
SPECTRAL PROPERTIES OF INTEGRAL OPERATORS

IN PROBLEMS OF INTERFACE DYNAMICS AND METASTABILITY

A. De Masi, E. Olivieri, E. Presutti

Universities of Roma and L’Aquila

Abstract. In this paper we study some integral operators that are obtained by linearizations of a
non local evolution equation for a non conserved order parameter which describes the phase of a fluid.
We prove a Perron-Frobenius theorem by showing that there is an isolated, simple, maximal eigenvalue
larger than 1 with a positive eigenvector and that the rest of the spectrum is strictly inside the unit
ball. Such properties are responsible for the existence of invariant, attractive unstable one dimensional
manifolds under the full, non linear evolution. This part of the analysis and the application to interface
dynamics and metastability will be carried out in separate papers.

1. Introduction

In this paper we study the eigenvalue problem for an integral operator A on Csym(R), the space
of symmetric, bounded function on R with sup norm. We suppose that the kernel of A has the
form A(x, y) = p(x)J(x, y), with p(x) a symmetric, strictly positive, regular, bounded function and
J(x, y) a regular, non negative function of the variable y − x with compact support and integral
equal to 1. Further conditions on p and J are specified below, motivated by applications to interface
dynamics and metastability. For such p and J we will prove a Perron-Frobenius theorem about
the existence of an isolated, positive maximal eigenvalue λ with positive eigenvector. For stability
questions it is important to determine the part of the spectrum outside the unit ball. This is
not simple in our case because p(x) is both larger and smaller than 1. We will prove that only
the maximal eigenvalue λ is > 1, while the rest of the spectrum is strictly inside the unit ball, a
property that in the applications is responsible for the existence of an unstable, one dimensional,
attractive manifold.
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The problem arises from the analysis of the evolution equation in Csym(R; [−1, 1])

∂mt

∂t
= −mt + tanh

(
βJ ? mt + βh

)
(1.1)

where β > 1, h ≥ 0 and

(J ? m)(x) :=
∫

R
dyJ(x, y)m(y) (1.2)

The operators A that we consider are related to the linearization of the right hand side of (1.1).
Namely, given m ∈ Csym(R; [−1, 1]), we set

pm(x) :=
β

cosh2{βJ ? m(x)} (1.3)

and define Am as the operator with kernel

Am(x, y) := pm(x)J(x, y) (1.4)

Then (when h = 0) Lm := Am − 1 is the linearization around m of the right hand side of (1.1).
We will study the operators Am, we are now adding the subscript m to underline the dependence
on m.

Equation (1.1) has been derived from the Glauber dynamics of a one dimensional Ising spin
system interacting via a Kac potentials, see [7]. mt(x) is the spin magnetization density and
the condition that mt(x) is in [−1, 1] reflects the fact that the Ising spins have values ±1. J

is the coupling of the spin-spin interaction: J(x, y) ≥ 0 (ferromagnetic interactions) is an even,
C2 function of y − x (translational invariance) supported by the unit interval (we suppose that
sup{x : J(0, x) > 0} = 1) and normalized to have integral 1. h is an external magnetic field and
β = 1/kT , k the Boltzmann constant and T the absolute temperature.

When β > 1 there is a phase transition in the underlying spin system, [16], [3], [1]. The pure
phases correspond to the stationary, spatially homogeneous solutions of (1.1), thus a pure phase
with magnetization s ∈ [−1, 1], is a solution of

s = tanh
(
βs + βh

)
(1.5)

Given β > 1 there is h? > 0 so that for 0 ≤ h < h? (1.5) has three and only three different roots,
denoted by

m−
β (h) < m0

β(h) ≤ 0 < m+
β (h) (1.6)

The two phases m±
β (0), m+

β (0) = −m−
β (0) =: mβ > 0, are thermodynamically stable at h = 0,

while m0
β(0) = 0 is unstable. As h increases past 0, m+

β (h) is the only thermodynamically stable
phase left, m0

β(h) is still unstable while m−
β (h) becomes metastable. These statements, established

in the context of the theory of Equilibrium Statistical Mechanics, see [16], [?], are reflected by the
corresponding (obvious) stability properties of the space homogeneous solutions of (1.1).
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Interface dynamics concerns the analysis of the Cauchy problem for (1.1) with initial data close
to different phases in different regions of space. This problem has been extensively studied in the
last years with special attention to the multi-dimensional case where it has been proved that on a
suitable space-time scaling limit the evolution is ruled by a motion by mean curvature, see [8], [15]
and references therein. In one dimensions when h > 0 there are travelling fronts describing the
growth of the stable phase at the expenses of the metastable one, see [4] and references therein.
When h = 0 there are stationary solutions with two coexisting phases: they are all identical,
modulo translations and reflection, [10], to “the instanton” m̄(x), which is a C∞, strictly increasing,
antisymmetric function which identically verifies

m̄(x) = tanh
(
βJ ? m̄(x)

)
(1.7)

m̄(x) is the stationary pattern that connects the minus and the plus phases, as

lim
x→±∞

m̄(x) = ±mβ (1.8)

and it has therefore the interpretation of a “diffuse interface”. However, since m̄′(x) vanishes
exponentially fast as |x| → ∞, [9], then, loosely speaking, the fraction of space not occupied by
pure phases is vanishingly small. In this sense, that can be made precise by introducing scalings,
the interface is sharp and the transition from one phase to the other one is “instantaneous”. That
is why m̄ (or, more properly m̄′) is called the instanton.

As proved in [10] the interface described by the instanton is “stable” and any initial datum
“close to an instanton” is attracted and eventually converges to some translate of the instanton.
If instead the space occupied by one of the two phases is bounded, for instance a finite interval
outside which the other phase is present, then (it is believed that) the latter will prevail and in
the end it will be the only one present. This process however may be extremely slow: in the
Allen-Cahn equation the velocity of propagation of the majority phase vanishes exponentially fast
with the length of the interval where the minority phase is present, [2], [13]. In that case the profile
is attracted by an unstable manifold whose points are functions which are close to one phase in an
interval, to the other one outside it and each one of the interface patterns is close to an instanton.
To prove such a result in the present context we need to study (1.1) in a neighborhood of functions
m of the form

mξ(x) := m̄(ξ − |x|), ξ > 0 (1.9)

which by linearization leads to the operator Am with either m = mξ or m close to it (and ξ large).
This is a first motivation for studying Am, the second one comes from metastability. When

h > 0 the metastable phase m−
β (h) is stable under small perturbations, but if the perturbation

creates a droplet of the stable phase which is large enough then this will grow and will eventually
invade the whole space. In a forthcoming paper we will prove the existence of a critical droplet
m?(x), which is a stationary solution of (1.1) with h > 0. m?(x) is close to the stable phase in an
interval centered at the origin and to the metastable phase outside it. Moreover we will show that
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there is a one dimensional unstable manifold through m? whose points have a pattern similar to
that in m?, but with a different length of the stable region. In the branch of the manifold where the
length is shorter the evolution shrinks it further while it grows if larger. Like before, this manifold
attracts all profiles that are in a neighborhood. Thus again we are interested in the analysis of the
operator Am, with m = mξ + h or close to such a function.

The existence of these attractive one dimensional unstable manifolds reflects the presence of an
isolated, simple, maximal eigenvalue λm > 1 for Am and of a spectral gap, with the rest of the
spectrum strictly in the unit ball. In the present paper we will establish these and other properties
of the operators Am which are the building ingredients for the applications (mentioned above) to
interface dynamics and metastability, that will be treated in successive papers. In the next section
we state the main results and give an outline of the rest of the paper.

2. Main results

The problem in bounded domains with Neumann conditions
The operator Am on Csym(R) can be isomorphically regarded as an operator A+

m on C(R+), by
setting A+

mf := Amf?, where, given f ∈ C(R+), f? ∈ Csym(R) is defined by f?(x) = f(|x|). A+
m

is still an integral operator and its kernel is

A+
m(x, y) = Am(x, y) + Am(x,−y), x, y ∈ R+ (2.1)

This can be interpreted as a reflecting boundary condition (hereafter called Neumann) at 0 and
the original problem for Am on Csym(R) is actually the problem on the half line with Neumann
conditions at 0. By adding another reflection at ` > 1 we can then define a new operator Am,` on
C([0, `]) thus studying problems in bounded domains: setting

R`(x) :=

{
|x| for −1 ≤ x ≤ `

`− (x− `) for ` ≤ x ≤ ` + 1
(2.2)

we define, for x and y in [0, `],

Am,`(x, y) :=
∑

z:R`(z)=y

Am

(
x, z

)
(2.3)

Am,` is then the operator on C([0, `]) with kernel Am,`(x, y). The case ` = +∞ is included by
setting R+∞(x) := |x|, then Am,+∞ = A+

m.
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We will work in finite volumes and, by proving estimates uniform in `, we will recover the original
case in the limit ` → +∞. This is not only a technical device, in fact the analysis in the bounded
domains has its own interest, see for instance [2] and [13] where, in the context of the Allen-Cahn
equation, analogous problems are studied in finite intervals with Neumann boundary conditions.
Recalling the discussion in the Introduction where m was taken close to a double instanton, the
analysis in C([0, `]) with Neumann conditions corresponds to two double instantons, one across
0 and the other one across `. The spectral properties in this case reflect the interaction between
these two structures, see [2] and [13] for a discussion of these aspects.

When ` is finite we have the classical Perron-Frobenius theorem:

2.1 Theorem.
Let ` > 1 and m ∈ C([0, `], [−1, 1]). Then there are λm,` > 0, um,` and vm,` in C([0, `]), um,`

and vm,` strictly positive, so that

Am,` ? vm,` = λm,`vm,`, um,` ? Am,` = λm,`um,` (2.4)

(um,` and vm,` are left and right eigenvectors with eigenvalue λm,`) and for any x ∈ [0, `]

vm,`(x) = pm(x)um,`(x) (2.5)

Any other point of the spectrum is strictly inside the ball of radius λm,`.

Being too general the theorem cannot say much about the localization of the spectrum and the
dependence on ` of λm,`, vm,` and um,`, for that we need more assumptions on m. The proof of
Theorem 2.1 is classical, we report a version in Section 4 both for completeness and to introduce
notions that will be used to study the limit ` → +∞. A special role in the proofs is played by a
Markov chain whose transition probability is conjugated to Am,`(x, y).

Auxiliary Markov chains
By the positivity of λm,` and vm,`,

Qm,`(x, y) := Am,`(x, y)
vm,`(y)

λm,`vm,`(x)
, x, y ∈ [0, `] (2.6)

is well posed and it defines a transition probability on [0, `] conjugated to Am,`: the spectrum of
Am,` is obtained from that of Qm,` after multiplication by λm,`. In particular the spectral gap in
Theorem 2.1 is related to the mixing properties of the Markov chain with transition probability
Qm,`.
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If m is an instanton, m = m̄, then λm̄ = 1 and vm̄ = m̄′, i.e. Am̄m̄′ = m̄′, obtained by
differentiating the instanton equation (1.7). The analogue of (2.6) defines our basic transition
probability:

P (x, y) := Am̄(x, y)
m̄′(y)
m̄′(x)

, x and y in R (2.7)

In the problems with a (reflected) instanton at ξ, i.e. m̄(ξ − x), and Neumann conditions, i.e.
reflections at 0 and `, ` > 2ξ, ξ > 1, an important role will be plaied by the transition probability:

Qξ,`(x, y) :=
∑

R`(z)=y

P (ξ − x, ξ − z), x and y in [0, `] (2.8)

The above three Markov chains can be seen as describing similar, discrete time, jump processes
of a particle on the line R. The intensity of the jump from x to y is proportional to J(x, y) so
that the maximal displacement is one. This is exactly the case for the second one ((2.7)) which
has the whole line R as state space, whereas the first ((2.6)) and the third ((2.8)) ones have the
interval [0, `] as state space. In these last two cases a reflection rule at 0 and ` (see (2.2)) enters
into the game when the particle tries to bypass the points 0 and `, respectively. If both x and y

are at distance less than 1 from the boundary {0, `}, the intensity of the jumps becomes the sum
of two terms: the contribution of the direct jump from x to y and the one of the jump from x to
the “mirror” point z(y) of y where z(y) : R`(z(y)) = y, z(y) ∈ [−1, 0] ∪ [`, ` + 1]. For instance if
y ∈ [0, 1], then z(y) = |y|.

For technical reasons we will also introduce in the sequel, another Markov chain with transition
probability

P̃ (x, y) = P
(
ξ −R`(x), ξ − y

)
(2.9)

whose behaviour is almost identical to the one with transition probability (2.8)

The instanton
We will use throughout the paper several properties of m̄, some taken from the literature, [5],

[9], [10], the others, stated in Theorem 2.2 below and proved in Section 3, are new.

2.2 Theorem.
There are α and a positive, α0 > α and c > 0 so that for x ≥ 0

∣∣m̄(x)− (mβ − ae−αx)
∣∣ +

∣∣m̄′(x)− aαe−αx
∣∣ +

∣∣m̄′′(x) + aα2e−αx
∣∣ ≤ ce−α0x (2.10)

The double instanton
We next specialize to functions close to an instanton, more precisely given ` > 2ξ, ξ > 1, we

define a finite volume version of mξ, see (1.9), that we call the “double instanton”, by setting for
x ∈ [0, `]

m0
ξ,`(x) := m̄(ξ − x)− ae−α(x+ξ) + ae−α(2`−ξ−x) (2.11)
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When ` = +∞ we set equal to 0 the last term in (2.11) and write m0
ξ .

The right hand side of (2.11) should be regarded as (close to) the sum of three instantons: the
first one, the basic one, is m̄(ξ − x); the second one is centered at −ξ and the third one at 2`− ξ.
These last two are taken in the asymptotic approximation (2.10) which is the dominant term when
x is in [0, `] and ξ is large. Observe that the instanton at −ξ is obtained by reflecting the basic
one, m̄(ξ−x), around the origin while the third one by reflecting around `. Thus the “corrections”
to m̄(ξ − x) in (2.11) are due to the Neumann conditions at 0 and `.

We next define the neighborhoods of the double instanton where we will study the spectrum of
Am,`, the choice being dictated by the analysis of the applications mentioned in the Introduction.

2.3 Definition.
Let ξ > 1 be fixed.
Given ` ∈ [2ξ,+∞] and m ∈ C([0, `]; [−1, 1]), we set

δ0
ξm = m−m0

ξ,` (2.12)

and define G(c,ξ,`), c > 0, as the set of all m in C([0, `], [−1, 1]) such that

∣∣δ0
ξm(x)

∣∣ ≤ c

{
e−2αξeα(ξ−x) for 0 ≤ x ≤ ξ

e−2αξ + e−2α(`−ξ)eα(x−ξ) for ξ < x ≤ `
(2.13)

We will also consider a subset in G(c,ξ,`) indexed by δ > 0 which contains all m such that

−
∫

|x−ξ|≤ξ1/2
dx δ0

ξm(x)m̄′(ξ − x)2m̄(ξ − x) > −ce−2(α+δ)ξ (2.14)

Sharp estimates on λm,` and vm,`

We define m̃(x) :=
√

Cm̄m̄(x), where Cm̄ is a constant such that

∫

R
dx

m̃′(x)2

pm̄(x)
= 1 (2.15)

and set m̃′
ξ(x) = m̃′(ξ − x). We also normalize um,`(x) (and then vm,`) in such a way that

∫ `

0

dx

pm(x)
vm,`(x)2 ≡

∫ `

0

dxum,`(x)vm,`(x) = 1 (2.16)

We then have
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2.4 Theorem.
For any c > 0 there are c± and c′ all positive so that for all ` ≥ 2ξ, ξ > 1 and all m ∈ G(c,ξ,`)

1− c−e−2αξ ≤ λm,` ≤ 1 + c+e−2αξ (2.17)

um,`(x), vm,`(x) ≤ c+e−α′|ξ−x|, α′ = α′(ξ) := α− c′e−2αξ (2.18)
∣∣∣vm,`(x)− m̃′

ξ(x)
∣∣∣ ≤ c+e−2αξ+α|ξ−x|ξ4, for all x such that |ξ − x| ≤ ξ/2 (2.19)

Moreover for any c > 0 and δ > 0 there is D > 0 so that if m ∈ G(c,ξ,`) as above and satisfies
(2.14), then

λm,` ≥ 1 +
D

2
e−2αξ (2.20)

where D is the parameter defined in (9.40).

(2.18) and the first inequality in (2.17) are proved in Section 5, the other statements in Section
9 together with several other properties of λm,`, um,` and vm,`.

Spectral gap, resolvent
Given ` > 2ξ, ξ > 1, ζ ∈ R and w ∈ C([0, `]), we set

‖w‖ζ,ξ,` := sup
x∈[0,`]

e−ζ|ξ−x||w(x)| (2.21)

Given m ∈ Csym([0, `], [−1, 1]), we then define the linear functional πm,` on C([0, `]) as

πm,`(w) :=
∫ `

0

dxum,`(x)w(x) (2.22)

(um,` normalized as in (2.16)). We also call Lm,` := Am,` − 1.

2.5 Theorem.
Given c > 0 there are d± > 0, ζ? < 0 and ξ? > 1, so that for any ξ ≥ ξ?, ` ∈ [2ξ, +∞],

ζ? < ζ < 0, m ∈ G(c,ξ,`) and t ≥ 0

‖eLm,`t‖ζ,ξ,` ≤ d+e(λm,`−1)t (2.23)

and, for any w̃ such that πm,ξ,`(w̃) = 0,

‖eLtw̃‖ζ,ξ,` ≤ d+e−d−t‖w̃‖ζ,ξ,` (2.24)

Moreover given δ > 0 there is C > 0 so that if m is in G(c,ξ,`) and satisfies (2.14), then the inverse
(Lm,`)−1 exists and

‖(Lm,`)−1‖ζ,ξ,` ≤ Ce2αξ (2.25)
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If w̃ is such that πm,ξ,`(w̃) = 0 then

(Lm,`)−1w̃ = −
∫ +∞

0

dteLm,`tw̃, ‖(Lm,`)−1w̃‖ζ,ξ,` ≤ C‖w̃‖ζ,ξ,` (2.26)

Theorem 2.5 is proved in Section 10. The dependence of the maximal eigenvalues and eigenvec-
tors on ξ is studied in Section 11.

Outline of the paper
As the paper is long we hope that a detailed outline of its content and comments and suggestion

on the organization of its reading may be particularly helpful.
Section 3 is devoted to the analysis of the instanton m̄(x) and of its asymptotic behavior as

x → +∞. Its implications on the rest of the paper are through (2.10) and Lemmas 3.1 and 3.3, the
rest are proofs that to a first reading may be skipped. Lemma 3.1 is preliminary to the analysis
of m̄(x) and concerns properties of a function αp which are frequently used in the other sections.
Lemma 3.3 is about the positivity of the iterates of the kernel J(x, y), it can be read independently
of the rest of the section.

Section 4 is about the Perron-Frobenius theorem for Am,`, here we use that ` is finite while m is
still quite general; the estimates are not uniform in `. The results, existence of a simple, positive,
maximal eigenvalue and positivity of the correspondong eigenvector are classical. We do not refer
to the literature because the proofs give an idea of our strategy for the limit ` → +∞.

In Section 5 we study functions m close to a double instanton and derive basic estimates on the
maximal eigenvalue and eigenvector of Am,`, however they rely on the validity of some properties
of the Markov chain with transition probability Qξ,`(x, y) that are only proved in Section 8.

Sections 6, 7 and 8 are devoted to the analysis of the chains with transition probability Qm,`(x, y)
and Qξ,`(x, y). Those concerning Qm,`(x, y) use the estimates proved in Section 5. Therefore from
a logical point of view, one should first read Sections 6, 7 and 8 only for the parts that concern
Qξ,`. In this way one gets at the end of Section 8 all the estimates needed in Section 5, whose
results are then in effect. At that point, then, he can go back to Sections 6 and 7 for the parts that
concern Qm,` (in Section 8 we only consider Qξ,`). As some of the proofs for Qm,` and Qξ,` are
very similar to each other we have somehow unified them and for this reason we have organized
the paper the way it is, even though, logically, we should have followed the other way explained
above.

In particular in Section 6 we establish bounds on the expectations of exponential weights, which
are used to control the tails at infinity of the chain and provide the necessary tools for taking the
limit ` → +∞. In Section 7 we use this result to extend the analysis of Section 4 to get results
that are uniform in `. In terms of the related Markov chains this amounts to a proof of the decay
of the time correlations uniformly in `. In Section 8 we improve the analysis in the case of the
chain Qξ,` and exploit the results to prove sharp estimates on its invariant measure.

