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We study the Boltzmann-Grad limit in various versions of the two-dimensional 
HPP cellular automaton. In the completely deterministic case we prove con- 
vergence to an evolution that is not of kinetic type, a well-known phenomenon 
after Uchyiama's paper on the Broadwell gas, whereas the limiting equation 
becomes of kinetic type in the model with random collisions. The main part of 
the paper concerns the case where the collisions are deterministic and the ran- 
domness comes from inserting, between any two successive HPP updatings, E- 
stirring updatings, v< 1 being any fixed positive number and e a parameter 
which tends to 0. The initial measure is a product measure with average occupa- 
tion numbers of the order of e (low-density limit) and varying on distances of 
the order of e-  1. The limit as e ~ 0 of the system evolved for times of the order 
of e - l - v  corresponds to the Boltzmann-Grad limit. We prove propagation of 
chaos and that the renormalized average occupation numbers (i.e., divided by 
e) converge to the solution of the Broadwell equation. Convergence is proven at 
all times for which the solution of the Broadwell equation is bounded. 

KEY WORDS: Cellular automata; kinetic theory; stochastic processes. 

1. I N T R O D U C T I O N  

After  the  p r o o f  of  the  exis tence  of  g loba l  so lu t ions  to  the  B o l t z m a n n  e q u a -  

t ion  o b t a i n e d  by  D i P e r n a  a n d  Lions ,  one  of  the  m o s t  in te res t ing  a n d  

cha l l eng ing  p r o b l e m s  in the  field is the  d e r i v a t i o n  of  the B o l t z m a n n  

e q u a t i o n  b e y o n d  the  t imes  for  wh ich  L a n f o r d ' s  p r o o f  (8) applies.  N o  real  

p r o g r e s  has  been  m a d e  excep t  for  the  resul t  by  I l lner  a n d  Pu lv i r en t i  (7) on  

a d i lu te  gas wh ich  e x p a n d s  in the  v a c u u m .  T h e  s a m e  p r o b l e m s  h a v e  been  

m o r e  r ecen t ly  c o n s i d e r e d  in the  f r a m e w o r k  of  s tochas t i c  i n t e r ac t i ng  par t i c le  

sys tems  a n d  d iscre te  ve loc i ty  B o l t z m a n n  e q u a t i o n s ,  n o t  on ly  for  the  l ack  of  
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results on purely Hamiltonian systems, but also for the intrinsic interest 
that stochastic particle systems have both theoretically and in computer 
simulations. See Spohn (11) for a survey of these problems. 

Discrete velocity Boltzmann equations and random evolutions are 
intimately related: Uchyiama (13~ has in fact shown that even if all the 
correlation functions for the Broadwell gas, a system of hard squares with 
four velocities (the Broadwell analogue of the Boltzmann hard-sphere 
model) converge in the Boltzmann Grad limit, yet the limiting density 
does not satisfy the desired Broadwell equation. The same arguments, 
presented, for the sake of completeness, in Section 3 of this paper for the 
H P P  model, show that in general deterministic models are not suited 
for describing discrete velocity Boltzmann equations. In numerical 
experiments, too, the presence of the so-called spurious invariants seems to 
affect the validity of some computer simulations, while the addition of a 
few random updatings improves, at least in some cases, the outcome of the 
experiments, as noticed by S. Chen. 

Randomness is not only necessary, but also sufficient, as shown by 
Caprino et  al., (2~ where a stochastic version of the Broadwell gas is proven 
to converge to the Broadwell equation, without the short-times limitation 
present in the Lanford approach. It is therefore of interest to understand 
the true origin of such a result and in particular the role played by the 
stochasticity present in the evolution. Randomness may arise from a small 
noise added to the free motion of the particles and/or by randomizing their 
collisions, e.g., with probability p, any two particles entering a collision do 
in fact collide, while, with complementary probability, they do not. The 
Boltzmann Grad limit can then be implemented by letting p ~ 0 in such 
a way that the mean free path remains finite. In ref. 2 both sources of 
randomness are present and used in an essential way. The main object of 
this paper is the analysis of a stochastic version of the H P P  cellular 
automaton, (6) where the collisions are deterministic, but the motion 
between collisions is random; see the next section for precise definitions. To 
have the mean free path finite we consider low densities, i.e., a vanishingly 
small initial density profile. We then prove convergence to the solution to 
the Broadwell equation up to the first explosion time, if any. Our results 
therefore cover several interesting cases, as in the analysis of the 
hydrodynamic limit of the Broadwell equation. (3'4) 

While convergence at short times comes from the Lanford approach, 
convergence at longer times requires, at least here, a drastically different 
analysis. With respect to ref. 2 we miss an important step, By using 
Lanford's perturbative scheme, in ref. 2 it was possible to study the 
so-called BBGKY equations also for initial individual configurations and, 
when e ~ 0 (i.e., in the Boltzmann Grad limit), for times which become 
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infinitely long in microscopic time units. Such a result uses heavily that 
collisions have vanishing probability. The local occupation numbers may 
be large, even unbounded, due to local fluctuations, yet the number of 
times a particle has to be in the condition of colliding before this really 
happens diverges as e ~ 0 .  Consequently, the mean free time goes to 
infinity in microscopic units even though it might be macroscopically 
infinitesimal, due to local density fluctuations. In our case the occupation 
numbers in an initial lattice configuration are bounded, due to the exclu- 
sion rule in the H P P  model, but since the collisions are deterministic, the 
mean free time is the time it takes for the first collision. We should there- 
fore exploit that in typical configurations particles are far away from each 
other, but in doing this we miss the possibility of using sup norms as by 
Lanford. We could not avoid this problem, which is in fact the crucial 
problem in this paper. We have solved it by studying the dynamics 
iteratively in a sequence of different space-time scales. Only after a good 
control on a certain scale are we able to go to the next one, closer to the 
macroscopic scale. This multiscale analysis of the space-time process is 
carried through by means of techniques somewhat reminiscent of the renor- 
realization group theory, as discussed in Section 4. 

Another way to make the model random is to have stochastic colli- 
sions while keeping the free motion deterministic. It is not very difficult to 
prove that in this latter case there is, in the Boltzmann Grad limit, global 
convergence to a kinetic equation which has bounded solutions at all times, 
due to the boundedness of the occupation numbers in the H P P  model. 

Deterministic collisions but random free motions were considered also 
by Lang and Nguyen (9) in a system of independent Brownian spheres 
which are removed when colliding, i.e., whenever any two of them are at 
a distance d, they both disappear. Letting d--* 0 as the number of particles 
suitably diverges so that the conditions of the Boltzmann-Grad limit are 
attained, propagation of chaos and global convergence to a kinetic-like 
equation are proven in ref. 9. The difficulties in this case are complementary 
to those met in the present paper, since in ref. 9 it is possible to control the 
growth of the correlation functions because the configurations at any time 
are random subsets of those without collisions. Both our approach and 
that in ref. 9 are related to the correlation function techniques, but ours, 
like that in ref. 2, focuses essentially on the evolution of the v-functions, 
sort of truncated correlation functions. We refer to ref. 12 for a survey on 
the correlation function techniques in the framework of stochastic systems 
and to ref. 5 for examples of applications of the v-functions. 

In Section 2 we define the H P P  model and its various stochastic 
versions, then we state the main results of this paper. In Section 3 we report 
the proofs relative to the deterministic case and to the case where the colli- 
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sions are random. In Section 4 we outline the strategy used to study the 
model with deterministic collisions and random free motion. The proofs for 
this case are reported in Sections 5 and 6 and in a short Appendix. 

2. T H E  M O D E L  A N D  T H E  R E S U L T S  

Def in i t ion:  The HPP Mode l .  The one-particle phase space is 
7/2 • U ,  where V is the "velocity space," i.e., 

"~/~=(Cl, C2, C3, C4}, Cl = (1, 0)~ C 2 =  (0, l ) ,  C 3 = - - C  1 , C4-.--.--C 2 

(2.1) 

An element in this space is denoted by (q, e). The many-particle phase 
space is {0, 1 } ~2• ~; its elements are the particle configurations, denoted by 

= {~t(q, e), (q, e)~ Z2• V},  q(q, e ) =  0, 1 being the occupation number at 
(q, e). The variable q(q, e, t) is the occupation number in (q, e) at time 
t ~ ~, where the evolution is given by the following deterministic updating 
rule, consisting of two successive subupdatings: call ~/the initial configura- 
tion, q' that after the first subupdating, and let q" be the final one. Then 
for all (q, e) 

q'(q, e ) =  q(q, e)([1 - q ( q ,  - e ) ]  + ~/(q, -e ){q(q ,  e • 

+ [1 -~/(q, e• q(q, - e •  

+ [ 1 - q ( q ,  e ) ] [ 1 - q ( q ,  - e ) ]  r/(q, e • ,(q, - e  • (2.2a) 

Namely, there is a change at a site if and only if there are two particles 
which collide. This happens if and only if there are just two particles at that 
site with opposite velocities. After the collision each velocity changes by a 
clockwise rotation of ~/2, e ~ e • Equation (2.2a) can also be written as 

q'(q, e )=  q(q, e )+  ~l(q, e • ,(q, - e  • -~/(q, e)] [1 - q ( q ' ,  - e ) ]  

- q ( q , e )  q(q', - e ) [ 1 - ~ l ( q , e •  - e •  (2.2b) 

Finally, 

q"(q, e) = rf(q - e, e) (2.2c) 

namely ~/" is obtained from q' by streaming. Time increases by one unit 
after the updating from q to q". 

The low-density limit is determined by an initial probability measure 
/~= which is a product measure on {0, 1 }z2• with averages 

~_u~(q(q, e) ) = ep(eq, e) (2.3) 
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where p(r, e) is a bounded function o n  ~2 X ,~/ ' .3 We shall also assume that 
its derivatives exist and are bounded. 

It is easily seen from (2.2) that for any r E ~ (and denoting by [ r ]  the 
integer part of r), the limit of the following discrete-time derivative exists: 

lim e-2[E~(tl([e-lr],  e, 1 ) ) -  t / ( [~- l r ] ,  e, 0)] 
8 4 0  

(one e comes from renormalizing times, the other one from renormalizing 
the densities). The above limit is equal to the time derivative at (4 0) of the 
solution of the Broadwell equation 

Otf~(r, e) + e - Vft(r, e) = ~ft(r, e) 
(2.4a) 

fo(r, e) = p(r, e) 

where 

Vf(r, e ) =  (c3f~(@zle), c?f(r, e!~ 
~3r2 ] (2.4b) 

~f(r, e )=f (r ,  e i  ) f(r, - e  • - f(r,  e) f(r, - e )  

From this one might conjecture that the limiting behavior of the 
model is ruled by (2.4), but this is not what happens: 

T h e o r e m  2.1 (The deterministic H P P  model). There exist r* and 
an L~  function p(r, e, r), r < ~*, for which the following holds. Let ~b(r, e) 
be any smooth function with compact support on ~2x  U.  Then for any 
positive 6 and any v < r* 

where the renormalized density field X~ is defined as 

X~(q~) = e Z Z ~b(~q, e) q(q, e, e iv) (2.5b) 
e ~ " F  q ~ Z  2 

Furthermore, the function p(r,e,r)  does not satisfy the Broadwell 
equation. 

This is just the Uchiyama theorem in the context of the H P P  model; 
also the proof is essentially that of ref. 13, except for the fact that in H P P  
there are three-body collisions. A careful reading of Lanford's paper shows, 
however, that in this specific case no real problem arises. As this might not 
seem so obvious, we shall give some details in Section 3. 

3 More general initial measures may also be considered, but we shall not discuss this point. 
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From Theorem 2.1 it follows that if we want limiting equations of 
kinetic type, we have to add some randomness; one possibility is to make 
the collisions random. 

Def in i t ion:  The  HPP  M o d e l  w i t h  Random Coll isions. The 
updating from ~/to q' and t/" Esee (2.2)] is modified as follows. Given ~ > 0, 
for each (q, e) we choose independently a number "~(q,e) equal to 1 with 
probability E and to 0 with complementary probability. Then t/'(q, e) is 
equal to the expression in (2.2a) if 2(q.e)= 1, otherwise q'(q, e ) =  q(q, e). 
The t/" is obtained from t/' as in (2.2c). The random variables 2(q.e ~ for 
different updatings are mutually independent. 

We shall assume that #~ is still a product measure, but with averages 

E~(q(q, e)) = p(eq, e) (2.6) 

where 0 ~< p ~< 1 is a given smooth function, as before. 

D e f i n i t i o n :  T h e  C o r r e l a t i o n  F u n c t i o n s .  These are the func- 
tions 

u:(x, t )=  E~(t/(_x, t)) (2.7a) 

where _x = (xl ..... x,), xi = (qi, ei), are n different single-particle states, and 

q(x, t )=  I ]  q(x~, t) (2.7b) 
i = l  

We have the following: 

T h e o r e m  2.2 (The HPP model with random collisions). For any 
~>0 and any n~> 1 

lim sup u~(x, e 1~)_ (] p(eqi, el, ~) = 0  (2.8) 
e ~ O  x i = 1  

where the sup is over all n-tuples of different phase points _x= (x~ ..... x,) 
and x~ = (q~, ei). The function p(r, e, t) is the solution of 

Op(r, e, t) 
- e- Vp + Cglp (2.9a) 

Ot 

with initial datum p(r, e), where 

(C61p)(q, e ) =  p(q, e • p(q, - e •  - p(q, e))(1 - p(q, - e ) )  

- p(q, e) p(q, - e ) ( 1  - p(q, e•  - p(q, - e •  (2.9b) 
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Given e E U ,  we have denoted by e • the velocity obtained from e by a 
clockwise rotation of ~/2. 

We sketch the proof  of this theorem in the next section, essentially for 
the sake of completeness, since the proof, based on the Lanford analysis, 
is quite standard. The trouble coming from recollisions, which were at the 
origin of the Uchiyama paradox, is avoided because the probability that 
two given particles have a collision is vanishingly small when e ~ 0. The 
global validity of the result is a consequence of the trivial uniform bound 
on the correlation functions; since the occupation numbers are 0 or 1, the 
density is bounded by 1. 

We now turn to the model in which we are really interested: the H PP 
model in a stirred environment. 

Definit ion: The Phase Space .  The one-particle phase space is 

F = Z 2 x ~ x S ,  S =  {1,2, 3,4} (2.10) 

where U is defined in (2.1). An element x =  (q, e, a ) e F  is a one-particle 
state, q denotes the position in this state, e the velocity (hereafter called 
e-velocity), and a the a-velocity. This is the H P P  one-particle phase space 
with an extra variable added, the a-velocity. 

The particle configuration space is 

~ =  {0, 1} ~" (2.11) 

and we denote by q = {t/(x), x e F} an element ofs t/(x) being the occupa- 
tion number  at x. 

Definit ion:  The Evolution.  We fix a number r e ( 0 ,  1); then for 
a e (0, 1 ] and such that e v is an integer, 4 we define the following updating 
rules. The updating rule at the times ke v, k>~O, is given by the deter- 
ministic H P P  rule for each value of a. At t r  v, k/> 1, the updating 
consists of two steps: denote by t/ the configuration before the updating, 
by q' that after the first step, and by t/" the final one. For  all (q, e, a) e F 
we then set 2 = (q, e) and 

r/'(q, e, a) = q(q, e, cr - a~) (2.12) 

where a -  ~ is defined modulo 4 and the a~ are i.i.d, variables with equi- 
probable values in S. The random variables relative to different updatings 
are mutually independent. We then set 

rf'(q, e, a )=  q ' ( q -  co, e, a) (2.13) 

4 We could consider as well the general case by taking the integer part of e ~; we did not do 
this, to have lighter notation. 



410 De Masi e t a l .  

Remarks. The stirring, also known as the symmetric simple exclusion 
process, is a slightly different process. (m) In the present form, it was intro- 
duced by Boghosian and Levermore (~) to simulate the Burgers equation 
(they considered for this purpose an "asymmetric" one-dimensional version 
of the model). The idea of inserting stirring updatings in between H P P  (or 
more general cellular automata) updatings was emploied first in ref. 4 as a 
tool for proving convergence in the hydrodynamic limit. It might have also 
practical effects, as noticed recently by S. Chen, who found improved 
accuracy in viscosity measurements by computer simulations when adding 
stirring updatings. 

In a stirring updating the e-velocity does not play any role; for each 
value of e we have an independent copy of the same system. The effect of 
the stirring updatings once the o-~ are given is just to exchange the contents 
of the states of F; hence, between an H P P  updating and the successive one, 
the intermediate stirring updatings exchange stochastically the content of 
the single-particle states: this is the reason why we call our model an H P P  
model in a stirred environment. 

We still need two definitions before stating our results on the present 
model. 

Definition: T h e  p F u n c t i o n s .  A p function 
F •  N which satisfies the following two conditions: 

1. For  a l l t />0 ,  tCks-V,  a n d a l l x  

is a function on 

p(x, t +  1)=~ P,+~,,(x ~ y ) p ( y ,  t) (2.14) 
Y 

where 

P,+ l.t((q, e, a) ~ (q', e', a '))= t~/4 
if q ' = q - c , ,  e=e '  

(2.15) 
otherwise 

[the same relation as (2.14) is obtained by averaging the expression giving 
t/" in terms of t / in  (2.13)]. 

