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We present computer simulations run with a stochastic cellular automaton which describes d = 1
particle systems connected to reservoirs which keep two different densities at the endpoints. We fix the 
parameters so that there is a phase transition (of the van der Waals type) and observe that if the densities 
at the boundaries are metastable then, after a transient, the system reaches an apparently stationary 
regime where the current flows from the reservoir with smaller density to the one with larger density.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The Fourier law states that the heat flux is proportional to mi-
nus the gradient of the temperature, analogously the Fick law says 
that the mass flux is proportional to minus the gradient of the 
mass density. Both laws state that a gradient gives rise to a cur-
rent. On the other hand in the presence of a first order phase 
transition there is a spontaneous separation of phases giving rise to 
a gradient (of the corresponding order parameter) without a cur-
rent. Purpose of this article is to investigate how this fits with the 
Fourier or the Fick law, in particular to understand the role of the 
latent heat in heat conduction. In the sequel we will however refer 
to mass transport (hence to the Fick law), as we will study parti-
cles models.

The physical system we have in mind is made by a channel con-
taining a gas of particles and by two density reservoirs which are 
respectively connected to the right and to the left of the channel 
and which fix the density of the gas at the endpoints of the chan-
nel at values ρ+ and, respectively, ρ− . We further suppose that the 
temperature is fixed throughout the channel at a value for which 
there is a phase transition.

We model the channel as one-dimensional and the gas as a 
system of particles which interact via a two-body attractive Kac 
potential, which in the Kac scaling limit gives rise to a van der 
Waals phase transition. We actually consider two models, the first 
one (described in Section 3) is a lattice gas with Kawasaki dynam-
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ics and Kac potential, the second one (described in Section 2) is a 
stochastic cellular automaton (CA) whose updating rules mimic the 
Kawasaki dynamics of the first one. While the first model is con-
venient for a theoretical analysis, the second one is amenable to 
computer simulations. Unfortunately, we cannot go very far theo-
retically and our results rely essentially on the simulations.

The simulations exhibit two totally unexpected phenomena 
when the reservoirs densities ρ− and ρ+ are such that ρ− <

ρ+ , and for the gas in the channel these values are minus/plus 
metastable (i.e. metastable and in the two different phases). In 
such a case the system seems to reach a stationary state such that 
(1) the current in the channel becomes positive so that mass goes 
from the reservoir at lower density to the one with larger density; 
(2) in a large fraction of the volume the density is metastable. 
We will argue in Section 3 that this does not contradict the Fick 
law, but our arguments are not mathematically complete. A conse-
quence of (1) is the theoretical possibility of constructing circuits 
made of the above channel connected to two large but finite reser-
voirs which also exchange mass with each other (either directly or 
via a second channel where the gas has no phase transitions). Pre-
liminary simulations seem to indicate that, in the circuit, after a 
transient, there is a stationary current which runs in the absence 
of an external bias. We believe that such a state is metastable with 
a very long life, but that in the long run the system will eventually 
decay to a state with no current.

2. The simulations

Our simulations use a CA introduced in [1] to simulate the time 
evolution of a system of particles which undergoes a phase transi-
tion of van der Waals type. The CA describes a system of particles 

http://dx.doi.org/10.1016/j.physleta.2016.03.025
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:matteo.colangeli@gssi.infn.it
mailto:anna.demasi@univaq.it
mailto:errico.presutti@gmail.com
http://dx.doi.org/10.1016/j.physleta.2016.03.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2016.03.025&domain=pdf


M. Colangeli et al. / Physics Letters A 380 (2016) 1710–1713 1711
in the interval [1, L] of Z, hereafter called “channel”. The particles 
have only velocities v ∈ {−1, 1} and we impose single occupancy, 
namely there cannot be two particles at same site with same ve-
locity, η(x, v) ∈ {0, 1} being the occupation variable at (x, v).