9



In Section 9 we improve the analysis of Section 5 with the help of the properties of the auxiliary
chains studied in the three preceeding sections. In Section 10 we prove the spectral gap properties
and in Section 11 we derive estimates on the dependence of eigenvalues and eigenvectors on ξ in
the particular case of the double instanton function.

3. Asymptotic behavior of the instanton

In this Section we study the asymptotic behavior of the instanton m̄(x) as x → ∞. We recall
that the instanton m̄(x) is an antisymmetric, continuous increasing function of x ∈ R that solves
(1.7). In Proposition 2.2 of [9] it is proved that there are c and η positive so that for all x > 0

|m̄(x)−mβ | ≤ ce−ηx (3.1)

and in Proposition 2.1 of [DOPT2] that m̄′ > 0. m̄′ is an eigenvector of Am̄ with eigenvalue 1,
namely

m̄′ = p J ? m̄′ (3.2)

where we use (throughout this subsection) the shorthand notation

p(x) ≡ pm̄(x) = β[1− m̄(x)2] (3.3)

(3.2) is obtained by differentiating with respect to x the instanton equation (1.7). After integrating
by parts the convolution on the right hand side of (3.2) we deduce that m̄′ is a bounded continuous
function and by further differentiations that all the derivatives of m̄ share such a property.

Since
lim

|x|→∞
p(x) = p∞ := β[1−m2

β ] < 1 (3.4)

the obvious conjecture is that the asymptotic behavior of m̄′(x) as x → +∞ is ruled by the equation

v = p∞ J ? v (3.5)

Looking for a solution of (3.5) of the form

v(x) = e−αx (3.6)
10



we find that α must solve
p∞

∫
dyJ(0, y)e−αy = 1 (3.7)

We are using the convention that when the domain of an integral is not specified then it coincides
with the whole R.

3.1 Lemma.
There is a strictly positive, decreasing C1 function αp, p ∈ (0, 1), so that ±αp are the only

solutions of the equation

p

∫
dy J(0, y)e−λy = 1, λ ∈ R (3.8)

Proof.
Given p ∈ (0, 1) let

f(λ) ≡ p

∫
dyJ(0, y)e−λy

Then f(0) < 1, f ′(λ) > 0 for all λ > 0 and f(λ) → +∞ as λ → +∞, hence there is a unique
value αp > 0 for which (3.8) holds. By the symmetry of f(λ), −αp is also a solution of (3.8). αp

is obviously a decreasing function of p. Lemma 3.1 is proved. ¤

We shorthand α := αp∞ , p∞ := β(1−m2
β), and we introduce the following kernel which will be

consider later on:
K(x, y) := p∞(x, y)e−α(y−x) (3.9)

This kernel can be considered as the asymptotic expression for x and y large of the transition
probability P (x, y) given by (2.7).

3.2 Theorem.
There are M > 0 and δ ∈ (0, α) positive so that

lim
x→+∞

eαxm̄′(x) = M, lim
x→+∞

eδx
(
eαxm̄′(x)−M

)
= 0 (3.10)

Theorem 3.2 will be proved later. Observe that an analogous statement holds for x → −∞,
as m̄(x) is antisymmetric (and m̄′(x) symmetric). Without loss of generality we thus restrict to
x ≥ 0.
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Given a positive integer s we consider the following equation in C0
(
R

)

{
v(x) = p(x)J ? v(x) for x ≥ s

v(x) = m̄′(x) for x < s
(3.11)

m̄′ obviously solves (3.11) and it is its only solution, as we will see. We will also prove that for s

large enough there is a Green function Gs(x, y) for (3.11). We will then obtain an expression for
m̄′(x), x > s, in terms of Gs(·, ·) and of m̄′(y), s − 1 ≤ y < s, and that will eventually lead us to
the proof of Theorem 3.2.

The Green function Gs(x, y)
We are going to prove an identity satisfied by m̄′(·), namely for any x ≥ s

m̄′(x) =
∫ s

s−1

dy Gs(x, y)m̄′(y) (3.12)

where

Gs(x, y) =
∞∑

n=1

R(n)
s (x, y) (3.13)

ans, setting x = y0 and y = yn, n > 1,

R(n)
s (y0, yn) =

∫ ∞

s

dy1· · ·
∫ ∞

s

dyn−1

n∏

i=1

p(yi−1)J(yi−1, yi), (3.14)

The series in (3.13) converges exponentially fast.
If v solves (3.11), for all x ≥ s

v(x) = p(x)
∫ ∞

s

dy J(x, y)v(y) + p(x)
∫ s

s−1

dy J(x, y)m̄′(y)

After N iterations, we get

v(x) =
∫ s

s−1

dy G(N)
s (x, y)m̄′(y) +

∫ ∞

s

dy R(N)
s (x, y)v(y) (3.15)

where for x ≥ s and y ∈ R

G(N)
s (x, y) :=

N∑
n=1

R(n)
s (x, y), R(1)

s (x, y) := p(x)J(x, y) (3.16)

The above quantities have an interpretation in terms of functional integrals over the space of
trajectories of the jump process with intensity p(x)J(x, y). Gs(x, y)contains trajectories from x to

12



y with an arbitrary number of jumps, remaining on the right of s. R
(n)
s (x, y) contains the same

type of trajectories taking place in a time n (n= number of jumps).
Since p(x) decreases (because m̄(x) increases), for all y0 > s

R(n)
s (y0, y) ≤ p(s)nJn(y0, y) (3.17)

¿From (3.1) we have

p(s) ≡ β[1− m̄(s)2] ≤ β
[
1− (mβ − ce−ηs)2

]
< 1 (3.18)

for all s large enough to which we hereafter restrict.
By (3.17) the second term on the right hand side of (3.15) is bounded by p(s)N‖v‖∞ (because

Jn(y0, y) is a probability density). ‖v‖∞ < ∞ because by definition any solution v of (3.11) is
bounded. The second term in (3.15) thus vanishes as N → +∞ and

v(x) =
∫ s

s−1

dy Gs(x, y)m̄′(y) (3.19)

where Gs(x, y) is defined in (3.13) and, by (3.17), the series in (3.13) converges exponentially fast.
(3.19) proves that there is a unique solution to (3.11), which is therefore m̄′(x), hence (3.12).

Reduction to a probability kernel

The purpose is now to bound from above and below the Green function Gs. Since p(x) is a
strictly decreasing function of x for x > 0,

p(x) > p∞ = inf
x

p(x) (3.20)

By (3.1) there is c′ so that for x > 0

p(x) ≤ p∞ + c′e−ηx (3.21)

Let α = αp∞ ,

K(x, y) := p∞J(x, y)e−α(y−x),

∫
dyK(x, y) = 1 (3.22)

and for y < s ≤ x

gs(x, y) :=
∞∑

n=1

∫ ∞

s

dy1· · ·
∫ ∞

s

dyn−1

n∏

i=1

K(yi−1, yi) (3.23)

In (3.23) we have written x = y0 and y = yn.
gs(x, y) is the analogue of the previously defined Gs, (see (3.13)) with the transition probability

K(x, y) (see(3.9)) in place of the unnormalized weights p(x)J(x, y). Now the functional integrals
assume a probabilistic meaning.

13



For any y0 ≥ s the series converges uniformly (in y) because its n-th term is bounded by

e−α(y−y0)

∫ ∞

s

dy1· · ·
∫ ∞

s

dyn−1 pn
∞J(yn−1, y)

n−1∏

i=1

J(yi−1, yi) ≤ e−α(y−y0)pn
∞‖J‖∞ (3.24)

having bounded J(yn−1, y) ≤ ‖J‖∞ and then used that Jn−1(y0, yn−1), n > 1, is a probability
density.

We will prove that for any x ≥ s and y ∈ [s− 1, s)

e−α(x−y)gs(x, y) ≤ Gs(x, y) ≤ e−α(x−y)[1 + ε(s)]gs(x, y) (3.25)

where
ε(s) := ce−ηs (3.26)

with c a suitable, positive constant.

The lower bound in (3.25) follows from (3.20). We will prove the upper bound by studying
auxiliary problems of the type (3.11) with kernels obtained by replacing p(x) by a constant p,
where p∞ ≤ p ≤ p(s). We call Gs(x, y; p) the corresponding Green function and since p is a
constant the kernel pJ(x, y) is translationally invariant so that

Gs(x, y; p) = G0(x− s, y − s; p) (3.27)

where for x ≥ 0 and y < 0

G0(x, y; p) =
∞∑

n=1

pn

∫ ∞

0

dx1..

∫ ∞

0

dxn−1J(x, x1)..J(xn−1, y) (3.28)

Let s− 1 ≤ y < s ≤ N ≤ x < N + 1, then by the monotonicity of p(x)

Gs(x, y) ≤
∫ N

N−1

dx1 GN (x, x1; p(N))
∫ N−1

N−2

dx2GN−1(x1, x2; p(N − 1)) . . .

· · ·
∫ s+1

s

dxm Gs(xm, y; p(s)) (3.29)

with m := N − s.
In (3.29) we have decomposed the space of trajectories by specifying the points reached at the

first hitting times to the left of N − 1, N − 2,...s + 1 respectively; we have introduced, moreover,
the corresponding estimates for p(x).

14



We will prove later that for any p? ∈ [p∞, 1) there is c? so that for any p ∈ [p∞, p?], all y ∈ (−1, 0]
and x ∈ (0, 1]

G0(x, y; p) ≤ G0(x, y; p∞)[1 + c?(p− p∞)] (3.30)

Then by (3.21), (3.29) and (3.30)

Gs(x, y) ≤
∫ N

N−1

dx1..

∫ s+1

s

dxmGN (x, x1; p∞)..Gs(xm, y; p∞)[1 + c?c′e−ηN ] · · · [1 + c?c′e−ηs]

= Gs(x, y; p∞)[1 + c?c′e−ηN ] · · · [1 + c?c′e−ηs] (3.31)

Since Gs(x, y; p∞) = eα(y−x)gs(x, y), (3.31) proves the upper bound in (3.25) with ε(s) as in (3.26)
and c determined by c?, c′ and η.

Proof of (3.30).

By (3.28) d2G0(x, y; p)/dp2 ≥ 0, hence, since p > p∞,

G0(x, y; p) ≤ G0(x, y; p∞) + (p−p∞)
∑

n≥1

npn−1

∫ ∞

0

dx1..

..

∫ ∞

0

dxn−1J(x, x1)..J(xn−1, y) (3.32)

Since y < 0 and J(x, y) = 0 if |x − y| ≥ 1, we have xn−1 ≤ 1 and xn−2 ≤ 2. We then bound
J(xn−2, xn−1) by ‖J‖∞1xn−2≤2 and get

G0(x, y; p) ≤ G0(x, y; p∞) + (p− p∞)S(x, y) (3.33)

where
S(x, y) := J(x, y) + C

∫ ∞

0

dzJ(z, y) (3.34)

and

C =
∑

n≥2

(p?)n−1n

∫ ∞

0

dx1..

∫ 2

0

dxn−2J(x, x1)..J(xn−3, xn−2)‖J‖∞ (3.35)

Supposing, without loss of generality, that C ≥ 1, we have

S(x, y) ≤ C
(
J(x, y) +

∫
dzJ(z, y)

)
(3.36)

The aim is now to bound S(x, y) in terms of G0(x, y; p). We will use a lemma that appears
frequently in this paper. For such a reason it is stated in a slightly more general form than
required by the present context.
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3.3. Lemma.
For any integer n ≥ 2 there is a positive integer kn (with kn < n2 for all n large enough) and

for any k ≥ kn there is ζ > 0 so that for any x ∈ [0, n] and y ∈ [0, n]
∫ n

0

dx1· · ·
∫ n

0

dxk−1 J(x, x1) · · · J(xk−1, y) > ζ (3.37)

Proof.
We first prove that for any x and y in [0, n] there is a positive integer k > 1 and x1..xk−1 in

[0, n] so that J(x, x1) · · · J(xk−1, y) > 0.
By the assumption that sup{x : J(0, x) > 0} = 1, it follows that there is ε > 0 so that

J(0, x) > 0 for 1− 4ε < x < 1 (3.38)

Let a be the midpoint of this interval, i.e.

a :=
1
2

(
1 + (1− 4ε)

)
(3.39)

and N the smallest integer such that εN ≥ n− 1.
For 0 ≤ i ≤ N − 1 we set

Λi := J
(
εi, εi + a

)
J
(
εi + a, ε(i + 1)

)
> 0 (3.40)

observing that the points εi, εi + a are in [0, n]. Let x ≤ y ≤ n− 1, i and j the integers such that

εi ≤ x < ε(i + 1), εj ≤ y < ε(j + 1)

and

Γ+(x, y) := J
(
x, εi + a

)
J
(
εi + a, ε(i + 1)

)
Λi+1 · · ·Λj−1J

(
εj, εj + a

)
J
(
εj + a, y

)
> 0 (3.41)

We define Γ−(x, y), 1 ≤ x ≤ y ≤ n, exactly as we did for Γ+, but going from the right to the left.
We next define Γ(x, y), x and y in [0, n] by setting Γ(x, y) := Γ+(x, y) for x ≤ y ≤ n − 1;

Γ(x, y) := Γ−(x, y) for 1 ≤ x ≤ y and y > n − 1. Γ(x, y) := Γ+(x, n/2)Γ−(n/2, y) for x < 1 and
y > n− 1 and Γ(x, y) := Γ(y, x) for 0 ≤ y < x ≤ n.

We then set for x and y in [0, n], ∆(x, y) := Γ(x, n/2)Γ(n/2, y). By definition ∆(x, y) is strictly
positive and

∆(x, y) = J(x, x1) · · · J(xk−1, y)

where k is an even integer that depends on x and y, all the points xi are in [0, n] and one of them
is equal to n/2. Moreover the range of values of k when x and y vary in [0, n] has a maximum
denoted by kn which is bounded proportionally to n.
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Since n/2 + a ∈ [0, n] and

J(n/2, n/2 + a)J(n/2 + a, n/2) > 0 (3.42)

we conclude that for any x and y in [0, n] there are points x1 . . . xkn−1 in [0, n] so that

J(x, x1) · · · J(xkn−1, y) > 0 (3.43)

and the same property holds as well for all the even integers larger than kn. It also extends to the
odd integers larger than kn: in fact by (3.42) it is enough to prove it for k = kn + 1. Suppose first
y − a ∈ [0, n], set y′ := y − a, then by (3.43)

J(x, x1) · · · J(xkn−1, y
′)J(y′, y′ + a) > 0

and y′ + a = y. If y − a /∈ [0, n], y + a ∈ [0, n]. We then set y′ := y + a and repeat the previous
argument. We have thus shown that given x and y in [0, n] and k ≥ kn there are x1, .., xk−1 in
[0, n] so that

J(x, x1) · · · J(xk−1, y) > 0

Let Jn(x, y) be the restriction of J(x, y) to [0, n]2. By the continuity of Jn and the above inequality
we deduce that also Jk

n(x, y) > 0 which, being a continuous function in [0, n]2, is strictly positive.
Lemma 3.3 is proved. ¤

By Lemma 3.3 and (3.28) there are an integer k and ζ > 0 so that for any x ∈ [0, 1] and
y ∈ [−1, 0)

G0(x, y; p∞) ≥ p∞J(x, y) + pk+1
∞

∫ 1

0

dz ζJ(z, y) (3.44)

Then there is C ′ > 0 so that

G0(x, y; p∞) ≥ C ′
(
J(x, y) +

∫
dzJ(z, y)

)
=

C ′

C
S(x, y) (3.45)

(the last equality is (3.34)). (3.30) follows from (3.33) and (3.45). Thus (3.25) is proved.

Estimates on gs(x, y)

By the translation invariance of K(x, y), see (3.22), by (3.23) for x ≥ s and y < s

gs(x, y) = g0(x− s, y − s) (3.46)

We will first prove that for all x ≥ 0
∫ 0

−1

dy g0(x, y) = 1 (3.47)
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This is a consequence of the law of large numbers for independent variables. Indeed by the
definition of K(x, y), see (3.22),

∫
dy K(x, y)(y − x) =: b < 0 (3.48)

Calling P the probability on RN product of identical copies of K(0, z)dz, and denoting by zi the
i-th coordinate in RN, we have, for any ε > 0,

lim
n→∞

P
(
{
∣∣∣

n∑

i=1

(zi − b)
∣∣∣ > εn}

)
= 0 (3.49)

Given x ≡ y0 > 0, by (3.24) the series (3.23) converges uniformly in y so that

∫ 0

−1

dy g0(x, y) = lim
N→∞

N∑
n=1

∫ 0

−1

dyn

∫ ∞

0

dy1· · ·
∫ ∞

0

dyn−1

n∏

i=1

K(yi−1, yi)

= lim
N→∞

{
1− P

(
{x +

n∑

i=1

zi > 0; ∀n ≤ N}
)}

≥ lim
N→∞

{
1− P

(
{x +

N∑

i=1

zi > 0}
)}

= 1 (3.50)

(3.47) is proved.

3.4 Proposition.
There are δ1 > 0 and a probability density ρ(y), y ∈ [−1, 0], so that

lim
x→∞

g0(x, y) = ρ(y), lim
x→∞

eδ1x

∫ 0

−1

dy
∣∣g0(x, y)− ρ(y)

∣∣ = 0 (3.51)

Proof.
We are going to show that for any y, g(x, y) is a Cauchy sequence as x →∞. Let s be a positive

integer and
bs(y) := sup

s≤x<s+1
s≤x′<s+1

∣∣g0(x, y)− g0(x′, y)
∣∣ (3.52)

We will prove later that there is γ ∈ (0, 1) such that for any y ∈ (0, 1)

bs(y) ≤ γbs−1(y) (3.53)
18



Let then x ∈ [s, s + 1) and x′ ∈ [n, n + 1), n ≥ s. If n = s

∣∣g0(x, y)− g0(x′, y)
∣∣ ≤ bs(y) ≤ γsb0(y) (3.54)

If instead n > s we write

g0(x′, y) =
∫ s+1

s

dz gs+1

(
x′, z

)
g0(z, y)

Then by (3.47) the function λ(z) := gs+1

(
x′, z

)
is a probability density so that

∣∣g0(x, y)− g0(x′, y)
∣∣ =

∣∣∣
∫ s+1

s

dz λ(z)[g0(x, y)− g0(z, y)]
∣∣∣ ≤ bs(y) ≤ γsb0(y) (3.55)

{g0(x, y)}x≥0 is thus a Cauchy sequence, hence the first limit in (3.51) exists and it defines ρ(y).
By letting x′ → +∞ in (3.55) we get

∣∣ρ(y)− g0(x, y)
∣∣ ≤ γsb0(y)

so that using (3.24)

∫ 0

−1

dy
∣∣ρ(y)− g0(x, y)

∣∣ ≤ 2γs

∫ 0

−1

dy sup
0≤x<1

g0(x, y)

≤ 2γs

∫ 0

−1

dy
∑

n≥0

sup
0≤x<1

e−α(y−x)pn
∞‖J‖∞ ≤ 2γs‖J‖∞ e2α

1− p∞

This proves the second limit in (3.51) with δ1 < log γ−1 and together with (3.47) that ρ is a
probability density.

