 and for any ε > 0 small enough there is δ = δ(ε) >

0 not larger than the parameter δ in Proposition 12 such that for any (m0, h0) ∈ A
and any (m′, h′) and (m′′, h′′) in the δ-ball of (m0, h0)

‖L−1
m′,h′ ‖ � cε−1, ‖L−1

m′,h′ − L−1
m′′,h′′ ‖ � cε−2 (‖h′ − h′′‖ + ‖m′ − m′′‖). (E.1)

Proposition 15. Let δ and c be as in Proposition 14 and let C be any positive num-
ber. Then for any ε > 0 small enough there is T ∈ (0, δ

2C ) such that the following
holds. For any (m0, h0) ∈ A, and any h(t), t ∈ [0, T ], such that h(0) = h0 and
‖ dh(t)

dt ‖ � C there is m(t), t ∈ [0, T ], such that:

dm

dt
= L−1

t

(
−pt

dh

dt

)
, m(0) = m0, Lt = Lm(t),h(t), pt = pm(t),h(t),

(E.2)

(Lt = Lm(t),h(t), pt = pm(t),h(t)), ‖m(·) − m0‖ � δ
2 and m(·) = tanh{β J neum ∗

m(·)+ βh(·)}. Finally m(·) is the unique solution of (E.2) in ‖m(·)− m0‖ � δ
2 .
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Proof. T is determined by the following three conditions:

T <
δ

2C
, cε−1βCT <

δ

2
,
(

cε−12β2 + βcε−2
)

T < 1. (E.3)

The first one ensures that ‖h(·) − h0‖ < δ
2 (because ‖ dh(t)

dt ‖ � C); the sec-

ond one (obtained by bounding L−1
t
(−pt

dh
dt

)
via Proposition 14) will imply that

‖m(·)−m0‖ < δ
2 , so that (m(t), h(t)) is always in the δ-ball of (m0, h0) and Prop-

osition 14 can be applied. The third condition will imply that the integral version
of (E.2) gives rise to a contraction.

Let X :=
{

m ∈ C
(
[0, T ], L∞(ε−1[−1, 1]; [−1, 1])

)
: m(0)=m0, ‖m(·)−m0‖

� δ
2

}
and for m ∈ X let

ψ(m)(t) = m0 +
∫ t

0
L−1

s

(
−ps

dh(s)

ds

)
. (E.4)

By (E.1) and the second inequality in (E.3), ‖ψ(m)(t)− m0‖ � cε−1βCt <
δ

2
.

Thusψ maps X into itself. By (E.1) and the third inequality in (E.3)ψ is a contrac-
tion with sup-norm in x and t . Therefore there is a fixed point m ∈ X : m = ψ(m),
and since ψ maps X into functions which are differentiable in t with bounded
derivative, m is a solution of (E.2). By (E.2)

d

dt

(
m(t)− tanh{β J neum ∗ m(t)+ βh(t)}) = 0,

so that m(t)− tanh{β J neum ∗m(t)+βh(t)} = m0 − tanh{β J neum ∗m0 +βh0} = 0.
Finally, if m solves (E.2) and ‖m(·)−m0‖ � δ

2 , then m ∈ X andψ(m) = m. Since
ψ is a contraction m is unique. ��

Properties of the Sets A and G

The intervals I and I ′ which appear frequently in the sequel have been defined
in (D.4).

Fixing the Parameters in the Set G
The coefficient a(4.6) is a positive number strictly smaller than all the param-

eters in Appendix D involved with exponential decay; in particular we require
a(4.6) < min{a(D.5)(1 − x0), a(D.35)

1+x0
1−x0

}. The other parameter b(4.7) is fixed so
that:

b(4.7) < 1 and such that

{
3βc(D.35)

a(D.35) − a(4.6)
1−x0
1+x0

}
b(4.7) <

e−2a(D.5) − e−4a(D.5)

2β
.

(F.1)
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Proposition 16. For all ε > 0 small enough, if h ∈ G there is m such that m =
tanh{β J neum ∗ m + βh} and (m, h) ∈ A.

Proof. Given h ∈ G and t ∈ [0, 1] we define h(t) := th + (1− t)hε observing that
(m(0), h(0)) := (mε, hε) ∈ A by the definition of A. Let S be the sup of all s � 1
such that there exists m(t), t ∈ [0, s], which solves (E.2) in [0, s] starting from
m(0) = mε , and such that for all such t , (m(t), h(t)) is in the δ-ball of A with δ as
Proposition 12. We shall prove that S = 1 and that for all t � 1 (m(t), h(t)) ∈ A,
thus proving the Proposition.

