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Abstract We consider the symmetric simple exclusion process in the interval [−N,N ]
with additional birth and death processes respectively on (N − K,N ], K > 0, and
[−N,−N +K). The exclusion is speeded up by a factor N2, births and deaths by a factor N .
Assuming propagation of chaos (a property proved in a companion paper, De Masi et al.,
http://arxiv.org/abs/1104.3447) we prove convergence in the limit N → ∞ to the linear heat
equation with Dirichlet condition on the boundaries; the boundary conditions however are
not known a priori, they are obtained by solving a non-linear equation. The model simulates
mass transport with current reservoirs at the boundaries and the Fourier law is proved to
hold.

Keywords Hydrodynamic limits · Fourier law · Non-linear boundary processes

1 Introduction

A basic question in statistical mechanics is to understand the structure of the stationary non-
equilibrium states characterized by the presence of steady currents flowing through the sys-
tem. Currents are produced by external driving forces: driving forces and currents are then
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“conjugate variables”, as the chemical potential and the number of particles in equilibrium
statistical mechanics. We may then expect the existence of a “current ensemble” where the
current is fixed and a “driving force ensemble” where instead the driving force is assigned
and only as a consequence a current is obtained: in the equilibrium statistical mechanics
analogue they would be the canonical and grand-canonical ensembles where respectively
the number of particles and the chemical potential are fixed. Purpose of the present paper is
to investigate these questions in the simplest case of the one dimensional symmetric simple
exclusion process (SSEP).

In general the driving forces (which produce the desired currents) are of two types, they
either act in the bulk of the system or only at the boundaries. In the stochastic interacting
particle systems framework, to which we restrict hereafter, bulk forces are usually intro-
duced by making the jumps of the particles asymmetric. This is truly non-equilibrium dy-
namics, as the stationary states, which may even be spatially homogeneous, are in general
non-Gibbsian and unknown (with few exceptions that include the noticeable case of ASEP,
the asymmetric simple exclusion). Much simpler is the case where the forces act only at the
boundaries, since in the bulk hydrodynamic behavior is then expected (and in many cases
proved). Namely for large systems and in a “macroscopic limit” a locally Gibbsian equilib-
rium profile establishes throughout the system and the current flows proportionally to the
order parameter gradient (that is according to Fourier’s law, if there is an energy current,
or to the Fick’s law if it is a mass current). Thus to a first order the stationary state is de-
termined by hydrodynamics and its characteristic non-equilibrium features appear only at
higher orders. Non-equilibrium thermodynamics for these states is related to the large devi-
ations of the stationary measures and a clear picture is emerging, see for instance [1, 2, 5, 6]
and references therein.

The driving forces acting at the boundaries are physically interpreted in terms of reser-
voirs. As claimed in the beginning we may think of two types of reservoirs, density and
current reservoirs. Those used in all the previous references are density reservoirs, the local
density at the boundaries being determined by the reservoirs attached there. Thinking of a
one dimensional system in an interval the reservoirs add and subtract at unit rate particles
on the right trying to keep fixed a given density ρ+ close to the right boundary; same is done
on the left and if the two densities ρ± are different, say ρ+ > ρ−, then we have a positive
density gradient which by the Fourier law induces a negative current (inversely proportional
to the size of the region).

In a current reservoir instead we fix the current so that we send in particles from the right
at the desired rate (i.e. inversely proportional to the size of the region in agreement with
the Fourier or rather Fick law) and take out at same rate particles from the left. Notice that
the density reservoir fixes the extremal densities and consequently via hydrodynamics the
current j ; in the current reservoir (which produces the same current j ) hydrodynamics does
not fix the density profile, as many profiles are compatible with the same j . We thus do not
expect equivalence of ensembles and one of our goals was indeed to investigate this issue,
but as we shall argue below we are still very far from this, the same implementation of a
current reservoir being non-trivial.

To our knowledge there is no mention in the literature about current reservoirs, even
though they look as the most natural to produce a current. Our purpose here is to start their
analysis in the simplest possible context. For this reason we consider the d = 1 SSEP in an
interval ΛN = [−N,N ], N a positive integer (we are interested in the behavior as N → ∞).
The process takes place in {0,1}ΛN (at most one particle per site) and time is speeded up by a
factor N2 (to match the length of the interval ΛN ). Thus, independently each particle tries to
jump at rate N2/2 to each one of its nearest neighbor sites, the jump then takes place if and
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only if the chosen site is empty, see the next section for a formal definition; jumps outside
ΛN are suppressed. To induce a current we modify the process by sending in from the right
and taking out from the left particles at rate Nj/2, j > 0 a fixed parameter independent of
N (to compare with the previous statements where the rates were said to be proportional
to N−1, we should recall that here times are speeded up by a factor N2). As we want the
boundary processes localized at the boundaries we fix two intervals I± of length K at the
boundaries and we send in particles only in I+ and take out particles only from I−. This is
not unfortunately the action of a proper current reservoir because it may happen that I+ is
already full or I− empty, and then the proposed mechanisms abort, so that the current really
flowing in the system will not be exactly what desired (but hopefully close if K is large).
This seems unavoidable if we insist to localize at the boundaries the birth-death processes
or to consider lattice gases. We shall come back on this issue at the end of the next section
in the paragraph “Discussions, conjectures and open problems”.

In this paper we derive the hydrodynamic equations in the limit as N → ∞ under the
hypothesis of “propagation of chaos”, a property proved in a companion paper, [4]. The hy-
drodynamic equation is the linear heat equation in the “macroscopic” interval (−1,1) with
Dirichlet boundary conditions at time 0 and at ±1: the values at ±1 are however unknown
and can be obtained by solving a coupled system of two non-linear integral equations. We
also prove the validity of the Fourier law; in particular the currents which enter and exit from
the system are at all times equal to the local density gradient at ±1.

2 Model and Main Results

2.1 Notation and Definitions

ΛN := [−N,N ] is the interval in Z with endpoints ±N , denoted by ΛN := [−N,N ]. We
write ε ≡ 1/N , fix an integer K ≥ 1, write I+ ≡ [N − K + 1,N ] and I− ≡ [−N,−N +
K − 1]. Particle configurations are elements η of {0,1}ΛN , η(x) = 0,1 being the occupation
number at x ∈ ΛN .

