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Abstract
We study a system of particles which jump on the sites of the interval [1, L] 
of Z. The density at the boundaries is kept fixed to simulate the action of 
mass reservoirs. The evolution depends on two parameters λ′ � 0 and 
λ′′ � 0 which are the strength of an external potential and respectively of 
an attractive potential among the particles. When λ′ = λ′′ = 0 the system 
behaves diffusively and the density profile of the final stationary state is 
linear, Fick’s law is satisfied. In this paper we show that when λ′ > 0 and 
λ′′ = 0 the system models the diffusion of carbon in the presence of silicon 
as in the Darken experiment: the final state of the system is in qualitative 
agreement with the experimental one and uphill diffusion is present at the 
weld. Finally if λ′ = 0 and λ′′ > 0 is suitably large, the system simulates 
a vapor-liquid phase transition and we have a surprising phenomenon, as 
studied in Colangeli et  al (2016 Phys. Lett. A 380 1710–3) and Colangeli 
et al (2017 J. Stat. Phys. 167 1081–111). Namely when the densities in the 
reservoirs correspond respectively to metastable vapor and metastable liquid 
we find a final stationary current which goes uphill from the reservoir with 
smaller density (vapor) to that with larger density (liquid). Our results are 
mainly numerical, we have theoretical explanations yet we miss a complete 
mathematical proof.

Keywords: stochastic cellular automata, Kac potential, Fourier law,  
phase transitions, uphill diffusion
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1.  Introduction

Uphill diffusion is a phenomenon which appears when the current flows along the gradient in 
contrast with the Fick’s law which states that the current is proportional to minus the gradi-
ent. We are considering the case of mass diffusion so that the current is the mass flux and the 
gradient is the gradient of the mass density.

There are mainly two cases where uphill diffusion appears, the first one is when the system 
is a mixture of two or more components (or one component but several conserved quantities), 
the second one when the system undergoes a phase separation. The macroscopic explanation 
in the first case is that the current of say component 1 has a contribution j1 proportional to 
minus the gradient of its density (in agreement with the Fick’s law) but also contributions 
coming from the gradients of the other components which may be larger than j1 and with the 
opposite sign. The basic reference is an old paper by Darken, [4], where he gives experimental 
evidence of the phenomenon [16, 17], see also [9, 10] for an updated survey and [6–8, 12, 14, 
15] for related recent results. We will present here a simple particle model which reproduces 
qualitatively the main features of the Darken experiments.

Uphill diffusion appears also in one component systems at phase transition, say a vapor-
liquid transition. In such a case there is a density interval (ρ′, ρ′′) so that if the density ρ is �ρ′ 
the system is in its vapor phase while if ρ � ρ′′ then it is in its liquid phase. If we put a mass 
ρ|Λ| of fluid in a region Λ with ρ ∈ (ρ′, ρ′′) we observe a mass flux which gives rise to a non 
homogeneous final density profile with vapor at density ρ′ in a subregion Δ of Λ while in the 
complement the phase is liquid at density ρ′′. Thus during the phase separation mass has flown 
from the lower density in Δ to the larger density in Λ \∆: it has gone uphill.

We call this phenomenon a ‘transient uphill diffusion’ as in the end there is no current and 
we distinguish it from a ‘steady uphill diffusion’. The latter arises when a single component 
fluid in contact with a left and a right mass reservoir at density ρ− < ρ+ reaches a stationary 
state with positive current, namely mass flows from the reservoir at lower density to the one 
at larger density. We have observed this phenomenon in computer simulations of a particle 
system which models a vapor-liquid phase transition. The system is put in contact with mass 
reservoirs which keep fixed the densities at the boundaries. We have seen that if the left res-
ervoir fixes a density ρ− in the metastable vapor phase while the right reservoir density is ρ+ 
in the metastable liquid phase then the system reaches a stationary state where the current is 
positive, namely flows from left to right, i.e. mass goes from the reservoir at small density to 
that with larger density. Instead if the reservoirs densities are in the vapor and liquid stable 
phases (i.e. ρ− < ρ′, ρ+ > ρ′′), then the current is negative and goes downhill.

The final stationary state when the current is positive could be either one where in most of the 
space the fluid is liquid with a small region close to the left boundary where there is a sharp trans
ition from vapor to liquid or symmetrically one where in most of the space the fluid is vapor with 
a small region close to the right boundary where there is a sharp transition from liquid to vapor. 
In both cases the density profile is decreasing except in the transition region at either one of the 
boundaries, thus the steady current goes downhill in most of the space and uphill at the transition. 
The final stationary state is determined by the initial conditions and by random fluctuations.

