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Motion by Curvature by Scaling Nonlocai 
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We prove convergence to a motion by mean curvature by scaling diffusively a 
nonlinear, nonlocal evolution equation. This equation was introduced earlier to 
describe the macroscopic behavior of a ferromagnetic spin system with Kac 
interaction which evolves with Glauber dynamics. The convergence is proven in 
any time interval in which the limiting motion is regular. 
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1. GENERAL M O T I V A T I O N S  

U n d e r  qui te  general  condi t ions  and  in m a n y  instances the interface between 
two species in compe t i t i on  moves  by  mean  curvature .  N a m e l y  each po in t  of 
the interface has a veloci ty 

/) = 0K'V 

0 is a phenomeno log ica l  cons tan t  and  ~c is p r o p o r t i o n a l  to the local mean  
curva ture  by a d imens iona l  factor;  v is the unit  vector  n o r m a l  to the 
interface. The  sign of the mean  curva ture  is defined in such a way tha t  
the veloci ty  is d i rec ted  t o w a r d  the local  concavi ty  of the interface, so that,  
in par t icu lar ,  a closed curve in E2 shor tens  under  this evolu t ion  and 
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eventually disappears. In physics the motion by curvature describes the 
interface dynamics after phase separation in isotropic systems with non- 
conserved order parameter and order-disorder phase transition. 

The derivation of the motion by curvature from "microscopic evolu- 
tions" is a fascinating problem of basic theoretical importance and great 
interest in applications, and has therefore attracted physicists and mathe- 
maticians (refs. 1-3, 5, 14, 15, 19, 20, 23, and 25 are just some of the papers 
on this subject that are more closely related to what we do here). There are 
several aspects of the problem of pure mathematical relevance, which have 
been largely debated and studied. In the more recent developments, the 
motion by curvature is viewed as a singular limit of regularized equa- 
tions.(6'16'24) The analysis of this limit involves sophisticated mathematical 
notions (see, for instance, refs. 7 and 22), and, in this context, it is possible 
to define the motion by curvature in a generalized sense, even past the 
appearence of singularities. (1,15,19) 

Here we are mainly concerned with the derivation problem: we can 
divide the known results on these specific topics into two groups. In the 
first one, (1"3'5'14'19) the "basic evolution" is described by a PDE [-see (7) 
below], while in the second one, (2'2~ it is given by some stochastic 
dynamics on an Ising spin system. With the noticeable exception of the 
work of Spohn, (25/the explicit or implicit presence of a diffusive term in the 
evolution plays a common and dominant role. In this paper we present a 
derivation of the motion by curvature (limited to times when the motion 
is regular) where such a feature is absent. We start in fact from the non- 
local evolution equation [-see (1) below] introduced in ref. 9 to describe 
the macroscopic behavior of the spin system with Kac potential (18) and 
Glauber dynamics. We present here the basic ingredients of the proof in the 
simplest version of the problem; details and extensions to more general 
cases (in particular to the spin system itself) will be given elsewhere. 

By avoiding the burden of a formal proof, we omit the proofs of a few 
technical lemmas, and hope to present more clearly the basic ingredients 
responsible for the motion by curvature. The absence of a differential 
structure forces us to use proofs that are somewhat less computational 
and may give a better insight into the true mechanisms that rule the 
phenomenon. 

2. THE EVOLUTION EQUATION 

We consider the evolution equation 

Om 
- m + t a n h { f l J *  m} (1) 

Ot 
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where m = m ( r ,  t), r e n  d , t >~ O, f l>0 ,  J = J(lr] ). We assume 0 ~ < J e C  2, and 
J(lrl) = 0 for Irl i> 1. We study the case when fl > 1, with the normalization 
condition ~ d r J ( t r l ) =  1. We have used the notation J ,  m to denote the 
convolution of J and m. 

As already mentioned, (1) describes the evolution of an Ising spin 
system with Kac potential J in the limit when the inverse range of the 
potential 7 goes to 0. (9) 

The constants _+rn~ are stationary solutions of (1), with me the strictly 
positive solution of 

mp = tanh{fim~} (2) 

whose existence follows from the assumption that fl > 1. In the spin system 
_+m~ are the equilibrium magnetizations at the inverse temperature p,(21) 
and thus they represent the magnetizations of the pure phases of the 
system. The existence of two phases corresponds in the spin system to a 
phase transition, which therefore is present whenever/3 > 1. Then fi = 1 is 
the critical temperature. Our purpose is to characterize the evolution of an 
initial datum which has two coexisting phases, precisely a datum which is 
close to m~ inside a region A o and to - rn~  outside A o. We will prove that 
this situation persists at later times, in the sense that when t > 0 the solu- 
tion is close to m s inside a region A t and to - m ~  outside A,, where A t is 
defined by letting its boundary move by mean curvature. This result holds 
for "very large regions" and observing the evolution for accordingly "long 
times," namely in a scaling limit that we explain in the next section. 

In ref. 10 the analysis of the first stage of phase separation in the spin 
system which gives rise to (1) shows that the pure phases appear in "large 
clusters" whose boundaries are regular, fulfilling all the requirements that 
we need for proving the convergence to a motion by mean curvature, as 
stated in the next section. We hope the analysis in the present paper can 
be a guide for studying the interface dynamics after phase separation, in 
what should be the sequel of ref. 10. 

3. S C A L I N G S  

Let Fo be a C 2 surface which is the boundary of a connected, 
bounded, open set Ao. Then the motion by mean curvature starting from 
Fo is defined as 

d~ ~=0~cv (3) 
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with ~ = ~(r) the generic point of the surface F~; ~c = ~c(~) with tc equal to 
( d -  1) times the mean curvature of F~ at ~; 0 a constant; and v the unit 
vector normal to F,  at ~ and pointing toward the interior of Ft.  

It is then known that there is a positive time interval when F~ is well 
defined and C 2. 

It is easy to verify that (3) is invariant under the scaling 

~ --~ r = )~ -1{ ;  r ~ t = 2  2z (4) 

While (3) is a fixed point for the transformation (4), (1) is not left 
invariant, but, as we shall see, it is attracted by (3) under (4) in the limit 
2-~ O. More precisely we define 

m(;~)(~, z )=rn(2- t~ ,  2 2"C) (5) 

With a terminology borrowed from the spin systems, we will refer to the 
variables ~ and z in the argument of m ~ as the macroscopic variables and 
to r and t as the mesoscopic variables, to distinguish them from the 
microscopic ones which appear in the original spin system from which (1) 
is derived. 