We shall study the Markov process on {0,1}ΛN with generator Lε := ε−2(L0 + εLb),
where Lb = Lb,+ + Lb,− and

L0f (η) := 1

2

N−1∑

x=−N

[f (η(x,x+1)) − f (η)],

Lb,±f (η) := j

2

∑

x∈I±
D±η(x)[f (η(x)) − f (η)],

(1)

η(x) being the configuration obtained from η by changing the occupation number at x,
η(x,x+1) by exchanging the occupation numbers at x, x + 1; for any u : ΛN → [0,1]

D+u(x) = [1 − u(x)]u(x + 1)u(x + 2) . . . u(N), x ∈ I+,

D−u(x) = u(x)[1 − u(x − 1)][1 − u(x − 2)] . . . [1 − u(−N)], x ∈ I−.
(2)

L0 is the generator of the SSEP (and of the stirring process as well). Lb,+ and Lb,− are
generators of birth respectively death processes, the former is active in I+ the latter in I−.
The parabolic nature of the stirring process suggests to scale time as the square of space,
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hence the factor ε−2 in the definition of Lε . It readily follows from the structure of the
generators that the expectations Eε[η(x, t)] satisfy the relations

d

dt
Eε[η(x, t)] = 1

2
ΔεEε[η(x, t)]

+ ε−1 j

2

(
1x∈I+Eε

[
D+η(x, t)

] − 1x∈I−Eε

[
D−η(x, t)

])
(3)

where Δε = ε−2Δ, Δ the discrete Laplacian in ΛN with reflecting boundary conditions:

Δu(x) = u(x + 1) + u(x − 1) − 2u(x), |x| < ε−1,

Δu(±N) = u(±(N − 1), t) − u(±N, t).
(4)

2.2 Propagation of Chaos

Due to the last term, (3) is not a closed equation in Eε[η(x, t)], but since the stirring gen-
erator is the leading term in Lε and the invariant measures for the stirring process on the
line are product Bernoulli measures, it looks natural to conjecture “propagation of chaos”,
i.e. that the measures at time t > 0 are approximately product (as ε → 0). If the law at time
t > 0 were a true product measure, then, instead of (3) the expectations Eε[η(x, t)] would
satisfy the closed equation:

d

dt
ρε(x, t) = 1

2
Δερε(x, t) + ε−1 j

2

(
1x∈I+D+ρε(x, t) − 1x∈I−D−ρε(x, t)

)
, (5)

which will be referred to as “the discretized time evolution”.
The Cauchy problem for (5) with [0,1]-valued initial datum ρε(·,0) has a unique global

solution which also takes values in [0,1]. Indeed (5) is a first order system of ordinary differ-
ential equations with polynomial non-linearity hence local existence and uniqueness. Global
existence follows because the solution has values in [0,1], which in turns is a consequence
of the fact that D±u(x) vanishes when u(x) = 1, respectively u(x) = 0. A formal proof is
given in Proposition 3.1.

2.3 Hydrodynamic Limit

The first result in this paper (proved in Sect. 5) shows that ρε converges as ε → 0 to a limit
function which then identifies the hydrodynamics of the system.

Theorem 1 Suppose that the initial datum ρε(·,0) defined on ΛN , with values in [0,1],
converges weakly as ε → 0 to u0(·) ∈ L∞([−1,1], [0,1]) in the sense that

lim
ε→0

ε
∑

x∈ΛN

ρε(x,0)φ(εx) =
∫

[−1,1]
u0(r)φ(r)dr, for any φ ∈ L∞([−1,1],R). (6)

Then there is ρ(r, t), r ∈ [−1,1], t > 0 so that for any t1 > t0 > 0:

lim
ε→0

sup
x∈ΛN

sup
t0≤t≤t1

|ρε(x, t) − ρ(εx, t)| = 0. (7)
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The function ρ(r, t) solves and is the unique solution of the integral equation

ρ(r, t) =
∫

[−1,1]
Pt(r, r

′)u0(r
′)dr ′ + j

2

∫ t

0

{
Ps(r,1)(1 − ρ(1, t − s)K)

− Ps(r,−1)(1 − (1 − ρ(−1, t − s))K)
}
ds, (8)

where Pt(r, r
′) is the density kernel of the semigroup (also denoted as Pt ) with generator

Δ/2, Δ the Laplacian in [−1,1] with reflecting, Neumann, boundary conditions (see the
Remarks below).

2.4 Remarks

• The density kernel Pt(r, r
′) can be expressed in terms of the Gaussian kernel

Gt(r, r
′) = e−(r−r ′)2/(2t)

√
2πt

, r, r ′ ∈ R, (9)

as follows: if ψ : R → [−1,1] denotes the usual reflection map, i.e. ψ(x) = x for x ∈
[−1,1], ψ(x) = 2 − x for x ∈ [1,3], with ψ extended to the whole line as periodic of
period 4, then

Pt(r, r
′) =

∑

r ′′ :ψ(r ′′)=r ′
Gt(r, r

′′) for r ′ 
= ±1,

Pt (r,±1) =
∑

r ′′ :ψ(r ′′)=±1

2Gt(r, r
′′).

(10)

• From the expressions above and (8) it follows that ρ(·, t) is “smooth” for any t > 0: we
are calling “smooth” a function f (r), r ∈ [−1,1], if it is C∞ in (−1,1), continuous in
[−1,1], and if for each n exist the limits dnf (r)

drn as r → ±1.
• Since ρ is smooth we can write (8) in differential form: it then becomes the heat equation

with Dirichlet boundary conditions:

∂

∂t
ρ(r, t) = 1

2

∂2

∂r2
ρ(r, t), r ∈ (−1,1), t > 0,

ρ(r,0) = u0(r), ρ(±1, t) = u±(t).

(11)

However the boundary conditions u±(t) are not a priori known, they must be obtained by
solving a non-linear system of two integral equations:

u±(t) =
∫ t

0
{p(s)f±(u±(t − s)) − q(s)f∓(u∓(t − s))}ds + w±,t ,

f+(u) = j

2

(
1 − uK

)
, f−(u) = j

2

(
1 − (1 − u)K

)
,

(12)

where, writing Gt(r) = Gt(0, r), the latter as in (9),

p(t) = 2
∑

k∈Z

Gt(4k), q(t) = 2
∑

k∈Z

Gt(4k + 2),
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w+,t =
∑

k∈Z

∫ 1

−1
u0(r

′)2Gt(1 − r ′ + 4k)dr ′, (13)

w−,t =
∑

k∈Z

∫ 1

−1
u0(r

′)2Gt(r
′ + 1 + 4k)dr ′.

• By a simple computation one can check that

∂ρ(r, t)

∂r

∣∣∣∣
r=1

= j (1 − ρ(1, t)K),
∂ρ(r, t)

∂r

∣∣∣∣
r=−1

= j (1 − (1 − ρ(−1, t))K). (14)

This remark will be important in the analysis of the Fourier law.
• To characterize the asymptotic behavior of the invariant measure as N → ∞ it will be

important to study the evolution starting from arbitrary initial configurations η(N). Since
the functions f (N) defined through f (N)(r) = η(N)([Nr]) are in a ball of L2([−1,1],R)

they converge weakly by subsequences in L2([−1,1],R), and we can then apply Theorem
1 to any convergent subsequence.