We are not aware that such a ‘steady uphill diffusion’ has been observed earlier and it certainly 
deserves to investigate whether analogous phenomena are present in more general systems.

In section 2 we consider a particle model which describes normal diffusion; by adding a 
suitable potential we obtain in section 3 a system which simulates the Darken experiment with 
carbon diffusing in the presence of silicon. In section 4 we modify the model of section 2 by 
adding an attractive force among the particles which gives rise to uphill diffusion in the pres-
ence of phase transition. In appendix we prove a theorem stated in section 3.
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2.  A microscopic model for diffusion

We want to describe fluids where the evolution is diffusive and convection is negligible. These 
are the main features that our models should try to catch.

	 •	Particles undergo very frequent collisions, their velocities change rapidly and erratically 
so that their motion looks diffusive, convection being absent.

	 •	There is a strong repulsive force when particles are too close to each other which makes 
the density bounded.

	 •	The system is confined in a cylindrical vessel with a horizontal axis. The two extremal 
faces are in contact with mass reservoirs which keep the mass density at the boundaries 
fixed. We suppose a planar symmetry in the vertical planes orthogonal to the axis of the 
cylinder.

We will first describe our model designed for implementation on a computer, then show some 
computer simulations and finally discuss how well it catches the above physical requests.

The model is one dimensional, space and time are discrete. Particles are confined in the 
interval {1, ..., L}: L, a positive integer, is the spatial size of the system. Particles have only 
velocities equal to +1 and −1. Time is discrete: t = 0, 1, 2, . . . so that at each time step parti-
cles move from one site to the next one (right or left according to their velocity), we will say 
later what happens at the boundaries. There is an exclusion rule which prevents two particles 
with same velocity to stay on a same site, thus the local density is necessarily � 2. Before mov-
ing particles change randomly their velocities, however the exclusion rule prevents changes at 
sites where there are two particles (as they must have opposite velocities). The precise algo-
rithm used to update the particles configurations is as follows.

Particles configurations are described by sequences η = {η(x, v), x ∈ [1, L], v ∈ {−1, 1}} 
with η(x, v) ∈ {0, 1} the occupation variable at the phase space point (x, v). We denote by 
η(x) = η(x,−1) + η(x, 1) the total occupation at x and add a suffix t when the occupation 
variables are computed at time t, t = 0, 1, 2 . . .. The unit time step updating is obtained as the 
result of three successive operations starting from a configuration η and ending with a configu-
ration η′′′ , we denote by η′ and η′′ the configurations at the intermediate steps.

	 1.	Velocity flip. At all sites x ∈ [1, L] where there is only one particle we update its velocity 
to become +1 with probability 1

2 and −1 with same probability 1
2 (such velocity flips are 

independent of each other). At all other sites the occupation numbers are left unchanged. 
We denote by η′ the occupation numbers after the velocity flip updating.

	 2.	Advection. After deleting the particles at (1,−1) and (L, 1) (if present) we let each one 
of the remaining particles move by one lattice step in the direction of their velocity. We 
denote by η′′ the occupation numbers after this advection step.

	 3.	Boundaries updating. Let ρ± ∈ [0, 1] and call 2ρ± the density of the right, respectively 
left reservoir. Then with probability ρ+ we put a particle at (L,−1) and with probability 
1 − ρ+ we leave (L,−1) empty. We do independently the same operations at (1, 1) but 
with ρ− instead of ρ+. What we get is the final configuration η′′′ .

Let us next see how the model behaves. We have run several computer simulations, we report 
below some of them. It is convenient here and in the sequel to change variables writing

σt(x) = ηt(x)− 1, m± = 2ρ± − 1,� (2.1)

thus σt(x) ∈ {−1, 0, 1} and m± ∈ [−1, 1]. The above change of variables, which simplifies 
some formulas below, has also a physical meaning in terms of magnetic systems with σt(x) 
a spin, we refer to [3] for details. We fix an initial datum where the variables η(x, v) are 
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independent and take values 0, 1 with same probability. For any choice of the initial datum 
we run the above algorithm for a time t0 + T  and measure for each x ∈ [1, L] the time average

σt0,T(x) =
1
T

t0+T∑
t=t0+1

σt(x).� (2.2)

The current at time t from the system to the right reservoir is

j+(t) = ηt(L, 1)− ηt+1(L,−1),� (2.3)

which counts as positive the particles which leave the system from the right and as negative 
those which enter from the right. Analogously the current at time t from the the left reservoir 
to the system is

j−(t) = ηt+1(1, 1)− ηt(1,−1).� (2.4)