Since ‖ dh(t)
dt ‖ = ‖h − hε‖ � b(4.7) (because h ∈ G) we can apply Proposition

15 with C = b(4.7) and (m0, h0) = (mε, hε) ∈ A. As a consequence there is
T = T (ε) > 0 so that m(t) = tanh{β J neum ∗ m(t) + βh(t)}, t ∈ [0, T ], and
δ = δ(ε) so that ‖h(t) − hε‖ � δ/2, ‖m(t) − mε‖ � δ/2, t ∈ [0, T ]. Since δ
is not larger than the parameter δ of Proposition 12 (see Proposition 14), we then
conclude that S � T . By the definition of S, the bounds in Proposition 12 hold
for (m(t), h(t)) at any t ∈ [0, S] and it is now just a matter of computations to
check that (m(t), h(t)) ∈ A for all such t . We start by proving that h(t) satisfies
the conditions in (D.7).

‖h(t)‖ � ‖hε‖ + ‖h − hε‖ � C(D.7)

2
+ b(4.7) � C(D.7),

(
as b(4.7) < 1 <

C(D.7)

2

)
∥∥∥∥dh(t)

dx

∥∥∥∥ �
∥∥∥∥dhε

dx

∥∥∥∥+
∥∥∥∥d(h − hε)

dx

∥∥∥∥ � C(D.7)

2
+ ε � C(D.7),

for ε small enough. Finally in I (defined in (D.4))∣∣∣∣dh(t)

dx
− −ε j

p̄x0

∣∣∣∣ �
∣∣∣∣dhε

dx
− −ε j

p̄x0

∣∣∣∣+ t

∣∣∣∣d(h − hε)

dx

∣∣∣∣ � c(D.7)

2
ε2 log ε−1 + ε2

� c(D.7)ε
2 log ε−1

(for ε small enough) so that also the last condition in (D.7) is satisfied.
We shall next prove that m(t) satisfies the conditions required in A. We write

f (t) := −pt [h − hε]; λt , u(t) for the maximal eigenvalue and eigenvector of
At ; 〈·〉t for the integral of the measure p−1

t dx on ε−1[−1, 1]; f̃ (t) := f (t) −
〈u(t) f (t)〉t u(t). By (E.2)

dm(t)

dt
= L−1

t f (t) = λ−1
t 〈u(t) f (t)〉t u(t)+ L−1

t f̃ (t), 〈u(t)2〉t = 1. (F.2)

We bound | f (t)| � βN (h − hε)Eε(x)−1 (using that h ∈ G and pt � β), u(t) �
c(D.11)e−a(D.5)|x−ε−1x0| and get

|〈u(t) f (t)〉t | � cN (h − hε)e
−a(4.6)(1−x0)ε

−1

∣∣∣ f̃ (t)
∣∣∣ � N (h − hε)

(
ce−a(4.6)(1−x0)ε

−1
c(D.11)e

−a(D.5)|x−ε−1x0| + βE−1
ε

)
. (F.3)

By (D.35) |L−1
t f̃ (t)|(x) � c(D.35)

∫
e−a(D.35)|x−y|| f̃ (t)| dy and

∫
e−a(D.35)|x−y|Eε(y)−1 � 2Eε(x)−1

a(D.35) − a(4.6)
,
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so that, by (F.2) and (F.3) and since λt � cε−1

|m(t)− mε | � N (h − hε)
(

c′ε−1e−a(4.6)(1−x0)ε
−1

c(D.11)e
−a(D.5)|x−ε−1x0|

+ 2βc(D.35) Eε(x)−1

a(D.35) − a−
(4.6)

)
, (F.4)

which (recalling that N (h − hε) � b(4.7)) proves that for ε small enough,

‖m(t)− mε‖ � κ := 3βc(D.35)b(4.7)

a(D.35) − a−
(4.6)

(F.5)

N (m(t)− mε) �
(

c′ε−1c(D.11) + 2βc(D.35)

a(D.35) − a−
(4.6)

)
N (h − hε). (F.6)

