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Abstract

In this paper we study a continuum version of the Potts model, where particles are
points in Rd, d ≥ 2, with a spin which may take S ≥ 3 possible values. Particles with
different spins repel each other via a Kac pair potential of range γ−1, γ > 0. In mean
field, for any inverse temperature β there is a value of the chemical potential λβ at which
S + 1 distinct phases coexist. We introduce a restricted ensemble for each mean field
pure phase which is defined so that the empirical particles densities are close to the mean
field values. Then, in the spirit of the Dobrushin Shlosman theory, [9], we prove that
while the Dobrushin high-temperatures uniqueness condition does not hold, yet a finite
size condition is verified for γ small enough which implies uniqueness and exponential
decay of correlations. In a second paper, [8], we will use such a result to implement the
Pirogov-Sinai scheme proving coexistence of S + 1 extremal DLR measures.
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(AQ), Italy; merola@univaq.it.
‡Errico Presutti, Dipartimento di Matematica, Università di Roma Tor Vergata, 00133 Roma, Italy;
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1 Introduction

In this paper we consider a continuum version of the classical Potts model, namely a system
of point particles in Rd where each particle has a spin s ∈ {1, .., S}, S > 1, and particles with
different spins repel each other, this being the only interaction present. When S = 2 this is a
simple version of the famous Widom-Rowlinson model which has been the first system where
phase transitions in the continuum have been rigorously proved, [15], and for S ≥ 2 and at
very low temperature, a phase coexistence between the S symmetric phases for continuum
Potts models was established in [11].
The mean field version of the continuum Potts model has been recently studied in [10]. The
phase diagram has an interesting structure. In the (β, λ)-plane, β the inverse temperature,
λ the chemical potential, there is a critical curve, see Figure 1, above which (i.e. λ “large”),
there is segregation, namely there are S pure phases, each one characterized by having “a
most populated species” (of particles with same spin). Instead, below the critical curve there
is only one phase, the disordered one where the spin densities are all equal. The behavior on
the critical curve depends on S. If S = 2 there is only the disordered phase while if S > 2
there is coexistence, namely there are S + 1 phases, the “ordered phases” where there is a
spin density larger than all the others and the disordered phase as well.
An analogous phenomenon occurs in the mean field lattice Potts model where at a critical
temperature there is a first order phase transition with coexistence of S+1 phases if S > 2, but
in the continuum there is an extra phenomenon occurring at the transition, namely the total
particles density has a strictly positive jump when going from the disordered to an ordered
phase. This can be seen as an example of interplay between magnetic and elastic properties
and interpreted as a magneto-striction effect, as the appearance of a net magnetization is
accompanied by an increase of density and thus a decrease of inter-particles distances.
Our purpose is to prove that the above picture remains valid if mean field is replaced by a
finite range interaction. Let q = (..., ri, si, ...), i = 1, .., n, ri ∈ Rd, si ∈ {1, .., S}, a finite
configuration of particles. We suppose that their energy is

Hλ(q) =
1
2

∑
i 6=j

Vγ(ri, rj)1si 6=sj − λn (1.1)

where
Vγ(r, r′) =

∫
Rd
Jγ(r, z)Jγ(z, r′) (1.2)
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Jγ(r, r′) = γdJ(0, γ(r′ − r)), γ > 0 a Kac scaling parameter, J(0, r) a smooth probability
kernel supported by |r| ≤ 1/2. (Observe that Hλ(q) is independent of the particles labeling).
To motivate the above choice recall that the mean field energy density (mean field energy
over volume) is

eλ(ρ(·)) :=
1
2

∑
s 6=s′

ρ(s)ρ(s′)− λρtot, ρtot =
∑
s

ρ(s) (1.3)

where ρ(s) is the density of particles with spin s. Then

Hλ(q) =
∫
eλ(ρq,r(·)), ρq,r(s) =

∑
i

1si=sJγ(r, ri) (1.4)

Thus Hλ(q) is the integral of the mean field free energy density, where the latter is computed
using the empirical averages ρq,r(s). If γ is small one may think that (1.1) “simulates mean
field”. Indeed we will prove in [8] that

Theorem 1.1. For any d ≥ 2, S > 2 and β > 0 there is γ∗ > 0 such that for any γ ≤ γ∗

there exist λβ,γ and S + 1 mutually distinct, extremal DLR measures at (β, λβ,γ).

To keep the statement simple we have not reported all the information we have on the
structure of the DLR measures referring to [8] for the full result. In particular we know
that the particles densities are close to their mean field values (for γ small). The proof
of Theorem 1.1 follows the Pirogov-Sinai strategy which is based on the introduction of
“restricted ensembles” where the original phase space of the system is restricted by constraints
which impose local closeness to one of the putative pure phases, in our case local closeness
of empirical averages to the mean field values in a pure phase. We need a full control of
such “restricted ensembles” and then a general machinery applies giving the desired phase
transition. As a difference with the classical Pirogov-Sinai theory, here the small parameter
is the inverse interaction range γ instead of the temperature, as we are “perturbing” mean
field instead of the ground states, see for instance the LMP model, [13], where these ideas
have been applied to prove phase transitions for particles systems in the continuum with Kac
potentials.
In the typical applications of Pirogov-Sinai, restricted ensembles are studied using cluster
expansion which yields a complete analyticity (in the Dobrushin-Shlosman sense, [9]) charac-
terization of the system. Namely constraining the system into a restricted ensemble raises the
effective temperature and the state enjoys the characteristics of high temperature systems.
An analogous effect has been found in the Ising model with Kac potentials, [7], [5], and in the
LMP model, in both the high-temperatures Dobrushin uniqueness condition has been proved
to hold. This is a “finite size” condition, and the Dobrushin uniqueness theorem states that
if such a condition is verified, then there is a unique DLR state. The importance of the result
is that the condition involves only the analysis of the system in a finite box: loosely speaking
it is a contraction property which states that compared with the variations of the boundary
conditions, the Gibbs measure has strictly smaller changes, all this being quantified using the
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Wasserstein distance. Dobrushin’s high temperatures means that the size of the box [where
the conditional measures are compared] can be chosen small (a single spin in the Ising case)
or a small cube in LMP so that there is no self interaction in Ising or a negligible interaction
among particles of the box (in LMP) and the main part of the energy is due to the interaction
with the boundary conditions. The measure and its variations are then quite explicit and it
is possible to check the validity of the above contraction property.
As explained by Dobrushin and Shlosman, one expects that when lowering the temperature
the above high temperature property eventually fails, the point however being that it could be
regained if we look at systems still in a finite box but with a larger size, eventually divergent
as approaching the critical temperature. The problem is that if the finite size condition
involves a large box then self interactions are important and it is difficult to check whether
the condition is verified.
While it is generally believed that the above picture is correct, there are however not many
examples where it has been rigorously established. Unlike Ising with Kac potentials and
LMP, in an interval of values of the temperature, where the high temperature Dobrushin
condition is valid in restricted ensembles, in the continuum Potts model we are considering
there is numerical evidence (at least) that it is not verified. We will prove here that a finite
size condition (involving some large boxes where self interaction is important) is verified
in our restricted ensembles and then prove using the disagreement percolation techniques
introduced in [2], [3], that our finite size condition implies uniqueness and exponential decay
of correlations and all the properties needed to implement Pirogov-Sinai, a task accomplished
in [8].

Part I

Model and main results

2 Mean field

The “multi-canonical” mean field free energy is

Fmf(ρ) =
1
2

∑
s 6=s′

ρsρs′ +
1
β

∑
s

ρs[log ρs − 1], ρ = {ρ1, .., ρS} ∈ RS
+ (2.1)

where ρs represents the density of particles with spin s and β the inverse temperature, to
underline dependence on β we may add it as a subscript. The “canonical” mean field free
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energy is instead
fmf(x) = inf

{
Fmf(ρ);

∑
s

ρs = x
}
, x > 0 (2.2)

and the mean field free energy CEfmf(x) is the convex envelope of fmf(x). Fmf
λ (ρ), fmf

λ (x)
and CEfmf

λ (x), λ ∈ R the chemical potential, are defined by adding the term −λx, where in
the case of Fmf

λ (ρ), x =
∑
s

ρs.

Observe that for any a > 0,

Fmf
β,λ(ρ) = a−2Fmf

β/a,λ′(aρ), λ = a−1λ′ − log a
β

(2.3)

so that if the graph of CEfmf
β,λ(x) has a horizontal segment, then for any β′, CEfmf

β′,λ′(x) has
also a horizontal segment when λ′ = aλ+ β−1a log a, a = β/β′, which reduces the analysis of
phase transitions to a single temperature, object of the following considerations.
As shown in [12] (see the proof of Theorem A.1 therein), the variational problem (2.2) is
actually reduced to a two-dimensional problem because:

Lemma 2.1.
fmf(x) = inf

{
Fmf(ρ);

∑
s

ρ(s) = x; ρ1 ≥ ρ2 = · · · = ρS
}

(2.4)

The analysis of (2.4) yields:

Theorem 2.2. Let S > 2 and β > 0. Then there are 0 < x− < x+ such that CEfmf
β (x)

coincides with fmf
β (x) in the complement of (x−, x+) and it is a straight line in [x−, x+]. As a

consequence there is λβ such that CEfmf
β,λβ

(x) has the whole interval [x−, x+] as minimizers,
it is strictly convex in the complement and D2fmf

β,λβ
(x±) > 0.

By using the scaling property (2.3) we then obtain the phase diagram in Figure 1.
We will next discuss the structure of the minimizers of Fmf

β,λβ
(ρ).

Theorem 2.3. Let S > 2, β > 0 and λβ as in Theorem 2.2. Then Fmf
β,λβ

(ρ) has S + 1

minimizers denoted by ρ(k), k = 1, .., S + 1. For k ≤ S, ρ(k)
k > ρ

(k)
s , s 6= k and ρ(k)

s = ρ
(k)
s′ for

all s, s′ not equal to k. Instead ρ(S+1)
s = ρ

(S+1)
1 for all s and∑

s

ρ(1)
s >

∑
s

ρ(S+1)
s (2.5)
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Figure 1: Phase Diagram of the Mean field Potts gas

Finally for any k the Hessian matrix L(k) := D2Fmf
β,λβ

(ρ(k)) is strictly positive, namely there
is κ∗ > 0 such that for any vector v = v(s), s ∈ {1, .., S},

〈v, L(k)v〉 =
∑
s,s′

L(k)(s, s′)v(s)v(s′) ≥ κ∗〈v, v〉 (2.6)

The proof of Theorems 2.2 and 2.3 is given in Appendix C.

The minimizers satisfy the mean field equation

ρ(k)
s = exp

{
− β{

∑
s′ 6=s

ρ
(k)
s′ − λβ}

}
(2.7)

The Hessian L(k) has the explicit form:

L(k)(s, s′) =
∂2Fmf

β,λβ

∂ρs∂ρs′

∣∣∣
ρ=ρ(k)

=
1

βρ
(k)
s

1s=s′ + 1s 6=s′ (2.8)

3 Restricted ensembles

The purpose of this paper is to study the system in restricted ensembles defined by restricting
the phase space to particles configurations which are “close to a mean field equilibrium phase”.
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Unfortunately the requests from the Pirogov-Sinai theory will complicate the picture, but let
us do it gradually and start by defining notions as local equilibrium and “coarse grained”
variables, adapted to the present context.

3.1 Geometrical notions

We discretize Rd by introducing cells of size ` > 0, the mesh parameter ` will be specified in
the next paragraph.

The partition D(`)

• D(`), ` > 0, denotes the partition {C(`)
x , x ∈ `Zd} of Rd into the cubes C(`)

x = {r ∈ Rd :
xi ≤ ri < xi + `, i = 1, .., d} (ri and xi the cartesian components of r and x), calling C(`)

r the
cube which contains r.
• A set Λ is D(`)-measurable if it is union of cubes in D(`) and δ`out[Λ] denotes the union of all
D(`) cubes in Λc( the complement of Λ) which are connected to Λ, two sets being connected if
their closures have non empty intersection. Analogously, δ`in[Λ] is the union of all D(`) cubes
in Λ which are connected to Λc.
• A function f : Rd → R is D(`)-measurable if its inverse images are D(`)-measurable sets.

The basic scales
There are four main lengths in our analysis: `0 � `−,γ � γ−1 � `+,γ . More precisely let α+,
α− and a verify

1
2
� α+ > α− � a > 0 (3.1)

(the precise meaning of the inequality will become clear in the course of the proofs), then

lim
γ→0

`0

γ−1/2
= lim

γ→0

`−,γ

γ−(1−α−)
= lim

γ→0

`+,γ

γ−(1+α+)
= 1 (3.2)

with the additional request that `+,γ is an integer multiple of γ−1 which is an an integer
multiple of `−,γ which is an integer multiple of `0. The partition D(`) is coarser than D(`′)

if each cube of the former is union of cubes of the latter, we will then also say that D(`′) is
finer than D(`). This happens if and only if ` is an integer multiple of `′, thus D(`0) is finer
than D(`−,γ) which is finer than D(γ−1) which is finer than D(`+,γ).
We will need that

(α+ + α−)d
2(1− α−)

<
1

1000
, 8α+ + 9α− <

1
2

(3.3)

Eventually we define, for any D(`+,γ)-measurable region Λ, :

NΛ :=
|Λ|
`d+,γ

(3.4)

where |Λ| is the volume of the region Λ, thus NΛ is the number of blocks C(`+,γ) inside Λ.
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The accuracy parameter ζ
Finally, the parameter a in (3.1) is not related to a length, it defines an “accuracy parameter”

ζ = γa (3.5)

whose role will be specified next.

3.2 Local equilibrium

A particles configuration q is a sequence (...ri, si....) such that for any compact set Λ and any
s ∈ {1, .., S},

n(x, s) := |q(s) ∩ Λ| <∞, q(s) = {ri, si ∈ q : si = s} (3.6)

We then associate to any such q the empirical densities

ρ(`)(q; r, s) :=
|q(s) ∩ C(`)

r |
`d

, s ∈ {1, . . . , S} (3.7)

as functions on Rd × {1, .., S} and the “local phase indicators” first for any ρ ∈ L1(Rd ×
{1, .., S}) (ρ(k) below as in Theorem 2.3)

η(ζ,`)(ρ; r) =

k if |
∫
−
C

(`)
r

[ρ(r′, s)− ρ(k)
s ]| ≤ ζ, for all s ∈ {1, .., S}

0 otherwise
(3.8)

and then for any particles configuration q as above,

η(ζ,`)(q; r) = η(ζ,`)
(
ρ(`)(q; ·); r

)
(3.9)

With ζ and `−,γ as in (3.5) and (3.2), we then define

X (k) :=
{
q : η(ζ,`−,γ)(q; r) = k, for all r ∈ Rd

}
(3.10)

X (k) is the restricted phase space and the configurations in X (k) are said to be in local
equilibrium in the phase k. Their restrictions to a D(`−,γ)-measurable set Λ is denoted by
X (k)

Λ and we will study (in the simplest case) the Gibbs measure with Hamiltonian Hλ as in
(1.4) on the phase space restricted to X (k). As mentioned in the beginning of this section to
apply Pirogov-Sinai we will need to complicate the picture, by adding a “polymer structure”
to the phase space and by modifying the Hamiltonian Hλ.

3.3 Polymer configurations

A polymer is a pair Γ = (sp(Γ), ηΓ), sp(Γ), the spatial support of Γ, is a bounded, connected
D(`+,γ)-measurable region and ηΓ, its specification, a D(`−,γ)-measurable function on sp(Γ)
with values in {0, 1, .., S+ 1}. In the applications of Pirogov-Sinai, Γ will be contours and ηΓ
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not as general as above, to keep it simple we skip all that sticking to the above definition. We
tacitly fix in the sequel k ∈ {1, .., S + 1} and the corresponding phase space X (k) and define:

Polymer weights
The weight of Γ is a function w(Γ; q), q ∈ X (k), (dependence on k is not made explicit in w)
which depends on the restriction of q to δγ

−1

out [sp(Γ)] and which satisfies the bound

sup
q∈X (k)

|w(Γ; q)| ≤ e−cpolζ
2`d−,γNΓ , NΓ =

|sp(Γ)|
`d+,γ

(3.11)

Polymer configurations and weights
We denote by Γ sequences ...Γi... of polymers with the restriction that any two polymers Γi
and Γj , i 6= j, are mutually disconnected (i.e. the closures of their spatial supports do not
intersect and they are therefore at least at mutual distance `+,γ). The collection of all such
sequences is denoted by B and BΛ, Λ a D(`+,γ)-measurable region, the subset of B made by
sequences whose elements Γ have all sp(Γ) in Λ; B0

Λ subset of BΛ with the further request
that sp(Γ) is not connected to Λc. If Γ ∈ B is a finite sequence we define its weight as

w(Γ; q) =
∏
Γ∈Γ

w(Γ; q) (3.12)

3.4 The interpolated Hamiltonian

Pirogov-Sinai applications also require to change the Hamiltonian. Let Λ be a bounded,
D(`+,γ)-measurable region, qΛ ∈ X (k)

Λ , then the “reference Hamiltonian” in Λ is

hΛ(qΛ) =
∑
s

[(∑
s′ 6=s

ρ
(k)
s′
)
− λβ

]
`d0

∑
x∈`0Zd∩Λ

ρ(`0)(qΛ;x, s) (3.13)

where λβ is the chemical potential introduced in Theorem 2.2, `0 is defined in Subsection 3.1,
ρ(`0) in (3.7).
For any t ∈ [0, 1] we then define the “interpolated Hamiltonian”

HΛ,t(qΛ|q̄Λc) = tHΛ(qΛ|q̄Λc) + (1− t)hΛ(qΛ) (3.14)

where qΛ ∈ X (k)
Λ , q̄Λc ∈ X (k)

Λc and

HΛ(qΛ|q̄Λc) = H(qΛ ∪ q̄Λc)−H(q̄Λc) (3.15)

H as in (1.1) with λ such that |λ − λβ| ≤ cγ1/2. Since HΛ,1(qΛ|q̄Λc) = HΛ(qΛ|q̄Λc) and
HΛ,0(qΛ|q̄Λc) = hΛ(qΛ), HΛ,t interpolates between the true and the reference Hamiltonians.
As we will see in [8], HΛ,t(qΛ|q̄Λc) enters in the analysis of the finite volume corrections to
the pressure, a key step in the implementation of the Pirogov-Sinai strategy.

10



3.5 DLR measures

The finite volume Gibbs measure in Λ, Λ a bounded, D(`+,γ)-measurable region, with bound-
ary condition q̄Λc , is the following probability on X (k)

Λ × B0
Λ

dGΛ(qΛ,Γ|q̄Λc) :=
w(Γ; q)e−βHΛ,t(qΛ|q̄Λc )

ZΛ(q̄Λc)
dνΛ(qΛ) (3.16)

where the free measure dνΛ(qΛ) is∫
X (k)

Λ

f(qΛ)dνΛ(qΛ) =
∞∑
n=0

1
n!

∑
s1,...,sn

∫
Λn
f(r1, s1, . . . , rn, sn)dr1 · · · drn (3.17)

and where the partition function ZΛ(q̄Λc) is the normalization factor which makes the above a
probability. In (3.16) the boundary conditions only involve particles configurations, to define
the DLR measures we also need to condition on the outside polymers.

DLR measures
Given Γ ∈ B, Γ = (Γ1,Γ2, . . . ), we call ΓΛc the collection of all pairs (sp(Γi) ∩ Λc, ηsp(Γi)∩Λc)
where ηsp(Γi)∩Λc denotes the restriction of ηΓ to sp(Γ) ∩ Λc. We then define the probability

dG(qΛ,Γ|q̄Λc , Γ̄Λc) on X (k)
Λ × B by

dGΛ(qΛ,Γ|q̄Λc , Γ̄Λc) :=
1ΓΛc=Γ̄Λc

ZΛ(q̄Λc , Γ̄Λc)
e−βHΛ,t(qΛ|q̄Λc )

 ∏
Γ∈Γ:sp(Γ)∩Λ6=∅

w(Γ; q)

 dνΛ(qΛ) (3.18)

A probability µ on X (k) × B is DLR if the two properties below hold.
• it verifies the Peierls bound: for any Γ1, ..,Γk,

µ
(
{Γ 3 Γ1} ∩ · · · ∩ {Γ 3 Γk}

)
≤ e−cpolζ

2`d−,γ(NΓ1
+..+NΓk

) (3.19)

• for any bounded, D(`+,γ)-measurable region Λ the conditional probability of µ given that
the particles configurations in Λc is q̄Λc and that ΓΛc = Γ̄Λc is dGΛ(qΛ,Γ|q̄Λc , Γ̄Λc) as given
by (3.18).

A few remarks on the above definitions: the Gibbs measures dGΛ(qΛ,Γ|q̄Λc) satisfy the Peierls
bound (3.19). Indeed given any Γ1, ..,Γk in B0

Λ such that sp(Γi) is not connected to sp(Γj)
for any i 6= j, then, for any qΛ,

∑
Γ∈BΛ:Γ1,..Γk∈Γ

w(Γ, qΛ) = {
k∏
i=1

w(Γi, qΛ)}
∑

Γ∈BΛ:Γ1,..Γk∈Γ

∏
Γ∈Γ,Γ 6=Γi,i=1,..,k

w(Γ, qΛ)

≤ {
k∏
i=1

w(Γi, qΛ)}
∑

Γ∈BΛ

w(Γ, qΛ)
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and (3.19) follows from (3.11). On the other hand we have not specified all the properties of
the weights as they arise in the applications (to the continuum Potts model) so that in the
present context wild things may happen. For instance weights still compatible with (3.11)
may be such that whenever sp(Γ) contains δ`+,γout [∆], ∆ a bounded, simply connected D(`+,γ)

measurable set, then w(Γ, q) = 0 unless sp(Γ) ⊃ ∆. If the weights had such a property then
there are sequences of finite volume Gibbs measures whose limits are not supported by Γ ∈ B.
Thus a support property like (3.19) is necessary in the present context.

3.6 Main result

We fix k ∈ {1, .., S + 1}, the statements below being valid for any such k and for all γ small
enough. We will employ the following notion: (q,Γ) agrees with (q′,Γ′) in ∆ (∆ a D(`+,γ)-
measurable set) if all Γ ∈ Γ such that the closure of sp(Γ) intersects ∆ are also in Γ′ and
viceversa and moreover

q ∩∆∗ = q′ ∩∆∗, ∆∗ := ∆
⋃
Γ∈Γ

{sp(Γ) ∪ δ(`+,γ)
out [sp(Γ)]} (3.20)

Theorem 3.1. For all γ small enough there is a unique DLR measure µ and there are con-
stants c1 and c2 such that the following holds. For any bounded, D(`+,γ)-measurable regions Λ
and Λ′ ⊃ Λ and any boundary conditions q̄′Λc and q̄′′Λ′c there is a coupling dQ of dGΛ(qΛ,Γ|q̄′Λc)
and dGΛ′(qΛ′ ,Γ|q̄′′Λ′c) such that if ∆ is any D(`+,γ)-measurable subset of Λ:

Q
(
{ (q′Λ,Γ

′) and (q′′Λ′ ,Γ
′′) agree in ∆}

)
≥ 1− c1e

−c2 dist(∆,Λc)
`+,γ (3.21)

3.7 A finite size condition

The proof of Theorem 3.1 follows the Dobrushin Shlosman approach: we first introduce and
verify a finite size condition and then prove that this implies uniqueness and exponential de-
cay. In this subsection we describe the former step. Let Λ be a D(`+,γ)-measurable, connected
region contained in Λ∗ where Λ∗ is obtained by taking a cube C ∈ D(`+,γ), then considering
A := C∪δ`+,γout [C] and finally Λ∗ = A∪δ`+,γout [A]. All the bounds we will write must be uniform
in such a class. Notice that the diameter of Λ is > `+,γ which for γ small is much larger than
the interaction range, in this sense Λ is “large” and we are away from the Dobrushin’s high
temperatures uniqueness scenario.
Our finite size condition involves only Gibbs measures without polymers: namely the proba-
bility on X (k)

Λ defined for any given q̄Λ ∈ X (k)
Λc as follows

dG0
Λ(qΛ|q̄Λc) :=

e−βHΛ,t(qΛ|q̄Λc )

Z0
Λ(q̄Λc)

dνΛ(qΛ) (3.22)
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We want to compare two such measures with different boundary conditions q̄′Λc and q̄′′Λc , thus
introducing the product space X (k)

Λ ×X (k)
Λ whose elements are denoted by (q′Λ, q

′′
Λ). The finite

size condition requires that there is a coupling dQ of dG0
Λ(qΛ|q̄′Λc) and dG0

Λ(qΛ|q̄′′Λc) with the
property that the event we define below has a “large probability”.