Proof of (3.53)

We first show that there are c ∈ (0, 1/2) and ζ > 0 so that for all x ∈ [0, 1] and y such that
|y + 1/2| ≤ c

g0(x, y) > ζ (3.56)

By the assumption on J , there are x′ ∈ [0, 1], c ∈ (0, 1/2) and ζ ′ > 0 so that

inf
|x−x′|≤c

inf
|y+1/2|≤c

J(x, y) ≥ ζ ′

By Lemma 3.3 there are h > 0 and ε > 0 so that for all x ∈ [0, 1] and z ∈ [0, 1]

∫ ∞

0

dx1· · ·
∫ ∞

0

dxh−1J(x, x1) · · · J(xh−1, z) > ε
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Then for x ∈ [0, 1] and |y + 1/2| ≤ c

g0(x, y) ≥ ph+1
∞ eα(x−y)

∫ ∞

0

dx1· · ·
∫ ∞

0

dxh−1

∫ x′+c

x′−c

J(x, x1) · · · J(xh−1, z)J(z, y)

> ph+1
∞ ε2cζ ′

which proves (3.56).
We can suppose that ζ in (3.56) is less that (2c)−1. We set

g̃s(x, z) := gs(x, z)− ζ1(|z − (s− 1/2)| ≤ c) (3.57)

which by (3.56) is non negative. For x and x′ both in (s, s + 1] we have
∣∣∣g0(x, y)− g0(x′, y)

∣∣∣ =
∣∣∣
∫ s

s−1

dz [g̃s(x, z)− g̃s(x′, z)]g0(z, y)
∣∣∣ (3.58)

Letting γ := 1− 2ζc we get
∣∣∣g0(x, y)− g0(x′, y)

∣∣∣ = γ−1
∣∣∣
∫ s

s−1

dz

∫ s

s−1

dz′ g̃s(x, z)g̃s(x′, z′)][g0(z, y)− g0(z′, y)]
∣∣∣

≤ bs−1γ
−1

∫ s

s−1

dz g̃s(x, z)
∫ s

s−1

dz′ g̃s(x′, z′) = γbs−1

which proves (3.53).
Proposition 3.4 is proved. ¤

Proof of Theorem 3.2

Let x ≥ s and

Is(x) :=
∫ 0

−1

dy g0(x− s, y)[eα(s+y)m̄′(s + y)] (3.59)

By (3.12) and (3.25)
Is(x) ≤ eαxm̄′(x) ≤ Is(x)

(
1 + ε(s)

)
(3.60)

Let

I?
s :=

∫ 0

−1

dy ρ(y)[eα(s+y)m̄′(s + y)] (3.61)

By (3.51) there are c and δ1 positive so that
∣∣Is(x)− I?

s

∣∣ ≤ ce−δ1(x−s) sup
|z|≤s

eαzm̄′(z) (3.62)

Calling M and M̄ the liminf and limsup of eαxm̄′(x) as x → +∞, we get from (3.60)

I?
s ≤ M ≤ M̄ ≤ I?

s

(
1 + ε(s)

)
(3.63)
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Therefore for s > s0, s0 large enough,

M̄ −M ≤ ε(s)I?
s ≤ ε(s)

∫ 0

−1

dy ρ(y)
(
1 + ε(s0)

)
Is0(s + y) (3.64)

having used (3.60) with s0 to derive the last inequality.
By (3.60) and (3.63)

lim sup
s→+∞

Is0(s + y) ≤ lim sup
s→+∞

eα(s+y)m̄′(s + y) ≤ I?
s0

[1 + ε(s0)]

Then by (3.26) the right hand side of (3.64) vanishes as s → +∞ which proves the first limit in
(3.10). The proof of the second one is similar. Indeed both M and m̄′(x)eαx are in the interval
with extremes min{Is(x), I?

s } and [1 + ε(s)]max{Is(x), I?
s }. Then by (3.62) there is c > 0 so that

for all s large enough and all x ≥ s

∣∣M − m̄′(x)eαx
∣∣ ≤ |Is(x)− I?

s |+ ε(s)[Is(x) + I?
s ] ≤ c[e−δ1(x−s) + e−ηs]

≤ 2ce−δ′x

having chosen s such that (x− s)δ1 = ηs and set

δ′ :=
ηδ1

η + δ1

Theorem 3.2 is proved. ¤

Theorem 2.2 is a consequence of Theorem 3.2 and of the following corollaries of Theorem 3.2.

3.5. Theorem.
Let a := Mα−1 and 0 < δ′ < δ with δ as in Theorem 3.2. Then

lim
x→+∞

e(α+δ′)x[
m̄(x)− (

mβ − ae−αx
)]

= 0 (3.65)

Proof.
Since m̄(x) → mβ as x → +∞

mβ − m̄(x) =
∫ ∞

x

dy m̄′(y)
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Then, recalling that M = αa,

∣∣∣e(α+δ′)x[
m̄(x)− (

mβ − ae−αx
)]∣∣∣ =

∣∣∣e(α+δ′)x
∫ ∞

x

dy [aαe−αy − m̄′(y)]
∣∣∣

≤
∫ ∞

x

dy e(α+δ′)y
∣∣∣Me−αy − m̄′(y)

∣∣∣

=
∫ ∞

x

dy e−(δ−δ′)yeδy
∣∣M − eαym̄′(y)

∣∣

which by Theorem 3.2 vanishes as x → +∞. Theorem 3.5 is proved. ¤

3.6. Theorem.
Let δ > 0 be as in Theorem 3.2. Then

lim
x→+∞

eδx
∣∣eαxm̄′′(x) + αM

∣∣ = 0 (3.66)

Proof.
By differentiating (3.2) we get

m̄′′(x) = −2βm̄(x)m̄′(x)J ? m̄′(x) + p(x)J ′ ? m̄′(x) (3.67)

where J ′(x, y) := ∂J(x, y)∂x. By Theorem 3.2

lim
x→+∞

e(α+δ)x[−2βm̄(x)m̄′(x)J ? m̄′(x)] = 0 (3.68)

so that
lim

x→+∞
eδx

∣∣∣eαxm̄′′(x)− p(x)
∫

dy J ′(x, y)e−α(y−x)[eαym̄′(y)]
∣∣∣ = 0 (3.69)

We have

∣∣∣eδxp(x)
∫

dy J ′(x, y)e−α(y−x)[eαym̄′(y)−M ]
∣∣∣

≤ p(x)
∫ x+1

x−1

dy |J ′(x, y)|e−α(y−x)eδ
∣∣∣eδy[eαym̄′(y)−M ]

∣∣∣

which by Theorem 3.2 vanishes as x → +∞. Then by (3.69)

lim
x→+∞

eδx
∣∣∣eαxm̄′′(x)− p(x)

∫
dy J ′(x, y)e−α(y−x)M

∣∣∣ = 0 (3.70)
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By (3.7) we have
∫

dy J ′(x, y)e−α(y−x) = −α

∫
dy J(x, y)e−α(y−x) = − α

p∞
(3.71)

(recall α = αp∞). (3.70) then becomes

lim
x→+∞

eδx
∣∣∣eαxm̄′′(x) +

p(x)
p∞

αM
∣∣∣ = 0 (3.72)

We have
p(x)
p∞

− 1 =
1

1−m2
β

[mβ + m̄(x)][mβ − m̄(x)]

Since 0 < δ < α, by Theorem 3.5

lim
x→+∞

eδx[mβ − m̄(x)] = 0

Then by (3.72)
lim

x→+∞
eδx

∣∣∣eαxm̄′′(x) + αM
∣∣∣ = 0 (3.73)

Theorem 3.6 is proved. ¤

Theorem 3.2, 3.5 and 3.6 prove Theorem 2.2.

4. A Perron Frobenius theorem in finite intervals

In this Section we will prove Theorem 2.1 with several other properties of the maximal eigenvalue
λm,` and the corresponding left and right eigenvectors um,` and vm,`. We are not yet supposing
that m is close to a double instanton, thus our statements refer to general m ∈ Csym([0, `]), but
the results are not uniform in `.

4.1 Lemma.
The operator Am,` is selfadjoint in L2([0, `], pm(x)−1dx), i.e. for any x and y in [0, `]

1
pm(x)

Am,`(x, y) =
1

pm(y)
Am,`(y, x) (4.1)

Moreover for any f ∈ C([0, `])
∫ `

0

dy Am,`(x, y)f(y) =
∫ `+1

−1

dy Am(x, y)f
(
R`(y)

)
(4.2)
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Proof.
Recalling the definition of Am,`, (4.1) becomes J`(x, y) = J`(y, x), where

J`(x, y) :=
∑

z:R`(z)=y

J(x, z)

Since J(x, y) = J(y, x), we need only consider the case when there is y′ /∈ [0, `] and J(x, y′) > 0.
Then there is x′ /∈ [0, `] with R`(x′) = x and by the symmetry of J , J(x, y′) = J(y, x′) and
consequently J`(x, y) = J`(y, x). (4.1) is therefore proved.

To prove (4.2) we write its left hand side as

∫ `

0

dy [Am(x, y) + 1R`(y′)=y,y′ /∈[0,`]Am(x, y′)]f(y) =
∫ `

0

dy Am(x, y)f(y)

+
∫

y′ /∈[0,`]

dy′Am(x, y′)f
(
R`(y′)

)

Lemma 4.1 is proved. ¤

Since Am,` is selfadjoint in L2([0, `], dx), (2.5) follows from the observation that by multiplying
a left eigenvector by pm we obtain a right eigenvector with the same eigenvalue.

To prove Theorem 2.1 we follow a strategy usual in equilibrium statistical mechanics, [17], [14].
We start from the left eigenvalue problem. Let

X` :=
{

ρ ∈ C([0, `];R+) :
∫ `

0

dx ρ(x) = 1
}

(4.3)

and Nm,` the [non linear] map on X` defined by setting

[Nm,`(ρ)](y) :=
∫ `

0

dx ρ(x)Am,`(x, y)
{ ∫ `

0

dy

∫ `

0

dx ρ(x)Am,`(x, y)
}−1

(4.4)

Observe that if Nm,` has a fixed point u:

Nm,`(u) = u (4.5)

then u is a left eigenvector
u ? Am,` = λu (4.6)

with

λ =
∫ `

0

dx

∫ `

0

dy u(x)Am,`(x, y) (4.7)
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4.2 Lemma.
There exists a fixed point um,` solution of (4.5) and there is a constant c1 > 0 (independent of

m and `) so that for all ` large enough

0 < um,`(x) ≤ √
2c1, |u′m,`(x)| ≤ c1, for all x ∈ [0, `] (4.8)

Proof.
R, the sup-norm closure of Nm,`

(X`

)
, is a closed convex subset of X`. We are going to show

that R is compact. To simplify notation we drop (in the course of the proof) the indices m and `.
If ρ ∈ X then u = N(ρ) is differentiable with derivative

u′(y) :=
∫

dx ρ(x)A′(x, y)∫
dy

∫
dx ρ(x)A(x, y)

(A′(x, y) denoting the derivative with respect to y). There are positive constants c′ and c′′ so that
|A′(x, y)| ≤ c′ and for any x ∈ [0, `]

∫
dy A(x, y) ≥ c′′

∫
dy J(x, y) = c′′

We then conclude that there is c (that we take ≥ 1) independent of ` so that |u′(y)| ≤ c for all
y ∈ [0, `]. To prove that u ≤ √

2c we argue by contradiction. Suppose that the maximum of u is
attained at x? ≥ 0 and that u(x?) > u? :=

√
2c. Then

u(x) ≥ [−c(x? − x) + u?]1x?−u?c−1≤x≤x?

(the right hand side being a function in [0, `] for ` large enough). Since the inequality is strict for
some x, by integrating over x and recalling that the integral of u is 1, we reach a contradiction:

1 >
[u?]2

2c
= 1

which implies that the second and the third inequalities in (4.8) are verified in the whole R. By
the Ascoli Arzelà theorem, Theorem IV.6.7 in [12], R is compact and the existence of a solution
um,` to (4.5) follows from the Schauder-Tychonoff fixed point theorem, Theorem V.10.5 in [12].

It only remains to prove the first inequality in (4.8) which is again proved by contradiction. If
u(y) = 0 for some y then u(x) = 0 for all x such that A(x, y) > 0 (recall that u ≥ 0, by definition).
By iteration u ≡ 0 which is in contradiction with u being a probability density. Lemma 4.2 is
proved. ¤

By (4.7)
β ≥ sup pm(x) ≥ λm,` ≥ inf pm(x) ≥ β cosh−2(β) (4.9)
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In fact, since for all x ∈ [0, `] ∫ `+1

−1

dy J(x, y) = 1

we have using (4.2)

λm,` =
∫ `

0

dxum,`(x)
∫ `

0

dy Am,`(x, y) =
∫ `

0

dxum,`(x)
∫ `+1

−1

dy pm(x)J(x, y)

=
∫ `

0

dxum,`(x)pm(x)

which is then bounded from above and below respectively by sup pm(x) and inf pm(x), hence (4.9)
after recalling the definition of pm(x) and that ‖m‖∞ ≤ 1.

4.3 Lemma.
For any ` > 1 there are c > 0 and r < 1 so that the following holds. Let m ∈ C([0, `], [−1, 1]),

λm,` > 0, um,` and vm,` normalized so that

∫ `

0

dx vm,`(x)um,`(x) = 1

and, given w ∈ C([0, `], let

π−m,`(w) :=
∫ `

0

dxw(x)um,`(x), w̃(x) := w − π−m,`(w)vm,`(x)

Then, for any n ≥ 1
‖An

m,` ? w̃‖∞ ≤ c[λr]n‖w̃‖∞

Proof.
Let Qm,` be as in (2.6). By Lemma 3.3 there are ζ > 0 and k ∈ N so that for any |x| ≤ ` and

|y| ≤ `, Qk
m,`(x, y) > ζ. By classical arguments in the theory of Markov chains (that we recall

below) there are then c > 0 and r < 1 so that for all n ∈ N and y ∈ [0, `]

sup
x,x′

∣∣∣Qn
m,`(x, y)−Qn

m,`(x
′, y)

∣∣∣ ≤ crn (4.10)

In particular this shows that the chain Qm,` is ergodic.
Proof of (4.10)

Call p(x, y) := Qk
m,`(x, y) > ζ and, given y,

δn(x, x′) =
∣∣∣pn(x, y)− pn(x′, y)

∣∣∣, δn = sup
x 6=x′

δn(x, x′)
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We are going to show that
δn ≤ (1− ζ)n

which implies (4.10). We have

δn(x, x′) =
∣∣∣
∫ `

0

dz[p(x, z)− ζ]pn−1(z, y)−
∫ `

0

dz[p(x′, z)− ζ]pn−1(z, y)
∣∣∣

Calling µ(z) = p(x, z)− ζ and µ′(z) = p(x′, z)− ζ, we notice that they are both non negative and
have the same integral. Then, since pn−1(z, y) ≥ 0,

∣∣∣
∫ `

0

dz[µ(z)− µ′(z)]pn−1(z, y)
∣∣∣ ≤ δn−1

∫ `

0

dz µ(z) = (1− ζ)δn−1

which completes the proof of (4.10).

The probability density
ρm,`(x) := um,`(x)vm,`(x)

is invariant (i.e. a left eigenvector)
ρm,` ? Qm,` = ρm,`

Then ∣∣∣Qn
m,`(x, y)− ρm,`(y)

∣∣∣ ≤
∫ `

0

dx′ ρm,`(x′)
∣∣∣Qn

m,`(x, y)−Qn
m,`(x

′, y)
∣∣∣ ≤ crn (4.11)

Rewriting

π−m,`(w) =
∫ `

0

dy ρm,`(y)
w(y)

vm,`(y)

we have
∫ `

0

dy An
m,`(x, y)

[
w(y)− π−m,`(w)v(y)

]
= (λm,`)nvm,`(x)

×
{ ∫ `

0

dy Qn
m,`(x, y)

w(y)
vm,`(y)

− π−m,`(w)
}

≤ (λm,`)nvm,`(x)
∫ `

0

dy
∣∣Qn

m,`(x, y)− ρm,`(y)
∣∣ w(y)
vm,`(y)

Then by (4.11) the last term is bounded by

c(rλm,`)n‖vm,`‖∞‖v−1
m,`‖∞‖w‖∞

and since ‖w‖∞ ≤ c‖w̃‖∞, c a constant, Lemma 4.3 is proved. ¤

Conclusion of the proof of Theorem 2.1
The spectral gap property, the only one still to prove, is a consequence of (i) and (ii) below:
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(i) the subspace of the functions w̃ is invariant under Am,`.
(ii) on such a space the norm of Am,` is bounded by rλm,`.
The proof of (ii) follows directly from Lemma 4.3. To prove (i) we write

Am,`w̃ = Am,`w − π−m,`(w)λm,`vm,` = Am,`w − π−m,`

(
λm,`w

)
vm,`

and since um,` is a left eigenvector,

π−m,`

(
λm,`w

)
=

∫ `

0

dxw(x)
∫ `

0

dy um,`(y)Am,`(y, x) = π−m,`

(
Am,`w

)

Thus Am,`w̃ = w′ − π−m,`(w
′), w′ = Am,`w, which is (i).

4.4. Lemma.
There is b > 1 so that for any |x− y| ≤ 1

b−1 ≤ vm,`(x)
vm,`(y)

≤ b (4.12)

Proof.
Dropping the subfix m and ` in the course of the proof, by Lemma 3.3 and by the translational

invariance of J(·, ·), there are k and ζ > 0 so that for any x, y, x′ such that |x − y| ≤ 1 and
|x′ − y| ≤ 1, Jk(x, x′)| ≥ ζ. Then

v(x) = λ−k

∫
dx1...

∫
dxkpm(x1) · · · pm(xk)J(x, x1) · · · J(xk−1, xk)v(xk)

≥ cosh−2k β

∫

|x′−y|≤1

dx′ζv(x′)

because, by (4.9), λ−1 > β−1 and pm ≥ β cosh−2 β. On the other hand, using again (4.9), we have

v(y) ≤ λ−1β

∫

|x′−y|≤1

dx′ J(y, x′)v(x′)

≤ ‖J‖∞ cosh2 β

∫

|x′−y|≤1

dx′ v(x′)

We have thus obtained the first inequality in (4.12) with

b−1 = ζ‖J‖−1
∞ cosh−2k−2(β)

The second inequality in (4.12) is equivalent to the first one. Lemma 4.4 is proved. ¤
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5. Preliminary bounds

In this section we ourselves restrict to functions m close to a double instanton and derive a lower
bound on the maximal eigenvalue λm,` of Am,` and upper and lower bounds on um,` and vm,`.

The lower bound on λm,`

Given ` > 2ξ, ξ > 1, and m ∈ C([0, `], [−1, 1]), we set

φ(x, ξ,m) :=
pm(x)

pm̄(ξ − x)
, 0 ≤ x ≤ ` (5.1)

ψ(x, ξ) :=
m̄′(ξ −R`(x))

)

m̄′(ξ − x
) , −1 ≤ x ≤ ` + 1 (5.2)

We recall the definition

P̃ (x, y) := P
(
ξ −R`(x), ξ − y

)
, x, y ∈ [−1, ` + 1] (5.3)

and denote by Ẽx, x ∈ [−1, ` + 1], the expectation of the corresponding Markov chain {xn}n≥0

starting from x, i.e. x0 = x, and by Ẽ the expectation starting from um,`(x)dx, when um,` is
normalized to have integral 1.

5.1 Lemma.
For all ξ large enough

ψ(x, ξ) ≥ 1, for all x ∈ [−1, ` + 1] ψ(x, ξ) = 1, for all x ∈ [1, `− 1] (5.4)

For any n ≥ 1

λn
m,` = Ẽ

(
m̄′(ξ −R`(x0)

)

m̄′(ξ −R`(xn)
)
{ n−1∏

i=0

φ
(
R`(xi), ξ, m

}{ n∏

i=1

ψ(xi, ξ)
})

(5.5)

and for any and x ∈ [0, `]

λn
m,`vm,`(x) = Ẽx

(
m̄′(ξ −R`(x)

)
vm,`(R`(xn))

m̄′(ξ −R`(xn))

{ n−1∏

i=0

φ
(
R`(xi), ξ, m

}{ n∏

i=1

ψ(xi, ξ)
})

(5.6)

Proof.
The second statement in (5.4) follows directly from the definition of R`. By (2.10) m̄′(x)

is strictly decreasing when x is large, hence there is ξ′ > 1 so that for all ξ ≥ ξ′ and all x,
ψ(x, ξ,m) ≥ 1. (5.4) is proved.
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We simplify the notation writing in the course of the proof, u ≡ um,`, v ≡ vm,`, λ ≡ λm,` and
φ(x), ψ(x) dropping ξ and m from the arguments. We write λnu(x) = [u ? An

m,`](x) and integrate
over x, recalling that u is normalized to have integral 1. We then get

λn =
∫ `

0

dx0

∫ `

0

dx1..

∫ `

0

dxn u(x0)Am,`(x0, x1)Am,`(x1, x2)..Am,`(xn−1, xn)

and by applying repeatedly (4.2)

λn =
∫ `

0

dx0

∫ `+1

−1

dx1..