• The identification of (8) and (11) as the hydrodynamic equation of the system is based on
the assumption that ρε gives an accurate description of the process. This is indeed correct
because the “empirical averages” are close to the functions ρε in the following sense.
There is τ > 0 so that calling JM(x) = [x − M,x + M] ∩ ΛN , M the integer part of Na ,
a ∈ (0,1), then for any t0 > 0

lim
δ→0

lim
ε→0

sup
t0≤t≤τ log ε−1

sup
η

Pε

(
sup

x∈ΛN

∣∣∣∣
1

|JM(x)|
∑

y∈JM(x)

{η(y, t) − ρε(y, t)}
∣∣∣∣ ≥ δ

)
= 0. (15)

Equation (15) follows from Theorem 4 using the Chebyshev inequality, Theorem 4 is
proved in a companion paper, [4].

2.5 Fourier Law

In the “hydrodynamic limit literature” the limit function ρ(r, t) is usually interpreted as the
“density profile” at time t : this comes from attributing to each particle a mass ε so that
Eε[εη(x, t)] is the average mass in the interval [x − 1

2 , x + 1
2 ] which in macroscopic units

has length ε (as [−N,N ] in the macroscopic limit shrinks to [−1,1]). Thus Eε[η(x, t)] is
the mass density, which in the limit converges to ρ(r, t) (when εx → r). Analogously, the
expected current through a point is the signed average mass crossing that point per unit time.
Let x be away from the boundaries in the sense that |x| ≤ N − K . Then it follows from (1)
that the expected current through x + 1

2 is

j (ε)(x, t) = ε−2

2
Eε

[
ε{η(x, t) − η(x + 1, t)}] = −1

2
Eε

[
η(x + 1, t) − η(x, t)

ε

]
. (16)

By a similar argument the expected currents through N and −N are:

j
(ε)
± (t) = −ε−1j

2

∑

y∈I±
Eε

[
εD±(η(y, t))

] = −j

2

∑

y∈I±
Eε

[
D±(η(y, t))

]
. (17)

By (16) j (ε)(x, t), |x| ≤ N − K , is equal to − 1
2 times the discrete gradient of the density

in agreement with the Fourier’s law, which is then satisfied before the macroscopic limit
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ε → 0, (but not necessarily in the limit, as this requires that the limit of the derivative is the
derivative of the limit). One would expect that also j

(ε)
± (t) are equal to − 1

2 times the discrete
gradient of the density, at least in the limit as ε → 0. This is settled in the next theorem
where using the factorization properties proved in [4] we show that the limit of the current
is both in the bulk and at the boundaries equal to − 1

2 times the gradient of the density.

Theorem 2 (Validity of the Fourier law) Suppose that the process starts with a product mea-
sure με such that με[η(x) = 1] = u0(εx), where u0 ∈ C([−1,1], [0,1]) and has bounded
derivative in (−1,1). Let ρ be the solution of (8). Then, for any t ≥ 0 and r ∈ (−1,1),
denoting by [u] the integer part of u, we have

lim
ε→0

j (ε)([ε−1r], t) = −1

2

∂ρ(r, t)

∂r
. (18)

Moreover for any t > 0

lim
ε→0

j
(ε)
+ (t) = −1

2

∂ρ(r, t)

∂r

∣∣∣
r=1

= j

2
(1 − ρ(1, t)K),

lim
ε→0

j
(ε)
− (t) = −1

2

∂ρ(r, t)

∂r

∣∣∣
r=−1

= j

2
(1 − (1 − ρ(−1, t))K).

(19)

Theorem 2 is proved in Sect. 6.

2.6 Discussions, Conjectures and Open Problems

In a forthcoming paper we prove that the unique stationary measure for finite N is supported,
in the limit as N → ∞, by a linear profile ρ on [−1,1]. ρ is a stationary solution of the
limit equation being determined by imposing that the entering current at 1 equals the current
flowing in the bulk: j

2 (1 − ρ(1)K) = ρ(1)−ρ(−1)

2 and that this is also equal to the current
exiting from −1: j

2 (1 − (1 − ρ(−1))K) = ρ(1)−ρ(−1)

2 . These two relations determine ρ(±1)

and hence the linear profile ρ(r). We also prove that this is the unique stationary solution
of the hydrodynamic equation and establish uniform in N convergence of the process to
the stationary measure using stochastic domination and maximum principle for the limit
evolution.

The characteristic feature of the system studied in this paper is that the limit hydrody-
namic equation is complemented by equations specifying its boundary conditions. This is
due to the fact that the boundary processes are “weak”, the birth-death densities are pro-
portional to N and not to N2. When K > 1 the boundary processes create “correlations” as
well, the hardest technical part being the proof that they remain small (as proved in [4]). The
proof is “robust” and extends to more general boundary processes where both births and
deaths are allowed at both boundaries (provided they are weak in the above sense). Much
harder is the problem when the births and deaths occur at rate N2. Our analysis does not
extend to such cases. A result in this direction is due to Bodineau, Derrida and Lebowitz,
[3], with their analysis of the so called “battery problem”.

Our methods in this paper do not allow to study the large deviations of the stationary
measure. It would be interesting to try to apply Derrida’s techniques as in [5].

Maybe Varadhan techniques could be applied to study other interacting models where
propagation of chaos is replaced by a local Gibbs property. It would also be interesting to
see what happens with the ASEP.
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3 The Discretized Evolution

We begin the analysis of (5) by proving:

Proposition 3.1 The Cauchy problem for (5) with initial datum ρε(·,0) ∈ [0,1] has a unique
global solution ρε . Moreover ρε(x, t) ∈ [0,1] for all x ∈ ΛN, t > 0.

Proof Write

D∗
+u(x) = (1 − u(x))

∣∣u(x + 1)u(x + 2) . . . u(N)
∣∣, x ∈ I+,

D∗
−u(x) = u(x)

∣∣(1 − u(x − 1))(1 − u(x − 2)) . . . (1 − u(−N))
∣∣, x ∈ I−.