Notation
Let m̄ = 2d + 2 and cacc = 2c∗ with c∗ as in Theorem 5.1 below. Call ζn := c−naccζ and define
a partition of R+ into the intervals [0, ζm̄), [ζm̄, ζm̄−1),...,[ζ3, ζ2), [ζ2,∞).

Definition 3.2. The function KΛ(·) and the set ΘΛ(·).

We denote by

Ax := Bx(10−10`+,γ) ∩ Λc, Bx(R) the ball of center x and radius R (3.23)

Given q̄′Λc and q̄′′Λc, we define the function KΛ(q̄′Λc , q̄
′′
Λc ;x), x ∈ `−,γZd ∩ Λ as follows.

If Ax = ∅ then KΛ(q̄′Λc , q̄
′′
Λc ;x) = m̄+ 1.

If Ax 6= ∅ and q̄′Λc ∩Ax 6= q̄′′Λc ∩Ax, then KΛ(q′Λc , q
′′
Λc ;x) = 0.

If Ax 6= ∅ and q′Λc ∩Ax = q′′Λc ∩Ax, call b := max
r∈Ax,s∈{1,..,S}

|ρ(`−,γ)(q̄′Λc ; r, s)− ρ(k)
s |, then if b ∈

[ζm+1, ζm) for some m ≥ 2, we set KΛ(q̄′Λc , q̄
′′
Λc ;x) = m, otherwise we set KΛ(q̄′Λc , q̄

′′
Λc ;x) = 0.

The set ΘΛ(x) = ΘΛ(q̄′Λc q̄
′′
Λc ;x), x ∈ `−,γZd ∩ Λ, is defined as the whole space {q′Λ, q′′Λ} if

K(·;x) = KΛ(q̄′Λc , q̄
′′
Λc ;x) = 0 and otherwise by

ΘΛ(x) =
{
q′Λ, q

′′
Λ : q′Λ ∩ C

(`−,γ)
x = q′′Λ ∩ C

(`−,γ)
x ,

max
s∈{1,..,S}

|ρ(`−,γ)(q′Λ;x, s)− ρ(k)
s | ≤ ζK(·;x)−1

}
(3.24)

In section 7.4, we will use Theorem 3.3 below with n = 5d − 1 and Λ ⊂ Λ∗. Recalling the
definition of NΛ in (3.4), we state:

Theorem 3.3. For any integer n > 0 there exist γn > 0 and εn < 1 such that for all
γ < γn and for any Λ with NΛ ≤ n, for any q̄′Λc and q̄′′Λc as above, there is a coupling
dQΛ of dG0

Λ(qΛ|q̄′Λc) and dG0
Λ(qΛ|q̄′′Λc) such that with K(·;x) = KΛ(q̄′Λc , q̄

′′
Λc ;x) and ΘΛ(x) =

ΘΛ(q̄′Λc q̄
′′
Λc ;x) defined above,

QΛ

( ⋂
x∈`−γZd∩Λ

ΘΛ(x)
)
≥ 1− εn (3.25)

The proof of Theorem 3.3 is given in Part II of this paper. It consists of three parts, in the
first one we use a step of the renormalization group to describe the marginal of dG0

Λ over
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the variables {ρ(`−,γ)(x, s), x ∈ `−,γZd ∩ Λ, s ∈ {1, .., S}}. Their distribution is proved to
be Gibbsian with an effective Hamiltonian at the inverse effective temperature β`−,γ . In a
second part we study the ground states of the effective Hamiltonians, proving exponential
decay from the boundary conditions. In a third and final part we bound the Wasserstein
distance between the Gibbs measures by approximating the latter to Gaussian distributions
describing fluctuations around the ground states characterized in the previous step.

3.8 Disagreement percolation

The finite size condition established in Theorem 3.3 is used to construct the coupling Q
of Theorem 3.1. The proof uses the ideas introduced by van der Berg and Maes in their
disagreement percolation paper, [3]. The proof given in Part III of this paper consists of two
steps. In the first one we introduce set-valued stopping times, called stopping sets, and prove
that monotone sequences of stopping sets define couplings of the Gibbs measures and that if
the sequence stops, then in the last set there is agreement. In the second and last step we
prove that the probability that the sequence stops late is related to a percolation event which
is then shown to have exponentially small probability.

Part II

The finite size condition

4 Effective Hamiltonians

We will use the following notations.

4.1 General notation for Part II

• By default in this section Λ is a connected, D(`+,γ)-measurable region contained in Λ∗, see
Subsection 3.7, and regions in Rd are all D(`−,γ)-measurable. To discretize Rd we will use the
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lattice `−,γZd. Thus in the sequel `−,γ is the basic mesh. We define

J (`)
γ (x, y) =

∫
−
C

(`)
x

∫
−
C

(`)
y

Jγ(r, r′), x, y ∈ `Zd, ` = `−,γ (4.1)

• The basic variables are the densities ρ∆ = {ρ∆(x, s) ≥ 0, x ∈ `−,γZd ∩ ∆, s ∈ {1, .., S}},
∆ ⊂ Rd, (by default variables denoted by ρ are non negative densities). Call X(k)

∆ the set of
all ρ∆ such that n∆ := `d−,γρ∆ has integer values, so that X(k)

∆ is the range of values of the

densities ρ(`−,γ)
∆ (q∆;x, s) when q∆ ∈ X (k)

∆ , x ∈ `−,γZd ∩∆, s ∈ {1, .., S}; ρ(`)
∆ being defined in

(3.7).
• To have lighter notation we will use the label i for a pair (x, s), x ∈ `−,γZd, s ∈ {1, .., S},
writing x(i) = x, s(i) = s if i = (x, s) and sometimes shorthand |i − j| for |x(i) − x(j)| and
i ∈ Λ for x(i) ∈ `−,γZd ∩ Λ.
• H denotes the Euclidean space of vectors u =

(
u(i), i ∈ Λ

)
with the usual scalar product

(u, v) =
∑
i

u(i)v(i). By an abuse of notation we also denote by H the Hilbert space with Λ

above replaced by Rd.

4.2 The effective Hamiltonian

The effective Hamiltonian Heff
Λ (ρΛ|q̄Λc), ρΛ ∈ X(k)

Λ , q̄Λc ∈ X (k)
Λc , is defined by the equality

e−β`
d
−,γH

eff
Λ (ρΛ|q̄Λc ) :=

∫
{ρ(qΛ;·)=ρΛ}

e−βHΛ,t(qΛ|q̄Λc )νΛ(dqΛ) (4.2)

HΛ,t as in (3.14), so that β`d−,γ is the effective inverse temperature. The Gibbs measure with
Hamiltonian Heff

Λ (ρΛ|q̄), inverse temperature β`d−,γ and free measure the counting measure on

X
(k)
Λ is then the marginal over the variables {ρΛ ∈ X(k)

Λ } of the Gibbs measure dG0
Λ(qΛ|q̄Λc)

defined in (3.22).
Since `−,γ = γ−1+α− and α− is small, the effective temperature vanishes as γ → 0, and the
analysis of the Gibbs measure becomes intimately related to the study of the ground states
of Heff

Λ . This will be the argument of the next section, in this one we determine Heff
Λ . In this

subsection we describe its main terms and state the main theorem; in the successive ones we
give the proof.

The LP term.
The main contribution to the effective Hamiltonian will be the Lebowitz-Penrose free energy
functional, the LP term in the title of the paragraph. This is

FΛ(ρΛ|ρ̄Λc) = t
{1

2
(ρΛ, V̄γρΛ) + (ρΛ, V̄γ ρ̄Λc)

}
− 1
β

(1Λ, I(ρΛ)) + (1− t)(ρ(k)1Λ, ρΛ) (4.3)

where we employ the usual vector notation: if A(i, j) is a matrix, u(i) a vector in H,(
u, v
)

=
∑
i

u(i)v(i), Au(i) =
∑
j

A(i, j)u(j) (4.4)
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calling 1Λ the vector 1Λ(i) = 1 if i ∈ Λ and = 0 otherwise. In (4.3)

V̄γ(i, j) = `d−,γ
∑

y∈`−,γZd
J

(`−,γ)
γ (x(i), y)`d−,γJ

(`−,γ)
γ (y, x(j))1s(i)6=s(j) (4.5)

The normalization is such that V̄γ is a probability kernel. The term (1Λ, I(ρΛ)) in (4.3) is
“the entropy minus the chemical potential energy”:

I(ρΛ)(i) = I∗(ρΛ(i)), I∗(b) := −b(log b− 1) + βλβb (4.6)

When t = 1, FΛ is just the usual LP free energy and for this reason we call FΛ the LP term.
Notice that if ρΛ(i) = ρ

(k)
s(i)1Λ(i), then the bulk terms of FΛ which are proportional to t cancel,

this will play an important role in the study of the ground states.

The one body effective potential.
This term is due to second order terms in the Stirling formula when computing the entropy
contribution. It has the form:

H
(1)
Λ (ρΛ) =

`−d−,γ
β

(
1Λ, log

√
2π`d−,γρΛ + t[λβ − λ]ρΛ

)
(4.7)

The many-body effective potential.
This term denoted by H

(2)
Λ (ρΛ|q̄Λc), takes into account variations of the potential energy

inside the elementary cells C(`−,γ)
x ∈ D(`−,γ) which have been neglected in the LP term. The

dependence of H(2)
Λ on ρΛ is very simple, it is in fact a polynomial of order < N , N a suitable

positive integer. The coefficients of the polynomial are described next, they have a simpler
form once we use Poisson polynomials. We denote by πk(n) = n(n−1) · · · (n−k+1), k ∈ N+,
n ∈ N+, the Poisson polynomial of order k and, by an abuse of notation we write

π∗k(ρ) = `−dk−,γ πk(n), ρ =
n

`d−,γ
(4.8)

We shorthand i = (i1, .., in), n < N , and call n = n(i); i ∩ Λ 6= ∅ meaning that there is
ih ∈ i such that ih ∈ Λ. Given i we denote by k(i) = (k(i1), .., k(in)), with k(ih) positive

integers, calling |k(i)| =
n(i)∑
h=1

k(ih). We finally call ρ̄Λc(i) := ρ(`−,γ)(q̄Λc ; i) and denote by ρ(i)

the function equal to ρΛ(i) and to ρ̄Λc(i) when i ∈ Λ, respectively i ∈ Λc; a0 below is a
positive number < 1. Then H

(2)
Λ has the form:

H
(2)
Λ (ρΛ|q̄Λc) =

∑
i∩Λ 6=∅

∑
k(i):2≤|k(i)|<N

(γ`−,γ)a0|k(i)|Φ(i, k(i), q̄Λc,i)
n(i)∏
h=1

π∗k(ih)(ρ(ih)) (4.9)

Φ are coefficients which may depend on q̄Λc but only if i ∩ Λc 6= ∅, in such a case they only
depend on q̄Λc,i :=

⋃
i∈i:x(i)∈Λc

{q̄Λc ∩ C
(`−γ)
x(i) }. The main features of the coefficients Φ (whose

dependence on t is not made explicit) is that:

Φ(i, k(i), q̄Λc,i) = 0 if diam(x(i1), ..., x(in)) ≥ 2Nγ−1 (4.10)
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and ∑
i3i0

∑
k(i):2≤|k(i)|<N

Φ(i, k(i), q̄Λc,i) ≤ c, for any i0 (4.11)

where c > 0 is a constant independent of q̄Λc and t.

Theorem 4.1. For any a0 < 1 there are c, N and coefficients Φ as above such that for all γ
small enough

Heff
Λ (ρΛ|q̄Λc) = FΛ(ρΛ|ρ̄Λc) +H

(1)
Λ (ρΛ) +H

(2)
Λ (ρΛ|q̄Λc) +RΛ(ρΛ|q̄Λc) (4.12)

with the remainder RΛ(ρΛ|q̄Λc) = R(1) +R(2)

|R(i)| ≤ cγτ , i = 1, 2 (4.13)

with τ = (3− 5α− − 2α+)d2 > 0 (see (4.18) and (4.30)).

Recall that in this section Λ is a subset of Λ∗ thus |Λ| ≤ c`d+,γ , c a constant, if we wanted larger
volumes we would have to increase N , namely to include more body-potentials and longer
interaction range, the expansion in Theorem 4.1 being highly non uniform in Λ. The proof
which follows closely the one in [13] of a similar result, is given in the remaining subsections.

4.3 Derivation of the LP term

We fix arbitrarily ρΛ ∈ X(k)
Λ , call nΛ(i) = `d−,γρΛ(i), introduce a set of labels L whose elements

are denoted by ξ = (i, `), where i = (x, s) ∈ Λ, ` ∈ {1, .., nΛ(ξ)}; the coordinate functions
on L are x(ξ), s(ξ) and `(ξ) respectively equal to the first, second and third entry in ξ.
We then define for ξ ∈ Λ (meaning x(ξ) ∈ Λ) the probability measures on Λ × {1, .., S} as

dpξ(r, s) = 1
r∈C

(`−,γ )

x(ξ)

1s
dr

`d−,γ
and call dpΛ =

∏
ξ∈L

dpξ, remembering that this measure as well

as the index set L depend on the initial choice of ρΛ, as this is momentarily fixed we are not
making it explicit. We obviously have:

e−β`
d
−,γH

eff
Λ (ρΛ|q̄) =

(∏
i∈Λ

`
dnΛ(i)
−,γ
nΛ(i)!

) ∫
e−βHΛ,t(qΛ|q̄Λc )dpΛ (4.14)

where qΛ on the r.h.s. should be thought of as a ξ-labeled configuration of particles (the label
specifying also the cube where the particle is) which is identified to the integration variable
relative to the measure dpΛ: thus the dependence on ρΛ is hidden in the structure of the
probability dpΛ. The bracket on the r.h.s. is equal to

∏
i∈Λ

`
dnΛ(i)
−,γ
nΛ(i)!

= e`
d
−,γ

(
1Λ,S(ρΛ)

)
, S(ρΛ)(i) = `−d−,γ

(
n log `d−,γ − log n!

)
, n = nΛ(i) = `d−,γρΛ(i)

(4.15)
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Then, recalling the Stirling formula:

n! = nn+1/2e−n
√

2π
(

1 + 0
(

1√
n

))
(4.16)

we can estimate
(
1Λ, S(ρΛ)

)
as follows(

1Λ, S(ρΛ)
)

=
(
1Λ, S

app(ρΛ)
)
− βH(1,0) − βR(1) (4.17)

where Sapp(ρ) = −ρ(log ρ− 1) and H(1,0) is equal to the r.h.s. of (4.7) with t = 0.

Proof of (4.13) for R(1).
We now show that R(1) defined in (4.17) above satisfies the bound (4.13):

`d−,γ [Sapp(ρΛ)(i)− S(ρΛ)(i)] = −nΛ(i) (log nΛ(i)− 1) + log nΛ(i)!

=
1
2

log nΛ(i) + log
√

2π + 0

(
1√
nΛ(i)

)
,

(
1Λ, S

app(ρΛ)
)
−
(
1Λ, S(ρΛ)

)
= βH(1,0) +

∑
i∈Λ

0
(
`
−d/2
−,γ

)
where we used the fact that nΛ(i) ≥ c`d−,γ , since ρΛ ∈ X(k)

Λ . From this, we get

|βR(1)| ≤ # {i ∈ Λ} · `−3d/2
−,γ

≤ SNΛ

(
`+,γ
`−,γ

)d
`
−3d/2
−,γ (4.18)

Call H̄Λ(qΛ|q̄Λc) the energy HΛ,t(qΛ|q̄Λc) defined with Jγ replaced by J (`−,γ)
γ , then H̄Λ(qΛ|q̄Λc)

depends only on the densities ρ(`−,γ)(qΛ; i) and ρ(`−,γ)(q̄Λc ; i) which in (4.14) are fixed equal
to ρΛ(i) and ρ̄Λc(i), hence

H̄Λ(qΛ|q̄Λc) = `d−,γ

{
t
(1

2
(
ρΛ, V̄γρΛ

)
+
(
ρΛ, V̄γ ρ̄Λc

)
− λ(1Λ, ρΛ)

)
+ (1− t)(1Λ[ρ(k) − λβ], ρΛ)

}
(4.19)

Collecting all the above terms we thus identify in (4.14)

e−β`
d
−,γ{H

(2)
Λ (ρΛ|q̄Λc )+R(2)} =

∫
e−β{HΛ,t(qΛ|q̄Λc )−H̄Λ(qΛ|q̄Λc )}dpΛ (4.20)

4.4 Cluster expansion

To estimate the r.h.s. of (4.20) we use cluster expansion. Call E a set of unordered pairs (ξ, ξ′),
ξ 6= ξ′, then E defines a graph structure (L, E) with vertices ξ ∈ L and edges (ξ, ξ′) ∈ E . We
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call diagrams the connected sets θ in (L, E), θ = (θ1, .., θn) their collection. Call Θ and Θdsc

the spaces of all possible diagrams and of all possible θ which appear when varying E . Let

w(θ) =
∫ ( ∏

(ξ,ξ′)∈θ,s(ξ)6=s(ξ′)

{e−βt{Vγ(x(ξ),x(ξ′))−`−d−,γ V̄γ(x(ξ),x(ξ′))} − 1}
)
dpΛ (4.21)

then, since dpΛ is a product measure,∫
e−β{HΛ,t(qΛ|q̄Λc )−H̄Λ(qΛ|q̄Λc )}dpΛ =

∑
θ∈Θdsc

∏
θ∈θ

w(θ) (4.22)

(4.22) is derived from (4.20) by writing

e−β{HΛ,t(qΛ|q̄Λc )−H̄Λ(qΛ|q̄Λc )} =
∏

(ξ,ξ′):s(ξ) 6=s(ξ′)

{e−βt{Vγ(rξ,rξ′ )−`
−d
−,γ V̄γ(x(ξ),x(ξ′))} − 1 + 1}

where the labels ξ include both the particles in Λ and those of q̄Λc outside Λ. After expanding
the product we then get (4.22), details are omitted.
The basic condition for cluster expansion which we have in the present context, involves the
elementary diagrams namely θ = (ξ, ξ′) and states that given any a > 0∑

ξ′

|w
(
(ξ, ξ′)

)
|γ−α−+a < 1, for any γ small enough (4.23)

(4.23) is proved by observing that the densities ρΛ(i) are bounded and that (4.21) yields for
θ = (ξ, ξ′)

|w
(
(ξ, ξ′)

)
| ≤ cγd(γ`−,γ)1

dist(C
(`−,γ )

x(ξ)
,C

(`−,γ )

x(ξ′) )≤γ−1
(4.24)

“Cluster expansion” then applies for any γ small enough and the following holds (for any
ρΛ ∈ X(k)

Λ ).

Notation. We give Θ a graph structure by calling vertices the diagrams θ ∈ Θ and edges the
pairs θ and θ′ which have non empty intersection, as sets in L.
Denote by m(θ), θ ∈ Θ, positive, integer valued functions, calling m(θ) “the multiplicity” of
θ. We restrict to m ∈M where

m ∈M if and only if sp(m) := {ξ : ξ ∈ θ,m(θ) > 0} is a connected set (4.25)

and shorthand ξ ∈ m when ξ ∈ sp(m).

Cluster expansion tells us that given any a0 < 1 for all γ small enough there are coefficients
ω(m), m ∈M, such that

logZ({w(·)}) := log{
∑

θ∈Θdsc

∏
θ∈θ

w(θ)} =
∑
m∈M

ω(m) (4.26)

and, for any ξ ∈ L, ∑
m∈M:m3ξ

|ω(m)|{
∏

θ:m(θ)>0

(γ`−,γ)a0|θ|edgm(θ)|} < 1 (4.27)
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where |θ|edg is the number of edges in θ. The coefficients ω(m) have the following explicit
expression:

ω(m) = Cm
∏

θ:m(θ)>0

w(θ) (4.28)

where thinking of Z({w(·)}) in (4.26) as a function of the weights {w(θ), θ ∈ Θ},

Cm =
∏

θ:m(θ)>0

1
m(θ)!

{
∏

θ:m(θ)>0

∂m(θ)

∂w(θ)m(θ)
} logZΛ(w(·))

∣∣∣
w(θ)=0

(4.29)

(Cm being bounded coefficients independent of Λ). As said, all the above follows from the
general theory (of cluster expansion) using the condition (4.23), see for instance [16].