∫ `+1

−1

dxn u(x0)Am,`(x0, x1)Am(R`(x1), x2)...Am(R`(xn−1), xn) (5.7)

Then

n−1∏

i=0

Am

(
R`(xi), xi+1

)
=

{
n−1∏

i=0

P̃ (xi, xi+1)

}
n−1∏

i=0

{
pm

(
R`(xi)

)

pm̄

(
ξ −R`(xi)

) m̄′(ξ −R`(xi)
)

m̄′(ξ − xi+1

)
}

=

{
n−1∏

i=0

P̃ (xi, xi+1)

} {
n−1∏

i=0

φ
(
R`(xi)

)
}

m̄′(ξ −R`(x0)
)

m̄′(ξ −R`(xn)
)

{
n∏

i=1

ψ(xi)

}
(5.8)

which inserted into (5.7) proves (5.5). The proof of (5.6) is completely analogous and omitted.
Lemma 5.1 is proved. ¤

As a corollary of the above result we have:

5.2 Lemma.
There is ξ0 > 1 so that for all ξ ≥ ξ0, ` ≥ 2ξ and m ∈ C([0, `], [−1, 1])

log λm,` ≥
∫ `

0

dxχξ,`(x) log φ(x, ξ, m) (5.9)

where χξ,`(x) is the invariant density of the chain Qξ,`(x, y).

Proof.
By Lemma 5.1 and with the simplified notation used in its proof, for all ξ large enough

λn ≥ Ẽ
(

m̄′(ξ −R`(x0)
)

m̄′(ξ − xn)
exp

{ n−1∑

i=0

log φ
(
R`(xi)

)})

By (2.10) there exists C = C(`, ξ,m) > 0 so that

inf
−1≤x,y≤`+1

m̄′(ξ − x)
m̄′(ξ − y)

≥ C

30



Then

λn ≥ CẼ
(

exp{
n−1∑

i=0

log φ
(
R`(xi)

)}
)

and, by the Jensen’s inequality,

n log λ ≥ log C + Ẽ
( n−1∑

i=0

log φ(R`(xi))}
)

The expectation involves functions of {R`(xi)}i≥0 hence it coincides with the expectation E of the
chain in [0, `] with transition probability Qξ,`. Then

n log λ ≥ log C + E
( n−1∑

i=1

{log φ(xi)}
)

We divide by n, let n → +∞ and get

log λ ≥ lim inf
n→+∞

Eu

( 1
n

{ n−1∑

i=1

log φ(xi)
})

By the ergodicity of the Markov chain, see the proof of Lemma 4.3, we then obtain (5.9). Lemma
5.2 is proved. ¤

A lower bound on λm,` depends on the sign of log φ. Observe that if m(x) = m̄(ξ − x) for
x ∈ [0, `] then log φ = 0 and λm,` ≥ 1. We restrict hereafter to m ∈ G(c,ξ,`), see Definition 2.3.

Proof of the first inequality in (2.17)
We drop the subfixes m and ` from the notation, when no ambiguity may arise. We write

δξm(x) := m(x)− m̄(ξ − x) (5.10)

and observe that there is c1 > 0 so that for x ∈ [0, `]

∣∣ log φ(x, ξ, m)
∣∣ ≤ c1|δξm(x)| ≤ c1c2e−2αξeα|ξ−x| (5.11)

The last inequality is obtained recalling (2.13) and using (8.42) below. Then

∫ `

0

dxχξ,`(x) log φ(x) ≥ −
∫ `

0

dxχξ,`(x)c1c2e−2αξeα|ξ−x|

≥ −c1c2e−2αξ

∫ `

0

dxCe−2α|ξ−x|eα|ξ−x| (5.12)

which proves the first inequality in (2.17). ¤
31



Proof of (2.18)
Since m ∈ G(c,ξ,`) we can use the first inequality in (2.17), hence there are c1 and c2 that depend

on c only, so that

λ−1
m,`pm(x) ≤ q(x) := p′ + c2e

−α|ξ−x|, p′ := p∞ + c1e
−2αξ (5.13)

Let αp be as in Lemma 3.1. Recalling that αp is a regular, decreasing function of p, there is a
constant c′, determined by c, such that

αp′ ≥ α− c′e−2αξ =: α′, α ≡ αp∞ (5.14)

We now proceed as in the proof of Theorem 3.2, we just outline the main steps. Let ξ, s and r be
such that ξs := ξ − s > 0 and q(x) ≤ r < 1 for |ξ − x| ≥ s− 1. Since vm,` = λ−1

m,`Am,` ? vm,` and
since, for 0 ≤ y0 ≤ ξs

Am,`(y0, y) = Am(y0, y)

using (2.1) we have

vm,`(y0) = λ−1
m,`

∫ +∞

−∞
Am(y0, y)vm,`(|y|)

so that

vm,`(y0) = λ−1
m,`

∫ ξs

−ξs

dypm(y0)J(y0, y)vm,`(|y|)

+ λ−1
m,`

∫

ξs≤|y|≤ξs+1

dypm(y0)J(y0, y)vm,`(|y|)

Iterating the first integral, similary to the proof of the Theorem 3.2 we get, by (5.13),

vm,`(y0) ≤
∫

ξs≤|y|≤ξs+1

dy Ḡs(y0, y)vm,`(|y|) (5.15)

where

Ḡs(y0, y) :=
∞∑

n=1

∫ ξs

−ξs

dy1..

∫ ξs

−ξs

dyn−1 q(yn−1)J(yn−1, y)
n−1∏

i=1

q(yi−1)J(yi−1, yi) (5.16)

We introduce the transition probability kernel

T (x, y) := w(x)−1p′J(x, y)w(y), w(x) := eα′x + e−α′x (5.17)

T (x, y) is the analogue of the kernel K(x, y) of Section 3. We want to show that

Ḡξs(x, y) ≤ [1 + ε(s)]ḡξs(x, y)
w(x)
w(y)

(5.18)
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where

ḡξs(y0, y) :=
∞∑

n=1

∫ ξs

−ξs

dy1· · ·
∫ ξs

−ξs

dyn−1 T (y0, y1) · · ·T (yn−1, y) (5.19)

and ε(s) vanishes as s → ∞. We define the Green functions Gξs
(x, y; p), p ∈ [p′, 1) by replacing

q(x) in (5.16) by p. By the monotonicity of q(x), similarly to (3.29) we have, for N − 1 < |x| ≤ N ,

Ḡξs
(x, y) ≤

∫

N≤|x1|≤N+1

dx1..

∫

ξs−1≤|xm|≤ξs

dxmGN (x, x1; q(N))..Gξs
(xm, y; q(ξs)) (5.20)

Analogously to (3.30), for any p? ∈ [p′, 1) there is c? > 0 so that for all N and all x, y such that
N − 1 < |x| ≤ N and N < |y| ≤ N + 1

GN (x, y; p) ≤ GN (x, y; p′)[1 + c?(p− p′)] (5.21)

We omit the proof of (5.21), very similar to that of (3.30). By (5.20) and (5.21), there are c > 0
and η > 0, so that

Ḡξs(x, y) ≤ [1 + ce−ηξs ]ḡξs(x, y)
w(x)
w(y)

(5.22)

We have thus proven (5.18).
Then, by (5.15), for any x ∈ [0, ξs),

v(x) ≤
∫

ξs≤|y|≤ξs+1

dy [1 + ε(s)]ḡξs(x, y)
w(x)
w(y)

v(|y|) (5.23)

By Lemma 4.2 v is bounded, moreover there is c > 0 so that for ξs < |y| < ξs + 1

w(x)
w(y)

=
eα′x + e−α′x

eα′y + e−α′y ≤ ceα′(x−ξs) (5.24)

Since the integral over y of gξs(x, y) is equal to 1, for a suitable constants c′′ > 0

v(x) ≤ c[1 + ε(s)]eα′(x−ξs) ≤ c′′e−α′(ξ−s−x) (5.25)

which proves the first bound in (2.18).
The case x > ξ is completely analogous, reflections around 0 are replaced by reflections around

`, we omit the details. (2.18) is proved. ¤

Lower bounds on vm,`

The lower bound in (4.8) cannot be strict uniformly in `, because, as we have just seen, vm,`(x)
is bounded by a decreasing exponential. There is however a strictly positive lower bound on vm,`(x)
for |x− ξ| in a compact which is uniform in `. This is established in the next Lemma:
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5.3. Lemma.
For any s > 0 there is ζ? > 0 so that if ` > 2ξ, ξ > s and m ∈ G(c,ξ,`), then

vm,`(x) ≥ ζ?, um,`(x) ≥ ζ?, for all |x− ξ| ≤ s (5.26)

Proof.
Let um,` be normalized to have integral 1. By (2.18) there is s1 > 0, independent of `, so that

∫ ξ+s1

ξ−s1

dxum,`(x) >
1
2

(5.27)

Then there is z ∈ (ξ − s1, ξ + s1) such that

um,`(z) ≥ 1
4s1

(5.28)

By the second inequality in (4.8) there is ε ∈ (0, 1) uniquely determined by s1 and by the constant
c1 in (4.8), so that

um,`(x) ≥ 1
8s1

for |x− z| ≤ ε (5.29)

By Lemma 3.3, given s ≥ s1 there are an integer k and ζ > 0 so that for any x ∈ (ξ − s, ξ + s)

Jk(x, y) ≥ ζ |y − z| ≤ 1

Then since pm(x) ≥ β cosh−2(β) =: p

um,`(x) ≥ λ−k
m,`

∫ ξ+s

ξ−s

dx1...

∫ ξ+s

ξ−s

dxk um,`(x1)pm(x1)J(x1, x2)..pm(xk)J(xk, x)

≥ (pλ−1
m,`)

k

∫ z+ε

z−ε

dxk Jk(x, xk)um,`(xk) ≥ (pλ−1
m,`)

kζ
1

8s1

Lemma 5.3 is proved. ¤

5.4. Lemma.
There are s > 0, γ > 0 and c > 0 so that if ` > 2ξ, ξ > s and m ∈ G(c,ξ,`), then

vm,`(x), um,`(x) ≥ ce−γ|ξ−x|, for all x ∈ [0, `] (5.30)

Proof.
By Lemma 5.3 there are ζ > 0 and s > 0 for which (5.26) holds. By choosing c ≤ ζ we then

have (5.30) for |x − ξ| ≤ s. Let us next consider x > ξ + s, the other case being analogous is
omitted. We write

vm,`(x) = λ−1
m,`

∫
dy Am,`(x, y)vm,`(y) ≥ C

∫ x−R/2

x−R

dy J(x, y)vm,`(y) (5.31)
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where R > 0 is such that J(0, R) > 0 and C > 0 such that λ−1
m,` > C, see (4.9). Then

C0 := C

∫ x−R/2

x−R

dy J(x, y) > 0

By iterating (5.31) till y < ξ + s we get

vm,`(x) ≥ C0
Nζ, N :=

[
2(x− ξ − s)

R

]
+ 1

which proves (5.30). Lemma 5.4 is proved. ¤

6. Markov chains: exponential bounds

In this Section we will prove that the auxiliary Markov chains introduced in Section 2 are
exponentially localized uniformly in `. We will exploit the properties of the instanton established
in Section 3. We start from the simpler case:

The chain Qξ,`

s will hereafter denote a positive integer and

Ns := min
s−1≤|x|≤s

m̄′(x) (6.1)

Given ξ > s and |ζ| < α, we define the weight function

γs,ζ(x) := 1|x−ξ|<s + 1|x−ξ|≥sNsm̄
′(ξ − x)−1eζ(|x−ξ|−s) (6.2)

6.1 Proposition.
For any |ζ| < α there are s? > 0 and r < 1 so that for all s ≥ s? and all ` > ξ > s + 1 the

following holds.
For any x: |x− ξ| > s− 1:

∫
dy Qξ,`(x, y)γs,ζ(y) ≤ rγs,ζ(x) + 1|x−ξ|≤s+1 (6.3)

For x: |x− ξ| ≤ s− 1 the left hand side of (6.3) is equal to 1.
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Proof.
Writing simply Q for Qξ,`, we have for x ∈ (ξ + s− 1, `− 1)

∫
dy Q(x, y)γs,ζ(y) =

∫ ∞

ξ+s

dy pm̄(ξ − x)J(x, y)
m̄′(ξ − y)
m̄′(ξ − x)

Ns m̄′(ξ − y)−1eζ(y−ξ−s)

+
∫ ξ+s

ξ+s−2

dy Q(x, y) (6.4)

the last term being absent if x > ξ + s + 1. The first integral on the right hand side is equal to

Ns

m̄′(ξ − x)
eζ(x−ξ−s)pm̄(ξ − x)

∫ `

ξ+s

dy J(x, y)eζ(y−x) ≤ γs,ζ(x)pm̄(ξ − x)p−1
ζ

where pζ < 1 is such that αpζ
= ζ, namely

pζ

∫
dy J(x, y)eζ(y−x) = 1 (6.5)

By Lemma 3.1 αp is a decreasing function of p. Recalling that α = αp∞ , p∞ = limx→∞ pm̄(x),
and |ζ| < α, we have pζ > p∞ so that we can choose s? > 0 and r < 1 so that

pm̄(ξ − x)p−1
ζ < r for all |x− ξ| ≥ s? − 1 (6.6)

and (6.3) holds for x ≥ ξ + s (s ≥ s?).
Let ξ + s− 1 ≤ x < ξ + s and consider first the case ζ ≤ 0. By (6.4)

∫
dy Q(x, y)γs,ζ(y) ≤ pm̄(ξ − x)

Ns

m̄′(ξ − x)
+ 1 = pm̄(ξ − x)γs,ζ(x) + 1

hence (6.3), because, by (6.6), pm̄(ξ − x) ≤ pζr < r.
If ζ > 0, by (6.4)-(6.5)

∫
dy Q(x, y)γs,ζ(y) ≤ pm̄(ξ − x)p−1

ζ eζ(x−(ξ+s)) + 1 ≤ rγs,ζ(x) + 1

because eζ(x−ξ−s) ≤ 1 = γs,ζ(x) since x < ξ + s and ζ > 0.
The same proof works when 1 < x < ξ − s + 1 and (6.3) obviously holds when |x− ξ| ≤ s− 1.

We are thus only left with x ≤ 1 and x ≥ `− 1, the two cases are similar and we only consider the
former. We have

∫ `

0

dy Q(x, y)γs,ζ(y) =
∫ 2

0

dy pm̄(ξ − x)J(x, y)
m̄′(ξ − y)
m̄′(ξ − x)

Nsm̄
′(ξ − y)−1eζ(ξ−s−y)

+
∫ 0

−1

dy pm̄(ξ − x)J(x, y)
m̄′(ξ − y)
m̄′(ξ − x)

Nsm̄
′(ξ − |y|)−1eζ(ξ−s−|y|)

(6.7)
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We will prove afterwards that given ζ, |ζ| < α, there is ξ0 > 0 so that if ξ > ξ0 for any ω ∈ [0, 1]

m̄′(ξ + ω)e|ζ|ω ≤ m̄′(ξ − ω)e−|ζ|ω (6.8)

When ζ < 0 using (6.8) the second integral in (6.7) is bounded by
∫ 0

−1

dy pm̄(ξ − x)J(x, y)
Ns

m̄′(ξ − x)
eζ(ξ−s−y) (6.9)

and we get from (6.7) and (6.6)
∫

dy Q(x, y)γs,ζ(y) ≤ γs,ζ(x)pm̄(ξ − x)
∫

R
dy J(x, y)eζ(x−y) ≤ rγs,ζ(x) (6.10)

because for ξ large enough, pm̄(ξ − x) → p∞ < 1 as ξ → +∞.

When ζ > 0 we use that m̄(ξ − y) ≤ m̄(ξ − |y|) and that eζ(ξ−s−|y|) ≤ eζ(ξ−s−y). Using these
bounds in the second integral in (6.7) we reduce to the previous case. It thus only remains to prove
(6.8).

Proof of (6.8).
By (2.10) for ξ large enough

m̄′(ξ + ω) ≤ m̄′(ξ − ω)− 2ωα2ae−α(ξ+ω)[1− ε1(ξ)]

where ε1(ξ) > 0 vanishes as ξ → +∞. To prove (6.8) it is then enough to show that

m̄′(ξ − ω)− 2ωα2ae−α(ξ+ω)[1− ε1(ξ)] ≤ m̄′(ξ − ω)e−2|ζ|ω

hence that

1− 2ωα
(aαe−α(ξ+ω)

m̄′(ξ − ω)
[1− ε1(ξ)]

)
≤ e−2|ζ|ω (6.11)

By (2.10)

1− 2ωα
(aαe−α(ξ+ω)

m̄′(ξ − ω)
[1− ε1(ξ)]

)
≤ 1− 2ωαe−2αω[1− ε2(ξ)] (6.12)

where ε2(ξ) > 0 vanishes as ξ → +∞. Since |ζ| < α there is q > 1 so that if ξ is large enough the
right hand side (6.12) is bounded by 1− 2ω|ζ|qe−2αω. There is ω0 > 0 so that

1− 2ω|ζ|qe−2αω ≤ e−2|ζ|ω for all ω ≤ ω0 (6.13)

We have thus proved that there are ξ′0 and ω0 positive such that (6.8) holds for any ξ ≥ ξ′0 and
ω ≤ ω0. We have

m̄′(ξ + ω) ≤ aαe−α(ξ+ω)[1 + ε3(ξ)]

m̄′(ξ − ω) ≥ e−α(ξ−ω)[1− ε3(ξ)]
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where ε3(ξ) > 0 vanishes as ξ → +∞.
(6.8) is then implied by the inequality

e−2(α−|ζ|)ω ≤ 1− ε3(ξ)
1 + ε3(ξ)

Recalling that α > |ζ| this is verified for all ω ≥ ω0 provided that

1− ε3(ξ)
1 + ε3(ξ)

≥ e−2(α−|ζ|)ω0

that is verified for all ξ large enough. Proposition 6.1 is proved. ¤

The existence of an invariant measure for Qξ,`, including the case ` = +∞, follows directly from
Proposition 6.1:

6.2. Theorem.
Given any |ζ| < α, let s? and r be as in Proposition 6.1 and set η = α+ ζ ∈ (0, 2α). Then there

is c > 0 so that for any ξ > s?, ` ∈ [2ξ, +∞], x ≥ 0 and n ∈ N
∫ `

0

dy Qn
ξ,`(x, y)eη|ξ−y| ≤ c

(
rneη|ξ−x| +

eηs?

1− r

)
(6.14)

Moreover the chain Qξ,` has an invariant measure νξ,`(dx) = χξ,`dx and

∫ `

0

dxχξ,`(x)eη|ξ−x| ≤ c
eηs?

1− r
(6.15)

Proof.
Writing Q for Qξ,` we have

∫ `

0

dy Qn(x, y)eη|ξ−y| ≤ eη(s?+1) +
∫

|ξ−y1|>s?+1

dy1Q(x, y1)...
∫

|ξ−y|>s?+1

dy Q(yn−1, y)eη|ξ−y|

+
n−1∑

i=1

∫

|ξ−z|<s?+1

Qn−i(x, z)
∫

|ξ−y1|>s?+1

dy1Q(z, y1)...
∫

|ξ−y|>s?+1

dy Q(yi−1, y)eη|ξ−y|

(6.16)

By (6.3) ∫

|ξ−y1|>s?+1

dy1Q(x, y1)...
∫

|ξ−y|>s?+1

dy Q(yn−1, y)γs,ζ(y) ≤ rnγs,ζ(x)
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By (2.10) there is c > 1 so that for |ξ − y| > s?

c−1e(α+ζ)|ξ−y|e−(α+ζ)s? ≤ γs?,ζ(y) ≤ ce(α+ζ)|ξ−y|e−(α+ζ)s?

(6.17)

Then the second term on the right hand side of (6.16) is bounded by
∫

|ξ−y1|>s?+1

dy1Q(x, y1)...
∫

|ξ−y|>s?+1

dy Q(yn−1, y)ce(α+ζ)s?

γs?,ζ(y) ≤ crne(α+ζ)s?

γs?,ζ(x)

≤ c2rne(α+ζ)|ξ−x|

By the same argument we bound the third term on the right hand side of (6.16) by

n−1∑

i=1

c2rie(α+ζ)(s?+1) ≤ 1
1− r

c2e(α+ζ)(s?+1)

which proves (6.14).
Let n ≥ 1 and

ν(n)(dy) :=
1
n

n−1∑

i=0

Qi(x, y)dy (6.18)

Then there is c so that for all n ∫
ν(n)(dy)eη|ξ−y| ≤ c (6.19)

By the Prokhorov theorem the sequence of probability measures {νn} is relatively compact and
converges weakly by subsequences to a measure νξ that satisfies (6.19). It is easily seen from (6.18)
that νξ invariant and that (6.15) holds. Theorem 6.2 is proved. ¤

A statement analogous to that in Proposition 6.1 holds also for the chain with transition proba-
bility P (x, y), see (2.7). The proof is the same without the complication which for Qξ,` was due to
x ∈ [0, 1] and [`− 1, `]: here we have only one instanton and that problem is absent. The density
m̄′(x)2/pm̄(x) is invariant, as it can be seen by direct inspection, so that the analogue of (6.15)
holds trivially.

