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Abstract. We consider the Kawasaki dynamics of two types of particles under
a killing effect on a d-dimensional square lattice. Particles move with possibly
different jump rates depending on their types. The killing effect acts when particles
of different types meet at the same site. We show the existence of a limit under
the diffusive space-time scaling and suitably growing killing rate: segregation of
distinct types of particles does occur, and the evolution of the interface between
the two distinct species is governed by the two-phase Stefan problem. We apply
the relative entropy method and combine it with some PDE techniques.

1. Introduction

The study of the fast-reaction limit in reaction diffusion systems goes back more
than 20 years. The motivation of this study comes from population dynamics
Dancer et al. (1999), Crooks et al. (2004), Iida et al. (2017), mass-action kinetics
chemistry Daus et al. (2017) and others. Consider the system consisted of two types
of species, say A and B, and assume each of them moves by diffusion with rates
d1 and d2, respectively. When distinct species meet, they kill each other with high
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rate K. This problem is formulated in PDE terminology as the system of equations
for densities u1(t, r) and u2(t, r) of species A and B, respectively, written as

∂tui(t) = di∆ui(t)−Ku1(t)u2(t), i = 1, 2. (1.1)

Several papers, including those cited above, studied the limit as K →∞ of the so-
lutions ui(t, r) of the system (1.1) or its extensions, that is, the limit as the killing
rate of distinct species gets large. This is called the fast-reaction limit. It is known
that the segregation of two species occurs in the limit and the interface separat-
ing two distinct species evolves according to the two-phase Stefan free boundary
problem.

In the present paper, we formulate the problem at the original level of species, i.e.,
at the underlying microscopic level, and model it as a system with two distinct types
of particles. Under a diffusive space-time scaling combined with the limit asK →∞
taken properly, we prove that the segregation of species occurs at macroscopic level
and derive the Stefan problem directly from our microscopic system.

The proof is divided into two parts and given as a combination of the techniques
of the hydrodynamic limit and the fast-reaction limit. In the first part, which is
probabilistic, we consider the relative entropy of the real system with respect to
the local equilibria defined as a product measure with mean changing in space and
time chosen according to the discretized hydrodynamic equation, which is a discrete
version of (1.1). Then, we show that the relative entropy behaves as a small order
of the total volume of the system. This proves that the macroscopic density profile
of the system is close to the solution of the discretized hydrodynamic equation.
We take product measures as local equilibria, since those with constant means are
global equilibria of the Kawasaki dynamics. In the second part of the paper, we
apply PDE results to analyze the discrete equation and derive the Stefan problem
from it.

1.1. Model. Let TdN := (Z/NZ)d ≡ {1, 2, . . . , N}d be the d-dimensional periodic
square lattice of size N and consider a system that consists of particles of two
distinct types. The configuration space is X 2

N = XN×XN , where XN = {0, 1}Td
N . Its

elements are denoted by σ̃ ≡ (σ1, σ2) =
(
{σ1,x}x∈Td

N
, {σ2,x}x∈Td

N

)
. The generator

of the Kawasaki dynamics of particles of a single type is defined by

(L1
0f)(σ) =

1

2

∑
x,y∈Td

N :|x−y|=1

{f(σx,y)− f(σ)} , σ = {σx}x∈Td
N
∈ XN ,

for functions f : XN → R, and where σx,y ∈ XN is defined from σ ∈ XN as

(σx,y)z =

 σy if z = x,
σx if z = y,
σz otherwise.

The generator of the two-component system is given by LN = N2L0 + KLG with
K = K(N), where

(L0f)(σ1, σ2) = d1(L1
0f(·, σ2))(σ1) + d2(L1

0f(σ1, ·))(σ2),

(LGf)(σ1, σ2) =
∑
x∈Td

N

σ1,xσ2,x {f(σx1 , σ
x
2 )− f(σ1, σ2)} ,
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for functions f : X 2
N → R, and d1, d2 > 0. Here σx ∈ XN is defined from σ ∈ XN as

σxz =

{
1− σx if z = x,
σz if z 6= x.

Let σ̃N (t) = (σN1 (t), σN2 (t)) ≡ (σN1,x(t), σN2,x(t))x∈Td
N

be the Markov process on X 2
N

generated by LN . The macroscopic empirical measures on Td := (R/Z)d ≡ [0, 1)d

associated with a configuration σ̃ = (σ1, σ2) ∈ X 2
N are defined by

αNi (dr; σ̃) =
1

Nd

∑
x∈Td

N

σi,xδ x
N

(dr), r ∈ Td, i = 1, 2.

The goal is to study the limit of the macroscopic empirical measures of the process
σ̃N (t) as N →∞, with properly scaled K(N).

1.2. Main result. We first summarize our assumptions on the initial distribution of
σ̃N (0).
(A1) Let uNi (0, ·) = {uNi (0, x)}x∈Td

N
, i = 1, 2 be given and satisfy two bounds

e−c1K ≤ uNi (0, x) ≤ c2 and |∇NuNi (0, x)| ≤ C0K,

for every i = 1, 2, x ∈ TdN with c1 > 0, 0 < c2 < 1, C0 > 0, whereK = K(N)
satisfies (A4)δ below (δ > 0), ∇N is defined as

∇Nu(x) = {N(u(x+ ei)− u(x))}di=1 , (1.2)

and ei ∈ Zd are the unit vectors in the ith positive direction.
(A2) Let µN0 be the distribution of σ̃N (0) on X 2

N and let νN0 = νuN
1 (0,·),uN

2 (0,·) be
the Bernoulli measure on X 2

N with means uN1 (0, ·), uN2 (0, ·) given as above.
We assume the relative entropy defined in (2.1) satisfies H(µN0 |νN0 ) =
O(Nd−δ0) as N →∞ with some δ0 > 0.

(A3) We assume uNi (0, r), r ∈ Td defined from uNi (0, x) through (4.1) converge
to some ui(0, r) weakly in L2(Td) as N →∞, for i = 1, 2, respectively.

(A4)δ K = K(N) satisfies 1 ≤ K(N) ≤ δ(logN)1/2 and K(N)→∞ as N →∞.
Our main theorem is formulated as follows.