4.5 Identification of the many body potential

We will next use (4.27) to truncate the sum in (4.26) identifying the remainder with the term
R(2) and recognizing in the finite sum the Hamiltonian H(2)

Λ (ρΛ|q̄Λc), for this we will use the
explicit representation of the terms of the expansion provided by (4.28)–(4.29).
Calling |m| =

∑
θ∈Θ

|θ|edgm(θ), by (4.27), for any N > 0,

∑
m∈M:|m|≥N

|ω(m)| ≤
∑
ξ∈L

∑
m∈M:m3ξ,|m|≥N

|ω(m)|

≤ |L|(γ`−,γ)a0N
∑

m∈M:m3ξ
|ω(m)|{

∏
θ:m(θ)>0

(γ`−,γ))−a0|θ|edgm(θ)|} ≤ |L|(γ`−,γ)a0N

Since Λ ⊂ Λ∗, there is c > 0 such that |L| ≤ c`d+,γ and we can then choose N so large that

−β`d−R(2) :=
∑

m∈M:|m|≥N

ω(m), |
∑

m∈M:|m|≥N

ω(m)| ≤ `−d/2−,γ (4.30)

thus (4.13) is satisfied and

−β`d−,γH(2)(ρΛ|q̄Λc) :=
∑

m∈M:|m|<N

ω(m) (4.31)

The dependence on ρΛ is hidden in the space Θ, on which the functions m are defined.
Theorem 4.1 will be proved once we show that the r.h.s. of (4.31) can be written as the r.h.s.
of (4.9).
We rewrite the r.h.s. of (4.31) by first summing over all m in “the same equivalence class”
and then summing over all equivalence classes. Before defining the equivalence m ∼ m′ we
observe that if ψ is a one to one map of L onto itself, then ψ extends naturally to a map of Θ
onto itself by letting ψ(θ) be the diagram with vertices ψ(ξ), ξ ∈ θ, and edges (ψ(ξ), ψ(ξ′)),
(ξ, ξ′) the edges of θ. We then call m ∼ m′ if there is a one to one map φ from L onto L such
that • x(φ(ξ)) = x(ξ), s(φ(ξ)) = s(ξ) for all ξ; • m′(φ(θ)) = m(θ) for all θ ∈ Θ.
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Calling [m] the equivalence class of m, i.e. the set of all m′ : m′ ∼ m, we define the average
weight

ω∗(m) :=
1

card([m])

∑
m′∈[m]

ω(m′) (4.32)

Notice that if sp(m) consists only of ξ such that x(ξ) ∈ Λ then ω(m) = ω(m′) = ω∗(m) for
all m′ ∈ [m]. If instead there are labels ξ in sp(m) such that x(ξ) ∈ Λc then ω∗(m) is a non
trivial average. Actually the averages involve the labels ` in each triple (x, s, `), x ∈ Λc, with
m(x, s, `) > 0. Calling K(i;m) the number of ξ ∈ m such that i(ξ) = i,

card([m]) =
∏
i

πK(i;m)(n(i)) (4.33)

where πk(n) is the Poisson polynomial and n(i) = ρ(i)`d−,γ . We then have

−β`d−H(2)(ρΛ|q̄Λc) :=
∑

[m],|m|<N

ω∗(m){
∏
i

πK(i;m)(n(i))} (4.34)

We next interchange the sums: for any sequence K(i) ∈ N+,
∑
i

K(i) < N , let

Ψ(K(·)) := `−d−,γ
∑

[m],m:K(·;m)=K(·)

ω∗(m)
∏
i

`
dK(i)
−,γ (4.35)

then

−βH(2)(ρΛ|q̄Λc) :=
∑
K(·)

Ψ(K(·)){
∏
i

`
−dK(i)
−,γ πK(i)(n(i))} (4.36)

thus identifying Φ in Theorem 4.1 in terms of Ψ:

Ψ(K(·)) = (γ`−,γ)a0|K(i)|Φ(i,K(i), q̄Λc,i) (4.37)

recalling the remark before (4.33), indeed the l.h.s. depends on q̄Λc only via q̄Λc,i.
Of course we still need to prove that the function Φ defined via (4.37) satisfies the bounds
stated in (4.10)–(4.11). Since the coefficients Cm in (4.28), are bounded, say

max
m:|m|<N

|Cm| ≤ cN (4.38)

we just need to bound |w(θ)|. The definition of w(θ) involves product of terms w
(
(ξ, ξ′)

)
for

each edge of the diagram which we bound using (4.24). The bound obtained in this way is
the same for all m′ ∈ [m] so that the bound for ω∗(m) is the same as for ω(m). To fix up the
combinatorics, we proceed as follows. For any m we define a graph structure G(m) on sp(m)
introducing a node for each element ξ of sp(m) which is then given the label i = (x(ξ), s(ξ)),
thus different nodes may have the same label. Edges in G(m) are the union of all the edges
present in all the diagrams θ such that m(θ) > 0. Each edge is then given a multiplicity
equal to the sum of all m(θ) over the diagrams θ which contain the given edge. With this
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definition any m′ ∈ [m] gives rise to the same G(m) as we are only recording the coordinates
x(ξ) and s(ξ) of ξ.
To proceed with the bound we assign a “weight” `d−,γ to any node in G(m). Having (4.24)in

mind, we assign to each edge a weight
(
cγd(γ`−,γ)1

dist(C
(`−,γ )

x(ξ)
,C

(`−,γ )

x(ξ′) )≤γ−1

)p
, where p the

multiplicity of the edge. We have thus assigned a weight W (G(m)) to G(m) equal to the
product of the weights of its nodes and of its edges and, with reference to (4.35) and recalling
(4.38)

|Ψ(K(·))| ≤ cN`−d−,γ
∑

[m],m:K(·;m)=K(·)

W (G(m)) (4.39)

Recalling that K(i;m) is the number of ξ ∈ m such that i(ξ) = i, K(i;m) is also the number
of nodes in G(m) with label i. Thus, calling K(i, G) the number of nodes in G with label i,
i = {i, i ∈ G}, and K(i, G) = {K(i, G), i ∈ i},

|Ψ(K(i))| ≤ cN`−d−,γ
∑

G:K(i;G)=K(i)

W (G) (4.40)

(4.37) then yields

|Φ(i,K(i), q̄Λc,i)| ≤ cN`−d−,γ(γ`−,γ)−a0|K(i)|
∑

G:K(i;G)=K(i)

W (G) (4.41)

By (4.35) the terms to consider have i such that
∑
i∈i

K(i) < N . Then Φ(i,K(i), q̄Λc,i) = 0 if

diam(x) ≥ 2γ−1N , x being the sites appearing in i, because the weight of the edges in G are
proportional to 1

dist(C
(`−,γ )

x(ξ)
,C

(`−,γ )

x(ξ′) )≤γ−1
.

To prove (4.11) we fix i0 and restrict the sum in (4.41) to G : K(i0;G) > 0. For each such G
we can then define a tree structure Ti0(m) in G(m) with root i0, a first generation made by
all nodes connected to the root, second generation made by the nodes connected to those of
the first generation and so forth. To recover the original graph we may also have to add edges
connecting individuals of the same generation and also attribute to each edge its multiplicity,
as explained earlier. We then have

l.h.s. of (4.11) ≤
∑
i3i0

∑
K(i):|K(i)|<N

`−d−.γ(γ`−,γ)−a0|K(i)|
∑

Ti0 :K(i;Ti0 )=K(i)

W (Ti0) (4.42)

Define a new weight W ∗(T ) by changing the weights of the edges into(
c(γ`−,γ)1−a0γd1|x−x′|≤2γ−1

)p
, p the multiplicity of the edge

while the weights of the node are unchanged. Then

l.h.s. of (4.11) ≤ `−d−,γ
∑
i3i0

∑
K(i):|K(i)|<N

∑
Ti0 :K(i;Ti0 )=K(i)

W ∗(Ti0) (4.43)
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The weight of the root of the tree cancels with the prefactor `−d−,γ . We upper bound the sum
on the r.h.s. if we regard a multiple edge with multiplicity k as k distinct edges originating
from a same node and also regard edges between nodes in the same generation as edges into
the next generation (thus dropping the constraint that the arrival node is the same as the
arrival node of another edge), each node added in this way getting an extra weight `d−,γ . In
this way we have an independent branching and since

lim
γ→0

∑
x′

(γ`−,γ)a0γd1|x′|≤2γ−1`d− = 0

we then get (4.11), details are omitted. Theorem 4.1 is proved.

5 Ground states of the effective Hamiltonian

In this section we study the ground states of the main term in the effective Hamiltonian
Heff

Λ (ρΛ|q̄Λc), which, with reference to (4.12), is

f(ρΛ; q̄Λc) := Heff
Λ (ρΛ|q̄Λc)−RΛ(ρΛ|q̄Λc) (5.1)

While originally ρΛ =
(
ρΛ(i), i = (x, s), x ∈ `−,γZd ∩ Λ, s ∈ {1, .., S}

)
∈ X

(k)
Λ defined in

Subsection 4.1, it is convenient here to extend the range of values of ρΛ(i) to an interval of
the real line. We thus call

Y
(k)

Λ =
{
ρΛ : ρΛ(x, s) ∈ [ρ(k)

s − ζ, ρ(k)
s + ζ],∀x ∈ `−,γZd ∩ Λ,∀s ∈ {1, .., S}

}
The ground states in the title are then the minimizers of f(ρΛ; q̄Λc) as a function on Y

(k)
Λ

with q̄Λc regarded as a parameter.

Let K̂Λ(x) ≡ K̂Λ(q̄′Λc , q̄
′′
Λc ;x) be the function defined as KΛ(x) in Definition 3.2 but with the

set Ax in (3.23) replaced with the set

Âx = Bx(10−30`+,γ) ∩ Λc (5.2)

Our main result is the following theorem:

Theorem 5.1. There are c∗ and ω̂ positive such that for any a0 < 1 and for all γ small enough
the following holds. For any q̄Λc ∈ X (k)

Λc there is a unique minimizer ρ̂Λ of {f(ρΛ; q̄Λc), ρΛ ∈
Y

(k)
Λ }. Let K̂(x) x ∈ `−,γZd∩Λ, be as above and ρ̂′Λ and ρ̂′′Λ the minimizers with q̄′Λc and q̄′′Λc,

then for any s ∈ {1, .., S}:

• (i) If K̂(x) > 0, |ρ̂′Λ(x, s)− ρ̂′′Λ(x, s)| ≤ ce−10−30(γ`+,γ)ω̂.
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• (ii) If K̂(x) = m > 0, |ρ̂′Λ(x, s)− ρ(k)
s | ≤ c∗(ζm + (γ`−,γ)a0 + e−10−30(γ`+,γ)ω̂), with same

bound for ρ̂′′Λ(x, s).

Existence of a minimizer follows from f being a smooth function on a compact set of the
Euclidean space. Uniqueness and exponential decay are more difficult and the proof will take
the whole section. The basic ingredient is that D2f (the Hessian matrix of the derivatives
w.r.t. the variables ρΛ(i)) computed on the minimizer in the constraint space Y (k)

Λ is positive
and “quasi diagonal”, which would then give the required uniqueness and exponential decay
if we had Df = 0. This is however not necessarily the case because the minimum could be
reached on the boundaries of the domain of definition, which, on the other hand, is necessary
to ensure convexity. We will solve the problem by relaxing the constraint and then studying
the limit when the cutoff is reconstructed.

5.1 Extra notation and definitions

The basic notation are those established in Subsection 4.1, here we add a few new ones specific
to this section:

• We will write f(ρΛ; q̄Λc) = F (ρΛ; ρ̄Λc) + g(ρΛ; q̄Λc) where, recalling (4.12),

g(ρΛ; q̄Λc) = H
(1)
Λ (ρΛ) +H

(2)
Λ (ρΛ|q̄Λc) (5.3)

• To evidentiate some of the variables in ρΛ, say those in ∆ ⊂ Λ, we write ρΛ = (ρ∆, ρΛ\∆),
where ρ∆ and ρΛ\∆ are the restrictions of ρΛ to ∆ and respectively to Λ \∆.

• It will be convenient to relax the constraint ρΛ ∈ Y (k)
Λ by enlarging Y (k)

Λ into W (k)
Λ

W
(k)
Λ =

{
ρΛ : ρΛ(x, s) ∈ [ρ(k)

s − b, ρ(k)
s + b], ∀x ∈ `−,γZd ∩ Λ, ∀s ∈ {1, .., S}

}
(5.4)

where b := min
k1 6=k2

‖ρ(k1) − ρ(k2)‖∞
2

has been chosen such that

W
(k)
Λ ∩ {ρ(1), .., ρ(S+1)} = {ρ(k)}

We then introduce a cutoff parameter ε ∈ (0, 1) (which will eventually vanish), call (a)+ =
a1a>0, (a)− = a1a<0 and define for any ε > 0, the function fε on W

(k)
Λ as

fε(ρΛ; q̄Λc) := f(ρΛ; q̄Λc) +
ε−1

4

∑
i∈Λ

(
{(ρΛ(i)− [ρ(k)

s(i) + ζ])+}4

+{(ρΛ(i)− [ρ(k)
s(i) − ζ])−}4

)
(5.5)
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• Since f [fε] is a continuous function of ρΛ which varies on a compact set, it has a minimizer
denoted by ρ̂Λ [ρ̂Λ,ε], and we will later see that this minimizer is unique. We call ρ̂ its extension
to the whole `−,γZd × {1, .., S}, by setting ρ̂ = ρ̄Λc on Λc. Here ρ̄Λc is the density associated
to q̄Λc via (3.7) with ` = `−,γ , thus ρ̂ of course depends on q̄Λc .
• For any D(`−,γ)-measurable set B we write for any differentiable and D(`−,γ)-measurable
function ψ(ρ)

DBψ =
{ ∂ψ

∂ρ(i)
, x(i) ∈ `−,γZd ∩B

}
(5.6)

5.2 A-priori estimates

In this subsection we prove some a-priori bounds on ρ̂Λ,ε(i). When ε > 0 we loose the bound
|ρ̂Λ(i) − ρ

(k)
s(i)| ≤ ζ valid at ε = 0 but, as we will see, we have the great simplification to

know that for ε small enough, minimizers are critical points, thus satisfying DΛfε = 0, and
|ρ̂Λ,ε(i)− ρ(k)

s(i)| ≤ 2ζ.

Lemma 5.2. There is a constant c > 0 such that for all ε > 0 and for any minimizer
ρ̂Λ,ε ∈W (k)

Λ of fε the following holds: for all x ∈ `−,γZd ∩ Λ and all s ∈ {1, .., S},∣∣ρ̂Λ,ε(x, s)− ρ(k)
s

∣∣ ≤ ζ + c(
`+,γ
`−,γ

)d/4ε1/4 (5.7)

In particular, if ζ < b/2 then for all ε > 0 small enough, any minimizer ρ̂Λ,ε ∈ W (k)
Λ of fε is

also a critical point.

Proof. We denote by

ψ(ρΛ) =
∑
i∈Λ

{(ρ̂Λ,ε(i)− [ρ(k)
s(i) + ζ])+}4 + {(ρ̂Λ,ε(i)− [ρ(k)

s(i) − ζ])−}4

Then for all ρΛ ∈W (k)
Λ ,

1
4ε
ψ(ρ̂Λ,ε) ≤ f(ρΛ; q̄Λc)− f(ρ̂Λ,ε; q̄Λc) +

1
4ε
ψ(ρΛ)

and since Ψ vanishes on Y
(k)

Λ :

1
4ε
ψ(ρ̂Λ,ε) ≤ inf

ρΛ∈Y
(k)
Λ

f(ρΛ; q̄Λc)− f(ρ̂Λ,ε; q̄Λc)

and, calling φ′ = min
ρΛ∈Y

(k)
Λ

f(ρΛ; q̄Λc), φ′′ = min
ρΛ∈W

(k)
Λ

f(ρΛ; q̄Λc)

1
4ε
ψ(ρ̂Λ,ε) ≤ φ′ − φ′′
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and in conclusion
|ρ̂Λ,ε(x, s)− ρ(k)

s | ≤
(

4ε(φ′ − φ′′)
)1/4

+ ζ (5.8)

and (5.7) follows because φ′ and φ′′ are bounded proportionally to the cardinality of {x : x ∈
`−,γZd ∩ Λ}.
By choosing ε so small that ζ + cγ−(α++α−)d/4ε1/4 < 2ζ < b, we conclude that ρ̂Λ,ε is in the
interior of W (k)

Λ and is thus a critical point.

Lemma 5.3. ρ̂Λ,ε converges by subsequences and any limit point ρ̂Λ is a minimizer of f .

Proof. Convergence by subsequences follows from compactness and by (5.7) any limit point
ρ̂Λ is in Y

(k)
Λ . Now for any ρΛ ∈ Y (k), we get f(ρΛ) = fε(ρΛ) ≥ fε(ρ̂Λ,ε) ≥ f(ρ̂Λ,ε) and by

taking ε→ 0 along a convergent subsequence f(ρΛ) ≥ f(ρ̂Λ).

A minimizer ρ̂Λ of f is not necessarily a critical point, i.e. DΛf = 0, the equality may fail if
the minimizer is on the boundary of the constraint. In such a case however, the gradient if
different from zero “must be directed along the normal pointing toward the interior”.

Lemma 5.4. Any minimizer ρ̂Λ of {f(ρΛ, q̄Λc), ρΛ ∈ Y
(k)

Λ } is “a critical point” in the
following sense:
• If for some i ∈ Λ, |ρ̂Λ(i)− ρ(k)

s(i)| < ζ (strictly!), then

∂

∂ρΛ(i)
f(ρ̂Λ, q̄Λc) = 0 (5.9)

• If instead ρ̂Λ(i) = ρ
(k)
s(i) ± ζ, then

∂

∂ρΛ(i)
f(ρ̂Λ, q̄Λc) ≤ 0, respectively ≥ 0 (5.10)

5.3 Convexity and uniqueness

Convexity is a key ingredient in our analysis:

Theorem 5.5. Given any κ ∈ (0, κ∗) (κ∗ as in (2.6)), for all γ small enough the following
holds. Let ρΛ ∈W (k)

Λ be such that |ρΛ(i)− ρ(k)
s(i)

∣∣ ≤ 4ζ, then the matrix A := D2
Λfε(ρΛ, q̄Λc) is

strictly positive, as an operator on H, namely (recall the definitions in Subsection 4.1)(
u,Au

)
≥ κ(u, u), for all u ∈ H (5.11)
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Same inequality holds when ε = 0.

Proof. Recalling (5.3) and denoting by ρ−1
Λ below the diagonal matrix with entries ρΛ(i)−1

(u,Au) = t(u, V̄γu) +
1
β

(u, ρ−1
Λ u) + (u, [D2

Λg]u) + (u, [D2
Λ(fε − f)]u)

and get a lower bound by dropping the last term thus reducing the proof to the case ε = 0.
Extend u and A as equal to 0 outside Λ and set

U(x, s) = `d−,γ
∑

y∈`−,γZd
J

(`−,γ)
γ (x, y)u(y, s), x ∈ `−,γZd

where J (`)
γ is defined in (4.1). Then,

(u,Au) ≥ t
∑
s6=s′

∑
x∈`−,γZd

U(x, s)U(x, s′) +
1
β

(u, ρ−1
Λ u) + (u, [D2

Λg]u)

=
{
t
∑
s 6=s′

∑
x∈`−,γZd

U(x, s)U(x, s′) +
∑

x∈`−,γZd,s

[
1

βρ(k)(s)
− κ∗]U(x, s)2

}
−

∑
x∈`−,γZd,s

[
1

βρ(k)(s)
− κ∗]U(x, s)2 +

1
β

(u, ρ−1
Λ u) + (u, [D2

Λg]u)

recalling(2.8), by (2.6) the curly bracket is non negative as well as
1

βρ
(k)
s

− κ∗.

Since for each s ∑
x∈`−,γZd

U(x, s)2 ≤
∑

x∈`−,γZd
u(x, s)2

then ∑
x∈`−,γZd,s

[
1

βρ
(k)
s

− κ∗]U(x, s)2 ≤ (u, [
1

βρ(k)
− κ∗]u)

Thus (
u,Au

)
≥
(
u, [κ∗ +

1
βρΛ

− 1
βρ(k)

]u
)

+
(
u, [D2

Λg]u
)

Recalling (A.2), (A.3) and using (4.9)–(4.11) we get

‖D2
Λg‖ ≤ sup

i

∑
j

| ∂2g

∂ρΛ(i)∂ρΛ(j)
| ≤ (γ`−,γ)a0

Thus (
u, [D2

Λg]u
)
≤ [γ`−,γ ]2a0(u, u)

(5.11) is then proved recalling the assumption |ρΛ(i)− ρ(k)
s(i)

∣∣ ≤ 4ζ.
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Theorem 5.6. Given any κ ∈ (0, κ∗) (κ∗ as in (2.6)), for all γ small enough the following
holds. Let ρ̂Λ,ε be a minimizer of fε and for ε = 0 of f , then for both ε > 0 small enough and
ε = 0

fε(ρΛ, q̄Λc) ≥ fε(ρ̂Λ,ε, q̄Λc) +
κ

2
(
ρΛ − ρ̂Λ,ε, ρΛ − ρ̂Λ,ε

)
(5.12)

for all ρΛ such that |ρΛ(i)− ρ(k)
s(i)| ≤ 2ζ for all i ∈ Λ. (5.12) remains valid if ρ̂Λ,ε is a critical

point, DΛfε = 0, and |ρ̂Λ,ε − ρ(k)
∣∣ ≤ 2ζ as well as when ε = 0 and ρ̂Λ,0 a “critical point” of

f in the sense of Lemma 5.4.

Proof. We interpolate by setting ρΛ(θ) = θρΛ + (1− θ)ρ̂Λ,ε, θ ∈ [0, 1], then calling ψε(θ) :=
fε(ρΛ(θ), q̄Λc) we have

ψε(1)− ψε(0) =
∫ 1

0

(
DΛψε(θ), ρΛ − ρ̂Λ,ε

)
=

∫ 1

0

∫ θ

0

(
D2

Λψε(θ
′){ρΛ − ρ̂Λ,ε}, ρΛ − ρ̂Λ,ε

)
+
(
DΛψε(0), ρΛ − ρ̂Λ,ε

)
By (5.7) for ε > 0 small enough and for ε = 0 as well, |ρΛ(θ)− ρ(k)

∣∣ ≤ 4ζ so that by (5.11)∫ 1

0

∫ θ

0

(
D2

Λψε(θ
′){ρΛ − ρ̂Λ,ε}, ρΛ − ρ̂Λ,ε

)
≥ κ

2
(
ρΛ − ρ̂Λ,ε, ρΛ − ρ̂Λ,ε

)
Moreover

(
DΛψε(0), ρΛ− ρ̂Λ,ε

)
≥ 0. In fact, if ε > 0 and ρ̂Λ,ε is a minimizer of fε, by Lemma

5.2 (for ε > 0 small enough) ρ̂Λ,ε is also a critical point and DΛψε(0) = 0. If ε = 0 and ρ̂Λ

a minimizer of f then by Lemma 5.4,
(
DΛψ0(0), ρΛ − ρ̂Λ

)
≥ 0 which, for the same reason,

holds if ρ̂Λ is a critical point of f in the sense of Lemma 5.4.

Corollary 5.7. For any γ and ε > 0 small enough the minimizer of fε is unique, same holds
at ε = 0 for f . For ε > 0 (and small enough) there is a unique critical point in the space
{|ρΛ − ρ(k)

∣∣ ≤ 2ζ}; such a critical point minimizes fε. Analogously, when ε = 0 there is
a unique critical point in the sense of Lemma 5.4. Such a critical point minimizes f . The
minimizer of fε, ε > 0, converges as ε→ 0 to the minimizer of f .

Proof. From Lemma 5.2 it follows that any minimizer ρ̂Λ,ε of fε is also a critical point and
verifies (5.7), so for all x ∈ `−,γZd ∩ Λ and all s ∈ {1, .., S},

∣∣ρ̂Λ,ε(x, s) − ρ
(k)
s

∣∣ ≤ 2ζ and
we can apply Theorem 5.6 to the matrix D2

Λfε(ρ̂Λ,ε; q̄Λc). If we assume that there are two
minimizers, then (5.12) gives a contradiction. The proofs in the case ε = 0 follows by using
Lemma 5.3.
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5.4 Perfect boundary conditions

In this subsection we restrict to “perfect boundary conditions”, by this meaning that we
study

fpf(ρΛ; q̄Λc) = FΛ(ρΛ|ρ(k)1Λc) + g(ρΛ; q̄Λc) (5.13)

namely we replace in the LP term of the effective Hamiltonian, see (4.12), ρ̄Λc by the mean
field equilibrium value. fpf

ε is then defined by adding to fpf the term fε − f given by (5.5).
All the previous considerations obviously apply to fpf and fpf

ε .

Theorem 5.8. For any γ small enough and for all ε > 0 small enough, the minimizer ρ̂pf
Λ,ε

of fpf
ε minimizes fpf as well and it is such that

|ρ̂pf
Λ,ε(i)− ρ

(k)
s(i)| ≤ c(γ`−,γ)a0 , for all i ∈ Λ (5.14)

c > 0 a constant.

Proof. Since ρ̂pf
Λ,ε is a minimizer of fpf

ε , DΛf
pf
ε (ρ̂pf

Λ,ε) = 0. Then if (5.14) holds, DΛf
pf(ρ̂pf

Λ,ε) =

DΛf
pf
ε (ρ̂pf

Λ,ε) = 0 and by Corollary 5.7 ρ̂pf
Λ,ε is a minimizer of fpf . We thus have only to prove

(5.14) for all ε > 0 small enough. Consider first the simplified problem with g = 0.
Case g = 0

Recalling (4.3), if DΛFΛ(ρΛ|ρ(k)1Λc) = 0, then by an explicit computation, for all i ∈ Λ,

ρΛ(i) = exp
{
− β[

∑
j∈`−,γZd

tV̄γ(i, j)ρ(j) + (1− t)ρ(k)
s(i) − λβ]

}
(5.15)

where ρ(j) = ρΛ(j) if j ∈ Λ and = ρ
(k)
s(j) if j ∈ Λc. ρΛ(i) = ρ

(k)
s(i) is a solution of (5.15) and

therefore also a solution of DΛf
pf
ε = 0 (with g = 0). By Corollary 5.7 it is then the unique

minimizer of fpf
ε and (5.14) is proved (for g = 0).