The chain Qm,`

Strictly speaking, this subsection should be read after the parts in Sections 7 and 8 which
refer to the chain Qξ,`. In fact here we will use the first inequality in (2.17) which was proved
in the previous Section using (8.42). In fact we suppose ` ≥ 2ξ, ξ > 1 and m ∈ G(c,ξ,`), so
that λm,` ≥ 1 − c−e−2αξ, by the first inequality in (2.17), moreover we will use (2.18) and that
λ−1

m,`pm(x) is bounded as in (5.13), i.e. λ−1
m,`pm(x) ≤ p∞ + c1e

−2αξ + c2e
−α|ξ−x|.

Let
Cs = [1 + ε(s)]cb
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where b is as in Lemma 4.4, ε(s) and c as in (5.23) and (5.24). Recall that ε(s) → 0 as s →∞, so
that Cs is a bounded function of s.

After setting

N+
s,m := Cs min

ξ+s−1≤x≤ξ+s
vm,`(x) N−

s,m := Cs min
ξ−s≤x≤ξ−s+1

vm,`(x) (6.20)

we define the new weight function

γs,ζ,m(x) := 1|x−ξ|≤s + 1x>ξ+sN
+
s,mvm,`(x)−1eζ(x−ξ−s) + 1x<ξ−sN

−
s,mvm,`(x)−1eζ(ξ−s−x) (6.21)

The weight function dangerously depends on m, but the bounds that will be proved in the next
Proposition, analogous to Proposition 6.1, do not depend on the particular choice of m in G(c,ξ,`).

We now prove that there is ζ so that γs,ζ,m ≥ 1. To this end we consider the case x > ξ + s and
we write

1 =
vm(x)e−ζ(x−ξ−s)

N+
s,m

γs,ζ,m(x) (6.22)

By (5.23) and (5.24)

vm(x) ≤
∫

ξ+s−1≤y≤ξ+s

dy [1 + ε(s)]ḡξs(x, y)ce−α′(x−ξ−s)vm(|y|) (6.23)

Since vm(y)[N+
s,m]−1 ≤ bC−1

s and ḡξs is a probability density, from (6.22) and (6.23) we get

1 ≤ c[1 + ε(s)]bC−1
s e−(α′−ζ)(x−ξ−s)γs,ζ,m(x) = e(−α′−|ζ|)(x−ξ−s)γs,ζ,m(x) (6.24)

Therefore for any s and for any ζ < α′, γs,ζ,m(x) ≥ 1 for x > ξ + s. The proof for x < ξ − s is
analogous and it is omitted.

6.3 Proposition.
Let ξ > 1 and c > 0 be fixed.
There are ζ? = ζ?(c) > 0, (see (2.18)), s? = s?(c, ζ) and r = r(c, ζ) < 1, so that for any s ≥ s?,

ζ ∈ (−ζ?, α′) and m ∈ G(c,ξ,`) the following holds.
For any x: |x− ξ| ≥ s− 1,

∫
dy Qm,`(x, y)γs,ζ,m(y) ≤ rγs,ζ,m(x) + [1 + bCs]1|x−ξ|≤s+1 (6.25)

For x: |x− ξ| < s− 1 the left hand side of (6.25) is equal to one.

Proof.
For x ∈ (ξ + s− 1, ξ + s), using that λm,` > 1 we have

∫
dy Qm,`(x, y)γs,ζ,m(y) ≤ 1 +

N+
s,m

vm,`(x)
pm,`(x)

∫ ξ+s+1

ξ+s

dy J(x, y)eζ(y−ξ−s)
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If ζ < 0 the right hand side is obviously bounded by 1 + bCs. If ζ ≥ 0, using that there is s? so
that

sup
|x−ξ|≥s?−1

pm,`(x)p−1
ζ := r < 1 (6.26)

we get
∫

dy Qm(x, y)γs,ζ,m(y) ≤ 1 + bCspm,`(x)eζ(x−ξ−s)

∫ ξ+s+1

ξ+s

dy J(x, y)eζ(y−x) ≤ 1 + bCs

For x ∈ (ξ + s, ξ + s + 1)
∫

dy Qm(x, y)γs,ζ,m(y) ≤ 1 +
N+

s,m

vm,`(x)
pm,`(x)p−1

ζ eζ(x−ξ−s) ≤ 1 + rγs,ζ,m(x)

For x ∈ (ξ + s + 1, ` − 1) we get the above bound with only rγs,ζ,m(x). The proof is completely
analogous for x ∈ (1, ξ−s+1). The last statement in Proposition 6.3 trivially holds so that we are
left with x ∈ (0, 1) and x ∈ (`− 1, `). We only consider the former case as the other is completely
analogous.

We have∫
dy Qm,`(x, y)γs,ζ(y) ≤ { N−

s,m

vm,`(x)
eζ(ξ−s−x)}{λ−1

m,`pm,`(x)
∫ 2

−1

dy J(x, y)eζ(x−|y|)}

If ζ > 0 we bound the right hand side by replacing |y| → y so that the second curly bracket is
bounded by r < 1. If ζ < 0, by (6.26) the second curly brackets is strictly smaller than 1 for ζ?

small enough, hence (6.25). Proposition 6.3 is proved. ¤

6.4. Theorem.
In the same context as in Proposition 6.3, there is c > 0 so that for any ξ > s?, ` ∈ [2ξ, +∞],

x ≥ 0 and n ∈ N ∫ `

0

dy Qn
m,`(x, y)γs,ζ,m(y) ≤ rnγs,ζ,m(x) + c (6.27)

Proof.
We write the analogue of (6.16) with Q = Qm,` and γs,ζ,m(y) instead of eη|ξ−y|:

∫ `

0

dy Qn(x, y)γs,ζ,m(y) ≤ sup
|y−ξ|≤s+1

γs,ζ,m(y)

+
∫

|ξ−y1|>s+1

dy1Q(x, y1)...
∫

|ξ−y|>s?+1

dy Q(yn−1, y)γs,ζ,m(y)

+
n−1∑

i=1

∫

|ξ−z|<s+1

Qn−i(x, z)
∫

|ξ−y1|>s+1

dy1Q(z, y1)...
∫

|ξ−y|>s+1

dy Q(yi−1, y)γs,ζ,m(y)
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By Lemma 4.4 the first term on the right hand side is bounded by be|ζ|. The second term by
rnγs,ζ,m(x) and the third term by

n−1∑

i=1

be|ζ|ri ≤ be|ζ|

1− r

Theorem 6.4 is proved. ¤

Remark. The invariant measure for the chain Qm,` is χm,`dx := um,`(x)vm,`(x)dx as it is easy to
see by direct inspection. From (6.27) and (2.18) it follows that the analogue of (6.15) holds also
for χm,`.

We conclude this subsection by proving some bounds on An
m,`(x, y) that are corollaries of Propo-

sition 6.3.

6.5. Proposition.
In the context of Proposition 6.3 and given ζ ∈ (0, α′), there is c? > 0 so that for all n > 1 and

for all (x, y) such that either x, y are both ≤ ξ + 1 or both ≥ ξ − 1

An
m,`(x, y) ≤ c?e−ζ(|x−y|)λn

m (6.28)

If either x > ξ > y or y > ξ > x then

An
m,`(x, y) ≤ c?ne−ζ(|x−y|)λn

m (6.29)

Proof.
Let us consider the case y > x > ξ. We define s by setting s := s? if x ≤ ξ + s?. Otherwise s is

the smallest integer such that ξ + s ≥ x. Given y > ξ + s we set

f(z) := λ−1
m Am,`(z, y)

Calling n in (6.28) as n + 1, we have

λ−(n+1)
m An+1

m,` (x, y) = λ−n
m

∫
dz An

m,`(x, z)f(z)

≤ vm(x)[N+
s,m]−1

∫
dz Qn

m,`(x, z)γs,ζ(z)e−ζ(z−ξ−s)f(z)

≤ ce−ζ(y−x)

∫
dz Qn

m,`(x, z)γs,ζ(z)
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because f has support on |z − y| ≤ 1, f(z) < c and vm(x)N−1
s,m is bounded using (4.12). (6.28)

then follows from (6.27).
By observing that

An
m(x, y) = An

m(y, x)
pm(y)
pm(x)

we prove (6.28) for x > y > ξ. By an analogous argument we prove (6.28) when both x and y are
< ξ. To prove (6.29) for instance in the case y > ξ + 1 > ξ > x we write

An
m(x, y) ≤

∑

k

∫ ξ+1

ξ

dz Ak
m(x, z)An−k

m (z, y)

and apply the previous results. We omit the details.
Proposition 6.4 is proved. ¤

7. Markov chains: decay of correlations

For each finite ` the Markov chains Qm,` and Qξ,` satisfy the Döblin condition and there is a
spectral gap, as proved in Lemma 4.3. The estimates however are not uniform in `. The idea is then
to use the bounds in Propositions 6.1 and 6.3 to control the tails, i.e. the behavior for |ξ−x| large.
Notice however that the distance travelled by the chain in one step is at most 1, so that chains that
start at distance D from each other are singular with respect to each other at all “times” n ≤ D

steps: the decay therefore is not uniform in `. To overcome this difficulty we will use, as in the
previous Section, weighted norms and in such a context we will prove a uniform Döblin theorem.
The proof follows by showing that for a suitable n the n-th iterate of the transition probability
satisfies a “Dobrushin uniqueness condition” which implies the above statements.

We will in the sequel suppose s, ξ, ` and m as in Proposition 6.3 and s, ξ, ` as in Proposition
6.1, when referring to Pξ,`.

Definitions
Joint representations. Let µ and ν be two probability measures on [0, `]. σ is a joint represen-

tation of µ and ν if it is a probability on [0, `]2, with marginals µ and ν, i.e. if for any continuous,
bounded function f on [0, `]

∫ ∫
σ(dx, dx′)f(x) =

∫
µ(dx)f(x);

∫ ∫
σ(dx, dx′)f(x′) =

∫
ν(dx)f(x)
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The Vaserstein distance. For any x and x′ in [0, `] we set

ds,ζ,m(x, x′) :=

{
0 if x = x′

γs,ζ,m(x) + γs,ζ,m(x′) if x 6= x′
(7.1)

and then define the Vaserstein distance Ds,ζ,m(µ, ν) of µ and ν (relative to ds,ζ,m) as

Ds,ζ,m(µ, ν) := inf
{σ}

∫ ∫
σ(dx, dx′)ds,ζ,m(x, x′) (7.2)

where {σ} denotes the family of all the joint representations of µ and ν.

7.1. Theorem.
Let |µ(dx)− ν(dx)| be the total variation of µ− ν. Then

Ds,ζ,m(µ, ν) =
∫
|µ(dx)− ν(dx)|γs,ζ,m(x) (7.3)

Theorem 7.1 is Proposition 4.7 in [6] to which we refer for a proof. Analogous results appear in
the original work of Dobrushin, [11], and in earlier papers.

The strategy is now to derive good upper bounds on the Ds,ζ,m distance of Qn
m,`(x, y)dy and

Qn
m,`(x

′, y)dy by constructing suitable joint representations of these measures, analogous properties
hold for Qξ,`, that we state without proofs at the end of the Section.

We postpone the proof of the following statements:

(1) There is an integer s0 ≥ s? and for any integer s ≥ s0 there is bs ∈ (0, 1) so that for all

|x− ξ| ≤ s and y such that |y − ξ| ≤ 1/2

Qs2

m,`(x, y) ≥ bs (7.4)

(2) There are integers s1 ≥ s0 and s2 > s1 so that for all the integers s ≥ s2 and all

|x− ξ| ≤ 2s ∫

|y−ξ|≤s1

dy Q
s2−s2

1
m,` (x, y) ≥ 1

2
(7.5)

(3) For any ε > 0 there is an integer s3 ≥ s2 so that for any integer s ≥ s3 and any x such

that |x− ξ| ≤ 2s ∫
dy Qs2

m,`(x, y)γs,ζ,m(y) ≤ 1 + ε (7.6)
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(4) There are r? < 1 and an integer s4 ≥ s3 so that for all the integers s ≥ s4 and all x such

that |x− ξ| ≥ 2s ∫
dy Qs2

m,`(x, y)γs,ζ,m(y) ≤ r?γs,ζ,m(x) (7.7)

(5) There is an integer s5 ≥ s4 so that for all the integers s ≥ s5

γs,ζ,m(x) ≥ 2 all x such that |x− ξ| ≥ 2s (7.8)

We choose s6 ≥ s5 in such a way that (7.6) holds with

ε = min{1− r?

2
,

bs1

4
} (7.9)

and in the sequel we shorthand s := s6.

7.2. Definition.
For any x and x′ in R+, x 6= x′, we define σx,x′(dydy′) as the following joint representation of

Qs2

m,`(x, y)dy and Qs2

m,`(x
′, y)dy. If either |x− ξ| ≥ 2s or |x′ − ξ| ≥ 2s we set

σx,x′(dydy′) := Qs2

m,`(x, y)dyQs2

m,`(x
′, y′)dy′ (7.10)

In the remaining case we set

σx,x′(dydy′) :=
bs1

2
1|y−ξ|≤1/2δ(y − y′)dydy′

+
(
1− bs1

2
)−1

{
Qs2

m,`(x, y)dy − bs1

2
1|y−ξ|≤1/2dy

}{
y → y′

}

(7.11)

The definition is well posed because for |y − ξ| ≤ 1/2 and |x− ξ| ≤ 2s,

Qs2

m,`(x, y) ≥
∫

|z−ξ|≤s1

dzQ
s2−s2

1
m,` (x, z)Qs2

1
m,`(z, y) ≥ bs1

2
(7.12)

having used (7.4) and (7.5).
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7.3. Proposition.
For any x and x′ ∫

σx,x′(dydy′)ds,ζ(y, y′) ≤ r′ds,ζ(x, x′) (7.13)

r′ := max
{1 + r?

2
, 1− bs1

4
}

< 1 (7.14)

Proof.
Let x 6= x′. Suppose first that |x− ξ| ≥ 2s, |x′ − ξ| ≥ 2s. Then by (7.7) and (7.10)

∫
σx,x′(dydy′)ds,ζ(y, y′) ≤ r?ds,ζ(x, x′), r? <

1 + r?

2
≤ r′

Suppose now |x− ξ| ≥ 2s and |x′ − ξ| < 2s. Then by (7.10), (7.6), (7.7) and (7.9)

∫
σx,x′(dydy′)ds,ζ(y, y′) ≤ r?γs,ζ,m(x) + 1 + ε ≤ r?γs,ζ,m(x) + 1 +

1− r?

2

=
1 + r?

2
γs,ζ,m(x) +

1 + r?

2
+

(
[r? − 1 + r?

2
]γs,ζ,m(x) + (1− r?)

)

≤ 1 + r?

2
ds,ζ(x, x′) ≤ r′ds,ζ(x, x′)

because γs,ζ,m(x′) ≥ 1 and, by (5), γs,ζ,m(x) ≥ 2 so that

[r? − 1 + r?

2
]γs,ζ,m(x) + (1− r?) ≤ 0

When |x− ξ| < 2s, |x′ − ξ| < 2s we use (7.11). Recalling that ds,ζ(x, x) = 0, by (7.6)

∫
σx,x′(dydy′)ds,ζ(y, y′) ≤ 2[1 + ε− bs1

2
] ≤ 2[1− bs1

4
] ≤ r′ds,ζ(x, x′)

having used the second inequality in (7.9) and (7.14).
Proposition 7.3 is proved. ¤

As a corollary of Proposition 7.3 and Theorem 7.1 we have:
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7.4. Theorem.
Let c > 0, δ > 0, −ζ? < ζ < α, s ≡ s6. Then there are c′ > 0 and r < 1 so that for all ξ ≥ s+1,

` ∈ [2ξ, +∞] and m ∈ G(c,δ,ξ,`)

∫
dy

∣∣∣Qn
m,`(x, y)−Qn

m,`(x
′, y)

∣∣∣γs,ζ,m(y) ≤ c′rn[γs,ζ,m(x) + γs,ζ,m(x′)] (7.15)

for all x 6= x′ and all positive integers n.

Proof.
Dropping ` from the subfix, we write the positive integers n as

n =: s2n0 + n1, n1 < s2

with n0 and n1 non negative integers. We postpone the proof that
∫

dy
∣∣∣Qn

m,`(x, y)−Qn
m,`(x

′, y)
∣∣∣γs,ζ,m(y) ≤ r′n0

[
2c + rn1

1

(
γs,ζ,m(x) + γs,ζ,m(x′)

)]
(7.16)

with r′ as in Proposition 7.3 and r1 equal to the parameter r of Proposition 6.3.
Then (7.15) follows from (7.16) with

r := (r′)1/s2

recalling that γs,ζ,m(x) + γs,ζ,m(x′) ≥ 2.

Proof of (7.16)
We consider the joint representation σ̂x,x′(dydy′) of Qn

m,`(x, y)dy and Qn
m,`(x

′, y)dy defined as

∫ ∫
dy0dy′0 Qn1

m,`(x, y0)Qn1
m,`(x

′, y′0)
∫

σy0,y′0(dy1dy′1) · · ·

· · ·
∫

σyn0−2,y′n0−2
(dyn0−1dy′n0−1)σyn0−1,y′n0−1

(dydy′)

where σx,x′(dydy′) is defined in Definition 7.2.
By Theorem 7.1 the left hand side of (7.16) is bounded by
∫

σ̂x,x′(dydy′)ds,ζ(y, y′) ≤
∫ ∫

dy0dy′0 Qn1
m,`(x, y0)Qn1

m,`(x
′, y′0)r

′n0 [γs,ζ,m(y0) + γs,ζ,m(y′0)]

having applied n0-times Proposition 7.3. (7.16) is then a consequence of Theorem 6.4.
Theorem 7.4 is proved. ¤
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A corollary of Theorem 7.4 is that the measure

νm,`(dx) := χm,`(x)dx = um,`(x)vm,`(x)dx

is the unique invariant measure for the chain Qm,`, with ` = +∞ included in the statement.

7.5. Theorem.
In the context of Theorem 7.4 there is c′′ (independent of the particular choice of ξ, m and `

compatible with the requests of Theorem 7.4) so that
∫

dy
∣∣∣Qn

m,`(x, y)− χm,`(y)
∣∣∣γs,ζ,m(y) ≤ c′rn

(
γs,ζ,m(x) + c′′)

)
(7.17)

and if ρ(y) is any invariant density, then ρ(y) = χm,`(y), Lebesgue almost everywhere.

Proof.
Since χm,` is invariant

∫
dy

∣∣∣Qn
m,`(x, y)− χm,`(y)

∣∣∣γs,ζ,m(y) =
∫

dy γs,ζ,m(y)
∣∣∣
∫

dx′ χm,`(x′)
(
Qn

m,`(x, y)−Qn
m,`(x

′, y′)
)∣∣∣

≤
∫

dx′ χm,`(x′)
∫

dy
∣∣∣Qn

m,`(x, y)−Qn
m,`(x, y′)

∣∣∣γs,ζ,m(y)

(7.17) then follows from (7.16) with c′′ not smaller than
∫

dx′ χm,`(x′)γs,ζ,m(x′)

which is finite recalling that χm := umvm and using the analogue of (6.15) valid for χm as discussed
at the end of the proof of Theorem 6.4.

It thus remain to prove the uniqueness of the invariant measure, it can be easily seen that any
invariant measure is absolutely continuous and it thus have a density ρ. If ρ is such that γs,ζ,m ∈
L1(ρ(y)dy) the statement ρ = χm is a direct consequence of (7.17). Without this assumption we
observe that if ρ is invariant and I, I ′ are compact intervals, then

∫

I

dy ρ(y) =
∫

I

dy

∫

R+

dxQn
m,`(x, y)ρ(x)

=
∫

I′
dx ρ(x)

∫

I

dy Qn
m,`(x, y) +

∫

R+\I′
dx ρ(x)

∫

I

dy Qn
m,`(x, y)

For any ε > 0 let I ′ be so large that
∫

I′
dx ρ(x) ≥ 1− ε
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By (7.17) there is n so that for any x ∈ I

∫

I

dy
∣∣∣Qn

m,`(x, y)− χm,`(y)
∣∣∣ < ε

Then ∣∣∣
∫

I

dy ρ(y)−
∫

I

dy χm,`(y)
∣∣∣ < 3ε

By the arbitrarity of ε and I, ρ(y)dy = χm,`(y)dy.
Theorem 7.5 is proved. ¤

We conclude this subsection with the analogues of Theorems 7.4 and 7.5 for the chains Qξ,`.