Theorem 1.1. We assume the four conditions (A1)-(A3),(A4)δ with δ > 0 chosen
sufficiently small depending on T > 0. Then, we have the following.
(1) The macroscopic empirical measures αNi (t, dr) := αNi (dr; σ̃N (t)) of the process
σ̃N (t) converge to ui(t, r)dr, respectively, for i = 1, 2, that is

lim
N→∞

P (|〈αNi (t), ϕ〉 − 〈ui(t), ϕ〉| > ε) = 0, i = 1, 2,

for every ε > 0, t ∈ [0, T ] and ϕ ∈ C∞(Td), and u1(t, r)u2(t, r) = 0 a.e. r holds,
where 〈α,ϕ〉 and 〈u, ϕ〉 stand for the integrals over Td.
(2) w(t, r) := u1(t, r)− u2(t, r) is the unique weak solution of{

∂tw = ∆D(w), in Td,
w(0, r) = u1(0, r)− u2(0, r),

(1.3)

where ∆ is the Laplacian on Td, and D(s) = d1s, s ≥ 0 and = d2s, s < 0.

The weak solution of (1.3) is defined as follows.
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Definition 1.2. We call w = w(t, r) a weak solution of (1.3) if it satisfies
(i) w ∈ L∞([0, T ]× Td) for every T > 0;
(ii) For all T > 0 and ψ ∈ C1,2([0, T ]× Td) such that ψ(T, r) = 0 for all r, we

have ∫ T

0

∫
Td

(w∂tψ +D(w)∆ψ)drdt = −
∫
Td

w0ψ(0, r)dr.

The uniqueness of the weak solution of (1.3) is shown in Crooks et al. (2004),
Corollary 3.8. As pointed out in Dancer et al. (1999), (1.3) is the weak formulation
of the following two-phase Stefan problem for u1 and u2:

∂tu1 = d1∆u1, on D1(t) = {r ∈ Td;u1(t, r) > 0, u2(t, r) = 0},

∂tu2 = d2∆u2, on D2(t) = {r ∈ Td;u1(t, r) = 0, u2(t, r) > 0},
u1 = u2 = 0, on Γ(t) := ∂D1(t) = ∂D2(t),

d1∂nu1 = −d2∂nu2, on Γ(t),

(1.4)

where n is the unit normal vector on Γ(t) directed to D1(t). Indeed, if the sys-
tem (1.4) has a smooth solution, that is, if Γ(t) is smooth, ui(t, r), i = 1, 2, are
smooth in Di(t) and continuous on Td, then it determines a weak solution.

The proof of Theorem 1.1 is divided into two parts as we mentioned above. The
main task is to show that the relative entropy of our system compared with the local
equilibria defined through the discretized hydrodynamic equation (2.3) behaves as
o(Nd), namely, the relative entropy per volume tends to 0 as N → ∞. This is
formulated in Theorem 2.2 and shown in Sections 2 and 3. Once this is shown, one
can prove that the macroscopic empirical measures αNi (t) is close to the solution
of (2.3), see Section 4. In the last Section 5, we show that the solution of (2.3)
converges to the weak solution of (1.3).

A related model with instantaneous annihilation was studied by Funaki (1999)
and the same equation (1.3) was derived in the limit. Briefly saying, 1� K � N in
our model, while 1� N � K =∞ in Funaki (1999). Sasada (2010) considered the
model with non-instantaneous annihilation together with creation of two distinct
types of particles.

2. Relative entropy method

The relative entropy of two probability measures µ and ν on X 2
N is defined as

H(µ|ν) :=

∫
X 2

N

dµ

dν
log

dµ

dν
· dν. (2.1)

For a probability measure ν on X 2
N , the Dirichlet form D(f ; ν), f :X 2

N → R, associ-
ated to the generator L0 is defined as

D(f ; ν)

=
1

4

∑
x,y∈Td

N

|x−y|=1

∫
X 2

N

[
d1{f(σx,y1 , σ2)− f(σ1, σ2)}2 + d2{f(σ1, σ

x,y
2 )− f(σ1, σ2)}2

]
dν.

Let µt = µNt be the law of (σN1 (t), σN2 (t)) generated by LN = N2L0 +KLG on X 2
N .

We have the following estimate on the time derivative of the relative entropy.
See Funaki (2018), Funaki and Tsunoda (2018) for the proof.
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Proposition 2.1. For any probability measures {νt} and m on X 2
N both with full

supports in X 2
N , we have

d

dt
H(µt|νt) ≤ −2N2D

(√
dµt
dνt

; νt

)
+

∫
X 2

N

(
L∗,νtN 1− ∂t logψt

)
dµt. (2.2)

where L∗,νtN is the adjoint of LN on L2(νt) and ψt :=
dνt
dm

.

This estimate was first used by Guo, Papanicolaou and Varadhan taking νt to
be a global equilibrium which is independent of t and then by Yau dropping the
negative Dirichlet form term, see Funaki (2018). Then Jara and Menezes introduced
(2.2) as a combination of these two estimates, cf. Jara and Menezes (2018).

We use (2.2) with the following Bernoulli measures νt. Let uNi (t) = {ui(t, x) =
uNi (t, x)}x∈Td

N
, i = 1, 2 be the solution of the system of the discretized hydrody-

namic equation:

∂tu
N
i (t, x) = di∆

NuNi (t, x)−KuN1 (t, x)uN2 (t, x), i = 1, 2 (2.3)

where ∆N = N2∆ and

(∆u)(x) =
∑

y∈Td
N :|y−x|=1

(
u(y)− u(x)

)
.

Note that (2.3) is a discrete version of (1.1). We define νt = νu1(t,·),u2(t,·), where
we denote by νu1(·),u2(·) for ui(·) = {ui(x)}x∈Td

N
, i = 1, 2 the Bernoulli measure on

X 2
N such that

νu1(·),u2(·)(σi,x = 1) = ui(x),

for every x ∈ TdN and i = 1, 2.
The main result in the probabilistic part is the following Theorem.

Theorem 2.2. Assume the initial distribution verifies the Hypothesis of Theo-
rem 1.1. Then, we have

H(µNt |νNt ) = o(Nd), t ∈ [0, T ],

as N →∞.

The proof of this theorem needs some preliminary results proved in the following
subsections.

2.1. Calculation of the second term in (2.2). We define the normalized variables
ωi,x,t by

ωi,x,t =
σ̄i,x(t)

χ(ui(t, x))
, σ̄i,x(t) = σi,x(t)− ui(x, t), i = 1, 2, (2.4)

where χ(u) = u(1− u) for u ∈ (0, 1).
In this subsection we prove the following proposition.