If 0 ≤ u(x) ≤ 1 then D∗± ≡ D±. A local existence and uniqueness theorem holds for the
Cauchy problem (5) as well as for the problem with D± replaced by D∗± (as these are
Lipschitz functions of u in the sup-norm topology). Denote the solution of the latter by
ρ∗

ε (x, t), t ≤ τ , τ > 0, recalling that the initial datum ρε(x,0) verifies 0 ≤ ρε(x,0) ≤ 1
for any x ∈ ΛN . We shall next prove that 0 ≤ ρ∗

ε (x, t) ≤ 1 for all x and t ≤ τ . De-
fine u(s) = maxx∈ΛN

ρ∗
ε (x, s) and suppose by contradiction that there is T ≤ τ such that

u(T ) > 1. Then there is t ≤ T so that (i) u(t) > 1 and (ii) du(t)/dt > 0 (because u(0) ≤ 1
and it cannot be that du(s)/ds ≤ 0 for almost all s ≤ T such that u(s) > 1). Moreover
there exists x such that (a) ρ∗

ε (x, t) = u(t) and (b) du(t)/dt = dρ∗
ε (x, t)/dt . All that leads

to a contradiction because dρ∗
ε (x, t)/dt = 1

2Δερ
∗
ε (x, t) + j

2 (D∗+ − D∗−)ρ∗
ε (x, t) ≤ 0. Indeed

Δερ
∗
ε (x, t) ≤ 0, because (x, t) maximizes ρ∗

ε (·, t). D∗+ρ∗
ε (x, t) = 0 if x /∈ I+ and ≤ 0 in

I+, because ρ∗
ε (x, t) > 1. D∗−ρ∗

ε = 0 if x /∈ I− and ≥ 0 in I−, because ρ∗
ε (x, t) ≥ 0. Thus

(D∗+ − D∗−)ρ∗
ε (x, t) ≤ 0.

Analogous arguments show that the solution cannot exit [0,1] through 0, hence
ρ∗

ε (x, t) ∈ [0,1]. As a consequence D∗±ρ∗
ε = D±ρ∗

ε and therefore ρ∗
ε solves (5) as well.

By iteration, the previous argument extends to all times. �

We shall study (5) in its integral form:

ρε(x, t) =
∑

y∈ΛN

P
(ε)
t (x, y)ρε(y,0) + ε−1 j

2

∫ t

0
ds

( ∑

y∈I+
P (ε)

s (x, y)D+ρε(y, t − s)

−
∑

y∈I−
P (ε)

s (x, y)D−ρε(y, t − s)

)
, (20)

where P
(ε)
t is the semigroup with generator 1

2 Δε and P
(ε)
t (x, y) its kernel:

P
(ε)
t := e

1
2 Δεt , P

(ε)
t (x, y) = P

(ε)
t (y, x). (21)

The analysis of (20) will exploit the nice regularity properties of P
(ε)
t (x, y) which are estab-

lished in the next section.

4 Probability Estimates for a Random Walk with Reflections

In this section we shall consider a simple random walk on ΛN which jumps with intensity
ε−2/2 to each of its nearest neighbor sites, the jumps outside ΛN being suppressed. We
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denote by P
(ε)
t its law and call Q

(ε)
t the law of the corresponding unrestricted random walk

on the whole Z. In the sequel we shall prove (in many cases just recall) bounds and estimates
on P

(ε)
t which will be used in the next sections to prove Theorems 1 and 2. We start by

relating P
(ε)
t and Q

(ε)
t , through a “reflection map” from Z to ΛN which is a discrete analogue

of the map ψ defined in the first remark after Theorem 1. Since the jump rate from ±N is
ε−2/2 for P

(ε)
t and ε−2 for Q

(ε)
t to relate the two it just suffices to identify N + 1 with N (as

well as −N − 1 with −N ), then the jumps of Q
(ε)
t from N to N + 1 and −N to −N − 1 are

like suppressed. We thus define:

Definition The “reflection map” ψN : Z → ΛN is:

• |x| ≤ N : ψN(x) = x

• x < −N : ψN(x) = −ψN(−x)

• x > N : ψN(N + j (2N + 1) + k) = ψN(N + j (2N + 1) − (k − 1)), k = 1, . . . ,2N + 1,
j = 0,1, . . . .

Proposition 4.1 With the above notation,

P
(ε)
t (x, z) =

∑

y:ψN (y)=z

Q
(ε)
t (x, y). (22)

Proof Let f be a function on Z which is ψN -measurable, i.e. f (x) = f (y) whenever
ψN(x) = ψN(y), x, y ∈ Z, and let g be its restriction to ΛN . Calling LQ and LP the gener-
ators of Q

(ε)
t and P

(ε)
t we have

LQf (x) = LP g(ψN(x))

so that eLQtf = eLP tg, hence (22). �

By the local central limit theorem (see for instance [7]):

Theorem 3 There exist positive finite constants c1, . . . , c5 so that

|Q(ε)
t (x, y) − Gε−2t (x, y)| ≤ c1√

ε−2t
Gε−2t (x, y), |x − y| ≤ (ε−2t)5/8,

Q
(ε)
t (x, y) ≤ min

{
c2e

−c3|x−y|2/(ε−2t), c4e
−|y−x|(log |y−x|−c5)

}
, |x − y| > (ε−2t)5/8,

(23)

Gt being the Gaussian kernel defined in (9).

The next corollary follows directly from Theorem 3 and Proposition 4.1.

Corollary 4.2 For any T > 0 there exists finite positive c so that the following holds.

– For all ε, all t ∈ (0, T ] and all x, y in ΛN ,

P
(ε)
t (x, y) ≤ c Gε−2t (x, y). (24)

– For all ε, all t ∈ (0, T ] and all −N ≤ x ≤ N − 1,
∣∣∣P (ε)

t (x, y) − P
(ε)
t (x + 1, y)

∣∣∣ ≤ c√
ε−2t

Gε−2t (x, y). (25)
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– For all ε, all t ∈ (0, T ], s > 0 and all x ∈ ΛN ,

∑

y∈ΛN

∣∣∣P (ε)
t+s(x, y) − P

(ε)
t (x, y)

∣∣∣ ≤ c

√
s

t
, (26)

∣∣∣P (ε)
t+s(x, y) − P

(ε)
t (x, y)

∣∣∣ ≤ c

√
ε−2s

ε−2t
. (27)

Proof Inequalities (24) and (25) follow directly from (23). By (24) and (25) we can bound
the left hand side of (26) by

∑

y∈ΛN

∑

z∈ΛN

P (ε)
s (x, z)

∣∣∣P (ε)
t (z, y) − P

(ε)
t (x, y)

∣∣∣ ≤ c
∑

z∈ΛN

Gε−2s(x, z)
|z − x|√

ε−2t

hence (26). The estimate (27) is obtained similarly, recalling that Gt(x, y) ≤ ct−1/2. �

In the proof of Theorem 1 we shall use the following convergence results:

Lemma 4.3 As in Theorem 1, suppose that ρε(·,0) converges weakly to u0(·) in the sense
of (6). Then, for any t > 0

lim
ε→0

sup
x∈ΛN

∣∣∣∣
∑

y∈ΛN

P
(ε)
t (x, y)ρε(y,0) −

∫

[−1,1]
Pt(εx, r)u0(r)dr

∣∣∣∣ = 0. (28)

Proof By (25) the family of functions fε defined by

fε(r) :=
∑

y∈ΛN

P
(ε)
t ([ε−1r], y)ρε(y,0), r ∈ [−1,1] (29)

is uniformly Lipschitz, so that it will suffice to prove pointwise convergence. We thus fix
r∗ ∈ [−1,1] and take x = [ε−1r∗]. By (22) and (23)

∑

y∈ΛN

P
(ε)
t (x, y)ρε(y,0) =

∑

y∈ΛN

ρε(y,0)
∑

z:ψN (z)=y

Q
(ε)
t (x, z)

=
∑

y∈ΛN

ρε(y,0)
∑

z:ψN (z)=y

Gε−2t (x, z) + O
(
(ε−2t)−1/2

) + O
(
e−ε−1)

.