We impose convergence in (5) at time 0 by setting 

m(r, 0) = mo(2r; 2) (6) 

with mo(~; 2) converging as 2 ~ 0  to m~(-m~) inside (respectively, out- 
side) Ao. More assumptions on mo will be specified in Section 8. We shall 
prove that also m(~)(~, z) converges as 2--*0 to m~(-m~) strictly inside 
(respectively, outside) A~, where A~ is defined by letting the boundary 
evolve by mean curvature. The 0 in (3) is given by (27a) below. The precise 
statements are given in Section 8. 

The same procedure applies to the Allen Cahn equation: 

c?u 
- - =  ~ - v ' (~ )  (7)  
0t 

with V(u) a symmetric, double-well potential with minima at +m~. Then 
the function 

u ~ ( ~ ,  ~) = u(2 1~, 2 2~) (8)  

solves 

t~u (;.) 
= Ab/(2) - -  2 - 2 Vt(b/() ')),  U()')(~, 0 )  = b/0(~; 2 )  (9) 

& 

with Uo equal to m o. 
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In refs. 1, 5, 14, 15, and 19 it is proven that u(~')({, r) converges, as 
2 --+ 0, to _+rn B if { is inside (respectively, outside) A~ if the boundary of A, 
moves by mean curvature with 0-- 1. We will give later more details on this 
result; here we only want to comment on the value of 0. As explained in 
ref. 25, there is an Einstein relation which involves 0, the mobility of the 
surface and the surface tension. By this relation we can determine 0 in 
terms of the mobility and of the surface tension. We thus have two ways 
to compute 0, one based on the Einstein relation, the other one by looking 
directly at the limiting motion by curvature, which also specifies the value 
of 0. Both ways lead to the same value of 0, as proven in ref. 25 for the 
Allen-Cahn equation and in ref. 4 for the case considered here. 

4. I N S T A N T O N $  

The equation for m (x) is 

Dm (x) 
c3~ -- 2 -2{-m( ; ' )  + tanh[f i J (n  * re(x)] } (10a) 

where 

J(~)(lr = x-~J( ;~-1 I~1) (lOb) 

(10a) is similar in many ways to the Boltzmann equation with small free 
path, namely when there is a divergent factor in front of the collision kernel. 
In our case the divergent factor 2 .2 forces the curly bracket term in 
(10a) to be small; hence rn (~'/should be close to a stationary solution of (1). 
With respect to the Boltzmann case, the situation here is simpler because 
of the dissipative nature of (1), which limits drastically the number of 
stationary states: only two of them will be needed, which correspond to the 
stable phases _+ m•. However, the problem of matching them together will 
bring in a third stationary and spatially nonhomogeneous solution of (1). 
In the Boltzmann case, this is the analog of a Milne problem, but with 
moving boundary. 

The stationary equation in the macroscopic coordinates is 

0 = - m  (~) + tanh{flJ  {~) * m (~) } - R + D (1 la) 

R = - m(~~ + tanh { flm(~)(~) } (1 l b) 

D = tanh{ fl(J (s') �9 m(;'))(~) } - tanh { flm(a)(~) } (1 lc) 

The first term, R, is strictly local and it plays the role of the reactive term 
in (9), while the second one, D, is nonlocal and it is in a sense analogous 
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to the term with the Laplacian in (9). Like this one, it has order )2 when 
rn (;~ is smooth. 

In conclusion, we look for a solution close to m~ when ~ is in A T and 
to - rn~  when ~ is outside, namely wherever the reactive term in (11) is 
dominant. The transition region is where the D term in (11) cannot be 
neglected. As J(~) is an approximate 6-function, the transition region turns 
out to be infinitesimal in 2; hence, for its analysis, it is convenient to go 
back to the original mesoscopic coordinates. Then F~ becomes ,~-tFt, 
t = 2-2z, and the interface then looks extremely flat, assuming, as we do, 
that F~ is regular. It is therefore natural to look for stationary solutions 

r~d(r) = tanh{ flJ �9 the(r) } (12) 

which have a planar symmetry; therefore, modulo translations, n3 a depends 
only on one parameter, rhd(r)=rh(r.v), v a unit vector. Then, calling 
x = r .  v, we have that r~(x) solves the stationary, d =  1, problem: 

rh = tanh{flY, rh} (13) 

with interaction 

Y(x)= f dy J(Ix= + y21x/2 ) (14) 
~ d -  t 

Dal Passo and de Mottoni (8/ have proven that if J is nonincreasing, (13) 
has a unique solution in the class of the nonconstant, odd, nondecreasing 
functions. They have also shown that 

lim rh(x)=  +mt~ (15) 

The result has been generalized in ref. 12 to the interactions considered 
here, with a stronger uniqueness theorem. 

As the convergence in (15) is exponentially fast, (H~ rh is the right 
candidate for matching the solutions _+rnr at both sides of the interface. 
Thus, avoiding the initial layer problem considered in ref. 10, we suppose 
that at time 0, in a neighborhood of F o (see Section8 for a precise 
statement), 

mo( ~ ; 2 ) = rh ( d( ~2-F~ ) (16) 

with d(~, Fo) the signed distance from Fo, positive for ~ inside A o. 
An instanton solution rh with properties similar to those stated above 

exists also in the Allen Cahn equation. (17) De Mottoni and Schatzman (14) 
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have proven that the instanton-like structure [corresponding to (16)] is 
persistent, at least until times when the surface is regular. It is a remarkable 
result, as it shows that in the mesoscopic variables the form of the solution 
remains the same, to leading orders in 2, for times proportional to 2 .2 , 
even though the interface during this time moves by distances proportional 
to 2 1. There are corrections to the shape and the location of the interface, 
but they vanish as 2-~ 0. 

Chen's (5) result is weaker, as he proves only that super- and sub- 
solutions have the same instanton structure they have initially. They are, 
however, shifted from each other by distances which grow as log 2 1, in 
mesoscopic coordinates, so that, in principle, the interface might have 
flattened by that amount. In the macroscopic variables, however, where 
spaces are shrunk by 2, this fine structure disappears and the interface 
becomes sharp. The advantages of this approach are twofold. On one hand 
the analysis is much simpler, and on the other it uses inequalities which 
play an important role in the proof of the convergence past the appearence 
of singularities (to a "generalized motion by curvature"); see, for instance, 
ref. 15. 

