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We consider a one-dimensional version of the model introduced in Ref, 1. At 
each site of Z there is a particle with spin + 1. Particles move according to the 
Stirring Process and spins change according to the Glauber dynamics. In the 
hydrodynamical limit, with the stirring process suitably speeded up, the local 
magnetic density m,(r) is proven in Ref. 1 to satisfy the reaction-diffusion 
equation 

8tmt(r ) _  1 2 -- ~ ~rmt(r) -- V'(mt) (*) 

V(m)=-�89 4, ~ and fl>0, c~ and fl being determined by the 
parameters of the Glauber dynamics. In the present paper we consider an initial 
state with zero magnetization, mo(r)=O. We then prove that at long times, 
before taking the hydrodynamical limit, the evolution departs from that 
predicted by (*) and that the microscopic state becomes a nontrivial mixture of 
states with different magnetizations. 

KEY WORDS: Interacting particle systems; reaction-diffusion equations; 
unstable equilibria. 

1. I N T R O D U C T I O N  

There  are  by  n o w  several  examples  where  it  has  been  poss ib le  to der ive  

m a c r o s c o p i c  e q u a t i o n s  f rom u n d e r l y i n g  mic roscop ic  evo lu t ions ,  m o s t l y  in  
the f rame of  s tochas t ic  processes  wi th  inf in i te ly  m a n y  i n t e r ac t i ng  par t ic les  
a n d  u n d e r  a p p r o p r i a t e  space- t ime  ( h y d r o d y n a m i c )  sca l ing  l imi t s /2  28) 
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Their validity is usually proven for finite times, so that, rigorously 
speaking, they are useless when the long-time behavior of the system is 
investigated. Notions like stationary states, stable and unstable orbits, 
complexity of an orbit, and Lyapunov coefficients, require a more detailed 
analysis, still at a microscopic level. 

The purpose of this paper is to discuss a model where some of these 
questions have an answer. The model is a one-dimensional version of that 
introduced in Ref. 1, namely a system of spin particles which move on the 
lattice Z according to the Stirring process, i.e., by simple exchanges. During 
the motion particles keep their own spin, which, in turn, may change 
according to a nearest neighbor, ferromagnetic, Glauber interaction. 

The stirring evolution is speeded up by e 2 (g goes to zero) while the 
typical space length is scaled like e 1. In this limit the macroscopic local 
magnetization m(r, t) satisfies, (1) the following reaction-diffusion equation: 

8tm = �89 ~2rrn -- V ' (m)  (1.1) 

where 

V(m) = - -  �89 2 -b l f lm4 (1.2) 

Clearly, the term ~?2m in Eq. (1.1) is due to the Stirring process, while the 
- V ' ( m )  term originate from the Glauber dynamics. For a suitable choice 
of the latter [cf. Eq. (2.1)], we get Eq. (1.2), with ~ and fl positive. 
Equation (1.1) describes the behavior of the system in the "pure" 
hydrodynamical regime, i.e., after the continuum limit has been performed. 
To take into account the "corrections" due to the actual microscopic struc- 
ture of the system, one generally adds to the macroscopic equation a 
stochastic disturbance, hoping to catch, at least qualitatively, the main 
features of the evolution. 

The simplest possibility is to consider a stationary stochastic force 
uncorrelated in space and time. So one arrives at the following stochastic 
differential equation: 

din(r, t) = (�89 ~?2m(r, t) - V ' (m)  ) dt + gi/2 dW(r,  t) (1.3) 

where W is a white noise (in space and time) and e is the "small parameter" 
of the theory. 

The finite-dimensional version of Eq. (1.3), i.e., 

dx = - U ' ( x )  dt + •1/2 d W  (1.4) 

has also been extensively studied. In Eq. (1.4), x ~  R d, U is a "double-well" 
potential, and W is the standard Wiener motion. 
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The escape from the unstable equilibrium in Eqs. (1.3) and (1.4) [the 
spatially homogeneous one, m = 0, in the case of Eq. (1.3)] is of interest in 
physics and chemistry, and several theoretical and numerical investigations 
have appeared on this subject. (27 32) 

In particular, a perturbative expansion, as proposed by De Pasquale 
and Tombesi, (3~ seems to be in good agreement with the experimental and 
numerical results. The main point behind their approach plays also an 
important role in our analysis, as we shall see in the next Sections. 

The escape from equilibrium, as described by De Pasquale and Tom- 
besi for the system corresponding to Eq. (1.3), and for times of order 
log e-1, is in qualitative agreement with the behavior we observe in our 
microscopic system, in the same time scale. 

In the present paper, for technical simplicity, we restrict ourselves to 
macroscopically finite regions. In this case we have an explicit solution at 
time T~ + t, when e vanishes, T~ being an initial time layer which diverges 
when e goes to zero like log e -~. In such a limit the microscopic state 
becomes a nontrivial mixture of Bernoulli states, i.e., measures which make 
the spins mutually independent and identically distributed. 

The weight of the decomposition is proven to obey the law of a ran- 
dom variable which solves an equation analogous to Eq. (1.3) (at time 
T~ + t and in the limit as e goes to zero), the profile re(r, t) becoming flat. 
We think, however, that in the infinite volume case the profile should have 
a nontrivial spatial structure. 

The profiles entering in the decomposition evolve according to Eq. 
1 i mixture of (1.1), so that in the limit as t diverges the state becomes a ~-~ 

states with support on +m*, the stable solutions of Eq. (1.1). We have 
here an example where at each r there is convergence in the continuum 
limit to a measure rather than to a real number (i.e., the value at r of the 
magnetization m, in our specific example). The role of measure-valued 
solutions in nonlinear PDE has been underlined in a different context by 
Di Perna (33) in his analysis of hyperbolic equations. 

In our case their appearance is due to the fact that we take the infinite 
time limit along with the hydrodynamical one. Therefore the small fluc- 
tuations, inherited from the discrete nature of the model and intrinsically 
connected to the stochasticity of the evolution, are enhanced by the hyper- 
bolic structure of the PDE and blow up exponentially, leading to finite 
effects after logarithmic times. 

Another point we want to underline is the microscopic interpretation 
that we get for the values of re(r, t) as the parameters which specify the 
"pure phases" entering in the decomposition of the microscopic state, in the 
limit when e goes to zero. 

In the hydrodynamical regime, e--* 0, at fixed t, Eq. (1.1) holds and 
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the state around e lr is pure Bernoulli with parameter m(r, t). As time 
increases and for small but positive 5, the state becomes closer to a mixture 
of Bernoulli measures. At T, the mixture has finite width and its later 
evolution defines a statistical solution of Eq. (1.1), for finite times, in the 
limit when e goes to zero. At such times the values of the magnetization are 
in the domain of attraction of + m*, no instability is present, and Eq. (1.1) 
describes correctly the evolution also for longer times. At even longer times 
new phenomena take place: they are due to the tunnelling between the two 
stable magnetizations and to the nontrivial spatial structure, in the case of 
infinite systems. 

Such effects are lost in our limiting procedure, i.e., if we first fix a time 
T~ + t and then take the limit of e going to zero. In a much longer time 
scale large deviation effects enter into play and our techniques become 
inadequate. Results have been obtained in other models, (34 39) which might 
be useful also in our case. 

In Sec. 2 we briefly recall the model introduced in Ref. 1. We then 
state precisely our results and give a qualitative idea of their proofs. The 
proofs are reported in Sec. 3 and Sec. 4. Some more technical estimates are 
given in the Appendices. 

2. RESULTS 

We fix L > 0 and for each e > 0 we consider the thorus Z~ of length 
[e ~L] ( [a]  = integer part of a). Z~ is the set of all integers with the iden- 
tification x = x +  [~ - IL] .  We then consider the space { - 1 ,  1} z~ of all 
spins configurations a =  (ax)x~Z which are periodic with period [e 1L'].  

On { -  1, 1 } z~ we define a Markov process whose generator L ~ acts on the 
cylinder functions s f as 

L~f= 

~ x ( y )  = 

ax'x+l(y)= 

ox,x+,(x)= 

L 6 f  +~-2Lef 

c(x, a ) [ f ( a  ~) - f(o')]  
x~Z~  

+ le-2  ~ [f(ax,~ + 1) _ f ( a ) ]  (2.1a) 
x 

a(y) for y r  aX(x)=- -a (x)  

a(y)  for yg:x ,x+l ;  

a ( x +  1); ax'x+ l(x + 1) = a(x) (2.1b) 

5 That is, functions depending only on finitely many spins. 
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c(x, a)= l - Ta(x)Ea(x + l ) + a ( x - 1 )  ] + 72a(x + l ) a ( x - 1 )  (2.1c) 

7=2(2y-  1)>0; /~=272 (2.1d) 

As mentioned in the introduction, L6 is the generator of an n.n. 
ferromagnetic Glauber dynamics, Le is the generator of the Stirring Process 
(namely, each pair of n.n. sites waits independently of the others for a 
Poisson time of mean �89 then, when "the clock rings," the particles, and 
hence the spins, of the sites involved exchange with each other). 

We denote by Vm, m ~ [ - -  1, 1 ], the Bernoulli measure 6 on { - 1, 1 }z 
with average spin m, i.e., 

Vm [~r(x)] = m  V x e Z  

where # [ . ]  is the expectation of [ ' ] .  By v~, we denote the "Bernoulli 
measure" on Z~ such that the law of the spins in an interval of length 
[ e - l L ] -  1 is that inherited from vm and, given their values, all the other 
spins are then specified in agreement with the periodic structure of Z~. 

Let #~ be the law of the spins at time t when their initial distribution is 
v; and the evolution is determined by L ~. Our first result is: 

2.1 .  T h e o r e m  

L e t / ~  be as above. For  a > 0, let t 

T~(a) = (2~) -1 a log 8 -1 T~ = T~(1) (2.2) 

Then, for any t>~0, there is a probability 2t(dm) on [ - 1 ,  1] such that 

lira = | 2t(drn) v,,, 
J 

(2.3a) 

Ym being the Bernoulli measure with parameter m. Furthermore, 

lim 2t = �89 3m. -t- �89 (~_m. 
t ~ o o  

(2.3b) 

where +m *  are the stable solutions of 

d , m = - V ' ( m ) ,  where mE [ - 1 ,  1] 

while, on the other hand, if a < 1 

lim 

6 That is, the measure for which spins at different sites are independent. 

(2.4) 

(2.5) 

822/44/3-4-24 
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We have a rather explicit knowledge of ~.~(dm) also at finite times, 
namely: 

2.2. T h e o r e m  

Let )~t(dm) be as in Theorem 2.1, and let S~(m) be the flow which 
solves Eq. (2.4). For a < 1, let 

F(a) = �89 - a) (2.6) 

Then there is a map ~ : R ~ [ -  1, 1 ] such that 

lim Sr~_ r~(a)(er~)x) = ~(x) 
g ~ 0  

(2.7) 

2t(dm) is then the image under S, o ~ of the measure G(x) dx on R, where 

G(x) = (2rcV) -v2 exp( - (2V) -~ x 2) (2.8) 

and 

V= (2c~) -I  82 (2.9) 

Remarks. (1) O- t  is the analogue of the map that De Pasquale and 
Tombesi (3~ (cf. Refs. 29-32) introduce in their perturbative approach. 

(2) )~t(drn) is also the limiting law, as e vanishes, of the distribution 
of the variable rn"(0, �9 ) at time T, + t, where m~(r, 0) - 0 and 

dm~(r,t)= 1 2 s [~ arm (r, t ) -  V'(m(r, t))] dt + (e87) 1/2 dW(r, t) (2.10) 

The choice of the noise in Eq. (2.10) is consistent with the analysis of 
Ref. 1. By linearizing Eq. (2.10) around m = 0 ,  we get, in fact, the fluc- 
tuation field ~b(r, t) considered in Ref. 1. As time increases, ~b grows 
exponentially, (1) and one needs to look at the magnetization itself. When m 
becomes finite, the strength (e87) v2 of the noise is no longer correct. In 
Ref. 1, in fact, it is proven that it depends effectively on the values of the 
magnetization [cf. Eqs. (2.17) and (2.18) of Ref. 1]. This is irrelevant, 
however, for the determination of 2,(dm) which is only sensitive to the 
initial fluctuations, when m is small. 

(3) In the above m"(r, t) labels the Bernoulli measures whose super- 
position (with weights given by the probability distribution of m) 
approximates the microscopic state around e ~r at time t. There is also a 
relation between me(r, t) and the magnetic fluctuation fields mentioned in 
(2) above. 
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The fluctuation fields X~(40), t~>0, (n e5~(a )  are defined as 

X~(q~) = d/2 ~2 ~0(~x) ~(x, t) (2.11) 
x 

Let W be the law induced by the X~(~0) on D ( ~ + ,  5~'(N)). 
Then in Ref. 1 it is shown that P~ converges weakly to P, which is the 

generalized Ornstein-Uhlenbeck process with mean zero and a covariance 
whose kernel C~(r- r') has a delta singularity and a regular part. The latter 
at r = r' coincides with the limiting covariance of "our" ~-l/2m~(r, t). In 
Ref. 1 it is also proven that this diverges when t goes to infinity. We 
generalize such result as in the following theorem. 

2.3.  T h e o r e m  

Let T~(a), a <  1, be as in Theorem 2.1. Let F(a) be as in Eq. (2.6), and 
for (p ~ 5r(~)  let 

x~,a((D)  = ~1 F(a)~ q)(6X) G(X, T~(a) + t) ( 2 . 1 2 )  
37 

Let p,,a be the law they induce on D ( ~ + ,  ~ ' ( ~ ) ) .  Then P"~ converges 
weakly to P. P is a Gaussian process. It has support on those distributions 
which act as multiplication by a constant. Furthermore the paths re(t), 
t ~> 0, on which P is supported are such that 

d,m = 2c~m 

which is the linearization of Eq. (2.4). The distribution of m(0) is G as 
defined in Eq. (2.8). 

Below we give a brief sketch of the proofs. 
Clearly one has to distinguish between two time regimes. In the first 

one the magnetization is infinitesimally small, as e goes to zero, while, in 
the second one, it has become finite. In the latter the evolution is governed 
by Eq. (1.1), and in the first the nonlinear effects will be negligible. 