The definition of the CA involves five parameters, L, γ : γ −1 ∈
N, C > 0 and 0 ≤ ρ− < ρ+ ≤ 1. We use the following notation: 
for x ∈ [1, L], η(x) := η(x, −1) + η(x, 1); for x ≥ 1, η(+)(x) = η(x)
if x ∈ [1, L] and η(+)(x) = 2ρ+ if x > L; for x ≤ L, η(−)(x) = η(x) if 
x ∈ [1, L] and η(−)(x) = 2ρ− if x < 1; finally for x ∈ [1, L] we call

N+,x,γ =
x+γ −1∑
y=x+1

η(+)(y), N−,x,γ =
x−1∑

y=x−γ −1

η(−)(y)

We are now ready to define how the CA operates. The unit 
time step updating is obtained as the result of two successive 
operations: (1) velocity flip. At all sites x ∈ [1, L] where there is 
only one particle we update the velocity of the particle to become 
+1 with probability 1

2 + εx,γ and −1 with probability 1
2 − εx,γ , 

εx,γ = Cγ 2[N+,x,γ −N−,x,γ ]. At all other sites the occupation num-
bers are left unchanged. Moreover, after adding two auxiliary sites 
0 and L + 1, we put a particle in 0 with velocity +1 with probabil-
ity ρ− , while we leave it empty with complementary probability; 
analogously we put a particle in L +1 with velocity −1 with proba-
bility ρ+ while we leave it empty with complementary probability. 
(2) advection. Each particle moves by one lattice step in the direc-
tion of its velocity, if it goes to L + 1 or to 0 it is deleted.

Remarks. εx,γ is a “small bias” (for γ small) which directs the 
velocity towards regions with higher density. As discussed in the 
next section, this can be interpreted as the action of two-body 
“long range” attractive forces; in such a context the constant C
is proportional to the inverse temperature β , 2C = β , and in the 
limit as γ → 0 the equilibrium phase diagram exhibits a van der 
Waals phase transition for all C > 0.5. The addition of the extra 
sites 0 and L + 1 in the definition of the CA simulates the action of 
the two reservoirs which after each time step put a new particle at 
0 and at L with probability ρ− and respectively ρ+ . The action of 
the reservoirs is however twofold: in fact, besides the aforemen-
tioned insertion of particles in the channel with probabilities ρ+
and ρ− , it also enters in the definition of εx,γ , where the occu-
pation numbers at y > L and y < 1 are replaced by the average 
reservoir densities ρ+ and, respectively, ρ− .

We have run several Monte Carlo simulations for different val-
ues of the parameters defining the CA, we report here results in 
the case C = 1.25, γ −1 = 30, L = 600 and ρ− < ρ+ = 1 − ρ− . 
We have computed the local particles density ρ(x, t) by taking 
the time average 1

2T

∑t+T −1
s=t ηs(x), ηs(x) the number of particles 

at x at time s, T = L2; however, instead of ρ(x, t) we have plot-
ted m(r, t) = 2ρ(γ −1r, t) − 1, thus the unit space length becomes 
γ −1 (the interaction range) and the density is written in “mag-
netization variables” so that the magnetization at the endpoints is 
m+ = −m− .

In Fig. 1 we report what observed when m± = ±1 while the ini-
tial configuration has m0,x = −1 for x ≤ 3L/4 and m0,x = +1 else-
where. On the time scale L2 we see the initial step to smoothen 
out: the profile becomes a curve starting on the left at m− = 1 and 
increasing slowly, almost linearly, till 3L/4 where it has a value 
≈ −mβ , mβ = 0.985, then there is a transition region where the 
magnetization increases quite abruptly from −mβ to mβ ; after-
wards the profile goes again slowly, almost linearly, up to m+ = 1
which is reached at the right endpoint. As time increases the pro-
file moves rigidly towards the middle of the channel which is 
reached on times ≤ L3 and in the time of our simulations it re-
mains unchanged except for small fluctuations. In the next section 
we will interpret the values ±mβ as the equilibrium magnetization 
densities when the inverse temperature is β = 2C .
Fig. 1. Magnetization profiles for C = 1.25 and m+ = 1 with space in γ −1 (= 30) 
units. The parameters mβ and m∗ have values mβ = 0.985 and m∗ = 0.775. The dif-
ferent curves in the plot correspond to the averaged magnetization computed at 
different times: t = 105 (empty squares), t = 106 (filled squares), t = 107 (empty 
circles) and t = 108 (filled circles). The black thin line denotes the initial configura-
tion, corresponding to a step function centered at r = 15.

Fig. 2. Magnetization profiles for C = 1.25, mβ = 0.985 and m∗ = 0.775, and with 
m+ = 0.93. The curves in the plot have the same meaning of those illustrated in 
Fig. 1. The initial datum is a step function centered at r = 10.