2. For  t = k e  V,k>~l, 

p(x, t+  1)=  p(x', t) + Cglp(x ', t) (2.16) 

where x'  = (q - e, e, cr) if x = (q, e, o) and cgl is, for each o, defined as in 
(2.9). 

Equation (2.16) is obtained by averaging (2.2) with a product 
measure. Given g on  F and s ~> 0, we call p(x, t l g, s), t ~ s, the solution of 
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(2.14) and (2.16) such that  p ( x , s ) = g ( x ) .  For  s = 0  we simply write 
p(x, t l g). 

D e f i n i t i o n :  T h e  v - F u n c t i o n s .  Given r/~s _x = (xl ..... x , ) ,  the xt 
being different states in F, we set 

v,(x,  tl~/) = E~ [q(x, ,  t ) - p ( x i ,  t l q ) ]  (2.17a) 
i 

where E, is the expecta t ion with respect to the H P P  process in a stirred 
env i ronment  start ing f rom r/. Analogously,  given a p roduc t  measure  u on 
(2 such that  g(x)  = E,(q(x)) ,  we define 

(01 ; v,(_x, t l/~) = E~ [~/(xi, t) - p(xi ,  t l g) ]  (2.17b) 
i 

where ~ denotes the expecta t ion start ing f rom #. 
In Sections 4-6  we prove  the following theorem. 

T h e o r e m  2.3 (The H P P  model  in a stirred environment) .  Let 
p: R 2 x ~ ~ R+ be a c l - f u n c t i o n  bounded  together  with its derivative. For  
any e e (0, 1) l e t / l  ~ be the produc t  measure  in s such that  for any (q, e, a)  

~-~(~l(q, e, a)) = ap(~q, e) (2.18) 

Let T > 0  be any time such that  a unique bounded  solution of the 
Broadwell  equat ion  (2.4) with initial da tum p exists up to t ime T. 

Then  the following holds. There is 6 > 0 and for any n >~ 1 there is c 
so that  for all t<~T, for all sets of n distinct states S = ( x l  ..... x , ) ,  
x i =  (qe, ei, ai), such that  jq~] ~<e -2 for all i, 

Iv.(_x, [~-i -vt] i/t~)l ~< ce(i +~). (2.19) 

Fur thermore ,  there is c so that  for all t ~< T and x = (q, e, or), Iql ~< e-2,  

IP(q, e, (r, e 1 ~t[ # ~ ( . ) ) _  ~f,(~q, e)l ~<c~ (i+~) (2.20) 

where f~ solves the Broadwell  equat ion  (2.4) with initial da tum p. 

In  part icular ,  f rom (2.19) with n = 1 and (2.20) it follows that  

lim sup sup e X lE,~(q(q,e ,a ,  [e - I  " t ] ) - e f , ( eq ,  e ) l = O  
a ~ O  t<~T (q,e,(r) 

Equa t ion  (2.19) tells us that  the finite distr ibutions of the process at 
the t ime e - l - ~ t  are, when e ~ 0 ,  close to those relative to a p roduc t  
measure  with averages p( - I#~(- ) ) .  Then (2.20) shows that  such averages 
are close to the solut ion of the Broadwell  equat ion,  mult ipl ied by e. 
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Proof  
functions as 

3. PROOF OF T H E O R E M S  2.1 A N D  2.2 

In this section we prove Theorems 2.1 and 2.2 by a straightforward 
extension of the Lanford technique. 

o f  T h e o r e m  2.1. We define the normalized correlation 

P~(ql,et,...,q,,en;t)=e-~wu~(Hlq(q~,eg, t) ) ~ =  (3.1) 

We recall the notation introduced in Section 2: x =  (q, e), x =  (Xl,... , xn) , 
n > l ,  and we write ]_x[=n. Moreover, we use xZ=(q,e• x -• 
( q , - e •  x = ( q , - e ) ,  and x'=(q-e,e). We want to derive a set of 
hierarchical equations for the functions pn(_x). We have 

where 

~/(q, e, t) = ~ b(y; (q - e, e)) ~/(y, t - 1) (3.2) 
y 

lyl 

,(_y) = [ I  ~(y,)  
i=1 

and b(_y, x) = 0 if I_yl > 3. If I_yl ~< 3, 

b(_y, x) = a(l_yl, 1) ~(y, ,  x) 

+~(I_Y[,2)[6(yl ,Xi)C](Y2,  X l )  -- 6 (y l ,  X) ~(y2, x - ) ]  

+6(1s 3)[6(yl,x)g(y2, x )[6(y3, x• x z)] 

-6(yl,x• x • x )]]  (3.3) 

and 6(k, l) is the Kronecker delta. We have 

[ ]  n(xi, t ) =  ~ b(y, ,  X'l). . .b(yn, x'n) f i  ~(yi, t -  1) (3.4) 
i= 1 Yl ,..., Yn i= 1 

Hence, denoting by p~ the sequence {p]}ff= 1, we have 

p~n(X l  . . . . .  X n ;  t ) =  ( ( ~ e p e ) n  ( X  1 . . . . .  X n ;  t - -  1) (3.5) 

where, setting _Y= 07- 1 _Y~, 

(~e~p% (xl ..... xo) 

= ~ b(_y,, x'l) ' "' b(Yn, x'n) s I-YI - n p ~ y l ( _ Y l  t.) . . .  k3 _Yn) (3.6) 
Yl,..., Yn: I_YI >~ n 
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We note that some points may be in more than one of the sets _Yl , ' " ,  Vn" 
Any such point has to be counted just once, since r/2= r/, and this is the 
reason why the set _y~ w --. ~ y~ appears on the right-hand side of (3.6). 

We now prove the following result. 

Proposition 3.1. Suppose that SUpr, v p(r, v )<z  o .  Then there are 
~ * > 0  and z > 0  such that, if r ~ r * ,  for any k > 0  we have, for all ee (0 ,  1), 

e x s u p  Pk( 1 . . . . .  Xk;~'--l'[) <Zk 
(x l  ,..-, xk)  ~ ( 2  2 x "g-)~ 

Proof. The number of terms on the right-hand side of (3.5) can be 
bounded in the following way. Define the coefficients ak,~ so that 

c'~=~ak, na k, c ~ - l + 2 e + 4 e  2 (3.7) 
k 

Then for each k, ak,~ is an upper bound for the number of correlation 
functions of order k + n present in (3.5). It is enough to verify this state- 
ment when all the particles are in the same position, thus with at most four 
particles; in fact, collisions at different positions are independent. We omit 
the details. 

Therefore, defining 

pC(n, t ) =  sup P~(Xl,..., x, ,  t) (3.8) 
( x l  ,.,., x . )  c (Z  2 x ~-~)'~ 

we have 

pC(n, t)<~ak,,ekp~(n+k, t--1) 
k 

~ ak'~ek p~(n + k, t-- (3.9a) 1) 
e7 

In this way we can interpret the coefficients ak, nek/c7 as probabilities. They 
are in fact, as can be easily checked, the probabilities associated with a 
branching process, where before the branching, there are n particles. Then 
each one independently of the others may give birth to a new particle with 
probability 2e/c,. Another possible event is the creation of two new par- 
ticles; this happens with probability 4a2/c~. Finally, with complementary 
probability 1/c,, no new particle is created. We denote by E~ the expecta- 
tion with respect to this branching process starting with n particles. We can 
then rewrite (3.9a) as 

p~(n, t) <~ E,[p~(N1, t -  1) c~] (3.9b) 
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where Ns, s >~ 0, denotes the number of particles existing at the sth step of 
the branching process. Iterating (3.9), we have 

~; n + N l + - - .  + U t - l ]  (3.10) p~(n, t)<~ E,[p ( N ,  O) c~ 

Since p~(n, O) <<. z~, (3.10) becomes 

p~(n, t)<~ Nt n + N l + - . -  FF.[z o c~ +U,-1] (3.11) 

By the Markov property we have 

p~(n, t) <~ ~ n [ C  n+  Nl + "'" + Nt I~,(zN'] N,_  I) ] (3.12) 

where ~,(. IN, 1) denotes conditional expectation. Given that N , _ , =  k, 
Nt = ml + .-- + mk, where m t is the number of particles branching from the 
lth particle. Since these variables are independent, we have 

~_,(z~'] N,_  ~)= (g[z~]  ) u'-' (3.13) 

The law of the variable m is the following: 

1 if m = l  

~ ( m ) = c 2  ~ 2e if m = 2  (3.14) 

4~ 2 if m -- 3 

Therefore 

g[z~]  = c~-~[Zo + 28z 2 + 4eEz3] - cT ' z  ~ (3.15) 

By conditioning on the value of N, 2, (3.12) becomes 

p~(n, t) <<. ~_n[C n +  ul-t- "'" + Nt -Z~_n(ZN'  ' l N t _ 2 ) ]  (3.16) 

Iterating the above procedure, we define a sequence {zs}s=~,...,, with z~ 
given by (3.15) and 

2 2 Zk=Zk l [ l  +2eZk-l  +4e zk 1] (3.17) 

In terms of this sequence we have 

p~(n, t) <~ z 7 (3.18) 

Now we bound z, by induction. We assume that there is a K such that 
z t < K f o r  l < . s -  1 and prove that z s < K i f s < ~ t  with t =  [z8 -1]  and z<~z* 



Kinetic Limits of the HPP Cellular Automaton 415 

for r* small enough. In fact, letting 2k = log zk,5 since log z k ~< log z~ ! + 
log(1 + 2ez k_ 1) 2, we get 

2~ < 2~_ l + 4eK< 2o + 4esK< 20 + 4r*K (3.19) 

If K=zoe and z * <  (4K) -1, Z o + 4 r * K < 2 o +  1-=logK, i.e., zs<K. Hence, 
by (3.18), Proposition 3.1 follows by taking z = K. | 

We now introduce the decomposition of the operator cg~ in terms of 
the operators 

(~r ( X l ' " "  X n ) =  2 b(_y l ,  Xfl)"  " 'b(_Yn,  Xrn) 
Yl ,..., Yn: [_Y[ = n 

x p~,(y~ w ... u_y,,) (3.20) 

g . . t 
(~ '~eP)n  (X l  ..... X n ) - ~  2 b(_~ l ,  X ' l ) ' "  b(_Yn, Xn)  

yb...,v~: I_gl =n+ 1 

• t.3 ..- ~Yn) (3.21) 

( ~ y ) , ( x  1 ..... x,,)= ~ b(_yl, x i ) . . . b ( y , , x "  ) 
Yl,..., Yn: I_YI > n + 1 

X 8 IYI "-2p~Xl(_y 1W - "  U y . )  (3.22) 

Given _x, we call internal collisions with respect to _x all the collisions which 
involve only particles in _x and external collisions the other ones. The 
operator ~ takes into account all the internal collisions, whereas the 
operators ~.~ and N~ depend on the external collisions, and involve higher- 
order correlation functions, with some power of e in front. Writing (3.5) as 

p~(x; t ) =  (5~p~)n (x; t -  1) + e(~.~p3), (x; t -  1) + e2(~,p~), (x; t -  1) 

and iterating it, we get the expansion 

p . ( x ,  t) = p,,(_x, t) + p.(_x, t) 

where 

(3.23) 

(3.24) 

t - - [  tN 1--1 

E Z ' Z 
N>~O t 1 =0 tN=O 

(3.25) 

5 We assume Zo/> 1. 

822/66/1-2-27 
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t - - 1  t N _ l - - 1  

t) = Z - -  1]  (_x; iN) 
N ~ >  1 tI = 0  t N = O  

(3.26) 

and 5e~ denotes the ruth iteration of the operator ~ .  
By Proposition 3.1, p~(.; tu) is bounded by z ~, so that, if e < z  1, by 

(3.22) it follows that for any positive m 

n l +  - . -  + n m ~ 2  i 

~< 4zm+2 ~ l-I (1 +2ga)m~4zm+213 m 
nlq-  --- + n m ~ O  i 

since, if nl + -.- +nm>~2, then ]qim~ (2gZ)n'~< (2gZ)2 I~ " (1 + 28Z)"'. Since i = l  

the N -  1 operators ~ that appear in (3.26) create N -  1 particles, we use 
the bound 

( ~ p ~ ) , + N _ I  <.4Z"+N+ll3 u '+" (3.27) 

By (3.20) and (3.21) it follows that for any n 

sup ~p~, ~< sup p~, (3.28) 

s u p ( ~ p ' ) ,  <~4n sup p~+ ~ (3.29) 

Hence, for t = [ e - l z ] ,  taking advantage of the time ordering in the sum on 
tl,..., tN and using the bound ( N + n ) ! / n !  <~ 2N+~N!, we get 

t -  1 tN 1 l 

fi2(_x;[8 "c])~< ~2 eN+, ~2 "'" ~ n - ( n + l )  . . . . .  ( n + N - - l )  
N ~ >  1 t l  = 0  tN - -O  

x 4Nz "+ N+ l13N-- 1 +,, 

~<(13Z) "+1 g 2 y, (104Z~) N (3.30) 
N~>0 

For  z < (104z) - l  the above sum converges and we conclude that p~, differs 
from /~, by Csz "+l. Moreover, the same argument also shows that the 
series (3.25) is dominated by a convergent series. Since each term of the 
series in (3.25) has a limit, we conclude that the normalized correlation 
functions p~,([e- lql] ,  el,..., [ e - lqk] ,  ek; [ g - l r ] )  converge to some almost 
everywhere continuous functions Pk(ql,  e~,..., qk, ek; r) for r < ~ 0 <  
(104z) -1. Starting from time to, the argument can be iterated up to the 
time z* defined in the proof of Proposition 3.1, showing the convergence 
up to this time. 
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The arguments of Uchiyama ~ can be repeated to show that if the 
n-body correlation functions at time zero are products, the limit correlation 
functions at time t < ~* have this property with the exception of a set of 
zero measure. This, together with the law of large numbers, implies the 
relation (2.5) (see, for example, ref. 11, Sections 2.5 and 4.7). 

To complete the proof of Theorem 2.1, we have to prove that p~ does 
not converge to a solution of (2.4). This is related to the fact that the set 
of times and positions such that internal collisions are possible in the back- 
ward collision histories has nonvanishing measure in the limit e ~ 0. To 
prove this, we follow closely the Uchiyama argument, which compares the 
function pl(r, e, r) with the solution f ( r ,  v, r) of Eq. (2.4) with initial datum 
p(r, e). Actually, we prove that 

1 
!imo~5[f(r,e,z)--pl(r,e, z)] 

=c[p(q, ei)Z p(q, --eJ-)2--p(q,e)Z p(q, --e) 2] (3.31) 

and the right-hand side of (3.31) vanishes only for initial data that are 
"local Maxwellians," i.e., distribution functions of the form exp[~ + ! - e l ,  

e ~, and ! e ~2. If the initial distribution is not a local Maxwellian, (3.31) 
shows that the limit density p~(r, e, ~) does not solve (2.4). On the other 
hand, local Maxwellians are not generically solutions of (2.4). Namely, if a 
local Maxwellian [with cr = co(r, r) and ! = if(r, v)] is a solution to (2.4), 
then necessarily 8rlfi~ = C~r~/~2 at time t = 0 .  In fact, on Maxwellians, (2.4) 
reduces to 

af(r, e, ~) 
e .VJ(r ,  e, r) (3.32) 

8r 

Then p(r ,e , r )=p(r -ez ,  e,O), and in terms of c~ and i ,  c~(r , r )+e-  
i ( r ,  r ) =c ~ ( r - e ~ ,  O ) + e . i ( r - e r ,  0). Differentiating with respect to r for 

= 0, we get 

8~(r, O) 8ff(r, O) 
ke . . . .  e .VA~(r,O)-e.Vri(r ,O) 'e  (3.33) & & 

Summing the above relations for e = cl and e = c 3, we get 

&~(r, O) 8fl,(r, O) 

8z 8r~ 

while summing them for e = c2 and e = c4, we have 

8c~(r, O) 8f12(r, O) 
63Z" g3r 2 

(3.34) 

(3.35) 
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Therefore (3.31) can be applied at any time to > 0 to prove that for generic 
initial data p]([e ~r],e, [~-l~])  does not converge to the solution 
f ( r ,  e, t) of (2.4). | 

Proo f  o f  (3 .31) .  We simply sketch the argument. To compare f and 
Pl, it is useful to give a representation of f i n  terms of a sum over collision 
histories like p~. We have 

f(r, e, ~ ) -  ~ f~ - d<~[dt~...fo d,~ ~ 
tN-1 

N >~O 0 

1 N 

•  2 . Z  2 
il=O o-1= ,+ iN=O CrN=-- ,+  

x (5~ ~ ,t2h,,,~q_,22,2,~,2-.. CJtN_2__tN_~2,N,,~NS~tNf) 

x (qi , / )1;  O) (3.36) 

with (ql, vl) = ([~ lr], e), fn - f |  n, and f denotes the sequence {f,}~= 1. 
Moreover, 

(~ f ) ,~  (ql, el,..., qm, era) 

= f r o ( q 1  - -  el t, e I , . . . ,  q m  - -  em t, e,~) (3.37) 

(2i,+ f ) m + t  (q, ,  el ..... qm, era) 

= f m + l ( q l , e l , . . . , q e _ l , e i _ l , q i ,  e{,. . . ,qm, em, q i , - - e ~ )  (3.38) 

(2~, f ) m + l  ( q l , e l  ..... qm, em) 

= - - fm+l(ql ,  el ..... qi, ei,..., qm, em, qi, --e~) (3.39) 

We notice that the dependence on e in (3.36) is fictitious and it has been 
introduced in order to compare (3.36) with the right-hand side of (3.25) 
with n = 1. Since p] reduces to ~] in the limit e ~ 0 by (3.24) and (3.30), 
if recollisions could be ignored, as in the continuous velocities case, the 
convergence of pl to f would be achieved. In our case, it is easy to realize 
that the terms in (3.25) with N <  3 converge to the corresponding ones in 
(3.36). However, there are terms with N =  3 that do not converge to the 
corresponding terms in (3.36). They are 

8-lz tl -- I t 2 -  1 
Z 2 2 s176 8-11: t l ) [ 2 1 , -  ~ t l -  ' 2 ) 2 1 , -  ~ t 2  t3)22, - 

t I = 0 t 2 = 0 t 3 = 0 

+ 2l, ~ " - ' ~>& ,_  ~ '~  t')2,,_ + 21, + ~" - '~ )2 , ,_  ~'=-',~&,_ 
_~ 21 , + dCO~'l--t2)22" ~ t 2  '3)21" _ ] ~o~t3)pe) l  ( q l ,  e l ,  O) ( 3 . 4 0 )  
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The corresponding terms in (3.36) are given by the same expression with 
5P~ ''-~+~1 substituted by ~ ,~+~. The main point is that each of the terms 
in (3.40) refers to situations such that for a proper choice of t~, t2, and t3 
an internal collision may happen in the interval [e ~ z - t  1, e-lz],  and 
actually happens because the dynamics ~ is deterministic and all the 
possible collision updatings are performed. 