The problem is to find a suitable intermediate region which connects 
the previous two. The breakthrough comes from the fact that it is possible 
to extend the validity of Eq. (1.1) to cases where the initial magnetization 
mS is still infinitesimal but "much larger" than e 1/2, which is the typical 
value of the magnetic fluctuations. Namely, assume m~ = e r, 0 < F <  �89 and 
let F be suitably small. One can then prove that the solution of Eq. (1.1) 
correctly describes the evolution of the state for times of order log ~- 1, i.e., 
when the magnetization becomes finite. 
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The first time regime when the magnetization is still typically less than 
e r can be studied as follows. We first write down the BBGKY hierarchy, 
i.e., the infinite set of equations which describes the evolution of the 
correlation functions Pv;[a(xl,  t ) . . .  a(xn, t)], where n ~> 1 and Xl ..... xn are 
mutually distinct. 

Such equations have the following features. The equation for the 
n-body correlation involves the n , n - 2 ,  n + l ,  and n + 2  correlation 
functions. The n + 2 correlation function enters with a minus sign. One 
knows a priori that the odd correlations are identically zero (by symmetry) 
while the even ones are positive, by ferromagnetic inequalities. One then 
finds an a priori upper bound on the correlation functions by truncating 
the hierarchy. 

Up to times when the magnetization is small, ~< e r, the upper bound 
for the n-body correlation functions behaves like e "r, hence one controls 
the error made by truncating the hierarchy. In this way we prove 
Theorem 2.3. 

We have also gained very precise information on the measure at the 
end of the "first time regime," since we control the n-body correlation 
functions for arbitrarily large values of n, in the limit of small 5. We can 
then prove that with large probability the spin configurations o-= (ax), 
x ~ Z~, are such that 

sup~ - r  ~ ~ a ( x ) - m ( a )  < ~ ,  1/>0 (2.13) 
y e N  Ix--Yl <~-'~/2 

where re(a) is the average magnetization of the configuration a, which, 
because of what said above, is typically of order er. 2 in Eq. (2.13) is some, 
suitably fixed, positive number less than 1. 

The magnetization starting from such configurations evolves according 
to Eq. (1.1) even at times of order logs 1 and the microscopic state is 
approximately Bernoulli with the corresponding parameter. This is what 
we have described before as the "evolution in the second time regime." 
Technically this part requires very accurate estimates on the behavior of 
the simple exclusion process, obtained by extending some of the results 
established in Refs. 40 and 41. 

3. PROOF OF T H E O R E M  2.3 

We follow the strategy outlined at the end of Sec. 2. In this section we 
consider the "first time regime," namely times less than T~(a) [cf. Eq. (2.2)] 
for any a < 1. We will prove Theorem 2.3 and establish properties of the 
state at time T~(a) which will allow us to study the evolution for the 
remaining time, i.e., up to time T~. This will be done in Sec. 4. 
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The n-body correlation functions V~(x~,..., x , ,  t) are defined for ~ > 0, 
n >i 1, X l " "  x ,  mutually distinct and t/> 0, as 

v".(x~ ,..., x . ,  t) = ~, ~(x~, t) (3.1) 
i 

It is convenient to write x for (x~ ..... x , )  in the argument of V~ and to set 
V~=l. 

3.1. L o w e r  Bound f o r  t h e  C o r r e l a t i o n  Funct ions  

The following holds for all n ~> 0 and t >~ 0 

v L +  ~(_x, t )=0  

v~.(_x, t) >>. o 

(3.2) 

(3.3) 

ProoL Equation (3.2) follows from the symmetry of the process 
under reversing all spins at all times [recall that the initial measure v~ is 
also invariant under such transformation]. To prove Eq. (3.3) we first 
recall a useful representation of our process, namely the following: 

Glauber-Stirring Process (GSP). The state space of the GSP is 

~ = ( z •  {-1 ,  1}) Z , ~ ,  ~ = ( ~ ( u ) , u ~ Z )  

~(u)= (x(u), #(u)), x ( u ) ~ Z ,  #(u)e { - 1 ,  1} 

a = (a(u), u ~ z )  

x(u) denotes the position of the "stirring particle" u, and #(u) denotes its 
spin. The initial state of the system will always be such that x(u) = u. The 
GSP process is the Markov process on 0~ whose gerator L ~ acts on cylinder 
functions f as 

= 2 ? ( r  

where 
~"(~) = 

~u(u) = 

c . ( ~ )  = 

x(u-+)= 
~-,-+(v) = 

~ " , - + ( u )  = 

~ " , • 1 7 7  = 

u 

+�89 = j (~- ,  +) + r  2f(~)l } 

~(v) whenever v # u 

(x(u), - a ( u ) )  

1 - ~ a ( u ) [ a ( u + ) + a ( u  )] +?2a(u+) a ( u - )  

x(u) +_ 1 

~(v) whenever v r u, u -+ 

ix(u) + 1, a(u)) 

(x(u), a(u+-)) 
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We denote by x(u, t) and g(u, t) the canonical variables of the process, i.e., 
x(u, t) is the random position of particle u at time t and g(u, t) its spin. The 
following remarks are important for the next considerations: 

(a) For any y ~ Z ,  let u,(y) be such that x(u~(y), t)= y. Then the 
variables 

a(y, t ) :  ~(u,(y), t) 

have the same law as the canonical variables of the process with generator 
L e" 

(b) The process of the x(u, t) alone is the usual stirring process 
(speeded up by e-2). 

(c) After conditioning on the paths of the stirring particles, the 
process of the 8(u, t) is a time-dependent ferromagnetic Glauber-type 
process. 

We condition on the stirring particles' paths. By remark (b) above, the 
process 8(u, t) is ferromagnetic and by Theorems 2.2 of Chapter 3 and 2.14 
of Chapter 2 of Liggett's book, (42) we have 

E ~ 6(u~, {x(v ,s) ,VveZ,  Vs>~O} >10 

for all ul ..... u2, mutually distinct (3.4) 

where E ~ denotes the expectation in the GSP process when initially the 
spins have law v~ and x(u, O) = u for all u in Z. In particular, we choose the 
ui in Eq. (3.4) so that x(ui, t) =x i ,  i =  1 ..... 2n, where x =  (xl ..... x2n ) is the 
set in Eq. (3.3). By remark (a) we therefore get that 

~Z~ a ( X i ,  {X(/), S), V/) E Z, Vs ~ 0) ~ 0 

hence Eq. (3.3) follows. 1 

3.2. The BBGKY Hierarchy 

Denote by U~(t) the semigroup with generator L ~ and by U~(t) the 
semigroup of the Stirring Process with generator 8 - 2 L  e. Then 

t 
U~(t)=U~(t)+fodSU~(t-s)L~U~(s) 
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Therefore 

V~n(Xl ,..., X,, t) 

= Y.  P~,(z1 ..... ZnlXi  ..... X . ) V ~ ( Z i  ..... z . ; O )  
Zl,Zn 

+ ds ~ P~_,(z I ..... z ,  lxl  ..... x , )E~,  o La  a(zi, s) (3.5) 
Zl,Z n i =  1 

where P~(Zl ..... z ,  J xa ..... xn) is the probability that n particles which start 
from xl,..., xn and move according to the Stirring Process with intensity 
e 2 (generator E-2Le) are at zl ,  , z,  at time t E~ denotes the expectation 

. "'" . /t o 
w.r.t, the process when the initial measure on { -  1, 1 }z~ is #~. The case of 
interest for us is when p~= v~. It is now easy to obtain from Eq. (3.5) 
closed equations for the V~, n>/1. This is what the physicists call the 
BBGKY hierarchy. 

We use Eq. (2.1) with f =  1-[7=1 a(zi, s) to write the r.h.s, of Eq. (3.5) 
in terms of the V,'s. The structure of the equation when the initial measure 
is v~ becomes then the following (g, g , h, h 2' appearing below are still 
to be defined): 

fo v~(_x, t) = as y~ t ' ,  ~ ,(zl_x) 
z c Z 2n 

x -4nV2,(_z , s) + ~ (g(z,_z) 2?Vz,(_z , s) 
z '  

t g ~ !  } + g  (_z,_z)27V2,_2(_z,s)) 

- fl f' ds ~ P~ ,(_z t _x ) 
~0 z c Z 2n 

(h('z,_z') Vz ,+2( z ' , s )+h  (_z,z') Vz, 2(_2',s)) (3.6) 
z '  ~Z2n+2  

By assumption, in fact V~,(_x, 0 ) = 0  for all x and n and V~,+I =0 ,  by Eq. 
(3.2). g , h_ are characteristic functions which can be different from zero 
only if some pair z~, z s in _z differ by 1. Hence, roughly speaking, they do 
not contribute much to Eq. (3.6). 

We will now give the definition of g , g  , h , h  . We set 
-7 = ( Z I , . . .  , Z 2 n ) ~ Z  2n,  Z i ~ Z  j whenever i C j .  We interpret the Zg in _z as the 
sites where particles are. 

- ~ t ~.t z 2 n  For z' (z1,...,-2,)~ let us define 

j l  l ,an z  z w en v r/,j g(_z, _z') = i f E ~  ' = ' ' (3.7a) 
otherwise 
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Namely  g(_z, _z') = 1 if and only if z '  is obta ined from _z by letting only one 
particle move  to an n.n. "allowed" site. An allowed site is a site which is not  
occupied by any other  particle. 

{~ ifZ2i"=l lZ~-Z'l=l andz~=zJf~176 (3.7b) 
g _  (_z, _z') = otherwise 

As before, only one particle can move  to an "allowed" n.n. site, which now 
means a site occupied by some other  particle. 

As a consequence of Eq. (3.5b), if _z' is such that  g _ ( z , _ z ' ) =  1, then 
z~ = z~ for some i r j. We then define _~' ~ Z 2~ - 2 as 

2~ = zk Vk # i, j (3.7c) 

For  _z'= (z] ..... z ; ,+2)  e Z 2"+2, let 

/ 

1 

h(_z, z') = 1 
[ 0 

if z~ = zk, k = 1,..., 2n, and there is i ~< 2n such 

that  z;n+ l = z i  - 1, z;n+2 = z e +  1, z~+ 1 Czj, Vjr 
otherwise 

(3.7d) 

Namely,  z '  is obtained from _z by letting one particle of _z create two new 
This is allowed only if both  sites were not  particles at its n.n. sites. 

occupied. Finally, let 

1 

h (z, _z') = 

0 

if z ;  = zk, k = 1 ..... 2n, and there is i ~< 2n 
! / 

such that  z2n + 1 = zi - 1, z2, + 2 = Zi "{- 1, and there 

are j and m such that  zi + 1 = zj and zi - 1 = Zm 
otherwise 

(3.7e) 

If_z' is such that  h (_z, _z') = 1 and i, j, m are as in Eq. (3.7e), then we define 
_~' E Z 2n : as 

2~ = zk k r i, j, m (3.7f) 

3.3. Upper  Bounds for  the Corre lat ion Functions 

There are constants  7 c(2n) such that  for any a < 1, t ~ [0, T~(a)], T~(a) 
being defined in Eq. (2.2), and any n >~ 1 

sup V~n(_x; t) ~< c(2n) e n exp(2n0~t) (3.8) 
X E Z 2n 

where the sup is over all _x= (xl,..., x2n) such that  xir whenever ir 

7 Explicit bounds for c(2n) are given in Eqs. (3.13) and (3.13b) below. 
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Proof. Let 

a[n(t )= sup sup V~n(x; s) (3.9) 
x e Z 2n s <~ t 

where _x=(xl ..... x2n) is such that xiCxj  whenever iCj. From Eq. (3.6) 
and the positivity of V~,, we then get 

a~.(t)<~ ds 2nea2.(s)+47�89 ) 

sup ~ e~_,(zl, z2lxl, x2) l(Izl -z21 = 1) a~_2(s)t • 

x I , X 2  ZlZ 2 J 

<~ f r ds{Znea~n(s) + 47 1 2n(Zn - 1) c~(t - s) i/z ea~, 2(s)} 

+ 4~ �89 2n(2n - 1 ) eea~,_ 2(t) (3.10) 

because for a suitable constant cl (cf. Appendix A), cl >~ 1, 

sup ~ P~_,(zl, z21xl, x2) l ( [ z l - z 2 l  = 1) 
Xl ,X2  ZlZ 2 

<~cl(t--s)-l/2~l(e-21t--sl>~l)+l(~-2lt-sl<~l) (3.11) 

From Eq. (3.10) 

a~(t) <~ c(2) e exp(2~t) (3.12a) 

where 

c(2) = sup sup 4~c 1 ds(s-1/2+e) exp(-2~s) 
t > O  e~<l 

Then for n > 1 

a~,(t) <~ exp(2nc~t) e"47 �89 2n(2n - 1 ) c(2n - 2) 

xc ln  ds(s-1/2 +(2n-2)~e)exp( -2~s )  

so that 

where 

a~n( t ) <~ c(2n) en exp(2n~t) 

c(2n) = c(2n - 2) 4y 1 2n(2n - l) 

nc lsup  sup dsexp(-2es)(s v2+(2n-2)c~e) 
t > O  e~<l 

(3.12b) 

(3.13a) 

(3.13b) 
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We will next prove that the V~,'s converge, when suitably normalized, to 
the moments of some Gaussian measure. It is easy to guess what the 
limiting measure should be, so we first write down the equations for its 
moments and we then compare them with Eq. (3.6). 