By (F.5), pt � β
(

1 − (|mε | − κ)2
)
< e−4a(D.5) + 2βκ in {|x − ε−1x0| � r(D.5)}

and therefore, by (F.1), m(t) satisfies (D.5) for t ∈ [0, T ]. To prove the second
condition in (D.6) we write for x ∈ I ,

|m(x, t)− m̄x0(x)| � |m(x, t)− mε(x)| + |mε(x)− m̄x0(x)|
� N (m(t)− mε)Eε(x)

−1 + c(D.2)ε log ε−1

� cε−1 Eε(x)
−1 + c(D.2)ε log ε−1 � 2c(D.2)ε log ε−1,

for ε small enough (because Eε(x)−1 � e−a−
(4.6)[ε−1(1−x0)−2C(D.3) log ε−1]). The sec-

ond inequality in (D.6) then follows, recalling that c′
(D.6) > 2c(D.2). To prove the first

inequality in (D.6) we take the x-derivative of the equality m(t) = tanh{β J neum ∗
m(t)+ βh(t)}:

dm(t)

dx
= λ−1

t 〈u(t)g(t)〉t u(t)+ L−1
t g̃(t)

g(t) :=
{
−pt

d[h − hε]
dx

}
, g̃(t) = g(t)− 〈u(t)g(t)〉t u(t). (F.7)

By (4.7), ‖g(t)‖ � βε and an argument similar to the previous one shows that
‖ dm(t)

dx ‖ � cε, so that the first condition in (D.6) is also satisfied.
In conclusion, we have proved so far that for all ε small enough, (m(t), h(t)) ∈ A

for all t ∈ [0, S]. Suppose by contradiction that S < 1; write S′ = min{1, S + T },
then since (m(S), h(S)) ∈ A by Proposition 15 there is m(t), t ∈ [S, S′], which
solves (E.2) in [S, S′] starting from m(S) and such that for all such t , (m(t), h(t))
is in the δ-ball of (m(S), h(S)). Hence, a fortiori, in the δ-ball of A with δ as in
Proposition 12. This contradicts the maximality of S hence S = 1. ��
Proposition 17. There are a(F.8) > 0, r(F.8) > 0, c, c′ and a(F.9) > 0 such that for
all ε small enough the following holds. Let h ∈ G and (m, h) ∈ A (existence of m
follows from Proposition 16), then

sup
|x−ε−1x0|�2r(F.8)ε−1

|m(x)− mε(x)| � e−a(F.8)ε
−1

(F.8)

|λm,h − λε | � ce−a(F.8)ε
−1
, ‖um,h − uε‖ � c′e−a(F.9)ε

−1
. (F.9)
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Proof. (F.8) follows from (F.6); in the sequel it is convenient to have a(F.8) small, in
particular a(F.8) < a(D.11). Let λ and u be the maximal eigenvalue and eigenvector
of A := Am,h , u > 0 normalized so that 〈u2〉 = 1 (〈·〉 := 〈·〉m,h), and λε , uε the
maximal eigenvalue and eigenvector of Aε := Amε ,hε with uε > 0 normalized so
that 〈u2

ε〉ε = 1 (〈·〉ε := 〈·〉mε ,hε ). Since (mε, hε) and (m, h) are both in A we can
use the bounds established in Proposition 12 and 13 for A and Aε .

We then have

λ

λε
� 〈u2

ε〉ε
〈u2
ε〉

= 1 − 〈u2
ε(1 − p

pε
)〉

〈u2
ε〉

� 1 − ce−a(F.8)ε
−1
, (F.10)

the first inequality following from (D.12). To prove the last one we recall that
pε = pm∗,h∗ � c(4.1), p ≡ pm,h � C(D.8). In {x : |x − ε−1x0| � 2r(F.8)ε

−1} we
use (F.8) to get

sup
|x−ε−1x0|�2r(F.8)ε−1

|1 − p

pε
| � ce−a(F.8)ε

−1
. (F.11)

In {x : |x − ε−1x0| > 2r(F.8)ε
−1} we bound |1 − p

pε
| � 2β

c(4.1)C(D.8)
and uε using

(D.11). The same argument is used to bound from below
λε

λ
and the first inequality

in (F.9) follows because λ and λε are both close to 1 by cε.
In order to compute the sup in the second inequality in (F.9), we consider first |x−

ε−1x0| > r(F.8)ε
−1. In this case both u and uε are smaller than c(D.11)e−a(D.5)ε