Before the application of 5P~ ~-~-''~, the velocity configurations 
corresponding to the four terms in (3.40), regardless of the positions, are 
the following: 

(e, - e, - e, e), ( e , - e , e ,  - e ) ,  (e -L, - e - , - e  •177 (e l , - e  • •  • 

where the first velocity is that of the original particle, while the others are 
added according to the operators ~i,~- For a proper choice of the times the 
second couple of particles undergoes a collision at a time in the interval 
[e - lz  - t~, e - lz ] ,  making all the velocity configurations the same up to a 
permutation. Therefore, in the limit r--, 0, the terms in (3.40) compensate 
each other and the expression (3.40) vanishes. The same is not true for the 
corresponding terms in (3.36). In this case the application of ~ - ~ _  ~1 does 
not involve collisions and the velocity configurations remain different, con- 
tributing, in the limit, with the factor in the rhs of (3.31). It remains to 
prove that the cardinality of the set {(tl, t2, /3) s.t. e 172> t~ > t2 > t3 ) 0  
and a collision happens}, denoted by O(e, r), is such that 

lira lim e3z-30(e, ~) > 0 (3.4t) 
r-~O e ~ 0  

This follows from the fact that the following condition is sufficient to have 
a collision: 

g2 - -  /'3 < ~ -- 172 - -  ~r (3.42) 

Namely the fourth particle is added at time t3 in a position at distance 
2( t2- t3)  from the third particle and they have opposite velocities. The 
distance decreases by 2(e-172-t1) in a time e ~z- t l  and will become 
certainly zero at some time before e- lz  if (3.42) is satisfied. Taking the limit 

--* 0, we get 

f~  f f i  ~r2 d'c3 Z(T2 -- T3 < 27 -- "L'I) = C273 | (3 .43 )  lim e30(e, ~) = dr1 d'c2 Jo 
e ~ 0  

Proof  of  T h e o r e m  2.2. The proof of Theorem 2.2 is similar to the 
proof of Theorem 2.1. In this case we do not normalize the correlation 
functions and just consider the functions u~, defined by (2.7). 
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The equations for the u~, are again of the form (3.5), but the operator 
% is defined in a slightly different way, namely, setting x = (xl ..... x,)  and 
-II= Yl w,..., w y, ,  we define 

Z 
Y J={1, . , . ,n}  

x 1-I b(_y,, x;) [ I  b(_Y*, x;) u~rl(_Y ) (3.44) 
i ~ J  i ~ J  

where u ~ denotes the sequence {u~,},~ 1 and b(_y, x ) =  6(h_yl, 1) 6(yl ,  x). We 
notice that from (2.7) it follows that 

e O-<u~(xl,..., x,;  t)~< 1 (3.45) 

Therefore the analogue of Proposition 3.1 is an obvious consequence of the 
definition and it holds for any time. Using (3.45) instead of Proposition 3.1, 
we can extend the previous arguments to prove the convergence of the u~,'s. 
The only difference comes from the powers of e involved. Indeed we modify 
the definitions (3.20) (3.22) as follows: 

(~u~) ,  ( x ) = ~  (1 - ~ ) "  1~I b(_Yi, x;)U~_yl(_Y ) (3.46) 
Y i = 1  

(~u~),  (_x) = y, y, (1--8)"-~b(y~,x~)[Ib(_ys, x))u~_vl(Y_) (3.47) 
Y i~ l , . . . ,n  jv~i 

Y J = { 1  . . . . . .  },lJI > 1 

x I~ b(y,, x~) ~ b(y~, x~) u~rl(_Y) (3.48) 
i ~ J  i ~ J  

Introducing 5~, and fi~, as in (3.25) and (3.26), the estimate (3.27) is still 
valid, since e < 1, but (3.30) has to be modified to take into account the 
fact that three-body collisions now have the same weight e as two-body 
collisions. We have 

t - - I  t N - l - - 1  

t~(_x; [e-lz])~ ~ eu+1 ~ ... y" ~ ... ~ n . (n+a , )  . . . .  
N > 0  t l = 0  t N = 0  a l ~  1,2 a N =  1,2 

X . . . .  (17_~. 0.1 _.~ . . .  q_ O-N) 7 - + a 1 +  -.. + a N  

~< 7% ~ (56z) N (3.49) 
N>O 

The last step follows from the fact that 

n . ( n - - k a l )  . . . . .  ( 1 7 + 6 1 +  " "  + a N ) < 2 U ( n + N ) ! / n !  

Therefore we have the convergence of u~ as before, but for z* < 1/56. 
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As mentioned in Section l, the uniform a priori bound (3.45) implies 
Theorem 2.2. In fact, as before, we deduce by the same arguments as refs. 8 
and 13 the convergence of 

u ~ ( [ e - l q l ] ,  el ..... [ e - l q ~ ] , e k ; r )  

to a family of correlation functions that we denote by Uk(ql, el ..... qk, ek; r) 
for l:~<r* and for almost all (ql, el,..., qk, ek)s (N2x U)k. Then the argu- 
ment can be repeated in the time interval [~*, 2r*]  with initial datum 
uk(ql,  e~,..., qk, ek; r*), since, at time r*, the (3.45) still holds. Again the 
arguments of ref. 13 show the factorization of the correlation functions, but 
with no restriction on the set of configuration, because the probability of 
a given collision goes to zero in the limit e ~ 0. Namely, since internal colli- 
sions are also performed with probability e, the arguments yielding (3.31) 
are not valid and u~(x; r) converges to the solution of (2.9). | 

4. M U L T I S C A L E  A N A L Y S I S  

We now go back to the H P P  model in a stirred environment defined 
in Section 2. The evolution in this system is mostly made by stirring 
updatings. Since the stirring process has good smoothing properties (notice 
that a single stirring particle moves like a symmetric random walk), one 
may hope that such properties survive after inserting the H P P  updatings. 
If this is so, some details of the initial configurations may not be relevant, 
e.g., only the averages of the initial configuration over regions of area t 
might have effective influence on the state at time t (recall that a random 
walk in two dimensions after a time t is spread out over an area of the 
order of t). Typical initial configurations averaged over regions of area t, 
t ~ e - ~  v, namely at macroscopic times, reproduce the smooth initial 
macroscopic profile in some faithful way, as we shall see. If the above argu- 
ment is correct, one may find essentially the same behavior when starting 
from most of the initial configurations as well as from the initial measure 
#~. We could then hope to have convergence at short macroscopic times z 
as in the traditional Lanford approach, but starting from single typical 
configurations. This could be the first step of an iterative procedure if at 
time ~ the typical configurations keep the same structural properties as the 
initial ones. 

There are many ifs in the above arguments, but the scheme will turn 
out to be essentially correct. It is, however, inadequate for an effective 
strategy of proof, as it looks quite difficult, at least directly, to single out 
the effects of the stirring from the complexity of the full evolution. Our 
strategy follows a somewhat modified pattern based on the arguments we 
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present below. First notice that in the time interval 0 < t < e-  ~ the problem 
disappears, simply because there are no H P P  updatings, but only stirrings. 
By known probability estimates on the stirring process one can actually 
show that at time e ~ starting from "most" of the initial configurations the 
state looks like one with a density profile whose maximal value is e v. This 
is still far from the macroscopic density values, which are of the order of 
e; nonetheless a density profile with values in [0, e v] can be studied using 
the techniques presented in the previous section up to a time t during 
which the number of H P P  updatings is proportional to the inverse of the 
density, hence up to t ~ ~-2v. Till this time one can argue that collisions are 
not so important and that mainly the process is made up by stirrings and 
streamings. Consequently the state at time e-2v approximates a profile 
whose density is of the order of e2v: but then we can repeat the previous 
argument to reach times e-3v and so on till macroscopic times. 

This approach is closer to what we really do, but not literally: it 
already fails at the first step. It is indeed true that we can control the den- 
sity, i.e., the one-body correlation functions, and prove that at time e-v the 
density is at most of the order of ~u. The estimates on the stirring process 
show also that the n-body correlation functions are bounded by cne TM and 
this gives the right dependence on 5: the bounds on the coefficients cn are, 
however, too bad for applying the techniques used in the previous section. 
However, by conditioning at time e v, we fix the configuration and avoid 
the buildup of the correlations. Then by using the good factorization 
properties of the measure at time ~-% as determined by the v-functions, we 
prove that the typical configurations at time e-~ have the same structural 
properties as the initial ones. We can then study as before the next time 
interval of length ~-v; actually we can do this e -a times, if a > 0  is small 
enough (with respect to v) and prove ( i ) that  at time e - v - a  the one-body 
correlation functions are bounded by some constant times e~+a and 
(ii) that the v-functions are bounded accordingly. We still do not have a 
good estimate on the size of the n-body correlations for n ~ ~ ,  yet our 
estimates allow us to prove that the configurations at time e ~-a satisfy the 
same conditions as those needed to apply the preceding procedure. We can 
then iterate e-~ times this analysis of the process, which involves now a 
time interval of length e . . . .  . In this way we reach time e -~ 2~. By 
arguments similar to the previous ones, we can iterate e -~ times the 
analysis of a time interval of length e -  ~- 2% and repeating this procedure, 
we eventually reach macroscopic times and prove Theorem 2.3. 

The main point in the above scheme is a multiscale space-time 
analysis: a good control of the process at a given level, i.e., for a given 
space-time scale, allows us to control it for a slightly longer time. We can 
then exploit such an extra time and obtain, as an effect of the stirring, 
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averages over larger spatial regions, hence improved bounds on the density. 
In this way we have access to the next space-time level. We shall now be 
more precise. Each level, or step, in our analysis is characterized by a time, 
a space, and a density units in terms of three positive parameters/~, a, and 
~, which should be considered as fixed from now on. We shall also need, 
later on, another parameter, b, which is related to the previous ones. The 
values of all these parameters will be determined in the course of the 
proofs. To get an idea about them, consider that v>f l>b>a>~,  
b>a+~, and b<(1-v)/2.  In particular, we can choose any /~ suitably 
small. Given such a value of fl, we can take any b small enough and, again, 
given such a b, we take any a small enough and, given such an a, we can 
then take ( small enough. It is convenient to choose a > 0 as the inverse of 
an integer, so we set 

h a =  1, / ~  N (4.1) 

Defini t ion:  The Level h. For any integer h ~ [I,  h -  1] we define 

T~(h) = e -~ [ e -  ~] h (4.2) 

where [ r ]  denotes the integer prt of r. [Notice that T~(h) for h</~ is 
vanishingly small in macroscopic units.] In order to introduce the 
corresponding spatial scales, we first define h* as the first integer such that 

e-v h*a+~>e 1 (4.3) 

(observe that since v > fl, / i> h*). We then let 

A~(h)=fT~(h)e~ if h<h* 
(4.4) 

[e -1 if h>~h* 

and 

p~(h) - (4.5) 
A~(h) 

Finally, we set 

T~(0) = A~(0) = p~(0) = 1 (4.6) 

We say that T~(h), A~(h), and p~(h) are respectively the time, space (area), 
and density units at the h level. 

Notat ion.  We denote by A~,, the square in 7/2 centered at the origin 
with area (2[-s -4] - 2 t  + 1)2. The important point here is that A~, t contains 
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the square centered at the origin with area e-4 for all t <~ e 1-"T, T as in 
Theorem 2.3. We might have chosen A~,0 with side e ~, e > 2, and defining 
accordingly A~.,, and everything in the sequel would have worked as well. 

We shall study the configurations at time t only in the region At.,; the 
possibility of "large density fluctuations" prevents us from an analysis on 
the whole Z 2. We shall therefore use seminorms rather than sup norms, as 
in the following definition. 

D e f i n i t i o n :  S e m i n o r m s  on t h e  Par t ic le  C o n f i g u r a t i o n s .  
Given any positive integer h ~ [1, h - 1 ] ,  we denote by Qh a square in •2 
of area As(h). Furthermore, for any h e  [1, h -  1], any t~ [0 ,~-~T] ,  T 
being the time mentioned in Theorem 2.3, and for any function g: ~2~ ~ R 
we define 

]]gl]~,h,,= max max ~ Ig(q,e,~)] (4.7) 
Q h c A e ,  t e ,~  q E Q h  

A configuration r/ is "h-good" at time t with coefficient d if 

I1~ I1~,~,, ~< de -~ (4.8) 

We shall simply say that r/is h-good if it is so at time 0. 

Remarks. The law of the random configurations at time t inside A~., 
conditioned on the value of the configuration at time s < t depends only on 
the restriction to the region A~.~ of the configuration at time s. Hence if we 
limit ourselves, as we shall do, to studying the process only in the time- 
space region (t, A~.t), t~ [0, [ -e- l -VT]] ,  we have effectively reduced our- 
selves to finite volumes. Indeed our proofs extend quite straightforwardly 
to the case when the system is in a square with center the origin and with 
side Le 1. Assuming periodic boundary conditions, one can prove the 
analogue of Theorem 2.3 where the limiting equation is the Broadwell 
equation on the torus of side L. We shall not, however, discuss this case. 

According to what has been said above, the seminorms depend on the 
configurations at time t only in the region At, ,. It should be noticed that 
the seminorms increase with h, giving a more accurate description of the 
configuration. They are strictly increasing (keeping ~ and t fixed and 
varying h) for h<~h*, while for h>h*  they remain constant: in fact, the 
squares of sides e -  1 have, in the average with respect to the initial measure 
/~, a nonvanishing number of particles. The densities of particles in an 
h-good configuration are of the order of p~(h) if we compute the densities 
by averaging over squares Qh. Hence they have the right density value for 
the level h. The whole problem will be to show that the averages over 
smaller squares are not really relevant. 
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The next lemma shows that the measure ~t ~: [cf. (2.16)] has support on 
h-good configurations for all h ~> 1. 

k e m m a  4.1. Let p~ be as in (2.18); then for any u and any d > 0  
there is c so that 

~:({]ltt[F~,h,O~<& ~;Vh>~l})~>l-c~"  (4.9) 

Proof. According to the above Remark, it is enough to prove 

lim I~({[Iqll~,h.o<~de r  1 (4.10) 
~ : ~ 0  

From the Chebychev inequality for any n > 1 

d e ~: ~ n(q,e,~) 
Qh*cA~,o e,~ q~Qh* 

[ ; <<.cd %~"e 8A~(h*)~ max ~ 1 ~ ~l(q,e,a) 
.... Q~. a f h * ) ~ .  

<~ gd %~%- 8A ~(h*)~ a ~ (4.11 ) 

where c and g are suitable constants. Equation (4.11) easily follows from 
the definition of p~. Since A~(h*) ~ = e - ' ,  the lemma follows after choosing 
n sufficiently large. | 

As already mentioned when outlining the strategy of the proof, one of 
the main points in the analysis of the level h is to prove that the one-body 
correlation functions starting from an h-good initial configuration are 
bounded at time T~(h) by a constant times p~(h). A first step is to prove the 
analogous property for the p-functions defined in Section 2. 

P r o p o s i t i o n  4.2. Let h < h - 1 ,  d > 0 ,  s ~ [ 0 , 2 T ~ ( h + l ) ) .  Let ~ be 
such that ]]q[l~,h,,~<da ~. Then there is c(d) such that for all x =  (q, e, a) 
with q e A ~,t 

p(x, tl ~, s) <~ c(d) ~ - ~ / ( t -  s) 
(p~(h) 

for l <~t-s<~A~(h) 

for A~(h)<~t-s<~2T~(h+ l ) - s  

(4.12) 

For notation see Definition: the p-Functions, in Section 2. 