We have also measured the averaged currents

jt0,T
± =

1
T

t0+T∑
t=t0+1

j±(t).� (2.5)

The simulations we report here are done with L = 600 and L = 1200, t0 = 109, T = 105, 
m+ = 0.5, and m− = −0.5 in both cases. In figure 1 we have plotted mL(r), r ∈ [L−1, 1] by 
setting mL(r) = σt0,T(Lr) when L = 600 and L = 1200, the difference between the two pro-
files is negligible. The currents jt0,T

±  are essentially equal to each other and

jt0,T
± ≈ 1

2
m+ − m−

L
, L = 600, L = 1200.� (2.6)

In conclusion the simulations show that the system obeys the Fick’s law with constant diffusion 
coefficient equal to 1. For L large the stationary profile mL(r) is linear connecting m− to m+.

Let us finally discuss how well the particle model catches the physical requests stated at 
the beginning of the section. As shown from the simulations it indeed describes a diffusive 
fluid. The flip velocity updating however is not realistic, the collisions in a real fluid are not as 
simple and there are correlations between successive collisions, statistical independence that 
we assume here is the main issue in the derivation of the Boltzmann and other kinetic equa-
tions. The assumption that the speed is 1 is also unrealistic but it is the easiest way to achieve 
a description on the lattice which is more easily implementable on the computer. In the model 
the local density ηt(x) is always � 2, in real systems a bound on the density comes from strong 
repulsive forces at short distances, as in Lennard-Jones, in our model it is simply achieved 
by forbidding velocity flips when two particles are on the same site. Clearly it is not the true 
reason yet it does the job. The restriction to one dimension reflects the assumption of planar 
symmetry on vertical planes and it is therefore quite acceptable. The action of the reservoirs 
updating is to keep the average density at (L,−1) equal to ρ+ and at (1, 1) equal to ρ−. From 
the simulations we find that in average ηt(x, v) ≈ ηt(x,−v) so that the action of the reservoirs 
is to fix in the average the density at 1 and L equal to 2ρ∓, i.e. the density of the reservoirs.

3. The Darken experiment

In [4] Darken reports of experiments which show uphill diffusion of carbon, we refer in par
ticular to the case of figure 2 in [4] where carbon diffuses in a welded specimen where the 
silicon content is concentrated on the left of the weld (and negligible on the right). We refer to 
[4] for the details of the experiment. We model the carbon atoms using the particle model of 

M Colangeli et alJ. Phys. A: Math. Theor. 50 (2017) 435002



5

the previous section but we need to modify the updating rules to take into account the presence 
of silicon. As stated in [4] we may neglect the diffusion of silicon so that we suppose that the 
stationary silicon density is equal to 1 (in appropriate density units) to the left of the weld and 
to 0 afterwards, i.e. ρsi(x) = 1x� L

2
. Carbon does not like to stay where the silicon is, hence the 

carbon will feel a positive potential Uγ(x):

Uγ(x) = λ
∑

y

Jγ(y, x)ρsi(y), Jγ(y, x) = γJ(γ|x − y|), λ > 0,� (3.1)

where γ−1 is a positive integer and

J(r) = (1 − r)10�r�1.� (3.2)

Namely Uγ(x) is a sum of the contributions Jγ(y, x)ρsi(y) exerted from all silicon atoms. The 
interaction strength Jγ(x, y) has range which scales as γ−1, γ−1 is a parameter of the model 
which on physical grounds should be much larger than the interatomic distance (which in our 
model is the distance between two successive sites and thus equal to 1) but also much smaller 
than the macroscopic size of the specimen, L in our model.

Our choice of J(r) is of course quite arbitrary, it has the advantage to give a simple formula 
for the force (defined as usual as minus the gradient of the potential):

fγ(x) = −γ2λ
( x+γ−1∑

y=x

1y� L
2
−

x∑
x−γ−1

1y� L
2

)
.� (3.3)

Thus fγ(x) is simply equal to −γ2λ times the difference between the number of silicon par-
ticles to the right and left of x in a range γ−1, hence fγ(x) is directed to the right and active 
only in a neighborhood of the weld:

Figure 1.  Magnetization profile corresponding to a purely diffusive behavior, with 
m+ = −m− = 0.5. Open and solid symbols are the Monte Carlo prediction for, 
respectively, L = 600 (�) and L = 1200 (•).