Proposition 2.3.

L∗,νtN 1− ∂t logψt = V1(t) + V2(t) + V (t) (2.5)
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with

Vi(t) = −diN
2

2

∑
x,y∈Td

N :|x−y|=1

(ui(t, y)− ui(t, x))2ωi,x,tωi,y,t , i = 1, 2 (2.6)

V (t) = K
∑
x∈Td

N

(
u1(t, x) + u2(t, x)− 1

)
u1(t, x)u2(t, x)ω1,x,tω2,x,t . (2.7)

Proof : We first compute L∗,νtN g for a generic function g on X 2
N , calling ν =

νu1(·),u2(·).
For LG we have∫

gLGfdν =
∑
σ1,σ2

g(σ1, σ2)
∑
x∈Td

N

σ1,xσ2,x {f(σx1 , σ
x
2 )− f(σ1, σ2)} ν(σ1, σ2).

By making the change of variables η1 = σx1 and η2 = σx2 , the sum containing
f(σx1 , σ

x
2 ) can be rewritten as∑

η1,η2

g(ηx1 , η
x
2 )
∑
x∈Td

N

(1− η1,x)(1− η2,x)f(η1, η2)ν(ηx1 , η
x
2 ).

Next observe that for η1, η2 satisfying η1,x = η2,x = 0,

ν(ηx1 , η
x
2 ) =

u1(x)u2(x)

(1− u1(x))(1− u2(x))
ν(η1, η2),

Thus

L∗,νG g(σ1, σ2) =
∑
x∈Td

N

{
u1(x)u2(x)

(1− u1(x))(1− u2(x))
(1− σ1,x)(1− σ2,x)g(σx1 , σ

x
2 )

− σ1,xσ2,xg(σ1, σ2)

}
.

Using the above equality with g ≡ 1 and writing σ̄i,x = ωi,x,tχ(ui(·)) (recall (2.4))
we get

KL
∗,νu1(·),u2(·)
G 1 =−K

∑
x∈Td

N

u1(x)u2(x)
(
ω1,x + ω2,x

)
+K

∑
x∈Td

N

(
u1(x) + u2(x)− 1

)
u1(x)u2(x)ω1,xω2,x.

For the Kawasaki part, from the computation in Funaki (2018) or Funaki and
Tsunoda (2018), we obtain

L∗,ν0 1 =− d1

2

∑
x,y∈Td

N

|x−y|=1

(u1(y)− u1(x))2ω1,xω1,y + d1

∑
x∈Td

N

(∆u1)(x)ω1,x

− d2

2

∑
x,y∈Td

N

|x−y|=1

(u2(y)− u2(x))2ω2,xω2,y + d2

∑
x∈Td

N

(∆u2)(x)ω2,x.
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We next observe that

∂t logψt(η) =
∑
x∈Td

N

∂tu1(t, x)ω1,x,t +
∑
x∈Td

N

∂tu2(t, x)ω2,x,t.

This equality is proved similarly to Funaki (2018) or Funaki and Tsunoda (2018).
By using (2.3) the linear terms in ω cancel and we finally obtain (2.5). �

2.2. Estimates on the solution of (2.3). Let (u1(t), u2(t)) = (uN1 (t, x), uN2 (t, x)) be
the solution of the discretized hydrodynamic equation (2.3). We derive estimates
on (u1(t), u2(t)) and their gradients. First two lemmas, especially taking c = c2 < 1
with c2 in (A1), are useful to estimate 1/χ(uNi (t, x)) appearing in the definition of
ωi,x,t from above.

Lemma 2.4. If the initial values satisfy 0 ≤ uNi (0, x) ≤ c for every x ∈ TdN and
i = 1, 2 with some c > 0, we have

0 ≤ uNi (t, x) ≤ c,
for every t ≥ 0, x ∈ TdN and i = 1, 2.

Proof : One can apply the maximum principle in our discrete setting, cf. Crooks
et al. (2004), Lemma 2.1. Also, a similar argument to the proof of the next lemma
works. �

Lemma 2.5. If the initial values satisfy 0 < u0 ≤ uNi (0, x) ≤ 1 for every x ∈ TdN
and i = 1, 2, we have

uNi (t, x) ≥ u(t) := u0e
−Kt,

for every t ≥ 0, x ∈ TdN and i = 1, 2.

Proof : From (2.3) and u2(t, x) ≤ 1, since u(t) satisfies ∂tu(t) = −Ku(t), we have

∂t
(
u1(t, x)− u(t)

)
= d1∆N

(
u1(t, x)− u(t)

)
−K

(
u1(t, x)u2(t, x)− u(t)

)
≥ d1∆N

(
u1(t, x)− u(t)

)
−K

(
u1(t, x)− u(t)

)
.

Assume that u1(s, y) > u(s) holds for 0 ≤ s < t and every y ∈ TdN , and at some
x and t, u1(t, x) = u(t) holds. Then, ∆N

(
u1(t, x) − u(t)

)
≥ 0 and −K

(
u1(t, x) −

u(t)
)

= 0. Therefore, ∂t
(
u1(t, x) − u(t)

)
≥ 0. This means that u1(t, x) − u(t) is

increasing and u1(t, x) can not be below u(t). Same argument works for u2(t, x). �

Let pN (t, x, y) be the discrete heat kernel corresponding to ∆N on TdN . Then,
we have the following estimate, which is global in t.

Lemma 2.6. There exist C, c > 0 such that

|∇NpN (t, x, y)| ≤ C√
t
pN (ct, x, y), t > 0,

where ∇N is defined by (1.2).

Proof : Let p(t, x, y) be the heat kernel corresponding to the discrete Laplacian ∆
on Zd. Then, we have the estimate

|∇p(t, x, y)| ≤ C√
1 ∨ t

p(ct, x, y), t > 0, x, y ∈ Zd,

with some constants C, c > 0, independent of t and x, y, where ∇ = ∇1. This
should be well-known, but we refer to Delmotte and Deuschel (2005) Theorem 1.1
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(1.4) which discusses general case with random coefficients, see also Stroock and
Zheng (1997). Then, since

pN (t, x, y) =
∑

k∈(NZ)d

p(N2t, x, y + k),

the result follows. �

We have the following estimate, though it might not be the best possible one.