We shall prove Proposition 4.2 in Section 5. We next relate the actual 
trajectories of the process to the p functions. 
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Definit ion: The (h, b, d ) -Good Trajectories. Let h < / ~ -  1; 
we then denote by t/(~ the particle configuration at time t~ =iT~(h). For  
b > a + ~ and d >  0, the (h, b, d)-good set of trajectories ~q~(h, b, d) is the set 
of all trajectories _t/= {r/(~ i =  0,..., [e-~-], such that: 

1. For  all i = 0  ..... [ e -~ ] ,  [Irl(~ ~, where t~=-iT~(h). 

2. For  all i = 0  ..... [e ~] 

II1~ r  p ( . ,  t~ it/(i ~), tz_ a)lll ~,h,r ~< clebP~(h) (4.13) 

where, for any function g, 

Illglll~,h,t= max max ~ P ~ + r y ( h ) , ~ ( ( q , e , ~ ) ~ y ) g ( y )  
q~Ae,  t+T*(h ) e,a 

For  t > s we have set 

T~*(h) = T~(h) e ~/2 

(4.14a) 

(4.14b) 

(4.14c) P t ,  s = P t ,  r 1 ~ . . .  o P s + l ,  s 

and 

~asi ,n(2.15) if s C e - v N  
P'+ l's(X --* Y) = ~6(q,  q - e) ~(e', e) ~(a', a) otherwise (4.14d) 

We shall prove a proposit ion,  Proposi t ion 4.3, which states that the 
(h, b, d)-good trajectories have large probability,  under  the assumption that  
the following estimate on the v-functions holds: 

Definit ion: The Good Estimate on the v-Functions at the 
Level  h .  For  any ~ </?/4, any n, and any d there exists c so that  for all 
t/ such that  IIt/[l,,h,o~<& -r for all te[T~(h) ,2T~(h)] ,  t s e - V N ,  and all 
n-tuples of distinct states _x = (xl ..... xn) such that the site qi of the state xi 
is, for all i in A~,t, 

Iv~(x, t[t/)l ~< ce/np~(h) ~ (4.15) 

Proposition 4.3.  Assume the validity of the good estimate on the 
v-functions at the level h < h - 1 and fix any do >~ 0. Then  there is d such 
that for any u there is a c so that  

P , ( ~ ( h ,  b, d))/> 1 - ce" (4.16) 

for all the configurations t/ such that  I[qll~,h,o~<doe ~. Fur thermore ,  the 
trajectories in ~(h ,  b, d) are such that  for some c and for all x = (q, e, a)  
with q e A~,~ 

Ip(x, tit/(~), t ~ ) - p ( x ,  t lq)l  <~ ciebp~(h) (4.17) 
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where ti=-iT~(h) and, given t, let j be such that tj<t<~tj+~. Then, if 
t-O>~ T*(h), i=j; otherwise i = j - 1 .  

Proposition 4.3 will be proven in the next section. A consequence of 
Proposition 4.3 is the following lemma. 

kemma 4.4. Let h < h - 1  and assume the validity of the good 
estimate on the v-functions at the level h. Then for any n and do there is 
c so that for all configurations such that Ilr/[d~,h,o~<doe-:, for all 
t~ [T~(h), 2T~(h+ 1)], tee vN, and for all n-tuples of distinct states 
x = (xl ..... x,)  such that the site qi of the state xi is, for all i in A~, t, 

[v~(x, t] r/)[ ~< ce (s- a)np~(h)" (4.18) 

Proof. Let r/,=r/u) be the random configuration at time t~, as in 
(4.17). Let s = t - b ;  then, by the Markov property, we have 

( 0 , )  Ivo(_x, t lr/)/= ~. {~(x~, t)-p(x~, fir/)} 
i 

((0, = ~-. G' [r/(x,,s)-p(x. slr/') 

+p(xi, slr/')--p(xi, t / r / ) ] ] )  (4.19) 

We choose d so that (4.16) holds and we denote by g~ the characteristic 
function of the set B and by ~. the set containing ~(h, b, d) determined by 
imposing the conditions 1 and 2 in the definition of the (h, b, d)-good 
trajectories only for j<~i. Then, by using (4.16), we get from (4.19) that 
]G(_x, tlr/)l is bounded by 

E~ Z~,E., [r/(x~,s)-p(x~,slr/') 
i 

+p(xi, s]q')--P(Xi, t , r / ) ] ) )  +ce" 

<<. ~ ~-,(z~lvlgl(X-g, slr/') 
J= {1,..., ,} 

x []  Ip(x,, s r / ' ) -p(x, ,  t l r / ) l )+ce ~ (4.20) 
i(~J / 

where IJl denotes the cardinality of the set J and _xs= {xj,j~J}. We want 
to use (4.15) to estimate the v-function in (4.20). But this is not immediate, 
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because t/', being a configuration at time t~, is controlled only in A~,~ and 
not in A~, o, as required for applying (4.15). However, for each 
x = (q, e, a ) e  _x j, q e As, ,, so that the v-function in (4.20) only depends on 
{r/'(q', e', a')}, q ' e  A~,t~. We therefore have 

vijp(_xj, s l y ' )  = vl~l(_x~, s i q"), t/0'( q, e, a) if q E A~ t tt"(q, e, a)= " 
otherwise 

t t~ Since /It/ II~,h,t ~<de ;, then ]jr/ II~,h,o..~de -; .  We can now use the assump- 
tion that the good estimate on the v-function at the level h is valid, so that, 
by (4.15) and (4.17), we get that (4.20) is bounded by 

J = { l  . . . . . .  } 

From this the lemma follows. | 

The estimate (4.18) is not the good estimate at the level h + 1, but, as 
we shall see in Section 6, Lemma 4.4 provides one of the main ingredients 
for the proof of the following. 

T h e o r e m  4.5. The good estimate on the v-functions holds for all 
h~</~- 1. 

In Section 6 we shall prove that this holds for h --- 1 and that if it holds 
for all h' < h ~ h - 1, then it holds for h: this will prove Theorem 4.5. 

Theorem 4.5 and Propositions 4.2 and 4.3 give us a good control of 
the process for a time T~(h-  1). We need to iterate this at most e a times 
in order to reach the macroscopic times. By imposing some further condi- 
tions on the initial configuration (which ensure that they are suitably close 
to the initial profile), we can easily extend the previous analysis and 
complete the proof of Theorem 2.3 as shown at the end of Section 5. 

5. P R O O F  OF T H E O R E M  2.3 

We start by proving Proposition4.2. By the definition of the 
p-functions (see Section 2), we easily get for all t > s ~> 0 

p(x, t )=-~Pt,  s(x--*y) p(y ,s )+ ~, ~Pt , , , (x-- ,y)  C~lp(y,s) (5.1) 
y s < ~ s ' < t  y 

s '  E a v ~  

where Cglp is defined in (2.16) and (2.9b) and P,., in (4.14d). 
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k e m m a  5.1.  Let s ~> 0 and assume that p(x, s) has values in [0, l ] 
for all x; then p(x, t), as given by (5.1), also has values in [0, 1] for all x 
and all t > s. Fur thermore ,  for all t/> s, 

Cg~p(x, t)<~p(x -L, t )p (x - •  t) (5.2) 

where if x =  (q, e, o-), then x +• = (q, _+e • a); see below (2.2a) for notation. 

Proof. Let/5 be obtained from p by the action of either a stirring or 
a streaming or a collisional updating. If 0 ~< p(x)~< 1 for all x, then also 
0 ~ f i ( x ) ~  1. This is obvious for the stirring and the streaming updatings 
and it can be easily checked to hold in the case of a collisional updating. 
After this, (5.2) easily follows. | 

We fix any two finite sequences _e and ~ with the same number  of 
elements, where e is a sequence of velocities and _r is a decreasing sequence 
of times, all between t and s. Call/3, ,s(x--,  y l_e, _r) the transit ion probabil i ty 
obtained from P,:(x  --. y) by the following procedure.  Let t~ be the largest 
time in z and consider Pt,,~(x ~ z); then change the e-velocity of z (which 
is the same as that  in x) into e~, the first element in e. Call z' the resulting 
state. Consider  then Pt~,t2(z'-+ w), where t 2 is the second largest time in _r. 
Change the e-velocity of w into e:,  the second element in _e, and so on. The 
resulting probabil i ty is P,,s(x ~ y l_e, _~). We have the following result. 

I . e m m a  5.2.  There is a constant  c' for which the following is true. 
Given any nonnegat ive integer s we let Ilt/ll~,h:~<de :. Then for all the 
integers t>s ,  for all x =  (q, e, ~), qeA, , , ,  and for all _e and r: 

,. f e - r  s) if t - s <~ A~(h) 
e a ~p~(h) otherwise 

~/~, ,s (x  ~ yl_e, _r) r/(y) ~ (5.3) 
Y 

Recall that p~(h) is defined in 

ProoL Let t-s<~A~(h). 
into squares of area t - s  and 
to A~. s. Then, setting 

/3,,s(X --* Q) = max max P,,s(x --' (q, e, a)l_e, ~)) (5.4) 
q c Q  e ,~  

For  x = ( q , e ,  ~), q ~ A  .... we get 

Z P,,s(x ~ yle_, r_)tl(y)<<.de-C ~ ,P,,s(x ~ Q )  
y Q ~ B 

We have used that  P,.s(X --* y le, r )  = 0 if y = (q', e', or') with q' r A~, s. The  

(4.5). 

We then introduce a part i t ion of the space 
denote by B the restriction of this part i t ion 

lemma follows then from the fact that  the posit ion displacement due to the 
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stirring updatings in P are those of a symmetric random walk. Therefore 
there are constants c and c' such that 

-Pt.s(x~Q)<~ c-~--- ~ e -d(q~ 
Q e B  t--SQeB 

C ~ < ~ - -  
t - - S  

where d(qo, Q) denotes the minimal number of squares in B separating qo 
from Q; qo is the site obtained by putting a particle initially in q 
Ix = (q, e, a)]  and then letting it move (backward) only at the collisional 
updatings by one step opposite to its e-velocity, initially equal to e, and 
then determined by (e, _z). This proves (5.3) for t-s<<.A~(h). In the other 
case we write Pt, s = P,,s* ~ Ps*,,, with s * =  s + A~(h). The first inequality in 
(5.3) (already proven) is now used for Ps*,s. This and the fact that Pt, s* is 
a contradiction in L~  complete the proof of the lemma. | 

P r o o f  o f  P r o p o s i t i o n  4.2. We write for simplicity p(x, t') for 
p(x, t'lrl, s). We shall prove (4.12) with c(d)= 4c'd, where c' is the constant 
which appears in Lemma 5.2. We start by considering t - s  <~ A~(h) and in 
this case we prove (4.12) with c(d) = 2c'd and for e small enough. The proof 
is by induction, so that given t' e (s, t], we assume we have already proven 
the estimate for s'<t'.  From (5.1), (5.2), Lemma 5.2, and the induction 
hypothesis, we get, for any x=(q,  e, ~), q~A~.c, 

g - ~  ~ - ~  

p(x,t')<~c'd-7-----+ ~ ~Pc.~,(x--*y) p(y• 
t - - S  s<~s '<t '  y - - S  

s' ~ ~ vN 

Since 

1 
- -  <~ c " e  ~ l o g ( t '  - s )  
S ~ - -  S 

iterating, we get 

e -~ 1 
p(x, t') <<. c'd ~ k~o -~" [2c'dc"ev- : log(t' - s)] ~ 

, ~3 

~< c d t--;~_ s exp [2c'dc% v-;  log At(h)] 

For e small enough, the exponential becomes smaller than 2, hence the first 
inequality in (4.12) is proven with e(d)= 2c'd. 
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We prove the second inequality in (4.12) with c(d)=4c'd. The 
proof is by induction. Given t 'c(s+A~(h), t] ,  we assume that for all 
s' e ( s+  A~(h), t') and all xeA~,s, 

p(x, s') <~ 4c'dp~(h) 

Using (5.1), we write 

p(x, t') = ~ P,,,+ A~h)(X ~ Y) P(Y, S + Adh)) 
y 

+ Y, Z P,,s,(X ---, y) ~,p(y, s') 
s' ~ - v N  y 

s' ~ (s + Ae(k  ) , t ' )  

We then have, for all x =  (q, e, a), qeA~,,,, using the induction, (5.2), and 
the first inequality in (4.12), proven with c(d)= 2c'd, and t - s  = As(h), 

p(x, t') <~ 2c'dp~(h) + e~Et ' - A~(h)] [4c'dp~(h) ]: (5.5) 

r .< We have that t -A,(h). .~2T~(h+l).  If h<h* [see (4.3)], then by (4.5) 
and (4.2) 

p~(h) T~(h+ 1) ~< e-ap,(h)  T~(h) = e - / J -"  

Hence the second term in (5.5) is bounded by 

.< , 8~-~-a-~Sc(d) 2 p~(h) ..~ 2c dp~(h) 

for e small enough and choosing fl + a + ~ < v. 
Assume now that h>~h*. Then by (4.1) 

p,(h) T~(h+ 1) <~ a-C+~T~(h - 1 ) ~ 8 - ; + 1 8  - ~ - v + a  

hence the second term in (5.5) is bounded by 

e~e -~ + " -  r 2 p,(h) <~ 2c'dp~(h) 

if e is small enough and choosing ~ < a. 
Hence in all cases p(x, t')<~ 4c'dp,(h) for e small enough. By taking a 

suitably larger value for c(d), we then prove the proposition for all 
~E(O, 13. I 

C or oJ i a r g  t o  t h e  P r o o f  o f  P r o p o s i t i o n  4.2. Under the same 
assumptions of Proposition 4.2, there is a constant c(d) so that for all the 
integers t>s '>s ,  for all x =  (q, e, a), qeA~,,, and for all e and _~: 

~ P,~,(x ~ y(e, ~_) p(y, s'(tl, s) 
y 

~c(d)~  e -~ / ( t - s )  if t-s<~A~(h) 
( p ~( h ) otherwise 

822/66/1-2-28 
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We shall omit the proof of this corollary, which is essentially the same 
as that of Proposition 4.2. 

P r o o f  o f  P r o p o s i t i o n  4.3. We shall prove (4.16) with d =  2c(d0); 
see Proposition 42  for the definition of c(do). We first prove that if 
q_ s (q~( h, b, d), then (4.17) holds. We shall then use this result to prove 
(4.16), so that we start as follows. 

Proof of (4. 17). We define 

R~(t) = sup sup/~(q,  e, a, t) 
qEAe , , t  e ,~  

K~(x, t )=lp(x , t[ t l (~- l ) , tk  1 ) -p (x ,  tttl)[, t k _ l - ( k - 1 ) T ~ ( h ) < t < ~ t k  

Denoting by B(x) the set of all the single-particle states with same q 
position as in x, we have 

I~lf(x)--Cgag(x)l <~ ~, I f (z ) - -  g(z)l I f ( S ) +  g(z')l (5.6) 
z , z '  e B ( x )  

We use in the sequel the following notation: 

tk = kT~(h), t* , = tk - t  + T*(h), T*(h) = T~(h) e ~/2 (5.7) 

For t e [ t *  l , tk ]  and for x = ( q , e , a ) ,  qzA~,, ,  we write (5.1) with 
s =  tk 1, splitting the sum over s' smaller and larger than t~ 1. For the 
former we use (5.6) without exploiting the minus sign in the first factor on 
the right-hand side, while this is used for s'~> t~_ 1 to reconstruct Re. We 
then have, for a constant c which only depends on d, 

_R~(x, t)<~ ~y P,.tk l(x ~ Y)[rl(k-1)(y)--P(Y, tk- l l t l )]  

+ ~, c p~(h) + ~ cp~(h) 2 
s e e  v ~  S - -  g k  l s E e - ~  

s ~ ( t k - l ' t k - l + A c ( h ) ]  s e ( t k - l + A ~ ( h ) ' t ~  1] 

+ Z cRy(s) p~(h) (5.8) 
s ~ g v[~ 

For the second and third terms on the right-hand side of (5.8) we have 
used Proposition 4.2 to bound one of the two factors in (5.6). For the other 
one we have used the Corollary to the proof of Proposition 4.2; hence 

~P,.s(X---' y) max p(z, slq~k-1),tk_l)<<,e(d)p~(h) (5.9) 
Y z ~ B ( y )  
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the same bound holding for p(z, sl ~). For the fourth term in (5.8) we have 
used again (5.9). 

The first term on the right-hand side of (5.8) is bounded by 

- + R ~ ( t ~ _ l )  ~ P,.t~ ,(X--+ y)[~l(k-I)(y) p(y, tk air/(~-2),tk-e)] I 

d~bDe(h) q- R e ( t k - 1  ) (5.10) 

We bound the second term on the right-hand side of (5.8) by 

c'e ~- ;p~(h) log A~(h) ~ c"ebp~(h) e ~ '~- o log e-J 

where c' and c" are suitable constants and we choose b + ~ < v. 
The third term on the right-hand side of (5.8) is bounded by 

j/2 T~(h) <~ ceb~ ~h ~ e c-b+/~/2e" ce~T*(h)[pe(h)]2<~ceV-;P~(h) A~(h) ~'~t ) 

The last bound only arises if h = h -  !; in the other cases we get a smaller 
one by choosing b + ~ < fl/2. Hence, for a suitable constant c, we get 

R~(t)<.Re(t~_l)+ ~ R~(s) cp~(h)+O (5.11a) 
S E ~-vtN 

S~(tk_l,t) 

~=ebpe(h)(d+ce~-~-bloge-l+ce ~ b+~/2) (5.11b) 

We denote by J the set of times s such that 
t t<  s ~< tt+ ~. By iteration we then get from (5.11) 

t 
Re(t)~ F, Re(s) cp~(h) + ~ 0 

SE~--v~ 
s ~ J , s < t  

<~ Y~ ~ {t~cp~(h)3" 0 <~ e '~;~(~) 
n>~O 

s -  tl>~ Te*(h), where 

t 
0 (5.12) T~(h) 

This proves (4.17) for t ~ J .  If instead tk_ 1 < t < t~ '  1, we repeat the above 
proof with tk_ 2 instead of tk_l.  Thus, (4.17) holds for all (h, b, d)-good 
trajectories. 