7.6. Theorem.
For any η ∈ (0, 2α) there are c > 0 and r < 1 so that for any ` ∈ (0, +∞], any n ≥ 1 and any

x 6= x′ in [0, `]

∫
dy

∣∣∣Qn
ξ,`(x, y)−Qn

ξ,`(x
′, y)

∣∣∣eη|y−ξ| ≤ crn
(
eη|ξ−x| + eη|ξ−x′|

)
(7.18)

Moreover denoting by χξ,`(x) the invariant density of the chain Qξ,`

∫
dy

∣∣∣Qn
ξ,`(x, y)− χξ,`(y)

∣∣∣eη|y−ξ| ≤ crn
(
eη|ξ−x| + 1

)
(7.19)

Proof.
By proceeding as in the proof of Theorem 7.4 we prove that for any |ζ| < α there are c′ > 0

and r0 < 1 so that for s large enough
∫

dy
∣∣∣Qn

ξ,`(x, y)−Qn
ξ,`(x

′, y)
∣∣∣γs,ζ,m(y) ≤ c′r0

n
(
γs,ζ,m(x) + γs,ζ,m(x′))

)

After recalling the definition of γs,ζ,m(x), setting η := α + ζ and using (2.10), we conclude that
there is C > 1 so that

C−1eη|ξ−x| ≤ γs,ζ,m(x) ≤ Ceη|ξ−x|

hence (7.18).
We omit the proof of the analogue of (7.17) and proceeding as above we derive (7.19). Theorem

7.6 is proved. ¤
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For future reference we state the analogue of Theorem 7.6 for P , the proof being completely
analogous to the previous one is omitted.

7.7. Theorem.
For any η ∈ (0, 2α) there are c > 0 and r < 1 so that for any n ≥ 1 and any x 6= x′ in R

∫
dy

∣∣∣Pn(x, y)− Pn(x′, y)
∣∣∣eη|y| ≤ crn

(
eη|x| + eη|x′|

)
(7.20)

Recall that

P (x, y) ≡ P 0(x, y) =
β[1− m̄(x)2]

m̄′(x)
J(x, y) m̄′(y)

Moreover ∫
dy

∣∣∣Pn(x, y)− ρ(y)
∣∣∣eη|y| ≤ crn

(
eη|x| + 1

)
(7.21)

where

ρ(x) := Cm̄
m̄′(x)2

β[1− m̄(x)2]

Decay of correlations (continued)

Proof of (1).
There is c > 0 so that for all x and y

Qm,`(x, y) ≥ pm(x)λ−1
m,`J(x, y)

vm,`(y)
vm,`(x)

≥ cJ(x, y)

having used (4.9) to bound λ−1
m,` and pm(x) and Lemma 4.4 to bound vm,`(y)vm(x)−1, (the first

inequality is needed for x ∈ (0, 1) and x ∈ (`− 1, `)).
(1) is then a consequence of Lemma 3.3.

Proof of (2).
Let s? be as in Proposition 6.3, s′′ > s′ > 2s?, |x− ξ| ≤ 2s′′ and n = s′′2 − s′2. Then, dropping

` from the subfix and denoting by N−1
s?,m the largest between those with ±,

∫

|y−ξ|>s′
dy Qn

m(x, y) =
∫

|y−ξ|>s′
dy Qn

m(x, y)γs?,0,m(y)N−1
s?,mvm,`(y)

≤ ce−α?s′N−1
s?,m

∫
dy Qn

m(x, y)γs?,0,m(y)
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where we have used (2.18) with α? = α′(s?) to bound vm,`(y), c being a suitable constant. By
Theorem 6.4 ∫

dy Qn
m(x, y)γs?,0,m(y) ≤ rnγs?,0,m(x) + c

so that ∫

|y−ξ|>s′
dy Qn

m(x, y) ≤ ce−α?s′
(
N−1

s?,m + rneγ|ξ−x|
)

(7.22)

having used Lemma 5.4 to write for suitable C > 0 and γ > 0

vm,`(x)−1 ≤ C−1eγ|ξ−x| (7.23)

Let s1 be the first integer such that

ce−α?s1eγs? ≤ 1
4

and s′′ the largest for which

ce−α?s1rs′′2−s2
1eγ2s′′ ≥ 1

4
(2) is then proved with such a value of s1 and s2 = s′′ + 1.

Proof of (3).
Let s ≥ s2 and |x− ξ| ≤ 2s. Then

∫
dy Qs2

m(x, y)γs,ζ,m(y) ≤ 1 +
∫

|y−ξ|>s

dy Qs2

m(x, y)γs,ζ,m(y) (7.24)

We consider in the last integral the contribution of {y− ξ > s} (the argument for the other one is
similar and omitted) which can be rewritten as

∫

y−ξ>s

dy Qs2

m(x, y)γs?,ζ,m(y)
N+

s,m

N+
s?,m

e−ζ(s−s?)

≤ N+
s,m

N+
s?,m

e−ζ(s−s?)
(
rs2

γs?,ζ,m(x) + c
)

≤ eζs?

N+
s?,m

ce−(α?+ζ)s
(
rs2

N±
s?,mc′e(γ+|ζ|)2s + c

)
(7.25)

having used Theorem 6.4 and (7.23); N±
s?,m is either N+

s?,m or N−
s?,m according to the value of x.

Since |ζ| < α?, by choosing s3 large enough and s ≥ s3 we make the last term smaller than ε.
(3) is therefore proved.

Proof of (4).
Let s ≥ s3 and |x− ξ| ≥ 2s. From Theorem 6.4 it follows that

∫
dy Qs2

m(x, y)γs,ζ,m(y) ≤ rs2
γs?,ζ(x) + c (7.26)
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¿From (6.24) it follows that for |x− ξ| > 2s

1 ≤ c′e−(α′−|ζ|)sγs,ζ,m(x) (7.27)

Therefore ∫
dy Qs2

m(x, y)γs,ζ,m(y) ≤ γs,ζ,m(x)
(
rs2

+ cc′e−(α?−|ζ|)s
)

Thus given any r? < 1 we choose s4 ≥ s3 as the first integer for which the last bracket is smaller
than r?. (4) is therefore proved.

Proof of (5).
By (7.27) when |x− ξ| ≥ 2s

γs,ζ,m(x) ≥ (c′)−1e(α′−|ζ|)s

Then s5 is the first integer ≥ s4 for which the right hand side is larger than 2. (5) is proved.
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8. Markov chains: invariant measure

In this Section we complete the analysis of the Markov chain with transition probability Qξ,`

by improving the estimates on its asymptotic behavior and its invariant measure.
We preliminary observe that from (3.2) it follows that

χ0
ξ(x) =

m̃′(ξ − x)2

pm̄(ξ − x)
(8.1)

is the invariant density of the chain P (ξ − x, ξ − y). We also immediately get from (3.2) and the
symmetry of J(x, y) the following reversibility condition:

χ0
ξ(x)P (ξ − x, ξ − y) = χ0

ξ(y)P (ξ − y, ξ − x) (8.2)

In the next theorem we write

d(y, A) := inf
x∈A

|y − x|, y ≥ 0, A ⊂ R+ (8.3)

8.1 Theorem.
There is C > 0 such that for any n ∈ N, ` > ξ > s? (s? as in Proposition 6.1)

Qn
ξ,`(x, y) ≤ Ce−2αd(y,{x,ξ}) (8.4)

whenever either y < ξ and x ≥ y or y > ξ and x ≤ y.

Proof.
We write Q for Qξ,` and, for y and z positive, we set

fy(z) := Q(z, y), sup
y
‖fy(z)‖∞ =: c′ < ∞ (8.5)

Hence for all x and y positive and all n ∈ N

Qn+1(x, y) =
∫

dz Qn(x, z)fy(z) ≤ c′ (8.6)

Let s? > 0 and r < 1 be the parameters in Proposition 6.1 corresponding to ζ = 0 and set
s := s? + 2. Let y ≤ ξ − s− 1. For i ≤ n we shorthand (x = x0, y = xn+1)

µi(dxi . . . dxn) := Q(xi, xi+1) · · ·Q(xn−1, xn)
n∏

j=i

[1xj<ξ−s−1dxj ] (8.7)
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Then

Qn+1(x, y) =1x<ξ−s

∫
µ1(dx1 . . . dxn)Q(x, x1)fy(xn)

+
n∑

i=2

∫ ξ−s

ξ−s−1

dz Qi−1(x, z)
∫

µi(dxi . . . dxn)Q(z, xi)fy(xn) (8.8)

For i < k ≤ n we define

µ0
i,k(dxi . . . dxk) := Q(xi, xi+1) · · ·Q(xk−1, xk)

k∏

j=i

[11<xj<ξ−s−1dxj ] (8.9)

µk+1,n(dxk+1 . . . dxn) := 1xk+1≤1µk+1(dxk+1 . . . dxn) (8.10)

We can then rewrite (8.8) as

Qn+1(x, y) =
3∑

i=1

(Γi + Γ′i) (8.11)

where the Γi’s refer to the first term and the Γ′i’s to the second term in (8.8):

Γ1 := 1x<ξ−s

∫
µ0

1,n(dx1 . . . dxn)Q(x, x1)fy(xn) (8.12)

Γ′1 :=
n∑

i=2

∫ ξ−s

ξ−s−1

dz Qi−1(x, z)
∫

µ0
i,n(dxi . . . dxn)Q(z, xi)fy(xn) (8.13)

To define the other Γ’s let N = N(y) be the first integer such that

rNeαy ≤ 1 (8.14)

and b > 0 (independent of y) such that

N ≤ b(y + 1) (8.15)

We then set (with the understanding that if n < N then n−N should be replaced by 0)

Γ2 := 1x<ξ−s

n∑

k=n−N

∫
µ0

1,k(dx1 . . . dxk)
∫

µk+1,n(dxk+1 . . . dxn)

×Q(x, x1)Q(xk, xk+1)fy(xn) (8.16)

Γ′2 :=
n∑

i=2

n∑

k=n−N

∫ ξ−s

ξ−s−1

dz Qi−1(x, z)
∫

µ0
i,k(dxi . . . dxk)

×
∫

µk+1,n(dxk+1 . . . dxn)Q(z, xi)Q(xk, xk+1)fy(xn) (8.17)
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We are tacitly supposing in the above sum (and in the sequel) that k > i. Finally

Γ3 := 1x<ξ−s

∑

k<n−N

∫
µ0

1,k(dx1 . . . dxk)µk+1,n(dxk+1 . . . dxn)

×
∫

Q(x, x1)Q(xk, xk+1)fy(xn) (8.18)

Γ′3 :=
n∑

i=2

∑

k<n−N

∫ ξ−s

ξ−s−1

dz Qi−1(x, z)
∫

µ0
i,k(dxi . . . dxk)

×
∫

µk+1,n(dxk+1 . . . dxn)Q(z, xi)Q(xk, xk+1)fy(xn) (8.19)

Let i < k, xi . . . xk all in (1, ξ− s), P (x, y) as in (2.7). Then, from (8.2) for z ∈ (ξ− s− 1, ξ− s)
we get

Q(z, xi)Q(xi, xi+1) · · ·Q(xk, xk+1) = P (ξ − xk+1, ξ − xk) · · ·

· · ·P (ξ − xi, ξ − z)
m̄′(ξ − xk+1)2pm̄(ξ − z)
m̄′(ξ − z)2pm̄(ξ − xk+1)

(8.20)

By (8.6) Qi−1(x, z) ≤ c′ so that we have from (8.13) using (8.20)

Γ′1 ≤
n∑

i=2

c′
∫ ξ−s

ξ−s−1

dz

∫ n∏

j=i

[11<xj<ξ−s−1dxj ]P (ξ − xn, ξ − xn−1) · · ·

· · ·P (ξ − xi, ξ − z)ce−2α(ξ−y)e2α(s+1)fy(xn) (8.21)

having used (2.10) and that |xn − y| ≤ 1 as in the complement fy(xn) vanishes. c is a constant,
determined by (2.10).

Let u < ξ − s− 1 and

π(u, k) :=
∫ k∏

j=1

[11<xj<ξ−s−1dxj ]
∫ ξ−s

ξ−s−1

dz P (ξ − x, ξ − xk) · · · · · ·P (ξ − x1, ξ − z) (8.22)

the probability that the Markov chain with transition probability P (ξ − u, ξ − w) on R starting
from x is for the first time in (ξ − s− 1, ξ − s) at time k + 1 without being ever before in {x ≤ 1}.
Then

Γ′1 ≤ [c′ce−2α(ξ−y)e2α(s+1)]
∫ ξ−s−1

1

dxn

n∑

i=2

π(xn, n− i)fy(xn)

Then since |xn − y| ≤ 1 and
∑n

i=2 π(xn, n− i) ≤ 1,

Γ′1 ≤ [c′ce2α(s+1)2c′]e−2α(ξ−y) (8.23)
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In an analogous way we prove that there is a constant c > 0 so that

Γ1 ≤ 1x<ξ−s

∫ n∏

j=1

[11<xj<ξ−sdxj ]fy(xn)P (ξ − xn, ξ − xn−1) · · ·

· · ·P (ξ − x2, ξ − x1)ce−2α(ξ−y)e2α(ξ−x) (8.24)

Similarly to (8.6) there is c′′ > 0 so that for all x, y and n ≥ 0, Pn(ξ − x, ξ − y) ≤ c′′. Then

Γ1 ≤ 1x<ξ−s

∫ y+1

y−1

dxnc′Pn−1(ξ − xn, ξ − x)ce−2α(x−y)

≤ 1x<ξ−s2cc′c′′e−2α(x−y) (8.25)

To bound Γi and Γ′i when i > 1 we recall (6.2) and write, using that |xn − ξ| > s, |xi − ξ| ≥ s + 1,
for all i = k + 1, . . . , n− 1, and using again (2.10) and Proposition 6.1,
∫

µk+1,n(dxk+1 . . . dxn)fy(xn) =
∫

µk+1,n(dxk+1 . . . dxn)fy(xn)γs?,0(xn)
(
Ns?m̄′(ξ − xn)−1

)−1

≤ crn−k (8.26)

with c a suitable constant. We use (8.26) when n − k > N , while, for n − k ≤ N , we bound the
left hand side of (8.26) by c′. Thus by (8.14)

∫
µk,n(dxk+1 . . . dxn)fy(xn) ≤

{
c′ if n− k ≤ N

crn−k−N if n− k > N
(8.27)

We then have for a suitable constant ĉ,

Γ′2 ≤
n∑

i=2

n∑

k=n−N

∫ ξ−s

ξ−s−1

dz Qi−1(x, z)
∫

µ0
i,k(dxi . . . dxk)Q(z, xi)ĉ1xk≤2 (8.28)

which, for each k, is a term like Γ′1 with y ≤ 2. Hence

Γ′2 ≤ ĉe−2αξN (8.29)

with ĉ > 0 a suitable constant. Analogously

Γ2 ≤ 1x<ξ−sce
−2αξN (8.30)

For Γ′3 we use the second alternative in (8.27) and get instead of (8.28)

Γ′3 ≤
n∑

i=2

∑

k<n−N

∫ ξ−s

ξ−s−1

dz Qi−1(x, z)
∫

µ0
i,k(dxi . . . dxk)1xk≤2cr

n−k−N (8.31)
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The factor rn−k−N allows to control the sum over k so that we can avoid the term N in (8.31)
obtaining

Γ′3 ≤ ce−2αξ (8.32)

Analogously
Γ3 ≤ 1x<ξ−sce

−2αξ (8.33)

We get from (8.11) using (8.15) with the bounds on Γi and Γ′i obtained so far that there is c > 0
so that

Qn+1(x, y) ≤ c
{
1x<ξ−s[e−2α(x−y) + e−2αξ(y + 1) + e−2αξ] + [e−2α(ξ−y) + e−2αξ(y + 1) + e−2αξ]

}

(8.34)
Hence

Qn+1(x, y) ≤ c
{
1x<ξ−se

−2α(x−y) + e−2αξ(y + 1)
}

(8.35)

thus proving (8.4) for y ≤ ξ − s− 1.
The same proof works for y ≥ ξ+s+1 with ` playing the role of the origin. For ease of reference

we state the final bound

Qn+1(x, y) ≤ c
{
1x>ξ+se

−2α(y−x) + e−2α(`−ξ)(`− y + 1)
}

(8.36)

When |y − ξ| ≤ s we use (8.6) and obtain (8.4) if C is suitably large. Theorem 8.1 is proved. ¤

8.2 Definition.
Given η ∈ (0, 2α) and r < 1, let q be the first integer such that

rqeη ≤ 1 (8.37)

and for x, y in R+, n ∈ N,

τx,y,n := β1β≥0, β := [n− (|ξ − x|+ |ξ − y|)q] (8.38)

8.3 Proposition.
Let η and r be as in Definition 8.2. Then there is c > 0 so that for any x 6= x′, y and n such

that τx,y,n > 0,

∣∣∣Qn
ξ,`(x, y)−Qn

ξ,`(x
′, y)

∣∣∣ ≤ crτx,x′,ne−η|ξ−y|, if τx,x′,n > 0 (8.39)
∣∣∣Qn

ξ,`(x, y)− χξ,`(y)
∣∣∣ ≤ crτx,ξ,ne−η|ξ−y|, if τx,ξ,n > 0 (8.40)
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Proof.
Renaming n → n + 1 and recalling (8.5), the left hand side of (8.39) is bounded by

A :=
∫

dz
∣∣Qn

ξ,`(x, z)−Qn
ξ,`(x

′, z)
∣∣fy(z) (8.41)

By using first (7.18) and then (8.37), having supposed that τ ≡ τx,x′,n > 0,

A ≤ e−η(|ξ−y|−1)cc′rn
(
eη|x−ξ| + eη|x′−ξ|

)

≤ c′(ceη)e−η|ξ−y|rτrq(|ξ−x|+|ξ−x′|)
(
eη|x−ξ| + eη|x′−ξ|

)

≤ 2c′(ceη)e−η|ξ−y|rτ

In an analogous way we prove (8.40) starting from (7.19).
Proposition 8.3 is proved. ¤

8.4 Proposition.
There is C > 0 so that for all y ∈ [0, `]

χξ,`(y) ≤ Ce−2α|ξ−y| (8.42)

Proof.
By (8.40) for each y

lim
n→+∞

Qn
ξ,`(ξ, y) = χξ,`(y) (8.43)

(8.42) then follows from (8.4). Proposition 8.4 is proved. ¤

8.5 Proposition.
Let either x > y > ξ or x < y < ξ. Then

Qn
ξ,`(x, y) ≤

{
c′ if τx,ξ,n = 0

crτx,ξ,ne−η|ξ−y| + ce−2α|ξ−y| otherwise
(8.44)

with c′ as in (8.6), c as in (8.39) and r as in Definition 8.2.

Proof.
(8.44) is (8.6) when τx,ξ,n = 0. For τx,ξ,n > 0 we write

Qn
ξ,`(x, y) ≤

∣∣∣Qn
ξ,`(x, y)−Qn

ξ,`(ξ, y)
∣∣∣ + Qn

ξ,`(ξ, y)
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(8.44) is then a corollary of Theorem 8.1 and (8.39).
Proposition 8.5 is proved. ¤

The following theorem provides an approximation of χξ,` with χ0
ξ , see (8.1).

8.6 Theorem.
For any δ ∈ (0, 1] there is c > 0 so that for all y ∈ [0, `]

∣∣∣χξ,`(y)− χ0
ξ(y)

∣∣∣ ≤c

([
e−2αξe−2α|ξ−y|ξ1+δ + e−2αξ(y + 1)

]
1y≤ξ

+
[
e−2α(`−ξ)e−2α|ξ−y|(`− ξ)1+δ + e−2α(`−ξ)(`− y + 1)

]
1y>ξ

)

(8.45)

Proof.
Let first y < ξ. We write Q for Qξ,` and let n be the smallest integer such that

n ≥ ξ1+δ (8.46)

By (8.40) there is c′ > 0 so that
∣∣Qn(ξ, y)− χξ,`(y)

∣∣ ≤ c′rne−η|y−ξ| (8.47)

whose right hand side is bounded by that in (8.45) for a suitable choice of c.
Let

T (x, y) := Q(x, y)11≤x≤`−111≤y≤`−1 (8.48)

We first prove that for z ∈ [ξ − s, ξ − s + 1]
∣∣T k(ξ, z)−Qk(ξ, z)

∣∣ ≤ cke−2αξ (8.49)

In fact the difference on the left hand side is bounded by the probability that at some time j < k

the chain with transition probability Q is either in [0, 1] or [`− 1, `]. This probability is bounded
using the argument of proof of Theorem 8.1 and recalling that ` > 2ξ. (8.49) is proved.