Proposition 2.7. The gradients of the solution of (2.3) are estimated as

|∇NuNi (t, x)| ≤ K(C0 + C
√
t), t > 0, i = 1, 2,

if |∇NuNi (0, x)| ≤ C0K holds.

Proof : From Duhamel’s formula, we have

uNi (t, x) =
∑
y∈Td

N

uNi (0, y)pN (dit, x, y)

−K
∫ t

0

ds
∑
y∈Td

N

uN1 (s, y)uN2 (s, y)pN (di(t− s), x, y).

By noting the symmetry of pN in (x, y) and 0 ≤ uN1 (s, x), uN2 (s, x) ≤ 1, this shows

|∇NuNi (t, x)| ≤
∑
y∈Td

N

|∇NuNi (0, y)|pN (dit, x, y)

+K

∫ t

0

ds
∑
y∈Td

N

|∇NpN (di(t− s), x, y)|.

Thus, from Lemma 2.6, we obtain the desired estimate. �

2.3. Proof of Theorem 2.2. Notation: We simply denote µt = µNt , νt = νNt and
set ft ≡ fNt :=

dµN
t

dνN
t
.

Recalling Proposition 2.3, and using the estimates of subsection 2.2, in Section 3
we prove the following Theorem.

Theorem 2.8. For α and κ > 0 small, if d ≥ 2, there is Cα,κ > 0 so that∫
X 2

N

V (t)dµt ≤ αN2D(
√
ft; νt) + Cα,κKH(µt|νt) +Nd−1+κ, (2.8)

and also∫
X 2

N

[V1(t) + V2(t)]dµt ≤ αN2D(
√
ft; νt) + Cα,κK

2H(µt|νt) +Nd−1+κ. (2.9)

The term Nd−1+κ is replaced by N
1
2 +κ when d = 1.

By using Proposition 2.1, (2.5) and the above Theorem, we obtain

d

dt
H(µt|νt) ≤ CK2H(µt|νt) +O(Nd−δ1),
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with 0 < δ1 < 1. We have chosen α ∈ (0, 1) so that the terms of Dirichlet forms
with a positive sign are absorbed by the one with negative sign in (2.2). Thus,
Gronwall’s inequality shows

H(µt|νt) ≤
(
H(µ0|ν0) + tO(Nd−δ1)

)
eCK

2t.

Noting eCK
2t ≤ NCtδ2 from 1 ≤ K = K(N) ≤ δ(logN)1/2 and H(µ0|ν0) =

O(Nd−δ0) by the assumption, this concludes the proof of Theorem 2.2, if δ = δT > 0
is small enough such that CTδ2 < δ0 ∧ δ1. �

3. Proof of Theorem 2.8

We split the proof in two subsections.

3.1. Proof of (2.8). We omit the dependence on t and define

V := K
∑
x∈Td

N

ω̃1,xω2,x,

where ω̃1,x =
(
u1(x) + u2(x)− 1

)
u1(x)u2(x)ω1,x.

The first step is to replace V by its local sample average V ` defined by

V ` := K
∑
x∈Td

N

←−−
(ω̃1)x,`

−−→
(ω2)x,`, (3.1)

where
−→g x,` :=

1

|Λ`|
∑
y∈Λ`

gx+y,
←−g x,` :=

1

|Λ`|
∑
y∈Λ`

gx−y,

for a function g = {gx(σ1, σ2)} and Λ` = [0, `− 1]d ∩ Zd.

Proposition 3.1. We assume the conditions of Theorem 2.2, in particular, we take
δ > 0 sufficiently small. Let ν = νu1(·),u2(·), dµ = fdν (recall we omit t) and we
choose ` = N

1
d−κ

′
with κ′(= κ/d) > 0 when d ≥ 2 and ` = N

1
2−κ when d = 1, with

small κ > 0. Then the cost of the replacement is estimated as∫
(V − V `)fdν ≤ αN2D(

√
f ; ν) + Cα,κ

(
H(µ|ν) +Nd−1+κ

)
, (3.2)

for every α, κ > 0 with some Cα,κ > 0 when d ≥ 2 and the last Nd−1+κ is replaced
by N

1
2 +κ when d = 1.

The first tool to show this proposition is the flow lemma for the telescopic sum.
We call Φ = {Φ(x, y)}b={x,y}∈G∗ a flow on a finite set G connecting two proba-
bility measures p and q on G if Φ(x, y) = −Φ(y, x) hold for all {x, y} ∈ G∗ and∑
z∈G Φ(x, z) = p(x)− q(x) hold for all x ∈ G, where G∗ is the set of all bonds in

G. The following lemma is found in Appendix G of Jara and Menezes (2018), see
also Funaki (2018), Funaki and Tsunoda (2018).

Lemma 3.2. (Flow lemma) There exists a flow Φ` on Λ2` := {0, 1, . . . , 2` − 1}d
connecting δ0 and q` := p` ∗ p`, p`(x) = 1

|Λ`|1Λ`
(x), such that

∑
x∈Λ2`−1

d∑
j=1

Φ`(x, x+ ej)
2 ≤ Cdgd(`),
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where ej is a unit vector to jth positive direction, and gd(`) = ` when d = 1, log `
when d = 2 and 1 when d ≥ 3.

Remark 3.3. (1) When d = 1, the flow Φ` on Λ`+1 = {0, 1, . . . , `} connecting δ0
and p`(x) = 1

` 1{1,...,`}(x) is given by Φ`(x, x+ 1) = `−x
` , 0 ≤ x ≤ `− 1. Indeed, the

condition on Φ` is

Φ`(x, x+ 1) + Φ`(x, x− 1) = δ0(x)− p`(x), x ∈ Λ`,

with Φ`(`, ` + 1) = Φ`(0,−1) = 0. Or equivalently, recalling that Φ`(x, x − 1) =

−Φ`(x− 1, x) and setting Φ̃(x) := Φ`(x, x+ 1), the condition is

∇Φ̃(x)
(

= Φ̃(x)− Φ̃(x− 1)
)

= −1

`
, 1 ≤ x ≤ `,

Φ̃(0) = 1, Φ̃(`) = 0,

i.e., the gradient of Φ̃ is a constant so that Φ̃ is an affine function. This equation is
easily solved and we obtain Φ̃(x) = `−x

` .
(2) In Lemma 3.2, we are concerned with q` instead of p`. When d = 1,

q`(x) =
∑
y∈Td

N

p`(x− y)p`(y) =
1

`2

∑
1≤x−y≤`,1≤y≤`

1

=
1

`2
]{y : 1 ≤ y ≤ `, x− ` ≤ y ≤ x− 1}

=


x− 1

`2
(if x− ` ≤ 1, i.e. x ≤ `+ 1),

2`+ 1− x
`2

(if x− ` ≥ 1, i.e. x ≥ `+ 1),

i.e., q` is piecewise affine. Therefore, its integration Φ` is piecewise quadratic.