3.4. The Limiting Gaussian Measure 

Let C~(r, r ' ;  t) be the solution of the following PDE on [0, L]  with 
periodic boundary conditions, 

~t C-e_l_2(~r2~e, ~_ ~, ~) + 2 ~  + e87 6(r - r ' )  (3.14a) 

C~(r, r '; 0) = 0 (3.14b) 

By Fourier transforming Eq. (3.14) we easily prove that: 

There exists c2 such that for all r, r' in [0, L]  

ICe(r, r '; t) - (2c~) 1 e87 exp(2~t)t ~< c2 e x p ( - ~ t )  ~e 2~ 

h = min( (L-  ~ 2:rc)2; 2~) 

(3.15a) 

(3.15b) 

For what follows it is convenient to introduce a "discretized" version of C. 
For x ~a y e Z~, let 

C~(~x, ey;t)= ds ~ G~ s(Zl,Z21x, y) 
ZlZ2 

x { 2 ~ C ~ ( ~ z l , e z 2 ; s ) + 4 7 1 ( [ z 1 - z z l  =1)}  (3.16a) 

where 

G~(zl, z21 x, y) = (2rot)- ~ a2 exp( - (2t) i { (eZl - ex) ~ + (ez2 - ey) 2 } 

(3.16b) 

Then it easily follows that: 

Let C~(ex, ey; t) be the solution of Eq. (3.16); then for any a <  1 and 
t ~ T~(a) there are c3 and 61 > 0 such that Vx, y 

IC~(~x, ey; t ) -  C~(~x, ~y; t)[ ~< c3 e exp(2c~t)e ~1 (3.17) 

We next define C~ = C ~ and 

C~n(_X; t)= Z I-[ 
l~(~n (i,j)~l 

C~(~xi, ~xj; t), n > 1 (3.18) 
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where fr is the set of graphs l of 2n points, a graph 1 being a set of un- 
ordered pairs l =  {(i~, i2),..., (iz, t, iZn)} where i~e {1,..., 2n} for any 
s = 1 ..... 2n. Furthermore i~ r i,, if s r s'. 

It is then easy to check that: 

Let C~, be as in Eq. (3.18); pose C~ = 1; then 

C~,(_x;t)= ds ~ G~_~(_zl_x) 2n~C~,,(_z;s) 
z E Z 2n 

} + 4 ~  ~kC~_R(_Z~'J;S) I(Izk--zjI=I) (3.19a) 
j ~  

where _z~'J= z\({z~} w {zj}) and 

G~(_zlx)=(2rct)-"/2e"exp[ - ~ (2t)-~(Ez~-ex~)Z 1 (3.19b) 
i = l  

Furthermore, for any a < 1 there are constants c'(2n) and c"(2n) such that 
for all n >~ 1 and all t <<, T~(a) 

c'(2n) e" exp(2n~t) ~< CZn(__X; t) <~ c"(2n) e" exp(2nc~t) (3.20) 

3.5. C o n v e r g e n c e  to the  Limit ing Gaussian M e a s u r e  

We only need to draw conclusions from what we have so far 
established. Firstly we will compare Eqs. (3.19) and (3.16): they have very 

~ - -  2 n F ( a )  / '~e  similar structure and it will not be difficult to see that o "~2n- V2nl 
vanishes when e goes to zero. By Eq. (3.18) the limiting values of the V~n 
will then be determined in terms of C~. The final result will then be the 
following: 

3.6. Proposi t ion  

Let V~n(xl,... , x2n; t) be as in Eq. (3.1). Then, for any a <  1, n~> 1, there 
exist constants b(2n) and 3 > 0  so that for any mutually distinct sites 
X l , . . . ,  X 2 n  

[~ 2"r(~)V~(xl,..., x2,; T~(a))- (n! 2n) -1 (2n)! ((2~) 1 87)"1 ~<b(2n) e ~ 

(3.21a) 

time-2"r(a)V~n(x~,...,x2,; T~,(a)+t)=f dxx2"f#(x)e 2"~t (3.21b) 

where f#(x) is defined in Eqs. (2.8) and (2.9). 
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Before proving Proposition 3.6, let us remark that Theorem 2.3 is a 
consequence of Proposition 3.6, which actually proves that all the moments 
of the extensive fields x~'a(~b) are converging to the moments of the limiting 
measure. Such a derivation is quite standard and we omit it. 

Proof of Proposition 3.6. We first prove that D~(T~(a)) vanishes, 
D~2.( t ) being 

D ~ . ( t )  = s u p  I V~,,(S; t) - C~2n(_x; t)l 
X ~ Z 2n 

From Eqs. (3.6) and (3.16), using Eqs. (3.8) and (3.20), we get that 

(3.22) 

D~(t) -= f~ ds 2~ D~(s) 

+ ds sup 2 c ~  IP~_s(Zl,Z21Xl, X2) 
Xl ~ x2 ZlZ2 

- G~_s(z~, z2 I Xl, x2)l c"(2) ~ e 2~s 

fo + d s ~  sup P~ .(zl ,z21xl ,  x2) 
ZlZ 2 x l  ~ x 2 

x ~(Izl -z2[  = 1) 47c(2) e e 2~s 

fO Z122 
+ as sup ~. P~_ s(Z1, Z 2 IX1, X2) 2 g(_z, _z') 

Xl  ~ X2 z '  

I 

. . . .  z2 ;s ) ]  x 2~[ V2(zl, z2, s) - V ~ ( z 1 ,  

I t  ZlZ2 
+ ds4y sup ~ {P~_s(Zl,z2lXl, x2) 

dO Xl :~ x2 

- - G t _ s ( Z 1 ,  Z21Xl, X2) } '~ (12'1--Z21 : 1) 

+ ds/~4c(4) e2 e4C~s (3.23) 

In Appendix A it is proven that there is 32 > 0  (82 < 1) such that for all 
x a :~ x 2 

lira t re+a2 ~ EP~(zl, z21xl, x2) 
l ~ o O  

ZlZ2 

1 -G,(zl, z21xl, x2)] ~ ( I z l - z 2 [  =- 1 ) = 0  (3.24) 
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In Ref. 40 it is proven that there exists 6 3 > 0  (~3 < 1) SO that, for all n>~2, 

lim t 63 sup ~ IPl(_zl_x)-G~(zl_x)l = 0  (3.25) 
t ~ c ~  x ~ Z n  z ~ z n  

Therefore for suitable constants c4 and c5 

sup ~2 {P~ ( z l ' z 2 l x l ' x 2 ) - G ~ - ' ( z l ' z 2 1 x l ' x 2 ) }  ~ ( I Z 1 - - Z 2 1 = I )  

x t # x  2 - - S  

<~](It--SI)82)(t--S)-l/2-62el+2~22C4+Ca'~(II--S}<~. 2) (3.26) 

sup ~ [P~ s (Z l ,Z2]Xl ,X2) -G~_s(z l , z2 lXl ,X2) l  
X 1 :/- X 2 ZIZ 2 

<~ c51( I t -  sl > ~2) l t - s l - 6~  ~26~ + c51( I t - s l  ~<~2) (3.27) 

By Eq. (3.27) we can control also the fourth term in the r.h.s, of Eq. (3.23). 
In fact, for t - s  > ~2, 

~z2 " _ x2) - P ,_ , ( z l ,  z2 x2) ~, g(_z,z') V~(z l , zz , s )[P~ , ( z , , z z l x l ,  ~ ' ' I x , ,  
zi z~ 

-{-Ee2"S 2 2 g(z,_z') IGT_.(z,,z. lx,,x.)-GL.(zl,z'~lxl,x~)l 
z~zz zi z i  

~< c(2){e e 2 = ' 2 c s l t  - -  sl -~' ~ '  + e e2~Sc6 It - s l - ' / 2  e} (3.28) 

where c6 is a suitable constant. 
From Eq. (3.23), using Eqs. (3.26), (3.27), and (3.11), we can conclude 

that there exists 6 > 0 and a constant d(2) so that 

D~( t) <<, ~ exp(2at) ~6 d(2), 

The estimate for D~n, n > 1, is 

D~2n(t) <~ ~ exp(2nat) e ~ d(2n), 

gt <~ T,(a) (3.29a) 

t <~ T~(a) (3.29b) 

We prove Eq. (3.29) by induction on n. The generic step in the induction is 
essentially the same as the proof of the estimate for D~. There are, however, 
two new terms which require some care. They are 

- f~ds~  ~ Y, ~,_~(_zl_x)h_(_z,_~')vL 2(_x;s) (3.30) 
Z E Z 2n z" ~ g 2n 

ds ~ P,_.(zl_x)27 2 g_(_z,F) V~. 2(z ;s) 
Z E Z 2n z ~ E Z 2n 

' } -G,~-,(-zl-x)4~' 5 2 l ( I z , - z j ] = l ) C ~  2(_z'J;s) (3.31) 
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Equation (3.30). By the definition of h [cf. Eq. (3.7e)], the con- 
figurations _z in Eq. (3.30) have necessarily three contiguous particles. 

We then use the following estimate, proven in Ref. 40, Lemma 5.1, 
namely that for any 64 > 0 there is a constant cr such that 

sup 2 ~D](ZI' Z2' Z 3 1 X I '  X2' X3) I(IZ1--Z2[ ~" l, [Z2--Z3J = I)  
xlx2x3 Zl z2z3 

~< c7 t -  1 + l/4 + a4 (3.32) 

Equation (3.31). We can bound the integral in Eq. (3.31) as 

foals ~ P~_,(_zl_x)4~ ~ ~(Iz,-zjt= l)D~n_2(s) 
z_~Z 2n i ~ j  

+ ds 4~ [~_~(zl_x)- P~_,(_zl_x)] 

+ (t ds ~ P; _ ,(z I S ) 27 2n (2n - 1 )(2n - 2) 
�9 " 0  z 

x 1( lz l -z~[  = 1, Iz2-z31 = 1)'c(2n-2)s "-~ e x p ( ( 2 n - 2 )  as) (3.33) 

The first term is estimated by means of Eq. (3.11) and the induction 
hypothesis, and the third one again by Eq. (3.32). For the second one we 
proceed as follows. By Eq. (3.17) we can rewrite Eq. (3.18) with ~ appear- 
ing in the r.h.s, in place of C ~, the error being e<eexp(2at)g  n-~ 
exp(2n - 2) at) times some constant factor. We are then left with the same 
expression having ~ n - 2  in place of C~n_ 2 where the former is defined by 
Eq. (3.18) with C ~ : = C  ~. We now use Eq. (3.15) to change ~ with 
(2a)-1 e 87 exp(2as). The error is like the previous ones. What is left is 
again the same expression with C ~ ~z i4 s) replaced by a constant 2~t- 2 t -  

(w.r.t. z). We can then use Eq. (3.26) to show that this term also gives a 
contribution compatible with Eq. (3.29). From Eqs. (3.15a), (3.17), and 
(3.20) we then obtain the proof of Proposition 3.6. 

4. PROOF OF T H E O R E M S  2.1 A N D  2.2 

The main characteristics of the measure at time T~(a) have been 
established in Proposition 3.6. Unfortunately the techniques of Sec. 3 are 
inadequate to study the evolution afterwards. When the n-body correlation 
functions become finite, they are no longer comparatively negligible w.r.t. 
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the n - 2 ones. This is just what the theorems we want to prove say, and, as 
a matter of fact, most of the estimates of Sec. 3 are valid only for times less 
than T~(a), with a < 1. 

It seems desperate to control the whole hierarchy for infinitely long 
times, so we attack the problem from a different point of view. The measure 
at time T~(a), by Proposition 3.6, is concentrated on "regular" spin con- 
figurations having magnetic density ~ e  r(a). We shall see that the magnetic 
density starting from any such configuration evolves and reaches finite 
values, which, due to the stochastic nature of the evolution, fluctuates 
around their average. The point is that if e r(a) is not too small, i.e., a close 
to 1, the fluctuations remain infinitesimal when e goes to 0, even when the 
magnetic density has reached finite values. 

We shall prove in fact that the magnetic density evolves following Eq. 
(1.1) up to t ~ l o g  e -1, uniformly in e (namely up to times t when it 
becomes finite) and that at the same times, the microscopic measure con- 
verges to a pure Bernoulli measure. As a consequence the microscopic state 
at time T~ + t becomes an integral of pure Bernoulli states. Each of them is 
characterized by a magnetic density which is obtained from that of a 
"regular" configuration at time T~(a) by the flow induced by Eq. (1.1) for a 
time T~ + t - T~(a). 

The law 2,(dm) is therefore the image under such transformation of 
the law of the magnetization at time T~(a), and this is just what 
Theorems 2.1 and 2.2 state. Moreover we see that only the "initial" fluc- 
tuations are responsible for the fact that the state becomes a nontrivial 
decomposition of Bernoulli measures. When the initial magnetization is 
e r(a), a close enough to 1, then the fluctuations do not play any significant 
role. We guess that this should also happen when the initial value is ~ e 7, 

< �89 but, for technical reasons, we need to require 7 close enough to 0. 
Our first result proves that the measure at time T~(a) is "well" concen- 

trated on suitably regular, flat, configurations. The average magnetization 
in the scale ~-x is 

We set 

rn;.(a, x)  = g;" ~ a(y) ,  x ~ Z 
ye l j . ( x )  

I~(x)= { y e Z : x < ~ y ~ x + e  - ~ - 1 }  

(4.1a) 

(4.1b) 

m(a) = (Le -1) l ~ a(x)  (4.2) 
O ~ x ~ L e  -1 

which is the average magnetic density. The configuration a is "flat" or 
"regular" if m~(a, x) is suitably close to rn(a) for all x in Z. 
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Closeness will be defined so that the difference between m~(e, x) 
and m(~) is much smaller than the value of m(a) itself. A key element 
for proving that the configurations at time T~(a) are "fiat," with large 
probability, is that the correlation functions at T~(a) are "almost" 
independent of the sites, when s is small. 

From Proposition 3.6 it is in fact easy to prove that for any )~ > 0 

lim sup #)~(a)[lmx(a, x ) - m ~ ( ~ ,  Y)I > s  r(a~+"] = 0  (4.3) 
s -~O x #  y 

where t/is some small enough but positive number. 
In order to prove that the configurations are flat, we would need to 

have in Eq. (4.3) the sup inside the expectation. In this case, however, 
Proposition 3.6 is not enough to ensure that the limit is still zero. What 
helps us is the smoothing effect of the Stirring Process which makes 
ma(o', x) approximately constant in regions of order s -x, 2 < 1. This hap- 
pens after any finite time in the limit of small s, whatever the initial con- 
figuration is, as we shall see below. Combining this and Eq. (4.3), we will 
obtain the desired property that configurations are with large probability 
flat if a, 2, and q (the accuracy entering in the definition of flat con- 
figurations) are properly chosen (i.e., a and 2 close to 1 and t/ to 0). The 
following is the key estimate, which will frequently appear throughout the 
section. 

4.1. Proposition (Factorization Property) 

There is c5 0 > 0 such that the following holds. 