Proof of  (4.16). Denote by ~ the set of trajectories r/ which satisfy 
the conditions 1 and 2 in the definition of the (h, b, d)-good trajectories, 
but only for t/(j) with j<~i. We have chosen d=2c(do). We shall now 
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estimate the conditional probability of N~ given N_ ~. Denoting by II'il the 
seminorm II' [[~,h,,~, we have 

[Iq(~)ll ~< Ilt/(~)-p( ., tslt/(~-~, t~_a)ll + lip(', tilt] (i t), te_~)--p(., t~lr/(~ I 

+[IP( ' ,  tel ~(~ (5.13) 

By Proposition 4.2 the last term is bounded by c(do)s -~. By (4.17) the 
second term is bounded by 2ce-%% -~, hence for s small enough this is 
smaller than s r For the first one we shall prove later that for any 
u there is c so that 

P ,  ([ht/(~)-p( ., t~lrl("-~),t~_ ~)1[>- c(d~ c- N._~)<.cs~ (5.14) 

where P~(-INi_ ~) denotes the conditional expectation with respect to ~ _  ~. 
We now complete the proof of (4,16). We have so far seen that, condi- 
tioned on ~_~,  t/(~) satisfies the condition 1 [of the definition of the 
(h, b, d)-good trajectories] with probability not smaller than 1 - c e  ". We 
shall also prove later that, if b < y [see (4.15)], then for any u there is c so 
that 

P,(IH~/(e)-O(., tiler (i-1), t~_~lll~,h.~,~&bp~(h)l~i_t)~Ce ~ (5.15) 

Hece for any ~ there is c so that 

We then have that if ~/is an h-good configuration with coefficient do, then 

Pv(~(h, b, 2c(do))) >>- 1 - cs% a 

for any b > a + f f ,  b < y  [-see (4.15)] [-hence for any bE (a +~ , / / / 4 ) ] .  This 
will prove (4.16) with u =  ~ / - a  once we show the validity of (5.14) and 
(5.15). 

Proof of (5.14). The left-hand side of (5.14) is bounded by 
[-~], ~ ~](i l )  C t  ~ c(do)/2] 

Qh = Ae,  t i i = 1 

where the sum is over all not necessarily different states y =  (Yl,--., Yz,) 
with yi = (qi, el, ai) and qi~ Qh. 
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To estimate (5.16), we introduce a partition 7z of {1,..., 2n} and let 
Y(~) be the set of all the _y such that y~ = Y1 if and only if i and./" are in the 
same atom of ~. For  k > 1 we can write 

[r/(y, T~.(h)) - p ( y ,  T~(h) I rt')] x = Fo + [rt(y, r~(h))  - p ( y ,  T~(h) ! r/')] F, 

where the F~ are polynomials of the variable p ( y ,  T~(h) lq ' )  whose coef- 
ficients are functions of k. In particular, in F0 the constant term is missing. 
Given ~, denote by l(~) the number of atoms of 7r and by j0z) the number 
of atoms with only one element. Given y m Y(~), let z~ ..... zj(=) be the states 
of the singletons, and z~, j ( 7 0 < i < ~ l O z ) ,  the states in each of the other 
atoms. We have, writing j for j0z) and l for l(~), 

~., [~(y,, 72(h)) - p(y,, T~(h)l ~ ' ) ]  

[_0+I ~ P~ Iv({~}, r~(h)l.')l (5.17) O" i 
@ + 1  " " "tYl i 1 

where the a~ have values 0 and 1. _P~ denotes the absolute value of the 6i 

polynomial F~, associated to z~ and v({_ze}, T~(h) lq ' )  is the v-function v, 
with n the cardinality of {_z e} [cf. (2.17)]. Finally, {z ~} is the configuration 
made by all the states zt with i ~< j and all z~ with i > j and such that a~ = 1. 
We use (4.15) and (4.12), which can be applied because of the assumptions 
on r/' and by the same argument used in the proof of Lemma 4.4. We then 
obtain the bound 

[p~(h) ]  z "  ~'~ [p~ (h )e~ ]J+z~ '  

@+I " ~ !  

~< a[p~(h) e~] j p~(h) t - j  = @~(h) ~ ~"/J 

for suitable constants c and ( (which depend on n and do, but not on e). 
We then have that (5.16) is bounded by 

7Z rC 

for a suitable constants c, c', and c". We observe that for any n the number 
of possible partitions ~r is finite. For any given ~, we denote by ~:(zr) the 
number of atoms of ~ that are not singletons. Then 2tc0r)~<2n-j(~) ,  
hence l(~) = tr + j ( r  0 ~< n + j(~)/2. In consequence 2n - 10z )/> n - j0r)/2 
and 

c t tc , -  8 Z ~ ( 2 n  - l(zc))  + 7j(rc) ~ C"g 8 2 C'~n + (7 - ~'/2) j ( r c )  < C ~  - 8 + ~n 

7c 
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for a suitable constant c and choosing ~ < 2 7. For any u > 0, after choosing 
n large enough, we see that the last expression is bounded by ce" for a 
suitable c. This completes the proof of (5.14). 

Proof  o f  (5. 15). We use the same argument as before. The left-hand 
side of (5.15) is bounded by 0 / ' =  t/(~- ~)) 

Qh c Ae, ti y j 

x W,r I-r/(yj, T~(h)) - p(yj ,  T~(h) I r/')] 
1 

We use again (5.17) to bound the above expectation. Consider now a fixed 
atom rc of the partition. There are 2n - 10z) of the variables yj which have 
to coincide with some other variable Yk- Therefore the left-hand side of 
(5.15) is bounded by 

--2n ( 1 . . . _ ~ ' ~  2n-l(rc, 
ce-a[debp~(h)] ~ \ T * ( h ) J  P~(h)t~=) a~J~'~) 

C' E ~ -- 2nb + fl/2[-2n - - / (=) ]  + 7j0z) 

Using again the estimate 2 n -  l(r 0 >~ n -  j(r0/2, we have 

,~--2nb+t3/2[2n--l(rc)]+'~,j(rt)~g--2nb+nfl/2+(y ,8/4)j(aZ)~C~(',/ b)n 

The last step follows by the condition 7 </~/4, so that the largest value of 
the bound is obtained for the maximum value of j(~), i.e., j(r 0 = 2n. The 
rest of the proof is the same as before. | 

Proof  of Theorem 2.3 (Conclusion) .  We shall extend the 
previous analysis to h = h - 1 ,  but several modifications will be needed. 
The first one arises when extending Proposition 4.2; the assumption that 
tlqN~.~_l.o<~de ~ is no longer sufficient, and in fact the bounds we get by 
repeating the proof of Proposition 4.2 in this case diverge when e ~ 0. We 
need extra assumptions on q, namely, that t/is "close" to the initial density 
p(r, e) (see Theorem 2.3). We start by defining 

F~(q, e, a, t) = ef~ + ,~(eq, e) (5.18a) 

where f ,  solves (2.4). In particular, by (2.18), 

F,(q, e, ~, O) = ap(~q, e) = ~-,,,(rl(q, e, a)) (5.18b) 
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Lemma 5.3. Let T be as in Theorem 2.3. There is c such that for all 
t<~ e 1 - V T a n d f o r a l l x E F [ s e e ( 2 . 1 0 ) ]  

F ~ ( x , t ) - ~ P , . o ( x ~ y ) F , ( y , O ) -  ~ ~ P , . , ( x ~ y ) ~ g i F , ( y , s )  
y 0 < s < t  y 

~< ce(e x/-/) "~" ~'~ (5.19) 

ProoL Since f solves (2.4), we can write for te ~ + ~'~ T 

ef~ +~(eq, e) - efo(eq - ete 1 + ~, e) 
t z l  + v 

- f o  ds~Cgf~(eq-e( te l+~-s) ,  e ) = 0  (5.20) 

We compare the three terms on the left-hand side of this equation with the 
three terms on the left of (5.19). The first ones are equal by (5.18). For the 
second ones we have, setting x = (q, e, a), 

Z P,,o(X --" y) F.(y,  O) - F~(q - eeVt, e, a, O) <<. ce 2 x / t  IlWf I[ 
Y 

where we have used the central limit theorem for estimating P, ,o (X~  y). 
Moreover, by standard arguments one can show that if ]PVfort~ is finite, 
there is a constat c such that supt~<r ][Vft[t ~ ~ c. 

Since there is c such that I , ~ F ~ -  CgF~l ~< ce 3, by the same argument as 
before, we have 

~ [ ~ P , , ~ ( x ~ Y ) ~ , F , ( y , s ) - C ~ F ~ ( q - e e ~ ( t - s ) , e , a , s )  1 

0 - < s <  t 

<~ ceVte 3 q- CSVg, t3/282 

where c is a suitable constant. We have 

~, CgF~(q - eeV(t - s), e, a, s) 
O < s < t  
s ~  Vl~ 

= ~ e2c~f~l+,.s(eq--ei+v(t--s)e,e) 
0 < s < t  
s e e  vN 

which is the Riemann sum of the integral in (5.20); hence the error is 
bounded by e2(ll~f/atpt ~ + !lVfll ~) .  This concludes the proof. | 

We choose ~/close to F~ in the Ill" rtl sense. We can do this because of 
the following result. 



438 De Masi et  al.  

L e m m a  5.4. For any d > 0  and u there is c such that 

#~({l[l~/-F~il[~,h t,0~<del+b})>~ l - r e "  (5.21) 

The lemma is proven using the Chebychev inequality with arguments 
similar to those used when proving Proposition 4.3; details are omitted. 

Proposition 4.2 is replaced by the following. 

Proposition 5.5. Let0~<s<t<~e  ~- VT and l? be such that 

_< l+b (5.22) 

Then there is c so that for all x =  (q, e, a), q~A~, , ,  

Ip(x, tlrl, s ) -  F~(x, t)l 

(~-~/( t-  s) 
<~c ~p~(h- 1) 

(e(eb _[_ 2(1- v)/2) 

if l < ~ t - s < ~ A ~ ( f z - 1 )  

if A , ( h - 1 ) < ~ t - s < ~ T * ( h - 1 )  

otherwise 

(5.23a) 

Furthermore, 

Ip(x, t t F~( ., 0)) - F~(x, t )l <~ cee ~1 - ~)/2 (5.23b) 

where p(x,  t i f f ( . ,  0)) is the p function with initial datum F~(., 0). 

Proof. The first two inequalities in (5.23a) are proven in the same 
way as in Proposition 4.3, without using the second of the inequalities 
(5.22). In analogy to the proof of Proposition 4.3, we introduce 

R~(t) = sup sup/~(q,  e, a, t) 
q ~ A ~ , t  e,~Y 

/~(x, t)= Io(x, tl~, s ) -  F~(x, t)l 

Then we have as in (5.8), with h = / i -  1, 

_R~(x, t) <~ ~ P~,s(X --* y) R~(y, s) + cee (1 -~)/2 
Y 

S t - - S  ~1 ~" 
S 'E~-vrN 

s' ~ (s,s + A~(h) ]  

+ Z c~2-2~ + ~2 
s ' ~ e  vN] s ' E ~  -v~N 

s' ~ (s + Ae(h ), T*(h) ]  s' e (~*(h) ,  t) 

eR~(s')(Ro(s') + e'e) 

(5.24) 
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where we have used the first two inequalities in (5.23a), (5.19), and the 
corollary to the proof of Proposition 4.2 and we have written p(x ,  s'l t/) ~< 
R , ( s ' ) + c ' e .  We have, by (5.22), for t >  T * ( h )  

E P,,~(x - ,  y) ~ ( y ,  ~) <<. d~ ~ +~ 
Y 

Given C > 0 ,  let S be the last time after T * ( h )  such that R ~ ( s ' ) ~  C~. We 
assume t ~< S and we replace one of the two R~(s') in the last term in (5.24) 
by C~. Hence we have the bound 

R~( t ) <~ & l + b + Cel - 2;e ,. log[A~(h)] + ce ~ - 2ct?,v e - i v + f l / 2  _ ~  ~ee(1 v)/2 

+ c~ ~ tL(s') 
s'~g-v~d 

s' ~(T~*(h),t) 

C,~,(,fb _~ ~(1 v)/2) _}_ C~ 
s'E~ v~ 

s 'e(T*(h), t)  

By iteration we then have 

R~( t) <<, C~(e b + e (1 - ~.)/2) exp(c,te~ + v) 

shows which also 
(5.23b). | 

We put 

that S >  Te -~ ". In an analogous way we prove 

t i = iT~(h - 1) for all i such that [~-1 VT] _ ti ~> T * ( / i -  1 ) (5.25a) 

We denote by l -  1 the largest i in (5.25a) and define 

tz= [e 1 ~T] (5.25b) 

Definition: the  G o o d  S o t  o ~ ( d , b ) .  Let d > 0  and ( l - v ) / 2 >  
b > a + (. Then o~(d, b) is the set of all trajectories 9 = {t/(i)}, where r/(~) is 
the configuration at the times ti, i<~l, defined in (5.25) which satisfy the 
conditions 1 and 2 in the definition of the (d, b, h)-good trajectories and 
moreover q =-r/0 satisfies (5.22) and for all 0~< i<~l 

IIIp(., t, I~ ( ' -  1) [i-- 1) - -  F] ( i -  1)(.)ltf ~,h,,, ~< d~l +b (5.26) 

The analogue of Proposition 4.3 is the following. 

Proposit ion 5.6. For  any do > 0 there is d such that the following 
holds. Given any u, there is c so that 

P , ( ~ ( b ,  d))~> 1 - c e  u (5.27) 
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for all q which satisfy (5.22) with coefficient do. Furthermore, using the 
same notation as in (4.17), for some c and for all x = ( q ,  e, a), qeA~, , ,  

IP(' ,t~lq (i ~,t~ 1)-P( ' , t l~ / ) [<~cie  ~+b (5.28) 

The proof is just the same as that of Proposition 4.3, using Proposi- 
tion 5.5 instead of Proposition 4.2; we omit the details. The analogue of 
Lemma 4.4 also holds for configurations ~/ which satisfy (5.22), so that 
(4.18) holds for t =  re -1 VT] and h = / ~ - 1 .  By Proposition 5.5 we have 

[p(x, t l ~ l ) -  F~(x, t)t <~ ce l +b-~-~,  

Ip(x, t l r l ) - p ( x ,  tlF~(-,0))l ~<ce '+b ~ c 

(5.18a), we prove (2.19) and conclude the proof of Using this and 
Theorem 2.3. | 

6. T H E  BASIC  E S T I M A T E  ON THE v - F U N C T I O N S  

We prove Theorem4.5 by iteration. We let h~</~- l ,  t e e  ~r~c~ 
ETa(h), 2T~(h)], and we fix an h-good configuration q; to have lighter nota- 
tion, in this section we drop writing the dependence on ~/in the argument 
of the p- and v-functions. 

We first express vn(_x, s) in terms of v-functions at time s -  1. By itera- 
tion we shall then prove that vn(_x, t) is a finite sum of terms which can be 
interpreted in terms of a branching process. Theorem 4.5 will then be a 
consequence of some probability estimates on this branching process. 

Let x =  (X 1 . . . . .  X n )  , Xi= (qi, ei, ai); if the time step ( t -  1, t) 
corresponds to a stirring updating, we set 

x * = { 2 i ,  a i - ~ , , i = l  ..... n}, 2 i = ( q i - c ~ , , e ~ )  (6.1a) 

where the random variables aa, e (which also depend on t) are i.i.d, with 
values in { 1, 2, 3, 4 }, each having probability 1/4. The sum of the a's is 
defined modulo 4. For  an H P P  updating we set 

x* = { ( q i - e i ,  et, ai), i =  1,..., n} (6.1b) 

D e f i n i t i o n  of  Clusters .  We say that (c~ 1,..., C~N) are the clusters of 
x* if (c~ 1 ..... CgU) is a partition of {1 ..... n} such that i a n d j  are in the same 
cluster if and only if 2 i = 2 j ,  for stirring updatings; while, for H P P  
updatings, if and only if (q~ - ei, ~i) = (qj - ej, ~j). 

Notice that the clusters of x* are completely determined by x, both in 
the H P P  and stirring updatings; in particular, in this latter case they do 
not depend on the choice of the random variables f f q ,  e" 
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N o t a t i o n .  For an HPP updating we write 

X* x*={_i,i=l,...,N}, x*=(q*,e* ai*), e*-re * * - - I  ' - i  - - k  i,l~'", ei, hi) 

where x* is the configuration in the ith cluster of x*, hi~> 1 denotes the 
number of particles in the ith cluster, q* are their common positions, a* 
their common a values, and _e* the set of their e-velocities. For a stirring 
updating we write 

X* (7* x* = {_i, i =  1,..., N}, x* (q*, e*, if*), a* * _ = - -  ( o - i , 1  ..... ; , 0  

As before, h i denotes the number of particles in the ith cluster, (q*, e*) the 
common values of the (q, e) state in that cluster, while g* is the set of 
values of the o--velocities. Finally, if _x;, i ~ J, are disjoint sets of states, we 
denote by {xi, i 6 J} the collection of all the states x i. 