Note that

(g ∗ p`)(x) =
∑
y∈Td

N

gx−yp`(y)

=
1

|Λ`|
∑
y∈Λ`

gx−y =←−g x,`,

and similarly (g ∗ p̂`)(x) = −→g x,`, where p̂`(y) := p`(−y). Therefore,

V ` = K
∑
x∈Td

N

←−−
(ω̃1)x,`

−−→
(ω2)x,`

= K
∑
y∈Td

N

ω̃1,y(ω2 ∗ q̂`)(y),
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where q` is defined as in Lemma 3.2 and q̂`(y) := q`(−y). Accordingly, from
Lemma 3.2 and Φ`(y, y − ej) = −Φ`(y − ej , y), one can rewrite

V − V ` = K
∑
x∈Td

N

ω̃1,x{ω2,x − (ω2 ∗ q̂`)(x)}

= K
∑
x∈Td

N

ω̃1,x

ω2,x −
∑
y∈Td

N

ω2,x+yq`(y)


= K

∑
x∈Td

N

ω̃1,x

∑
y∈Td

N

ω2,x+y {δ0(y)− q`(y)}

= K
∑
x∈Td

N

ω̃1,x

∑
y∈Td

N

ω2,x+y

∑
±

d∑
j=1

Φ`(y, y ± ej)

= K

d∑
j=1

∑
x∈Td

N

ω̃1,x

∑
y∈Td

N

(ω2,x+y − ω2,x+y+ej )Φ`(y, y + ej)

= −K
d∑
j=1

∑
x∈Td

N

∑
y∈Td

N

ω̃1,x−yΦ`(y, y + ej)

 {ω2,x+ej − ω2,x}.

Thus, we have shown

V − V ` = −K
d∑
j=1

∑
x∈Td

N

h`,jx (ω2,x+ej − ω2,x), (3.3)

where
h`,jx ≡ h`,jx (σ1) =

∑
y∈Λ2`−1

ω̃1,x−yΦ`(y, y + ej). (3.4)

We will use the property h`,jx (σ
x,x+ej
2 ) = h`,jx (σ2), which is obvious since h`,jx is a

function of σ1, see Lemma 3.5 below.
Another lemma we use is the integration by parts formula under the Bernoulli

measure νu1(·),u2(·) on X 2
N with a spatially dependent mean. We will apply this

formula for the function h = h`,jx . The formula is stated for general h with an error
caused by the non-constant property of u2(·).

Lemma 3.4. (Integration by parts) Let ν = νu1(·),u2(·) and assume e−c1K ≤
u2(x), u2(y) ≤ c2 holds for x, y ∈ TdN : |x − y| = 1 with some c1 > 0, 0 < c2 < 1.
Then, for h = h(σ1, σ2) and a probability density f = f(σ1, σ2) with respect to ν,
we have∫

h(σ2,y − σ2,x)fdν =

∫
h(σ1, σ

x,y
2 )σ2,x

(
f(σ1, σ

x,y
2 )− f(σ1, σ2)

)
dν +R1,

and the error term R1 = R1,x,y is bounded as

|R1| ≤ Ce2c1K |∇1
x,yu2|

∫
|h(σ1, σ2)|fdν + ‖h− h(σ1, σ

x,y
2 )‖∞,

with some C = Cc2 > 0, where ∇1
x,yu = u(x)− u(y).
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Proof : First we write∫
h(σ2,y − σ2,x)fdν =

∑
σ1,σ2

h(σ1, σ2)(σ2,y − σ2,x)f(σ1, σ2)ν(σ1, σ2).

Then, by a change of variables ζ := σx,y2 and writing ζ by σ2 again, we have∑
σ2

h(σ1, σ2)σ2,yf(σ1, σ2)ν2(σ2) =
∑
σ2

h(σ1, σ
x,y
2 )σ2,xf(σ1, σ

x,y
2 )ν2(σx,y2 ),

where ν2 = νu2(·) is a probability measure on XN , recall ν = νu1(·) ⊗ νu2(·). To
replace the last ν2(σx,y2 ) by ν2(σ2), we observe

ν2(σx,y)

ν2(σ)

= 1{σx=1,σy=0}
(1− u2(x))u2(y)

u2(x)(1− u2(y))
+ 1{σx=0,σy=1}

u2(x)(1− u2(y))

(1− u2(x))u2(y)
+ 1{σx=σy}

= 1 + rx,y(σ),

with

rx,y(σ) = 1{σx=1,σy=0}
u2(y)− u2(x)

u2(x)(1− u2(y))
+ 1{σx=0,σy=1}

u2(x)− u2(y)

(1− u2(x))u2(y)
.

By the condition on u2, this error is bounded as

|rxy(σ)| ≤ C0e
c1K |∇1

x,yu2|, C0 = Cc2 > 0.

These computations are summarized as∫
h(σ2,y − σ2,x)fdν =

∫
h(σ1, σ

x,y
2 )σ2,xf(σ1, σ

x,y
2 )(1 + rxy(σ2))dν −

∫
hσ2,xfdν

=

∫
h(σ1, σ

x,y
2 )σ2,x

(
f(σ1, σ

x,y
2 )− f(σ1, σ2)

)
dν

+

∫
(h(σ1, σ

x,y
2 )− h(σ1, σ2))σ2,xfdν +

∫
h(σ1, σ

x,y
2 )σ2,xf(σ1, σ

x,y
2 )rxy(σ2)dν.