If we decrease m+ till mβ we see the same pattern with a tran-
sition region which is essentially unchanged and the quasi-linear
parts with a smaller slope. However if m+ decreases past mβ keep-
ing m+ > m∗ = 0.775 we see a completely different picture (as 
argued in the next section, the values |m| ≤ m∗ are to be regarded 
as unstable, m∗ < |m| < mβ as metastable, and |m| ≥ m∗ as sta-
ble). In Fig. 2 we report simulations with m+ = 0.93. We start now 
from an initial configuration which has m0,x = −1 for x ≤ L/2 and 
m0,x = +1 elsewhere. We observe, after a short transient, a pattern 
similar to the one in Fig. 1, i.e. with a transition region around the 
middle which is very similar to the previous one. To its right and 
left there are again approximately linear profiles but now they are 
decreasing (because m+ < mβ ). In contrast to the previous case as 
time increases on the scale L2 the transition region moves away 
from the middle and on times L3 it “collides” with an endpoint of 
the channel: in Fig. 2 it is represented by a bump on the right 
of the channel where the magnetization rapidly increases from 
−mβ to m+ , m+ the magnetization forced by the right reservoir. 
If we change the seed of the random generator we may as well 
see the bump on the left. Such a profile seems stationary as it 
stays unchanged (modulo small fluctuations) for very long times, 
our longest simulation has t = 1011.
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Fig. 3. Magnetization profiles for C = 0, mβ = 0.985 and m∗ = 0.775, and with m+ =
0.93. The curves in the plot have the same meaning as in Fig. 1. The initial datum 
is a step function centered at r = 10. The standard Fourier law is satisfied.

Besides the magnetization profiles, we have also measured the 
current by summing (with sign) the total number of particles 
which in a time interval T at each time step enter into the sys-
tem from site 0 to site 1 minus those which exit from the channel 
going from site 1 to site 0. As the current is small, of the order 
10−5, to have reliable values we had to use longer time averages, 
T ≈ L3. For values m+ > mβ the CA reaches a stationary pattern 
(on the time scale of our simulations) with a negative current 
(flowing from L toward 1) which is proportional to 1/L. The mag-
netization is increasing and essentially linear away from the short 
transition region and, in agreement with the Fick’s law, the current 
is negative being proportional to minus the magnetization gradi-
ent, see the next section for more details. Without bias (i.e. C = 0) 
the slope would be all the way linear and therefore the current 
larger, as shown in Fig. 3 (when C = 0 the values mβ and m∗ do 
not play any role and the thick black dashed lines corresponding 
to ±mβ and ±m∗ are drawn only to permit an easier comparison 
with Fig. 2). Thus the effect of the latent heat, responsible for the 
occurrence of the transition region, is to reduce the conductivity of 
the system.

The effect becomes dramatic once we reach values of m+ as 
those illustrated in Fig. 2. In this regime the current becomes pos-
itive, it goes from the left where the density is smaller to the right 
where the density is larger. The profile is essentially linear away 
from the bump but it is now decreasing, hence the change in di-
rection of the current. The Fick’s law is still satisfied as the current 
goes opposite to the gradient (except in the transition region which 
however occupies a small fraction of the volume) and the overall 
effect is that the reservoir with smaller density gives mass to the 
one with larger density. Same phenomenon is observed for other 
initial conditions and /or different seeds of the random generator.

3. Mesoscopic limit

To interpret the above simulations we will relate our CA to 
particle models used in non-equilibrium statistical mechanics. The 
connection comes by studying the mesoscopic limit (described be-
low) of the CA which we argue (but do not have yet a proof) to be 
the same as that obtained in the same limit from a particle system 
with Kawasaki dynamics involving Kac potentials.