One of the basic ingredients in ref. 5 for constructing super- and sub- 
solutions is that the signed distance function from a surface mowing by 
mean curvature is closely related to the heat equation. In (1) this is not 
directly of help, as a Laplacian is neither present nor likely to be "hidden" 
somewhere (opposite to what happens in the Allen-Cahn case, where it 
appears explicitly). We overcome this problem by exploiting an invariance 
principle, applied to the linearization of (1) around the planar instanton 
defined earlier. We shall prove that, on a suitable space-time scale, this 
behaves as the Allen-Cahn equation (in the corresponding approximation) 
so that in this scaling, inequalities fi la Chen will work. We are thus half 
way between refs. 14 and 5, being close to the former when we exploit the 
good mixing behavior of (1), and to the latter when we use inequalities to 
estimate the nonlinear terms of the expansion (losing in this way the 
accurate control of the shape and the location of the instanton, as in 
ref. 14). At variance with ref. 14, we localize our analysis by studying 
separately the evolution for short times and in small neighborhoods of the 
interface. We then use a "patching and iterating" procedure to obtain a 
global solution. The advantage of working locally is that we only need to 
consider perturbations of the planar instanton and this greatly simplifies 
the analysis. In particular we can use an L~ setting, as we prove that the 
linearization around the planar instanton is strictly related to a Markov 
generator. We explain all that in the next section. 
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5. A PROBABILISTIC INTERPRETATION 

We work in d =  1 and linearize (1) around r~ with J replaced by .7. We 
then obtain 

0__~ = L~b, L~b = -~b+ (1 - r ~  2) f l ]* ~b (17) 
0t 

rh and Eq. (17) are studied in refs. 11 and 13; for ease of reference we recall 
the main results. 

Properties of rh: 

rh'(x) > 0 for all x e R  (18a) 

There are c~ and M, both positive, so that 

lim 
x ~  + o o  

rh(x) ~- [ M -~lxl] e ~l~l m~ ~ e = 0  (18b) 

lira e ~1~1 lr'h'(x)--Me-~lxll = 0  (18c) 
I x l  ~ o o  

lim e ~lxl Irh"(x)+c~Me-~lXll = 0  (18d) 
x ~  •  

Next we state the results on the asymptotic behavior of the solutions 
of (17): there is a > 0  and, for any [6] < e ,  there is c so that 

I1~(-, t ) - c ~ ' ( ) [ ] ~  ce-a' IIq~(-)- G~'(-)II~ (19a) 

where 

jlu[]~ = sup e 6lxl Ju(x)] (19b) 
x 

(19c) 

rh'(x): N -1 ;~ rn'(x)2 (19d) 
# ( d x )  = N 1 - r ~ ( x )  2 d x ,  = d x  1 - r ~ ( x )  2 

This is a Perron-Frobenius theorem for the operator e Lt. The proof is 
based on probabilistic methods typical of equilibrium statistical mechanics. 
The starting point is the observation that Lrh'=O, which is readily 
obtained by differentiating (13). Therefore L has eigenvalue 0 and eigenvec- 
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tor rh', which, by (18a), is strictly positive, just as in the Perron-Frobenius 
theorem. It is therefore natural to make the following mapping: 

~b = rh'O, 500 = ~7, L(rh'O) (20a) 

m'(x') 
500(x) = E1 -,~(x) 2] P ~ a x '  Y ( I x  - x'l) EO(x')- O(x)] 

d 
(20b) 

As evident from (20b), 5 ~ is the generator of a jump Markov process with 
jump intensity 

m'(x') 
K(x, x')= E1 - n~(x) 2] P(tx-x'l)  ~'(x) (20c) 

The validity of the Perron-Frobenius theorem in the present context is 
related to the fact that by (18c) the transition rate K(x, y) has asymptoti- 
cally a drift toward the origin and that K is a smooth integral kernel. 

Recall now that if m is the solution of (1) and it is close to th, then 
m-- rh  will be well approximated by (17). In this approximation, 0 =  c, a 
constant, means that 

m -- fit ~ crh', re(x) ,.~ rh(x + c) (21) 

Thus 0 is a displacement; if 0 depends on x, then 0(x)  is the displacement 
necessary to make rh equal to m at x in the approximation (21). It is 
proven in ref. 11 that e~t 0 converges to a constant as t ~ oo; hence, in the 
linear approximation, m converges to a translate of the instanton. 

In d > 1 the conclusions are similar. Given a unit vector v, we linearize 
around the instanton rhd(r)=rh(r-v) ,  call x = r.v ,  and simply write rh(x). 
We then define 

L r 1 6 2  f dr '[1--rh(x)2]f lJ([r--r '[)r  ') (22a) 

500(r) = f dr' K(r, r ' ) [O(r ' )  - ~( r ) ]  (22b) 

K(r, r ' ) =  [1 - rh(x) 2 ] f i J ( l r - r ' t ) -  
m'(x') 

(22c) 
~'(x) 

Observe that the integral of K is equal to 1. 
Thus 5 ~ is still the generator of a jump Markov process, with a drift 

toward the plane {r. v = 0} and with invariant measure II(dx)dy, x =  r.v ,  
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and y the coordinates in the plane {r-v = 0}. In the scaling limit (4) with 
2 ~ 0 ,  the process converges to a degenerate Brownian motion on the 
plane { r .  v = 0 }. 

6. THE LINEAR A P P R O X I M A T I O N  

In this section we study the evolution in the time interval [0, T],  
where T = 2  -~, 6 > 0. For  c~ sufficiently small the evolution in this time 
interval produces very small changes, so that the linear approximation is 
rather accurate. In Section 8 we make this precise; here we just stick to the 
linear approximation with no further justification. As already mentioned, 
we localize our analysis. Let then ~ o ~ F  0 and ro=2-1~o  . We study the 
evolution in a small neighborhood of ro and, to this end, we choose a 
coordinate frame (in mesoscopic variables) with origin at r0. The x axis is 
directed along the normal to 2-1Fo at ro. We choose the Other axes of the 
reference frame along the principal axes of curvature and choose the x axis 
pointing toward 2-1A o, so that, to first order, the equation for the surface 
is x = x*(y), where 

d - - 1  d 1 

x*(y)=�89 E K,Y 2, Z ~ci= x (23a1 
i = l  i = 1  

~: is therefore ( d -  1) times the mean curvature of Fo at ~o. The factor 2 
appears when writing the equation in mesoscopic variables, as done 
in (23a). 

As an example, suppose that F 0 is a circle of radius R in R 2. Then the 
x axis is along the radius and connects roe 2 - 1 F  0 to the center of the 
circle, directed toward the latter. The y axis passes through ro and it is 
perpendicular to the x axis. 