The second term is bounded by ‖h(σ1, σ
x,y
2 ) − h(σ1, σ2)‖∞, since |σ2,x| ≤ 1 and∫

fdν = 1. For the third term denoted by R0, applying the change of variables
again, we have

|R0| =

∣∣∣∣∣∑
σ1,σ2

h(σ1, σ2)σ2,yf(σ1, σ2)rxy(σx,y2 )ν(σ1, σ
x,y
2 )

∣∣∣∣∣
=

∣∣∣∣∣∑
σ1,σ2

h(σ1, σ2)σ2,yf(σ1, σ2)rxy(σx,y2 )
(
1 + rxy(σ2)

)
ν(σ1, σ2)

∣∣∣∣∣
≤ C0e

c1K |∇1
x,yu2|(1 + C0e

c1K |∇1
x,yu2|)

∫
|h(σ)|fdν

≤ Ce2c1K |∇1
x,yu2|

∫
|h(σ)|fdν,

since |σ2,y| ≤ 1 and |∇1
x,yu2| ≤ 2c2. This completes the proof. �

We apply Lemma 3.4 to V − V ` given in (3.3). Note that h`,jx (σ1) is invariant
under the transform σ2 7→ σx,y2 . Since we have ω2,x =

σ2,x−u2(x)
χ(u2(x)) in (3.3) instead of



Glauber-Kawasaki dynamics with two components 13

σ2,x in Lemma 3.4, we need to estimate the error caused by the x-dependence of
ω2,x through u2(x).

Lemma 3.5. We assume that ν = νu1(·),u2(·) satisfies the same condition as in
Lemma 3.4. Then, we have∫

h`,jx (ω2,x+ej − ω2,x)fdν =

∫
h`,jx

σ2,x

χ(u2(x))

(
f(σ1, σ

x,x+ej
2 )− f(σ1, σ2)

)
dν +R2,

(3.5)
and the error term R2 = R2,x,j is bounded as

|R2| ≤ Ce3c1K |∇1
x,x+eju2|

∫
|h`,jx (σ1, σ2)|fdν, (3.6)

with some C = Cc2 > 0.

Proof : By the definition of ωx, denoting y = x+ ej , we have∫
h`,jx (ω2,y − ω2,x)fdν =

∫
h`,jx

(
σ2,y

χ(u2(y))
− σ2,x

χ(u2(x))

)
fdν

−
∫
h`,jx

(
u2(y)

χ(u2(y))
− u2(x)

χ(u2(x))

)
fdν

=: I1 − I2.
For I2, we have∣∣∣∣ u2(y)

χ(u2(y))
− u2(x)

χ(u2(x))

∣∣∣∣
≤ 1

χ(u2(x))χ(u2(y))
{χ(u2(x))|u2(y)− u2(x)|+ |u2(x)||χ(u2(x))− χ(u2(y))|}

≤ Cec1K |∇1
x,yu2|.

On the other hand, I1 can be rewritten as

I1 =

∫
h`,jx

χ(u2(x))
(σ2,y − σ2,x)fdν +

∫
h`,jx

(
1

χ(u2(y))
− 1

χ(u2(x))

)
σ2,yfdν

=: I1,1 + I1,2.

For I1,1, recalling the invariance of h`,jx , one can apply Lemma 3.4 and obtain

I1,1 =
1

χ(u2(x))

∫
h`,jx σ2,x

(
f(σ1, σ

x,y
2 )− f(σ1, σ2)

)
dν +

1

χ(u2(x))
R1.

Finally for I1,2,∣∣∣∣ 1

χ(u2(y))
− 1

χ(u2(x))

∣∣∣∣ =
|χ(u2(x))− χ(u2(y))|
χ(u2(x))χ(u2(y))

≤ Ce2c1K |∇1
x,yu2|.

Therefore, we obtain the conclusion. �

We can estimate the first term in the right hand side of (3.5) with y = x+ ej by
the Dirichlet form and obtain

Lemma 3.6. Let ν = νu1(·),u2(·) be the Bernoulli measure satisfying the same
condition as in Lemma 3.4. Then, for every β > 0, we have

|
∫
h`,jx (ω2,x+ej − ω2,x)fdν| ≤ βDx,x+ej (

√
f ; ν) +

C

β
e3c1K

∫
(h`,jx )2fdν +R2,x,j ,
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where Dx,x+ej (
√
f ; ν) is a piece of D(

√
f ; ν) defined on the bond {x, x + ej} and

R2,x,j has a bound (3.6).

Proof : For simplicity, we write y for x+ej . By decomposing f(σ1, σ
x,y
2 )−f(σ1, σ2)=(√

f(σ1, σ
x,y
2 ) +

√
f(σ1, σ2)

)(√
f(σ1, σ

x,y
2 )−

√
f(σ1, σ2)

)
, the modulus of the first

term in the right hand side of (3.5) can be bounded from above by

βDx,y(
√
f ; ν) +

C

βχ(u2(x))2

∫
(h`,jx )2{f(σ1, σ

x,y
2 ) + f(σ1, σ2)}dν.

The integral in the second term divided by χ(u2(x))2 is equal to and bounded by

1

χ(u2(x))2

∫
(h`,jx )2f(σ1, σ2)(1 + rxy(σ2))dν

≤
1 + C0e

c1K |∇1
x,yu2|

χ(u2(x))2

∫
(h`,jx )2fdν

≤ e2c1K(1 + C0e
c1K |∇1

x,yu2|)
∫

(h`,jx )2fdν.

This shows the conclusion by recalling |∇1
x,yu2| ≤ 2c2. �

Proof of Proposition 3.1: Recalling (3.3) and by Lemma 3.6 taking β = αN2

K with
α > 0 sufficiently small, we have

∫
(V − V `)fdν = K

d∑
j=1

∑
x∈Td

N

∫
h`,jx (ω2,x+ej − ω2,x)fdν

≤ αN2D(
√
f ; ν) +

CK2

αN2
e3c1K

d∑
j=1

∑
x∈Td

N

∫
(h`,jx )2fdν +K

d∑
j=1

∑
x∈Td

N

R2,x,j .

For R2,x,j , since |∇1
x,x+eju2| ≤ CK

N from Proposition 2.7, by (3.6) estimating
|h`,jx | ≤ 1 + (h`,jx )2, we have

K|R2,x,j | ≤
CK2

N
e3c1K

∫ (
1 + (h`,jx )2

)
fdν.