Proof of (5.14).
Call

fε,θ(ρΛ) = FΛ(ρΛ|ρ(k)1Λc) + θg(ρΛ; q̄Λc , t) + (fε − f)

θ ∈ [0, 1]; for all ε > 0 small enough denote by ρ̂Λ,ε,θ the minimizer of fε,θ, so thatDΛfε,θ(ρ̂Λ,ε,θ) =
0. Suppose that

dρ̂Λ,ε,θ

dθ
exists for all θ ∈ [0, 1] and depends continuously on θ (5.16)

Obviously ρ̂Λ,ε,1 = ρ̂Λ,ε while ρ̂Λ,ε,0 = ρ(k)1Λ because of the above analysis with g = 0. Then

ρ̂Λ,ε,θ = ρ(k)1Λ +
∫ 1

0

dρ̂Λ,ε,θ

dθ
(5.17)
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On the other hand by differentiating DΛfε,θ(ρ̂Λ,ε,θ) = 0 we get

D2
Λfε,θ(ρ̂Λ,ε,θ)

dρ̂Λ,ε,θ

dθ
= −DΛg(ρ̂Λ,ε,θ) (5.18)

By Lemma 5.2 and Theorem 5.5 for all ε > 0 small enough, D2
Λfε,θ(ρ̂Λ,ε,θ) is symmetric

and positive definite, then by Theorem A.3 the inverse (D2
Λfε,θ(ρ̂Λ,θ))−1 is well defined and

bounded as an operator on L∞, and we thus get from (5.18)

|
dρ̂Λ,ε,θ

dθ
| ≤ c‖DΛg(ρ̂Λ,ε,θ)‖∞ ≤ c′(γ`−,γ)a0 (5.19)

which by (5.17) yields (5.14). (5.19) also implies that |ρ̂Λ,ε,θ − ρ(k)1Λ| ≤ c′(γ`−,γ)a0 . Notice
that (5.19) implies (5.16), but unfortunately the argument is circular as it started by suppos-
ing the validity of (5.16). To avoid the impasse we start from the equation in the unknown
uΛ

D2
Λfε,θ(ρΛ)uΛ = −DΛg(ρΛ) (5.20)

where ρΛ is considered as a “known term” such that |ρΛ(i)− ρ(k)
s(i)| ≤ 2ζ for all i ∈ Λ. From

what said before, (5.20) has a unique solution called ρ̇Λ(i|ρΛ) and

|ρ̇Λ(i|ρΛ)| ≤ c(γ`−,γ)a0 , for all i ∈ Λ (5.21)

Since ρ̇Λ(·|ρΛ) is Lipschitz in ρΛ (we omit the details) the ordinary differential equation

dρΛ(θ)
dθ

= ρ̇Λ(·|ρΛ(θ)), ρΛ(0) = ρ(k)1Λ (5.22)

has a unique solution ρ̃Λ(θ). Then, by (5.20),

d

dθ
DΛfε,θ(ρ̃Λ(θ)) = 0, and hence DΛfε,θ(ρ̃Λ(·; θ)) = DΛfε,0(ρ(k)1Λ) = 0 (5.23)

Since |ρ̃Λ(θ) − ρ(k)1Λ| ≤ c′(γ`−,γ)a0 , DΛf0,θ(ρ̃Λ(·; θ)) = 0 as well, hence by Corollary 5.7,
ρ̃Λ(·; θ) = ρ̂Λ,ε,θ(·) and by (5.22) it is differentiable with continuous derivative. (5.16) thus
holds and the theorem proved.

5.5 Exponential decay

This subsection concludes our analysis with the following main theorem, Theorem 5.1 will
be proved in the Subsection 5.6 as a corollary, taking Λc1 as a neighborhood of x in Λc and
Λc2 = Λc \ Λc1.
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Theorem 5.9. There are ω̂ and c positive such that the following holds. Let ρ̂′Λ and ρ̂′′Λ be the
minimizers of f(ρΛ, q̄

′
Λc), respectively f(ρΛ, q̄

′′
Λc), with q̄′Λc , q̄

′′
Λc ∈ XΛc. Then for any partition

of Λc into two D(`−,γ)-measurable sets Λc1 and Λc2,

|ρ̂′′Λ(i)− ρ̂′Λ(i)| ≤ c
(

min
{
1q̄′′

Λc1
6=q̄′

Λc1

; max
j∈Λc1

(
(γ`−,γ)a0 + |ρ(`−,γ)(q̄′′Λc ; j)− ρ(`−,γ)(q̄′Λc ; j)|

)}
+
∑
j∈Λc2

e−ωγ|x(i)−x(j)| 1q̄′′
C

(`−,γ )

j

6=q̄′
C

(`−,γ )

j

)
, ∀i ∈ Λ (5.24)

Proof. We follow the interpolation strategy used in the proof of Theorem 5.8. To this end we
separate the “interaction part” in fε writing fε = f0

ε + f1
ε where f0

ε = f0
ε (ρΛ) is independent

of the boundary conditions while

f1
ε (ρΛ, q̄Λc) = t(ρΛ, V̄γ ρ̄Λc) + g1(ρΛ, q̄Λc) (5.25)

where g1 is given by the r.h.s of (4.9) with the sum over i restricted to the set i ∩ Λc 6= ∅.
We then interpolate between the two boundary conditions

fθ,ε(ρΛ) := f0
ε (ρΛ) + θf1

ε (ρΛ, q̄
′′
Λc) + (1− θ)f1

ε (ρΛ, q̄
′
Λc), θ ∈ [0, 1] (5.26)

The analysis done in the previous subsections, applies to fθ,ε(ρΛ) as well. Thus the minimizer
ρ̂Λ.ε,θ of fθ,ε is unique, is a critical point, namely DΛfθ,ε(ρ̂Λ.ε,θ) = 0 and satisfies for all
x ∈ `−,γZd ∩ Λ and all s ∈ {1, .., S},

∣∣ρ̂Λ,ε,θ(x, s)− ρ
(k)
s

∣∣ ≤ 2ζ.
We can apply the same proof as the one given in Theorem 5.8. In fact by Theorem 5.5, for all
ε > 0 small enough, and for all ρΛ such that

∣∣ρΛ(x, s)− ρ(k)
s

∣∣ ≤ 2ζ, we have that D2
Λfθ,ε(ρΛ)

is symmetric and positive definite, then by Theorem A.3 the inverse (D2
Λfθ,ε(ρΛ))−1 is well

defined and bounded as an operator on L∞. Thus the equation

(D2
Λfθ,ε(ρΛ))uΛ = −

∂DΛfθ,ε(ρΛ)
∂θ

(5.27)

has a unique solution that we call uΛ(·, ρΛ) that is Lipschitz in ρΛ. This implies that the
equation

dρΛ,ε,θ

dθ
= uΛ(·, ρΛ,ε,θ), ρΛ,ε,0 = ρ̂Λ,ε,0

has a unique solution that coincides with the minimizer ρ̂Λ,ε,θ. Thus ρ̂Λ.ε,θ is differentiable in
θ and dρ̂Λ.ε,θ/dθ satisfies

(D2
Λfθ,ε(ρ̂Λ,ε,θ))

dρ̂Λ,ε,θ

dθ
= −

∂DΛfθ,ε(ρ̂Λ,ε,θ)
∂θ

(5.28)

By Corollary 5.7, ρ̂Λ.ε,θ converges by subsequences as ε→ 0 to a limit ρ̃Λ,θ which minimizes
fθ, so that

|ρ̂′′Λ(i)− ρ̂′Λ(i)| ≤ lim
ε→0

∫ 1

0
|
dρ̂Λ.ε,θ(i)

dθ
| (5.29)

We now estimate |
dρ̂Λ.ε,θ(i)

dθ
| uniformly in ε and θ to prove (5.24) as a consequence of (5.29).
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Equations for dρ̂Λ.ε,θ/dθ.
we let

u :=
d

dθ
ρ̂Λ.ε,θ, v = − d

dθ′
DΛfθ′,ε(ρ̂Λ.ε,θ)

∣∣∣
θ′=θ

, A := D2
Λfθ,ε(ρ̂Λ.ε,θ) (5.30)

so that (5.28) becomes
Au = v

We also define:
A0 := D2

Λfθ,0(ρ̂Λ.ε,θ), α := A−A0 (5.31)

α is a diagonal matrix whose diagonal elements are

α(i) := 3ε−1
(
{(ρ̂Λ.ε,θ(i)− [ρ(k)

s(i) + ζ])+}2 + {(ρ̂Λ.ε,θ(i)− [ρ(k)
s(i) − ζ])−}2

)
(5.32)

To distinguish among large and non large (called small) values of α(i), we introduce a large
positive number b which will be specified later and, calling H the Hilbert space of vectors
u =

(
u(i), i ∈ Λ

)
,

G =
{

(i) : α(i) ≥ b
}
, HG =

{
u ∈ H : u(i) = 0, for all i ∈ Gc

}
(5.33)

Let Q be the orthogonal projection on HG and P = 1−Q, thus Q selects the sites where α
is large and P those where it is small.
Our strategy will be the following: rewrite Pu,Qu as linear expressions of Pv,Qv to get
bounds on Pu,Qu (and therefore on u) using knowledge on v.

Rewriting Pu,Qu in terms of Pv,Qv.
Since the matrices α, P,Q are diagonal they commute, giving for instance QαP = αPQ = 0,
i.e.:

QAP = QA0P, (5.34)

and symetrically:
PAQ = PA0Q. (5.35)

Using Q2 = Q together with (5.34) we get:

QAQQu = QAQu = QA(u− Pu)
QAQQu = Qv −QAPu

Qu = (QAQ)−1{Qv −QA0Pu} (5.36)

where QAQ is invertible on the range of Q since A is a positive matrix.
Using P 2 = P together with (5.36) and (5.35)we get:

PAPu+ PAQu = PAu = Pv

PAPu+ PA0(QAQ)−1{Qv −QA0Pu} = Pv(
PAP − PA0(QAQ)−1QA0

)
Pu = Pv − PA0(QAQ)−1Qv
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Let
B = PAP − PA0(QAQ)−1QA0 (5.37)

so that if B is invertible on the range of P (as we will prove), then

Pu = B−1{Pv − PA0(QAQ)−1Qv} (5.38)

A decomposition of v.
Recalling (5.30) and (5.26), after expanding the Poisson polynomials in (4.9) we get,

v(i) = −t
∑
j∈Λc

V̄γ(i, j)
(
ρ̄′′Λc(j)− ρ̄′Λc(j)

)
−
∑
n

(γ`−,γ)a0n
∑

i1,ki1 ,..in,kin :i1=i

ki1

(
dn
(
i1, ki1 , .., in, kin ; q̄′′Λc ; t

)
ρ′′(i1)ki1−1 · · · ρ′′(in)kin

−dn
(
i1, ki1 , .., in, kin ; q̄′Λc ; t

)
ρ′(i1)ki1−1 · · · ρ′(in)kin

)
(5.39)

where ρ′′(i) = ρ′(i) = ρ̂Λ,ε,θ(i) if x(i) ∈ Λ and ρ′′(i) = ρ̄′′Λc(i), ρ
′(i) = ρ̄′Λc(i) when x(i) ∈ Λc.

The coefficients dn satisfy the same bounds as the coefficients Φ of (4.9) (with maybe a
different constant).
Shorthand by {xj} the sites in {x(i1), .., x(in)} which are in Λc, noticing that by definition
of g1 there are not terms with {xj} = ∅.
We then call v(1) the sum of −t

∑
j∈Λc1

V̄γ(i, j)
(
ρ̄′′Λc(j)− ρ̄′Λc(j)

)
minus the second sum on the

r.h.s. of (5.39) restricted to sets (i1, ..., in) such that: {xj} 6= ∅ and any xj ∈ {xj} is either
in Λc1 or q̄′′

C−xj
= q̄′

C−xj
, C−x = C

`−,γ)
x , (or both). v(2) := v − v(1).

By linearity u = u(1) + u(2) where u(1) and u(2) are defined with v replaced by v(1) and v(2)

and we will bound differently u(1) and u(2) using ‖ · ‖∞ norms for the former and ‖ · ‖ norms
for the latter.

Bounds on u(1).
By Theorem A.1 if b is large enough and c ≥ ‖A0‖,

‖PA0(QAQ)−1QA0‖ ≤
2c2

b
=: δ, ‖PA0(QAQ)−1QA0‖∞ ≤

2c2

b
e2c′ (5.40)

Moreover by (A.5)

sup
i

∑
j

|B(i, j)|eγ|i−j| ≤ sup
i∈Gc

∑
j

|A(i, j)|eγ|i−j| + 2c2e2c′

b
≤ c′′′b =: a (5.41)

Then applying Theorem A.2,A.3 with B as in (5.37) and R1 = PA0(QAQ)−1QA0, B is
invertible and there is a constant c > 0 such that ‖B−1‖∞ ≤ c. Therefore there is a new
constant c such that

|Pu(1)(i)| ≤ cmax
j
|v(1)(j)| (5.42)
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If q̄′′Λc1 = q̄′Λc1
, v(1) = 0 and u(1) = 0 as well, let us then suppose q̄′′Λc1 6= q̄′Λc1

. Then (5.39) yields

|Pu(1)(i)| ≤ c
(

max
j∈Λc1
|ρ̄′′Λc(j)− ρ̄′Λc(j)|+ (γ`−,γ)a0

)
(5.43)

To bound |Qu(1)(i)| we go back to (5.36), the same arguments used before prove that
‖(QAQ)−1‖∞ ≤ c as well, so that |Qu(1)(i)| is bounded as on the r.h.s. of (5.43) (with a
new constant c) and |u(1)(i)| is therefore bounded as the first term on the r.h.s. (5.24), we
will prove next that |u(2)(i)| is bounded as the second term on the r.h.s. (5.24) which will
then be proved.

Bounds on u(2).
Recalling the definition of v(2)

|v(2)(i)| ≤
∑
j∈Λc2

Kγ(i, j)1q̄′′
C−
j

6=q̄′
C−
j

(5.44)

where
∑
i

Kγ(i, j) ≤ cK and Kγ(i, j) = 0 if |x(i)− x(j)| ≥ c′γ−1, c and c′ suitable constants.

By Theorem A.2

|B−1(i, j)| ≤ (
1
a

+
1
κ′

) exp
{
− κ′γ|i− j|

a+ κ′

}
, κ′ = κ− δ, δ as in (5.40) (5.45)

By (5.45) and (5.44), calling c′′ = 1/a+ 1/κ′ and ω = κ′/(a+ κ′),

|B−1Pv(2)(i)| ≤
∑
j∈Λc2

1q̄′′
C−
j

6=q̄′
C−
j

{cKc′′ec
′ω}e−ωγ|x(i)−x(j)| (5.46)

By (A.5) ∑
i

|(QAQ)−1(i, j)|eγ|i−j| ≤
cQ
b

(5.47)

and since A0(i, j) = 0 if |i− j| ≥ c′γ−1 and
∑
i

|A0(i, j)| ≤ cA0 ,

|B−1PA0(QAQ)−1Qv(2)(i)| ≤
∑
j′

∑
j′′

∑
j′′′∈Λc2

1q̄′′
C−
j′′′
6=q̄′

C−
j′′′
{c′′e−ωγ|x(i)−x(j′)|cA0e

c′ω}

×e−γ|x(j′′)−x(j′)||(QAQ)−1(j′, j′′)|eγ|x(j′′)−x(j′)|Kγ(j′′, j′′′)

≤ {c′′cA0e
c′ω}

∑
j′′′∈Λc2

1q̄′′
C−
j′′′
6=q̄′

C−
j′′′
e−ωγ|x(i)−x(j′′′)|eωc

′
(
cQ
b

) cK

Thus supposing ω ≤ 1, we get from (5.38)

|Pu(2)(i)| ≤
∑
j∈Λc2

1q̄′′
C−
j

6=q̄′
C−
j

ce−ωγ|x(i)−x(j)| (5.48)
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To bound Qu(2) (recall (5.36)) we use (5.47) to get

|(QAQ)−1Qv(2)(i)| ≤
∑
j∈Λc2

1q̄′′
C−
j

6=q̄′
C−
j

cKe
c′cQ
b

e−γ|x(i)−x(j)| (5.49)

while, using (5.48) and (5.47),

|(QAQ)−1QA0Pu
(2)(i)| ≤

∑
j′′

∑
j′

∑
j′′′∈Λc2

1q̄′′
C−
j′′′
6=q̄′

C−
j′′′
ce−ωγ|(x(j′′)−x(j′′′)y|

×|A0(j′, j′′)|e−γ|x(j′′)−x(i)|ec
′ |(QAQ)−1(i, j′)|eγ|(x(j′)−x(i)|

≤ cec′
∑
j′′′∈Λc2

1q̄′′
C−
j′′′
6=q̄′

C−
j′′′
e−ωγ|x(i)−x(j′′′)|cA0 (

cQ
b

)

hence
|Qu(2)(i)| ≤ c

b

∑
j∈Λc2

1q̄′′
C−
j

6=q̄′
C−
j

e−γ|x(i)−x(j)| (5.50)

5.6 Proof of Theorem 5.1

The proof is a corollary of Theorem 5.9. Indeed given any x ∈ `−,γZd ∩ Λ, call Λc1 the union
of all C(`−,γ)

y , y ∈ `−,γZd ∩
(
Λc ∩ Bx(10−30`+,γ)

)
. Then if K̂(x) > 0, same notation as in

Theorem 5.9, q̄′′Λc1 = q̄′Λc1
and by (5.24) we are reduced to a sum over j ∈ Λc2. We split the

exponent −γω|x(i)− x(j)| into two equal terms and get

|ρ̂′′Λ(x, s)− ρ̂′Λ(x, s)| ≤ c{e−(ω/2)γ[10−30`+,γ−`−,γ ]}{
∑
j /∈Λc1

e−(ω/2)γ|x−x(j)|}

≤ c′e−(ω/2)γ[10−30`+,γ−`−,γ ] (5.51)

The exponent ω̂ in Theorem 5.1 is thus going to be half the ω of Theorem 5.9. Using Theorem
5.9 with ρ̄′′Λc replaced by ρ(k)1Λc , and calling ρ̂pf

Λ the corresponding minimizer,

|ρ̂pf
Λ (x, s)− ρ̂′Λ(x, s)| ≤ c′e−(ω/2)γ[10−30`+,γ−`−,γ ] +

(
c1(γ`−,γ)a0 + ζm

)
and using (5.14)

|ρ̂′Λ(x, s)− ρ(k)
s | ≤ c′e−(ω/2)γ[10−30`+,γ−`−,γ ] +

(
[c1 + c](γ`−,γ)a0 + ζm

)
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6 Local Couplings

In this section we prove Theorem 3.3, thus we fix a region Λ, union of a finite number NΛ, of
cubes of D(`+) and two boundary conditions q̄i,Λc ∈ X (k)

Λc , i = 1, 2. We also fix a t ∈ (0, 1] and
we consider the two Gibbs measures dG0

Λ(qΛ|q̄i,Λc) i = 1, 2 defined in (3.22) and with state
space X (k)

Λ . The aim is to construct a coupling QΛ of these two probabilities such that (3.25)
holds. QΛ, being a joint distribution, is defined on the product space X (k)

Λ × X (k)
Λ whose

elements are denoted by (q′Λ, q
′′
Λ).

6.1 Definitions and main results

Recalling that KΛ(·;x) := KΛ(q̄1,Λc , q̄2,Λc ;x) is defined in Definition 3.2 we denote by

∆0 ≡ ∆0(q̄1,Λc , q̄2,Λc) :=
{
x ∈ `−γZd ∩ Λ : KΛ(q̄1,Λc , q̄2,Λc ;x) > 0

}
(6.1)

In order to prove Theorem 3.3 we have to find a coupling QΛ so that there is εg such that∑
x∈∆0

QΛ(ΘΛ(x)c) ≤ εg (6.2)

We define (recall that Bx(R) is the ball of center x and radius R),

∆1 =
⋃
x∈∆0

Bx(10−20`+,γ) ∩ Λ (6.3)

and we observe that ∆1 ⊃ ∆0, dist(∆0,∆c
1) > 10−20`+, γ.

We denote by
n ≡ nΛ =

{
n(x, s) ∈ N, x ∈ `−,γZd ∩ Λ, s ∈ {1, .., S}

}
(6.4)

and in the sequel we will consider only those n such that for all x ∈ `−,γZd∩Λ and s ∈ {1, .., S},∣∣∣n(x, s)
`d−

− ρ(k)(s)
∣∣∣ ≤ ζ

Given n and any subset ∆ ⊂ Λ we will call n∆ the restriction to ∆ of n.

Given a subset ∆ ⊂ Λ, we call d∆ the following metric on X (k)
Λ ×X (k)

Λ :

d∆(q′Λ, q
′′
Λ) =

∑
x∈`−,γZd∩∆

dx(q′Λ, q
′′
Λ) (6.5)

dx(q′Λ, q
′′
Λ) =

{
0 if q′Λ ∩ C

(`−,γ)
x = q′′Λ ∩ C

(`−,γ)
x

1 otherwise
(6.6)
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We call R∆(µ, µ′) the corresponding Wasserstein distance between two measures µ and µ′ in
X (k)

Λ ×X (k)
Λ :

R∆(µ, µ′) = inf
Q

∫
d∆(q′Λ, q

′′
Λ)dQ(q′Λ, q

′′
Λ)

= inf
Q

∑
x∈`−,γZd∩∆

Q
(
q′Λ ∩ C

(`−,γ)
x 6= q′′Λ ∩ C

(`−,γ)
x

)
(6.7)

where the inf runs over all possible joint distributions (couplings) of µ and µ′.

In Subsection 6.3 we prove the following Theorem.

Theorem 6.1. Given Λ union of NΛ cubes of D(`+) there is ε0 = ε0(NΛ) such that for all
q̄i,Λc ∈ X (k)

Λc , i = 1, 2, the following holds.
Given any n′, n′′ such that n′∆1

= n′′∆1
=: n∆1 (∆1 defined in (6.3)), the following holds.

Calling ∆̊1 = ∆1 \ δγ
−1

in [∆1], for any two configurations q̄i,Λ\∆̊1
, i = 1, 2 on X (k)

Λ\∆̊1
, we denote

by q̄i,∆̊c
1

= q̄i,Λ\∆̊1
∪ q̄i,Λc, i = 1, 2.

Let dG0
Λ(q∆̊1

|qi,∆̊c
1
, n∆1), i = 1, 2 be the probabilities dG0

Λ(·|q̄i,Λc), i = 1, 2 conditioned to have

the configuration in ∆̊c
1 equal to q̄i,∆̊c

1
and occupation numbers in ∆1 given by n∆1.

Then for ∆0 defined in (6.1)

R∆0

(
dG0

Λ(·|q1,∆̊c
1
, n∆1), dG0

Λ(·|q2,∆̊c
1
, n∆1)

)
≤ ε0 (6.8)

The next result, proved at the end of Subsection 6.6, deals with the Wasserstein distance R∆1

of the distributions of the occupation numbers n that in Theorem 6.1 have been set equal to
each other inside ∆1. For these variables the metric dx defined in (6.6) is replaced by

dx(n′, n′′) =

{
0 if n′(x, s) = n′′(x, s), ∀s
1 otherwise

Theorem 6.2. Given Λ union of NΛ cubes of D(`+) there is ε1 = ε1(NΛ) such that the
following holds. Let G0

Λ(nΛ|qi,Λc), i = 1, 2 be the marginals of dG0
Λ(qΛ|q̄i,Λc), i = 1, 2 on the

variables nΛ defined in (6.4).
Then

R∆1

(
dG0

Λ(nΛ|q̄1,Λc), dG0
Λ(nΛ|q̄2,Λc)

)
≤ ε1 (6.9)

In Subsection 6.7 we show that Theorem 3.3 is a consequence of Theorems 6.1 and 6.2.
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6.2 Two properties of the Wasserstein distance in an abstract setting

Let Ω be a complete, separable metric space with distance d(ω, ω′) and let R(µ1, µ0) be the
corresponding Wasserstein distance between two measures µ1 and µ0. Thus

R(µ1, µ0) = inf
Q

∫
d(ω, ω′)Q(dω, dω′) (6.10)

where the inf runs over all possible joint distributions of µ1 and µ0.