According to (16), in this frame of reference and for r in a 
neighborhood of the origin, 

) ~: 2 r~ ' (x)+ m(r,O)=rh(x)-�89 ,y, 
i 1 

(23b) 

The remainder term ~ will be disregarded in this section. We next linearize 
(1) around the planar instanton rh(x); we have only made explicit the 
coordinate x in the argument of the(r), as this is the only one on which it 
depends. Calling ~b(r, t) the solution of 

- - ~  1 d - - I  

c3~b L~b, ~b(r, 0 ) =  - 5 ) ~  ~ tc, y~rh'(x) (23c) 
~?t i = 1  
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we have, by (20a), 

~b(r, t) = fi ' (x) e~;Oo(r), 
d--1 

~/o(r)  = 1 2  E tCiy 2 (24)  
i=1 

We are interested in r =  (x, 0), namely the values along the normal to 
2 ~Fo at ro. We then have 

(eZerOo)(X, O) = fo dt(e~et~176 O) (25a) 

From (22) it follows that for any r = (x, y), 

1 ~-' f y ) ) [ y ,  - y , ]  ~eOo(r)=5,~ y~ ~, dx 'dy 'K( (x , y ) , ( x ' ,  ' ,2 
i=1 
d--1 

1 ;~ ~ K,l_l_fi(x)2 ] f i fdx ,&J( l (x ,_x)~+z=l~/2)  
2 i=1 

fi',( x' ) • ~ [(z,+ y,)2_ y~3 (25b) 

hence 
T 

(e-~rffo)(X, O) = fo dt(e~e"'~f)(x) (26a) 

with 5# (1) the operator in d =  1 defined by the right-hand side of (20b) and 

f(x) = - [ 1 - fi(x) 2 ] fl f dx' dz J(I (x' - x) 2 + z21 a/2) fi',(x') 2 2 ~ ~:;z2 (26b) 

We define 

fi ' (x ')  y~ (27a) O=f/~(dx)[1 - f i(x) 2] fl f dx' dy J ( l ( x ' - x ) 2 +  y211/2) fi'(x) 2 

Then 

f #(dx)f(x) = -2~c0, tr = ~  to; (27b) 
i 

Using the exponential convergence rate to equilibrium of the d =  1 process, 
whose proof will be omitted, it follows that there is C so that for all x 
and t 

I (e~'~o)(X, 0) + tct20] <~ 2C([xl + 1 ) (28) 
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The rate of convergence of e f '  depends on the starting point x: as the 
process has a drift toward the origin, it takes a time proportional to Lxl to 
reach a neighborhood of the origin and then the process approaches equi- 
librium exponentially fast. Hence, by (26a), the term Ix[ appears on the 
right-hand side of (28); it bounds the contribution to the integral in (26a) 
of t ~< c [x[, with c a suitable constant necessary to forget the initial condition. 

In conclusion, in the linear approximation, 

m( (x, 0), T) ~ re(x) - r~'(x) ~T,~O ~ r~(~-  KT;~O) (29) 

The interface has thus moved in the time T by T~c20. Recall that we are 
using the mesoscopic units; therefore, in the macroscopic ones, where 
spaces are shrunk by ,l, the displacement becomes T220x. Since the macro- 
scopic times are ,~2 times the mesoscopic ones, the term ) fT  above is just 
the macroscopic time corresponding to the mesoscopic time T. In this 
approximation, therefore, we obtain (3) with 0 equal to the expression in 
(27a). More details are given in Section 8. 

7. THE LEVEL SET E Q U A T I O N  A N D  THE GENERALIZED 
M O T I O N  BY C U R V A T U R E  

The same arguments presented in Section 6 apply as well to the Allen- 
Cahn equation. The analysis in that case is simpler, because the x and y 
motions are independent in the process generated by the analog of 5 ~ . As 
a consequence, the estimates on the approach to equilibrium used in (28) 
are not necessary. In both cases the main point is the convergence of the 
processes with generator 50 and its analog in Allen-Cahn under the dif- 
fusive limit (4) to a degenerate Brownian motion on the plane {r-v = 0}. 
As the initial deviations from the planar instanton grow quadratically 
along the plane (see the factor Y~ ~ciy~), the square displacement of the 
Brownian motion in the tangent plane is proportional to the velocity of the 
interface. In our case the analysis is complicated by the correlation between 
the x and y motions, which reflects in the more complex formula for 0. 

A degenerate Brownian motion is also present in the level set 
equation: 

.j V~Vju (30) 

The evolution given by (30) is such that all the level sets of u move by 
mean curvature, provided they are regular surfaces. The regularized motion 
by curvature can then be defined by first adding to (30) the extra diffusive 
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term e Au and then letting e-~ O. Norice that both (30) and its regularized 
version are invariant under the diffusive scaling (4). 

The right-hand side of (30) gives rise to a degenerate Brownian 
motion on the planes tangent to the level sets, similarly to the diffusion 
considered earlier and associated to (1) and (7). We do not know, though, 
whether the analogy carries over to a more direct procedure for proving 
convergence to the motion by curvature, may be based on relating the 
corresponding Brownian motions. 

8. S T A T E M E N T S  A N D  PROOFS 

The Initial Datum. Let An be an open, connected, bounded set 
whose boundary F o is a C 2 surface. We fix 0 < ff < 1 and assume that for 
all 2 sufficiently small, (16) holds for all r such that Id(r Fo)l ~<2 I-r For 
the other values of 4, inside and, respectively, outside A0, we set 
m0(~; ~) = +r~(~-~). 

7-he Result. Let F~, 7 ~> 0, be the motion by curvature defined by (3) 
with 0 as in (27a) and let At be the bounded region whose boundary is Ft. 
Let r * > 0  be such that F~ is regular for a time interval strictly longer 
than 7*. Then there are a > 0 and b > 0 so that for all 7 ~< 7" and all 2 small 
enough 

[m(~)(~, 7) T m~i ~< 2 b (31) 

for all ~ inside and, respectively, outside At, and such that Id(~, F~)I ~> 2 a. 
We prove (31) by constructing super- and subsolutions of (1), which 

squeeze the solution in a way that yields the desired result. Actually this is 
an abuse of language, since we construct functions which are above and 
below the solution, but only at the times kT, k integer. However, since 
2 ~ T ~ 0 ,  this time grid in macroscopic time units has an infinitesimal 
spacing, so that our bounds are indeed close to true super- and subsolutions. 
By symmetry we can limit ourselves to the case of the supersolutions. 

The Biased Motion by Curvature. Given an open, bounded, con- 
nected region A whose boundary F is C 2, and given ~ ~ F, we denote by 
v the unit vector normal to F at ~ and pointing toward the interior of A. 
The mean curvature [times the factor ( d -  1)] of F at ~ is denoted by to. 
Then, for any real h, we define the h-biased motion/-,~h) of F 0 so that the 
points of F~ h) satisfy the equation 

d~(h) 
& = (~cO- h) v (32) 

with 0 as in (27a). 

822/73/3-4-7 
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We omit the proof of the following result: 

L e m m a .  Let r* > 0 be such that the unbiased motion by curvature 
is regular in a time interval longer than z*. Then there are h0 and c so that 
F} h~ exists and it is regular for all [hi ~< he and all z ~< z*. Furthermore, if 
~(h)(z) satisfy (32) and, respectively, (3) with ~(h)(0)= ~(0), then 

I~(h/(r) - r ~< ch (33) 

The constant c is independent of the starting point in Fo. 