−1r(F.8) ,

hence their difference is bounded by c′e−a(F.9)ε
−1

, provided a(F.9) < a(D.5)r(F.8). We
next take |x − ε−1x0| � r(F.8)ε

−1. Analogously to (D.21) and with y0 ≡ x ,

λN u(x) =
∫

u(yN )

N∏
k=1

{
Aε(yk−1, yk)

p(yk−1)

pε(yk−1)

}
dy1 · · · dyN . (F.12)

We choose N = bε−1 with b > 0 smaller than r(F.8). Then for all k � N , |yk −
ε−1x0| � (r(F.8) + b)ε−1 � 2r(F.8)ε

−1 so that by (F.11) for all ε small enough,

u(x) � λ−N [1 + ce−a(F.8)ε
−1]N AN

ε u(x). We then write AN
ε u(x) = λN

ε 〈uuε〉εuε +
AN
ε ũ(x) so that in {|x − ε−1x0| � r(F.8)ε

−1}

u � [1 + ce−a(F.8)ε
−1]N

(
(
λε

λ
)N 〈uuε〉εuε + λ−N ‖u‖c(D.34)e

−a(D.34) N
)
.

By (D.14)

u � [1 + ce−a(F.8)ε
−1 ]N

(
(
λε

λ
)N 〈uuε〉εuε + λ−N ce−a(D.34) N

)
. (F.13)

We bound 〈uuε〉ε � 〈u2〉1/2
ε , 〈u2〉ε = 1 − 〈u2|1 − p

pε
|〉 and use the previous

bounds for |1 − p
pε

| so that 〈uuε〉ε � 1 + ce−aε−1
with a and c suitable posi-

tive constants. By (F.10)
(
λε

λ

)N

� e−N log{1−ce−a(F.8)ε
−1 } � exp{c′ε−1ea(F.8)ε

−1} � 1 + c′′ε−1ea(F.8)ε
−1
.
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Collecting all these bounds and recalling that λ < 1 − cε, we get from (F.13)

u(x) �
(

1 + cε−1e−a(F.8)ε
−1
)

uε(x)

+ce−N(log(1−cε)−a(D.34)), (F.14)

hence the upper bound for u in (F.9). The lower bound is proved similarly. ��
Recall that (m∗, h∗) is the solution of the antisymmetric problem in ε−1[−1, �∗],

with x0 the middle point in [−1, �∗] and mε the restriction of m∗ to ε−1[−1, 1]. We
denote by λ∗ and u∗ the maximal eigenvalue and eigenvector of Am∗,h∗ and by λε
and uε those of Aε = Amε ,hε , writing uε also for its extension to ε−1[−1, �∗] with
uε = 0 outside ε−1[−1, 1]. We suppose 〈u2

ε〉ε = 〈(u∗)2〉∗ = 1 with the obvious
meaning of the symbols.

Proposition 18. For all ε small enough,

|λ∗ − λε | � ce−a(D.5)ε
−1(1−x0), ‖u∗ − uε‖ � c(F.15)e

−a(F.15)ε
−1(1−x0). (F.15)

Proof. Since pε = p∗ in ε−1[−1, 1], 〈u2
ε〉∗ = 〈u2

ε〉ε = 1 so that λ∗ �∫
uε J neum,∗ ∗ uε and, by (D.11),

‖(J neum,∗ − J neum,ε) ∗ uε‖ � ce−a(D.5)ε
−1(1−x0), (F.16)

where J neum,ε and J neum,∗ are the kernel with Neumann conditions, respectively,
in ε−1[−1, 1] and ε−1[−1, �∗]. Thus

λ∗ �
∫

uε J neum,ε ∗ uε − ce−a(D.5)ε
−1(1−x0) � λε − ce−a(D.5)ε

−1(1−x0). (F.17)

For the reverse inequality we write λε �
∫

u∗ J neum,εu∗

〈(u∗)2〉ε , the integral being

extended to ε−1[−1, 1]. Using (F.16) we replace the kernel J neum,ε with J neum,∗
and then extend the integral to ε−1[−1, �∗] bounding u∗ via (D.11), which holds
as well for u∗ in the whole ε−1[−1, �∗] (see the paragraph “The operator A∗ and
its spectral properties” at the end of Appendix D). In this way we derive the first
inequality in (F.15).