The mesoscopic limit describes the evolution of the system in 
the limit γ → 0 when space is scaled by γ −1 and time by γ −2. 
Thus L = γ −1� with � > 0 fixed independently of γ , � is the 
mesoscopic length of the channel. Let η(x, v; t) be the occupation 
number at (x, v) and at time t and call uγ (x, v; t) = E[η(x, v; t)]
the average particle number at x, v; t . We conjecture that for a 
suitable choice of the initial configurations, for any r ∈ (0, �), t > 0
and v ∈ {−1, 1}

lim
γ →0,γ x→r

uγ (x, v;γ −2t) = ρ(r, t) (3.1)

with ρ(r, t) a continuous function with limits ρ± as r → � and, 
respectively, r → 0, which satisfies (in a weak sense) the integro-
differential equation

∂

∂t
ρ(r, t) = 1

2

∂2

∂r2
ρ(r, t) − 4C

∂

∂r

(
ρ(r, t)[1 − ρ(r, t)]

×
r+1∫
r

dξ [ρ(r + ξ, t) − ρ(r − ξ, t)]
)

(3.2)

where ρ(r, t) = ρ± if r ≥ � and respectively r ≤ 0. The above 
statements can be proved under the assumption that “propagation 
of chaos” holds in some strong form, a real proof is in preparation.

It is now convenient to switch to spin variables, so we define

m(r, t) = 2ρ(r, t) − 1; ρ(r, t) = m(r, t) + 1

2
(3.3)

Then (3.2) becomes

∂

∂t
m(r, t) = 1

2

∂2

∂r2
m(r, t) − C

∂

∂r

(
[1 − m(r, t)2]

×
r+1∫
r

dξ [m(r + ξ, t) − m(r − ξ, t)]
)

(3.4)

which, setting β = 2C , can be rewritten as

∂

∂t
m = 1

2

∂

∂r

(∂m

∂r
− β[1 − m2]

r+1∫
r

dξ [m(r + ξ, t) − m(r − ξ, t)]
)

(3.5)

(3.5) is the conservation law

∂m

∂t
= − ∂

∂r
I (3.6)

where

I(r) = −χ
∂

∂r

δF (m)

δm(r)
, χ = β

2
(1 − m2) (3.7)

F (m) =
∫

dr
(

− m2

2
− S

β

)
+ 1

4

∫
dr

∫
dr′ J (r, r′)[m(r) − m(r′)]2

S(m) = −1 − m

2
log

1 − m

2
− 1 + m

2
log

1 + m

2

with J (r, r′) = 1 − |r − r′| for |r − r′| ≤ 1 and = 0 elsewhere.
(3.6)–(3.7) have been derived in [2] as the mesoscopic limit 

of an Ising model with Kawasaki dynamics and Kac potential 
Jγ (x, y) = γ J (γ x, γ , y) (in [2] the system is in a torus, the case 

d > 1 is also covered). Thus the interaction term εx,γ in the sim-
ulations can be regarded as a force due to an attractive pair Kac 
potential.

The Ginzburg–Landau free energy functional can be seen as 
a local approximation of F (m) when J (x, y) becomes a delta 
function, so that the non-local term in F (m) becomes a gradi-
ent squared. Correspondingly, the conservative gradient flow for 
Ginzburg–Landau, which is the Cahn–Hilliard equation, is a local 
approximation of the conservative gradient flow for F (m) which 
is (3.6)–(3.7) and in this sense our CA simulates the Cahn–Hilliard 
equation. The van der Waals free energy associated to F (m) is



M. Colangeli et al. / Physics Letters A 380 (2016) 1710–1713 1713
Fig. 4. The graph of the excess free energy fβ(m) − fβ (mβ ), see Eq. (3.7), as a func-
tion of m, for β = 1.25 > βc = 1.

fβ(m) = −m2

2
− S

β
(3.8)

see Fig. 4.
For β > 1 this is a double well potential with minima at ±mβ

where mβ is the positive root of the mean field equation

mβ = tanh{βmβ} (3.9)

The van der Waals–Maxwell free energy is the convex envelope 
f ∗∗
β (m) of fβ(m), which is constantly equal to fβ(mβ) in the in-

terval [−mβ, mβ ] and it is equal to fβ(m) elsewhere. The values 
|m| ≥ mβ are stable. The values |m| ∈ (m∗, mβ) are metastable,

m∗ > 0 : β(1 − (m∗)2) = 1 (3.10)

while the values |m| ≤ m∗ are unstable. In the stable and meta-
stable regions fβ(m) is convex, in the unstable region it is concave.