The Suporsolution m*((,  r). We fix 6 and Re as follows: 

1/40 < 6 < 1/20; 2 - 106 > c~R o > 3/2 (34a) 

with cr as in (18). We then define, for all 2 sufficiently small, m*(~, r) as 

m*(~,z)=th(d(~'2~h')) ,  h = 2  ~y2 (34b) 

whenever 2-1ld(~,F~h))J<~Rolog;t -1. For the other values of ~, 
m*(~, z)=-t-m/~+23/2 inside and, respectively, outside A~ h). By recalling 
(18b) and that c~Ro~>3/2, it is readily seen that for all 2 small enough, 
m*(~, 0) i> m0(~; 2). Later we will introduce the functions rh and rh, which 
are the same as m*, but expressed in other coordinates. 

The Iterotive Procedure. For k ~ 7/+, let tk = k T - k 2  ~, with c5 as in 
(34a). We then call m(k)(r,t) the solution of (1) for t>~tk such that 
m(g)(r, tk)=m*(2r, 22tk) for all r e  R d. We are going to prove that for all 2 
small enough and all t~ ~ 2 2r,, 

m(k~(r, tk+1)<<.m*(2r, 22tk+l) for all r ~  d (35a) 

We have already seen that 

m0(2r; 2) ~< m*(2r, 0) 

Then, by the Comparison Theorem below, it follows that the solution 
m(r, t) of (1) with initial datum m0(2r; 2) is such that 

re(r, tl) <~ m(o)(r, tl) <~ m*(2r, 22tl) 

by (35a) with k = 0. We are now in the same situation as at t = 0; hence, 
by using again the Comparison Theorem and the inequality (35a), 

re(r, tk)<~m*(2r, 22tk) for all tk~<2-2z * (35b) 
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Since the same proof works as well for time intervals of size zT, 1 ~< Z ~< 2, 
m*({, v) is an upper bound for m(a)(~, ~) for all 4 and all ~ such that 
22T~<~: ~< r* for all 2 small enough. An analogous property holds for the 
lower bound and, using these bounds, we derive (31) with a =  1/80 and 
b = 3/2, as we are going to show. 

In fact for J~ZT~<'c ~<'r*, if [d(4, F~h/)[ >~Ro2 log 2 1 and ~ is in the 
complement of A~h), 

m*(~, r )=--m~+23/2~>m(~.-1r  2z)~>--m/~ 

The first inequality follows from (35b), the second one by using the 
Comparison Theorem after recalling that m s ~> Imo(4; 2)1 for all 4 and that 
rna is a stationary solution of (1). An analogous bound is obtained working 
with the subsolutions: 

m s/> m(2-1~, 2-2r)  >t ma - 23/2 

if [d(4, F~-h))[/> Ro2 log 2-1 and 4 is inside A t(h). On the other hand, if 

Id(4, F~)I ~ RoA log 2 -~ + cA ~/2 

with C2 a/2 a s  in (33), recall that, by (34b), h = ) d / 2 ;  then, for any 4'~ F~ -+h), 

Id(~, ~')1 ~ Id(4, 4" )1 -  Id(d*, 4')1 

where 4" e F ,  and with 4" and ~' related as in (33). Therefore 

Fd(r = inf+~ Id(r ~')l/> inf Id(~, 4")1 - c2 a/2 >1 Ro log )~ 1 

Hence 

lm(~(4, -c) -T- m~J ~< 23/2 if ]d(4, F~)I >~ 21/8~ ~> R02 log 2-1 _]_ C,~6/2 

for all 2 small enough and, respectively, for 4 inside and outside A,. 

The Comparison Theorem (see ref. 12). Let u(r, t) and v(r, t) be 
two solutions of (1) for t~>0, such that u(r ,O))v(r ,O) for all r. Then 
u(r, t)>~ v(r, t) for all r and all t ~> 0. 

In the remainder of this section we prove (35a) with k = 0. The proof 
works unchanged for all t~< 2-2~ * and, from what was said above, this 
proves (35b), hence (31). Besides the Comparison Theorem, we frequently 
use another basic lemma, also proven in ref. 12: 

822/73/3-4-7*. 
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T h e  B a r r i e r  L e m m a .  There are V and c~ positive so that if u(r, t) 
and v(r, t) solve (1) and, for some S > 0 ,  u ( r , O ) = v ( r , O )  for all Ir[ ~< VS, 
then 

lu(0, S ) -  v(O, S)l ~ c~ e - s (36) 

It is convenient to use a special notation for the function m* when 
expressed in mesoscopic coordinates: 

fit(r, t )=  m*(2r, )~2t) (37) 

Est imates  a w a y  from the Interface. Let r be inside 2-1A0 and let 
[d(r, 2-1Fo)1 >~ 2VT,  T - -  )~ ~. Then, fit(r, O ) = m ,  + 23/2, and therefore, by 
the Barrier Lemma, 

Im(o~(r ,T)-m(T)l<.c le  r (38) 

where m(t)  solves (1) with initial datum constantly equal t o  m/~+)~ 3/2. 
Since 

draft) 

dt 
- - - -  .m( t ) + tanh{ tim(t) } 

there are a' and b' positive so that 

I m ( t ) - m ~ j  <~a'e b', 

Therefore 

[m(o)(r, T ) - m , l  <<.a'e-b'r +Cl e T< ~3/2 

for all 2 small enough, hence m(o)(r, T)~< fit(r, T). 
The same argument works in the complement of 2 1A o. 
We next study the solution in the region { ]d(r, 2-1Fo) [ ~ 2 VT} ,  which 

is critical for the evolution of the interface. 

Notat ion.  Let ~o ~ Fo, v the normal to F o at 4o pointing toward An. 
We introduce a frame with origin at ro = 2-1~o, x axis along v, and the 
other ones parallel to the principal axes of curvature of Fo at ~o, and we 
orient the x axis as explained in Section 6. 

Calling r' the coordinate in this new frame which corresponds to r in 
the old one, we set 

fit(r', t ) : =  fit(r, t )=  m*(2r, 22t) (39a) 

m(r', t ) : =  m(o)(r, t) (39b) 
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What we need to prove is that m(r', T)<~ fit(r', T) for all r ' =  (x', 0) with 
[x'r <~ 3 VT. By the arbitrariness of r o, this completes the proof of (35a) with 
k = 0, having already proven the estimate away from the interface. 