M Colangeli et alJ. Phys. A: Math. Theor. 50 (2017) 435002
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fγ(x) = γ2λ1|x− L
2 |�γ−1 ×

{
x − ( L

2 − γ−1), x � L
2

( L
2 + γ−1)− x, x � L

2
.� (3.4)

To represent the force in our model we argue that δv, the average velocity change per unit 
time due to the force, should be proportional to βfγ(x), β the inverse temperature (as thermal 
fluctuations dampen the effect of the force). We can put this in our model where velocities are 
only  ±1 by changing the probability of the velocity flips. We thus modify the updating rules 
of the previous section only in the flip velocity step: at sites where there is only one particle 
its velocity is updated to be +1 with probability 1

2 + εx,γ  and equal to −1 with probability 
1
2 − εx,γ , thus the average velocity after the flip is 2εx,γ  which has the desired value βfγ(x) if

εx,γ =
1
2
βfγ(x) = γ2 βλ

2
1|x− L

2 |�γ−1 ×
{

x − ( L
2 − γ−1), x � L

2
( L

2 + γ−1)− x, x � L
2

.� (3.5)

As a consequence there is a bias to the right when close to the weld. (Recall that all the other 
updating rules are left unchanged).

Since we want to single out the effect of the force due to the silicon we take a homogeneous 
initial datum where as in section 2 the variables η(x, v) are independent and each one has an 
average equal to 1/2. Then the average density, i.e. the average of η(x), is equal to 1. Also the 
reservoirs have density 1, i.e. m± = 0. Having defined the model and the initial datum we can 
now run the simulations. We take the size of the system L equal to 600 or to 1200, γ−1 equal 
to 30 or to 60. We call r = γx the space measured in mesoscopic units and � = γL the size of 
the system in mesoscopic units.

Figure 2.  Magnetization profile in mesoscopic units (r = γx) in the presence of an 
external force fγ(x), with m+ = m− = 0 and � = 20. Shown is the comparison in 
|r − �

2 | � 1 between the Monte Carlo prediction for γ−1 = 30 and L = 600 (�) and 
for γ−1 = 60 and L = 1200 (•). At the bottom right corner, the magnetization profile 
corresponding to γ−1 = 30 and L = 600 is shown over the whole interval [0, �].

M Colangeli et alJ. Phys. A: Math. Theor. 50 (2017) 435002
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The simulations show that the density profile is only weakly dependent on γ , see figure 2, 
hence they suggest that it may have a limit when γ → 0. Indeed, under suitable assumptions 
on the initial distribution and a propagation of chaos property we can prove, proceeding as in 
[3] (see also [1]), that for any t � 0 and r ∈ (0, �)

lim
γ→0

lim
γ2t→τ ;γx→r

E[σt(x)] = m(r, τ),� (3.6)

where m(r, t) satisfies the conservation law

∂

∂t
m(r, t) = − ∂

∂r
j(r, t), m(0, t) = m−, m(�, t) = m+.� (3.7)

The current j = j(r, t) is equal to

j =
1
2

(
− ∂m

∂r
+ β(1 − m2){λ

∫
dxρsi(x)1|r−x|�1

(
1x<r − 1x�r

)
}
)

.� (3.8)

The curly bracket is the continuum version of the sum in (3.3). In particular

j = −1
2
∂m
∂r

, for |r − �

2
| > 1.

To check the validity of (3.7) we compare the profiles obtained in the simulations with the 
stationary solution of (3.7):

Stationary problem: find a constant j(�) and a function m(�)(r), r ∈ [0, �], so that 
m(�)(0) = m(�)(�) = 0 and (3.8) is satisfied with j(�) and m(�).

In appendix we prove:

Theorem 1.  The above ‘stationary problem’ has for each � a unique solution 
{ j(�), m(�)(x), x ∈ [0, �]}. Such a solution has the following properties: j(�) > 0, |m(�)(x)| < 1 
for all x and d

dx m(�)(x) = −2j(�) for all |x − �
2 | > 1. Moreover

lim
�→∞

m(�)(
�

2
+ r) = A(r), |r| � 1

A(r) =
{
tanh{β(λ/2)[(1 + r)2 − 1]}, r ∈ [−1, 0]
tanh{β(λ/2)[1 − (1 − r)2]}, r ∈ [0, 1]

� (3.9)

while

lim
�→∞

m(�)(r�) = M(r) =
{
−2αr, r ∈ [0, 1

2 )

2α(1 − r), r ∈ ( 1
2 , 1]

, α = A(1) = tanh{βλ/2}.