As in the proof of Proposition 17, we bound |u∗(x) − uε(x)| � c′e−a(F.15)ε
−1

when |x − ε−1x0| > r(F.8)ε
−1 using (D.11) (supposing a(F.15) < a(D.5)r(F.8)). When

|x − ε−1x0| � r(F.8)ε
−1 we write

u∗(x) = (λ∗)−N (A∗)N u∗(x) = (λ∗)−N AN
ε u∗(x), (F.18)

provided (x0 + r(F.8))ε
−1 + N � ε−1, which is satisfied if N = aε−1 with a > 0

small enough. Hence

u∗(x) = (
λε

λ∗ )
N 〈u∗uε〉εuε(x)+ AN

ε ũ∗ (F.19)

|u∗(x)− (
λε

λ∗ )
N 〈u∗uε〉εuε(x)| � ce−a(D.34) N . (F.20)
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By (F.20) and since by (D.11) 〈u∗〉ε � c and |〈(u∗)2〉ε − 1| � ce−a(D.5)ε
−1(1−x0)

|1 −
(
λε

λ∗

)N

〈u∗uε〉2
ε | � ce−a(D.34) N + ce−a(D.5)ε

−1(1−x0), (F.21)

so that the second inequality in (F.15) follows from the first one. ��
As a corollary of Proposition 17 and Proposition 18 we have:

Corollary 19. In the same context of Proposition 17,

|λ∗ − λm,h | � ce−a(D.5)ε
−1(1−x0), ‖u∗ − um,h‖ � c(F.15)e

−a(F.15)ε
−1(1−x0).

(F.22)

G Convergence of the Iterative Scheme

By (4.8) with n = −1 we have for x ∈ ε−1[−1, 1],

ĥ0(x) = −ε j
∫ x

ε−1x0

χ(mε(y))
−1 = h∗(x), (G.1)

because mε = m∗ on ε−1[−1, 1] and (m∗, h∗) is a solution of (2.23) in ε−1[−1, �∗].
Thus by (4.8)

h0(x) = h∗(x)−
∫

h∗u∗∫
u∗ , (G.2)

where the integrals are extended to ε−1[−1, 1]. Then, recalling (4.2),

h0(x)− hε(x) = −Rε(x)−
∫

h∗u∗∫
u∗ . (G.3)

Proposition 20. For all ε small enough h0 ∈ G and

N (h0 − hε) � c(G.4)ε. (G.4)

Proof.
∫ ε−1

ε−1(2x0−1)
h∗u∗ = 0 because h∗ is antisymmetric and u∗ symmetric around

the middle point ε−1x0 of the interval ε−1[−1, �∗] (u∗ is symmetric because the
eigenvalue λ∗ is simple and A∗ symmetric). Since the estimates in Proposition 12
apply to u∗ as well (see the paragraph The operator A∗ and its spectral properties
at the end of Appendix D), by (D.11) and since ‖h∗‖ � c we get

∫ ε−1

−ε−1
u∗h∗ =

∫ ε−1(2x0−1)

−ε−1
h∗u∗ � ce−a(D.5)ε

−1(1−x0). (G.5)
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Recalling that c(4.1) in (4.1) is strictly positive uniformly in ε, we shall next prove
that

∫ ε−1

−ε−1
u∗ � c(4.1)

c(D.11)
. (G.6)

By (D.11) u∗ � c(D.11), (G.6) then follows from (4.1):

1 = 〈(u∗)2〉∗ =
∫
(u∗)2

p∗ �
∫

u∗c(D.11)

c(4.1)
= {c(D.11)

c(4.1)
}
∫

u∗.

Thus, recalling (4.6) and that a(D.5)(1 − x0) > a(4.6), see the paragraph Fixing
the parameters in the set G in Appendix F,

N

(∫
h∗u∗∫
u∗

)
= sup

|x |�ε−1
Eε(x)

∫
h∗u∗∫
u∗ � ce−a(G.7)ε

−1
, (G.7)

with 0 < a(G.7) < a(D.5)(1−x0)−a(4.6). By Lemma 8, N (Rε) � cε which together
with (G.7) proves (G.4). Before proving that h0 ∈ G we notice that by (D.11)

∫ ε−1

−ε−1
u∗|Rε | � cεe−a(D.5)ε

−1(1−x0), (G.8)

a property which will be used in the sequel. We have already proved with (G.4) the

first condition for h0 ∈ G. Then, since
d(h0 − hε)

dx
= −dRε

dx
it will suffice to show

that
∣∣∣∣dRε

dx

∣∣∣∣ � cε21x�ε−1−1. (G.9)