Theorem 6.3. Let ν be a given positive measure on Ω. Let h and v be such that for all
t ∈ [0, 1],

Zt =
∫
e−[h(ω)+tv(ω)]ν(dω) <∞, (6.11)

Set
mt(ω) = Z−1

t e−[h(ω)+tv(ω)], µt(dω) = mt(ω)ν(dω) (6.12)

Then
R(µ1, µ0) ≤ sup

0≤t≤1

(
µt(|ω| |v|) + µt(|ω|)µt(|v|)

)
(6.13)

where, after fixing arbitrarily an element ω0 ∈ Ω, we have called |ω| = d(ω, ω0).
In particular,

R(µ1, µ0) ≤ 2
(

sup |ω|
) (

sup |v(ω)|
)

(6.14)

Proof. Let
m(ω) = min{m1(ω),m0(ω)}, C = 1−

∫
m(ω)ν(dω)

P (dωdω′) = {m(ω)δω−ω′ +
1
C

[m1(ω)−m(ω)][m0(ω′)−m(ω′)]}ν(dω)ν(dω′)

P is a coupling of µ1 and µ0 and therefore

R(µ1, µ0) ≤
∫

Ω×Ω
d(ω, ω′)P (dωdω′) ≤

∫
Ω
|ω|
(
[m1(ω)−m(ω)] + [m0(ω)−m(ω)]

)
ν(dω)

=
∫

Ω
|ω| |m1(ω)−m0(ω)|ν(dω)

having bounded d(ω, ω′) ≤ |ω|+ |ω′| and integrated over the missing variable.

(6.13) is then obtained by writing m1(ω)−m0(ω) =
∫ 1

0

d

dt
mt(ω).

The following estimate is taken from [14]:
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Theorem 6.4. Let A ⊂ Ω be a measurable set, µ a probability on Ω and µA the probability
µ conditioned to A. Then

R(µ, µA) ≤ 2 sup
ω∈Ω
|ω| µ(Ac) (6.15)

Proof. Let

Q(dω, dω′) = 1ω∈Aµ(dω)δω(dω′) + 1ω∈Acµ(dω)µA(dω′)

where δω(dω′) is the probability supported by ω. Let f be any bounded, measurable function
on Ω, then∫

f(ω)Q(dω, dω′) =
∫
A
f(ω)µ(dω) +

∫
Ac
f(ω)µ(dω)

∫
µA(dω′) = µ(f)

∫
f(ω′)Q(dω, dω′) =

∫
A
f(ω)µ(dω) + µ(Ac)

∫
f(ω′)µA(dω′)

= µA(f)µ(A) + µA(f)µ(Ac) = µA(f)

Hence Q is a coupling and

R(µ, µA) ≤
∫
d(ω, ω′)Q(dω, dω′) ≤

∫
1ω∈Ac(|ω|+ |ω′|)µ(dω)µA(dω′)

which proves (6.15).

Eventually, we mention the following elementary property:

Proposition 6.5. Assume that the distance d satisfies m(d) := inf
ω 6=ω′∈Ω

d(ω, ω′) > 0. Then

for all probability measures µ, ν and for all A ⊂ Ω

m(d) · |µ(A)− ν(A)| ≤ R(µ, ν) (6.16)

Proof. Without loss of generality we assume µ(A) ≥ ν(A). Remarking that 1ω 6=ω′ ≥ 1ω∈A −
1ω′∈A, we get for any coupling Q of µ, ν

m(d)(µ(A)− ν(A)) ≤
∫
d(ω, ω′)1ω 6=ω′G(dω, dω′) (6.17)

and the proposition is proved by taking the infimum over all possible couplings Q.

Remark 6.6. The proposition above states that Wasserstein distances associated to very par-
ticular distances d are finer than the total variation distance dTV(µ, ν) := sup

A⊂Ω
|µ(A)− ν(A)|.

In the following, we will use this property for R∆, remarking that m(d∆) = 1.
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6.3 Couplings of multi-canonical measures

Here we prove Theorem 6.1. Recalling that ∆̊1 = ∆1 \ δγ
−1

in [∆1], we fix two boundary
conditions q̄i,∆̊c

1
= q̄i,Λ\∆1

∪ q̄i,Λc , i = 1, 2. We have to compare the marginal distributions

of dG0
Λ(q∆̄1

|qi,∆̊c
1
, n∆1), i = 1, 2 over the configurations in ∆0 (i.e. well inside ∆̊1). Since the

probabilities dG0
Λ(q∆̄1

|qi,∆̊c
1
, n∆1), i = 1, 2 depend only on the restrictions of qi,∆̊c

1
to δγ

−1

out [∆1]
where n′(x, s) = n′′(x, s) the corresponding occupation numbers in the two measures are all
equal to each other. We will thus study couplings of multi-canonical measures, hence the
title of the Subsection.

It is now convenient to label the particles. To this purpose we use a multi-index p = (Cx, s, j),
where Cx is the cube of D(`−) where the particle is; s is its spin and j ∈ {1, .., n(x, s)}
distinguishes among the particles in the same cube with same spin. We call L∆̊1

the set of
labels

L∆̊1
= {p = (Cx, s, j), x ∈ ∆̊1, s = 1, . . . , S, j ∈ {1, .., n(x, s)}}

Observe that L∆̊1
is determined by n∆1

and we thus have the same labels for the two measures.
Given p = (Cx, s, j) ∈ L∆̊1

we denote by rp a vector configuration rp = (rj , s) with rj ∈ Cx.
We then denote by rL∆̊1

= {rp, p ∈ L∆̊1
} a vector configuration in ∆̊1. Analogously we define

rL∆̊c1

. We then call HL∆̊1
(rL∆̊1

|rL∆̊c1

) the energy H∆̊1,t
defined in (3.14) and with n∆1 fixed

as above.
Calling

dνp(r) = 1r∈Cxdr (6.18)

we define
PL∆̊1

(drL∆̊1
|rL∆̊c1

) = Z(rL∆̊c1

)−1e
−βHL

∆̊1
(rL

∆̊1
|rL

∆̊c1

) ∏
p∈L∆̊1

νp(dr) (6.19)

Remark 6.7. If A is a D(`−) measurable subset of ∆̊1, then LA denotes all labels (C, s, j)
with C ⊂ A and the marginal of PLA(drLA |rLAc ) over the unlabeled configurations is the
original multi-canonical measure in A.
We will thus prove Theorem 6.1 if we can compare

P ′ = PL∆̊1
(·|r′L∆̊c1

) and P ′′ = PL∆̊1
(·|r′′L∆̄c1

) (6.20)

by evaluating the Wasserstein distance R∆0(P ′, P ′′).

We will use the Dobrushin high-temperature techniques which allow to reduce to a comparison
of the conditional probabilities of a single variable rp.

Proposition 6.8 (Dobrushin high-temperature theorem). There is c such that the following
holds. For all p0 = (Cx0 , s0, j0), Cx0 ⊂ ∆̊1, all p1 = (Cx1 , s1, j1) and all r′p1

and r′′p1

sup
r
R∆0

(
PLp0

(
· |r, r′p1

)
, PLp0

(
· |r, r′′p1

))
≤ cγd+α−1dist(Cx0 ,Cx1 )≤γ−1 (6.21)
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where r = (rp)p 6=p0,p1

Proof. The probabilities to compare have the form

PLp0
(
dr|r, r′p1

)
=

1
Z(r, r′p1

)
eWγ(r)1r∈Cx0

dr

while
PLp0

(
dr|r, r′′p1

)
=

1
Z(r, r′′p1

)
eWγ(r)+W ′γ(r)1r∈Cx0

dr

where Wγ(r) = −βVγ(r, r′j1) and W ′γ(r) = −β{Vγ(r, r′′j1)− Vγ(r, r′j1)} hence

|W ′γ(r)| ≤ β sup
r′∈Cx1

|∇Vγ(r, r′)|`− ≤ c′γd+α−1dist(Cx0 ,Cx1 )≤γ−1

Proposition 6.8 then follows from Theorem 6.3.

Remark 6.9. From the proof above, we see that the r.h.s of (6.21) is actually proportionnal
to βγd+α−. In other terms, the effective temperature of the system is of order γ−d−α− and
thus very high indeed.

Corollary 6.10. With P ′, P ′′ defined by (6.20), there is ε0 such that for all γ small enough
the following holds:

R∆0(P ′, P ′′) ≤ ε0 (6.22)

Proof. For p0 and p1 as in Proposition 6.8 we call δ(p0, p1) = cγd+α−1dist(Cx0 ,Cx1 )≤γ−1 (which
is the r.h.s. of (6.21)). Then there is ς > 0 such that for all γ small enough the following
holds:

R∆0(P ′, P ′′) ≤
∑

p0∈LΛ0

∑
n

∑
p1,..,pn∈L∆

∑
p/∈L∆

δ(p0, p1) · · · δ(pn, p)

≤ e−ςdist(∆0,∆̄c
1)

The first inequality follows from the Dobrushin high-temperature theorem (Proposition 6.8)
while the second one is obvious once

∑
p′ 6=p

δ(p, p′) ≤ cγα− < 1 (which is satisfied for all γ small

enough).

In view of Remark 6.7, the Theorem 6.1 is a straightforward consequence of 6.10.
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6.4 Taylor expansion

In this subsection we consider the marginal of dG0
Λ(qΛ|q̄Λc) on the variables ρΛ = `−d− nΛ,

nΛ = {n(x, s), x ∈ `−,γZd ∩ Λ, s ∈ {1, .., S}. By an abuse of notation we denote also the
marginal with G0

Λ(ρΛ|q̄Λc).
Recalling (4.2) we get

G0
Λ(ρΛ|q̄Λc) =

1
Zeff(q̄Λc)

e−β`
d
−,γH

eff
Λ (ρΛ|q̄Λc ) (6.23)

Recalling (5.1) we also define

G?Λ(ρΛ|q̄Λc) =
1

Z∗(q̄Λc)
e−β`

d
−,γf(ρΛ;q̄Λc ) (6.24)

The following holds:

Proposition 6.11. For all q̄1,Λc , q̄2,Λc ∈ X (k)
Λc ,

R∆1

(
G0(·|q̄1,Λc), G0(·|q̄2,Λc)

)
≤ R∆1

(
G?(·|q̄1,Λc), G?(·|q̄2,Λc)

)
+ 2cγτ (6.25)

with τ given in (4.13).

Proof. By (4.13) there is c = c(NΛ) such that

|Heff
Λ (ρΛ|q̄Λc)− f(ρΛ; q̄Λc)| ≤ cγτ (6.26)

By (6.26) and Theorem 6.3, there is a (different) constant c > 0 such that

R∆1

(
G0(·|q̄Λc), G?(·|q̄Λc)

)
≤ cγτ (6.27)

Hence the triangular inequality implies (6.25).

We will bound R∆1

(
G?(·|q̄1,Λc), G?(·|q̄2,Λc) by using the triangular inequality to replace the

two measures by their Taylor approximants.

We first prove the following result true for any D(`+)-measurable region Λ.

Theorem 6.12. For any q̄Λc ∈ X (k)
Λc , calling µ = G?Λ(·|q̄Λc), the following holds.

There are c > 0 and δ < 1/2 that verifies (6.29) below, so that, calling ρ̂Λ the minimizer of
f(ρΛ; q̄Λc)

µ
(
{∃x ∈ Λ, ∃s : |ρΛ(x, s)− ρ̂Λ(x, s)| ≥ `−d/2+δ

− }
)
≤ e−c`2δ− (6.28)
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Proof. Denoting simply A := {∃x ∈ Λ,∃s : |ρΛ(x, s)− ρ̂Λ(x, s)| ≥ `−d/2+δ
− } we have

µ
(
{∃x ∈ Λ,∃s : |ρΛ(x, s)− ρ̂Λ(x, s)| ≥ `−d/2+δ

− }
)

=
1

Z∗(q̄Λc)

∑
ρΛ∈X

(k)
Λ

e−β`
d
−f(ρΛ;q̄Λc )1A(ρΛ)

By Theorem 5.6 we have that

f(ρΛ, q̄Λc) ≥ f(ρ̂Λ, q̄Λc) +
κ

2
(
ρΛ − ρ̂Λ, ρΛ − ρ̂Λ

)
Thus calling C =

( ∞∑
n=0

e−β
κ
2
n2)SNΛ we get

∑
ρΛ∈X

(k)
Λ

e−β`
d
−f(ρΛ;q̄Λc )1A(ρΛ)

≤ e−β`d−f(ρ̂Λ;q̄Λc )
∑

ρΛ∈X
(k)
Λ

exp
{
− β`d−

κ

2

∑
y,s

[ρΛ(y, s)− ρ̂Λ(y, s)]2 − βκ
2
`2δ−
}

≤ e−β`d−f(ρ̂Λ;q̄Λc )e−β
κ
2
`2δ−
[( ∞∑

n=0

e−β
κ
2
n2)S]|Λ|/`d−

≤ e−β`d−f(ρ̂Λ;q̄Λc )e−β
κ
2
`2δ− C(`+/`−)d

We bound the partition function as follows, with 0 < ε a small constant to be chosen later:

Z∗(q̄Λc) ≥
∑

ρΛ∈X
(k)
Λ

e−β`
d
−f(ρΛ;q̄Λc )1{|ρΛ(x,s)−ρ̂Λ(x,s)|≤ε`−d/2+δ

− ∀x,∀s}

≥ e−β`d−f(ρ̂Λ;q̄Λc )e−β
C′ε2

2
`2δ− (ε`−d/2+δ

− )S(`+/`−)d ,

so that

µ
(
{|ρΛ(x, s)− ρ̂Λ(x, s)| ≥ `−d/2+δ

− }
)
≤ exp{−

[
β
κ− C ′ε2

2
− `−2δ

−

(
`+
`−

)d
log(Cε−1`

d/2−δ
− )

]
`2δ− }.

Remark now that

`−2δ
−

(
`+
`−

)d
log(Cε−1`

d/2−δ
− ) = aγb (log γ)c

with a = (d/2− δ)(1− α−) > 0, b = (1− α−)2δ − (α+ + α−)d and c = Cε−1 > 0. Choosing
δ such that b > 0, i.e.

δ >
(α+ + α−)d
2(1− α−)

(6.29)

which is always possible (see (3.3)), we get γb(log γ)c → 0 as γ → 0. The Theorem is now
proved with 0 < c < β κ−C

′ε2

2 , which is always possible for ε small enough.
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We call ρ̂Λ,i the minimizer of f(·; q̄i,Λc), i = 1, 2. We then let

A≤,i =
{
ρΛ ∈ X (k) : |ρΛ(x, s)− ρ̂Λ,i(x, s)| ≤ `−d/2+δ

− ,∀x,∀s
}
, i = 1, 2 (6.30)

Proposition 6.13. For all q̄i,Λc ∈ X (k)
Λc , i = 1, 2,

R∆1

(
G?Λ(ρΛ|q̄1,Λc), G?Λ(ρΛ|q̄2,Λc)

)
≤ R∆1

(
G?Λ(ρΛ|q̄1,Λc , A≤,1), G?Λ(ρΛ|q̄2,Λc , A≤,2)

)
+ 2ce−c`

2δ
−

(6.31)
where G?Λ(ρΛ|q̄i,Λc , A≤,i) i = 1, 2 are the probabilities G?Λ(·|q̄i,Λc) conditioned to A≤,i, i = 1, 2.

Proof. (6.31) follows from Theorem 6.12 and Theorem 6.4.

Analogously to (6.3) we define the following subset of Λ.

∆2 =
⋃
x∈∆1

Bx(10−30`+,γ) ∩ Λ (6.32)

and we observe that ∆2 ⊃ ∆1, dist(∆1,∆c
2) > 10−30`+. We also have

Lemma 6.14. Let K̂ be as in Theorem 5.1. Then K̂(x) > 0 for all x ∈ ∆2.

Proof. Let x ∈ ∆2, by definition of K̂(x), if Âx = Bx(10−30`+,γ) ∩ Λc = ∅ then K̂(x) =
m̄ + 1 > 0. Assume then that Âx 6= ∅. By (6.32) and (6.3) there is x0 ∈ ∆0 such that
|x− x0| ≤ (1 + 10−10)10−20`+,γ , thus Âx ⊂ Ax0 = Bx(10−10`+,γ)∩Λc and therefore Ax0 6= ∅.
By definition of ∆0 we then have that q′Λc ∩ Âx = q′′Λc ∩ Âx and also that K(x0) = m+ 1 > 0
with m ≥ 2 where m is given by max

r∈Ax0 ,s∈{1,..,S}
|ρ(`−,γ)(q̄′Λc ; r, s)− ρ(k)

s | ∈ [ζm+1, ζm). Then

max
r∈Âx,s∈{1,..,S}

|ρ(`−,γ)(q̄′Λc ; r, s)− ρ(k)
s | < ζm, that implies that K̂(x) > 0.

Recalling that ρ̂i,Λ is the minimizer of f(·; q̄i,Λc), i = 1, 2, we observe that in general the
gradient of DΛf (see (5.6) for notation), evaluated at ρ̂i,Λ does not vanishes in all Λ. However,
by Theorem 5.1 and Lemmas 5.4, 6.14 it follows that D∆2f(ρ̂i,Λ; q̄i,Λc) = 0.
N being defined by Theorem 4.1, we set ∆̄2 = ∆2 ∪ δγ

−1N
out [∆2] and define

ρ∗i (x, s) =

{
ρ̂1,Λ(x, s) if x ∈ `−,γZd ∩ ∆̄2

ρ̂i,Λ(x, s) if x ∈ `−,γZd ∩ (Λ \ ∆̄2)
(6.33)

Thus ρ∗2 = ρ̂1,Λ in ∆̄2 while ρ∗1(x, s) = ρ̂1,Λ(x, s) for all x ∈ `−Zd ∩ Λ and ∀s. We denote by
ρ∗ the common value, thus

ρ∗(x, s) = ρ∗1(x, s) = ρ∗2(x, s), ∀x ∈ `−,γZd ∩ ∆̄2,∀s (6.34)
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We also define the matrix Bi,Λ with entries:

Bi,Λ(x, s, x′, s′) =

{
D2

Λf(ρ̂1,Λ; q̄1,Λc)(x, s, x′, s′) if x, x′ ∈ `−,γZd ∩ ∆̄2

D2
Λf(ρ̂i,Λ; q̄i,Λc)(x, s, x′, s′) otherwise

(6.35)

Observe that B1,Λ = D2
Λf(ρ̂1,Λ; q̄1,Λc). We denote by B the two matrices restricted to ∆2 ∪

δγ
−1N

out [∆2] which are then equal; their common entries are then

B(x, s, x′, s′) = B1,Λ(x, s, x′, s′) = B2,Λ(x, s, x′, s′) ∀x, x′ ∈ `−,γZd ∩ (∆̄2),∀s (6.36)

We define for i = 1, 2

ϕi(ρΛ; q̄i,Λc) =
(
DΛf(ρ̂i,Λ; q̄i,Λc), [ρΛ − ρ∗i ]

)
+

1
2

(
[ρΛ − ρ∗i ], Bi,Λ[ρΛ − ρ∗i ]

)
(6.37)

and the probabilities

µi(ρΛ) :=
1
Zi,Λ

e−β`
d
− ϕi(ρΛ;q̄i,Λc )χA≤,i(ρΛ), Zi,Λ =

∑
ρΛ

e−β`
d
− ϕi(ρΛ;q̄i,Λc )χA≤,i(ρΛ) (6.38)

where χA is the characteristic function of the set A:

The following holds:

Proposition 6.15. For all q̄i,Λc ∈ X (k)
Λc , i = 1, 2, and for all ε2 > 0 if γ is small enough the

following holds:

R∆1(G?Λ(ρΛ|q̄1,Λc , A≤,1), G?Λ(ρΛ|q̄2,Λc , A≤,2) ≤ R∆1(µ1, µ2) + 2cγd/4 + ε2 (6.39)

Proof. We Taylor expand f(ρΛ; q̄i,Λc) and we call Ri the third order.

Ri := f(ρΛ; q̄i,Λc)− f(ρ̂i,Λ; q̄i,Λc)−
(
DΛf(ρ̂i,Λ; q̄i,Λc), [ρΛ − ρ̂i,Λ]

)
−1

2

(
[ρΛ − ρ̂i,Λ], D2

Λf(ρ̂i,Λ; q̄i,Λc)[ρΛ − ρ̂i,Λ]
)

(6.40)

Observe that in A≤,i and for a suitable constant c1

β`d−|Ri| ≤ c1β`
d
−
∑
x,s

|ρΛ(x, s)− ρ̂i,Λ(x, s)|3 ≤ c1`
d
−
(`+
`−

)d
`
3δ−3d/2
−

and conclude that the right hand side of the above inequality is estimated by cγd/4 as soon
as δ satisfies

δ <
d

6

[
1
2
− 3α− − 2α+

]
(6.41)

which is compatible with (6.29), see (3.3).
Since B1,Λ = D2

Λf(ρ̂1,Λ; q̄1,Λc) and ρ∗1 = ρ̂1,Λ, by applying Theorem 6.3 with v = β`d−R1 and
h = β`d−(f(ρΛ; q̄i,Λc)−R1) we get that

R∆1

(
G?Λ(ρΛ|q̄1,Λc , A≤,1), µ1

)
≤ cγd/4 (6.42)
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From Lemma 6.14 and (i) of Theorem 5.1 we get that given any ε2 for γ small enough.∣∣∣β`d−
2

(
[ρΛ − ρ̂2,Λ], D2

Λf(ρ̂2,Λ; q̄2,Λc)[ρΛ − ρ̂2,Λ]
)
−
β`d−

2

(
[ρΛ − ρ∗2], B2,Λ[ρΛ − ρ∗2]

)∣∣∣
≤
∣∣∣β`d−

2

(
[ρΛ − ρ̂2,Λ],

(
D2

Λf(ρ̂2,Λ; q̄2,Λc)−B2,Λ

)
[ρΛ − ρ̂2,Λ]

)
∆̄2

∣∣∣
+
∣∣∣β`d−

2

(
[ρ̂1,Λ − ρ̂2,Λ], B2,Λ[ρ̂1,Λ − ρ̂2,Λ]

)
∆̄2

∣∣∣
≤
∣∣∣β`d−

2

(
[ρΛ − ρ̂2,Λ],

(
D2

Λf(ρ̂2,Λ; q̄2,Λc)−D2
Λf(ρ̂1,Λ; q̄2,Λc)

)
[ρΛ − ρ̂2,Λ]

)
∆̄2

∣∣∣
+
∣∣∣β`d−

2

(
[ρ̂1,Λ − ρ̂2,Λ], B2,Λ[ρ̂1,Λ − ρ̂2,Λ]

)
∆̄2

∣∣∣
≤
β`d−

2
(`2δ− + 1)

∑
x∈`−,γZd∩∆̄2

ce−10−30(γ`+)ω̂ ≤ ε2

By applying Theorem 6.3 with v = β`d−[R2−1
2([ρΛ−ρ∗2], B2,Λ[ρΛ−ρ∗2])] and h = β`d−(f(ρΛ; q̄2,Λc)−

v) we get that
R∆1

(
G?Λ(ρΛ|q̄2,Λc , A≤,2), µ2

)
≤ cγd/4 + ε2 (6.43)

By using the triangular inequality we then get (6.39).