� (3.10)

Finally:

lim
�→∞

�j(�) = tanh{βλ/2}.
� (3.11)

In figure 3 we compare the theoretical profile A(r) and the average profile σt0,T(x) which 
indicates that we are with good approximation close to the mesoscopic and macroscopic limits 
when γ−1 = 30 and L = 1200. The measured current is jt0,T

± ≈ 7.2 · 10−4 so that by (3.11) 
and recalling that the mesoscopic current j(�) is related to the measured current by a factor 
γ−1 we get

M Colangeli et alJ. Phys. A: Math. Theor. 50 (2017) 435002
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∣∣∣∣ jt0,T
± − 1

L
tanh{βλ/2}

∣∣∣∣ � 2 · 10−5� (3.12)

which again shows that when γ−1 = 30 and L = γ−1� = 1200 the system behaves with good 
approximation as in the macroscopic limit.

3.1. The mesoscopic theory

The evolution equation (3.7) which describes the dynamics of our model in the limit γ → 0 
has a nice physical interpretation. In fact let F(m), m ∈ L∞([0, �], [−1, 1]), be the free energy 
functional

F(m) =

∫
dr
(
− S(m(r))

β
+ m(r)U(r)

)
,� (3.13)

where S(m) is the entropy and U(r) the potential generated by the silicon, namely

S(m) = −1 − m
2

log
1 − m

2
− 1 + m

2
log

1 + m
2

� (3.14)

U(r) = λ

∫ �

0
dr′ρsi(r′)J(|r − r′|) =

∫ �/2

0
dr′J(|r − r′|).� (3.15)

(J(|r|) being defined in (3.2)). Then j in (3.8) is equal to

j = −χ
d
dr

δ

δm(r)
F(m), χ =

β

2
(1 − m2).� (3.16)

Figure 3.  Comparison between σt0,T(x) (black circles) and A(γx) (black dashed line) in 
|γx − �

2 | � 1 with m+ = m− = 0 and � = 40, γ−1 = 30.

M Colangeli et alJ. Phys. A: Math. Theor. 50 (2017) 435002
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χ being the mobility (of the carbon atoms). (3.16) is the usual constitutive law which states 
that the current is minus the mobility times the gradient of the chemical potential (which, 
according to thermodynamics, is the derivative of the free energy with respect to the density, 
recall that the density is m(r) + 1). In our case where there is a contribution to the free energy 
coming from the force exerted by the silicon, the current j is not only given by minus the gradi-
ent of the density but it has an additional contribution given by the second term in (3.8). The 
curly bracket in (3.8) has a clear physical meaning: the silicon atoms in the interval dx, i.e. 
dxρsi(x) generate a force field at r which is λ1|r−x|�1 if x < r (hence positive) and a negative 
force λ1|r−x|�1 if x > r. The same expression can be rewritten as

∫
dxU(|r − x|){ d

dx
ρsi(x)} = U(|r − �

2
|).� (3.17)

Recalling that U(|r − x|) = λJ(|r − x|) the left hand side of (3.17) is λ times the weighted 
average of the density gradient of ρsi(x). Thus the second term in (3.8) is λ times the mobility 
times the averaged density gradient of ρsi. This is what expected from thermodynamics if the 
averaging weight was a delta function. Such an approximation would be valid if m(r) were 
slowly varying at the edge, but this is not the case: when � increases m(r) becomes smoother 
but only away from the edge!

The above proves that there is a uphill diffusion with a mass flux from the left to the right 
reservoirs, despite they have the same density. The work done to ensure such a flow is provided 
by the force exerted on carbon by the silicon atoms. More generally we may take other densi-
ties for the reservoirs, for instance m+ > 0 and m− = −m+. In such a case the analogue of 
theorem 1 would give a positive current (and hence an uphill diffusion) if m+ < tanh{βλ/2}, 
while the current would be downhill and hence negative if m+ > tanh{βλ/2}. see figure 4

3.2. The macroscopic limit

The macroscopic limit is obtained by letting � → ∞ while expressing the mesoscopic profiles 
in macroscopic units. By theorem 1 the limit profile is M(r), r ∈ [0, 1], which by (3.10) has a 
constant negative slope −2 tanh{βλ/2} except at r = 1

2  where it jumps from − tanh{βλ/2} 
to tanh{βλ/2}. Fick’s law is satisfied and the differential equation in the macroscopic limit 
splits in two equations: one in (0, 1

2 ) and the other in ( 1
2 , 1). The boundary conditions are 

m(0) = 0 and m( 1
2 ) = − tanh{βλ/2} for the first equation  and m( 1

2 ) = tanh{βλ/2} and 
m(1) = 0 for the second one. Thus in the macroscopic scaling the action of the force (due to 
silicon) is represented by boundary conditions at the discontinuity, this is a boundary layer 
problem which requires an analysis of the boundary layer in the stretched mesoscopic vari-
ables, as done in theorem 1.