Call N the discrete analogue of the reflection map ψ of the Remarks after Theorem 1, i.e.
N(x) = Nψ(x/N) for x ∈ ΛN . It differs from ψN by shifts and we have:

∣∣∣∣
∑

z:ψN (z)=y

Gε−2t (x, z) −
∑

z:N (z)=y

Gε−2t (x, z)

∣∣∣∣ ≤ c√
ε−2t

.

But (see (10))

∑

z:N (z)=y

Gε−2t (x, z) =
∑

r ′:ψ(r ′)=εy

εGt(εx, r ′) = εPt (εx, εy)
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and we conclude that
∣∣∣∣

∑

y∈ΛN

P
(ε)
t (x, y)ρε(y,0) − ε

∑

y∈ΛN

Pt(εx, εy)ρε(y,0)

∣∣∣∣ ≤ c√
ε−2t

.

Letting x = [ε−1r∗], then by (6) with φ(r) := Pt(r
∗, r) we have

lim
ε→0

∑

y∈ΛN

P
(ε)
t ([ε−1r∗], y)ρε(y,0) =

∫

[−1,1]
Pt(r

∗, r)u0(r)dr (30)

which proves pointwise convergence and hence the lemma, as argued at the beginning of the
proof. �

Lemma 4.4 Let hε(t) be a continuous function with values in [0,1] which converges point-
wise to h(t). Then for any t > 0, r ∈ [−1,1] and y ∈ I+

lim
ε→0

∫ t

0
ε−1P (ε)

s ([ε−1r],±y)hε(t − s)ds =
∫ t

0
Ps(r,±1)h(t − s)ds. (31)

Proof Again, this follows easily from (22) and (23), after recalling also (10). Details are
omitted. �

5 Proof of the Hydrodynamic Limit

In this section we shall prove Theorem 1. We start by proving equicontinuity, which is a
direct consequence of the estimates of the previous section:

Proposition 5.1 For any T > 0 there exists a finite constant c so that for any solution ρε of
(5) with ρε(·,0) ∈ [0,1] the following holds. For any x ∈ [−N,N − 1], any t ∈ (0, T ] and
any ε > 0

|ρε(x, t) − ρε(x + 1, t)| ≤ min
{

1, c
(
ε log+(ε−2t) + 1√

ε−2t

)}
, (32)

where log+ u = max{logu,1}. For any 0 < s < t , x ∈ ΛN and ε > 0:

|ρε(x, t) − ρε(x, t + s)| ≤ min
{

1, c
(√

s

t
+ √

s log
( t

s

))}
. (33)

Proof By (25)

∣∣∣∣
∑

y

(
P

(ε)
t (x, y) − P

(ε)
t (x + 1, y)

)
ρε(y,0)

∣∣∣∣ ≤ c√
ε−2t

and for any y ∈ I+ ∪ I−,

∫ t

0
ε−1

∣∣P (ε)
s (x, y) − P (ε)

s (x + 1, y)
∣∣ds ≤ ε +

∫ t

ε2

cε−1

ε−2s
ds,
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hence (32). By (26)

∣∣∣∣
∑

y

(
P

(ε)
t+s(x, y) − P

(ε)
t (x, y)

)
ρε(y,0)

∣∣∣∣ ≤ c

√
s

t
.

By (27) for any y ∈ I+ ∪ I− and denoting by f (t) := D±ρε(y, t), y ∈ I±,

ε−1

∣∣∣∣
∫ t+s

0
P

(ε)

s′ (x, y)f (t + s − s ′)ds ′ −
∫ t

0
P

(ε)

s′ (x, y)f (t − s ′)ds ′
∣∣∣∣

≤ ε−1

(∫ 2s

0
P

(ε)

s′ (x, y)ds ′ +
∫ s

0
P

(ε)

s′ (x, y)ds ′ +
∫ t

s

|P (ε)

s′+s
(x, y) − P

(ε)

s′ (x, y)|ds ′
)

≤ c
(√

s + √
s log

( t

s

))
. (34)

�

Turning now to the proof of Theorem 1, we fix T > 0 and study the evolution in the
finite time interval [0, T ]. Since we only have that ρε(·,0) → u0(·) = ρ(·,0) weakly, it is
convenient to introduce a regularized equation. We denote by ρε(x, t |u, s), t ≥ s ≥ 0, the
solution of (5) for t ≥ s with u the initial datum at time s, u = u(x), x ∈ ΛN,u(x) ∈ [0,1].
With such notation we then set for any δ ∈ (0, T )

ρ(δ)
ε (x, t) =

⎧
⎨

⎩

∑
y∈ΛN

P
(ε)
t (x, y)ρε(y,0) 0 ≤ t ≤ δ,

ρε(x, t |ρ(δ)
ε (·, δ), δ) t ∈ (δ, T ].

(35)

By Proposition 5.1 the family of functions (r, t) �→ ρ(δ)
ε ([ε−1r], t), r ∈ [−1,1], t ∈ [δ, T ]

is equicontinuous and bounded, hence it converges in sup norm by subsequences to a limit
function u(δ)(r, t). By Lemma 4.3

u(δ)(r, δ) =
∫

[−1,1]
Pδ(r, r

′)ρ(r ′,0)dr ′. (36)

Moreover for any integer 0 ≤ m ≤ K

lim
ε→0

sup
δ≤t≤T

∣∣∣
{
D+ρ(δ)

ε (N − m, t) − (
1 − u(δ)(1, t)

)
u(δ)(1, t)m

}∣∣∣ = 0,

lim
ε→0

sup
δ≤t≤T

∣∣∣
{
D−ρ(δ)

ε (−N + m, t) − u(δ)(−1, t)
(
1 − u(δ)(−1, t)

)m}∣∣∣ = 0.