For any k >~ 1, T >  0, there are constants e(k) (depending on rio, k, and 
T) such that for all configurations ~, all x~ ,..., xk mutually distinct, all t in 
[s 1/3, T] 

k 

e(k)<~e(k+ 1), Vk>~ 1 (4.4b) 

~(x, t) = a(x, t) - E~[a(x, t)] (4.5) 

where E~ denotes the expectation w.r.t, the process with initial distribution 
concentrated on the single configuration a. 

The proof of Proposition 4.1 is technically quite involved, and we 
report it in Appendix B. The proof follows closely that concerning the 
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analogous property for the simple exclusion process (cf. Ref. 40), and it is 
similar to that given in the appendix of Ref. lb, where the corrections at 
order e of the measure at time t are considered. 

With the help of Propositions 4.1 and 3.6 we have the following: 

4.2. Proposit ion (The M a g n e t i c  Density  Profi les are Flat)  

There exist 2 < 1 ,  a o < l ,  r / l>0,  65>0,  and c8 so that for all a>ao  
(and a < 1) 

Iz}.(~)[sup im;,(a, x) - m(a)l > ~,11 + r(a)] ~< csea5 (4.6) 

where re(a) and m~(a, x) are defined in Eqs. (4.2) and (4.1) respectively. 

fi'omarks. From the proof of Proposition 4.2 it turns out that 

�89 + (F(ao) + HI) < /~ < 1 --  3(F(ao) + I~1 ) (4.7) 

2 ( F ( a o )  + ~/i) < a0 (4.8) 

a - 2t/1 > 1 - 2 (4.9) 

a is defined in Proposition 3.6. 

Proof o f  Proposition 4.2. We divide the whole interval [0, e - l L ]  
into intervals of length -;~" , we have chosen 2, ao, ~/1, as according to Eqs. 
(4.7), (4.8), and (4.9). For notational simplicity, assume that e - ;  is an 
integer as well as N :=e- lLe  ~, which is then the number of consecutive 
intervals I;, i =  1,..., N, in which [0, g - i L l  can be divided. 

Let m;.(a, I~) be the average magnetization in the interval L; then, for 
any i and j, 

~)aa~[Imx(a, L)-rn~(a ,  Ij) t >c  r(~)+"' ] 

C9 max(ea- 2% & -  2(v(.)+ ~,)) (4.10) 

Equation (4.10) follows frm Proposition 3.6 using the Chebyshev inequality 
with the second moment. 

Since 
N 

rn(~r) = N -1 ~ m~(a, Ii) 
i=1 

it follows that 
#},(a)[sup [m~(a, Ii) - m(a)[ > e r(a)+ "'] 

<~ N c  9 max(ga - % & -  2(V(a) + .1) (4.11) 

822/44/3-4-25 
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It is therefore enough to control the difference between m2(a, x) and 
rex(a, Ii) for any i = 1,..., N and x in I i. We will prove that for any o-, x, and 
y such that Ix - y[ ~< e - ; ,  

E~[[m2(at, x ) - m 2 ( a t ,  Y)I >1 C (al+"'] ~< Clo e2 (4.12) 

where t = ~  2/3(1-;0 (the reason for such choice will become clear in the 
sequel), clo is a suitable constant. ~2 is not the optimal estiate but it is 
enough for our purposes. 

From Eq. (4.12) it follows that 

#}'~(~/[sup sup ]ma(a, x) - m2(a, Ii)[ >~ ~r(~) +., ] 
i x E I  i 

~ 1 + 2  2 e e Le #r,(~)[E ar~(~)_t[lm2(a, x ) - m 2 ( a , ,  Ii)l/>er(~')+"~]] 

<~ ~- 1Lcwe 2 (4.13a) 

and from Eqs. (4.13a) and (4.11), Eq. (4.6) follows with 2~ r(a)+"' instead of 
the required er(a) +,1. It is, however, trivial to modify our previous proof to 
get Eq. (4.6); we did not do that from the beginning for the sake of 
notational simplicity. 

It only remains, therefore, to prove Eq. (4.12). We use the Chebyshev 
inequality with 2k moments; k has to be chosen large enough, as we shall 
see. We then need to estimate terms like 

[/0, E~a ( (7 (x i ,  t )  - -  (7(X i "31- d, t ) )  

for given x~,..., x2k and with d~<e -~, t =  e2/3(~-2). We write each a(x, t) in 
terms of 6(x, t). The expectation of products of #(x, t) is controlled by 
means of Proposition 4.1. 

For the differences E~[a(xi, t ) -  a(xi + d, t)] we have that 

IE~[a(x~, t) - a(x~ + d, t)][ 4 2e 2/3(1 -~)-[- Cll(g-2/)-  1/2 d (4.13b) 

Collecting all the above, we get an estimate whose e dependence is 

max{~[(l/2)2 (F(a)+rll)]2k . f [60--(F(a)+, l )]2k C.[2/3(1--)~)--(F(a)+,l)]Zk} 

which by Eqs. (4.7) and (4.8) is a positive power of ~. By choosing k large 
enough, this proves Eq. (4.12). 

To study the evolution after time T~(a), we condition on the state of 
the system at time T~(a). By the Markov property and because of 
Proposition 4.2, it is like starting from a "flat" configuration at time zero. 
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We are disregarding sets whose probability vanishes when e goes to zero. 
Since 

L a a ( x )  = -2a (x )  + 27(a(x + 1) + cr(x - 1 )) 

-27o-2(x - 1) o-(x + 1) (4.14) 

the average magnetization does not obey closed equations. By 
Proposition 4.1, however, at least for finite times, the factorization 
property allows us to close the equation, with small error. Such property 
does not extend automatically to all times, as is clear from the analysis of 
Sec. 3. We shall, however, see that if the initial magnetic density is "large," 
He r(a), then the factorization property holds up to times --~log e- l ,  which 
is what is needed. We proceed by fixing 2, a0, rh as in Eqs. (4.7), (4.8), and 
(4.9) and stating the following: 

4.3. Corollary (of  Proposit ion 4.1 ) 

There is c12 so that for all configurations a'  

xe.r~(y) 

We have now the necessary tools for studying the evolution in the time 
interval [T,(a), T~ + t]. 

4.4. Definition 

We fix m ' >  0. For each e > 0 a will denote, in the sequel, any con- 
figuration such that 

m'  e r~a~ <~ m ( a )  (4.16) 

Im;.(a, x )  - m(a) l  <~ ~,1 + r(a) (4.17) 

with 2 as in Eqs. (4.7) and (4.8). We proceed this way for the sake of 
definiteness. Analogous proofs apply in the cases when m(~r)~<-~r(a~m'. 
We also need an uper bound for m(a). The tyical values of m(a) are of 
order e r(a), but we need to iterate the estimates: our arguments will apply 
up to values m" of m(a) such that S 2 m " =  (3/3) -1 cd/2 (cf. Proposition 4.6 
below). ( . )  denotes the expectation for the process with initial dis- 
tribution, which should be understood from the context. 
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4.5. Proposi t ion  

There exist c' and c" so that  the following holds. 

Let a be as in Definition 4.4; then, for all x e  [0, ~-~L],  

m~ ~< (o'(x, 1))  ~<ml' 

where 

Proof. Set 

(4.18) 

and 

fm 'i' I ml dm V' (m) - i  = 1 = dm V'(m) -1 (4.19) 
(a)  + c"~6  m ( a )  -- c'~56 

56 = rain{}(1 - 2), tll -~- r (a ) ,  8o} 

r/2 = }(1 - 2 )  

By Eq. (4.14) we have, for t >~ e "2, 

(4.20) 

~ t -- gq2 

(~(x,t))<<.Y~P~(ylx)~(y)+ y P~_~(ylx) 
q2 

Y Y 

• [ 2 7 ( ( a ( y  + 1, s)) + ( a ( y -  1, s ) ) ) - 2 ( a ( y ,  s ) )  

- f l ( a ( y  - 1, s) a(y ,  s) cr(y + 1, s ) ) ]  

+ 2(43' + 2 + fl) e "2 (4.21) 

We have for any y and z, [zl ~< e ~, t/> e "2, that  

[P~(y[x) - P~(y + z[x)] ~< c138 ,t + 1/2(2 - ,n)~t(y]x ) < cx3ga6gt(y[ x) (4.22a) 

n , (y  I x) = 1 (4.22b) 
Y 

( a ( y - -  1, t) a(y ,  t) a ( y +  1, t ) ) - -  ( a ( y - -  1, t ) ) (a(y ,  t ) ) ( a ( y +  1, t ) )  

C14/~ 66 (4.23) 

Therefore, using Eq. (4.13b), we have 

(~(x,  t ) )  ~ m(a)  + e "~ + r(~) + 2c131;66 

f 
' - -  t;q2 

+ d s ~ P ~ _ s ( y l x ) [ ~ ( a ( y , s ) ) - f l ( a ( y , s ) )  3] 
n2 y 

+ flc14e ~6 + (43' + 3fl)(2e "2 + Cll ~1-72) _]_ 2(43' + 2 + fl) ~,2 (4.24) 
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Let 

m~'= sup (o-(x, t ) )m~ = inf (a(x, t)) (4.25) 
x x 

If m~', s ~< t, is such that m~' ~< ((3fl) -~ a)1/2, then 

and 

C~(a(y, S) ) -- f l ( a ( y ,  S)) 3 <<. c~m;'-- fl(m;') 3 

rn;' <<. m(a)  + ds(o~m;' - -  fl(m") 3) q- C"~ 66 (4.26) 

We have therefore proven the first equality in Eq. (4.19). The second one is 
proven analogously and we omit the details. 

By Proposition 4.5 and Corollary 4.3 we can find with large 
probability good "flat" configurations at time 1. We hen study the 
evolution for a unit time interval starting from any such configuration, so 
that we can apply again Proposition 4.5. By iterating this procedure we get 
the following: 

4.6.  P r o p o s i t i o n  

Let t* be the largest integer so that m~. := St.(m(a))<~ ((3fl) 1 c~) 1/2, 
where S, (m)  is the solution of Eq. (2.4) with initial value m(a) (a being a 
configuration chosen as in Definition 4.4). Then 

m',. _ 1 - c12e(t* - 1 ) ~< ( a ( x ,  t* - 1 ) ) <~ m't" _ 1 + c12e(t* --' 1 ) (4.27) 

c12 being the constant appearing in Eq. (4.15). m',. ~ and mT._~ are such 
that 

fm ;*-1 dm V ' (m)  l = t * - - l = f m " *  1 dm V ' (m)  1 (4.28) 
( a )  + c " ( t *  1)e66 (o-) - -  c ' ( t *  -- 1),~66 

Furthermore, there is a constant c15 such that 

! m ' t ' _ l - m , ,  i <~ c15t*e ~ (4.29) 

Remarks .  Notice that t* increases like log e - I  when e goes to zero 
(since re(a)~> m] c r(a), according to Definition 4.4). Therefore, if we choose 
a so close to 1 that 

67 := 66 - F(a)  > 0 (4.30) 

t t  ! then m,. 1 - m , . _ ~  vanishes like log e - l e  67 when e goes to zero. 
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Proo[ o[ Proposition 4.6. For  n ~< t* - 1, we define m', and m;,' so 
that 

f? 2 dm V'(m) -~ = n =  dm V'(m) -~ (4.31) 
( a ) - -  c" e66n ( a ) + c"~66n  

We are going to prove that, for all n ~< t* - 1 and all x 

m', <~ (a(x,  n) ) <<. m2 (4.32a) 

for all a' e ~,_ 1, where 
P;[ff,,] >I 1 -nc12e (4.32b) 

fq ,={foranyym' , -e"~+r(~)<~e x ~ a(x,n)<<.m'~'+e "x+r(~l} (4.32c) 
x s 1 2 ( y )  

The proposition will then follow after integrating Eq. (4.32a) w.r.t, the law 
at time t* - 1 and by using Eq. (4.32b). 

The proof of Eq. (4.32) is obtained by induction on n. We have 
already proved it for n- -1 .  So we assume that it holds for n - 1  < t * - 1  
and we are going to prove it for n. We condition on the configuration a' at 
time n -  1, and we consider the case where a' is in ft,_ ~. We can then 
proceed as in Proposition 4.5; we only have to write m~_ 1 instead of m(a) 
in the r.h.s, of Eq. (4.24) and in the successive equations. We then get that 

where 

~ tt ~-;,[a(x, 1) ] -~m,  (4.33) 

~ .  

1 m + c"~66 

From the definition of m" it then follows that n - - l ,  

f dm V'(m) -1 ~tm" , ._l<<.m<~r~'~) 

+ f dm V'(m) l I (m(a)+c"(n-1)e66~rn~<m"._~1 

f , ,, 
= n +  dm V'(rn)-l  ~(rn,_l <<m.~m~_l +c"e 

(4.34) 

f dm V'(m) -1 ~ (re(a) + c"ne 66 ~ m <. r~'~) 

= f dm V'(m) - 1 ~ (rn(a) + e"ne 66 ~ m <~ rn',') 

+ f dm V ' (m)-  1 ~ (m'~ ~ <<. m <. m~_ 1 + c"e66) 

- f dm V'(m)  1 ~ (re(a) + c"(n - 1 ) ~6 << m <<. m(a)  + c'ne ~6) 
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Therefore m, ..~ m, .  From this we get 

(E;,[~r(x, 1 ) ] )  ~<m2 

and since analogous argument holds for the lower bound, Eq. (4.32a) is 
proven for n. 

Denote by P ;  the law when the initial measure is concentrated on o- 
and by ~ _  ~ the it-algebra generated by the variables ~r(x, t') for all x in Z 
and t' ~<n-1 .  We then have by Eq. (4.15), Corollary 4.3, that 

IP~[sup e~" X a(x,n)-e; ~. P~[~r(x,n)]~_,] >e ~'+/'(")3 
x e 1 2 ( y )  x ~ l , l ( y )  

~c12e 

Therefore, by Eq. (4.32a), 

By the induction assumption, we estimate the probability of f#~_ 1; so we 
prove Eq. (4.32b) for n. The proposition is therefore proven. 