4.  ‘Steady uphill diffusion’ and phase transitions

In this section we discuss uphill diffusion due to phase separation referring to results obtained 
in [2, 3] and [5]. As already mentioned in the introduction there are several surprising facts 
which are not entirely understood.

The phase transitions that we consider are of liquid-vapor type and the context is the one 
proposed by van der Waals. As explained by van der Waals it is the presence of long range 
attractive forces which is responsible for the phase transition. The way to implement his ideas 
in particle systems was first proposed by Kac with the introduction of Kac potentials, these 
are potentials which scale with a parameter γ > 0, the range scaling as γ−1 and the strength 
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of the potential as γd  (d the dimension of the space), so that the total interaction of a point 
with the others stays finite as γ → 0. In [11] and [13] it was shown that the Gibbsian statistical 
mechanics with Kac potentials reproduces the van der Waals theory in the limit γ → 0.

To implement all that we simply go back to the basic model of section 2 and add an inter-
action of Kac type among particles. This is just what we did in section 3 but the force is now 
given by the same diffusing particles of the system and not by an external force (which in 
the previous section was exerted by the silicon atoms). In suitable units we suppose that the 
strength of the force (which in section 3 was denoted by λ) is now equal to 1. The model we 
obtain is that considered by the same authors in [2] and [3]. Referring to the system of sec-
tion 3 we only have to modify the velocity flip updating which is now as follows:

Velocity flip. At all sites x ∈ [1, L] where there is only one particle we update its veloc-
ity to become +1 with probability 1

2 + εx,γ  and −1 with probability 1
2 − εx,γ , εx,γ = 

Cγ2[N+,x,γ − N−,x,γ ]; at all other sites the occupation numbers are left unchanged. We 
have set

N+,x,γ =

x+γ−1∑
y=x+1

η(+)(y), N−,x,γ =
x−1∑

y=x−γ−1

η(−)(y), x ∈ [1, L],� (4.1)

where η(+)(y) = η(y) if y ∈ [1, L] and η(+)(y) = 2ρ+ if y > L; similarly η(−)(y) = η(y) if 
y ∈ [1, L] and η(−)(y) = 2ρ− if y < 1, recall that 2ρ± is the density of the right, respectively 
left reservoir. We choose C = 1.25 and γ−1 = 30 so that the definition is well posed because 
(2γ−1)Cγ2 = 2.5/30 < 1

2, (2γ−1) being an upper bound for |N+,x,γ − N−,x,γ |.
By (3.5) and recalling that λ = 1 the above choice implies that particles are in contact with 

an environment which keeps the inverse temperature β equal to

β = 2C = 2.5.� (4.2)

Figure 4.  Comparison between the Monte Carlo prediction for m+ = 0.5 (�) and 
m+ = 0.99 (•), with γ−1 = 30, L = 600, m− = −m+ and � = 20. Note that, using 
β = 2.5 and λ = 1, we have tanh{βλ/2} ≈ 0.848.
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In section 5 of [3] it is shown that in the limit γ → 0 considered in the previous section the 
evolution is ruled again by the conservation law (3.7) with the current j(r, t) given by (3.16) 
where the free energy functional F(m) is now given by

F(m) =

∫ (
− m2

2
− S(m)

β

)
+

1
4

∫ ∫
J(r, r′)[m(r)− m(r′)]2,� (4.3)

with m(r) = m± if r � � and respectively r � 0. The first term on the right hand side, namely

fβ(m) := −m2

2
− S(m)

β
,� (4.4)

is the van der Waals mean field free energy, which is a convex function for β � 1 while for 
β > 1 becomes a double well with minima at  ±mβ where

mβ = tanh{βmβ}, mβ > 0.� (4.5)

In our model β = 2.5 hence we are in the phase transition regime. The values |m| � mβ define 
the stable phases, the interval |m| < mβ is the spinodal region. Inside the spinodal region 
the set |m| < m∗, m∗ > 0 : β(1 − (m∗)2) = 1, is unstable while the region m∗ < |m| < mβ is 
metastable.

The current j(r, t) given by (3.16) with F(m) as in (4.3) is:

j(r, t) = −1
2
{∂m(r, t)

∂r
− β[1 − m(r, t)2]

∫
dxJ(|r − x|)∂m(x, t)

∂x

}
.� (4.6)

If we suppose that ∂m(x,t)
∂x ≈ ∂m(r,t)

∂r  in the support of J(|r − x|) then

j(r, t) ≈ −1
2
∂m(r, t)

∂r

{
1 − β[1 − m(r, t)2]

}
.� (4.7)

Thus when |m(r, t)| < m∗, i.e. in the unstable region, the current has the same sign of the 
gradient of m and the diffusion coefficient is negative. This is at the basis of the macroscopic 
explanation of the uphill diffusion.