(37)

By Lemma 4.3 and Lemma 4.4 it then follows that

u(δ)(r, t) = u(r, t |u(δ)(·, δ), δ), (38)

where the latter is the solution of the limit equation in the time interval [δ, T ] with initial
datum at time δ equal to u(δ)(·, δ). Uniqueness can be easily proved, but it also follows from
(40) below where we prove that the solution depends continuously on the initial datum.
From the uniqueness one has that ρ(δ)

ε indeed converges in sup norm to u(δ) as ε → 0, not
only by subsequences.
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We shall next examine the dependence on δ, and define for t ∈ [δ, T ]

h(δ)
ε (t) = sup

x∈ΛN

|ρ(δ)
ε (x, t) − ρε(x, t)|, h(δ)(t) := sup

|r|≤1
|u(δ)(r, t) − u(r, t)|. (39)

We are going to prove that there exists finite cT so that for all ε and δ positive

h(δ)
ε (t) + h(δ)(t) ≤ cT

√
δ (40)

(which in particular implies uniqueness of the solution of (8)). It follows from (40) that

lim sup
ε→0

sup
t∈[δ,T ]

sup
x∈ΛN

∣∣ρε(x, t) − u(εx, t)
∣∣ ≤ c

√
δ (41)

which then proves Theorem 1.

Proof of (40) From (24) it follows that h(δ)
ε (δ) ≤ c

√
δ, then using again (24),

h(δ)
ε (t) ≤ c

√
δ + C

∫ t

δ

1√
s
h(δ)

ε (t − s)ds. (42)

By iteration,

h(δ)
ε (t) ≤ c

√
δ

(
1 +

∞∑

n=1

Cnan(t − δ)

)

an(t) :=
∫ t

0

1√
s1

ds1

∫ t−s1

0

1√
s2

ds2 . . .

∫ t−s1···−sn−1

0

1√
sn

dsn.

By (43) below we then have h(δ)
ε (t) ≤ c′√δ(1 + eπC2T ). The same argument applies to

h(δ)(t), hence proving (40). �

Lemma 5.2 With an(t) as above,

an(t) ≤ (πt)
n
2 e− n

2 [log( n
2 )−1] (43)

Proof We have

an(t) =
∫

[0,t]n
1s1+···+sn≤t

n∏

i=1

1√
si

ds1 . . . dsn. (44)

We change variables by setting si = ti t and get

an(t) = (
√

t)n

∫

[0,1]n
1t1+···+tn≤1

n∏

i=1

1√
ti

dt1 . . . dtn. (45)

Multiplying and dividing by exp{−α(t1 + · · · + tn)} we have

an(t) ≤ (
√

t)neα

∫

[0,1]n

n∏

i=1

e−αti

√
ti

dt1 . . . dtn ≤ (
√

t)neα

[∫ 1

0

e−αs

√
s

ds

]n
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≤ (
√

t)neα

(√
π√
α

)n

. (46)

By choosing α = n
2 we get (43). �

6 Proof of the Fourier Law

In this section we shall prove Theorem 2. The proof relies on Theorem 4 below which is
proved in [4]. Writing Λ

n,
=
N , n ≥ 1, for the set of all sequences x = (x1, . . . , xn) in Λn

N with
distinct entries, we first define the v-functions

vε(x, t |με) := Eε

[
n∏

i=1

{η(xi, t) − ρε(xi, t)}
]
, x ∈ Λ

n,
=
N , n ≥ 1, (47)

where the process starts with a product measure με , in particular a single configuration, and
ρε(x, t) is the solution of (5) with initial datum ρε(x,0) = με[η(x,0) = 1].

Theorem 4 There exist τ > 0 and c∗ > 0 so that the following holds. For any β∗ > 0 and for
any positive integer n there is a constant cn < ∞ so that for any ε > 0, any initial product
measure με

sup
x∈Λ

n, 
=
N

|vε(x, t |με)| ≤
⎧
⎨

⎩
cn(ε

−2t)−c∗n, t ≤ εβ∗
,

cnε
(2−β∗)c∗n, εβ∗ ≤ t ≤ τ log ε−1.

(48)

Proof of (19) Recalling (17) and applying Theorem 4 we have:

lim
ε→0

j
(ε)
+ (t) = −j

2
(1 − ρ(1, t)K), lim

ε→0
j

(ε)
− (t) = −j

2
(1 − (1 − ρ(−1, t))K) (49)

and (19) follows from (14). �

Proof of (18) We can express ρ(·, t) using the Green function for (11) and get

ρ(r, t) = P̃tρ(r,0) +
∫ t

0
{ρ(1, t − s)Pr,1(ds) + ρ(−1, t − s)Pr,−1(ds)}, (50)

where P̃tρ(r,0) = Er (ρ(B(t),0)1τ>t ) with B(t) the standard Brownian motion starting
from r , and τ the hitting time of {−1,1}; Pr,±1(ds) = Pr (τ ∈ ds,B(τ) = ±1) are the corre-
sponding hitting time distributions. Since ρ ′(r, t) := ∂ρ(r, t)/∂r satisfies the heat equation
we can write similarly to (50)

ρ ′(r, t) = P̃tρ
′(r,0) +

∫ t

0
{ρ ′(1, t − s)Pr,1(ds) + ρ ′(−1, t − s)Pr,−1(ds)} (51)

with ρ ′(±1, t − s) explicitly given in (14). The idea then is to write j (ε)(x, t) (which is
defined in (16)) in a similar way. We are going to prove that for −N +K < x < N −K − 1,

j (ε)(x, t) = − φ̄ε(x + 1, t)

2
− 1

2

∫ t

0

{
Θ

(ε)
+ (t − s)Px,ε;+(ds) + Θ

(ε)
− (t − s)Px,ε;−(ds)

}
(52)
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with

Θ
(ε)
+ (t) = ε−1

(
Eε[η(N − K, t)] − Eε[η(N − K − 1, t)]

)
,

Θ
(ε)
− (t) = ε−1

(
Eε[η(−N + K + 1, t)] − Eε[η(−N + K, t)]

) (53)

and

φ̄ε(x + 1, t) = ε−1
∑

y

(
Px+1(y(t) = y, τ ′ > t) − Px(y(t) = y, τ > t)

)
ρε(y,0), (54)

where we have used the following notation: y(t) is a random walk on ΛN with transition
kernel P

(ε)
t , Px its law when y(0) = x, τ ′ its first hitting time of {−N + K + 1,N − K} and

τ the first hitting time of {−N + K,N − K − 1}, and Px;ε,±(ds) refers to the hitting time
distribution of the boundary. More precisely, Px;ε,+(ds) = Px(τ ∈ ds, y(τ ) = N − K − 1)

and Px;ε,−(ds) = Px(τ ∈ ds, y(τ ) = −N + K).
To prove (52) we use (3), observing that when x /∈ I− ∪ I+, the second term on the r.h.s.

of (3) vanishes, so that

d

dt
Eε[η(x, t)] = 1

2
ΔεEε[η(x, t)], |x| ≤ N − K.