6.5 Quadratic approximation in continuous variables

In this subsection we consider the conditional probabilities µi(·|ρ̄i,Λ\∆2
), ρ̄i,Λ\∆2

∈ A≤,i,
i = 1, 2. Since D∆2f(ρ̂i,Λ; q̄i,Λc) = 0, and recalling (6.34) and (6.36), we have that

µi(ρ∆2 |ρ̄i,Λ\∆2
) :=

e
−β`d−

[
1
2

(
[ρ∆2

−ρ∗],B∆2
[ρ∆2

−ρ∗]
)

+
(

[ρ∆2
−ρ∗],B[ρ̄i,Λ\∆2

−ρ∗]
)]
χA≤,i(ρ∆2)

Zi,∆2(ρ̄i,Λ\∆2
)

(6.44)

where B∆2 is the matrix B restricted to ∆2 and where, as usual, Zi,∆2(ρ̄i,Λ\∆2
) is the sum

over ρ∆2 of the numerator on the right hand side of (6.44).

We compare the probabilities µi(·|ρ̄i,Λ\∆2
) with measures pi with the same energy but with

continuous state space. To define these measures we start by setting some notations.
By convenience we consider the variables n∆2 = `d−ρ∆2 , thus n∆2 = (n(x, s), x ∈ `−Zd ∩
∆2, s ∈ {1, .., S}). Since µi, i = 1, 2 defined in (6.44) have support on A≤,i, the variables n∆2

are such that

[n(x, s)− a∗(x, s)] ∈
{
−M,−M + 1, . . . ,M

}
, a∗(x, s) = `d−ρ

∗(x, s) (6.45)

where M is the integer part of `d/2+δ
− (δ as in Theorem 6.12).

We call ξ = (ξ(x, s), x ∈ `−Zd ∩∆2, s ∈ {1, .., S}) with

ξ(x, s) = `
−d/2
− [n(x, s)− a∗(x, s)] (6.46)
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and we denote by XM =
{
ξ : ξ(x, s) ∈ {−M,−M + 1, . . . ,M}

}
. In this new variables the

boundary conditions become

ξ∗i = `
−d/2
− B[n̄i,Λ\∆2

− a∗], n̄i,Λ\∆2
= `d−ρ̄i,Λ\∆2

(6.47)

By an abuse of notation we call µi(ξ|ξ∗i ) the distribution of the variables ξ under the proba-
bilities µi(·|ρ̄i,Λ\∆2

) defined in (6.44), thus

µi(ξ|ξ∗i ) =
1

Z(ξ∗i )
e−β
[

1
2

(ξ,B∆2
ξ)+(ξ,ξ∗i )

]
(6.48)

where Z(ξ∗i ) is the sum over ξ ∈ XM of the numerator.
We next introduce variables r = (r(x, s), x ∈ ∆2, s ∈ {1, .., S}) which take values in the
interval of the real line:

r(x, s) ∈ `−d/2− [−M,M + 1] (6.49)

and we call

YM =
{
r : r(x, s) ∈ `−d/2− [−M,M + 1],∀x ∈ ∆2, s ∈ {1, .., S})

}
(6.50)

We next define the probabilities measures on YM as

dpi(r|ξ∗i ) =
1

ZM (ξ∗i )
e−β
[

1
2

(r,B∆2
r)+(r,ξ∗i )

]
χYM (r)dr, i = 1, 2 (6.51)

where dr =
∏
x,s

dr(x, s) and ZM (ξ∗i ) is the integral of the numerator.

Proposition 6.16. For all ρ̄i,Λ\∆2
∈ A≤,i, recalling (6.47) the following holds:

R∆1

(
µ1(·|ξ∗1)), µ2(·|ξ∗2))

)
≤ R∆1

(
p1(·|ξ∗1), p2(·|ξ∗2)

)
+ 2cγd/4 (6.52)

Proof. Given ξ ∈ XM we call C(ξ) = {r : 0 ≤ r(x, s) − ξ(x, s) < `
−d/2
− ,∀x ∈ ∆2, ∀s} we

define H ′(ξ|ξ∗i ) as

e−H
′(ξ|ξ∗i ) :=

∫
C(ξ)

e−β`
−d
−

[
1
2

(r,B∆2
r)+(r,ξ∗i )

]
dr (6.53)

and the following probabilities mi on XM

mi(ξ) =
e−H

′(ξ|ξ∗i )∑
ξ∈XM e−H

′(ξ|ξ∗i )
, i = 1, 2 (6.54)

By continuity there is a point rξ ∈ C(ξ) such that

H ′(ξ|ξ∗i ) = β
[1
2

(rξ, B∆2rξ) + (rξ, ξ
∗
i )
]

(6.55)
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Therefore∣∣∣H ′(ξ)− β[1
2

(ξ,B∆2ξ) + (ξ, ξ∗i )
]∣∣∣ ≤ sup

r∈C(ξ)
‖∇{(r,B∆2r)/2 + ξ∗i )}‖`−d/2− (6.56)

where ∇ψ(r) is the vector defined as the gradient of ψ with respect to the variables r(x, s)
and ‖ · ‖ is the norm of the vector ·.
Since ‖B∆2‖ ≤ c∗

|∆2|
`d−

then

∣∣∣H ′(ξ)− β[1
2

(ξ,B∆2ξ) + (ξ, ξ∗i )
]∣∣∣ ≤ c∗ |∆2|

`d−
S`δ−`

−d/2
− ≤ c∗SNΛ

(`+
`−

)d
`
−d/2+δ
− (6.57)

For γ small
(
`+
`−

)d
`
−d/2+δ
− ≤ γd/4, thus by Theorem 6.3 and the triangular inequality we get

R∆1

(
µ1(·|ρ̄1,Λ\∆2

), µ2(·|ρ̄2,Λ\∆2
)
)
≤ R∆1(m1,m2) + 2cγd/4 (6.58)

We now observe that at any coupling Q of p1 and p2 we can associate a coupling Q∗ of m1

and m2 by setting
Q∗(ξ′, ξ′′) = Q

(
C(ξ′)× C(ξ′′)

)
To prove that Q∗ is indeed a coupling of m1 and m2 we compute for any function ψ on XM∑

ξ′′

∑
ξ′

ψ(ξ′)Q∗(ξ′, ξ′′) =
∑
ξ′

ψ(ξ′)p1(C(ξ′))

=
1

ZM (ξ∗i )

∑
ξ′

ψ(ξ′)
∫
C(ξ′)

e−β`
−d
−

[
1
2

(r,B∆2
r)+(r,ξ∗i )

]
dr

=
∑
ξ′

ψ(ξ′)m1(ξ′)

Thus
∀Q, R∆1(m1,m2) ≤

∑
ξ′′,ξ′

d∆1(ξ′, ξ′)Q∗(ξ′, ξ′′) (6.59)

We next observe that∑
ξ′′,ξ′

d∆1(ξ′, ξ′)Q∗(ξ′, ξ′′) =
∑
ξ′,ξ′

∫
C(ξ′)×C(ξ′′)

d∆1(ξ′, ξ′)dQ(r′, r′′)

≤
∑
ξ′,ξ′

∫
C(ξ′)×C(ξ′′)

d∆1(r′, r′′)dQ(r′, r′′)

Taking the inf over the coupling Q in the above inequality and using (6.59), we get that
R∆1(m1,m2) ≤ R∆1

(
p1(·|ξ∗1), p2(·|ξ∗2)

)
, thus (6.58) implies (6.52).
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6.6 Gaussian approximation

We now extend the measures pi(·|ξ∗1) on YM to a measures Pi, i = 1, 2, on the full Euclidean
space, thus Pi, i = 1, 2 are the Gaussian measure defined by the r.h.s. of (6.51) without the
last characteristic function.
Thus letting r = (r(x, s) ∈ Rd : x ∈ ∆2, s ∈ {1, . . . S}),

dPi(r|ξ∗i ) =
1

Z(ξ∗i )
e−β
[

1
2

(r,B∆2
r)+(r,ξ∗i )

]
dr (6.60)

with Z(ξ∗i ) the integral of the numerator.

The following holds:

Proposition 6.17. There is δ∗ > 0 such that the following holds:

R∆1

(
p1(·|ξ∗1), p2(·|ξ∗2)

)
≤ R∆1

(
P1(·|ξ∗1), P2(·|ξ∗2)

)
+ 2γδ

∗
(6.61)

Proof. By the Chebischev’s inequality, and recalling that VarPi(·|ξ∗i ) = ‖B∆2‖−1, there is c
such that

Pi
(
{|r(x, s)| ≥ `δ−}

)
≤ c`−2δ

− (
`+
`−

)−d, i = 1, 2

By (6.29) there is δ∗ > 0 such that

Pi
(
Y c
M

)
≤
∑
s

∑
x∈`−∩Zd∩∆2

Pi
(
{|r(x, s)| ≥ `δ−}

)
≤ γδ∗ (6.62)

Since pi is equal to the probability Pi conditioned to the set YM , by using Theorem 6.4 and
the triangular inequality, we get (6.61).

We are thus left with the estimate of R∆1(P1, P2) that we do next.

Proposition 6.18. There is ε3 > 0 such that the following holds:

R∆1

(
P1(·|ξ∗1), P2(·|ξ∗2)

)
≤ ε3 (6.63)

Proof. We first observe that from the definition of the Wasserstein distance

R∆1

(
P1(·|b1), P2(·|b2)

)
= inf

Q
Q
(
r∆1 6= r′∆1

)
(6.64)

where r∆1 is the restriction of r to ∆1, namely r∆1 ∈ Y∆1 := {r(x, s) ∈ Rd, x ∈ ∆1, s =
1, . . . S}. Thus the inf on the r.h.s. of (6.64) can be restricted to all couplings of the marginals
Pi,∆1 on the set Y∆1 of the probabilities Pi, i = 1, 2.
Recalling (6.47) we define

bi = B−1
∆2
ξ∗i = `

−d/2
− B−1

∆2

(
B[n̄i,Λ\∆2

− a∗]
)
, i = 1, 2 (6.65)
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We call bi,∆1 the restriction of the vector bi to the set ∆1.
We next call C the matrix with entries Ci,j = (B∆2)−1

i,j , i = (x, s), j = (x′, s′), x, x′ ∈ ∆2,
s, s′ ∈ {1, . . . S}}, C−1

∆1
denotes the restriction to ∆1 of C−1.

Then remark that marginals of Gaussian variables are Gaussian themselves, so we get:

dPi,∆1(r∆1) = ψ(r∆1 − bi,∆1)dr∆1 , ψ(r∆1 − bi,∆1) = Z−1
i e

− 1
2

(r∆1
−bi,∆1

,C−1
∆1

(r∆1
−bi,∆1

))

(6.66)
We use that the Wasserstein distance is related to the variational distance via the following
relation

2R∆1

(
P1,∆1 , P2,∆1

)
= ‖P1,∆1 − P2,∆1‖ (6.67)

where
‖P1,∆1 − P2,∆1‖ :=

∫
|ψ(r∆1 − b1,∆1)− ψ(r∆1 − b2,∆1)|dr∆1 (6.68)

We now prove that

‖P1,∆1 − P2,∆1‖ ≤ 2‖C−1
∆1
‖‖b1,∆1 − b2,∆1‖L2

( ∑
i=(x,s),x∈`−Zd∩∆1

Cii

)1/2
(6.69)

To prove (6.69) we interpolate defining M(t) = tb1,∆1 + (1 − t)b2,∆1 , t ∈ [0, 1]. Then,
shorthanding M = M(t),

l.h.s. of(6.69) ≤ 2
∫ 1

0

∫
|
(
b1,∆1 − b2,∆1 , C

−1
∆1

(r∆1 −M)
)
|ψ(r∆1 −M)dr∆1 dt (6.70)

Using Cauchy-Schwartz the r.h.s. is bounded by

≤ 2‖C−1
∆1
‖‖b1,∆1 − b2,∆1‖L2

∫ 1

0

∫ ( ∑
s,x∈∆1

(r(x, s)−M(x, s))2
)1/2

ψ(r∆1 −M)dr∆1 dt (6.71)

hence (6.69).
To estimate ‖b1,∆1 − b2,∆1‖L2 , we apply Theorem A.1 with C ′ = C ′′ = I, I the identity
matrix, and with A = B∆2 , observing that B∆2(x, s, x′s′) = 0 whenever |x − x′| > γ−1N .
Thus from (A.10) and (A.5), using that ρ̄i,Λ\∆2

∈ A≤,i, i = 1, 2, (6.47) and (6.45) we get that
there are c and c′, such that for all x ∈ ∆1 and since dist(∆1,∆c

2) > 10−30`+∣∣b1,∆1(x, s)− b2,∆1(x, s)
∣∣ =

∣∣ ∑
s′,y∈Λ\∆2

B−1
∆2

(x, s, y, s′)B(`−d/2− n̄1,Λ\∆2
(y, s)− n̄2,Λ\∆2

(y, s))
∣∣

≤ ‖B‖`δ−
∑

s′,y∈Λ\∆2

e−c|x−y|γ ≤ c′`δ−e−cγ10−30`+

Thus this inequality together with (6.67) and (6.69) implies (6.63).

Proof of Theorem 6.2. Recalling the definition (6.38) of the probabilities µi, and the
conditional probabilities defined in (6.44), from Propositions 6.16, 6.17, 6.18 we get that for
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all ρ̄i,Λ\∆2
∈ A≤,i, i = 1, 2,

R∆1

(
µ1(·|ρ̄1,Λ\∆2

), µ2(·|ρ̄2,Λ\∆2
)
)
≤ 2cγd/4 + 2γδ

∗
+ ε3 = ε4

Thus, there is a coupling Q̂
(
n′∆2

, n′′∆2
|ρ̄1,Λ\∆2

, ρ̄2,Λ\∆2

)
of the conditional probabilities µi(·|ρ̄i,Λ\∆2

),
i = 1, 2 such that

Q̂
(
n′∆1
6= n′′∆1

|ρ̄1,Λ\∆2
, ρ̄2,Λ\∆2

)
≤ 2ε4 (6.72)

We define for all ρ̄i,Λ\∆2

Q
(
n′∆2

, n′′∆2
|ρ̄1,Λ\∆2

, ρ̄2,Λ\∆2

)
=

{
Q̂(n′∆2

, n′′∆2
|ρ̄1,Λ\∆2

, ρ̄2,Λ\∆2
) if ρ̄i,Λ\∆2

∈ A≤,i, i = 1, 2
dG0

Λ(n′∆2
|ρ̄1,Λ\∆2

, q̄1,Λc)dG0
Λ(n′′∆2

|ρ̄2,Λ\∆2
, q̄2,Λc) otherwise

We then define a coupling Q of the measures µi by letting

Q
(
n′∆2

, n′′∆2
) = Q

(
n′∆2

, n′′∆2
|ρ̄1,Λ\∆2

, ρ̄2,Λ\∆2

)
dG0

Λ

(
ρ̄1,Λ\∆2

|q̄1,Λc
)
dG0

Λ

(
ρ̄2,Λ\∆2

|q̄2,Λc
)

(6.73)

From (6.27), (6.72) and Theorem 6.12 it follows that

Q
(
n′∆1
6= n′′∆1

)
≤ 2ε4 + 2cγτ + 2e−c`

2δ
− = ε5 (6.74)

Observe that (6.74) implies that
R∆1(µ1, µ2) ≤ ε5 (6.75)

Then, (6.75), Propositions 6.11, 6.13, 6.15 implies (6.9).

6.7 Proof of Theorem 3.3

We need to construct a coupling QΛ such that (6.2) holds.
Recall ∆̊1 = ∆1 \ δγ

−1

in [∆1] and that for any two configurations q̄i,Λ\∆̊1
, i = 1, 2 on X (k)

Λ\∆̊1

we denote by q̄i,∆̊c
1

= q̄i,Λ\∆̊1
∪ q̄i,Λc , i = 1, 2. From Theorem 6.1 we have that, for any n∆1 ,

there is a coupling Q∆̊1

(
q′

∆̄1
, q′′

∆̊1
|q̄1,∆̊c

1
, q̄2,∆̄c

1
, n∆1

)
of the two conditional Gibbs measures

dG0
Λ(q∆̊1

|qi,∆̊c
1
, n∆1), i = 1, 2 such that∑
x∈`−,γZd∩∆0

Q∆̊1

(
q′Λ ∩ C

(`−,γ)
x 6= q′′Λ ∩ C

(`−,γ)
x |q̄1,∆̊c

1
, q̄2,∆̄c

1
, n∆1

)
≤ 2ε0 (6.76)

Given n′ and n′′, we define a coupling Q̂∆̊1
≡ Q̂∆̊1

(
q′

∆̊1
q′′

∆̊1
|q̄1,∆̊c

1
, q̄2,∆̊c

1
, n′, n′′

)
of dG0

Λ(·|q̄1,∆̊c
1
, n′),

dG0
Λ(·|, q̄2,∆̊c

1
, n′′), by setting

Q̂∆̊1
=

{
Q∆̊1

if n′∆1
= n′′∆1

dG0
Λ(·|q̄1,∆̊c

1
, n′)dG0

Λ(·|, q̄2,∆̊c
1
, n′′) otherwise

From Theorem 6.2 there is a coupling Q∗ of G0
Λ(nΛ|qi,Λc), i = 1, 2 such that

Q∗(n′∆1
6= n′′∆1

) ≤ 2ε1 (6.77)
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Then the final coupling QΛ is defined as follows:

QΛ(q′Λ, q
′′
Λ) = Q̂∆̊1

(
q′

∆̊1
q′′

∆̊1
|q̄1,∆̊c

1
, q̄2,∆̊c

1
, n′, n′′

)
dG0

Λ(q′
Λ\∆̊1
|q̄1,Λc , n

′)dG0
Λ(q′′

Λ\∆̊1
|q̄2,Λc , n

′′)Q∗(n′, n′′) (6.78)

Thus from (6.76) and (6.77) we get∑
x∈`−,γZd∩∆0

QΛ

(
q′Λ ∩ C

(`−,γ)
x 6= q′′Λ ∩ C

(`−,γ)
x

)
≤ ε6 (6.79)

To complete the proof of (6.2) we need to show that

S∑
s=1

∑
x∈∆0

Q
(
q′Λ ∩ C

(`−,γ)
x = q′′Λ ∩ C

(`−,γ)
x , |ρ(`−,γ)(q′Λ;x, s)− ρ(k)

s | > ζK(·;x)−1

)
≤ ε (6.80)

Since in the set on the l.h.s. of (6.80), q′Λ = q′′Λ, by using (6.27) we have

QΛ

(
q′Λ ∩ C

(`−,γ)
x = q′′Λ ∩ C

(`−,γ)
x , |ρ(`−,γ)(q′Λ;x, s)− ρ(k)

s | > ζK(·;x)−1

)
≤ G0

Λ

(
|ρ(`−,γ)(q′Λ;x, s)− ρ(k)

s > ζK(·;x)−1; q̄′Λ
)

+G0
Λ

(
|ρ(`−,γ)(q′′Λ;x, s)− ρ(k)

s | > ζK(·;x)−1; q̄′′Λ
)

≤ G∗Λ(|ρ(`−,γ)(q′Λ;x, s)− ρ(k)
s | > ζK(·;x)−1|q̄′Λc)

+G∗Λ(|ρ(`−,γ)(q′′Λ;x, s)− ρ(k)
s | > ζK(·;x)−1|q̄′′Λc) + 2cγτ (6.81)

From Theorem 6.12 and (ii) of Theorem 5.1 it follows that for all x ∈ ∆0 and for q̄Λc = q̄′Λc
or q̄′′Λc),

G∗Λ(|ρ(`−,γ)(q′Λ;x, s)− ρ(k)
s | > ζK(·;x)−1|q̄Λc) ≤ e−c`

2δ
− (6.82)

which together with (6.81) proves Theorem 3.3.

Part III

Disagreement percolation

In this part we fix t ∈ [0, 1], a bounded D`+,γ -measurable region Λ, k ∈ {1, . . . , S+ 1}; µ′ and
µ′′ stand for the measures dGΛ(qΛ,Γ|q̄′Λc , Γ̄

′
Λc) and dGΛ(qΛ,Γ|q̄′′Λc , Γ̄

′′
Λc). They are obtained

by conditioning measures ν ′ and ν ′′ which could be either DLR measures or Gibbs measures
dGΛ′(qΛ′ ,Γ|q̄(Λ′)c) with Λ′ ⊇ Λ. We will first construct a coupling of µ′ and µ′′ and, with the
help of such a coupling, we will then define a coupling of ν ′ and ν ′′ proving that it satisfies
the requirements of Theorem 3.1. The notation which are most used in this part are reported
below.

Main notation and definitions.
We call

ξ = (q,Γ) ∈ X (k)
Λ × BΛ (6.83)
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Given a D(`+,γ) measurable subset ∆ of Λ and ξ = (q,Γ), we call ξ∆ = (q∆,Γ∆) its restriction
to ∆. Namely if Γ = (Γ(1), . . .Γ(n)), then

Γ∆(i) =
(
sp[Γ(i)] ∩∆, ηsp[Γ(i)]∩∆

)
, Γ∆ = (Γ∆(1), . . .Γ∆(n)) (6.84)

We will say that we vary ξ in ∆c if we change ξ leaving ξ∆ invariant.
We denote by ΩΛ the product space,

ΩΛ = (X (k)
Λ × BΛ)2, ω = (ξ, ξ′) ∈ ΩΛ (6.85)

Given a subset ∆ ⊂ Λ and ω = (ξ, ξ′) ∈ ΩΛ, we call ω∆ = (ξ∆, ξ
′
∆) ∈ Ω∆ its restriction to ∆.

We call FΛ the σ-algebra of all Borel sets in ΩΛ and for any D(`+,γ) measurable set ∆ in Λ
we call F∆ the σ-algebra of all Borel sets A such that 1A(ω) does not vary when we change
ω in ∆c.

7 Construction of the coupling

The target of this section is to construct a “good” coupling Q of µ′ and µ′′. The basic idea
is to implement the disagreement percolation technique used in van der Berg and Maes, [3],
Butta et al., [6], Lebowitz et al,[13]. The first step is to introduce a sequence of random sets
Λn, which is done in the next subsection. We will then introduce the notion of “stopping
sets” and “strong Markov couplings” showing that the sets Λn are indeed stopping sets and,
using the strong Markov coupling property, we will finally get the desired coupling of µ′ and
µ′′.

7.1 The sequence Λn

We will define here for each ω = (ξ′, ξ′′) ∈ ΩΛ a decreasing sequence of D(`+,γ)-measurable
sets Λn, which are therefore set valued random variables. We set Λ0 = Λ and for n ≥ 0,
define Λn+1 = Λn \ Σn+1, thus the sequence is defined once we specify the “screening sets”
Σn. Screening sets are defined iteratively with the help of the notion of “good” and “bad
cubes”.
After defining in an arbitrary fashion an order among the D(`+,γ) cubes of δ`+,γout [∆], for any
D(`+,γ)-measurable set ∆ ⊂ Λ, we start the definition by calling bad all the cubes of δ`+,γout [Λ0].
We then select among these the first one (according to the pre-definite order) which intersects
a polymer (i.e. either sp(Γ′) ∩ C 6= ∅, or sp(Γ′′) ∩ C 6= ∅), if there is no such cube we then
take the first cube in δ

`+,γ
out [Λ0]. Call C1 the cube selected with such a rule. We then define

Σ1 = δ
`+,γ
out [C1] ∩ Λ0 and call bad all cubes of Σ1 if C1 intersects a polymer. If not, we say

that a D(`+,γ) cube C ∈ Σ1 is good if sp(Γ′) ∩ C = sp(Γ′′) ∩ C = ∅ and if

ω ∈
⋂

x∈`−γZd∩C

ΘΛ0(x), ΘΛ0 has been defined in (3.24), (7.1)
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otherwise C ∈ Σ1 is called bad. In this way each cube of Σ1 is classified as good or bad and
therefore all cubes of δ`+,γout [Λ1] are classified as good or bad. We then select C2 in δ

`+,γ
out [Λ1]

in the same way we had selected C1 in δ`+,γout [Λ0], Σ2 = δ
`+,γ
out [C2]∩Λ1 and the cubes of Σ2 are

then classified as good or bad by the same rule used for those of Σ1. By iteration we then
define a sequence which becomes eventually constant, as it stops changing at Λn if δ`+,γout [Λn]
has no bad cube or if Λn is empty. Since Λ has N∗ := |Λ|/`d+,γ cubes, Λn is certainly constant
after N∗, but maybe even earlier. In Appendix B we will prove:

Theorem 7.1. If the sequence {Λn} stops at n = N and ΛN is non empty, then

q′Λ ∩ δ
γ−1

out [ΛN ] = q′′Λ ∩ δ
γ−1

out [ΛN ] (7.2)

and
sp(Γ′) ∩ δγ

−1

out [ΛN ] = sp(Γ′′) ∩ δγ
−1

out [ΛN ] = ∅ (7.3)

7.2 Stopping sets

The random variables Λn are “stopping sets” and the sequence Λn is decreasing, Λn+1 4 Λn,
in the following sense.