Proof  o f  Theorems 2.1 a n d  2.2. By the Markov property, for any 
cylinder function f 

#~-~+ , I f ]  = #~'4,~[E; [fT,+ ,- r,(,n ] ] (4.35) 

We fix ~ as in Definition 4.4 and we distinguish two cases: t* - 1 smaller or 
larger than T~ - T~(a) + t. To simplify the notation, let 

r = T~ - T~(a) + t (4.36) 

Case z~< t * - 1 .  For  notational simplicity we assume that z is an 
integer. Let #~ be the measure at time t when the initial distribution is con- 
centrated on a configuration ff as in Definition 4.4. Then, for any n and 
x~ ,..., xn pairwise disjoint, 

q ,]1 ft8 tr xi =fi$ a ~r(xi, 1 

and by Proposition 4.1 

E~ a(xi ,  1) -- f l  ~-~[a(xi, ~<2"e(n) 
i = l  

(4.37) 

826o 
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Therefore, from Eqs. (4.32b) and (4.29), 

fi~ [iH=la(Xi)l-(S~(m(a)) n) 

~< 2he(n) e260 + t.c128 -t- nc15t*e 66-r(a) (4.38) 

Case ~ >~ t* - 1. There is z(m'), m' as in Definition 4.4, such that for 
any ~ as in Definition 4.4, t* - 1 + r(m') >/~ (t* depends on 6). 

Just as before and with the same notation, 

fi~[~Ila(Xi)]-fi~,_l[FI ~_~[a(xi, r - t , - 1 ) ]  1 -..<2%(n)826~ (4.39) 
i =  i =  

where the constants e(n) of Proposition 4.1 depend on r(m') and hence are 
fixed once m' is given. As before, we need to estimate, for a e N,,_ 1, 

[F~,[a(x, r -  t*-- 1)] --S~(m(6)) 

We have to modify our previous argument because we cannot say any 
longer that ~(a(y, t ) ) -  fl(a(y, 0 )  3 is increasing. We proceed as follows. 
We assume that a~eff , ._ l ,  t~ [8 "2, z(m')], and we set 

(a(x,  t ) )  := ~ [ a ( x ,  t)] (4.40) 

and similarly to Eq. (4.24), we get 

( a(x, t) ) <~ m[. _ 1 -~- eF(a)  + ql  _~ 2(713886 q_ flClg866,C(WI') 
+ (47 + 3/3)(281/2 + c1181-,2) r(m') + 2(47 + 2 +/3) e "2 

le 
t eq2 

+ ds~P~_~(ylx)(c~(a(y,s))-/3(a(y,s)) 3) (4.41) 
~2 

Y 

An analogous lower bound is obtained similarly. Let 

d~ = sup(a(x,  t) ) - inf(a(x,  t) ) (4.42) 

then, for a suitable constant c~6, 

d~ -~ " -- ' fo ..~m~. 1 m,. 1+c168~6+ ds(ad~+3fld]) (4.43) 

Therefore, posing 

rh~' = sup(a(x,  t)) ,  ~ = inf(a(x,  t ) )  (4.44) 
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we get 

/ T / 7 ~ m ; ~ . _ l - [ - c 1 6 g c ~ 6 - t  - ds(coh"-fl(rh;')3)+ ds3fld~ (4.45) 

An analogous expression gives the lower bound. 
From Eqs. (4.29), (4.43), and (4.45) and because t<~r(m'), we then 

prove that for, suitable 67 > 0 and c~7, 

s u p J f _ ~ [ a ( x , z - t * - l ) - S ,  t* l(m(a))l<~c17 e~7 (4.46) 
x 

From here the same argument as in the case r ~ < t * - 1  applies. Sum- 
marizing, we have proven so far that, for any n ~> 1, t/> 0, Xl,..., xn mutually 
distinct, any m' > 0, 

lira #~ o-(xi - ~)~(a~ [(Sr~_ r,:(~)+,(m(a)) ~] 

~< lim sup #~0(~)[Im(a)l ~< m'~ r(a~] 

By letting m' go to zero, using Proposition 3.6, we obtain the proof of 
Theorem 2.1 and 2.2. 

A P P E N D I X  A 

Here we prove Eqs. (3.11) and (3.24). We start with the following 
definition. 

A.1 .  D e f i n i t i o n  

We denote by xl(s), x2(s) (resp. x~ x~ s>>.O, the positions at 
time s of two stirring particles (respectively, two independent random 
walks) moving with intensity one and such that 

xi(0) = xi x~ xi i = 1 , 2  (A.1) 

where xl r  are in Z. We call interacting (resp. independent) /-particle 
the particle starting from xi at time 0, i = 1, 2. We denote by P (resp. pO) 
the law of the stirring (resp. random walk) process defined above. 

A.2. k e m m a  

For any xl,  x2 e Z and t ~> 0, the following holds. 

Let 
To = min{s ~> 0: x~ = x~ } (A.2) 
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then 

P({]Xl(t)--x2(t)[ = 1 } ) = � 8 9 1 7 6 1 7 6 1 7 6  1} n {To< t}) 

+ pO( { xO(t) = x~ } n { To < t } ) 

+P~176176 = l} c~ {To> t}) (A.3) 

ProoL We define a coupling between the two processes, i.e., we 
define a probability distribution Q on (z4) [~176 such that its marginals are 
P and pO, respectively. Such coupling is that introduced in Ref. 40. For the 
reader's convenience, we sketch here its main features. Q is such that the 
displacements of the independent and interacting particles are the same 
with one exception. When the independent particles have a displacement 
that would bring an interacting particle over the other, the interacting 
ones, instead, interchange their positions. 

Let us define the following stopping times for the independent process. 

Finally, let 

To is defined in Eq. (A.2) 

z o = inf{s ~< To: Ix~ - x~ = 1 } 

T. = inf{s ~> , .  1 :x~ = x~ 

, ,  = inf{s >~ T~: ]x~ - x~ = 1 } 

(A.4a) 

(A.4b) 

(A.4c) 

(a.4d) 

d ( s )  = I x l ( s  ) - x 2 ( s ) l  

do(s) -- Ix~ - x~ 

O ~ s ~ t  

O ~ s ~ t  

(A.5a) 

(A.5b) 

From the definition of Q it follows that 

d(s) ~ {do(s), do(s) + 1 } 

d(T.)  = 1 

d(s) = d(zn) 

for all s E [0, t] 

for all n = 0, 1,... 

for all % <~ s < Tn + l 

On the other hand, by definition of Q and by Eq. (A.4d), 

d( , , )  e {d~ 2} 

with equal probability. Therefore we have that 

d ( t ) = d o ( t ) +  ~ ~ ( n ) ~ ( % < ~ t < T ~ + l ) +  ~ ~(T~<~t<%) 
n=O n=O 

(A.6a) 
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where the ~ (n )e  {0, 1} are i.i.d, r andom variables ( independent  of d~ 
and such that  

Q(~(0) = 0) = 1 =  Q(~(0) = 1) (A.6b) 

F rom  Eqs. (A.6b) and (A.4), the lemma follows. In fact, 

P({d( t )  = 1 }) = Q({d~ = 1 } c~ { To > t}) 

+ ~ [�89176 
n=0 

+ Q({T,~  t < z , }  c~ { d o ( t ) = 0 } )  

Proof of Eqs. (3.1 I) ond (3.24). We will show that  there exist 6 > 0 
and t 6 > 0 such that 

sup sup ~ {Pt(zl, ZzlX 1, X 2 ) - - G t ( z 1 ,  Z 2 I X 1 ,  X2) } "~(IZ1--z2l = l )  
t >~ t 6 Xl,X2 ZlZ 2 

ct-(1/2 + ~ (A.7) 

where c is a suitable positive constant.  
F r o m  Eq. (A.7), Eqs. (3.11) and (3.24) follow. We have that  

]pO({xO(t) = xO(t) } r~ { To < t}) - �89 ixO(t) _ xO(t)] = 1 } r~ { To < t })l 

<~ f '  P~ [P~ - v) = 1) - P~ - z) = 0)[ (A.8) 
4o 

where Zo(S) is the posit ion at time s of a r andom walker starting from the 
origin and P~ is the distr ibution of its first re turn to the  origin. F rom 
the local central limit theorem, (43) we have that  there exists 6 < 1 such that 

r.h.s, of  Eq. (A.8)~<const  d r ( l + r  1/2) l ( l + ( t - ' c ) u 2 )  ~, 

~< const t - i + g (A.9) 

F rom Eqs. (A.3), (A.8), and (A.9) it follows that 

IP({lxl(t)-Xz(t)l = 1})-P~176176 = 1})l <.c't -1+~ (A.10) 

Therefore we can put  pO instead of  P in the 1.h.s. of  Eq (A.7). Then  the 
estimate in Eq. (A.7) follows from the local central limit theorem. (43) 
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A P P E N D I X  B 

The proof of Proposition 4.1 is based on techniques introduced in 
Ref. 40 and developed in Ref. 41 to study the symmetric simple exclusion 
process. We shall follow Ref. lb to adapt them to the present context. 

N o t a t i o n .  In what follows, e is a positive (small enough) number, 
a * s  { - 1 ,  1} z' is the initial (arbitrary) configuration for the process with 
generator U ,  n >/1 and xl,..., x ,  are mutually distinct sites in Z,.  Constant 
cl, c2 .... and exponents 61, 62,..,, 71, 72,... are not the same as in the text. 

Our estimates require initial measures with fast decaying correlations 
and an everage spin magnetization which varies smoothly in space. At time 
0 we have the first but not the second property, Correlations increase with 
time while the average magnetization becomes smoother. A possible com- 
promise is to choose a time T =  e2/3 (recall that at time T the stirring has 
been effective for a time e -2+2/3) and then to consider the state at such 
time T as the initial state (in Proposition 4.1 we are interested in times 
t > e 1/3, so the above procedure is justified by the Markov nature of the 
process). 

B.1. L e m m a  

There is a constant c 1 and given 61 >2  a constant Ca so that the 
following holds. 

Let v ' be the distribution of the process at time e 2/3 starting from a*. 
Let a e { - 1, 1 } and pose 

la(x) = l (a(x)  = a) (B.la) 

ia(x ) = la(x) -- v~[ 1,(x)]  (B.lb) 

(i) 

Set 

where 

% = ~2/3 (B.2) 

Then, for a = + 1, 

lye[- l a ( X ) ]  - -  P~,a(~ox)l ~ Cl~ o (B.3)  

p~,l(r) = %  ~ (27~) -1/2 exp( -- �89 -- % y) 2) l ( r r* (y )=  1) (B.4a) 
Y 

p~ ,_  l ( r )  = 1 - -  p~ , l ( r )  (B.4b) 
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(ii) For  any n ~> 1 and mutually distinct sites Xl ..... xn in Z~ 

Y~ v~I'fax(X~) O21oi(xi)] 
a l , . . . , a  n 

i = 2  

Notice that there are constants b(n) so that 

(B.5) 

sup sup . (n ) l ( r )  I ~< b(n) (B.6) I / '~:,  + 
e > 0  r ~  

Proof of Lomma B.l(i).  We write Eq. (3.5) for n =  1. The con- 
tribution of the integral in Eq. (3.5) goes like e 2/3= ~o. So it fits with the 
estimate in Eq. (B.3) and we are left with a single random walk: Lem- 
ma B.l(i) is then easily proven. We postpone the proof of Lemma B.l(ii) 
to set notation and definitions which will be used both in its proof and 
afterwards. 

B.2. Definition (Stirring Process) 

The Stirring Process in Z~ is defined as follows. Recall that Z~ is Z 
after identification of x and y if l y - x [  = [Le-1] .  For  any x in Z define a 
Poisson point process with intensity 1, hereafter called "the process for the 
pair x, x +  1." The processes at x, x +  1 and y, y +  1 with [ x - y l  = [Le -1] 
are identical while the processes for x in [0, [e ~L] - 1 ] are independent. 
On each site of Z there is a stirring particle. The stirring particle which at 
time 0 is at site x has label x. Its later positions are denoted by Y'(x, t), 
t ~< 0. The evolution is determined by the Poisson processes as follows. 
Each time a Poisson event occurs, say time t at sites x, x + 1, the stirring 
particles which at time t were at x and x + 1 exchange their positions. 

B.3. Definition [the Branching Labeled Stirring (BLS) 
Process] 

B.3a. The Branching 

Let 

21 = (1 + 7) 2, 22= 1--72 , 23 = (1--7)  2 

2----21 nt- ,~2 + 23 = 3 -I- 72 

(B.Ta) 

(B.Tb) 
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Denote by (tn)n>~l the process on R+ such that the variables (tn--tn-~), 
to = 0, are mutually independent and have Poisson distribution with inten- 
sity nL 

Let (fln)n~>l be the independent process such that for any n ~> 1 the 
probability that {fin=j} is ).-~2j, j = 1 , 2 , 3 .  (~n),~>l is the following 
Markov process. -~n has values on the subsets of { - 1 , 0 ,  1} n. The 
probability of -~ ,+1  given ~, is determined as follows. With equal 
probability, take any of the elements of _~,, say ~ (which is therefore a 
sequence in { - 1 , 0 , 1 } " ) .  Then-~n+l  is obtained by adding to any 
n-sequence/3 r c~ in ~, an n + 1 entry which is 0. Three more elements are 
obtained by adding to e, as n + 1 entry, - 1 ,  0, and 1, respectively. We 
shall say that the element with all zeros in gn is the ancestor of the family 
-~n. The position in a sequence of the last entry which is different from 0 
denotes the age of that sequence. 

The elements in 7n are ordered according to their age, and if the age is 
the same the sequence having - 1  as the last entry ~ 0  precedes that 
with 1. 

We denote by (con)n~>l the process obtained by taking the direct 
product of the above three and by ((2, P) its canonical probability space, co 
denotes the generic element in f2. 

We shall often employ the following notation: 

!( t )  =_~n whenever t ,~t<t,+~ (B.8) 

N,(co) = sup{k: tg ~< t} (B.9) 

B.3b. Branching Particles 

Given n particles 1,2 ..... n and (co(I) ..... co(n))~f2 ~, we define the 
following branching structure. 