Renaming n → n + 1 we use (8.8) to rewrite Qn+1(ξ, y). When x = ξ the first term in (8.8) is
equal to 0. Thus

∣∣∣Qn+1(ξ, y)−
n∑

i=2

∫ ξ−s+1

ξ−s

dz T i−1(ξ, z)
∫

µi(dxi . . . dxn)Q(z, xi)fy(xn)
∣∣∣

≤ ce−2αξ
n∑

i=2

i

∫ ξ−s+1

ξ−s

dz

∫
µi(dxi . . . dxn)Q(z, xi)fy(xn)

≤ ce−2αξnCe−2α|ξ−y| (8.50)
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The first inequality follows from (8.49). The second one is obtained bounding i ≤ n and observing
that the resulting sum has already been analysed in the proof of Theorem 8.1 (estimates of terms
like Γ′1, Γ′2, Γ′3).

The leading term in the sum on the left hand side of (8.50) is obtained by replacing µi by µ0
i,n

that has the same structure as the term Γ′1, see (8.13). The remaining terms are again like Γ′2 and
Γ′3 and are bounded by the second and the third terms in the second square bracket in (8.34). We
then have for a suitable ĉ,

∣∣∣Qn+1(ξ, y)−
n∑

i=2

∫ ξ−s+1

ξ−s

dz T i−1(ξ, z)
∫

µ0
i,n(dxi . . . dxn)Q(z, xi)fy(xn)

∣∣∣

≤ ĉ
[
Cne−2αξe−2α|ξ−y| + e−2αξ(y + 1)

]
(8.51)

The right hand side of (8.51) is again bounded by that in (8.45). We omit the proof of the analogous
bound for y > ξ.

Since Theorem 8.1 and all the subsequences results hold as well for the chain P (ξ − x, ξ − y)
on R with invariant density χ0

ξ , we get the same expressions (8.51) and (8.47) with Q replaced by
P and χξ,` by χ0

ξ . We finally observe that the second term on the left hand side of (8.51) is the
same both for Q and P , by the definitions of µ0

i,n and T , and we obtain (8.45). Theorem 8.6 is
proved. ¤

Observe that by letting ξ and ` to +∞ (with ` > 2ξ) we get, for any fixed x and y in R+,

lim
`,ξ→+∞

Qξ,`(x, y) =: Q∞(x, y)

where

Q∞(x, y) = p∞
{

J(x, y)eα(y−x) + J(x,−y)eα(−y−x)
}

, p∞ = β(1−m2
β) (8.52)

By (2.10) there are c > 0 and α0 > α so that for x < ξ

Q∞(x, y)
(
1− ce−(α0−α)(ξ−x)

)
≤ Qξ,`(x, y) ≤ Q∞(x, y)

(
1 + ce−(α0−α)(ξ−x)

)
(8.53)

Q∞(x, y) is a transition probability on R+ and we denote by P(∞)
x , x ∈ R+, the law of the Markov

chain {xi}i≥0 with transition probability Q∞(x, y) that starts from x0 = x. Let

γ(x) := P(∞)
x

(
{xi > 1, i ≥ 1}

)
, x > 0 (8.54)

κ(x) :=
1
2

+∞∑
n=0

∫ 1

0

dy [Cm̄
e2αy(aα)2

p∞
]γ(y)Qi

∞(y, x) (8.55)
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8.7 Theorem.
Both γ(x) and κ(x) are strictly positive and finite. Moreover for any X > 0 there are δ > 0 and

c > 0 so that for all x ∈ (0, X) and all ` > 2ξ, ξ > 8X,
∣∣∣χξ,`(x)− e−2αξκ(x)

∣∣∣ ≤ ce−(2α+δ)ξ (8.56)

Proof.
Proof that γ(x) > 0. Let η ∈ (0, 2α), x ≥ 1, then

∫

R+

dy Q∞(x, y)e−ηy = p∞

∫

R
dy J(x, y)e(α−η)ye−αx

=
p∞

pα−η
e−ηx =: re−ηx (8.57)

where pζ is such that αpζ
= ζ and r < 1 because |α− η| < α and if |ζ| < α, pζ > pα = p∞ .

Analogously if x ∈ (0, 1)

∫

R+

dy Q∞(x, y)e−ηy = p∞

∫ 2

0

dy J(x, y)e(α−η)ye−αx

+ p∞

∫ 0

−1

dy J(x, y)e(α+η)ye−αx ≤ p∞

∫

R
dy J(x, y)e(α−η)ye−αx (8.58)

having bounded the second integral by changing η → −η. Thus the bound (8.57) holds for all
x ≥ 0. Then for z ≥ s and X > 0

P(∞)
z

({xi ≤ X}) ≤
∫ X

0

dy Qi
∞(z, y)e−ηyeηX ≤ rieηXe−ηs (8.59)

For any s > 0 and x ∈ (0, 1) there are k and ε > 0 so that

P(∞)
x

(
{xi > 1, i = 1, .., k} ∩ {xk > s}

)
≥ ε (8.60)

Then

γ(x) ≥ P(∞)
x

(
{xi > 1, i = 1, .., k} ∩ {xk > s} ∩ {xn > 1, n > k}

)

≥ ε
(
1− sup

z≥s
P(∞)

z

(
∪n≤1 {xn > 1}

)

and, by (8.59),

γ(x) ≥ ε
(
1− e−η(s−1) 1

1− r

)
(8.61)
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We choose s so large that the right hand side is positive, thus completing the proof that γ(x) > 0.
By an analogous argument we are going to show that κ(x), x ≤ X, is bounded. Since Q∞(·, ·) is
bounded, we call c its sup, for z ≥ s and x ≤ X:

Qn
∞(z, x) =

∫ X+1

0

dyQn−1
∞ (z, y)c ≤ crn−1eη(X+1−s)

Then, calling ni = ik, we have for y ∈ (0, 1)m

Qni∞(y, x) ≤
∑

j<i

(1− ε)j sup
z≥s

Qni−nj∞ (z, x) ≤
∑

j<i

(1− ε)jrni−nj−1eη(X+1−s)

This shows that the sum in (8.55) converges exponentially and κ(x) is therefore finite; since it is
obviously strictly positive, we are only left with the proof of (8.56).

Proof of (8.56). Let

Q?
ξ,`(x, y) := Qξ,`(y, x), Q?

∞(x, y) := Q∞(y, x), χ ≡ χξ,` (8.62)

s0 := ξ/2 and x ≡ x0 < s0. We have

χ(x) =
∑

n≥0

∫ s0

0

dx1..

∫ s0

0

dxn

∫ s0+1

s0

dxn+1{
n∏

j=0

Q?
ξ,`(xj , xj+1)}χ(xn+1) (8.63)

Recalling that χ0
ξ(x) = m̃′(ξ − x)2pm̄(ξ − x)−1 and (2.15), using (2.10) we have for any x > 0

lim
ξ→+∞

e2αξχ0
ξ(x) =: λ(x) = Cm̄(aα)2

e2αx

p∞
(8.64)

With this in mind, by analogy with (8.63), we define

ρ(x) := e−2αξ
∑

n≥0

∫ s0

0

dx1..

∫ s0

0

dxn

∫ s0+1

s0

dxn+1{
n∏

j=0

Q?
∞(xj , xj+1)}λ(xn+1)

(8.65)

We will show, see (8.71) below, that ρ(x) and χ(x) are close to each other.
By (8.45) and (2.10) there are c > 0 and α0 > α so that for any x ∈ [s0, s0 + 1]

∣∣χ(x)−e−2αξλ(x)
∣∣ ≤ ∣∣χ(x)− χ0(x)

∣∣ +
∣∣χ0(x)− e−2αξλ(x)

∣∣

≤ c
{

e−2αξ(x + 1) + e−(α0+α)(ξ−x)
}
≤ c′e−(2α+δ)ξλ(x) (8.66)

where δ and c are positive constants, we take δ < (α0 − α)ξ/2. By using (8.53) and (8.66) we get

χ(x) ≤ e−2αξ
∑

n≥1

(
1 + ce−δξ/2

)n+1
∫ s0

0

dx1..

∫ s0

0

dxn

∫ s0+1

s0

dxn+1{
n∏

j=0

Q?
∞(xj , xj+1)}λ(xn+1)

(8.67)
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The lower bounds holds as well with c → −c. Letting x ≤ X and recalling that Q∞(·, ·) is bounded,

∫ s0

0

dx1..

∫ s0

0

dxn

∫ s0+1

s0

dxn+1{
n∏

j=0

Q?
∞(xj , xj+1)}λ(xn+1) ≤ ce2αs0 sup

z∈[s0,s0+1]

P(∞)
z

(
xn ≤ X + 1

)

≤ c′e2αs0e−ηseηXrn (8.68)

having used (8.59); c and c′ are constants, η ∈ (0, 2α) and r < 1. For ξ large enough there exists
b > 0 such that ∑

n≥bξ

c′e2αs0e−ηseηX
(
1 + ce−δξ/2

)n+1
rn ≤ e−2αξ (8.69)

On the other hand for n < bξ

(
1 + ce−δξ/2

)n+1 − 1 ≤ 2ce−δξ/2bξ (8.70)

so that there is a new constant c such that

∣∣χ(x)− ρ(x)
∣∣ ≤ c

(
e−δξ/2ξρ(x) + e−4αξ

)
(8.71)

We will complete the proof of (8.56) by relating ρ(x) to κ(x). Letting x ≡ x0,

ρ(x) = e−2αξ
∑

i≥0

∑

n≥0

∫ s0

0

dx1..

∫ s0

0

dxi+n

∫ s0+1

s0

dy1xi<1

n∏

j=i+1

1xj≥1

× {
n+i∏

j=0

Q?
∞(xj , xj+1)}Q?

∞(xi+n, y)λ(y)
(8.72)

Since xj ≥ 1 for j > i:

Q?
∞(xi, xi+1) · · ·Q?

∞(xi+n, y)λ(y) = λ(xi)Q∞(xi, xi+1) · · ·Q∞(xi+n, y) (8.73)

and for xi < 1 using (8.59) we get

∑

n≥1

∫ s0

1

dxi+1..

∫ s0

1

dxi+n

∫ s0+1

s0

dy{
n+i∏

j=i

Q?
∞(xj , xj+1)}Q?

∞(xi+n, y)λ(y)− γ(xi)λ(xi) = 0 (8.74)

The above identity (8.73) can be interpreted as the reversibility condition for the Markov chain
Q∞ with respect to the weigth λ(x)

We write

∑

i>0

∫ s0

0

dx1..

∫ s0

0

dxi−1

i−1∏

j=0

Q?
∞(xj , xj+1) =

{ ∑

i<ξ/4

+
∑

i≥ξ/4

} ∫ s0

0

dx1..

∫ s0

0

dxi−1

i−1∏

j=0

Q?
∞(xj , xj+1)

63



In the first sum we can extend the integral to the whole R+ because, at each step, the chain moves
by one, at most. Thus

∣∣∣
∑

i>0

∫ s0

0

dx1..

∫ s0

0

dxi−1

i−1∏

j=0

Q?
∞(xj , xj+1)−

∑

i>0

Qi
∞(xi, x)

∣∣∣ ≤ 2
∑

n≥ξ/4

P(∞)
xi

(
xn−1 ≤ X+1

)
(8.75)

The last probability is then bounded using (8.59) and by (8.74) and (8.75) we conclude that, given
X, there are c > 0 and δ > 0 so that |ρ(x)− e−2αξκ(x)| ≤ ce−(2α+δ)ξ for all x ≤ X. Together with
(8.71) this proves (8.56). Theorem 8.7 is proved. ¤

By an analogous argument with the interval between ` and ξ playing the role of the previous
one, between 0 and ξ, we have for x ∈ [0, X]

∣∣∣χξ,`(`− x)− e−2α(`−ξ)κ(x)
∣∣∣ ≤ ce−(2α+δ)(`−ξ) (8.76)

9. Eigenvalues and eigenvectors: sharp estimates

In this section we will prove Theorem 2.4 and several other properties of um,` and vm,`. We
suppose m ∈ G(c,ξ,`), see Definition 2.3 with ` > 2ξ and ξ large enough and recall that in Section
5 we have proved (2.18) and the first inequality in (2.17). At some point we will also suppose
that m satisfies (2.14). To simplify notation we write λ, u and v for the maximal eigenvalue and
eigenvectors and use other shorthand notation that will be specified as they occur. We proceed as
in Section 5, writing identities which are consequence of the eigenvalue equation and manipulating
them to evidentiate the terms that will be then recognized as the leading ones.

The first identity
Let n = [ξ4] (the integer part of ξ4) and denote by m̃′

ξ(x) := m̃′(ξ − x), m̃′ being proportional
to m̄′ and satisfying the normalization condition (2.15). We will in this first subsection prove the
following identity valid for all x ∈ [0, `]:

λnv(x) = m̃′
ξ(x)

{
〈vm̃′

ξ〉1x≤4ξ + e−2αξnλnB(ξ)cλ1x≤4ξ + U(x, ξ, λ)
}

(9.1)

Before explaining the notation we should keep in mind that the first term on the right hand side
is the leading one, the second one represents its main correction and the last one is a negligible
remainder term.
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For any function f ∈ C([0, `]) we are writing

〈f〉 :=
∫ `

0

dx
f(x)

pm̄(ξ − x)
(9.2)

The condition x ≤ 4ξ in (9.1) actually means x not larger than the min between 4ξ and `, analogous
meaning is tacitly given to other analogous conditions. The first term on the right hand side of
(9.1) is thus completely defined.

The coefficient cλ is:

cλ :=
1
n

n∑

i=[ξ2]

λ−i ≤ [1− c−e−2αξ]−n ≤ 2 (9.3)

by the first inequality in (2.17) and supposing ξ large enough.
The parameter B(ξ) has fundamental importance in the computation of λ. Its expression is

B(ξ) :=
3∑

j=1

Bj(ξ), Bj(ξ) := e2αξ

∫ `

0

dxχξ,`(x)fj(x) (9.4)

with χξ,`(x) the invariant density of the Markov chain on [0, `] with transition probability Qξ,`(x, y),
its existence is proved in Theorem 6.2, other of its properties are established in Section 8. The
functions fj(x) are defined in (9.11), (9.12) and (9.13) below. We will see that the Bj(ξ) and λn

are bounded functions of ξ so that the second term on the right hand side of (9.1) will be of the
order of ξ4e−2αξ, recall n = [ξ4]. The term U(x, ξ, λ) has a very complicated expression, we will
prove that it goes like ξ3e−2αξ and it will thus be negligible.

Proof of (9.1)
We start from (5.6) that we rewrite as

λn v(x)
m̃′

ξ(x)
= Ẽx

( n−1∏

i=0

[g(xi) + 1]ψ(xn)
v(R`(xn))

m̃′
ξ

(
R`(xn)

)
)

(9.5)

where x = x0 ∈ [0, `], R`(x0) = x0; the expectation refers to the Markov chain on [−1, ` + 1] with
transition probability (5.3),

g(x) := ψ(x)φ
(
R`(x)

)− 1 (9.6)

where φ(x) ≡ φ(x, ξ,m) is defined in (5.1) and ψ(x) ≡ ψ(x, ξ) in (5.2).
By expanding the product of the [g(xi) + 1]’s we get

λn v(x)
m̃′

ξ(x)
=Ẽx

(
ψ(xn)

v(R`(xn))
m̃′

ξ

(
R`(xn)

)
)

+
n−1∑

i=0

Ẽx

(
g(xi)

n−1∏

j=i+1

[g(xj) + 1]ψ(xn)
v(R`(xn))

m̃′
ξ

(
R`(xn)

)
)

(9.7)
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By conditioning on xi+1 and using (9.5) we get

λn v(x)
m̃′

ξ(x)
= Ẽx

(
ψ(xn)

v(R`(xn))
m̃′

ξ

(
R`(xn)

)
)

+
n−1∑

i=0

λn−(i+1)Ẽx

(
g(xi)

v(R`(xi+1))
m̃′

ξ

(
R`(xi+1)

)
)

(9.8)

Since ψ(x0) = 1 (because x0 = x ∈ [0, `]), the term with i = 0 in the last sum is equal to

λn−1[φ(x)− 1]
∫

dy P̃ (x, y)
v(R`(y))

m̃′
ξ

(
R`(y)

) (9.9)

We write
g = g1 + g2 + g3, g1 := φ− 1, g2 := ψ − 1, g3 := (φ− 1)(ψ − 1) (9.10)

f = f1 + f2 + f3 (9.11)

fj(x) = fj

(
R`(x)

)
:=

∫ ∫
dy dz P̃

(
x, y

)
P̃

(
y, z

)
gj(y)

v
(
R`(z)

)

m̄′
ξ

(
R`(z)

) (9.12)

f̃2(x) = f̃2

(
R`(x)

)
:=

∫
dy P̃

(
x, y

)
g2(y)

v
(
R`(y)

)

m̄′
ξ

(
R`(y)

) (9.13)

Then

λn v(x)
m̃′

ξ(x)
=Ẽx

( v(xn)
m̃′

ξ

(
R`(xn)

)
)

+ Ẽx

(
f̃2(xn−1)

)
+

n−1∑

i=1

λn−(i+1)Ẽx

(
f
(
R`(xi−1)

))

+ λn−1[φ(x)− 1]
∫

dyP̃ (x, y)
v(y)

m̃′
ξ

(
R`(y)

) (9.14)

Since for the first three terms on the right hand side, we have only expectations of functions of
R`(x), they are equal to the expectations relative to the Markov process on [0, `] with transition
probability Qξ,`(x, y), denoted by Ex, x ∈ [0, `]. We thus have for x ∈ [0, `]

λn v(x)
m̃′

ξ(x)
= Ex

(v(R`(xn))
m̃′

ξ(xn)

)
+ Ex

(
f̃2(xn−1)

)
+

n∑

i=2

λn−iEx

(
f(xi−2)

)

+ λn−1[φ(x)− 1]
∫ `+1

−1

dy P̃ (x, y)
v(R`(y))
m̃′

ξ

(
R`(y)

)
(9.15)

U is defined so that (9.15) is equal to (9.1). We next write U(·) to make explicit the leading
dependence on ξ, the coefficients ai and bi below still depend on ξ (and on x ∈ (0, `)) but they are
bounded.