• F∆c , ∆ a D(`+,γ) measurable subset of Λ, is the σ algebra of all Borel sets A such that
1A(ω) does not change if we vary ω in ∆.

• A random variable R with values in the D(`+,γ) measurable subsets of Λ is called a
stopping set if for all ∆,

{ω ∈ Ω : R(ω) = ∆} ∈ F∆c (7.4)

• Two stopping sets R′ and R are such that R′ 4 R if

R′(ω) ⊂ R(ω), for all ω ∈ ΩΛ

{ω : R′(ω) = ∆′} ∩ {ω : R(ω) = ∆} ∈ F∆c , for all ∆′ ⊂ ∆

7.3 Strong Markov couplings

A coupling Q(dω) of µ′ and µ′′ is called strong Markov in R, R a stopping set, if the measure

dQ̃(ω) :=
∑
∆⊂Λ

1{R(ω)=∆}dπ∆(ω∆|ω̄∆c)dQ(ω̄∆c) (7.5)

is also a coupling of µ′ and µ′′ for all couplings dπ∆(ω∆|ω̄∆c) of dµ′(ξ∆|ξ̄∆), and dµ′′(ξ′∆|ξ̄′∆).
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Theorem 7.2. Given any stopping set R, let Q be a coupling of µ′ and µ′′ which is strong
Markov in R, Then any coupling Q̃ defined by (7.5) is strong Markov in R′ provided the
stopping set R′ is such that R′ 4 R,

Proof. We have to prove that for any family of couplings {π̂∆(dω∆|ω̄∆c),∆ ⊂ Λ, ω̄∆c ∈ Ω∆c},
the probability Q̂(dω) defined as

dQ̂(ω) :=
∑
A⊂Λ

1{R′(ω)=A}dπ̂∆(ωA|ω̄Ac)dQ̃(ωAc) (7.6)

is a coupling of µ′ and µ′′. We thus take a function f(ξ) and we prove that Q̂(f) = µ′(f),
where Q̂(f), µ′(f), is the expectation of f under Q, respectively µ′.
Using that R′ is a stopping set we get

Q̂(f) =
∑
A⊂Λ

∫
ΩAc

1{R′(ω)=A}dQ̃(ωAc)
∫

ΩA

f(ξ)dπ̂A(ωA|ω̄Ac)

=
∑
A⊂Λ

∫
ΩAc

1{R′(ω)=A}dQ̃(ωAc)µ′(f |ξAc)

=
∑
A⊂Λ

∫
Ω

1{R′(ω)=A}dQ̃(ω)µ′(f |ξAc)

We now rewrite dQ̃(ω) by using its definition (7.5) and since R′ 4 R we get

Q̂(f) =
∑
∆⊂Λ

∑
A⊂∆

∫
Ω∆c

1{R(ω)=∆}1{R′(ω)=A}dQ(ω̄∆c)
∫

Ω∆

dπ∆(ω∆|ω̄∆c)µ′(f |ξAc) (7.7)

Observe that (recalling A ⊂ ∆)∫
Ω∆

dπ∆(ω∆|ω̄∆c)µ′(f |ξAc) =
∫
dµ′(ξ∆|ξ∆c)µ′(f |ξ∆c , ξ∆\A) = µ′(f |ξ∆c) (7.8)

We insert (7.8) in (7.7) and we get

Q̂(f) =
∑
∆⊂Λ

∫
Ω∆c

1{R(ω)=∆}dQ(ω∆c)µ′(f |ξ∆c) = µ′(f)

The Theorem is proved.

7.4 Construction of couplings

We use the sequence {Λn} of decreasing stopping sets (in the order 4) and Theorem 7.2 to
construct a sequence {Qn} of couplings of µ′ and µ′′, the desired coupling will then be QN

∗
,

where N∗ = |Λ|/`d+,γ . The sequence {Qn} is defined iteratively by setting Q0 equal to the
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product coupling: Q0 = µ′ × µ′′ which, as it can be easily checked, is strong Markov in Λ0.
Then for any n ≥ 0 we set

dQn+1(ωΛ) =
∑
∆ 6=∅

1{Λn(ωΛ)=∆}dπ∆(ω∆|ωΛ\∆, ω̄Λc)dQn(ωΛ\∆) + 1{Λn(ωΛ)=∅}dQ
n(ωΛ) (7.9)

where dQn(ω∆c) is the marginal of dQn over {ω∆c} and π∆, ∆ 6= ∅, is the coupling of
dµ′(ξ′∆|ξ̄′∆c), and dµ′′(ξ′′∆|ξ̄′′∆c) defined next. We distinguish three cases according to the
values of ω̄∆c = (ξ̄′∆c , ξ̄′′∆c).

• If ω̄∆c is such that either sp(Γ′) ∩ δ`+,γout [∆] 6= ∅, or sp(Γ′′) ∩ δ`+,γout [∆] 6= ∅, or both, then
π∆ is the product coupling: dπ∆(ξ′∆, ξ

′′
∆|ω̄∆c) = dµ′(ξ′∆|ξ̄′∆c)dµ′(ξ′′∆|ξ̄′′∆c).

• If ω̄∆c is such that sp(Γ′) ∩ δ`+,γout [∆] = sp(Γ′′) ∩ δ`+,γout [∆] = ∅ and q′ ∩ δγ
−1

out [∆] = q′′ ∩
δγ
−1

out [∆] then dπ∆(ξ′∆, ξ
′′
∆|ω̄∆c) = dµ′(ξ′∆|ξ̄′∆c)δ(ξ′∆−ξ′′∆)dξ′′∆, namely dπ∆ is the coupling

supported by the diagonal.

• Finally let ω̄∆c be such that sp(Γ′)∩ δ`+,γout [∆] = sp(Γ′′)∩ δ`+,γout [∆] = ∅ but q′∩ δγ
−1

out [∆] 6=
q′′ ∩ δγ

−1

out [∆]. Call T = Σn+1 ∪
(
δ
`+,γ
out [Σn+1] ∩∆

)
, U = ∆ \ T . Let dP (q′U , q

′′
U ,Γ

′,Γ′′) =

dµ′(q′U ,Γ
′|ξ̄′∆c)dµ′′(q′′U ,Γ

′′|ξ̄′′∆c) be the product of the marginal distributions of dµ′(·|ξ̄′∆c)
and dµ′′(·|ξ̄′′∆c) over X (k)

U × B∆. Let QT be the coupling defined in Theorem 3.3 and
letting Ξ = {ω∆c : Γ′ ∩ (T ∪ δ`+,γout [T ]) = Γ′′ ∩ (T ∪ δ`+,γout [T ]) = ∅}, we denote by 1Ξ the
characteristic function of the set Ξ.

Then we define

dπ∆(ω∆ | ω̄∆c) = 1Ξ(ω̄∆c) dQT
(
q′T , q

′′
T |q′U , q̄′∆c , q′′U , q̄

′′
∆c

)
dP (q′U , q

′′
U ,Γ

′,Γ′′)
+[1− 1Ξ(ω̄∆c)]dµ′(q′∆,Γ

′|ξ̄′∆c)dµ′′(q′′∆,Γ
′′|ξ̄′′∆c)

By Theorem 7.1 the second case above occurs if and only if all cubes of δ`+,γout [∆] are good,
while in the third case there are bad cubes in δ`+,γout [∆] so that Σn+1 is non empty. The proof
that cubes are good with large probability will be based on Theorem 3.3 and the following
lemma:

Lemma 7.3. Suppose Λn(ω) = ∆ and that the third case above is verified, namely ω∆c is
such that sp(Γ′) ∩ δ`+,γout [∆] = sp(Γ′′) ∩ δ`+,γout [∆] = ∅ and q′ ∩ δγ

−1

out [∆] 6= q′′ ∩ δγ
−1

out [∆]. Suppose
also that Γ′ ∩ (T ∪ δ`+,γout [T ]) = Γ′′ ∩ (T ∪ δ`+,γout [T ]) = ∅. Let C in Σn+1, then C is good if
ω∆ ∈ ΘT (x) for all x ∈ C, ΘT as in (3.24).

Proof. The proof follows from the definitions of good cubes and ΘT (x) because for all x ∈ C,
ΘT (x) = Θ∆(x).
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8 Probability estimates.

Recall from the beginning of Part III that µ′ and µ′′ are obtained by conditioning to the
configurations outside Λ the measures ν ′ and ν ′′ which are either DLR measures or Gibbs
measures dGΛ′(qΛ′ ,Γ|q̄(Λ′)c) with Λ′ ⊇ Λ. Thus if QN

∗
is the coupling of µ′ and µ′′ defined

in Subsection 7.4, we obtain a coupling P of ν ′, ν ′′ by writing

dP (ω) = dν ′(ξ̄′Λc)dν
′′(ξ̄′′Λc)dQ

N∗(ωΛ|ω̄Λc), ω = (ωΛ, ω̄Λc), ω̄Λc = (ξ̄′Λc , ξ̄
′′
Λc) (8.1)

We will prove here that there is a constant c such that for all γ small enough, for any
D(`+,γ)-measurable subset ∆ of Λ:

P
(
{ω : ΛN∗(ω) ⊃ ∆}

)
≥ 1− c1e

−c2 dist(∆,Λc)
`+,γ (8.2)

This proves that (q′Λ,Γ
′) and (q′′Λ′ ,Γ

′′) agree in ∆, in the sense of (3.20), with probability

≥ 1 − c1e
−c2 dist(∆,Λc)

`+,γ from which Theorem 3.1 follows. Indeed if ν ′ and ν ′′ are two DLR
measures, by the arbitrariness of ∆ and Λ, (8.2) shows that ν ′ = ν ′′, hence that there is
a unique DLR measure. If instead ν ′ and ν ′′ are two Gibbs measures dGΛ′(qΛ′ ,Γ|q̄Λ′c) and
dGΛ′′(qΛ′′ ,Γ|q̄Λ′′c), Λ ⊂ Λ′, Λ ⊂ Λ′′ then (8.2) yields (3.21).

8.1 Reduction to a percolation event

Denote by A = A(ω) the union of all bad cubes contained in Λ and of the cubes in δ
`+,γ
out [Λ]

with a polymer, namely those cubes C such that C ⊆ sp(Γ), Γ in Γ′ ∪ Γ′′. Since by its
definition any screening set is connected to a bad cube and since any bad cube in Λ is
necessarily contained in a screening set, it follows that if A 6= ∅ then it is connected to Λc.
Since the event in (8.2) is bounded by

{ω : ΛN∗(ω) ⊃ ∆}c ⊂ {A(ω) ∩∆ 6= ∅} (8.3)

, it is therefore also bounded by the event that the bad cubes percolate from ∆ to Λc. Hence,
denoting in the sequel by A a connected, D(`+,γ)-measurable subset of Λ ∪ δ`+,γout [Λ],

P
(
{ΛN∗ ⊃ ∆}c

)
≤

∑
x∈`+,γZd∩∆

∑
A:A3x,A∩δ

`+,γ
out [Λ] 6=∅

P
(
{A = A}

)
(8.4)

We write A = A1∪A2∪A3, Ai the union of cubes of “type i”. Cubes of type 1 are those with
a polymer, namely C is type 1 if there is Γ in Γ′ ∪ Γ′′ such that C ⊆ sp(Γ). C is type 2 (also
called unsuccessful) if C, say in Σn+1, is bad and all cubes of δ`+,γout [Λn] are without polymers
(in the above sense). Cubes of type 3 are the remaining ones, they are therefore in the union
of all Σn+1 with Σn+1 connected to a type 1 bad cube. Then calling NA = |A|/`d+,γ ,

l.h.s. of (8.4) ≤
∑

x∈`+,γZd∩∆

∑
A:A3x,A∩δ

`+,γ
out [Λ] 6=∅

3NA max
A1∪A2∪A3=A

P
( 3⋂
i=1

{Ai = Ai}
)

(8.5)
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Since A3 ⊂
⋃
C∈A1

δ
`+,γ
out [C],

NA3 ≤ 3dNA1 (8.6)

Therefore NA1 +NA2 + 3dNA1 ≥ NA and

3⋂
i=1

{
Ai = Ai

}
⊂

{
A2 = A2;NA2 ≥

NA

2

}
∪
{
A1 = A1;NA1 ≥

NA

2(1 + 3d)

}
(8.7)

We are thus reduced to estimate for any (A1, A2, A3),

P
(
{A2 = A2}

)
, if NA2 ≥

NA

2
; P

(
{A1 = A1}

)
, if NA1 ≥

NA

2(1 + 3d)
(8.8)

8.2 Peierls estimates

We bound here P
(
{A1 = A1}

)
where A1 is some given set in Λ ∪ δ`+,γout [Λ]. Thus each cube

C ⊂ A1 is either contained in sp(Γ), Γ ∈ Γ′ or in sp(Γ), Γ ∈ Γ′′ (or both). Thus

P
(
{A1 = A1}

)
≤ 2NA1 max

B⊂A1,NB≥NA1
/2

max{ν ′(sp(Γ) ⊃ B); ν ′′(sp(Γ) ⊃ B)} (8.9)

where sp(Γ) =
⋃
Γ∈Γ

sp(Γ). Let B = C1 ∪ · · · ∪ Cn, Ci disjoint cubes of D(`+,γ), then, since ν ′

and ν ′′ satisfy the Peierls estimates,

ν ′(sp(Γ) ⊃ B) ≤
∑

Γ1,...,Γn,sp(Γi)⊃Ci

ν ′
(
Γ 3 Γ1, ...,Γn

)
≤

∑
Γ1,...,Γn,sp(Γi)⊃Ci

e−cpolζ
2`d−,γ(NΓ1

+···+NΓn )

≤ e−cpolζ
2`d−,γNB/2

( ∑
Γ:sp(Γ)3C

e−cpolζ
2`d−,γNΓ/2

)NB
≤ 2NBe−cpolζ

2`d−,γNB/2 (8.10)

for all γ small enough. Thus

P
(
{A1 = A1}

)
≤ 22NA1e−cpolζ

2`d−,γNA1
/4 (8.11)

8.3 Probability of unsuccessful cubes

We will bound here P
(
{A2 = A2}

)
. Given any n > 0 we define

A2,n(ω) = A2(ω) ∩ Λn(ω)c, On(ω) = NΛn(ω)∩A2
(8.12)
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gn(ω) = χn(ω) · εOn(ω), χn(ω) := 1A2,n(ω)=A2∩Λn(ω)c (8.13)

ε > 0 will be specified later. We are going to prove that for all n,

E(gn+1) ≤ E(gn) ≤ . . . ≤ E(g0) (8.14)

where E is the expectation with respect to P . Since A2 ⊂ Λ = Λ0 and A2,N∗(ω) = A2(ω),
we then get from (8.14),

P
(
{A2 = A2}

)
≤ εNA2 (8.15)

Recalling (8.1), we set PN
∗

= P and for n < N∗,

dPn(ω) = dν ′(ξ̄′Λc)dν
′(ξ̄′′Λc)dQ

n(ωΛ|ω̄Λc), ω = (ωΛ, ω̄Λc), ω̄Λc = (ξ̄′Λc , ξ̄
′′
Λc) (8.16)

calling En the expectation w.r.t. Pn. We have E(gn+1) = En+1(gn+1), hence by (7.9),

E(gn+1) =
∑
∆

∑
∆′⊂∆

εNA2∩∆′
∫
Pn(dω∆c)

[
1{Λn=∆,Λn+1=∆′}χn(ω)

×
∫
A2(ω∆)⊃A2∩Σn+1

π∆(dω∆ | ξ∆c)
] (8.17)

where Σn+1 = ∆ \∆′. The last integral is equal to 1 if A2 ∩ {∆ \∆′} = ∅, while, if this is
not the case, by (3.25)∫

A2(ω∆)⊃A2∩{∆\∆′}
π∆(dω∆ | ξ∆c) ≤ c(εg + e−cpolζ

2`d−,γ/2), A2 ∩ {∆ \∆′} 6= ∅ (8.18)

We then get from (8.17),

E(gn+1) ≤ En(gn) max{1, c(εg + e−cpolζ
2`d−,γ/2)

ε3d
} (8.19)

We choose

ε =
1
2

(
c(εg + e−cpolζ

2`d−,γ/2)
)3−d

(8.20)

so that the max on the r.h.s. of (8.19) is 1 which thus proves (8.14) and (8.15).

8.4 Proof of Theorem 3.1

As we have shown at the beginning of this Section, Theorem 3.1 follows from (8.2) that we
prove here.
Given ε as in (8.20), for γ small enough we bound the r.h.s of (8.11) as

P
(
{A1 = A1}

)
≤ 22NA1e−cpolζ

2`d−,γNA1
/4 ≤ εNA1 (8.21)

From (8.4), (8.5), (8.8), (8.21) and (8.15) we then get

P
(
{ΛN∗ ⊃ ∆}c

)
≤

∑
x∈`+,γZd∩∆

∑
A:A3x,A∩δ

`+,γ
out [Λ] 6=∅

3NA2εNA

≤ 2|∆|
∑

n≥dist(∆,Λc)
`+,γ

(3ε)n

that implies (8.2).
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Part IV

Appendices

A Operators on Euclidean spaces

For the sake of completeness we recall here some elementary properties of operators on finite
dimensional Hilbert spaces used in the previous sections. We call H the real Hilbert space of
vectors u = {u(i)} with scalar product

(u, v) =
∑
i

u(i)v(i) (A.1)

where i above ranges in a finite index set on which a distance |i − j| is defined (in our
applications i stands for a pair (x, s), with x ∈ `Zd∩Λ, s ∈ {1, .., S}, and either ` = `−,γ or ` =
γ−1/2, Λ being a fixedD(`−,γ)-measurable bounded subset of Rd. Operators onH are identified
to matrices B = B(i, j) by setting Bu(i) =

∑
j

B(i, j)u(j). We write |u|∞ = max
i
|u(i)|,

‖B‖2 = sup
u6=0

(Bu,Bu)
(u, u)

, ‖B‖∞ = sup
u6=0

|Bu|∞
|u|∞

(A.2)

Recall that

‖B‖∞ ≤ max
i

∑
j

|B(i, j)|, ‖B‖ ≤ max
i
{
∑
j

|B(i, j)|,
∑
j

|B(j, i)|} =: |B| (A.3)

The first inequality in (A.3) is obvious. To prove the second one we write∑
i

(∑
j

B(i, j)u(j)
)2
≤
∑
i,j1,j2

|B(i, j1)||B(i, j2)|1
2
(
u(j1)2 + u(j2)2

)
≤
∑
i,j1,j2

|B(i, j1)||B(i, j2)|u(j1)2 ≤ |B|2
∑
i

u(i)2

In Theorem A.1 below we consider matrices of the form B = C ′A−1C ′′, thus including
(QAQ)−1 (after restricting to QH) and PA(QAQ)−1QA, the matrix considered in (5.37).
With in mind these two applications we will suppose the diagonal elements of A strictly
positive and large.

Theorem A.1. Let B = C ′A−1C ′′ with A = D+R, D a diagonal matrix, and suppose there
are c > 0, c′ > 0 and b > 0 such that the following holds (recall the definition of the norm
|C| given in (A.3)).

|C ′|+ |C ′′|+ |R| ≤ c (A.4)

60



The diagonal elements D(i, i) of D are such that D(i, i) ≥ b for every i. Finally C ′(i, j) =
C ′′(i, j) = R(i, j) = 0 whenever |i− j| ≥ c′γ−1. Then if b is large enough,

‖B‖ ≤ 2c2

b
, ‖B‖∞ ≤ max

i

∑
j

|B(i, j)|eγ|i−j| ≤ 2c2e2c′

b
(A.5)

Proof. By (A.3), ‖R‖ ≤ c. On the other hand ‖D‖−1 ≤ b−1 and for b so large that b−1c < 1
the sum on the r.h.s. of (A.6) below converges and

A−1 = D−1 −D−1RD−1 +D−1RD−1RD−1 − · · · =
∞∑
n=0

(
−D−1R

)n
D−1 (A.6)

as seen by multiplying the r.h.s. of (A.6) from the left byA: we then getAD−1
(
1−RD−1+· · ·

)
which is equal to 1 after writing AD−1 = 1 +RD−1 and after telescopic cancellations. Thus
(A.6) holds and

‖A−1‖ ≤
∞∑
n=0

b−n−1‖R‖n ≤ 1
b(1− c/b)

(A.7)

hence, recalling (A.3), we get the first inequality in (A.5). We write∑
j

|B(i, j)|eγ|i−j| ≤
∑
i1

|C ′(i, i1)|eγ|i−i1|
∑
i2

|A−1(i1, i2)|eγ|i1−i2|
∑
j

|C ′′(i2, j)|eγ|i2−j|

≤ c2e2c′ max
i1

∑
i2

|A−1(i1, i2)|eγ|i1−i2|

Since
∑
i2

|R(i1, i2)|eγ|i1−i2| ≤ ec′c, by (A.6)

∑
i2

|A−1(i1, i2)|eγ|i1−i2| ≤
∞∑
n=0

b−n−1[ec
′
c]n

hence the second inequality in (A.5).

In the next two theorems we consider a matrix R1 with small norm, it represents in our
applications the matrix PA(QAQ)−1QA which by Theorem A.1 has indeed a small norm (if
b is large).

Theorem A.2. Let B = A+R1; suppose A symmetric, (u,Au) ≥ κ(u, u) for all u; ‖R1‖ ≤ ε
and κ > ε > 0. Then B is invertible and

‖B−1‖ ≤ 1
κ′
, κ′ = κ− ε (A.8)
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Suppose further that
sup
i

∑
j

|B(i, j)|eγ|i−j| ≤ a <∞ (A.9)

then

|B−1(i, j)| ≤ (
1
a

+
1
κ′

) exp
{
− κ′γ|i− j|

a+ κ′

}
(A.10)

Proof. By the integration by parts formula,

e−Bt = e−At −
∫ t

0
e−BsR1e

−A(t−s) (A.11)

Since ‖e−At‖ ≤ e−κt,

‖e−Bt‖ ≤ e−κt + e−κt
∞∑
n=1

(εt)n

n!
≤ e−(κ−ε)t (A.12)

Then
∫ ∞

0
e−Bt is well defined and equal to B−1; (A.8) also follows.

Calling ei the vector with components ei(j) = 1i=j ,

B−1(i, j) =
∫ τ

0

(
ei, e

−Btej
)

+
∫ ∞
τ

(
ei, e

−Btej
)

(A.13)

By (A.12),

|
∫ ∞
τ

(
ei, e

−Btej
)
| ≤ e−κ

′τ

κ′
, κ′ = κ− ε (A.14)

By a Taylor expansion:

|
(
ei, e

−Btej
)
| ≤

∞∑
n=0

tn

n!
e−γ|i−j|

∑
i1,..,in−1

|B(i, i1)|eγ|i−i1| · · · |B(in−1, j)|eγ|j−in−1| (A.15)

hence using (A.9),

|
∫ τ

0

(
ei, e

−Btej
)
| ≤ eaτ−γ|i−j|

a
(A.16)

By choosing τ =
γ|i− j|
a+ κ′

we then get (A.10) from (A.14) and (A.16).