For particle ! we look at o9(1). Particle 1 remains alone in the time 
interval 0 ~< s < t~(1). At t 1(1) two new particles are created, the "left" par- 
ticle corresponding to - 1  in _~1(1), the right particle, +1 in ~1(1), while 
the original particle has label 0. At time t~(2) one of the previous three par- 
ticles generates two new ones. The old particles at time t~(2) have 0 as 
second entry, hence they are distinguished by their first entry. The two new 
particles have as second entry - 1  and + 1 and are, respectively, the left 
and right descendants of the particle determined by their first entry. 
Iterating this procedure we give labels to all the particles which descend 
from particle 1. (Notice that the ordering in gn(1) corresponds to the order 
of appearance of the particles). In a completely analogous fashion we define 
the descendants of particles 2,..., n. We write ~(i, t) for the variable ~(t) 
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corresponding to co(i), and le(i, t)] for the number of particles in g(i, t) 
(l~(i, t)l =2N,(co( i ) )+ 1). We order the labels in UT=~g(i, t) as follows: 
e</~ if either (1) c~ eg(i,  t), fl ~_~(j', t), and i < j ,  or (2) e~  ~(i, t) , /~e~(i,  t), 
and the age of e precedes that of/~, according to Definition B.3a. 

B.3c. Branching and Stirring 

Let n~>l, x l , . . . , x  . and co(n) be given. Then (x](t) , . . . ,_x,( t))  is the 
following process, x~(t) e Z~ ~-(~'~ i = 1,..., n, and it is defined as follows. Let 
0 < ~ l " "vk  < "'" be the ordered sequence of all the times tk(i), k~> 1 and 
i =  1 ..... n (assume strict inequality holds, as it is a.s.). Let y~,..., Ym be the 
sites occupied by the particles at time vk. Then the particles will move like 
Y~(yi,  t), i =  1,..., m, for ~k~<t<~k+~, namely if the particle c~ is at y~ at 
time rk, then it will be at Y~(y~, t) at time r 

To complete the definition of the process we say that the particles are 
initially at x~,..., x ,  and that the left (right) descendants of a particle are 
created to its left (right) nearest-neighbor site, according to the 
specifications given by co(l)" ..co(n). Notice that it is possible that more 
particles stay on the same site; in that case they will remain stuck to each 
other thereafter. We shall denote by (x~ ..... x~) the process 
(x~(t),..., _x,,(t)),~>o and by P~(d_xl-" dx,) its law. We shall also denote by 
xi(e,  t) the position of the particle with label e ~ ( i ,  t). When we do not 
want to specify the ancestor i, we shall simply write x(e, t). We shall then 
use the following notation: _co for (co(1)-..co(n)) and N~(co) for 
Z7=1 N t ( o ( i ) )  . 

The following definition reports some results proven in Ref. lb, Sec. 3, 
which we will often use in the sequel. 

B.4. Definition (Duality) 

Fix t > 0 ,  x l , . . . , x ,  and let #~ be any probability on { - 1 ,  1}z~; let 
(a*,..., a* )~  { - 1 ,  1}". Denote by_a the elements in like1 { - 1 ,  1} k and let 
[a] = k  if _ae { - 1 ,  1} ~. Then there are functions Fa~ ...... } (ai, co(i),x i 
i = 1 - "n ;  t) (which we frequently write as F~?) with the following proper- 
ties: 

(1) F,? is either 0 or 1 and F1 + F _ I  = I ( i =  1 ..... /7). 

(2) Label the elements of_a in { - 1 ,  1 }l~r as an set 

lgi(~c,(t)) = [ I  la~(x(c~, t)) (B.10a) 
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Then, denoting b y / ~  the law of the process at time t which starts from #~ 

#~ la,~(x~) = P(dco(1)'"P(dco(n))P~(d=xl""d=x.) 
i _al " "  _an 

l(lail = 1_~(i, t)]) Fa, la" la,(Xi(t)) (B.10b) 

(3) Assume x l " " x ,  are such that x,.(c~, t)~xe(~' ,  t) for any ~ '  
and i in {1,...,n} and that xe(t)n_xj(t)=O for any i~j .  Then there are 
functions Ga.(_a , co; t) SO that in the above set 

{1 . . .n}  F a r  ' Clj, c o ( j ) ,  x j  j = 1 , . . . ,  n ;  t) --- Ga.(_ai ,  co(i); t) 

(4) Let Xl""__x, be such that there are two sets I and J, I n  J =  ~ ,  
I ~ J =  {1,..., n}, so that for t > 0  

x~(c~,t)=xj(fl, t) Vi~I, Vj~Jand~e_~(i,t) , f l~g(j, t)  

Then for all i in I 

F{~} ...... }(aj, co(j), xj, j=  1 -"  n; t)=F~.(_aj, co(j), j e  I; t) 

so that also for all i in J 

F{~ ...... }(aj, co(j), xj, j=  1.. " n; t)=FS~.(aj, co(j), xj, j6  J; t) 

(5) Assume that given xl,..., x ,  there are I and J mutually disjoint 
and covering {1 " " n }  and furthermore that (a)_xi(a, t)=xi(a', t) for any 
: r  a n d / i n  L (b) xi( t ) ,x j ( t )=~ for a n y / i n  I a n d j # i .  Then 

F~) ...... }=FJ~7 for any j in J 

F ~  ...... }=Gai. forany i i n I  

We are now ready for the following: 

Proof of (ii) in Lemma B.I. Assume ] x ~ - x l l > e  -*' for all i > 1  
[Eq. (B.5) is obviously true in the other case]. We write below T for e 2/3 
and v ~ for the law of the process at time T. Then 

E ve [~a~(Xi) f l  lai~Xi)] 
aft"" a* n i = 2 

= Z iP(dco(1))'"P(dco(n)) Z f l  l([a,[=[~(i,t)[) 
a*"" a* ' a i""  an i= 1 

x P + < o ' " ~ o ( n ) ( @ l ' " "  :a* -- P;o)(d_-xl) 
i = 1  

• o,.(dx2, ,d=x.)F{~} f l  F{a 2 ...... }} 
( ) " "  ( ) = "*" i = 2  
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We introduce the functions 

(o(i) = l([xi(e, s ) - x i ]  <�89 -6i for all e in ~(i, s) and 0~<s~< T) 

and notice that after conditioning on I-IT=~ ~o(i) the two measures 
P~ and P '  P~ become the same since I x i - x ~ l > e  -6~, co(l) . . ,  o)(n) ~o9(1) m ( 2 ) ' . . m ( n )  

i=2,...,n. Furthermore, by (4) of Definition B4 F{. ~ ...... }=F{.  ~) and 
�9 ~ a I a 1 

.P(~? ....... }=.~-{2~. ...... } i = 1  ..... n. We are therefore in the following setup. 
We have two probabilities v and/~ with the same conditional probabilities 
on a given set A. We have nonnegative bounded functions f ,  and g~ equal 
on A and such that ~ f ~ = Z , . g ~ = l .  Therefore Z e l ~ v ( d x ) f , ( x ) -  

#(dx) g~(x)l ~< 2 ~ (v(dx) + t~(dx)) 1A~(X). Therefore 

v~[i~t(x')  f i  la,'(x~)] 
~,...,~*, i= 2 

X " ' "  <2fP(doa(1)) ' . .P(do~(n))  [Po~(1)... ~o(,,)(d~ l dx,) 

+ P~(1)(dxl) P~ .. = a ) ( 2 ) . . . ~ ( n ) ( d x 2  " d x n ) ) }  

( 1 - ( p ( i ) ) ~ 4 n f P ( d ~ ( 1 ) ) P ~ o  ~() (dx~)(1 = - ~p(1)) 
i = l  

I P(d~o(1))]_a(1, t)[ ~<4n 

x po[ [x(s)l ~< �89 -6~ - Nt(e) ) for all 0 ~< s ~< e - 2 T ]  

where po is the law at time t of a random walk starting at time 0 from the 
origin. Since e - 2 T = e  -4/3 and 6 i>  2 (ii) of Lemma B.I becomes a con- 7 ,  

sequence of classical estimates on random walks and of the following 
inequality [cf. Ref. 10, Eq. (A.21)]: for any n~> 1, 

P( Nt( ~ ) = N) <<. c3e ~'~t(1 -- e -a t )  N nN "/2-1 (B.I 1) 

So the proof of Lemma B.1 is completed. The process of n stirring particles 
is in several respects close to that of n independent particles. With this in 
mind we pose the following: 

B.5. Def in i t ion [The Branching Labeled Independent  (BLI)  
Process] 

Given any n~>l, xl ..... x , ,  co(1)..-~(n), we define the process 
( x ~  ~ with the same procedure as in the BLS process, the only dif- 

822/44/3-4-26 
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ference being that in each time interval [~k, rk+~) the particles move 
independently of each other. In particular, therefore, a particle created on 
an already occupied site will, eventually, separate from the other one, in 
contrast to what happens in the BLS process. We shall use for the BLI 
process the same notation as for the BLS process, except for the addition of 
a superscript 0. 

Another preliminary step in the proof of Proposition 4.1 is the 
following. 

B.6. L e m m a  

Let v ~ be as in Lemma B.1 and denote by v~ the distribution of the 
process at time t when the initial law is v ~. Assume t e [~/3, ~], where ~ is 
some arbitrarily fixed positive number. Then there exist 62 > 0, c3 < oo so 
that 

Iv~[l~.(x)] - q~,~.(x)l <~ c3~ ~2 (B.12a) 

where 
(" 

q~,~.(x) = J P(do~) P~;~ ~ ~ l([_a[ = I_~(t)L) G~(a, (~, t) 
a 

x 1-I Pu(~0x~ ~, t)) (B.12b) 
c~e_~(t) 

We postpone the proof of the above Lemma to the Remarks B.12 following 
Proposition B. 1. 

The following is just a useful rewriting of the duality relation 
established in Definition B.4. 

B.7. L e m m a  

Fix any n>~l, x l "~xn ,  v ~ in { - 1 , 1 }  z~, t > 0 ,  and (a*,..., a*) in 
{ - 1 ,  1 }n Then [cf. Notes added in proof] 

i = 1  

= ~ f P(&o(1))...P(do~(n)) ~p~O~c 
d c { 1 . - - n }  

al'--_an i ~ A i (E A 
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where 

q )~ (w(1 ) . . .w(n ) , x l - . . x , ;  t ) =  I(VieA 3c~, fl, j: c~ r fl, j e  A, 

x(~, t)=x(fl, t) and ~E~(i, T), fl~_~(j, T)) (B.14) 

[so that cp~ only depends on (~o(i), xi, i e A ) ]  

~kr ( w ( 1 ) " "  w(n ), x~ " - x , ;  t )=  l(for all i in F, for all ~ in g(i, t), 

for all f l in  ~ ~(j , t) , f lr162 t)) (B.15) 
j = l  

We will now use the following decomposition of the identity: 

(p~O~c=y'( -1)  k ~ ~o~(J, ..... Jk) (B.16) 
k Jl,...,Jk 

where qgA(J1,...,Jk)=O if there are i# j ,  J ic~Jjr  or if there is i such 
that J i n  A ~ ~ ;  otherwise ~o~(J1,..., J k ) =  1 if and only if for all i in 
{1 ..... k}, ~eUj~],_~(j,t) and fi in _~(j,t), j e A u J l " ' "  wJi_l,  x ( a , t ) =  
x(/~, t). 

Next we rewrite the v ~ expectations in the r.h.s, of Eq. (B.13) by adding 
and subtracting v ' [ l~(x)]  to each factor 1,(x). The purpose is to exploit 
Lemma B.1 so as to reduce the problem to the case where the initial 
measure is Bernoulli. To control the combinatorics we stop the expansion 
at h, which will be chosen later on to be equal to n. Namely, 

Vt a X i  
i 

i = 1 • e ~(i t) 

h--1 

) 
v~[ l a~(X(O~, t))] -- l(]a(i, t)l =0)  v~[la.(X~)]I 

] q- ~ 2 2 V e Ta~u,(X(C~(j) ,  [ ) )  
k=  1 il<~ "'" <~i k a(1)E~(i l , t ) 'c t (k)~(ik ,  t ) j 

c ~ ( 1 ) <  "- .  < c~(k) 

c t ~ j k  lcr t) i S  ""ik c~Ect(it) 
a ~ a'~f),...,~(k} 

-- 1([7(i, t)] = 0) v~[la,(xi)])  
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+ ~ Y~ v~II-[{ 1-I la~(X(~,t)) 
i l < :  " ' "  < i k  ~ ( 1 ) ~ ( i l ,  t ) ' c ~ ( k ) ~ _ ( i h ,  t) i < i l  t epee( i t )  

~ ( 1 ) <  " "  < c ~ ( h )  

- 1(Ic4i, t)l =0) VT[la~(X,)]} 
[ I  la~(x(cr 1~ { H v~[la~(X(~'t))] 

~ < cr i > i l  c~ E ~ ( i  I t )  
~ c~(il, t) i ~ i I . .  �9 in 

- 1(1~(i, t)l = 0 )  v~[ l~ . (xz ) ] }  (B.17) 

Next we will write Eq. (B.13) by means of Eqs. (B.16) and (B.17) and 
then we will use Lemma B.6 to reduce the problem to a comparison of the 
BLS and BLI processes. The main tool for that is the following coupling 
(very similar to those introduced in Refs. 40 and lb). 

B.8. Def in i t ion (The Coupl ing)  

For any n >t 1, xl,..., x,,, co(l) . . ,  co(n), we define a process ( x l ' " x , ,  
x ~ x ~ whose law Q~o is the following (we shall call "interacting" the par- = 1  

ticles in xi and "free" tfaose in x ~ i = 1,..., n). The branching structure of the 
xi is that described in Definition B.3, and of the x ~ that in Definition B.5. 
It remains to say how particles move in each interval Irk, rk+ 1). Fix _xi(rk), 
i = 1,..., n. Erase, at first instance, all interacting particles which at time ~k 
sit together with another interacting particle having smaller label. Let ~ be 
the remaining labels. The interacting and free particles with label in ~ are 
coupled in each time interval [~k, rk+l) like in Ref. 40. 

We briefly recall such definition. 
If the free particle c~ moves by d (Idl = 1 ), then also the interacting par- 

ticle e moves from its position x(e) by d, unless x ( e ) +  d =  x(fi). If 7 </3, 
then the displacement is effective and at the same time particle fl goes to 
x(e). If e >/3, then none of them moves. An interacting particle with label 
not in 6g moves stuck to the interacting particle with label in 6g with which 
it was at time zk. The free particles with label not in 6~ move independently 
of all the other particles. 