We have

dRε
dx

=
∫ ε−1+1

ε−1
J (x, y)[ψ(y)− ψ(2ε−1 − y)] dy, ψ = dm∗

dx
. (G.10)

To bound the term |ψ(x)−ψ(x +ξ)|, ξ = x ′ −x , x and x ′ in [ε−1 −1, ε−1 +1],
in (G.10) we use the expression (D.41) for ψ . By (D.34)

∥∥∥∥∥L−1φ +
N∑

n=0

(A∗)nφ
∥∥∥∥∥ � c′‖φ‖e−a(D.34) N � c′′ε3, φ = (ε j)− (ε j

∫
u∗)u∗,

(G.11)

if N = C log ε−1 with C large enough. We have (A∗)nφ = (A∗)n(ε j) −
(ε j

∫
u∗)(A∗)nu∗ By (D.11) and since λ∗ ∈ (0, 1)

(A∗)nu∗(x) � u∗(x) � c(D.11)e
−a(D.5)|x−ε−1x0|,
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so that |∑N
n=0{(A∗)nφ − (A∗)n(ε j)}| � cε3 for x � ε−1 − 1 and ε small enough.

(G.9) will then follow from

N∑
n=0

∣∣∣∣
∫
(A∗)n(x, y)(ε j)dy −

∫
(A∗)n(x ′, y)(ε j)dy

∣∣∣∣ � cε2 (G.12)

x and x ′ in [ε−1 − 1, ε−1 + 1]. To prove (G.12) we write ξ = x ′ − x and∣∣∣∣
∫
(A∗)n(x, y)−

∫
(A∗)n(x ′, y)

∣∣∣∣ �
∫

A∗(x, x1) · · · A∗(xn−1, xn)

∣∣∣∣1 −
∏ p∗(xi + ξ)

p∗(xi )

∣∣∣∣ � cnεbn, b < 1,

as all points above are in {x : x − ε−1x0 > ε−1 − (N + 1)} (as n � N ) and in such
a region 0 < c(4.1) < p∗ < b < 1 (as m∗ > mβ) and |p∗(xi + ξ)− p∗(xi )| � cε,
by Lemma 8. (G.12) is thus proved. ��
Proposition 21. There are c(G.13) and c(G.14) so that for all ε small enough the
following holds. Suppose that for n � 1, both hn and hn−1 are in G, then

N (mn − mn−1) � c(G.13) N (hn − hn−1), (G.13)

where mi = tanh{β J neum ∗ mi + βhi }, i = n − 1, n. Moreover

N (m0 − mε) � c(G.14)ε. (G.14)

Proof. We first prove (G.13), where we recall that n � 1. Let t ∈ [0, 1] and
h(t) = thn + (1 − t)hn−1. Since hn and hn−1 are in G then, by convexity, h(t) ∈
G and by Proposition 16 there is m(t) such that (m(t), h(t)) ∈ A, in particular
m(t) = tanh{β J neum ∗ m(t) + βh(t)} and m(0) = mn−1, m(1) = mn so that

|mn − mn−1| � sup
t∈[0,1]

|dm(t)

dt
|. By (E.2), (D.11) and (D.35), recalling that pt � β

and writing

ψ(x) :=
(∣∣∣∣
∫

u(t)[hn − hn−1]
∣∣∣∣
)

e−a(D.5)|x−ε−1x0| (G.15)
∣∣∣∣dm(t)

dt

∣∣∣∣ � cε−1ψ + c
∫

e−a(D.35)|x−y| (|hn − hn−1|(y)+ ψ(y)) dy.

(G.16)

We are going to prove that

ψ � c(G.17)ε
10e−a(D.5)|x−ε−1x0|N (hn − hn−1). (G.17)

By the definition of G,
∫

u∗hi = 0, i = n − 1, n, then∫
u(t)[hn − hn−1] =

∫
[u(t)− u∗][hn − hn−1] (G.18)

∣∣∣∣
∫

[u(t)− u∗][hn − hn−1]
∣∣∣∣ � N (hn − hn−1)

∫
|u(t)− u∗|E−1

ε � cε10 N (hn − hn−1)
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(by Corollary 19). (G.17) is proved. Using (G.17) we have∫
e−a(D.35)|x−y|ψ(y) dy � cε10e−a|x−ε−1x0|N (hn − hn−1),

a = min{a(D.5), a(D.35)}.
The other integral on the right-hand side of (G.16) is bounded by∫

e−a(D.35)|x−y||hn − hn−1|(y) dy � N (hn − hn−1)