In our context the approximation ∂m(x,t)
∂x ≈ ∂m(r,t)

∂r  in the support of J(|r − x|) is shaky 
because in the spatial region where m is unstable its values vary significantly. In our simula-
tions we set m+ = −m− > 0 and decrease m+ starting from its maximal value 1.

In figure 5 we see a negative (downhill) current till m+ > mβ while in figure 6 it becomes 
positive as m+ < mβ, in this latter case the current goes uphill from the reservoir with smaller 
to the one with larger density. The stationary profile has also a significant change, when 
m+ > mβ it is smooth away from a small neighborhood of the middle point, where instead has 
a sharp jump going from  ≈−mβ to mβ. Instead when m+ < mβ and metastable (i.e. m+ > m∗) 
the jump moves to one of the endpoints, in the simulation presented in figure 6 it goes to 
the left boundary where it jumps from m− to a value b(m−) which is larger than m+, it then 
decreases smoothly toward the value m+ reached at the right boundary.

When m+ < m∗ the current is still positive (i.e. uphill) but the profile has a more complex 
structure, we refer to [3] for details. In [3] we give some theoretical explanation of these phe-
nomena but a complete theory with mathematical proofs is still missing.

The canonical system in statistical mechanics to study phase transitions is the Ising model 
in d � 2 dimensions with ferromagnetic nearest neighbor interactions. There are preliminary 
results [18] with computer simulations in the d = 2 case (obtained by Colangeli, Giardinà, 
Giberti, Vernia) which show again uphill diffusion in essential agreement with what described 
above.
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Figure 5.  Magnetization profile in presence of a Kac potential among particles, for 
C = 1.25 and m+ = 1, with space in γ−1 (=30) units. The parameters mβ and m∗ have 
values mβ = 0.985 and m∗ = 0.775. The different curves in the plot correspond to 
the averaged magnetization computed at different times: t0 = 105 (�), t0 = 106 (�), 
t0 = 107 (©) and t0 = 108 (•). The black thin line denotes the initial configuration, 
given by a step function centered at r = 15.

Figure 6.  Magnetization profile with m+ = 0.93. The different curves in the plot 
correspond to the averaged magnetization computed at different times: t = 105 (�), 
t = 106 (�) and t = 108 (©). The black thin line denotes the initial configuration, 
corresponding to a step function centered at r = 5.
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Appendix. The stationary problem

In this section we prove theorem 1. We will first prove in corollary A.3 below the existence 
of stationary solutions, namely we will prove that there are a constant j and a function m(x), 
x ∈ [0, �], such that

dm
dx

= −2j + βλ[1 − m2(x)]g(x), m(0) = m(�) = 0,� (A.1)

where

g(x) =
∫ x

x−1
1y� �

2
dy −

∫ x+1

x
1y� �

2
dy.� (A.2)

In particular

dm
dx

= −2j, for |x − �

2
| > 1.� (A.3)

Observe that h(x) := g( �2 + x), |x| � 1, is equal to

h(x) = 1x∈[−1,0](1 + x) + 1x∈(0,1](1 − x),� (A.4)

and therefore independent of �.
We start by proving the following lemma:

Lemma A.2.  Denote by m( j)(x), x � 0, j ∈ R, the solution of

dm
dx

= −2j + βλ[1 − m2]g(x), m(0) = 0.� (A.5)

Then

m( j′)(�) < m( j)(�), if j′ > j, lim
j→±∞

m( j)(�) = ∓∞.� (A.6)

Proof.  Take j′ > j. Then by (A.3) m( j)(x) = −2jx > m( j′)(x) = −2j′x  for x ∈ (0, �
2 − 1]. 

Suppose by contradiction that there is y > �
2 − 1 such that m( j)(x) > m( j′)(x) for x < y  and 

m( j)(y) = m( j′)(y). Then (1 − m( j)(y)2)g(y) = (1 − m( j′)(y)2)g(y) and therefore

d
dy

(
m( j)(y)− m( j′)(y)

)
= 2( j′ − j) > 0,

which contradicts the inequality m( j)(x) > m( j′)(x) valid for x < y , hence the first statement 
in (A.6).