Thus, we obtain∫
(V − V `)fdν ≤ αN2D(

√
f ; ν)

+
CαK

2

N
e3c1K

d∑
j=1

∑
x∈Td

N

∫
(h`,jx )2fdν + CK2e3c1KNd−1.
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For the second term, we first decompose the sum
∑
x∈Td

N
as
∑
y∈Λ2`

∑
z∈(4`)Td

N

and apply the entropy inequality noting that the variables {h`,jx } are (2` − 1)-
dependent:∑

x∈Td
N

∫
(h`,jx )2fdν ≤ 1

γ

∑
y∈Λ2`

H(µ|ν) + log

∫
exp

γ ∑
z∈(4`)Td

N

(h`,jz+y)2

 dν


=

1

γ
(4`)d

H(µ|ν) +
∑

z∈(4`)Td
N

log

∫
exp

{
γ(h`,jz+y)2

}
dν

 .

However, since h`,jx is a weighted sum of independent random variables, by applying
Lemma 3.7 (concentration inequality) stated below, we have

log

∫
eγ(h`,j

x )2dν ≤ 2

for every 0 < γ ≤ C0

σ2 , where C0 is a universal constant and σ2 is the supremum of
the variances of h`,jx . By Lemma 3.2,

σ2 ≤ Cdgd(`).
Therefore, we have∑

x∈Td
N

∫
(h`,jx )2fdν ≤ 1

γ
(4`)d

(
H(µ|ν) + 2(N4` )

d
)
.

Thus, choosing 1
γ = Cd

C0
gd(`), we have shown∫

(V − V `)fdν ≤ αN2D(
√
f ; ν) +

C̄α`
dgd(`)K

2e3c1K

N

(
H(µ|ν) +

Nd

`d

)
+ CK2e3c1KNd−1.

Now recall 1 ≤ K ≤ δ(logN)1/2 ≤ δ logN so that e3c1K ≤ N3c1δ and choose δ > 0

such that 3c1δ ≤ κ for a given small κ > 0. Choose ` = N
1
d−κ when d ≥ 2 and

N
1
2−κ when d = 1. Then, when d ≥ 2, we have

`dgd(`)K
2

N
e3c1K ≤ CN−κ(d−1)(logN)3 ≤ 1,

Nd

`d
= Nd−1+dκ,

K2e3c1KNd−1 ≤ Nd−1+2κ,

which shows (3.2). When d = 1,

`2K2

N
e3c1K ≤ δ2N−κ logN ≤ 1,

N

`
= N

1
2 +κ, K2e3c1KNd−1 ≤ N2κ.

This shows the conclusion for d = 1. �

Lemma 3.7. (concentration inequality) Let {Xi}ni=1 be independent random vari-
ables with values in the intervals [ai, bi]. Set X̄i = Xi − E[Xi] and κ =

∑n
i=1(bi −

ai)
2. Then, for every γ ∈ [0, κ−1], we have

logE

exp

γ
(

n∑
i=1

X̄i

)2

 ≤ 2γκ.

The second step is to estimate the integral
∫
V `fdν, where V ` is given by (3.1).
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Proposition 3.8. We assume the same conditions as Proposition 3.1. Then, for
κ > 0, we have ∫

V `fdν ≤ CKH(µt|νt) + CκN
d−1+κ, (3.7)

with some Cκ > 0 when d ≥ 2. When d = 1, the last term is replaced by CκN
1
2 +κ.

Proof : We again decompose the sum
∑
x∈Td

N
in (3.1) as

∑
y∈Λ2`

∑
z∈(4`)Td

N
, and

then, noting the (2`)-dependence of
←−−
(ω̃1)x,`

−−→
(ω2)x,`, use the entropy inequality and

the concentration inequality to show∫
V `fdν ≤ K

γ

∑
y∈Λ2`

H(µt|νt) +
∑

z∈(4`)Td
N

logEνt [eγ
←−−
(ω̃1)z+y,`

−−→
(ω2)z+y,` ]


≤ K(4`)d

γ

{
H(µt|νt) +

Nd

(4`)d
C1γ`

−d
}
,

for γ = c`d with c > 0 small enough. Note that, by the central limit theorem,←−−
(ω̃1)x,`,

−−→
(ω2)x,` are close to C2`

−d/2N (0, 1) in law for large `, respectively, where
N (0, 1) denotes the standard Gaussian. Since ` = N

1
d−κ when d ≥ 2, we have

KNd

`d
≤ Nd−1+dκ · δ logN and obtain (3.7). When d = 1, since ` = N

1
2−κ, we have

KNd

`d
≤ N 1

2 +κδ logN . �

3.2. Proof of (2.9). We now discuss the contribution of

V1 := −N
2

2

∑
x,y∈Td

N :|x−y|=1

(u1(y)− u1(x))2ω1,xω1,y

in (2.5), which arises from the Kawasaki part; similar computations are made for
V1 in Funaki and Tsunoda (2018). The second term V2 can be treated similarly.
We may think N2(u1(y) − u1(x))2 as if K in the argument we have developed.
However, from Proposition 2.7, we have

N2(u1(y)− u1(x))2 ≤ CK2. (3.8)

This means that we may replace K by K2 properly in the estimates obtained
in Propositions 3.1 and 3.8 for the first and second terms. Since K2 ≤ δ2 logN
appearing in the error terms can be absorbed by Nκ for every κ > 0, this leads to∫

(V1 + V2)dµt ≤ αN2D
(√

dµt

dνt
; νt

)
+ CκK

2H(µt|νt) + Cα,κN
d−1+κ, (3.9)

for every a, κ > 0, when d ≥ 2 and the last term is replaced by Cα,κN
1
2 +κ when

d = 1.

4. Consequence of Theorem 2.2

Recall that µNt is the distribution of σ̃N (t) on X 2
N and uNi (t) = {uNi (t, x)}x∈Td

N
,

i = 1, 2 is the solution of the discretized hydrodynamic equation (2.3). The
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Bernoulli measure on X 2
N with mean {uNi (t, x)}x∈Td

N
is denoted by νNt . Then The-

orem 2.2 shows H(µNt |νNt ) = o(Nd) under a proper choice of K = K(N)↗∞. We
define macroscopic functions uNi (t, r), r ∈ Td as step functions

uNi (t, r) =
∑
x∈Td

N

uNi (t, x)1B( x
N ,

1
N )(r), r ∈ Td, (4.1)

from the microscopic functions uNi (t, x), x ∈ TdN , where B( xN ,
1
N ) =

∏d
j=1[

xj

N −
1

2N ,
xj

N + 1
2N ) is the box with center x

N and side length 1
N .