This allows to express gε(x, t) := Eε[η(x, t)] = Px[gε(y(τ̄ ∧ t), t − τ̄ ∧ t)] where Px refers
to the expectation with respect to a random walk y(·) that starts at x, with τ̄ the first hitting
time of {−N + K,N − K}, which corresponds to the (time variable) boundary condition.
Doing the same for each of the terms in Eε[η(x, t)] − Eε[η(x + 1, t)] we arrive to (52).

We need to compare (51) and (52) recalling (14). By the weak convergence of the random
walk to the Brownian motion, φ̃(x + 1, t), x = [ε−1r], converges to P̃tρ

′
0(r) and Px,ε;±(ds)

converges weakly to Pr,±(ds) (x = [ε−1r]). Therefore, recalling (14), (51) and (52), the
proof of (18) will follow from: for any t > 0

lim
ε→0

Θ
(ε)
+ (t) = j (1 − ρ(1, t)K), lim

ε→0
Θ

(ε)
− (t) = j (1 − (1 − ρ(−1, t))K) (55)

which will be proved in the remaining part of this section. As the analysis of Θ
(ε)
± (t) are

similar we shall only prove (55) for Θ
(ε)
+ (t).

Recalling (3) we can write:

Θ
(ε)
+ (t) = φε(N − K, t) +

∑

y∈I+
Γε,t,y −

∑

y∈I−
Γε,t,y (56)

where

φε(x, t) := ε−1
∑

y∈ΛN

(
P

(ε)
t (x, y) − P

(ε)
t (x − 1, y)

)
ρε(y,0), x ∈ ΛN, t > 0 (57)

and for y ∈ I±, respectively,

Γε,t,y := ε−2
∫ t

0
ds

(
P (ε)

s (N − K,y) − P (ε)
s (N − K − 1, y)

)

× Eε

(
j

2
(D±η(·, t − s))(y)

)
. (58)
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As the analysis of (56) will involve several steps, we give first an outline.

– We shall first prove that φε(N − K, t) vanishes as ε → 0 (this will be simple).
– We will then show that also Γε,t,y with y ∈ I− vanishes as ε → 0. This is less simple and

involves couplings of random walks.
– The analysis in the previous step is then used to prove that

lim
ε→0

|Γε,t,y − Γ ∗
ε,t,y | = 0, for all y ∈ I+, where:

Γ ∗
ε,t,y := ε−2

∫ t

0
ds

(
P (ε)

s (N − K,y) − P (ε)
s (N − K − 1, y)

) j

2
(D+ρε(·, t − s))(y).

(59)

– It is then proved that there exist numbers a(h),h = 0, . . . ,K − 1, so that

lim
ε→0

∑

y∈I+
Γ ∗

ε,t,y = j

2

K−1∑

h=0

a(h)
(
1 − ρ(1, t)

)
ρ(1, t)h. (60)

– The final step consists in recognizing that the right hand side of (60) is indeed equal to
j (1 − ρ(1, t)K).

By (22)

φε(x, t) = ε−1
∑

z∈Z

Q
(ε)
t (x, z) (ρε(ψN(z),0) − ρε(ψN(z − 1),0)) . (61)

Recalling that ρε(y,0) = ρ0(εy) and that ρ ′
0, the derivative of ρ0, is by assumption bounded,

we then have for any r ∈ [−1,1]

lim
ε→0

φε([ε−1r], t) =
∫

R

Gt(r, r
′)(−1)S(r ′)ρ ′

0(ψ(r ′))dr ′ =: φ(r, t), (62)

where S(r ′) = 1 if r ′ in [−1,1], ±[3,5], . . . and = −1 in the complement. By symmetry
φ(±1, t) = 0 so that

lim
ε→0

φε(x, t) = 0, x = N − K. (63)

By rescaling the time we rewrite Γε,t,y as

Γε,t,y :=
∫ ε−2t

0
ds

(
P

(ε)

ε2s
(N − K,y) − P

(ε)

ε2s
(N − K − 1, y)

)

× Eε

[j

2
(D±η(·, t − ε2s))(y)

]
(64)

and recall that P
(ε)

ε2s
(x, y), which in this proof we denote by p(N)

s (x, y), is the transition
probability of a reflected random walk in ΛN with jump intensity 1/2 for each pair of near-
est neighbor sites in ΛN . In the sequel we shall also consider the transition probabilities
pt(x, y) of the random walk on Z+ = {0,1,2, . . .} with jump intensity 1/2 among nearest
neighbors. �
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Lemma 6.1 There exists a constant c so that for any h = 0, . . . ,K − 1 and any t

∣∣pt(K,h) − pt(K + 1, h)
∣∣ ≤ c

1 + t3/2
. (65)

The integrals below are well defined:
∫ ∞

0
{pt(K,h) − pt(K + 1, h)}dt =: a(h). (66)

Proof The second statement follows at once from the first, which we now prove with a
coupling argument. We write

pt(K,h) − pt(K + 1, h) = E
[
1y1(t)=h − 1y2(t)=h

]
,

where E is the expectation in a process which couples two simple random walks on Z+,
denoted by y1(s) and y2(s), s ∈ [0, t], with y1(0) = K , y2(0) = K +1. The coupling (whose
law will be denoted by P ) is defined as follows: y2(s) moves as the random walk on Z+
(i.e. with transition probability ps(x, y)) for all s ∈ [0, t]. Let t1 = t/3: in the time interval
[0, t1], y1(s) copies exactly the jumps of y2(s) for all s < min{τ, t1}, where τ is the first time
when y2 jumps to 0. If τ ≤ t1 then we set y1(s) = y2(s) for all s ∈ [τ, t]. When τ > t1, we
let y1 move independently of y2 in [t1, τ ∗], where τ ∗ is the first time when y1 = y2, and for
s > τ ∗ we set y1(s) = y2(s). P is evidently a coupling and we have:

pt(K,h) − pt(K + 1, h) = E
[
(1y1(t)=h − 1y2(t)=h)1τ∗>t

]
.