To prove the second statement in (A.6) we first consider j < 0. In such a case 
d
dx m( j)(x) � −2j > 0 for all x, hence for any x > 0 limj→−∞ m( j)(x) = ∞. When j > 0 we 
define
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X := {x > 0 : m( j)(x) � −1}.� (A.7)

In X  we have d
dx m( j)(x) � −2j < 0. As a consequence if y ∈ X  then x ∈ X  for all x � y . For 

j large enough �2 − 1 ∈ X  and therefore

m( j)(x) � −1 − 2j(x − (
�

2
− 1)), x >

�

2
− 1,

hence limj→∞ m( j)(�) = −∞.� □ 

Corollary A.3.  There is a unique solution { j(�), m(�)(x), x ∈ [0, �]} of (A.1). Furthermore 
j(�) > 0 and |m(�)(x)| < 1 for all x ∈ [0, �].

Proof.  m( j)(�) is a continuous, strictly decreasing function of j which converges to  ±∞ 

as j → ∓∞, hence there is a unique j(�) such that m( j(�))(�) = 0 and m(�)(x) := m( j(�))(x), 
hence it is the unique solution of (A.1).

Call for notational simplicity m(x) and j the unique solution of (A.1). Suppose by con-
tradiction that j � 0, then, by (A.3), dm(x)/dx � 0 for all x and dm(x)/dx > 0 for some 
x ∈ ( �2 − 1, �

2 + 1), which yields m(�) > 0, while m(�) = 0 by (A.1), thus j > 0.
Suppose again by contradiction that there is y such that m(x) < 1 for all x < y  and m(y) = 1. 

By (A.3), dm(y)/dy = −2j < 0 hence the contradiction because it would mean that m(x) > 1 
for x < y  and y − x  small enough. Suppose again by contradiction that there is y < � such 
that m(y) = −1, then y ∈ X , see (A.7), and as argued in the proof of lemma A.2, this implies 
� ∈ X , while m(�) = 0 by (A.1).� □ 

Lemma A.4.  Let { j(�), m(�)} be as in corollary A.3, then

2j(�) =
−m(�)( �2 − 1)

�
2 − 1

< (
�

2
− 1)−1, m(�)(

�

2
+ 1) = −m(�)(

�

2
− 1) > 0.

�

(A.8)

Proof.  By (A.3) m(�)( �2 − 1) = −2j(�)( �2 − 1) and m(�)( �2 + 1) = j(�)(�− [ �2 + 1]) hence 
(A.8) having used that |m(�)| < 1.� □ 

Let a(x|α), |x| � 1, α ∈ (−1, 0), be the solution of

da
dx

= βλ[1 − a2(x)]h(x), a(−1) = α,� (A.9)

where h(x) has been defined in (A.4). Explicitly:

a(x|α) =

{
tanh

{
β(λ/2)(1 + x)2 + tanh−1(α)

}
, x � 0

tanh
{
β(λ/2)[1 − (1 − x)2] + tanh−1(a(0|α))

}
, x > 0

� (A.10)

Lemma A.5.  Let a(�)(x) = a(x|α) with α = m(�)( �2 − 1). Then

sup
|x|�1

|m(�)(
�

2
+ x)− a(�)(x)| � j(�)

2βλ
e4βλ.� (A.11)
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Proof.  Since |m(�)| < 1 and, by (A.10), |a(�)| < 1

| d
dx

(
m(�)(

�

2
+ x)− a(�)(x)

)
| � j(�) + βλh(x)|m(�)(

�

2
+ x)− a(�)(x)|2,� (A.12)

hence (A.11).� □ 

Proof of (3.9).  Let �n be any sequence such that �n → ∞ and such that m(�n)( �n
2 − 1) has a 

limit, call it −α∗. Then by (A.8) α∗ > 0 and m(�n)( �n
2 + 1) → α∗. By lemma A.5 and (A.10)

lim
n→∞

m(�n)(
�n

2
+ x) = lim

n→∞
a(�n)(x) = a(x| − α∗),

and a(1| − α∗) = α∗. By (A.10)

α∗ = a(1| − α∗) = tanh
{
βλ− tanh−1 α∗},

and this implies α∗ = tanh{βλ}.� □ 

Proof of (3.11).  From (A.8) and (3.9) we have

�j(�) = − �

�− 2
m(�)(

�

2
− 1) =

�

�− 2
m(�)(

�

2
+ 1) → α∗ = tanh{βλ/2}.

Proof of (3.10).  Let r ∈ [0, 1
2 ) then

m(�)(r�) = −2j(�)r� → −2αr.

The analogous statement holds for r > 1/2 and (3.10) is proved.� □ 
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