We have the following results. 

Proposition 6.1. Given x and t, we denote below by J any subset 
of { 1,..., N}, where N is the number of clusters in _x*. Then, if at ( t -  1, t) 
there is an HPP updating, we have 

v~(x_,t)=v~(x_*,t-1)+ ~ ~ i[ I  chi.kz(x_i,t]x*)] 
J ~  {xi , icJ} i~J  

x Vk({Xi, ieJ, x*, iCJ}, t -  1) (6.2a) 

while for a stirring updating we have 

vn(_x, t) 4 
X* J ~  {xi , iEJ } 

X I ~  I Chi, ki(X_i, l[Xi~)]l)k({X_i, i~J,x*, ir r (6.2b) 
iGJ 

the sum over x* being over all the possible 4 u values of x* [see (6.1a)]; 
h i=  [x*[ and 0~<ki~<4; 

k = E k i ' ~ - 2 h  i 
i 6 J  i~J  

_x i is any set of ki distinct states having all the same (q, e) [(q, o-)] values 
as those in _x* if the updating is of stirring [ H P P ]  type. 

For stirring updatings, Ch,.~(x_i, t l_x*)=0 if h~= 1 and if _xi is not a 
proper subset of x*; in the other cases 

Ch~,k~(_x~, t [ x * ) =  [ I  [p(x', t-- 1)--p(x, t)] (6.3) 
x E x i /xi 

where x = (q + c~, e, ~) if x' = (q, e, o-). 
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Also for the H P P  updatings the coefficients Ch, k are uniformly bounded. 
Furthermore, C~,0 = 0; C~,~(xi, t Ix*) is a polynomial of degree 3 in the 
variables p(q*,. ,  a*, t - 1 )  with the constant term missing. For  h>~2, 
k<h ,  then Ch,k(_X i, tl_X*) is a polynomial of degree ~<4 in the variables 
p(q*,. ,  a*, s), s= t - 1 ,  t, with minimal degree h - k  and with all the 
coefficients uniformly bounded. 

Proof. Stirring updating. We have, given the a~, 

q(q, e, a, t) = I/(q - c~, e, a - aq ..... t - 1 ) (6.4) 

See (6.1a) for notation. Set 

-XZg = { X l  . . . . .  "~t/}, Xi=(Xi,(~i--~Jci ) 
Then 

v,(x, t ) =  ~: [~/(2~, t -  1 ) - p ( x i ,  t)]  
{-} i :  

The sum 
in the same cluster, then a ~ j - ~ i .  When all the 2~ are distinct, N =  n and, 
as we are going to see, (6.5) becomes 

(6.5) 

an (6.5) is not over independent variables, because if i and j are 

Let 
~, = ~ ( ~ , ,  t -  1) ,  p ,  = p ( ~ , ,  t - 1 ), p ;  = p ( x , ,  t )  

Under the assumption that the 2i are distinct, we will show that for any 
k e { 0  ..... n} 

v,(_x, t) = ~ [ q i -  P~] [q~-  p;] (6.6c) 
{ ~.} i-- 1 

which gives (6.6a) for k - -n .  For k = 0 the first product on the right-hand 
side is missing, hence in this case (6.6e) becomes (6.5) and the equality is 
true. We now assume it for k and want to prove it for k + 1. We write 

~ k + l -  P l c +  1 = (/']k + 1 -  Pk+ 1) + ( P k + l -  Pk+ t) 

v,(x, t ) =  ~ vn(_x*, t -  1) (6.6a) 

which proves (6.2b) in this particular case. 
We are going to show that (6.6a) is obtained from (6.5) by induction. 

Recall that 
1 

p(xi, t)=~l ~ p(2i, a, t -  1) (6.6b) 
- T  
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and we insert this equality in (i 6c). The first term reproduces (6.6c) with 
k replaced by k + 1; the contribution of the other term vanishes, as seen by 
performing first the sum over 6k+1 and using (6.6b). The induction 
assumption is therefore proven and the validity of (6.6a) is established. 

For  the general case we add and subtract in (6,5) from each r/i the 
corresponding Pi- Denote by A c {1 ..... n} any subset of labels each one 
belonging to some of those clusters which have more than one element, 
namely if i6 A, then there is j # i such that 2i = 2j. The sum over A will 
denote the sum over all such subsets (if N =  n, there are no such subsets 
and the sum is absent). We then have 

2 t- l )  
{~} A 

• 1--[ I - p (X , , f f i - -~ , , t - - 1 ) - -p (x i ,  t)]  
i 6 A  

which can be easily seen to be the same as (6.2); we have therefore 
completed the proof of Proposition 6.1 in the case of stirring updatings. 

HPP updating. For / = 1 , 2 , 3 , 4  let q~=~l(q*,c~,a*,t-1); then it is 
not difficult to see that 
hi 

1~ [r / (q*+ * * a*, t ) - p ( q *  +e* e*. a* t)]  Ci, j '  ei,  j~ l, J9 t,J~ t ' 
] = i  

hi 

- ~  [q(q*,e* a * , t - 1 ) - p ( q * + e * ,  e*  a* t)]  t,j~ l,fl5 l,j~ i 
j - - i  

( hi 

= ? / I r / 3 ( 1 - - r ] 2 ) ( l - - r / 4 )  ~ l - I  [ ~ e : j , c 2 + ( ~ e i * , j , c 4 - - P ( q i  * + e * z , j ,  C'.,,j, f f i*,  t ) ]  
k j= 1 

- [-3,,7j.,. 1 + 3~7j.c3 - p(q* + e'j, e'j,  a*, t ) ]}  

+ r/2 ~/4(1 -- r/1 )(1 - r/3 ) [6~,7~.c~+beT.f~-p(q*+e~'.. ~ ,.j, e*.,,j, ~*, t)] 
1 

__ [(~eT, j,c2 2[- 3 e . j  c 4 _  p ( q *  + e'j, e*. a*, t )]~ (6.7a) i. , . l . j~ ) 

hi 

[r/(q* 
2=1 

=E 
ki 

+e*. e*. a*, t ) -p (q*  +e*. e*. a*, t)] l.J~ l ,J '  l ,J '  l.J~ 

+ ]q [r/(q*, e~'. or*, t -  1 ) - p ( q * ,  e *  or*, t -  1)] l,,]~ l.j~ 
j = l  

Ch~,k,(e,, t l -  x*)  H [-q(q*, e, or*, t --  1)--p(q*,  e, ~*, t-- 1)] 
ei e ~ e T" 
hi 

(6.7b) 
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where 6e, e, = 1 if e = e' and 0 otherwise. The numerical coefficients Ch.k are 
then defined so that (6.7b) holds. To obtain them explicitly, one has to add 
and subtract from the r/i in (6.7a) their corresponding p's and expand the 
products. After some simple algebra one can then check that the properties 
stated in the proposition hold, so that the proposition is proved; we omit 
the details. I 

Def in i t ion:  The  B a c k w a r d  S t r e a m i n g + S t i r r i n g  Process. 6 
Given t > 0 ,  we call s e (0 ,  t) a stirring time if t - s - l ~ k ~  -~ for some 
integer k; otherwise we call it an H P P  time. Then the backward 
streaming + stirring process relative to t is defined so that at any stirring 
time s the updating is made first by a unit shift along the direction opposite 
to that indicated by a and then by uniform independent rotations of the ~'s 
as in the direct stirring process. If instead s is an H P P  time, then the 
particles move one step in the direction opposite to their e-velocity. 

Let us agree that the v-function to estimate is computed at a given and 
from now on fixed time t e e  vN such that 2T~(h)>>-t>/T~(h), h - l ~ b  
[cf. (4.15)]. We shall then consider, most of the times in the sequel, the 
process relative to this time, and we shall refer to this simply as the back- 
ward streaming + stirring process. 

Notice that _x* in (6.1) is obtained from x by applying the evolution 
rules of the backward streaming +stirring process. Therefore, iterating 
(6.2), we get a series of terms which are characterized by time intervals 
where there are particles moving with the law of the backward streaming + 
stirring process, while at the end  of these intervals there are branchings 
where the number of particles may change and their state vary. We shall 
first take care of the stirring + streaming part by introducing a coupling 
with an independent process: this will give us the main probability 
estimates needed for proving the desired bounds on the v-functions. 

Def in i t ion:  The Coupl ing.  We introduce an auxiliary process, 
the Bernoulli process (S*, P), S*_= {a*(s), i~> 1, s~>0}, where the a*(s) 
are i.i.d, variables with P ( a * ( s ) = j ) =  1/4,j~ {1, 2, 3, 4}. Then for any time 
interval Is1, s2], sl <s2 ~< t, for any finite set of labels J c  N, and for any 
configuration _x = {xi, i e J} of distinct states, we introduce a map Jr 
specifications {[Sl, s2], _x} defined on the set of trajectories {a*(s), i e J ,  
s e  Is1, s2]} and with values in the set {xi(s), ieJ,  se Is1, s2]}. We set 
_x(sl)=x and ei(s)=ei(sl) for all iEJ  and s e  Is1, s2]. Then if s - 1  is a 
stirring time, we let qi(s)= q i ( s -  1)-c~,(s_ ~) and 

a i ( s ) = ~ * ( s ) - a j ( s - 1 ) + c r / ( s - 1 )  (modulo4)  

6 We shall describe the particle configurations by specifying the states the particles occupy; 
this is evidently equivalent to the occupation number description used previously. 
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where j<~i is the smallest label in J such that s Ai(s), i.e., such that 
qj(s) = qi(s) and ej(s)= el(s). 

Notice that ai(s)=a*(s)  when :~t(s)=Ai(s ) implies l>~i. Then the 
particles with labels l > i  and such that ~ ( s )= . f i ( s )  undergo the same 
a-rotation as particle i. For this reason we say that particles with higher 
labels are of second class. If sl is an HPP time, then a~(s)- -a~(s-1)  and 
qi(s) = q i ( s -  1) - e~. 

We omit the easy proof of the following lemma: 

I . emma  6.2. For any given specification {[s~,s2],_x) the set of 
trajectories {x(s)), s t  [sl, 82]) inherits from (X*, P) via ~/' the same law 
as the backward stirring + streaming process in the same time interval and 
conditioned to { x(sl) = x }. 

Notice that the above realization of the backward stirring + streaming 
process allows us to identify the particles during their evolution, and 
therefore from now on we consider a labeled configuration of particles. 

The main reason for realizing the process as above is to have a natural 
way to couple it to the independent process x~ This is the image under 
j//o of the trajectories in S*: ~#o is defined as J/{ except for the updating 
of the a's; we simply set, at the stirring times s, a~ = a,.*(s), and leave all 
the other rules unchanged. In this way it becomes clear that the dis- 
placements of a "stirring" particle, i.e., a particle in _x(. ), are the same as 
those of the corresponding "independent" particle, i.e., the particle in x~ 
with the same label, at all the times when the stirring particle is alone [no 
other stirring particle having the same (q, e) at the moment of the a 
rotational updating]. Consequently the following result holds: 

Proposition 6.3. For a n y n > l , u > 0 ,  and 2 > 0 there is c so that 
for any set J of n distinct labels, any x, consisting of n different states, any 
t, and any [sl,  s2] c [0, t], 

0z( sup sup ]q~(s) q~ ~ - ( s - s , )  < < . l ) > ~ l - c ( T - s l )  - ~  (6.8) 
s 2 ~ s > ~ T > ~ s  I i E J  

where P is the probability law in Z'*, _x(s~) =x~ =_x, and q~ and q0 are 
the positions of the ith stirring and independent particles, respectively. 

Proof. As already mentioned, the displacements of the stirring and 
independent particles with the same label i are the same except when, at 
the moment of the a-rotational updating, there is another stirring particle 
j, j < i, with ej = ei and qs = qi" We therefore have to count how many times 
this happens. The difference between the positions of the two stirring 
particles i and j has the law of a symmetric random walk between the 
successive return times to the origin. The probability to have s ~ returns in 
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a time interval s goes to zero like s -k (for any given 2 and k positive) as 
S ---* O0. | 

T h e  B a c k w a r d  B r a n c h i n g  P r o c e s s .  When we iterate the equa- 
tion for the v-functions we get besides stirring + streaming a more complex 
structure, which can be interpreted in terms of a branching process with 
births and deaths of particles. 7 The branching process that we consider is 
denoted by (_x(s), I(s))o<~s<_,, where I(s) has values 0 and 1. When s is such 
that I(s) = 1 we say that s is an interaction time, a collision interacting time 
if s is an H P P  time, a stirring interacting time otherwise, x(s) denotes the 
set of states (q, e, a) occupied by the labeled particles present at time s; 
their number might vary with time. 

Not  all the trajectories are allowed, as we are going to see. Consider 
for each i the map J /  with specifications {[s~_~ + 1, s~+ 1], _x(s~_l + 1)} 
and let 

x*( . )  = rig(o-*(.)) (6.9) 

We shall say that _x(.) is allowed if there is g*(-)  which is "compatible" 
with it: _x(.) and _a*(.) are compatible if, first, _x(s)=_x*(s) for 
s E Is i_ 1+ 1, si] and, second, _x(si + 1) is obtained from _x*(si + 1) accord- 
ing to the rules we state below. It will be sufficient to specify them at sl. 
Assume first that sl is a stirring time. Then: (1)in x*(sl + 1) there is a 
cluster with multiple occupancy, i.e., a set of particles (more than 1) with 
the same q and e, and (2) _x(sl + 1) is obtained from x*(sl + 1) by looking 
at all the clusters with multiple occupancy and by deleting in some of them 
(or all of them, but not in none of them) some or all of the particles in 
there and relabeling those remaining in such a way that the labels of those 
missing are the highest labels among those previously present in the cluster. 

Assume now that Sl is a collision time. Divide the particles of 
_x*(sl + 1) into clusters; recall that particles are in the same cluster if and 
only if they have the same (q, a) state. The clusters are then ordered: 
cluster 1 contains the particle with the lowest label (in this case particle 1, 
but this is not necessarily so at successive steps, because particle 1 might in 
the mean time have disappeared). In cluster 2 there is the particle with 
lowest label among the remaining ones, i.e., all those which are not in 
cluster 1. The ordering of the other clusters is done similarly. Then 
_x(s~ + 1) should be obtained from _x*(s~ + 1) in one of the following ways. 

7 In Section 3 we introduced a branching process to study the correlation functions of the 
HPP deterministic model. In that case there were no deaths, while here we have to take 
them into account because we are considering the v-functions and not the correlation 
functions. 
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Start from cluster 1 and call (q, a) their common values of position and 
a-velocity. Then change this cluster into any other one, where the 
e-velocities are distinct, while all the particles have the same (q, a) as 
before. This new cluster might be the same as the old one or might even 
be empty, except when the old cluster had only 1 particle. If the new cluster 
has fewer particles than the old one, the labeling of the particles in the new 
cluster satisfies the same convention used before in the case of stirring 
deaths. If there are more particles--say there are k more particles than in 
the old cluster--then all the old labels are used to label the particles in the 
new cluster, the extra k particles being labeled by N + 1, N + 2,..., N + k, if 
N was the maximal label used previously; in this specific case N = n ,  of 
course. The same holds for cluster 2, taking into account the extra labels 
possibly used for the first cluster and so on, iteratively, till all the clusters 
are updated. 

Notice that in this way we have covered all the cases occurring in 
(6.2). 

Def in i t ion :  A M e a s u r e  on the  B a c k w a r d  Branch ing  
Process.  We introduce a positive measure on the product space of the 
backward branching process times Z* as follows. Let (x(.), I ( . ))  be a 
trajectory in the backward branching process and let S be a measurable set 
in Z*; then the measure of the product of these two sets is the measure of 
all the trajectories o-*(. ) e S which are compatible with (_x(.), I(. )), namely 
they are compatible, according to the definition given above, in all the time 
intervals [si_ 1 + 1, s i + 1 ]. In particular, the measure of (_x(.), I(-)) is the 
measure of all the trajectories a*( . )  compatible with it. Since the same g* 
might give rise to different trajectories of the backward branching process, 
the measure we have defined is not normalized to 1 and it is not a 
probability measure. 

Denote by f the expectation with respect to the measure defined 
above. We then have from (6.5) and (6.6) for any 0~s~< t 

Iv.(_x, t)l ~ ~E(Ivd~r . )~(~(t -s) ,  s)l D({ (~( t ' ) ,  I(t ')) ,  t'~ t-s}))  (6.10) 

where the functional D is a product of several factors, as we shall see in a 
while, and Vo = I. We first specify the initial configuration r/; recall that r/ 
is not explicitly mentioned in the v-function and that its full expression is 
given in (2.17a). 

Assumptions on the Initial Configuration O. We assume that the 
initial configuration r/ is h-good [cf. (4.8)]. Then the solution p ( . , .  It/) of 
(5.1) satisfies the three conditions (6.11)-(6.13) stated in the following 

822/66/1-2-29 
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lemma. While (6.11) and (6.13) are proven in the previous section, ~ (6.12) 
will be proven in an appendix. 