A direct consequence of the above definition is the following: 

B.9. L e m m a  

For any n>~ 1, Xl,... , X n ,  co(1).-'co(n), the following holds. 

(i) The marginals of Q~ are respectively P and pO. 
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(ii) Fix a n y j  in {1,..., n}, t > 0 ,  c t ~ ( j ,  t). Then x(:~, t) is measurable 
on the a-algebra generated by {x~ s), fl~<c~, and s ~  t}. 

B.10. Def in i t ion (The Variables D) 

Let n>~l, Xl,...,xn, co(I).--co(n) be given. Consider the process 
( X l - . . x ~ , x ~  ~ whose law is Q~,. Let c~s_a(i, t) and assume x(cq t ) =  
x(a', t) for all cdr  a. Let fl < c~ be thelabel of some other particle existing at 
time z k < t. 

Case(i).  There is 7:x(fi, rk)=x(7 ,  r~) and 7<ft .  Then D(c~,fl; 
Zk, Z~+I) =0. 

Case (ii). Assume case (i) above is not verified. Then 
D(~, fl; ~x, z~ + 1) is the algebraic sum of the jumps of x(~, s ) -x~(~ ,  s) at 
times s in [r~, r~+l), where either x~ s) jumps by x(fl, s ) - x ( ~ ,  s) or 
x~ s) jumps by x(~, s) - x(fl, s). 

B.11. Proposit ion (Probabi l i ty  Estimates on the Variables D) 

Let n ~> 1, xl,..., x , ,  co(l) . . ,  co(n), Q~o be given. Let zt be the measurable 
partition determined by fixing the paths x~. .-x~.  Then 

(i) Let t > 0  and O : e ~ j i g ( i  , t). Then 

Nt 

1(~, t) Ex(~, t)-x~ t ) ] -  Y~ y, 
h~=O f l < a  

D(e, fl;rk, Z k + l ) } = 0  (B.18) 

where N, = Nt(~), z~,+~ = t, % = 0 ,  and 

l(~, t )= l (x(c~, t) r x(~, t), gy~ ~j ~(i, t): , < ~) 
i=1  

(B.I9) 

(ii) For a n y k > ~ l , a ,  f l in  [_JT=l_~(i, Zk),m>~l 

1(~, Zk) Q~[D(~, fl; rk, rk+l)m] ~CJ 

= 1(~, r 1(/~, r /5,.(~, ~; Ck, Ck+ 1) (B.20) 

where /Sm(~ , fl; Tk, Z~ + 1) is measurable on {x(e, s), x(fl, s), rk <<. s <. z k + ~ }. 
/51 , for instance, is explicitly given by the formula 

/3~(~, fl; vk, l:k+ i) = N -  (c~, fl; "Ok, Vk+ I) -- N+(a, fl; Vk, zk+ l) 

- � 8 9  ~k, ~k+,) + 1T+(~ , /~;  ~,, ~+  i) (B.21) 
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where N [N +] counts the number of times s when x(e, s) and x(fl, s) 
exchange their positions (with each other) and x(e , s - )<x( f l ,  s - )  
[x(a, s - ) >  x(/3, s - ) ] .  T - [  T + ] is the Lebesgue measure of all the times s in 
[Zk.k + 1) when x(e, s) = x(/3, s) -- 1 Ix(a, s) -= x(fl, s) + 1]. 

(iii) For any m >~ 1, let D1 ..... D,, be mutually distinct D-variables. 
Then for any kl,..., k m strictly positive integers 

Q~ D~']n = Q~[D~i] re] (B.22) 

(iv) There are 71>0, Ca and c5 > 0  depending on ~ and constants 
b'(m), m >7 1, so that the following holds: 

Qg~[i/Si > e 1/2-71-] ~ c4 exp( -cse  -7~) (B.23) 

Q Dki ~b'(N) ~-(1/2)N, N : =  ki (B.24) 
i i=1 

where the /3 are derived fro some D as in Eq. (B.21) and are mutually 
distinct. 

Proof. (i) It is a straight consequence of the definition of the 
variables D. 

(ii) Recalling the Definition B.10, we have a contribution due to the 
jumps of x~ "). Such a contribution is fixed in an atom of ~ since any 
such jump corresponds to an interchange of x(fi, .) and x(~,-). The con- 
tribution due to the jumps of x~ s) is random even in an atom of ft. Its 
distribution is, however, completely specified once we give the times T -  
and T + when a and fl are close, c~ to the right or to the left, respectively, 
of/3. 

(iii) The same arguments given in (ii) imply also (iii). 

(iv) This is the crucial probability estimate of the Proposition: it is 
proven in Lemma 3.7 of Ref. 41. 

Besides those in Lemma B.9 and Proposition B.10, we shall use the 
probability estimates contained in the following: 

B.12. Proposition 

Let n >~ 1 and x~,..., xn be given. 

(i) Then there is 63>0  and c6>0  so that 
notation] 

[cf. Eq. (B.14) for 
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(ii) 
co(!). �9 �9 ~o(n) set 

Zr = {for 

Ix(a, t)-x(~, t)l <~-~1 t 
Then there is c7 so that 

f P(dco(1) ) ' "P(&o(n))  P~(d=x 1 

l" 
J P(dco(1))."P(dco(n)) P~(d__xl."d__x,) q~{l ...... } <~ C 6  ~ b 3 n  (S.25a) 

f P(dco(1))-" P(dc~(n))  P~(d=Xl,... , d=xn) l(~C L~J ~i(t): I c l  ~ F l ,  

i = 1  

V~ ~ C qfl # ~; x(~, t) = x(fl, t) ) ~ c6 ~3~ (B.25b) 

Let A and f be in {1,..., n} and let A w F =  {1,..., n}. For any 

all i i n F t h e r e i s ~ E ~ ( i ,  t) a n d f l # ~ i n  ~ ~(j, t): 
j = l  

,..., d_xn) ~OzZr4 c7 ea'" (B.26) 

Proof .  

Proofo fEq .  (B.25). Fix co(1)..-co(n). Then the r.h.s, in Eqs. (B.25a), 
(B.25b) can be bounded by a sum of terms like the following: 

f : =  I~ l(Ix(c~i, vki) -x( f l i ,  vk,)t = 1) 

where kl < k2 < "'" < k,  and ~i, fl~ are in [_Jj ~(j, v~_ 1); i = 1 ..... n. 
Fix any ~'2 >0 ;  then f is bounded by the product over only those 

values of i for which ~k~-~k,-~> e~/4+~2. It is not difficult to see that given 
m there is c 8 so that 

P[3Jl "" " Jm: rjl -- Tj,-1 ~ gl/4+723 ~ c s N t ( o )  2m 8m/4 

then by Eqs. (3.11) and (B.11), Eq. (B.25) follows. 

Equation (B.26) is derived analogously. We use the fact that for any 
t > 0 ,  73 >0,  and m >  1 there is c9 so that 

sup ~ P , ( Z l " " Z m f X l " " x m )  l ( f o r a l l i t h e r e i s j C i : l z i - z / < ~ d )  
x I . . .  x m z I � 9  z m 

C9(t 1/2(d+ t1/4+73)(1/2) m 

which is proven introducing the coupling Q of Ref. 40 between the simple 
exclusion and the independent processes and using Eq. (3.6) of Ref. 40 to 
reduce it to an estimate for independent particles. 
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The key point in the proof of Proposition 4.1 is the following: 

B.13 .  P r o p o s i t i o n  

Let v ' be the measure introduced in Lemma B.1, and let t be as in 
Lemma B.6. Then there are ~4>0, C~o, u > 0 ,  and for any A c {1 ..... n} 
functions h (~) h(2) , ,.z , h(a 3) so that the following holds. 

Let f be any bounded measurable function which only depends on 
x ~ . - . x , _  1, co(l).-- co(n - 1); then 

~ d  . . .  = _  I P(dco(1))'"e(dco(n)) Po~( x, d_xn)f E l(la=l I~(n, t)l) Go, 
an 

c~eo~(n,t) 

=f e(dco(1))".e(dco(n)) e~o(d=Xl...d=x~)f~ l(ta~{ = I_~(n, t)[) Ga, 
an 

" Z {h(zl)+q~z(l+OA~)h(z 2)+ Z (PzOz~h(r3)} +R (B.27a) 
d ~ n  F ~ n  

where 
IR[ ~< LIf[I C10 ~4n (B.27b) 

h~ 1), h~ 2), h() ) depend on e, t and {xi, co(i), for i in A} and _a,. Furthermore, 
there is u such that 

~(llh~l)ll+[lh(a3)ll)<<.cxoN,(_m)~,(eoe (1 /2 )7 / ) [AI  (B.28) 
an 

while Za. I!h(~2~ll <~ cloN,(-~) ~. 

Before proving Proposition B.13, we discuss its consequences in the 
following: 

B.14. Remarks 

Remark 1. Lemma B.6 is a straight 
Proposition B.13. We have, in fact, by Eq. (B.10) 
defined in Eq. (B.19)], 

v~[la.(x)] = f P(dco) P~o)(d=x) ~ l(h_al = I_~(t)l ) f ~.v~[ l_~(_x(t)) ] 
a 

~_~(t)  

consequence of 
[ l (e ,  t) below was 

(B.29) 
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The first term in the r.h.s, of Eq. (B.29) is bounded by first writing 1 in 
place of F~., then by performing the sum over a, which is normalized to l 
because of v~[l~(_x(t))]. Hence the first term is bounded by C6 863 [-cY. Eq. 
(B.25)]. For the second term we recall (3) of Definition B.4 and then use 
Eq. (B.17) with h = n  = 1. Therefore 

vT[l~.(x)] - f P(d{o) P~,(dx) ~ l(Lal 
a 

<~c6P~+fP(d~)P;,(d__x)~ l(La[ = I_~(t)/)G~. l-I l~=(x(~, t)) 
a ~e_~(t) 

X 1(3~ ~fl :  X(~, t ) =  X(fi, t)) 

~< 2C6 e63 + f P(dco) P:(dx) I_~(t)l l(a~ 4:/;: Ix(a, t) - x(/;, t)l ~ e -~') 

= I_~(t)f) Go. l ]  v~[l~,(x( ~, t))] 
~ ( t )  

+ c2 e x p ( - e  -(~-2/3>) f P(d~o) L~(t)] 2 

where we used (ii) of Lemma B.1. We use Eqs. (B.26) and (B.11), so that 
Lemma B.6 follows from Proposition B.13. 

Remark. Proposition 4.1 follows from Proposition B.13. Let us 
sketch the proof of this statement. We use Eq. (B.16). In the terms where 
Uki=l Ji w d = { 1 ' "  n } we bound Fa~ with 1. We then perform the sum over 
_al"":~ G we use Eq. (B.25) and we get the bound c68n63. For the other 
terms~ i.e., when F =  U~=~ Jj w A is strictly contained in {1. . -n},  we use 
Eq. (B.17) with h=n. The contribution from the last term in Eq. (B.17) 
goes like g63-, by Lemma B.l(ii) and Eq. (B.26). We are therefore left with 
terms like 

v ~ l~,~}(x(a(j), t) 

Let A c { l ' . - n }  be the minimal set such that a(j) e [Ji~A ~(i, t). If A w F =  
{1"" "n}, we use again Lemma B.l(ii) and Eq. (B.26) to get a contribution 
which goes like e ~3". If A u F c  { l ' - . n }  (strictly), then there is an index, 
say n, which is not in A w F. The structure of such a term is that appearing 
on the r.h.s, of Eq. (B.27a) (use Lemma B.6 to change v~[la(x)] into 
q~,a(X)). Using Eq. (B.27a), we obtain a sum of terms which involve A, F, 
and A. If A u F u A  = { l " . n } ,  we use Proposition B.12 to get an estimate 
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which goes like e~3-. Otherwise we rewrite the ~h~c term in Eq. (B.27) using 
Eq. (B.16). If the whole {1 "..n} is not yet fully covered, we again use 
Proposition B.13, so that finally we obtain the proof of Proosition 4.1. 

Proof of Proposition B. 13. We have 

r.h.s, of Eq. (B.27a) 

~<f P(&o(1)) . . .P(do)(n))  Q~(d=xt...d=x.) 

•  l(la,I = I_a(n, t)l) Ga, f 
an 

c~ �9 ~ ( n , t )  ~ e o:(n,t) 

where ~ *  is a sum over all k>~ 1 and al .-. c~ in _~(n, t) and 

(B.30) 

Ar  [-[ l (a , t )  
aca(n , t )  

A=l'-'~k=()~Ii(1--1(CXi, t " ) (  [I 1(0~, t))  

Analysis of the Term with A ,  in Eq. (B.30) 

We use the Taylor Lagrange expansion up to order n +  1 for the 
function 

[ I P  .... (~oX~ t)) 
0t 

around its value with x in place of x ~ The contribution to Eq. (B.30) due 
to the remainder term is bounded by 

I P(dco(1))...P(do(n)) ~ d �9 Q,( ~1 "" dx,) 

x~] II/[I ~ p .... (r) 
an al . . .c~n+le~(n, t)  ote~(n,t) 

n + l  

"~7, +1 I-I Ix~ O-x(~j ,  OI A~ 
j = l  

~ n + i )  
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<~ 2 n + lb(n + 1)[[f[[ f P(&o(1))- . .  P(doo(n) ) Q~(d_xl -. �9 d_xn) 

n + l  

• ~ Z Z ~I [D(aj, f l /% ,%+, ) f  
o q ' " o t n + l e o ~ ( n , t )  k l ' " k n + l  / 3 1 " " f l n + l  j = 1  

<~clle(2/3 1/2)(,+l) (B.31) 

where (M~, t , . , )P  .... (r)) (~1~"+1) denotes the ( n + l )  derivative w.r.t. 
X o (eoX~ ~,+,) of 1-[~(,.t) P .... (eoX~ t)) computed at some inter- 

mediate value between eoX and eo x~ c1~ is a suitable coefficient. The first 
inequality in Eq. (B.31) is obtained using Eq. (B.6) while the second 
follows from Eqs. (B.24) and (B.11). 