Let us now go back to (3.7) and given a magnetization profile 
m(r) define the molecular magnetic field h(r) as

h(r) = δF (m)

δm(r)
(3.11)

With these notation (3.7) reads as

I(r) = −χ
∂h(r)

∂r
(3.12)

which looks like the Fick law for the magnetization current written 
with the gradient of the magnetic field rather than the gradient of 
the magnetization density. However the relation between the mag-
netic field h(r) and the magnetization density m(r) is not given by 
the thermodynamic relation between magnetization and magnetic 
field, in particular it is non-local. To gain locality and the correct 
relation we should go from the mesoscopic to the macroscopic de-
scription of the system in the limit when � → ∞ and with space 
rescaled by a factor �−1.

The simulations seem to indicate that in this limit the meso-
scopic profile (in the context of Fig. 2) becomes a smooth almost 
linear decreasing profile starting from the left endpoint where it 
has value m− and converging to −mβ at the right endpoint, here 
there is a boundary layer effect as the bump shrinks to a point 
in the macroscopic variables. Thus except for a set of Lebesgue 
measure 0 (the point to which the transition region shrinks) the 
profile is monotone (decreasing) and the rescaled current becomes 
equal to − ∂ fβ (m)

∂m
∂m(r)

∂r so that the Fick law is satisfied. However, 
the limit profile m(r) is all contained within the metastable re-
gion so that we do not get the true thermodynamic relation which 
instead involves f ∗∗

β (m). This is the other main unexpected phe-
nomenon which emerges from our simulations.
Summarizing, the patterns as in Fig. 1 appear when m+ > mβ , 
those in Fig. 2 when m+ ∈ (m∗, mβ). The magnetization in the 
transition region of Fig. 1 goes from ≈ −mβ to ≈ +mβ ; in the 
bump of Fig. 2 the magnetization goes from ≈ −mβ to m+ . In [3]
it is proved that (3.5) has (for � large enough) a stationary solu-
tion as in Fig. 1; it is also shown that when m+ ∈ (m∗, mβ) there 
is a stationary solution with the transition region in the middle 
and positive current, but our simulations show that such a pro-
file is unstable so that the CA does not see it except in a transient. 
We conjecture that arguments similar to those used in [3] could 
prove the existence of stationary solutions with a bump. Such a re-
sult is proved in [4,5] in the semi-infinite case where � → ∞ and 
using Neumann reflecting conditions in the definition of the Kac 
interaction.

We have an indirect proof of the validity of our conjecture on 
the mesoscopic limit via the measure of the limit current j. Recall 
that we have measured the current by taking the time average of 
the number of particles which at each time step jump from 0 into 
the system minus those which exit from the channel by jumping 
to 0. In the context of Fig. 2 and taking the averaging time T equal 
to T = L3, we have obtained j = 3.97 ×10−5. Supposing the profile 
m(r) stationary then j should be close to γ I (the factor γ is due 
to the change of scales in the mesoscopic limit) where I is as in 
(3.6)–(3.7) and computed using m(r). One can check that if m(r)
is a stationary solution of (3.5) in [0, �] and there is an interval 
[r1, r2], r2 − r1 > 4 where m is negative and such that ∂m(r)

∂r ≤ 0
and β(1 − m(r)2) ≤ 1 for r ∈ [r1, r2], then I ∈ [I−, I+] where

I+ = 1

4

1

r2 − r1 − 2

{
[m(r1 + 1) − m(r2 − 1)]

− β(1 − m(r2 − 1)2)[m(r1 + 2) − m(r2 − 2)]
}

I− = 1

4

1

r2 − r1 − 2

{
[m(r1 + 1) − m(r2 − 1)]

− β(1 − m(r1 + 1)2)[m(r1) − m(r2)]
}

According to the simulation such an interval could be r1 = 0, r2 =
18. We have m[0] = −0.93007267; m[1] = −0.93231821; m[2] =
−0.93538058; m[16] = −0.97950798; m[17] = −0.98214394;
m[18] = −0.98471862; with these values γ I− = 3.32 × 10−5 and 
γ I+ = 4.78 × 10−5 while the current computed in the simulation 
is j = 3.97 × 10−5.

4. Conclusions

Our simulations seem to indicate that in systems which un-
dergo a phase transition of van der Waals type we may see in 
the heat conduction experiment for a long time a current flowing 
from the reservoir with smaller order parameter to the one with 
the higher value and thus construct machines as described at the 
end of the introduction.
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