Letting t2 = 2t/3 and

g(z1, z2) := E
[
1y1(t)=h + 1y2(t)=h

∣∣ y1(t2) = z1, y2(t2) = z2
]
,

h(z1, z2) := P
[
τ ∗ > t2;

∣∣ y1(t1) = z1, y2(t1) = z2

]
,

the l.h.s. of (65) is bounded by:

E
[
g(y1(t2), y2(t2))h(y1(t1), y2(t1))1τ>t1

]

and (65) follows after recalling that y1(t1) − y2(t1) = 1 if τ > t1. �

Lemma 6.2 There is a constant c so that for any h = 0, . . . ,K − 1, any N and any t

∣∣p(N)
t (N − K,N − h) − p

(N)
t (N − K − 1,N − h)

∣∣ ≤ c

1 + t3/2
. (67)

Moreover for any t ≤ N and c̄ suitable positive constant,

|p(N)
t (x,N − h) − pt(N − x,h)| ≤ ce−c̄N , x = N − K,N − K − 1. (68)

Proof The same argument used in the proof of Lemma 6.1 proves (67). Details are omit-
ted. As for (68), just notice that pt(N − x,h) is the probability for the random walk on
{y ∈ Z : y ≤ N} reflected at N and starting at x at time 0 to be at N − h at time t , while
p

(N)
t (x,N − h) refers to the walk that is also reflected at −N . Letting the two walks move

together before reaching −N , the difference on the l.h.s. is bounded from above by the
probability of reaching −N by time N , and the estimate follows at once by very simple
exponential bound on the Poisson clock process (or still using (23)). �
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Lemma 6.3 For any y ∈ I−

lim
ε→0

Γ −
ε,t,y = 0, y ∈ I−. (69)

Proof By (64)

|Γε,t,y | ≤ c

∫ ε−2t

0
|p(N)

s (N − K,y) − p(N)
s (N − K − 1, y)|ds. (70)

We bound the probability difference by coupling the two random walks as in the beginning
of the proof of Lemma 6.1, namely the random walk y1(s) starting at N − K copies the
jumps of y2(s), the one starting at N − K − 1. Calling τN the first hitting time of N by y2,
the two random walks become identical after τN . Let τ− be the first hitting time of −N + K

by y2. Thus the contribution to (70) comes from the event τ− < τN . Calling P the law of the
above coupling, E its expectation and Fτ− the canonical σ -algebra, we have

|Γε,t,y | ≤ c

∫ ε−2t

0
E

[
1τ−<s1τN >τ−

∣∣E
[
1y1(s)=y − 1y2(s)=y |Fτ−

]∣∣]ds. (71)

Since τN > τ−, y1(τ−) = −N +K + 1 and y2(τ−) = −N +K , the above conditional expec-
tation can be bounded using (67) (changing x to −x). Thus

|Γε,t,y | ≤ c

∫ ε−2t

0
E

[
1τ−<s1τN >τ−

c

1 + (s − τ−)3/2

]
ds. (72)

The r.h.s. of (72) involves only the random walk y2, and due to the initial conditions we are
considering (K is fixed), P(τ− < τN) ≤ c̃ε for a positive constant c̃. Calling m(dt) the law
of τ− conditioned to τ− < τN , we may write for y ∈ I−

|Γε,t,y | ≤ c′ε
∫ ε−2t

0
ds

∫

(0,s]
m(du)

1

1 + (s − v)3/2

≤ c′ε
∫

(0,ε−2t]
m(du)

∫ ε−2t

u

1

1 + (s − u)3/2
ds ≤ c′′ε,

proving the lemma. �

Proof of (59) We split the integral in (64) into s ≤ ε−c∗
and s > ε−c∗

, where c∗ is as in
Theorem 4 (assuming without any loss that c∗ < 2). For the second one we use (67) to see
that
∣∣∣∣∣

∫ ε−2t

ε−c∗
ds

(
p(N)

s (N − K,y) − p(N)
s (N − K − 1, y)

)
Eε

(
(D±η(·, t − ε2s))(y)

)
∣∣∣∣∣ ≤ Cεc∗/2.

The same estimates hold for Γ ∗
ε,t,y so that using Theorem 4 we get

|Γε,t,y − Γ ∗
ε,t,y | ≤ cε(2−β∗)c∗

∫ ε−c∗

0
|p(N)

s (N − K,y) − p(N)
s (N − K − 1, y)|ds + 2Cεc∗/2,

hence (59). �
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Proof of (60) Again by Lemma 6.2 we have

∣∣∣Γ ∗
ε,t,y −

∫ ε−1

0

(
p(N)

s (N − K,y) − p(N)
s (N − K − 1, y)

) j

2
(D+ρε(·, t − ε2s))(y)ds

∣∣∣

≤ c
√

ε.

We replace (D+ρε(·, t − ε2s))(y) by (D+ρε(·, t))(y), the error being bounded by c
√

ε
t
,

by (33). Using again Lemma 6.2 we obtain
∣∣∣∣Γ

∗
ε,t,y − j

2
(D+ρε(·, t))(y)

∫ ∞

0

(
p(N)

s (N − K,y) − p(N)
s (N − K − 1, y)

)
ds

∣∣∣∣

≤ c′
(√

ε

t
+ √

ε

)
.

By (7),

lim
ε→0

(D+ρε(·, t))(y) = (1 − ρ(1, t))ρ(1, t)N−y, y ∈ I+

which, by (66), proves (60). �

We are left with the final step, namely to recognize that the right hand side of (60) is
equal to 1 − ρ(1, t)K . We use conservation of mass, namely from (5) it follows that

2ε

( N∑

x=N−K

ρε(x, t + τ) −
N∑

x=N−K

ρε(x, t)

)

=
∫ t+τ

t

(
−1

2
J

(ε)
+ (s) +

∑

y∈I+

j

2
D+ρε(y, s)

)
ds (73)

with J
(ε)
+ (s) the analogue of Θ

(ε)
+ (s), namely

J
(ε)
+ (t) := ε−1 (ρε(N − K, t) − ρε(N − K − 1, t)) .

Then, analogously to (56)

J
(ε)
+ (t) = φε(N − K, t) +

∑

y∈I+
Γ ∗

ε,t,y −
∑

y∈I−
Γ ∗

ε,t,y .

The same arguments used for Γε,t,y , for y ∈ I− show that limε→0
∑

y∈I− Γ ∗
ε,t,y = 0, so that

using (60) we get from (73) in the limit ε → 0

0 =
∫ t+τ

t

j

2

K−1∑

h=0

(
−1

2
a(h)(1 − ρ(1, s))ρ(1, s)h + (1 − ρ(1, s))ρ(1, s)hds

)
ds (74)

which by the continuity in t gives for any t > 0

1

2

K−1∑

h=0

a(h)(1 − ρ(1, t))ρ(1, t)h =
K−1∑

h=0

(1 − ρ(1, t))ρ(1, t)h = 1 − ρ(1, t)K . (75)
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