Since we always use in the following the new coordinates r', with no 
risk of confusion we may and will call them again r. We recall and expand 
the considerations of Section6. Writing (16) in mesoscopic variables, 
we have that the initial condition is a function of the signed distance 
d(r, 2 1Fo) from the surface 2 IF 0. We consider [rl <~4VT and, for such 
values of r, there is a constant c; so that, denoting by (x, y) the 
coordinates of r and recalling that x*(y) is the expression in (23a), we have 

{d(r, 2 1Fo)-  [ x - x * ( y ) ] ]  ~< c'222T 3 (40a) 

Then, for a suitable constant c2, 

Ifit(d(r, 2-1Fo)) - f i t (x )  + x*(y)r~'(x)l <<. c222T3r~'(x) (40b) 

To derive the last expression we have expanded to second order fit(d(r)) 
around rh(x) and used that, by (18), 

Ifit"(x)l ~ c~'(x) 
for a suitable constant c. 

We define 

n(r, 0) "= l(Ixl ~< X~.)[rh(x) + nS'(x) co(y, 2)] 

+ l(]xl > Xj~)[m/~ sign x + 23/2] (40c) 

X~ = Ro log 2 -1 - 1 (40d) 

- 2 / 2  Y~i K,y~ + c222T 3 if 52, yY ~< (4VT) 2 (40e) 
co(y, 2) = [ c 2 2 2 T  3 otherwise 

By our choice of coordinates, if Irl <~4VT and, setting r = ( x ,  y), if 
Ixl ~<x)., then ]d(r, ~ 1F0)l ~< Ro log 2 -1 for all 2 small enough. Then, for 
such values of r, fit(r, 0)=  rh(d(r, 2-1F0)) and, by (40b), 

- - t  fit(r, O) -.~ re(x) -- m (x) x*(y)  + fit'(x) c222T 3 = n(r, O) 

We have also when Ixl > X~ that 

fit(r, O) <<. n(r, 0) for all [rl ~< 4VT 

Using the Barrier Lemma and the Comparison Theorem, we then have 
that 

m(r ,T )<~n(r ,T )+c le  - r  for all IrI<~3VT (41) 
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where n(r, t) solves ( l )  starting from n(r, 0). We write 

u(r, t) = n(r, t ) -  r~(x), u, - u( . ,  t) 

Then 
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(42) 

;0 u,=eL'uo+ dse c(' s ) [ - rh (1 - - rh2) ( f l J*  u~.)Z+As(fiY* us) 3] (44a) 

1 
As= ~ 2 cosh -4 a~E2 sinh 2 a~ - 1] (44b) 

where a, is a number between flJ �9 rh and flJ �9 (rh + u,). We rewrite (44a) 
a s  

ut=eLtuo + ds e L(' "~['-th(1--rh2)(flJ , eLSuo)2 + ~l~ 1~] (45) 

~ t ) = A s ( f i J *  us)3 - rh(1 - r ~ Z ) [ ( f l J , u s ) 2 - ( f l J *  eL'u0) 2] (46) 

We shall see that the first term in the interal on the right-hand side of (45) 
is of the order 22Tarh'(x), while the one containing ~t~ 1) is even smaller, of 
the order of ,;taT. An error of the order 22T 3 cannot be neglected, as we 
shall see, for x large, but the term 22T3rn'(x) is all right, due to the decay 
properties of rh' ['see (18)]. To recover the term rh' we have split u as in 
(45). The error 23T will be acceptable also for x large. 

We examine separately the terms on the right-hand side of (45), but 
before doing this we need some properties of the semigroup e L' that we 
state below. A short sketch of their proofs is given in Section 9. 

Some Properties of the Semigroup e Lt. The kernel eL'(r, r') of the 
semigroup e Lt is nonnegative. It has the following expression [see (22a)]" 

t n 
eCt(r, r') = 6 ( r -  r') e - '  + e - '  ~ ~ H"(r, r') (47a) 

n>~l 

H(r, r') = ['1 - rh(x) 2] flJ(Ir-- r']) (47b) 

where L is the linearized operator around rh [see (22a)]. 
By expanding the right-hand side of (43b) around flJ �9 fit, we get 

u~ = eL'Uo + ds e c~ ~'~% (43a) 

g t , = t a n h { f l J ,  ( r h + u , ) } - - t a n h { f l J , r h } - ( 1  - r h z ) f l J *  u, (43b) 
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Denoting by H the operator whose kernel is H(r, r'), we have [see (22b), 
(22c)] 

Hrh' = rh' (48a) 

and also 
! 

eLtO = fft'e~' ~7, ~b for all ~b (48b) 

As already noticed [see (24)], from (48b) it follows that if ~b =rh '0 ,  then 

eLt~ = #t'e'~'l// (48C) 

For  the semigroup e ~t the following holds. Given T =  2 ~ and V as in the 
Barrier Lemma, we let 

0~(r) := 5 2 xiy~l  y~/> (4VT) 2 (49a) 
i 

then there is c'1 so that 

' e - r  (49b) 

Furthermore, there is R* so that 

sup f dr' H(r, r') < t (50) 
I t [ / >  R '~ 

and c o so that for all t ~> 0 

- sup ~ dr' eLt(r, r') <~ c o (51) ~IeL'H 
r 

Finally, there is c 3 so that 

HeLrl(Ixl > Xz)[I o~ ~< c3 A~R~ (52) 

with ~ as in (18). 
For  later purposes we need to bound the initial datum u0, which we 

explain as follows: 

B o u n d s  on uo(r) .  Recalling the definitions (42) and (40), we have 
that 

~<~ - t  uo(r) = l(Ixl ~X~) m (x) ~(y ,  2) 

+ l(tx[ > X(2))l- - r e ( x )  + m~ sign x + 23/2 ] (53) 
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Using (40e), we have 

l(Ixl ~ x~) ~'(x) ~o(y, ,~) 

r 2 3 ' ~ -  (4VT)2)t 

+~(L~l>x~).+<~)52 + ~y~ <4vv) 2) 

( 2 3 2 "~ .<.V(x) ~c2~ r - ~  g ~'Y'~3 +.V(x) r 
L i 

2 
+ ~  ( d -  1) ~c(4VT) 2 l(Ix[ >Xd,) rh'(x) (54) 

where $;.(r) is defined in (49a). 
By (18) there are c~ and c~' so that 

Irh(x)-masignxl <c'4e -~lxl, m'(x)<~c'4'e -=lxl (55) 

Therefore, recalling that Xd. = Ro log 2 ~ - 1  and aRo > 3/2, there is ca so 
that 

F , 2 1 
l([xl L <x, + m, + 

c423/21(1x I > X,~) (56) 

which thus bounds the sum of the last terms on the right-hand side of (54) 
and (53). From (53), (54), and (56) we then have that 

uo(r)--~m (x) c222T3-~ ~ ~c~y~ +r~'(x) O~(r)+c423/21(lxl>Xx) (57) 

We wilt also use another bound on uo, based on the fact that, by (40e), 

~o(y, ,~) ~< c~,~2T ~ +~ (d -  1) K(4VT) 2 (58) 