∫
e−a(D.35)|x−y|Eε(y) dy

� ce−a(4.6)|x−ε−1x0|,

because a(D.35) > a(4.6). Collecting all these bounds we have from (G.16)∣∣∣∣dm(t)

dt

∣∣∣∣ (x) � c
(
ε9e−a(4.6)|x−ε−1x0| + (1 + ε10)e−a(4.6)|x−ε−1x0|

)
N (hn − hn−1),

which proves (G.13).
The proof of (G.14) goes in the same way, except for (G.18) which becomes∫

u(t)[h0 − hε] =
∫

[u(t)− u∗][h0 − hε] +
∫

u∗hε . (G.19)

By (G.5) and (G.8) the latter integral is bounded by � ce−a(D.5)ε
−1(1−x0) and the

bound (G.14) is not affected. ��
Proposition 22. There is c(G.20) � c(G.4) such that for all ε small enough the fol-
lowing holds. Given any n � 0 if hk , k � n, is well defined and in G then also hn+1
is well defined and

N (hk+1 − hk) �
{

c(G.20)εN (hk − hk−1), k = 1, . . . , n
c(G.20)ε, k = 0

(G.20)

Proof. By Proposition 16 there is mk , 0 � k � n, such that (mk, hk) ∈ A and, by
(D.8), pk ≡ pmk ,hk � C(D.8). As a consequence p−1

n is bounded and hn+1 is well
defined; moreover, |p−1

k − p−1
k−1| � c|mk − mk−1| and (for x > ε−1x0)

|hk+1 − hk | � cε

(
f +

∫
u∗ f∫
u∗

)
, f (x) =

∫ x

ε−1x0

|mk − mk−1| dy.

Let x > ε−1x0; then by (G.13) for k � 1

ea(4.6)(ε
−1−x) f (x) = {

∫ x

ε−1x0

e−a(4.6)(x−y)c(G.13)}N (hk − hk−1) � cN (hk − hk−1),

(G.21)

and by (D.11)

∫ ε−1

ε−1x0

u∗ f � cN (hk − hk−1)

∫ ε−1

ε−1x0

e−a(4.6)(ε
−1−x)e−a(D.5)|x−ε−1x0|

� cN (hk − hk−1) e−a(4.6)ε
−1(1−x0). (G.22)
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By (G.6),
∫

u∗ is bounded away from 0 hence the bound in (G.20) for k > 0 and x �
ε−1x0. When k = 0 we use (G.14) after bounding |m0 − mε | � N (m0 − mε)E−1

ε .
Analogous bounds hold for x < ε−1x0 and (G.20) is proved. ��
Proposition 23. In the same context of Proposition 22, for any k � n + 1

N (mk − mε) � cε, N (hk − hε) � c′ε, (G.23)

where c = c(G.14) + c(G.13)c(G.20)

1 − εc(G.20)
, c′ = c(G.20)(1 + 1

1 − εc(G.20)
). Moreover

N

(
d(hk − hε)

dx

)
� cε2, (G.24)

and, in particular, hn+1 ∈ G.

Proof. By (G.20) for i � 0, N (hi+1 − hi ) � (εc(G.20))
i+1 and by (G.4), N (h0 −

h−1) � εc(G.4) � εc(G.20), h−1 = hε . Then

N (hk − hε) �
k∑

i=0

N (hi − hi−1) � εc(G.20)

(
1 + 1

1 − εc(G.20)

)
,

hence the statement in (G.23) about hk . The one about mk is proved similarly, using
(G.14) and (G.13). To prove (G.24) we write

∣∣∣∣d(hk − hk−1)

dx

∣∣∣∣ � cε|mk−1 − mk−2| � c′ε|hk−1 − hk−2|, (G.25)

so that by (G.9), (G.20) and (G.4) and with h−1 := hε , for x > ε−1x0,

ea(4.6)(ε
−1−x)

∣∣∣∣d(hk − hε)

dx

∣∣∣∣ � ea(4.6)(ε
−1−x)

∣∣∣∣d(h0 − hε)

dx

∣∣∣∣+ c′ε
k−1∑
i=1

N (|hi − hi−1|)

� c′′ε2.