L e m m a  6.4. Given any d >  0 and h ~ h -  1, there is c so that for all 
[[r/ll~,h,0 ~ de -~-, for all s<.2T,(h),  and all x =  (q, e, ~), q e A  .... 

p(x,s[r/)<,.ce_~{ee-///s for otherwiseS<e 
- 1 - / /  

Furthermore,  if (s, s + 1) corresponds to a stirring updating, 

Finally, let 

Ip(q + c~, e, o, s +  1Lr/)--P(q, e, o, s I r/)l 

c fmin{e  ~~Is, l}  for s < e  -1- / /  
<~ ~ss  ~ e  otherwise 

P (q,s) = max p( q, e, a, sir~) <<. 1, 
(e,~) 

Ps = max P(q,s) 
qcA~,s 

(6.11) 

(6.12) 

and let Ps,~.' be the transition probability defined in (4.14). Then there is a 
c so that for all x and all s ' <  s 

Ps, s,((q, e, a)--* (q', e', cr')) P(q,,s,) 
(q',e',~') 

{~-~/s for s < e  -1 -B  
~<c~ ~ (6.13) 

otherwise 

where q(t') denotes the position that the particle has at time t'. 

Def in i t ion:  The Func t ion  D. If r/ satisfies the above assumption 
so that the bounds in Lemma 6.4 hold, then the function D in (6.10) is the 
product  of the following factors. For  each stirring death there is a factor 
Cp(q,,)/w/s in D, if the death occurs at time t - s  in the backward process; 
q is the position of the missing particle at the moment  of its death. Each 
death for collision contributes a factor Cp(q,s); recall that deaths for colli- 
sion as well as for stirring only occur in clusters with multiple occupancy. 
Finally, it might be that at a collision interaction time there is no cluster 
with multiple occupancy; then for each of these times there is a factor Cps 
(see Lemma 6.4 for the origin of this factor) contributing to D. 

We shall now rewrite (6.10) in a more convenient way, using a sort of 
strong Markov  property. We are in fact going to choose s as implicitly 

s The estimate (6.11) is worse than that proven in the previous section, but it allows a more 
unified analysis of the various cases, as will become clear in the sequel. 
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determined by the trajectory (of the backward branching process) till time 
s itself. We say that the function 

T: {_x(s), l(s), o*(s)}s~Eo,,~ --' 

is a stopping time if for any s e  [0, t] the set { T = s }  does not depend on 
the values of the trajectory after time s. It is easy to see that (6.10) holds 
when s is replaced by any stopping time T. 

We choose 

T = m i n { T  1, T2} 

w h e r e  T 1 and T2 are defined below. {T1 = s} is the event where s is the first 
time when all the particles have disappeared. If such a time does not exist, 
we set { T 1 = t}; notice that v(_x, 0) = 0, _x # ~ ,  no matter what x is, so that 
the case when the particles survive till the final time t will not contribute 
to v,(_x, t). The time T2 is defined by means of a finite sequence of increas- 
ing integers Nx, N2 ..... fixed once for all independently of e; its values will 
be specified later on [see (6.41)]. Assume that 2T~(h)~> t>~ T~(h)  and that 
t ~ - v N .  Then for s such that t - s > 1  T ~ ( h - 1 ) ,  {T~=s}  implies that s is 
the first time up to which there have been exactly N~ collision interaction 
times. For T~(h - 1 ) > t - s >>. T~(h - 2); { T2 = s} implies that we are not in 
the preceding case and that s is the first time such that in I t -  T ~ ( h -  l ) ,  s ]  

there have been exactly N2 collision interaction times. An analogous defini- 
tion is given when T~(k )  > t - s >>. T~(k  - 1 ) (h > k ~> 1 ), { T2 = s}. If none of 
the above conditions is satisfied we set T2 = oo. 

It is easy to see that T is a stopping time, hence that we can replace 
s in (6.10) by 7". We then have 

jr,(x, t)l ~< s {T= T~}D({x_(t ' ) ,  I ( t ' ) ) ,  t'<<. r t })) 

+ ~(1~= ~, IvL~(_x(~r~), t -  T~)I D({(_x(C), ~(C)), t ' ~  T~})) 

(6.14) 

where 1A is the characteristic function of the set A. By using the induction 
hypothesis in Theorem 4.5 we shall bound the v-function appearing in the 
last term of (6.14) uniformly in As.,, so that the estimates of the two 
expectations in (6.14) become similar to each other. 

The expectation in (6.14) is done with respect to a measure defined on 
a space which is the product of Z'* times the set of all the trajectories in 
the backward branching process. On such a space we introduce the 
"skeleton trajectories" as follows: 

Defini t ion:  The Skeleton of a Trajectory.  G i v e n  a trajectory 
(x , / ,  _a*), its skeleton is the atom ~ of the partition defined below which 
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contains (_x,/, ~*). The partition is determined by the following equivalence 
relation: (_x(.), I(.), a*( . ))  and (_x'(.), I '(-),  a '*(-))  are equivalent if and 
only if the following happens. (1)They have the same number of inter- 
action times, say m; (2)the number of particles, their labels, and their 
e-velocities are the same in x ( s i + l )  and x ' ( s~+l ) ,  i= l , . . . ,m;  (3)the 
clusters of x*(s~ + 1) and of x'*(si + 1) are the same (cf. the definition of the 
backward branching process for notation). 

Because of the definition of T there is a bounded number of collision 
times (i.e., ~<N1 + N2 + --.), hence a finite number of births, and since the 
stirring interactions only produce deaths, each trajectory has a bounded 
number of interaction times. It will therefore suffice to bound the contribu- 
tion of the generic skeleton ~, because there are finitely many skeletons. 

The ~ and ~o Processes. Let us fix a skeleton ~z and let m be the 
number of interaction times in ~. For any set _s = (Sl ..... s~) of increasing 
times between 0 and t and for any trajectory cr*( . )eX* we define the 
trajectories _~(. ), {0(. ) as follows. The number of particles, their labels, and 
their e-velocities change in ~(. ) and _~0(. ) as in any of the trajectories of the 
skeleton: namely, if a particle dies at the ith interaction time in the 
skeleton, then it dies at time s i+  1 both in _~(-) and _~o(.); if a particle 
changes its e-velocity in the skeleton at the ith interaction time, then it 
does so at time si + 1 also in ~(-) and _~o(.); similarly, if a new particle is 
created in ~, then it is also created in ~ and ~o with the same e-velocity. 
Since the e-velocities remain unchanged between the interaction times, to 
complete the definition of _~ and ~o, we need only specify the positions 
of the particles and their a-velocities. Consider the map J{  and j#o 
with specifications { [s~_l+  1, s ;+  1],_~(s~ ~ + 1)} and {[s~_~ + 1, s~+ 1], 
{~ ~ + 1) }, respectively. We then set 

~*( . )  = ~(_~*( . ) ) ,  _~*,~ = ~~ 

Then 

~(s)--  ~*(s), ~~ = _~*'~ s,+ 1 ~ s ~ s i  

We now define ~ ( s i + l )  and ~~ ) in the following way. First we 
remove from ~*(si+ 1) and _~*'~ 1) all the particles which die at the ith 
interaction time in the skeleton and change the e-velocities as specified by 
the skeleton; call ~ and ~'o the configurations obtained in this way. In order 
to complete the definition of ~(s~+ 1) and ~~ 1), we then need to 
specify the states of the particles born at time s~ + 1. Call these new states 
z and _z ~ so that ~(s~+ 1 ) = ~ u z ,  ~~ 1 )=_~~  ~ We set z=z~  thus, 
it only remains to specify z. We use the following convention. Assume that 
in ~z, k is the minimal label of the particles created at the ith interaction 
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time; let e be its velocity and l the minimal label of the particles in the 
cluster to which k belongs, at the moment of its creation. We shall now 
specify the state zk ~ z. We call (q, e', a) the state of the particle with label 
l in ~; then z~ = (q, e, ~r), if (q, e, or) r ~. Otherwise zk = (q', e, or), where q' is 
the lexicographically closest point to q for which (q', e, a ) r  _~. By iteration 
we specify the whole _z, thus completing the definition of _~(.) and of ~0(.). 

We shall need the following extension of Proposition 6.3. 

P r o p o s i t i o n  6.5. Given a skeleton 7r with m interaction times, 
then for any 2 > 0, d > 0, and k there is a c for which the following holds. 
Fix any increasing sequence of times _s = (sl ..... sin) in [0, t] and call t o and 
t / the time when particle i is born, respectively dies, in ~(.), _~o(.). Call 
q~(s), q~ its position in ~(s), ~~ Then for any u there is a c so that 

P(sup sup tqi(s)-q~ (s t~ -~ - i ~<1)~> 1-ce" 

Proof. Proposition 6.5 is actually a corollary of Proposition 6.3; in 
fact, the streaming updatings of q~(s) and q~ are the same by construc- 
tion; therefore, the difference Iq~(s)-q~ can only change at the stirring 
updatings, just as in Proposition 6.3; hence the proof of the present 
proposition. We omit the details. | 

Going back to (6.14), we write the first term on its right-hand side as 

E(l l r= r,~ 1 ~(~,~,~.)~ ~D({x(s),  I(s), s<~ T~}) (6.15a) 

Call ~(i), i =  1 ..... m, the clusters at the ith interaction time as specified by 
the skeleton 7r, and let Z(i) be the characteristic function that the state of the 
particles at the ith interaction time have the cluster structure Z(~). Denote 
by s = (sl,..., sin) an increasing sequence of times in [0, t] and write 

Is(s) = {01 if sCs 
otherwise 

Then we have 

(6.15a) = ~ Est(Tz, _s), 
s 

Est(~,_s)=~(D(_~,Is) [~[ X(/)) (6.15h) 
i ~ l  

Since we have fixed ~ and s, ~(. ) is completely specified by a*(. ); hence the 
expectation in (6.15b) is over the Bernoulli law • on X*. Denote by k the 
largest particles' label which appears in 7r. Then using Proposition 6.5, for 
any u > 0  there is a c so that 
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Est(~,s-)=CZ(D(~,Is) fi Zu)({ sup Iqk(s)-q~ 
- i = 1  tOk+a-d<~x<~tfk 

x (s- t~ 1}))+c~" 

~ (  D(k'(-~' Is) i= fi, '~(/) "(~ r + ] ce" (6.16a) 

where D (k), unlike D, does not  have the factor coming f rom the death  of 
particle k; such a factor  [see (6.11)] is bounded  by ~b(t{): 

fmax{e- (t-s) -1, s} 
tmax{s- (t_s) 1, e} s 

if s is a collision t ime 

if s is a stirring t ime and t - s >~ e - ~ 

if s is a stirring time and t - s < e ~ 

(6.16b) 

Finally, ,,Co, h) ,~(i) = Z(i) if the particle k is not  alive at the i th interact ion 
time. If  this is not  the case, then ,,(0.k) is the characterist ic function of the ,t(i) 
cluster s t ructure ob ta ined  f rom ~u) by requiring that  all l and l '  different 
f rom k are in the same cluster if and only if they were in the same cluster 
in cgu/. Therefore  ,,(o,~/ does not  impose  constraints  on xk, but,  on the L( i )  

o the state of the independent  par-  other  hand,  there are condi t ions on x k, 
ticle with label k: for si - t o > e -a ,  s~ being either a collision t ime or si = t~, 
then it is requested tha t  o qk(si) is within distance I s i - t ~  ~ f rom the cluster 
to which particle k belongs in ~fu), unless this cluster has single occupancy.  

The  second inequali ty in (6.16a) is obta ined  by changing the Xu) into 
the Zl~ ~) by exploit ing the characterist ic function that  Iqk(s)-q~ <~ 

S - -  0 2 �9 �9 tk) . Once this is done we bound  by 1 the characterist ic function on 
q ~ _  qO. Since D <<,D(k)~b(t{), we then get (6.16a). 

Call, for no ta t iona l  simplicity, 

to=_t~ < t l  < . . .  < t l = _ t {  (6.17) 

where the ti, 1 ~< i <~ l -  1, are the collision interact ion times when the par-  
ticle k is in a cluster with more  than  one particle. At these intermediate  
times no particle dies nor  is bo rn  in the cluster to which k belongs; in fact, 
the particles with highest labels are those which die first, while, by defini- 
tion, k is the last particle born. Deno te  then by cgl~) the cluster structure 
obta ined  f rom cg; by deleting particle k and let ,,(k) be the corresponding L(i )  

characterist ic function. Then  we have the following result. 
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L e m m a  6.6. With the above notation 

! 

Est(rc, s) ~< Est(k)(~z, S) ~b(t~) ce - [d+ (l + ~)2s.], [-I ( t i -  t i_  1 ) -1  + ce,  
i = 1  

(6.18a) 

Est(k)(~, _s) = [E (D(k)(_~, I,) I~I zl~)) ) (6.18b) 
i = l  

P r o o f .  According to the definition of the ~ process, the trajectories 
~i(s), i < k and s ~< t, are measurable, i.e., are completely determined by the 
trajectories a * ( s ) ,  with i and s as above. Therefore the increments of the 
variable ~~ s >1 t o, are independent of the ~i(s). The constraints imposed 
by the characteristic functions ZI ~ imply that at the times ti > to + e-d, the 
position q~ of the variable ~~ [~k(to)--~~ by definition] 
is in a square of side 2 ( t i - to )  ~ centered around a point which is deter- 
mined by the ~j(s), j <  k, s ~ t i. Therefore, given the positions ~j(s), j <  k, 
s ~< t, we have to estimate the probability that a symmetric random walk is 
at time ti in a square of side 2(t~- to) ~ centered around a given fixed point, 
i =  1,..., l. Recall that we are now considering t~> to + e a, so that we can 
use Proposition 6.5. We first estimate the condition on the last t r. We 
condition on the positions of the symmetric random walk at all s ~< tr_ 1, 
so we obtain a bound of the form ( t r - t o ) 2 ~ / ( t r  - tr_ 1) uniformly on the 
conditioning. By iterating, we then get the bound 

c 1-1 < c  F[ 
8 - ( 1 + v ) 2 2  

i:ti>tO+ e d l i - - l i  1 i:ti>to+a d l i - - t i - - 1  

t 1 
~< ce (~ + v)2~le- at ] 7  (6.19) 

i=~--! t i - -  t i -  t 

From this the lemma follows. | 

Est(k)(rt, s) looks very much like Est(lt,_s), since all references to the 
trajectory of the particle k have disappeared. There is, however, a difference 
which has to be taken into account. Assume that the particle k at the 
moment of its death is in a cluster with only one other particle, say particle 
h, and particle h also dies. In the new cluster structure {cgSk) }, obtained by 
erasing particle k, there is therefore a particle, namely particle h, which dies 
alone (i.e., in a cluster with single occupancy). 

The bound for Est(e)(~,_s) is just like that for Est(g, _s) except in the 
case we have just mentioned and when h = k -  1. Let us therefore assume 
that we are in sucla a case. Call t;  < t'~ < .-- < t'r < tt the times referring to 
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particle k - 1: t~ is the time when it is born,  and the times t~, i ~< l', are the 
collision times when the particle is in a cluster with multiple occupancy;  if 
there are no such times, then t'r = t~; tt is the time when it dies. Then, after 
extracting from D ~) the factor coming from the death of particle k -  1, we 
get 

EStk(TZ, s_)<~E(D(k-1)(~,is) fi (k) ) Z(~) b(qk_ ~(tt), tl) (6.20a) 
i = 1  

where D ~k- ~) does not  have the factors referring to the deaths of particles 
k and k -  1, while for all q, 

~P(q,t t,)/( t -  tl) 1/2 if t l isa stirring time 
b(q, tl) (6.20b) 

~P (q., - ,t) otherwise 

k e m m a  6.7.  Under  the above conditions for any u there is a 
constant  c so that  

EStk(TZ, S_) <~ F- (D(k-I)(~, I~) ~I zI~))) C~(t~,)e (l +v )2 )  ~-c~,U 

i = 1  

Proof. I f t - t t > ~ e  -~ ~ , t h e n p ( . , t - t ~ ) i s b o u n d e d b y c e l - ~ , s o t h a t  
we can replace b by ~b(t'r). We shall therefore assume from now on that  
t -  t~<e ~-P, t t -  t'o<<.e-d; then t 'v= t~ (consecutive collision times are 
separated by e -  ~ and we are tacitly assuming that  d < v). We therefore have 

1 1 2 

~< t - -  to t - - t  l t --( t 'o+e-d) <~ , 

because t-t'o>~e-~'> 2e -d. Hence if t t-t 'o <<.e a, then b(q, tt)<<.cq)(t~,), 
recall that  t~, is by definition a collision time, so that the factor ( t - t t )  -1/2 
present in (6.20b) can be bounded  by 1. 

Let  us now consider the case t~ - t~  >~ e-a.  Using Proposi t ion  6.5, we 
have that  for any positive u there is a c so that  

Est~(Tc)<~ ~_(D(k-1)(~,]s) fi  v(k) 
_ I~(i) 

i = 1 [q -- qO_ t(t /)l  ~< e - (1  + ~)A 

~< ~(~(~o_ l(t',,))/~(~o ~(c,,))) + c~" 

where 

b(q, tt)) + ce" 

(6.21a) 

i = 1  

fl(~) = lz ( 0 ~ b(q'tl)l{~~ l(t)') = ( } )  
Iq qk-l(tl)l ~ e - ( l  + v)) 

(6.21b) 
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We have used that {~,(-), / < k - l ;  ~k_~(s), s<<.t).} is independent of 
{q~ s>~t'r}, given ~~ as follows from the definition of the 
processes _~ and _~o; cf. also the proof of Lemma 6.6. We now have, using 
the translational invariance of the process qO ~(s), 

sup fl(~) = sup ~( ~ b(q, tz)]{~~ 
~ [q_qOk_l(tl)l<~e-(i+rt;. 