Then, from (53) and (55), there is cs so that 

uo(r ) <~ th'(x) c52T 2 + C4A3/21(lx[ > X'2) (59) 

We are now ready to bound the three terms on the right-hand side of 
(45). We start with the first one, recalling that its leading term has already 
been studied in Section 6. 
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Bounds on the First Term on the r.h.s, of (45). By (57), for 
r = (x, O) 

( 2 3 • (eLTUo)(X, O) <~ eLT'~'(x) ~c2~" r --~ Z '~iY ~, + O~.(r) 
) i 

q- C4)~3/2eLTI(Ix[ > )(2) (60a) 

F r o m  (48b), (48c), (28), (49b), and (52) we then get 

(eLruo)(X, O) <~ r h ' ( x ) [ -  tc)~TO + ;tC(lxl + 1) + c2)~2T 3 + c' l e - r ]  

+ C4C31~ 3/2 + :xRo (60b) 

B o u n d s  on the S e c o n d  Term on the r.h.s, o f  (45) .  We use the 
bound  (59) for Uo in the second term in (45), which we compute  at t = T 
and at  a point  r = ( x ,  0). Then,  f rom (51) and (57), and the fact that  
Iln~[[ on < 1, we have 

f r d s  eL(r--s) [~(1 ffl2)(/3 J * erSuo) 23 

~< (/3 IlJII o~ e 4 )  2 c3,~3T 

+ (/3 IIJIl~ c5 2T2 Iln~'ll ~ +2/3 IlJtl ~ C4"~3/2C0) 

;o x ds e L(T s)( /3j ,  eCSr~,) c s 2 T  2 (61) 

We use (48b) and that  eL'rh' = rh' for all s >~ 0 to conclude that  there is a 
cons tant  c6 so that  

eL(T--s)(j eLsrit,) , ~ T s 1 ~< _,  �9 = r ~ e  ( - ) ~ ( J * r h ' ) - , : c 6 m  (62) 

F r o m  (61) and (62) we then have that  there are c7 and c8 so that  

f rdseC(r-S)[rh(1-- f f t2) ( /3J*eL~uo)2]  <~c7)~3T+c822TSfft ' (63) 

B o u n d s  on the Last Term on the r.h.s, o[ (45) .  F r o m  (59) there 
is c9 so that  

I[uo[] co ~< c92T2 (64) 

Let 

t * =  inf{t: llutlL ~ < 1} (65) 
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Then from (43) and the fact that the kernel of e L~ is positive, we get that 
there is a constant Can so that 

f2 [u,] ~< e L~ t Uol + Clo ds e L(~- s)(j , bts)2 (66a) 

and also 

lu,-eC'uol  <<.Clo ds eL(, s)(j  , u~)2 (66b) 

Then, by (51) and (66a), 

I l u , l l ~ < c 0  Ilu011oo+c~o dsco IIJIl~ [lUsll 2 forall t<~t* (67a) oo 

so that from (64) we get that there is c H so that 

Ilu,]l ~ ~< Co Ifuoll ~ ~< ~ (c112tTe)n 
1 - t C o C a o  II111 ~ Ilu011 ~ n ~ a  

Since 3 6 < 1  I-see (34a)], the series on the right-hand side of (67b) 
converges also for t = T if 2 is small enough. This implies that t* > T. 

Therefore there is c12 so that 

Hu,ll~<-.ca22T 3 for all t<<.T (67c) 

We rewrite the last bracket on the right-hand side of (46) as 

(~J , u~) 2 -  (~J , eL+uo) 2 

= [fiJ * (u~ - eLSuo)] 2 + 2[f lJ  * (Us -- eL~uo)](flJ * eL*uo) 

Using (66b), we then have, for suitable constants ca3 and c14, 

f~ ds e L(' ~)~J~<~ T{(AT3) 3 [T(2T3)2] 2 C13 + 

-+- )oT3[T()~T3) 2 ] } ~< Ca4}.3T 1~ (68) 

because, by our choice of 6, 23T ~~ is the leading term, as 2 ~ 0. 

Upper B o u n d  for re(r, T). Going back to (41) and (42), we thus 
conclude that for r =  (x, 0), [rl <<.3VT, 

re(r, T) <~ fit(x) + ca e -  r +  {fi t ' (x)E- Jc)~TO + )~C(Ix[ + 1) + c222T 3 ] 

+ Ilfit'll 0o c 'ae-r+ c3c423/2+~R~ 

-'}- {c7~ .3T- ' ]  - c822TSfit'(x)} + c14, ,~3T 1~ (69a) 

for al t ~< t* (67b) 
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The first curly bracket comes from (60b) and the second one from (63). 
The last term comes from (68). 

Calling 

~, = c l  + Ilfit'lloo Ctl, 

we have that 

re(r, T) <~ B(x; 2), 

where 

C15 = C 2 -I- C8, C16 = C3C 4 (69b) 

r =  (x, 0), ] r t ~ 3 V T  (69c) 

B(x; 2) : =  fit(x) + f i t ' (x) [  -~c2TO + 2C(Ixl  + 1) + c~5s s ] 

"[- (Cl  e T-['-Ct623/2+~176 ) (69d) 

Lower  B o u n d  for rh(r, T). We first observe the following property 
of the motion (32), which we state without proof. There is a constant Clv 
so that for all r = (x, 0) with [xl <~ Re log 2-  ~ + 1, 

Id(r, 2-1F~)r) - x + (~:2TO - h2T)l ~< C1723T 2 (70) 

By (70), setting r = (x, 0), 

rfi(r, T) >~ [fit(x) - rfi'(x)(~c2ro -- h2T) - clvrh'(x) 23T 2 - cls fit"(x) 22T 2 ] 

x l(Ixl ~<Rolog 2 - 1 +  1) 

+ (ms sign x + 23/2) l(]xl > Re log 2 -1 + 1) (71) 

Conclusion of  the Proof  of  (350) for k = 0. We suppose 2 so small 
that ~:2TO + h 2 T <  t. Then, by (70), the points on the x axis at distance 
Re log 2 - 1 +  1 from the origin have distance larger than R o log 2-~ from 
2-1F~ h), z---22T. On the other hand, the points on the x axis at distance 
Re log 2-1 _ 1 have distance not larger than R 0 log 2 i from the interface. 
We have 

lim 2-3 /2 f i t ' (R01og2-1-1)=0  since ~Ro>3/2 (72) 
2 ~ 0  

We finally compare (71) and (69). We begin with r = ( x ,  0) and 
Ix[ ...<Rolog 2- I  + 1. In order to show that rh(r, T)>~m(r, T), it is enough 
to prove the right-hand side of (71) is not smaller than the right-hand side 
of (69d), namely that 