An analogous bound holds for x < ε−1x0 hence (G.24). ��
Conclusion of the proof of Theorem 2. We shall first prove by induction that
hn ∈ G for all n. Indeed h0 ∈ G by Proposition 20 and by Proposition 22 if hk ∈ G
for all k � n, then hn+1 ∈ G. Thus hn ∈ G for all n and by Proposition 16 there is
mn so that (mn, hn) ∈ A. We shall next prove that (mn, hn) converges in sup-norm
to a limit (m, h) and that, writing h−1 = hε and m−1 = mε ,

h = hε +
∞∑

n=0

(hn − hn−1), m = mε +
∞∑

n=0

(mn − mn−1).

The first series, in fact, converges because N (hn+1 − hn) � (c(G.20)ε)
n+1, as

remarked in the proof of Proposition 23. The series for m converges for the same
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reason because N (mn−mn−1) � c(G.13) N (hn−hn−1). By (G.23), N (m−mε) � cε
and N (h − hε) � cε; moreover

m = lim
n→∞ mn = lim

n→∞ tanh{β J neum ∗ mn + βhn} = tanh{β J neum ∗ m + βh}

h = ĥ −
∫

ĥu∗∫
u∗ , ĥ(x) =

∫ x

ε−1x0

−ε j

χ(m)

because h = limn→∞{ĥn −
∫

ĥnu∗∫
u∗ }, ĥn(x) =

∫ x

ε−1x0

−ε j

χ(mn)
. As a consequence,

for any z ∈ ε−1(−1, 1),

h(x) = h(z)+
∫ x

z

−ε j

χ(m)
,

so that the proof of Theorem 2 will be complete once we show that:

• there is xε such that h(xε) = 0 • lim
ε→0

εxε = x0.

The existence of xε is proved using the implicit function theorem. We thus want to
prove that h(ε−1x0) is “small”. Since ĥ(ε−1x0) = 0 we need to control | ∫ ĥu∗|.
We write

∫
ĥu∗ = ∫

(ĥ − ĥn)u∗ + ∫
(ĥn − ĥ0)u∗ + ∫

ĥ0u∗. The first term vanishes
as n → ∞ because

∫
u∗ < ∞ and for any x > ε−1x0 (for instance)

|ĥ(x)− ĥn(x)| � |ε j |
∫ x

ε−1x0

|χ(m)−1 − χ(mn−1)
−1|

� cε|x − ε−1x0|‖m − mn−1‖ � c′‖m − mn−1‖ → 0,

having used that χ(mn) = pmn ,hn � C(D.8) and therefore χ(m) � C(D.8) as
mn → m in sup-norm. Analogously, |χ(mn−1)

−1 −χ(mε)
−1| � c|mn−1 − mε | �

cN (mn−1 − mε)E−1
ε � c′εE−1

ε , so that for x > ε−1x0

|ĥn(x)− ĥ0(x)| � |ε j |
∫ x

ε−1x0

|χ(mn−1)
−1 − χ(mε)

−1| � cε2
∫ x

ε−1x0

Eε(y)
−1

� cε2|x − ε−1x0|e−a(4.6)ε
−1(1−x).

Thus by (D.11) the second term is bounded by
∫ |ĥn − ĥ0|u∗ � cε2e−a(4.6)(1−x0)ε

−1
.

Finally, since by (G.1) ĥ0 = h∗, by (G.5)
∫ ε−1

−ε−1
ĥ0u∗ � c0e−a(D.5)ε

−1(1−x0). In con-

clusion, letting n → ∞,

∣∣∣∣
∫

u∗ĥ

∣∣∣∣ � cε2e−a(4.6)(1−x0)ε
−1
, |h(ε−1x0)| � c′ε2e−a(4.6)(1−x0)ε

−1
.
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We shall next prove that h is continuous and that it changes sign in a small
interval around ε−1x0, thus concluding that there is xε in this interval where h

vanishes. We have
dh

dx
(x) = −ε j

β(1 − m2(x))
which, by (D.8), is bounded. More-

over N (m − mε) � cε and |mε − m̄x0 | � cε in [ε−1x0 − 1, ε−1x0 + 1]. In this

interval, therefore, |dh

dx
(x)| � aε, a > 0. Hence there is xε where h(xε) = 0 and

|xε − ε−1x0| � c′′εe−a(4.6)(1−x0)ε
−1
. (G.26)
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