= s u p ~ (  ~ b(q~ l(tz)+q,t,)]{~~ l(t;,)=:}) 

= s u p  ~ 2 b(q~ t,)j ,o , 
rql ~ < e - ( l  + ~')'i 

~<e (~+~)2;sup Y-(b(q~ t,))l {~k_~(t 'r)=~} 

where, if ~ = (q', e, a), ~ + q = (q' + q, e, a). In the last inequality we have 
used Lemma 6.4. The proof of the lemma is therefore completed. | 

If t'r = t~, we simply bound ~,(k) by (k A,(i) •(i) 1), which denotes the charac- 
teristic function relative to the cluster structure ~I k-  1), obtained from cd~ by 
disregarding both particles k and k -  1. If t'r r t;, then we are just in the 
same situation as when estimating Est(n,_s). So we can proceed iteratively 
till the contribution of all the particles, those born during the branchings 
and those alive from the beginning, have been taken into account. By 
recalling that 2 and d may be chosen abitrarily small, we may draw the 
following conclusions stated in Proposition 6.8 below, after some notation. 

N o t a t i o n .  The sup norm over q~A~. s of P(q,s) is denoted by p~.. 
Furthermore, for each particle label i t  [1, k], we denote by t} ~ 0 ~<j~< l (~ 
the relevant times relative to the particle i: t(o ~ is the time when particle i 
is born ( = 0  if i~< n); the t) ~ 0 < j <  l (~, are the collision times when the 
particle i is in a cluster where there is at least a particle with label h < i. The 
last time in the sequence is the time when the particle i dies, if the cluster 
to which particle i belongs when it dies has at least a particle with label 
h < i. Otherwise the last time is the last collision time when it was in a 

cluster with at least a particle with lower label. 
We have so far proven the following result. 

Proposition 6.8. Fix rc in { T =  T1} and assume that the initial 
configuration r/ satisfies the conditions stated in the paragraph, Assump- 



456 De Masi et  al.  

tions on the Initial Configurat ion r/, before Lemma 6.4. Then, using the 
nota t ion  in t roduced above, for any positive 6 and u there is a c so that  

IH l Est(Tz, s)~<c P~, 1] ~-~+ce" (6.22a) 
L i E ~  ~ i = 1  

where 5 ~ is the subset of all the collision times s~ in s when all the clusters 
have single occupancy [cf. Definition: The Funct ion  D, after (6.13)] 

i (i) --  l 6 

= ~(t~i!~) H t(~ (~) (6.22b) 
j = 0  ~ I + 1 - -  l j  

We have to bound  now the sum over s of (6.22a). Recalling that  

p~ <~ ce -~ max{~ ~/s, ~} (6.23) 

and that  each s~ in s is such that  s~ ~< t ~< e - '  v +,, we have that  

H P~-i  <~ce~" r (6.24) 
{ s i , i ~ , 9  ~ } i ~ , f ,  a 

We have used the inequality 

1 
- <~ ce ~ log e t (6.25) 

s ~ e - " N  S 

which covers the cases s~<e 1-#; this will turn out  to be the smallest 
contribution.  The contr ibut ion due to s >~ e - 1 - ~  gives in fact 

so that  each iE 5 ~ contributes a factor ce a-~- 
We need now to estimate the contr ibut ion of the terms ~-~. We proceed 

iteratively, starting from ~ .  Call again to ..... t l the times involved in ~ .  

D e f i n i t i o n :  T h e  F r e e  T i m e s .  We shall say that  the time tj is 
"free" if it does not  appear  in any other  of the 3-~. 

We shall extensively use the following inequality: for any ~i > 0 there 
i s a c s o t h a t  

1 1 1 
~< c~ ~ - ~ (6.26) 

~;~ ~ t j - t j _ l  t j + l - t j  t j + l - t j  1 
t ) - l  < t j '< tj+ l 

By (6.26) we can perform the sum of ~ over the set t k of all the free times 
among  tl,..., tl_ ~; let their number  be m. We obtain a bound  consisting of 
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the product of the factor ca I~ a>~ times the same ~ ,  but with the free 
times dropped. Let us relabel the remaining times as tj, 0 ~< j< l ' .  For 
0 < j ~< l '  we use the inequality (recall that t je  a-~ N for j < l ')  

l 1 1 
- -  <~ ca ~ (6.27) 

t j - - t j  i t j+ l - - t /  t j+l--t j--1 

We have therefore proven that 

r <<- ca I~- a~(l-*) q~(tl) (6.28) 
,~ t t -  to 

Recall that n determines whether t o and tz are or are not free. Set then 

I ~ 5 ( t , ) / ( t , - t o )  if ,,is free 
(6.29a) 

( ( b ( t , ) / ( t , -  to) otherwise 

{~ ~k if t o is free 

~ = (6.29b) 

otherwise 

We then have the following result. 

Lemma 6.9. For a n y 6 > 0 t h e r e i s a c s o t h a t  

j-j/2 if k > n (6.30) 
r 13/t,e} if k<~n 

P r o o L  We start from ~k and we distinguish various possibilities. 

1. A s s u m e  tt is a s t irr ing time. Then if tz is free, ~k is bounded by 
the sum of the following three terms, each corresponding to a range of 
variation of t /  

f a - B / z - a ( t - t o )  -1 for g ~ / ~ > t - - t l > a - 1 3  

ca : ~e  ~ / 2 ( t - t o )  1 for t - t t < a  ~ (6.31a) 

~a13/2- 6g for t - t~ > e -  ~ 

while if tz is not free [-using (6.27) for the first bound below] 

~ a 13/2(t-- to) 

ea-  ( t - t , )  ,/2 
~ a t3/28 

for e 1 - ~ > t - t ~ > e - 1 3  

for t - t t < a  - ~  (6.31b) 

for t -  t t >  e 1-13 
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To get (6.30), we argue as follows. Let first k >  n. For the first case in 
(6.31a), summing over to if free, 

ill2 a 2 ( t - t o )  l~cg - - f l / 2  6gv--fi 
toEg vFN 

By our choice of fl, much smaller than v, we have that v - f l / 2  >fl/2. 
Redefining the value of 6, we get the first case in (6.30). If to is not free, 
since it is a collision time, we have t -  to >~ e -v, hence the same bound as 
before. 

The second case in (6.31a) is just the same as the previous one, so we 
get again the right bound. The third one is already the right bound if to is 
not free, while if to is free, we get 

_r ~ + v - a ( t - t o )  1 
Cg [gv ag 

If tz is not free, 

gfl/2gg--a ~ gfl/2gg atgv ~ Cgfi/2-- 6 

to~g-v~l 

If t~ is not free, we have to look at (6.31b), but the bounds in (6.31b) are 
smaller than the corresponding ones in (6.31a); hence (6.30) for k > n  is 
proved when tt is a stirring time. 

When k <~ n, to = 0 and we obtain directly the bound in (6.30). 

2. Assume t l is a collision time. If tt is free, ~g(to) is bounded by the 
sum of the following two terms, which correspond to different ranges of 
variation of tl: 

for t - t t < a  1-~ 
(6.32a) 

for t_h>>, e 1-~ 

~k~Ce r P+v(t--to)--i for t - - t t < e  -1 -~  
(eve for t--t~>>.e 1-~ 

For k > n and to free, we get from the first bound in (6.32a) 

(6.32b) 

e v - a ( t - t o )  1 ~ e~;2v-2a 

t0 E ~-v~N 

which agrees with (6.30). The second bound in (6.32a) gives 

t0~ a-vrN 

which is also compatible with (6.30). If to is not free, (6.32a) afortiori gives 
the desired bound. The bounds in (6.32b) are better than the corresponding 
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ones in (6.32a), so that this completes the proof of (6.30). for k > n. For 
k<~n, t o = 0  and (6.30) readily follows from (6.32). This concludes the 
proof of the lemma, i 

By (6.28)-(6.30) we obtain a bound on the sum of ~ over the free 
times appearing in ~ ;  the bound is uniform on all the other times 
appearing in ~ .  We therefore have from (6.22a), using (6.24) and denoting 
by s (k) the subset of s obtained by dropping the times si, i e 5  P, and those 
which are free in ~ ,  

k - 1  

Est(Tz,_s)...<ce(- ; ) 1 ~ 1 ~  I-I J-/i +ce~ (6.33) 
s(k) i =  t 

In (6.33) it is understood that the sum over each s~ in s (k~ is extended 
from sj + 1 to s h -  1 if j and h are the labels closest to i among those left 
in s (k). 

We are now in the same situation as when estimating the contribution 
of ~ ;  the only difference occurs when we are estimating a ~ in which 
there is only one time to, that is, the time when the particle i was born. 
This case occurs if the first time the particle i is involved in a nontrivial 
cluster is when it dies, and it dies together with particles which all have 
higher label. We have J~,.= e ~b(to), and using the same arguments as in 
the proof of Lemma 6.9, we get 

O~ (r 

if to is free 

otherwise 

f e v-B if i>n,  t<e  -L B 

< , . ~ * - c e - ~ - ~ e "  if i > n , t > e  -1-B (6.34) 

( max{e, e-B/t} if i<.n 

We notice that any interaction time tj either appears in some of the ~ or 
j e 5P; we can then conclude that 

~] ~ev('i-')(J i if li>~l 
~ Est(z~, s) -..< ce ~e (u- ;) isol x (6.35) 
, i= 1 ( ~ *  otherwise 

where l i+ 1 is the number of times appearing in ~ .  From (6.35) we finally 
get 

Est(~, _s) ~< ce 6[e - ;  max{e, e-B/t} eB/4] n 
s 

(6.36) 
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because (1) the contribution of each of the factors in (6.35) is bounded 
(recall that a is chosen much larger than ~) and (2) for each i<~n such that 
l i = 0 there is at least another j > i, j being the label of one of the particles 
which die with i, which contributes a factor ~i, containing a factor e ~/2. 

Going back to the second term of the right-hand side of (6.14), we use 
the induction hypothesis and (4.18), so that for any k and any 6 > 0 there 
is a c such that 

Ivk(_x, t)l <~ c[e b -a - r  max{e, ce ~/T~(r)}] k 

for any t which is an H P P  time in IT ' ( r ) ,  T[(r+ 1)), where r<~h-1 and 

T~(r)={Tt~(r) if if r<~h-lr=h 

We then get 

Iz( 1 {T= T2} IVlx(V2)l(-x(T2), t -  T2) I D({(x(t ') ,  I(t')), t'<~ T2})) 

h 1 

~<c ~ ~ E(l~T=r2=t ~D((_x(-) ,I( .))  
r = l  r~(T'~(r),T~(r+ i ) ]  

x [e b a-r max{e, ce-P/T~(r)}] I~-(v2)l) (6.37) 

We fix r and T~(T'(r),  T ' ( r + l ) ]  ad a skeleton rc with at least Nh r 
collision times. Call s~ the ith interaction time and consider all possible 
increasing strings _s of such times, so that there are < N~ collision times in 
_s in [0, t -  T~(h- 1)], there are N'2<N2 in the interval I t -  T~(h- 1), 
t -  T~(h - 2)], and so on, except for the last one: there are exactly N~ colli- 
sion times in [ t - T ~ ( h - r +  1), t ] .  For each of these choices we construct 
the ~ and ~o processes and then sum in (6.37) over s for fixed 7t and z. We 
call the corresponding term in (6.37) F(n, t). We shall now adapt the 
previous analysis to the case of F(Tr, t). Let k be the highest particle label, 
call to the time when k was born, and let t~ ..... t~ be the successive times 
when particle k is involved in nontrivial clusters, just as before. The 
difference with the previous cases is that at tt particle k may survive and 
still be alive till time t - t .  If this is so, particle k is one of the particles 
which contributes one of the factors 

[e b-a  ; max{e, ce-~/T~(r)}] 

appearing in (6.37). To take this into account, we need to change the 
definition of ~b(s) given in (6.16b) and introduce the quantity 

J'~b(s) if particle k dies (6.38) 
q~(k, s) = [eb_ ~ r max{e, ce ~/T~(r)} otherwise 
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With this change Proposition 6.8 remains valid. Of course, when particle k 
dies, the estimate of ~ is just the same. If it does not die, the analysis of 
the contribution of the intermediate times t~ ..... t~_ ~ is again the same and 
the estimate (6.28) extends to the present case. By our conventions, tt is a 
collision time, since no particle dies in the cluster to which k belongs at 
time t~. If t~ and to are not both free, we get 

O(k)<~(J(k)=-ce~[e b ~ ;max{e ,  ce /~/T~(r)}] (6.3%) 

If they are both free, we need to distinguish whether particle k was born 
after or before t - T~(r + 1). We have 

~(k)<<~(k)=ce2~ ~[~b-~ ~max{e, ce-~/T~(r)}] 

t if t o > ~ t - T ~ ( r + l  ) 
x T~(r + 1) otherwise 

(6.39b) 

The analysis of J j ,  j <  k, is completely analogous. We now notice that all 
the ~( j )  are bounded by a constant times e ~-(, except for the first case in 
(6.39b), where ~( j )  is bounded by a constant times e 1 We have 

F(TC, ~)~CG--(NI+---§ ~)Nr 

Since the sum over z has at most ce ~ terms, we choose Nr so that 

(6.40) 

e -  lena ~N~ ~< e2n{l + ~) (6.41a) 

(NI+"+Nr l 1)+(a--()Nr~e2n(l+v), r > l  (6.41b) 

and this concludes the estimates of vn(x, t). 

A P P E N D I X .  P R O O F  O F  L E M M A 6 . 4  

As noticed before stating the lemma, (6.11) and (6.13) have already 
been proved in Section 5, so that we only need to prove (6.12). We fix s as 
in (6.12); then 

1 4 
P(q , e ,a ' , s l t l )  p ( q + % , e , a , s +  l l q ) = ~  =1 

Call x ' =  (q, e, a ')  and x = (q, e, a); we then need to show that 

zlp = Ip(x', sir/) - p(x, s l r/)l ~ ~ss q6(s) (A.la) 
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where 

{e -~/s for s < e  -~-~ 
~b(s) = c otherwise (A.lb) 

Let P~,,, (x ~ y), s > s', be the probability defined in (4.14). Then by (5.1) 
and (5.2) 

Ap <~ Aop + A 1P (A.2a) 

Aop = ~  IP,,o(X ~ y)--P~,o(X ' -~ Y)I t/(y) (A.2b) 
Y 

AlP = ~ ~ [Ps,,'( x ~ Y ) - P s , , ' ( x ' ~ y ) I  2p(q,s') (A.2c) 
S' G ~ - - v~  y 

S ' ~ S  

In (A.2c), q denotes the position in the state y. 
We start from A l P. We call s" the largest collision time smaller than 

s/2. Then, using (6.11), 

A ~ p < ~ ( s / 2 )  2 ~ ~ L P , . s , ( x - '  y ) - P s , , ' ( x ' - '  y)b 
s '  ~ e -v lN  y 

+ ~. Z IPs,~,,(x-,z)-e.,.,,(x'~)LP~,,,s,(~-~y) P ( q , s ' )  

s ' E e - v N ,  z , y  
s '  < s"  

(A.3) 

We postpone to the end of this Appendix the proof that for all t' < s 

C 

IPs, c (x ~ z)  - P,,,, (x' ~ z)h <<. (s - t') 1/~ (A.4) 
z 

By (A.4) the first term in (A.3) is bounded by 

~/s 

(recall that v > fl and that s ~ el-v+a). By (6.13) we can bound the second 
term in (A.3) by 

C C ~ 

since the sum over ~b(s') is bounded (because s ' e  e-VN). 
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For Aop, by (6.13), we get 

Aop <~ ~ ]Ps, s,, (x ~ z) -- P~.,,,, (x' ~ z)] P,,,,o(Z '~ y)  tl(y) 
z 

<<" ~ss O ( s " ) 

To complete the proof of (6.12), we need to show the validity of 
(A.4). We consider two walks starting from x and x'. We couple them 
independently till the first time when one of the spatial coordinates, say the 
x coordinate (i.e., along the horizontal axis), of the two walks is the same. 
After this time the rotations of the two motions are obtained as follows. We 
choose with probability 1/2 the x or the y coordinates. If the x coordinate 
is chosen, then with equal probability we choose the value a = 1, 3, the 
same for both particles. If the y coordinate is chosen, then we choose 
a =  2, 4 with equal probability, but independently for the two particles. 
Since the e-velocities of the two particles are equal, the x coordinate in this 
coupling remains the same in the two motions. The above rule is valid till 
the time when also the y coordinates become the same. After that the par- 
ticles move in the same way. The probability that the two walks are dif- 
ferent at time ~ is bounded by c/xfz ,  if they start from two given sites of 
the same even or odd sublattice of Z2: if q = (ql, q2) 6 Z2, then it is in the 
even (odd) sublattice if ql + q2 is even (odd). Notice that if a particle is in 
the even sublattice, then at the successive time it is in the odd one, and vice 
versa. In the case considered in Lemma 6.4 the two particles are in the 
same sublattice, so that we have proven (A.4) and completed the proof of 
Lemma 6.4. | 
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