Ilfit"ll o0 22T  2 h 2 T > l c l s ~  + c 1 7 2 3 T a + 2 C ( R o l o g 2 - 1 + 2 ) + c I 5 2 2 T  5 

+ (cl e -  r + c723T+ c1423TlO + c1623/2 + ~R0) 

x[ f i t ' (Rolog2 ~+1)]  1 (73) 
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which is in fact verified for all 2 small enough, recalling (34a). To derive 
(73), we have also used the inequality 

�89 c1423T1~ log 2 -  ~ + 1)] 1 for all 2 small enough 

which follows from 

[-see (18b)] and from 

rh'(x) >1 c~'e -~lxl 

�89 >/.~ 6/2 + 2T9c~4")~ ~R~ 

it remains to show that for r =  (x, 0), with Ix] > R o  log 2-1-3i - 1, 

mt~ sign x >~ B(x; 2) 

which is satisfied for all 2 small enough because 

2TO 
23/2>~C'4)~R~ sup {rh'(x)[C Ixl + 1]} 

I/~1 IxE >i R0 log ). t 

+ c,4,2~ROc1522T5 + gle v +  C16/~3/2+ ~R0 .q_ c7)3TlO (74) 

(74) is satisfied for all 2 small enough, because, by (34a), ~R o/> 3/2 and 

3~ sup {rh'(x)[C [xl + 1]} ~cX2l+~'R~ -1 + 1) 
Ix] >~ RO log  2 -1  

(for all 2 small enough). 

A P P E N D I X  

Here we sketch the proof of the statements given in Section 8 under 
the heading, Some Properties of the Semigroup e z't. 

The proof of (47) is straightforward and it is omitted; (48a) follows 
from differentiating (12). 

Proof of  (491)). From the definition (20) it follows that for r = (x, 0), 

r~ f (e~erlp~)(r)=e - r  ~ ~. K'(r, r')tpa(r')dr' (A1) 

Since K(rl, r 2 ) = 0  if Ir l-r21 > 1, from (A1) we have 

T ~ 
(e~rOD(r)<<.e-r ~ ~- .v~2(d-1)n2 (A2) 

n > ~ 4 V T  " 

hence (49b). 
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(50) follows from (18), by direct inspection. We next give an outline 
of the proofs of (51) and (52) which are less obvious. 

Proof of (57). This is a corollary of (19a), but since the proof 
of (19a) is not yet published, we prove directly (51). We use the repre- 
sentation (47a), so that it is enough to show that 

sup f dr' H'(r, r') < oo (A3) 
n . r  

For notational simplicity we hereafter write R for the parameter R* in (50). 
Then 

H' ( r , r ' )=  ~, f dr" HP(r,r") l([x"l <.R + l) ffI" P(r",r') 
p=O 

denoting by x, x', and x" the xcoordinates of r, r', r", and so on; 
furthermore, 

/t(r, r')= l([x'p > R +  1) H(r, r') (a4) 

Then, denoting by g <  1 the left-hand side of (50), we have from (50), 
recalling that J(Irl) = 0 when Irl > 1, 

Calling 

Idr'H'(r,r')<~ ~. g ' -Pldr"HP(r,r")I( lx"l<R+l)  
p = O  

e =  max [rh'(x)] l <  oo (A5) 
IxI <~ R + I 

[see (18a)], we have, by (48a), 

/ ,  ( ,  

| dr' H'(r ,  r') <<. g" + c )' g'-P | dr" HP(r, r") rh'(x") 
p = l  

1 
~< g" + c r~'(x) 

1 - g  

hence (A3), recalling that, by (18), rh'(x) is bounded. [] 

Proof of (52). We proceed as in the proof of (51). We then have 

n 

H"(r, r') = ffI"(r, r') + ~, 
p = l  

X if-I n P ( r t ' ,  r ' )  

~ dr" HP(r, r") l(Ix"l < R + I )  

(A6) 
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The contribution to the left-hand side of (52) coming from ~rn is bounded 
by 

e - r  gn -r(1-g) (A7) 
,=o ~-.V ~<e 

For ]x'l ~>Rolog2 -1 and t x ' ] < R + l ,  we have n - p > 2 ,  for all 2 small 
enough. Then 

r') = ;  dr 1 dr2 flJ(Irl - r ' l )  ffIn-p-2(rl, r2) ~-p ( r " ,  

x H(r2, r")/3(1 -~(x') 2) 

~ f d r l  dr2J(lrl-r ' l ) /~n p-2(/,1, r2 ) 

x 1 ( R +  1 ~< Ix21 ~<R+ 2) at (A8) 

with at a suitable constant. 
There is a2 > 0 so that 

rain f dr dr' ffI(r2, r) l(Ixl > R + l ) H(r, r') 
R +  I <~Ix2I<~R+2 

x l(Ix'l ~<R+ 1)>~a2 ~ (A9) 

hence, from (A8) 

ffI"-P(r ", r') ~ ala2 f dr1 dr2 dr3 J(Ir, - r 'l)/~n p- 1(rl, r2) H(r2, r3) 

• l([x31 ~ R + 1) (A10) 

Similarly to (22), we write 

1 
H(r, r ' )=rh ' (x )  K(r, r')rh,(x,) , f dr' K(r, r ' ) =  1 (Al l )  

so that, recalling (A5), 

t . (  ffln-P(r",r )..~ala2 f drlJ(lrt-r ' l)rh'(xl)cTzn p(rl) (A12) 

where 7Zq(rt) is the probability of the event: {q is the first "time" when the 
chain arrives at a point r whose x coordinate is less than or equal to R + 1 
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(in absolute value)}. The probability refers to the Markov chain starting 
from r 1 and with transition probability K. Thus, for any r l ,  

Y~ ~q(rl)4 1 
q 

(in fact the equality holds). 

(A13) 

In conclusion, the second term on the right-hand side of (A6) becomes 

p = l  

f dr" HP(r, r") l(lx"l < R + l ) FI ~ P(r", r') 

<~ i {idr"rn'(x) KP(r , r" ) l ( Ix"]<R+l)c}  ala2 
p = l  

x f dr1 J ( l r -  rll) rh'(xi) cTz,,_p(rl) 

The 
Then, using (A13), we get 

f dr" HP(r, r") l(Ix"l < R + l ) H"- ' (r" ,  r ') 
p--1 

<~ a3aiazc ItJII ~ rh'(Ro log 2 - 1 -  1) 

Thus, recalling (A7), we get, for a suitable c', using (18), 

/leLrl(lxl > X D I I ~ <  e r(l gl--}-c'e ~R01og;. l 

which proves (52). �9 

(A14) 

-,  _< curly bracket term is bounded by cm (x)..~a 3, independently of p. 

(A15) 
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