The zeroth-order term of the expansion contributes to h ~ because of 
(i) of Lemma B.1. The kth-order term can be written as 

f P(&o(1)l...P(d~(n)) O~o(d=x1 ' " ' d=xn) 

• G~E E [I 
a n k c t i -<  " ' "  <CtkE~_(tl,, ) c t ~ c Q - ' ' O : k  

x 8x(-~1, t)'Sx(c~k, t (~ox(c~l, t))"'p~,~(eoX(~k, t))) 

k 

x 2 2 1-[ Q;[D(~;,flJ;%~,zh;+l)l~z]Ar (B.32) 
ht "'" hk fll " '  flk J =  1 

Each D in Eq. (B.32) is written as 

D=DI(]DI<...e -~ ~ ' )+D 1(//~1 > e  -(l/2)-yi) (B.33) 

Terms with 1(I/31 > e  (1/2) ~1) give a contribution which is estimated by 
means of Eq. (B.23) and contribute to R in Eq. (B.27a). When all the [/31 
are less than e tl/2)-~,, we have by Eq. (B.24) the bounds required by Eq. 
(B.28). However, we still have A~ and terms with l(c~, Tk)l(fl, %) which 
come together with D(c~,fl;zk, r~+~) [cf. Eq. (B.20)]. They depend on 
other _x than those allowed by Eq. (B.27a). We proceed as in Eq. (B.17). 
We write [cf. Eq. (B.19)] 

l(cq Zk)= 1--I {1 -- l(x(~, Zk)=X(~, %))} 
y < c ~  

n - - 1  h 

x E Y, [[ l(x(~, ~,)=x(~, ~)) 
h ~ l  71 < " ' "  < ? n  i = 1  

+(- -  1)" ~ 1-I l(x(o~, *k) # x(7, %)) 
y I <  " ' "  < Y n  ~ < 7 1  

• l?I l(x(~, ~)=x(~;/, ~)) 
i = 1  
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The last term contributes to R, by Eq. (B.25b). Given e, ~)1 "' '~h, let 
A c { 1 - " n }  be the minimal set such that c~ and all the 7g belong to 
[_J~=~ _~(i, t). Then obviously, 

h h 

1-I l(x(c~, ~ )  = x(~,  ~ ) )  = lq l(x(~, ~ )  = x(~i, r~)) q,~ 
i = 1  i = 1  

so that such terms have the desired form: they contribute to h (2) in Eq. 
(B.27a). A,  can be written as A~= 1 - Z *  A~l...~k. The term with 1 is all 
right, for what has been said so far, while the other can be analyzed just 
like the terms with A~...~k in Eq. (B.30). 

Analysis of the Terms with Ao~ ~ ,  in Eq. (B.30) 

We have that 

A ~ n  

when such an expression multiplies [L~_~(,,o v~[l(x( ~, t))], it gives rise to 
a n  h (2) term [cf. Eq. (B.27a)]. We are then left with 

f P(&o(1))"'P(&o(n)) Q~(d__x~'"d=x ~ 

x f~G~:  I~ P . . . .  (eoX~ (B.34) 
an eE~(n , t )  

We denote by C subsets of labels in [17=1 g(i, t) and by 

I ( C ) =  l(Vc~EC~fl~C: x(c~, t)= x(fl, t)) 
x l(Ver CV7: (x(o~, t)-~ x(7, t)) (B.35) 

Therefore 

A~x...~k= ~ I(C) l(Cc~g(n, t)= {l'"n}) 
C 

(B.36) 

Denote by 7i the smallest label in C and by vi the smallest time s when 
x(~i, s ) =  x(Ti, s). We can disregard sets C with cardinality larger than n: 
they contribute to R, as already noticed, Therefore, from now on we shall 
only consider [CI ~< n. We fix the paths of all the interacting and free par- 
ticles except for the x~ s), i =  1 ..... k and Ti ~< s ~ t. Call ( the partition 
obtained in such way. Conditioned on ~ the variables {x~ s) -x~  ~), 
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z~<~s-%< t} are independent symmetric random walks starting from 0 at 
times %. We then have 

[I  ~,,.,(~ox~ ~, :3) --- o (B.37) 

where fi .... is some smooth function which satisfies Eq. (B.6) with some 
b'(n) instead of b(n). Hence the terms with A,~ ..~ in Eq. (B.34) can be 
rewritten as 

f P{ac~(1)).-. P(do)(n)) Q;{d_x,, �9 �9 d_x ~ 

• 6 a : 2  1(c) 1(c~ ~(n, c)= {~, .  ~ } )  
on C 

k 

• H P .... (8oX~ t)) ]-I /~ .... (8oX~ , T)) (B.38) 

We can now expand in %(x~  c{r k and in 
%(x~ r~)-x(o{,, zi)), i= 1,..., k. As before, we stop the expansion at 
order n + 1. Because of the definition of the re, we can write any x ~ x ~ in 
terms of sums of variables D and proceed as before. 

For  /CI <~n, we write 

l (C)~ l (V :~C~C:x (c~ ,  t) = x(/% t)) 

• H (1 - L(3~e c: x(c{, ~)=x(~, t)) 
B e e  

= l ( V ~ e C ~ f l e C : x ( a ,  t )=x(f l ,  t)) 
n 1 k 

• E ~ I-I l(?~,eC:x(B,,t}=x(~,t) 
k = l  ~ 1 ~ . - < / ~ k  i = I  

+ 

• ~ l(?~eC: x(f3,, t)-~x(~, t)) 
i = 1  

(B.39) 

The terms arising from the last term in Eq. (B.39) contribute to R [in Eq. 
(B,27a)], the others to h {3), Computations are straightforward but tedious, 
and we omit the details. 



694 De Masi et al. 

A C K N O W L E D G M E N T S  

W e  are  i n d e b t e d  to F. D e  P a s q u a l e ,  E. Ol iv ier i ,  E. Scaccia te l l i ,  a n d  

P. T o m b e s i  for  m a n y  helpful  d iscuss ions .  O n e  of  us (M.E .V. )  a c k n o w l e d g e s  

the  very  k i n d  h o s p i t a l i t y  e x t e n d e d  to  her  at  the  M a t h e m a t i c a l  D e p a r t m e n t s  

of  the  Un ive r s i t i e s  of  R o m e  I a n d  L ' A q u i l a .  

R E F E R E N C E S  s 

1. (a) A. De Masi, P. Ferrari, and J. L. Lebowitz, Rigorous derivation of reaction-diffusion 
equations with fluctuations, Phys. Rev. Lett. 55:1947 (1985); (b) A. De Masi, P. Ferrari, 
and J. L. Lebowitz, Reaction-diffusion equations for interacting particle systems, J. Stat. 
Phys. 44:589 (1986). 

2. H. Spohn, Kinetic equations for Hamiltonian systems: Markovian limits, Rev. Mod. Phys. 
53:569 (1980). 

3. A. De Masi, N. Ianiro, A. Pellegrinotti, and E. Presutti, A survey of the hydrodynamical 
behavior of many particle systems, in Studies in Statistical Mechanics, Vol. XI, Non- 
equilibrium Phenomena, II. From Stochastics To Hydrodynamics, J. L. Lebowitz and E. W. 
Montroll, eds. (North-Holland, Amsterdam, 1984), pp. 127-293. 

4. E. Presutti, Collective phenomena in stochastic particle systems, BIBOS Conference, 
Bielefeld, Spring 1985. 

5. H. Spohn, Hydrodynamic limit for systems with many particles. Proceedings of the Inter- 
national Conference on Mathematical Problems from the Physics of Fluids, Rome, June 
1985. 

6. L. Arnold, On the consistency of the mathematical models of chemical reactions, in 
Dynamics of Synergetic Systems, Proc. Int. Symp. Synergetics, Bielefeld, 1979, H. Haken, 
ed. (Springer-Verlag, Berlin, 1980). 

7. H. Haken, Synergetics, 2nd ed. (Springer-Verlag, Berlin, 1978). 
8. L. Arnold and M. Theodosopulu, Deterministic limit of the stochastic model of chemical 

reactions with diffusion, Adv. Appl. Prob. 12:367-379 (1980). 
9. P. Kotelenez, Law of large numbers and central limit theorem for chemical reactions with 

diffusion, Universit/it Bremen, Forschungsschwerpunkt Dyn. Systems Report No. 81 
(1982). 

10. M. Metivier, Convergence faible et principe d'invariance pour des martingales /t valeurs 
dans des espaces de Sobolev, Ann. Inst. H. PoinearO 20:329 (1984). 

11. P. Dittrich, A stochastic model of a chemical reaction with diffusion, Preprint, 1986. 
12. P. Calderoni and M. Pulvirenti, Propagation of chaos for Burgers equation, Ann. Inst. 

H. PoincarO, See. A, Phys. Theor. 29:85-97 (1983). 

8 We distinguish references according to the way the continuum limit is defined. In the first 
category we consider models where only space-time and, possibly, the initial conditions are 
scaled (hydrodynamical limit). In the second category the process (its generator) is also 
(suitably) sealed. References 2-5 belong to the first category, with Refs. 4 and 5 containing 
updated references. References 6-28 belong to the second category. Reaction-diffusion 
equations (besides those quoted in Ref. 1) were obtained in Refs, 6-11. The list of references 
for the second category is not exhaustive. 



Unstable Equilibrium in a Random Process 695 

13. D. Dawson, Critical dynamics and fluctuations for a meanfield model of cooperative 
behavior, J. Stat. Phys. 31:1 (1983). 

14. E. Gutkin and M. Kac, Propagation of chaos and the Burgers equation, SIAM J. Appl. 
Math. 43:971-980 (1983). 

15. K. Ito, Motions of infinite particles, Kyoto Univ. 367:1-33 (1979). 
16. A. Joffe and M. Metivier, Weak convergence of sequences of semimartingales with 

applications to multiple branching processes, Rapport Interne, Univ. de Montreal, 1982. 
17. M. Kac, Foundations of  Kinetic TheorY , Proceedings of the 3rd Berkeley Symposium on 

Math. Stat. and Prob., Vol. 3 (1956), pp. 171-197. 
18. M. Metivier, Quelques problbmes li6s aux syst+mes infinis de particules et leurs limites, 

l~cole Polytechnique, Palaiseau (Conf6rence donn6e ~i Pisa, September, 1984). 
19. C. Marchioro and M. Pulvirenti, Vortex Methods in Two-Dimensional Fluid Dynamics, 

Lecture Notes in Physics, Vol. 203 (Springer-Veflag, Berlin, 1984). 
20. A. Martin Lof, Limit theorems for the motion of a Poisson system of independent 

Markovian particles with high density, Z. Wahr. Geb. 34:205-223 (1976). 
21. H. P. McKean, Propagation of chaos for a class of nonlinear parabolic equations, Lecture 

Series in Differential Equations, Vol. 7 (Catholic University, 1967), pp. 41-57. 
22. H. P. McKean, A class of Markov processes associated with nonlinear parabolic 

equations, Proc. Natl. Acad. Sei. USA 56:1907-1911 (1966). 
23. H. P. McKean, Fluctuations in the kinetic theory of gases, Comm. Pure Appl. Math. 

28:435-455 (1975). 
24. K. Oelschlager, A law of large numbers for moderately interacting diffusion processes, Z. 

Wahr. Geb. 69:279-322 (1985). 
25. H. Osada and S. Kotani, Propagation of chaos for Burgers equation, Preprint, 1983. 
26. A. S. Sznitman, Propagation of chaos for Burgers equation, Preprint, 1984. 
27. H. Tanaka, Limit Theorems for Certain Diffusion Processes with Interaction, Proceedings 

of the Taniguchi International Symposium on Stochastic Analysis (Kinokuniya, Tokyo, 
1984), pp. 469-488. 

28. H. Tanaka and M. Hitsuda, Central limit theorem for a simple diffusion model of 
interacting particles, Hiroshima Math. J. 11:415-423 (1981). 

29. F. Baras, G. Nicolis, M. Malek Mansour, and J. W. Turner, Stochastic theory of adiabatic 
explosion, J. Stat. Phys. 32:1-24 (1983). 

30. F. de Pasquale and P. Tombesi, The decay of an unstable equilibrium near a "critical 
point," Phys. Lett. 72A:7-9 (1979). 

31. F. de Pasquale, P. Tartaglia, and P. Tombesi, Early stage domain formation and growth 
in one-dimensional systems, Phys. Rev. A 31:2447-2453 (1985). 

32. M. Suzuki, in Proc. XVIlth Solvay Co t f  Phys. (Wiley, New York, 1981). 
33. R. Di Perna, Oscillations in solutions to nonlinear PDE, Proceedings of the International 

Conference on Mathematical Problems from the Physics of Fluids, Rome, June 1985, and 
references quoted therein. 

34. M. Cassandro, A. Galves, E. Olivieri, and M. E. Vares, Metastability behavior of 
stochastic dynamics, J. Stat. Phys. 35:603-634 (1984). 

35. M. Cassandro, E. Olivieri, and P. Picco, Small random perturbations of infinite dynamical 
systems and nucleation theory, Ann. Inst. H. PoincarO, to appear. 

36. W. G. Faris and G. Jona-Lasinio, Large fluctuations for a nonlinear heat equation with 
noise, J. Phys. A: Math. Gen. 15:3025-3055 (1982). 

37. A. Galves, E. Olivieri, and M. E. Vares, Metastability for a class of dynamical systems to 
small random perturbations, submitted to Ann. Prob. (1984). 

38. C. Kipnis and C. Newman, Metastable behavior of infrequently observed, weakly random, 
one-dimensional diffusion processes, Preprint, 1984. 



696 De Masi et  al. 

39. G. Jona-Lasinio and Mitter, On the stochastic quantization of field theory, Preprint, 1985. 
40. A. De Masi, N. Ianiro, and E. Presutti, Small deviations from local equilibrium for a 

process which exhibits hydrodynamical behavior. I, J. Stat. Phys. 29:57 (1982). 
41. P. Ferrari, E. Presutti, E. Scacciatelli, and M. E. Vares, The symmetric simple exclusion 

process. I: Probability estimates, Preprint, 1986. 
42. T. M. Liggett, Interacting Particle Systems (Springer-Verlag, New York, 1985). 
43. U. Petrov, Sum of independent random variables (Springer-Verlag, New York, 1975). 