Under our choice of K, the entropy inequality

µNt (A) ≤ log 2 +H(µNt |νNt )

log{1 + 1/νNt (A)}
combined with Proposition 4.1 stated below shows that

lim
N→∞

µNt (AεN,t) = 0, (4.2)

for every ε > 0, where

AεN,t ≡ AεN,t,ϕ :=
{
σ̃ ∈ X 2

N ;
∣∣〈αNi , ϕ〉 − 〈uNi (t, ·), ϕ〉

∣∣ > ε, i = 1, 2
}
, ϕ ∈ C∞(Td).

Proposition 4.1. There exists C = Cε,ϕ > 0 such that

νNt (AεN,t) ≤ e−CN
d

.

Proof : Since

Xi := 〈αNi , ϕ〉 − 〈uNi (t, ·), ϕ〉 =
1

Nd

∑
x∈Td

N

{
σi,x − uNi (t,

x

N
)
}
ϕ(

x

N
) + o(1),

for ϕ ∈ C∞(Td), we have

νNt (AεN,t) ≤ e−γεN
d

Eν
N
t [eγN

d|Xi|]

≤ e−γεN
d
{
Eν

N
t [eγN

dXi ] + Eν
N
t [e−γN

dXi ]
}
,

for every γ > 0. However, by the independence of σi,x under νNt , we have

Eν
N
t [e±γN

dXi ] =
∏
x∈Td

N

Eν
N
t [e±γ{σi,x−ui,x}ϕx+o(1)]

=
∏
x∈Td

N

{
e±γ(1−ui,x)ϕxui,x + e∓γui,xϕx(1− ui,x)

}
+ o(1),

where ui,x = uNi (t, x) and ϕx = ϕ( xN ). However, by the Taylor’s formula applied
at γ = 0, we see∣∣∣e±γ(1−ui,x)ϕxui,x + e∓γui,xϕx(1− ui,x)− 1

∣∣∣ ≤ γ2

2
C, C = C‖ϕ‖∞ ,

for 0 < γ ≤ 1. Thus we obtain

νNt (AεN,t) ≤ e−γεN
d+Cγ2Nd

,

for γ > 0 sufficiently small. This shows the conclusion. �
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5. Convergence of the solution of the discretized hydrodynamic equation
to that of the free boundary problem

We show uNi (t, r), t ∈ [0, T ], r ∈ Td, i = 1, 2 appearing in (4.2), which is defined
by (4.1) from the solution of the discretized hydrodynamic equation (2.3), converges
to the unique weak solution of the free boundary problem (1.3). This can be done
along with Crooks et al. (2004), in a discrete setting. Once this is shown, combined
with (4.2), the proof of Theorem 1.1 is complete.

Lemma 5.1. ∫ T

0

∫
Td

uN1 (t, r)uN2 (t, r)dtdr ≤ 1

K
.

Proof : (cf. Lemma 2.3 of Crooks et al., 2004 with ϕ ≡ 1) From (2.3), we have

K
∑
x∈Td

N

∫ T

0

uN1 (t, x)uN2 (t, x)dt

= d1

∑
x∈Td

N

∫ T

0

∆NuN1 (t, x)dt+
∑
x∈Td

N

uN1 (0, x)−
∑
x∈Td

N

uN1 (T, x) ≤ Nd,

which implies the conclusion. �

Lemma 5.2. ∫ T

0

∫
Td

|∇NuNi (t, r)|2dtdr ≤ 1

2di
, i = 1, 2,

where ∇Nu(r) = {N(u(r + 1
N ej)− u(r))}dj=1.

Proof : (cf. Lemma 2.4 of Crooks et al., 2004 with ϕ ≡ 1) From (2.3), we have

1

2

d

dt

∫
Td

uN1 (t, r)2dr + d1

∫
Td

|∇NuN1 (t, r)|2dr = −K
∫
Td

uN1 (t, r)2uN2 (t, r)dr ≤ 0,

and this implies

d1

∫ T

0

dt

∫
Td

|∇NuN1 (t, r)|2dr ≤ 1

2

∫
Td

{
uN1 (0, r)2 − uN1 (T, r)2

}
dr ≤ 1

2
.

The proof for uN2 is similar. �

These two lemmas with the help of Fréchet-Kolmogorov theorem show that
{uNi (t, r)}N are relatively compact in L2([0, T ] × Td). In fact, two lemmas prove
the equi-continuity of {uNi (t, r)}N in the space L2([0, T ] × Td) as in Lemmas 2.6
and 2.7 of Crooks et al. (2004).

Corollary 5.3. (cf. Corollary 3.1 of Crooks et al., 2004) From any subsequence of
{uNi (t, r)}N , i = 1, 2, one can find further subsequences {uNk

i (t, r)}k, i = 1, 2, and
ui ∈ L2([0, T ]× Td), i = 1, 2 such that

uNk
i → ui strongly in L2([0, T ]× Td) and a.e. in [0, T ]× Td

as k →∞.



Glauber-Kawasaki dynamics with two components 19

Lemma 5.4. (cf. Lemma 3.2 of Crooks et al., 2004) u1u2 = 0 a.e. in [0, T ]× Td.

Set
wN := uN1 − uN2 and w := u1 − u2.

From Corollary 5.3 and Lemma 5.4, wNk → w strongly in L2([0, T ]× Td) and a.e.
in [0, T ]× Td as k →∞ and furthermore

u1 = w+ and u2 = w−.

Proposition 5.5. w is the unique weak solution of (1.3).

Proof : It is sufficient to check the property (ii) of Definition 1.2 for w. From (2.3),
for ψ ∈ C1,2([0, T ]× Td) such that ψ(T, r) = 0 for all r,∫ T

0

∫
Td

(uN1 (t, r)− uN2 (t, r))∂tψ(t, r)drdt−
∫
Td

(uN1 (0, r)− uN2 (0, r))ψ(0, r)dr

=

∫ T

0

∫
Td

(d1u
N
1 (t, r)− d2u

N
2 (t, r))∆Nψ(t, r)drdt.

We obtain the property (ii) for w by passing to the limit k → ∞ along with the
subsequence N = Nk. �

Because of the uniqueness of w, without taking subsequences, uNi (t, r), i = 1, 2
themselves converge to ui(t, r) strongly in L2([0, T ]×Td) and a.e. in [0, T ]×Td as
N →∞. This combined with (4.2) completes the proof of Theorem 1.1.
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