Theorem A.3. Let B = A + R1 as in Theorem A.2; call D the diagonal part of A, R0 :=
A−D, R = R0 +R1 and suppose that ‖R‖∞ <∞. Then

‖B−1‖∞ ≤
1
κ

+
‖R‖∞
κ2

(
1 +
‖R‖∞
κ− ε

)
(A.17)
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Proof. Recalling that B = D +R, we use the identity

B−1 = D−1 −D−1RD−1 +D−1RB−1RD−1

Then

B−1(i, j) = (ei, D−1ej)− (D−1ei, RD
−1ej) +

∑
k,h

(ei, D−1Rek)(ek, B−1eh)(eh, RD−1ej)

so that ∑
j

|B−1(i, j)| ≤ κ−1 + κ−2‖R‖∞ + ‖B−1‖κ−2‖R‖2∞

and (A.17) follows using (A.8).

B Proof of Theorem 7.1

In the sequel cubes are always cubes in D(`+,γ) and a cube C is called “older” than C ′ if there
is n such that C ′ ⊂ Λn and C ⊂ Λcn. We will prove the theorem as a consequence of the
following property:

Property P. Let C be a good cube, x ∈ `−,γZd ∩ C, {Ci} the cubes older than C which

intersect Bx(2d10−10`+,γ). If either {Ci} is empty or if all Ci are good, then q′Λ ∩ C
(`−,γ)
x =

q′′Λ ∩ C
(`−,γ)
x .

Before proving Property P, we will use it to prove Theorem 7.1. Suppose that for some N ,
ΛN is non empty and that all cubes in δ

`+,γ
out [ΛN ] are good (thus the sequence Λn stops at

N). Let C be a cube in δ
`+,γ
out [ΛN ], x ∈ `−,γZd ∩ C and at distance ≤ γ−1 from ΛN . Then

Bx(2d10−10`+,γ)∩ΛcN intersects only cubes of δ`+,γout [ΛN ], which are by assumption good; then
by Property P, q′Λ ∩ C

(`−,γ)
x = q′′Λ ∩ C

(`−,γ)
x , hence (7.2). (7.3) holds because all cubes of

δ
`+,γ
out [ΛN ] are good.

We start the proof of Property P by introducing a new function M(x), x ∈ `−,γZd. We set
M(x) = ∞ outside Λ and at all x which are in bad cubes. The definition of M(x) on the
good cubes is given iteratively in Λcn. We thus suppose to have already defined M(x) on all
cubes of Λcn and have to define it on Σn+1 = Λcn+1 \ Λcn. Let thus C ⊂ Σn+1 and x ∈ C. We
set M(x) = 0 if Bx(10−10`+,γ) ∩ Λcn = ∅, otherwise

M(x) := 1 + max
{
M(y)

∣∣y ∈ `−,γZd ∩Bx(10−10`+,γ), y such that C(`+,γ)
y ⊂ Λcn

}
(B.1)
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To compute the value of M(x), x ∈ C, C ⊂ Σn+1, we need to look at all sequences y1, y2, ....

such that: |yh− yh−1| ≤ 10−10`+,γ , C(`+,γ)
yh is older than C(`+,γ)

yh−1 , h0 = x and to know whether
the cubes C(`+,γ)

yh are good or bad. In principle the sequence may be arbitrarily long but in
fact it is not:

Lemma 1. Let C be a good cube, x ∈ C, then the value of M(x) depends only on whether
the cubes {Ci} are good or bad, where {Ci} is the collection of cubes older than C which
intersect Bx(2d10−10`+,γ).

Proof. Since any ball of radius (2d10−10 + 1)`+,γ intersects at most 2d cubes of the partition
D(`+,γ), then any sequence y1, y2, .... as above consists at most of 2d elements.

Since m̄ = 2d + 2, then

either M(x) < m̄− 2 or M(x) = +∞ (B.2)

We will next prove:

Lemma 2. Let C be a good cube, x ∈ C, then, if m̄−M(x) = h > 0,

q′Λ ∩ C
(`−,γ)
x = q′′Λ ∩ C

(`−,γ)
x , max

s∈{1,..,S}
|ρ(`−,γ)(q′Λ;x, s)− ρ(k)

s | ≤ ζh (B.3)

Proof. The proof is by induction on the “age” of the cubes. We thus suppose that the
above statements holds for all cubes of Λcn. Let C be a good cube in Σn+1, then the above
properties hold by the definition of the function K and of good cubes.

Property P is then an immediate consequence of Lemma 2 and (B.2).

C Mean field

In this appendix we prove Theorems 2.2 and 2.3. Our approach is based on the recent works
[12, 10], having in mind that in [12] the total density was set to 1, the temperature being the
free parameter, while here we fix the (inverse) temperature β = 1, the total density x being
the free parameter. The two approaches are equivalent, see (2.3).
To achieve our goal, we will need Lemmas C.1, C.2, C.3, C.4 and C.5 below. The first lemma is
an essential property relating the total density x to the corresponding constrained minimizer
in a one-to-one way. The second and third lemmas respectively deal with the first and second
derivatives of the free energy. They show in particular that the sign of the second derivative
depends on the roots of some peculiar second degree polynomial. The fourth lemma studies
the locations of these roots, while the fifth and last lemma gives a general condition for a
piecewise-convex function to have a common tangent at two different points.
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The section is organized as follows. We first give some notations and reformulate known
results, before stating our auxiliary lemmas. Then we prove Theorems 2.2 and 2.3, while the
proofs of lemmas are deferred to the end of the present section.

Notations

For any x ∈ (0,+∞), z ∈ [0, 1], we will denote by ρ(z,x) the density vector ρ defined as follows:

ρ
(z,x)
i =

{
1+(S−1)z

S x for i = 1
1−z
S x for i = 2, . . . , S.

(C.1)

Notice that
∑
ρ

(z,x)
i = x and rewrite (2.4) as follows:

fmf(x) = inf
{
Fmf(ρ(z,x)); 0 ≤ z ≤ 1

}
. (C.2)

Now, remarking that zx = ρ
(z,x)
1 − ρ(z,x)

2 , we adapt a result from [10, 12]. Namely, recalling
Theorem A.1 in [12] or section 3 in [10], and comparing (C.3) and (C.4) below with (A.10)
and (A.22) in [12], we know that for any S > 2 there exists a threshold

xS := 2
S − 1
S − 2

ln(S − 1) (C.3)

such that

• for all x < xS , the function z 7→ Fmf(ρ(z,x)) reaches its minimum at z = 0;

• for all x > xS , the function z 7→ Fmf(ρ(z,x)) reaches its minimum at z = z(x), defined
as the largest solution of the equation R(z) = x where

R(z) :=
1
z

ln
1 + (S − 1)z

1− z
; (C.4)

• at x = xS , the function z 7→ Fmf(ρ(z,x)) reaches its minimum at z = 0 and at z =
z(xS) = S−2

S−1 .

The statement above means that we have

fmf(x) =

{
fdis(x) := Fmf(ρ(0,x)) if x ≤ xS
ford(x) := Fmf(ρ(z(x),x)) if x ≥ xS .

(C.5)

First of all, we will see that

Lemma C.1 (Monotony of R and z). The functions R : z → R(z) and z : x→ z(x) are both
increasing respectively on [zS , 1) and [xS ,+∞), where zS = S−2

S−1 . They satisfy the relations
R ◦ z = Id[xS ,+∞) and z ◦R = Id[zS ,1).

Moreover
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Lemma C.2.
lim
x→0

(fmf)′(x) = −∞ and lim
x→+∞

(fmf)′(x) = +∞, (C.6)

lim
x↑xS

(fmf)′(x)− lim
x↓xS

(fmf)′(x) =
(

1− 2
S

)
ln(S − 1). (C.7)

Lemma C.3.

∀x ≤ xS ,
d2fdis

dx2
(x) =

S − 1
S

+
1
x

(C.8)

∀x ≥ xS ,
d2ford

dx2
(x) =

(
S − 1
S

)
z′(x)
xz(x)

[
R+
z(x) − x

] [
x−R−z(x)

]
, (C.9)

where R±z denotes the roots of the second degree polynomial Pz(X) := X2 − bzX − cz given
by {

bz := S(S−2)
(S−1)[1+(s−1)z]

cz := S2

(S−1)(1−z)[1+(s−1)z] .

According to Lemma C.3, the convexity properties of ford will follow from the position of the
roots of Pz(x) with respect to x. We will actually prove the lemma below

Lemma C.4 (Roots of Pz). The roots of the polynomial Pz are such that R−z < 0 < R+
z and

• for any S ≥ 60, and for all z ∈ [zS , 1), R+
z > R(z);

• for any 3 ≤ S ≤ 59, there exists a unique z?S ∈ (zS , 1) such that R+
z?S

= R(z?S). Moreover,
R+
z < R(z) on [zS , z?S) and R+

z > R(z) on (z?S , 1).

Eventually, the following fact will be helpful to analyze the convex envelope of fmf :

Lemma C.5. Let f : (a, b] → R and g : [b, c) → R be convex functions with continuous
second derivatives. If f(b) = g(b) and if inf

x<b
f ′(x) < g′(b) < f ′(b) < sup

x>b
g′(x), then there

exists a common tangent to their respective graphs Γf ,Γg.

We are now ready to prove our theorems.

Proof of Theorem 2.2. By (C.8), fdis is strictly convex. Let us now study the convexity
of ford. Fixing x ≥ xS we remark that Lemma C.1 implies z(x) ≥ zS and R(z(x)) = x so
that Lemma C.4 gives:

• for all S, x > 0 > R−z(x);

• if S ≥ 60 then R+
z(x) > x;

• if 3 ≤ S ≤ 59, R+
z(x) < x if x < x?S and R+

z(x) > x if x > x?S , where x?S := R(z?S).
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Therefore, (C.9) shows that if S ≥ 60 then ford is strictly convex on [xS ,∞), while if S ≤ 59
then ford is strictly concave on [xS , x?S ] and strictly convex on [x?S ,+∞).

Let us analyze the convex envelope of fmf .

• If S ≥ 60, (C.5) and Lemma C.2 show that Lemma C.5 applies to f = fdis, g = ford,
a = 0, b = xS and c = +∞.

• If S ≤ 59 we first have to deal with the concave part of ford. We introduce the function
g defined by

g(x) =

{
ford(x?S) + (ford)′(x?S) · (x− x?S) if x ≤ x?S
ford(x) if x ≥ x?S .

Since (ford)′′(x?S) = 0, g is convex and has continuous second derivatives. Moreover,
on [xS , x?S ], the graph of g is a line located above the graph of ford (concavity of
ford); since the latter intersects the (convex) graph of fdis, the graph of g and the
graph of fdis intersect at some point with abscisse b ∈ (xS , x?S). Besides, the concavity
of ford implies g′(b) = (ford)′(x?S) < (ford)′(xS), while the convexity of fdis implies
(fdis)′(b) > (fdis)′(xS). Thus Lemma C.2 shows that Lemma C.5 applies to f = fdis

and g defined above.

In any case, Lemma C.5 implies that there exists a line T1 which is simultaneously tangent
to the disordered branch of fmf (at some point x− < xS) and to the ordered branch of fmf

(at some other point x+ > xS). The function fmf(x) being strictly convex outside [x−, x+],
the graph of its convex envelope necessarily coincides with T1 (resp. with the graph of fmf)
inside (resp. outside) [x−, x+]. Denoting by λ1 the slope of T1, the convex envelope of
fmf
λ1

(x) = fmf(x) − λ1x is horizontal on [x−, x+] and strictly convex outside this segment of
minimizers.

Proof of Theorem 2.3. If ρ is a minimizer of F = Fmf
1,λ1

, then x =
∑

s ρs is a minimizer
of fmf

1,λ1
so that x ∈ {x−, x+}. If x = x− < xS , then ρ = ρ(S+1); if x = x+ > xS , then there

exists k ∈ {1, . . . , S} such that ρ = ρ(k) := τ1,k ·ρz(x),x, where τ1,k exchanges the first and the
kth coordinates. Reciprocally, the above S+1 vectors ρ(k) are all minimizers of F . Moreover,∑

s

ρ(1)
s = x+ > x− =

∑
s

ρ(S+1)
s ,

thus proving (2.5).
We now show the second part of Theorem 2.3 dealing with the Hessian of F . Straightforward
computations show:

L(k)(s, s′) =
∂2F

∂ρs∂ρs′

∣∣∣
ρ=ρ(k)

=
1

ρ
(k)
s

1s=s′ + 1s 6=s′
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Since ρ(k) is a minimizer, Lk := D2F (ρ(k)) is semi-definite positive. Actually, L(k) is definite
positive, or else the third order corrections in the Taylor–Lagrange formula would contradict
the extremality of ρk:

∀s, t, u ∂3F

∂ρs∂ρt∂ρu
= − 1

ρ2
s

1s=t=u.

Taking an orthonormal basis of eigenvectors, the estimate (2.6) holds with κ∗ > 0 the smallest
eigenvalue of L(1), L(S+1).

This section ends with the proofs of Lemma C.1, Lemma C.2, Lemma C.3, Lemma C.4 and
Lemma C.5 which are stated at the beginning of the section and used in the proofs above.

Proof of Lemma C.1. We express R′(z) = g(z)
z2 and show that g is always positive. Recalling

(C.4) we have:

R′(z) =
1
z
·
[

S − 1
1 + (S − 1)z

+
1

1− z

]
− 1
z2
· ln 1 + (S − 1)z

1− z
,

=
1
z2

[
1

1− z
− 1

1 + (S − 1)z
− ln

1 + (S − 1)z
1− z

]
,

=
1
z2
g(z).

We now show that g is always positive:

g(z) =
1

1− z
− 1

1 + (S − 1)z
− ln

1 + (S − 1)z
1− z

,

g′(z) =
1

(1− z)2
+

S − 1
[1 + (S − 1)z]2

− S − 1
1 + (S − 1)z

+
1

1− z

=
Sz [2(S − 1)z − (S − 2)]
(1− z)2[1 + (S − 1)z]2

.

We see immediately that g′ > 0 for all z > S−2
2(S−1) , so that g increases on [S−2

S−1 , 1). On this

subinterval, g is thus minimal at
(
S−2
S−1

)
where it takes the value

g

(
S − 2
S − 1

)
= −2 ln(S − 1)− 1

S − 1
+ (S − 1),

which increases with S, vanishes at S = 2, and is strictly positive for all S ≥ 3. From this it
follows that g is strictly positive on [S−2

S−1 , 1), which implies that R is strictly increasing with
z. Since R goes to +∞ when z → 1, Lemma C.1 is proved.

Proof of Lemma C.2.
Since ρ(0,x) is the vector ( xS , . . . ,

x
S ), equations (2.1), (C.5), (C.1) give for all x < xS :

fmf(x) =
S(S − 1)

2

(x
S

)2
+ S

x

S

(
ln
x

S
− 1
)

(
fmf

)′
(x) =

S − 1
S

x+ ln
x

S
. (C.10)
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Recalling (2.1), (C.5) and (C.1), fmf(x) = F (x, z(x)) holds for all x > xS , where

F (x, z) =
1
2
S − 1
S

x2(1− z2) + (S − 1)
x(1− z)

S
ln
x(1− z)

S

+
x(1 + (S − 1)z)

S
ln
x(1 + (S − 1)z)

S
− x. (C.11)

Using (C.11) and recalling that
(
∂F
∂z

)
|z(x)

= 0, we have for all x > xS :

(
fmf

)′
(x) =

(
∂F

∂x

)∣∣x,z(x)

+ z′(x)
(
∂F

∂z

)∣∣z(x)

=
S − 1
S

x(1− z2) + (S − 1)
1− z
S

[
ln
x(1− z)

S
+ 1
]

+
1 + (S − 1)z

S

[
ln
x(1 + (S − 1)z)

S
+ 1
]
− 1 (C.12)

=
S − 1
S

x+ ln
x

S
+ ln(1− z) +

xz

S
. (C.13)

From (C.4), we know that x ≥ 1
z log 1

1−z , thus(
fmf

)′
(x) ≥

(
S − 1
Sz

− 1
)

log
1

1− z
+ ln

x

S
+
xz

S
,

≥ ln
x

S
+
xz

S
. (C.14)

From Lemma C.1, z(x) → zS as x → xS thus (C.7) follows from (C.10) - (C.13). Similarly,
z(x)→ 1 as x→∞, thus (C.6) follows by taking limits in (C.10) and (C.14).

Proof of Lemma C.3.
First notice that (C.8) follows from (C.10). Using (C.12) we get:(

fmf
)′′

(x) =
1
x

+
S − 1
S

(1− z2 − 2xz′z) +
S − 1
S

z′ ln
1 + (S − 1)z

1− z

=
1
x

+
S − 1
S

(
1− z2 − 2xz′z

)
+
S − 1
S

z′zx

=
z′

x

(
R′ +

S − 1
S

[
(1− z2)xR′ − zx2

])
= −1

x

z′

z
Pz(x)(x)

where we used 1
z′(x) = R′(z(x)) (= R′ by abusing notations) and zR′ = −R(z)+ S

(1−z)[1+(S−1)z]

(from (C.4)). This achieves the proof of (C.9).

Proof of Lemma C.4.
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• roots of Pz
We notice that the discriminant of Pz

∆(Pz) =
S[S + (3S − 4)z]

(1− z)
is always positive, so that the two distinct roots of Pz are given by

R±z =
S

2(S − 1)

(S − 2)±
√

S[S+(3S−4)z]
1−z

1 + (S − 1)z

 . (C.15)

For all positive z we have S+(3S−4)z
1−z ≥ S, thus R−z is negative while R+

z is positive.

• sign of R+
z −R(z)

We will actually analyze the sign of HS(z) := z[R+
z − R(z)], showing it is strictly

monotone and thus vanishes at most once. Using (C.4) and (C.15) we get

HS(z) =
Sz

2(S − 1)(1 + (S − 1)z)

[
S − 2 +

√
∆(Pz)

]
− log

1 + (S − 1)z
1− z

(C.16)

H ′S(z) =
S2
[
S + 2(2S − 3)z + (S − 2)(2S − 3)z2 +

(
−1 + 2(S + 2)z + (2S − 3)z2

)√
∆(Pz)

]
2(S − 1)(1− z)2(1 + (S − 1)z)2

√
S(S+(3S−4)z)

1−z

=
S2
[
A(z) +B(z)

√
∆(Pz)

]
2(S − 1)(1− z)2(1 + (S − 1)z)2

√
∆(Pz)

(C.17)

In the formula (C.17) above, the denominator as well as the polynomial A(z) in the
numerator are clearly positive for all z > 0. Since the polynomial B(z) is increasing
for z > 0 and since B(zS) ≥ −1 + 2(S − 1)zS = 2S − 5 > 0, we deduce that H ′S(z) is
always positive for z ∈ [zS , 1).

• HS vanishes exactly once ⇐⇒ S ≤ 59

We now check for which values of S the function HS actually vanishes somewhere on
[zS , 1). As z → 1, the leading term in HS diverges like (1−z)−1/2, so that HS(z)→ +∞.
Thus HS will vanish exactly once if and only if HS(zS) ≤ 0.

G(S) = HS(zS) =
S(S − 2)(S − 2 +

√
S(8− 11S + 4S2))

2(S − 1)3
− 2 log(S − 1)

G′(S) =
S
[
2S4 − 10S3 + 27S2 − 40S + 24− (4S2 − 13S + 12)

√
S(8− 11S + 4S2)

]
2(S − 1)4

√
S(8− 11S + 4S2)

and

G′(S) = 0 ⇐⇒ 2S4 − 10S3 + 27S2 − 40S + 24 = (4S2 − 13S + 12)
√
S(8− 11S + 4S2)

⇐⇒ (2S4 − 10S3 + 27S2 − 40S + 24)2 = S(8− 11S + 4S2)(4S2 − 13S + 12)2

⇐⇒ 4(S − 2)2(S − 1)3(S3 − 19S2 + 48S − 36) = 0.
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The last bracket reaches a local (negative) maximum at S = 19−
√

217
3 ≈ 1.4 and a local

(negative) minimum at S = 19−
√

217
3 ≈ 11.2. Therefore it has exactly one root S?, is

negative before this root and positive after it. Numerical computations give S? ≈ 16.2.

From this, we know that G is decreasing on [3, S?] and increasing on [S?,∞). Since
G(3) < 0 and since G(S) diverges like +

√
S as S →∞, we get that G has exactly one

root S̄ > S?, is negative before it and positive after it. Numerical computations show
S̄ ≈ 59.1.

Proof of Lemma C.5. We will use the notation

K := {α ∈ [b, c);α ≥ b and Tg(α) ∩ Γf 6= ∅} ,

where Tg(α) denotes the tangent to Γg at α.
Since f(b) = g(b), we have b ∈ K, and K is non-empty. Besides, by continuity of g′, there
exists b0 ∈ (b, c) such that g′(b0) = f ′(b); since f, g are strictly convex, elements of K are
bounded from above by b0 and α? := supK ≤ b0 is well defined.
Now, let αn an increasing sequence converging to α?. By definition, Tg(αn) intersects Γf ,
and we denote by xn the abscisse of the intersection point which is the closest to b, so that
f ′(xn) ≥ g′(αn) ≥ g′(b). We now show that xn is a bounded decreasing sequence:

• On {x ≥ xn}, Γf is above Tf (xn) (convexity of f), which in turn is above Tg(αn)
(definition of xn), and therefore above Tg(αn+1) (convexity of g). Thus Γf may not
intersect Tg(αn+1) after abscisse xn, and xn+1 ≤ xn.

• By continuity of f ′, there exists b1 ∈ (a, b) such that f ′(b1) = g′(b), thus f ′(xn) ≥ g′(b)
implies xn ≥ b1 (convexity of f).

Thus xn → x? ∈ [b1, b] ⊂ (a, b], and by continuity of f, g, g′, Tg(α?) intersects Γf at (x?, f(x?)).
In particular, α? ∈ K and f ′(x?) ≥ g′(α?).
If we had f ′(x?) > g′(α?) we could apply the implicit function function theorem to Ψ(α, x) =
g(α)+g′(α)(x−α)−f(x) to deduce that K contains a neighborhood of α?, thus contradicting
the maximality of α?. Therefore f ′(x?) = g′(α?) and Tg(α?) = Tf (x?) is actually tangent to
Γf .
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[16] M. Zahradǹık: A short course on the Pirogov-Sinai theory. Rend. Mat. Appl. 18, 411–486
(1998).

72


	Introduction
	I  Model and main results
	Mean field
	Restricted ensembles
	Geometrical notions
	Local equilibrium
	Polymer configurations
	The interpolated Hamiltonian
	DLR measures
	Main result
	A finite size condition
	Disagreement percolation


	II  The finite size condition
	Effective Hamiltonians
	General notation for Part II
	The effective Hamiltonian
	Derivation of the LP term
	Cluster expansion
	Identification of the many body potential

	Ground states of the effective Hamiltonian 
	Extra notation and definitions
	A-priori estimates
	Convexity and uniqueness
	Perfect boundary conditions
	Exponential decay
	Proof of Theorem 5.1

	Local Couplings
	Definitions and main results
	Two properties of the Wasserstein distance in an abstract setting 
	Couplings of multi-canonical measures
	Taylor expansion
	Quadratic approximation in continuous variables 
	Gaussian approximation
	Proof of Theorem 3.3


	III Disagreement percolation
	Construction of the coupling
	The sequence n
	Stopping sets
	Strong Markov couplings
	Construction of couplings

	Probability estimates.
	Reduction to a percolation event
	Peierls estimates
	Probability of unsuccessful cubes
	Proof of Theorem 3.1


	IV Appendices
	 Operators on Euclidean spaces
	Proof of Theorem 7.1
	 Mean field