U(x, ξ, λ) = e−2αξ
{

ξ3a0(x, ξ) + e2αξe(α−α′)|ξ−x|1x>4ξa1(x, ξ)

+ nλn
[
e−2αξb1(x, ξ, λ) + e(α+(α−α′))|ξ−x|b2(x, ξ, λ)1x≥4ξ

]

+ λnξ2e(α+(α−α′))|ξ−x|b3(x, ξ, λ) + λnξ2
[
e2α|ξ−x|1x≤4ξ + eα|ξ−x|1x>4ξ

]
b4(x, ξ, λ)

+ b5(x, ξ) + λn−1e(α+(α−α′))|ξ−x|b6(x, ξ)
}

(9.16)
66



There is c > 0 so that
|a0(x, ξ)|+ · · ·+ |b6(x, ξ, λ)| ≤ c (9.17)

The explicit expression of the coefficients ai and bi is:

a0(x, ξ) := e2αξξ−31x≤4ξ

{
Ex

(v(R`(xn))
m̃′

ξ(xn)

)
− 〈vm̃′

ξ〉
}

a1(x, ξ) := 1x>4ξe
−(α−α′)|ξ−x|Ex

(v(R`(xn))
m̃′

ξ(xn)

)

b1(x, ξ, λ) := 10≤x≤4ξe
4αξ 1

n

n∑

i=[ξ2]

λ−i
{
Ex

(
f(xi−2)

)− e−2αξB(ξ)
}

b2(x, ξ, λ) := 14ξ≤xe2αξe−(α+(α−α′))|ξ−x| 1
n

n∑

i=[ξ2]

λ−iEx

(
f(xi−2)

)

b3(x, ξ, λ) := e2αξe−(α+(α−α′))|ξ−x|ξ−2

[ξ2]−1∑

i=2

λ−i
∑

j=1,3

Ex

(
fj(xi−2)

)

b4(x, ξ, λ) := e2αξ[e−2α|ξ−x|1x≤4ξ + e−α|ξ−x|1x>4ξ]ξ−2

[ξ2]−1∑

i=2

λ−iEx

(
f2(xi−2)

)

b5(x, ξ) := e2αξEx

(
f̃2(xn−1)

)

b6(x, ξ) := e2αξe−(α+(α−α′))|ξ−x|[φ(x)− 1]
∫

dy P̃ (x, y)
v
(
R`(y)

)

m̃′
ξ

(
R`(y)

)

Proof that |B(ξ)| is bounded.
There is C > 0 so that, using the notation (5.10),

∣∣φ(x)− 1
∣∣ =

∣∣∣pm(x)− pm̄(ξ − x)
pm̄(ξ − x)

∣∣∣ ≤ C
∣∣δξm

∣∣ ≤ Cc2e−2αξeα|ξ−x| (9.18)

The second inequality is proved in (5.11). ψ(x) is bounded, as seen using (2.10), and the ratio
v/m̃′ can be bounded using (2.18) and (2.10). Then, for j = 1, 3,

|fj(x)| ≤ ce−2αξe(α+(α−α′))|ξ−x| (9.19)

and by (8.42) and for ξ large enough (so that α − α′ is small) we conclude that B1(ξ) and B3(ξ)
are bounded. Since ψ(x) = 1 for 1 ≤ x ≤ `− 1, see (5.4), f2(x) is supported by the two intervals
[0, 1] and [`− 1, `]. By (8.42) and (2.18)-(2.10)

∫ 1

0

dy χξ,`(y)|f2(y)| ≤ ce−2αξe(α−α′)ξ ≤ c′e−2αξ
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Analogously

∫ `

`−1

dy χξ,`(y)|f2(y)| ≤ ce−2α(`−ξ)e(α−α′)(`−ξ) ≤ c′e−(2α−c′e−2αξ)(`−ξ)

The last term is bounded by c′′e−2αξ uniformly in ` > 2ξ. With this we conclude that also |B2(ξ)|
is bounded. ¤

Proof that ai and bi are bounded
Proof that a0 is bounded. Let x < 4ξ, r < 1 and η ∈ (α − α′, 2α). By (2.18)-(2.10) (to bound

the ratio v/m̃′
ξ) and by (8.40) there are constants c′ and c′′ so that

∣∣∣Ex

( v(xn)
m̃′

ξ(xn)
−

∫ `

0

dxχξ,`(x)
v(xn)

m̃′
ξ(xn)

∣∣∣ ≤
∫

dy
∣∣∣Qn

ξ,`(x, y)− χξ,`(y)
∣∣∣ce(α−α′)|ξ−y|

≤ c′rτx,ξ,n

∫ `

0

dy e(α−α′−η)|ξ−y| ≤ c′′rn/2 (9.20)

because, see (8.38), τx,ξ,n = n− |ξ − x|q ≥ n− 3ξq ≥ n/2 for ξ large enough ( recall n = [ξ4]).
By Theorem 8.6 with δ = 1/2 and using again (2.18)-(2.10) for the ratio v/m̃′

ξ, there are
constants c′ and c′′ so that

∣∣∣
∫ `

0

dxχξ(x)
v(x)

m̃′
ξ(x)

−
∫ `

0

dxχ0
ξ(x)

v(x)
m̃′

ξ(x)

∣∣∣

≤ c′
∫ `

0

dx e(α−α′)|ξ−x|e−2αξ
(
e−2α|ξ−x|ξ3/2 + (x + 1)1x<ξ

)

≤ c′′e−2αξξ3/2 (9.21)

with c′ and c′′ suitable constants. By (8.1) and (9.2)

∫ `

0

dxχ0
ξ(x)

v(x)
m̃′

ξ(x)
= 〈vm̃′

ξ〉 (9.22)

By (9.20), (9.21) and (9.22) we conclude that a0 is bounded.

Proof that a1 is bounded. The proof follows from (2.18) and (6.14) with η := α− α′ (that for ξ

large enough is smaller than 2α).

Proof that b1 is bounded. The contribution of f1 and f3 is bounded using (9.19) and (8.40) with
η > α + (α− α′). The sum over i is bounded as in (9.3). The contribution of f2 is bounded using
again (8.40) and recalling that f2 is bounded and supported in [0, 1].
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Proof that b2 is bounded. Let x ≥ 4ξ, ξ2 − 3 ≤ k ≤ n and j = 1, 3. By (9.19)

Ex

(
fj(xk)

) ≤ ce−2αξ

∫ `

0

dy Qk
ξ,`(x, y)e(α+(α−α′))|ξ−y|

We distinguish the values of y > x from the others and use, respectively, (8.4) and (8.6), obtaining:

Ex

(
fj(xk)

) ≤ ce−2αξe(α+(α−α′))|ξ−x|C
∫ `

x

dy e−2α|y−x|e(α+(α−α′))|x−y|

+ ce−2αξc′
∫ x

0

dy e(α+(α−α′))|ξ−y|

≤ c′′e−2αξe(α+(α−α′))|ξ−x| (9.23)

for a suitable constant c′′.
By (8.4) and (2.10)-(2.18), there is c > 0 so that

∣∣∣Ex

(
f2(xk)1xk∈[0,1]

)∣∣∣ ≤ ce−2αξe(α−α′)ξ (9.24)

which is therefore bounded by c′e−2αξ. The remaining contribution of f2 is bounded by

∣∣∣Ex

(
f2(xk)1xk∈[`−1,`]

)∣∣∣ ≤
∣∣∣Ex

(
eη|ξ−xk|)∣∣∣e(α−α′−η)(`−ξ)

having used again (2.10)-(2.18). We take η = α in Theorem 6.2, then there are r < 1 and c′ so
that for all ξ large enough the right hand side is bounded by

c′e(α−α′−η)(`−ξ)
{

rkeη|ξ−x| + 1
}

since α′(`− ξ) ≥ 2αξ for all ξ large enough and ` ≥ 4ξ, the only case when b2 is relevant. Hence

∣∣∣Ex

(
f2(xk)1xk∈[`−1,`]

)∣∣∣ ≤ ce−2αξ[eα|ξ−x| + 1] (9.25)

By (9.23), (9.24), (9.25) we conclude the proof that b2 is bounded.
Proof that b3, b4 and b5 are bounded. The proof for b3 is like in (9.23), for b4 like in (9.24) and

(9.25) as well as for b5 and are omitted.

Proof that b6 is bounded. It follows from (2.10)-(2.18) and (9.18), after observing that, by the
definition of P , the integral in b6 is over |y − x| ≤ 1.
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9.1 Lemma.
There are B̃(ξ), B̄(ξ) and a constant c > 0 so that

λn = 〈vm̃′
ξ〉2 + 〈vm̃′

ξ〉e−2αξnλnB̃(ξ), |B(ξ)cλ − B̃(ξ)| ≤ c

ξ
(9.26)

λn〈vm̃′
ξ〉 = 〈vm̃′

ξ〉+ e−2αξnλnB̄(ξ), |B(ξ)cλ − B̄(ξ)| ≤ c

ξ
(9.27)

Proof
We multiply both sides of (9.1) by v(x)/pm(x) and integrate. We use below the convention that

if the upper limit of an integral is larger than `, then the integral is understood to be extended
only up to `.

λn =
(〈vm̃′

ξ〉+ D1e
−2αξ

){〈vm̃′
ξ〉+ e−2αξnλnB(ξ)cλ

}

+ e−2αξ
{

ξ3C0 + C0,1 + e−2αξnλn(C1 + C2) + λnξ2C3 + λnξ3C4 + C5 + λn−1C6

}

(9.28)

where the coefficients D and C are defined as follows:

D1 := e2αξ
( ∫ 4ξ

0

dx

pm(x)
v(x)m̃′

ξ(x)− 〈vm̃′
ξ〉

)

C0 :=
∫

R+

dx

pm(x)
v(x)m̃′

ξ(x)a0(x, ξ)

C0,1 := e2αξ

∫ ∞

4ξ

dx

pm(x)
v(x)m̃′

ξ(x)e(α−α′)|ξ−x|a1(x, ξ)

C1 :=
∫

R+

dx

pm(x)
v(x)m̃′

ξ(x)b1(x, ξ, λ)

C2 := e2αξ

∫ +∞

4ξ

dx

pm(x)
v(x)m̃′

ξ(x)e(α+(α−α′))|ξ−x|b2(x, ξ, λ)

C3 :=
∫

R+

dx

pm(x)
v(x)m̃′

ξ(x)e(α+(α−α′))|ξ−x|b3(x, ξ, λ)

C4 := ξ−1

∫

R+

dx

pm(x)
v(x)m̃′

ξ(x)[e2α|ξ−x|1x≤4ξ + eα|ξ−x|1x>4ξ]b4(x, ξ, λ)

C5 :=
∫

R+

dx

pm(x)
v(x)m̃′

ξ(x)b5(x, ξ, λ)

C6 :=
∫

R+

dx

pm(x)
v(x)m̃′

ξ(x)e(α+(α−α′))|ξ−x|b6(x, ξ)
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By multiplying both sides of (9.1) by m̃′
ξ(x)/pm̄(ξ − x) and integrating we get

λn〈vm̃′
ξ〉 =

(
1−D′

1e
−2αξ

){〈vm̃′
ξ〉+ e−2αξnλnB(ξ)cλ

}

+ e−2αξ
{

ξ3C ′0 + C ′0,1 + e−2αξnλn(C ′1 + C ′2) + λnξ2C ′3 + λnξ3C ′4 + C ′5 + λn−1C ′6
}

(9.29)

where

D′
1 := e2αξ

∫ ∞

4ξ

dx
m̄′(ξ − x)2

pm̄(ξ − x)
(9.30)

and the coefficients C ′i are obtained from the Ci by replacing v(x)/pm̄(ξ−x) by m̃′
ξ(x)/pm̄(ξ−x).

All the coefficients Di, Ci, D′
i and C ′i are bounded as it follows recalling that the ai and bi are

bounded and using (2.18) and (2.10). The right hand side of (9.28) can be written in the form

< vm̃′
ξ >2 +a < vm̃′

ξ > +b =< vm̃′
ξ >2 + < vm̃′

ξ > [a +
b

< vm̃′
ξ >

]

which identify B̃(ξ) in (9.26) in terms of a, b and < vm̃′
ξ >. To prove the inequality in (9.26) we

need a lower bound on < vm̃′
ξ > which is derived next.

For ξ large enough 〈vm̃′
ξ〉2 ≥ 1/2: in fact either 〈vm̃′

ξ〉2 ≥ 1 and then the statement is obviously
true or 〈vm̃′

ξ〉 ≤ 1. In such a case by (9.28), since λ ≥ 1− c−e−2αξ, there is c > 0 so that

〈vm̃′
ξ〉2 ≥ 1− ce−2αξn ≥ 1

2

for ξ large enough. Lemma 9.1 is proved. ¤

Proof of the second inequality in (2.17)
We can solve explicitly (9.26) and (9.27) in the unknowns y := λn and x := 〈vm̃′

ξ〉 with B̃ = B̃(ξ)
and B̄ = B̄(ξ) thought of as known. Calling ε′ := e−2αξnB̃ and ε′′ := e−2αξnB̄ we get

y =
x

x− ε′′
, x =

1
2

(
ε′′ − ε′ +

√
4 + (ε′′ − ε′)2

)
(9.31)

Hence ∣∣∣〈vm̃′
ξ〉 − 1

∣∣∣ ≤ c
n

ξ
e−2αξ (9.32)

∣∣∣λn − (1 + e−2αξnB̄)
∣∣∣ ≤ ce−2αξ n

ξ
(9.33)

It follows from (9.33) and (9.3) that there is c > 0 so that

λ < 1 + ce−2αξ (9.34)

We have thus proved (2.17) with c+ a suitable constant. ¤
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¿From (9.34) there is c′ > 0 so that

cλ > 1− c′e−2αξ (9.35)

¿From (9.35) and from the first inequality in (2.17) we get for some c̄ > 0 that

|B(ξ)− B̃(ξ)| ≤ c̄

ξ
, |B(ξ)− B̄(ξ)| ≤ c̄

ξ
(9.36)

Proof of (2.19)
We go back to (9.1) that for |ξ − x| ≤ 3ξ becomes

v(x) = m̃′
ξ(x)

{[
1− (

1− λ−n〈vm̃′
ξ〉

)]
+ e−2αξnB(ξ)cλ + λ−nU(x, ξ, λ)

}
(9.37)

We have by (9.32) and (9.33)
∣∣∣1− λ−n〈vm̃′

ξ〉
∣∣∣ ≤ cne−2αξ ≤ c′e−2αξξ4

Analogously e−2αξn|B(ξ)|cλ ≤ c′e−2αξξ4. To bound the term with U in (9.37) we use (9.16). The
terms with a1 and b2 drop out because |ξ − x| ≤ ξ/2, in the others we use that the functions ai

and bi are bounded and that U in (9.37) is multiplied by m̃′
ξ. Then the term with b4 is bounded

by cξ2eα|ξ−x| and all the others by cξ3, c > 0 a suitable constant. It is thus the term with b4 in
U which is responsible for the factor eα|ξ−x| that appears on the right hand side of (2.19) which is
thus proved.

9.2 Proposition.
Let Bi(ξ), i = 1, 2, 3, be as in (9.4). Then

lim
ξ→+∞

B3(ξ) = 0 (9.38)

Moreover, letting κ(x) as in (8.55) and supposing that

lim
`,ξ→+∞

e2αξ−2α(`−ξ) = e−2αω

with ω ∈ [0,+∞], we have

lim
`,ξ→+∞

B2(ξ) = [1 + e−2αω][β(1−m2
β)]2

∫ 1

0

dxκ(x)
∫ 1

0

dy

∫ 2

−1

dz J(x, y)

× J(y, z)e−αx(1− e−2αy)(1 + e−2αz)e−α|z| (9.39)

If m satisfies (2.14), B1 > D/2, for all ξ large enough, where

D := 2β

∫

R
dx

m̃′(x)2

pm̄(x)
m̄(x)a sinh(αx)

{
1 + e−2αω

}
(9.40)
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Moreover, if δ0
ξm = δ0,1

ξ m + δ0,2
ξ m and, for all x,

lim
ξ→+∞

−e2αξ

2
[δ0,1

ξ m(ξ − x)− δ0,1
ξ m(ξ + x)] =: ∆0(x) ≥ 0 (9.41)

while for some c and δ positive

∣∣∣
∫

|x−ξ|≤ξ1/2
dx δ0,2

ξ m(x)m̄′(ξ − x)2m̄(ξ − x)
∣∣∣ ≤ ce−2(α+δ)ξ

then
lim

ξ→+∞
B1(ξ) = D +

∫

R
2βm̃′(x)2m̄(x)∆0(x) > 0 (9.42)

Proof.
(9.38) follows from (8.42) using (9.19) and that f3(x) is supported by x ≤ 1 and x ≥ `− 1.
The explicit expression of B1 is obtained from (9.12) using the invariance of χξ,`:

B1(ξ) = e2αξ

∫ `

0

dxχξ,`(x)
pm(x)− pm̄(ξ − x)

pm̄(ξ − x)

∫ `

0

dy Qξ,`(x, y)
v(y)

m̃′
ξ(y)

We use (9.18) and (2.19)-(2.10) when |ξ − x| ≤ ξ1/2 and (2.18)-(2.10) otherwise. We get

∣∣∣B1(ξ)− e2αξ

∫

|ξ−x|≤ξ1/2
dxχξ,`(x)

pm(x)− pm̄(ξ − x)
pm̄(ξ − x)

∣∣∣

≤ ce2αξ

∫

|ξ−x|≤ξ1/2
dxχξ,`(x)[e−2αξeα|ξ−x|][e−2αξeα|ξ−x|ξ4eα|ξ−x|]

+ ce2αξ

∫

|ξ−x|≥ξ1/2
dxχξ,`(x)[e−2αξeα|ξ−x|][e(α−α′)|x−ξ|]

where c is a suitable constant.
In the two integrals on the right hand side we bound χξ,`(x) by using (8.42). Thus there are c

and c′ so that

∣∣∣B1(ξ)− e2αξ

∫

|ξ−x|≤ξ1/2
dxχξ,`(x)

pm(x)− pm̄(ξ − x)
pm̄(ξ − x)

∣∣∣

≤ c[eαξ1/2
ξ4e−2αξ + e−α′ξ1/2

] ≤ c′e−α′ξ1/2

We next estimate the integral on the left hand side. There is c > 0 so that

∣∣∣pm(x)− pm̄(ξ − x)
pm̄(ξ − x)

+
2β2m̄ξ(x)[1− m̄ξ(x)2]

pm̄(ξ − x)
δξm(x)

∣∣∣ ≤ cδξm(x)2
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We use (5.11) and (8.42) to bound the term with cδξm(x)2, giving rise to the second term on the
left hand side of the equation below.

By (8.45) and recalling the definition of pm̄ξ
, there is c > 0 so that

∣∣∣B1(ξ)− e2αξ

∫

|ξ−x|≤ξ1/2
dx

m̃′
ξ(x)2

pm̄ξ
(x)

(
− 2βm̄ξ(x)δξm(x)

)∣∣∣

≤ c
(
e−α′ξ1/2

+ e−2αξξ1/2 + e−2αξ+2αξ1/2
)

We then get ∣∣∣B1(ξ) + e2αξ

∫

|ξ−x|≤ξ1/2
dx m̃′

ξ(x)22βm̄ξ(x)δξm(x)
∣∣∣ ≤ ce−α′ξ1/2

with c > 0 a suitable constant.
We write δξm = δ0

ξm + m0 − m̄, the term m0
ξ,`(x) − m̄(ξ − x) produces in the limit ξ → +∞

the term D on the right hand side of (9.42). By (2.14) with a suitable δ,

lim inf
ξ→+∞

−e2αξ

∫

|ξ−x|≤ξ1/2
dx m̃′

ξ(x)22βm̄ξ(x)δ0
ξm(x) ≥ −D

2
(9.43)

so that B1(ξ) ≥ D/2 for all ξ large enough. For the same reason the contribution of δ0,2
ξ m vanishes

as ξ → +∞. Since m̃′
ξ(x)2m̄ξ(x) is an odd function of ξ − x, the contribution of the even part of

δ0,1
ξ m in (9.43) also vanishes. The odd part of δ0,1

ξ m converges to ∆0 by (9.41) and since

∣∣∣e2αξδ0
ξm(x)m̃′

ξ(x)2m̄ξ(x)
∣∣∣ ≤ ceα|ξ−x|e−2α|ξ−x|

by the Lebesgue dominated convergence theorem we obtain (9.42).

The proof of (9.39) is more delicate as it involves the estimate of v(x)/m̃′
ξ(x) for x close to 0

and `. While this ratio was proved to be close to 1 when |ξ− x| ≤ ξ/2, this is no longer true when
x is close to 0 and `:

9.3 Proposition.
There are c > 0 and δ > 0 so that for x ∈ [0, 2]

∣∣∣vm,`(x)− C
1/2
m̄ aαe−αξ(eαx + e−αx)

∣∣∣ ≤ ce−(α+δ)ξ (9.44)

and ∣∣∣vm,`(x)
m̃′

ξ(x)
− eαx + e−αx

eαx

∣∣∣ ≤ ce−δξ (9.45)
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Proof.
Since (9.45) follows from (2.10) and (9.44) we only need to prove the latter. We proceed as in

the proof of (8.56). Let s0 := [ξ/2], x0 ≡ x, λ ≡ λm,`. Then

vm,`(x) =
∑

n≥1

∫ s0

0

dx1..

∫ s0

0

dxn

∫ s0+1

s0

dxn+1{
n∏

j=0

λ−1
m,`Am,`(xj , xj+1)}vm,`(xn+1) (9.46)

Call
A∞(x, y) := p∞

(
J(x, y) + J(x,−y)

)
(9.47)

By (2.10) and (2.17) there is c > 0 so that for all x ≤ s0 + 1

A∞(x, y)[1− ce−αs0 ] ≤ λ−1
m,`Am,`(x, y) ≤ A∞(x, y)[1 + ce−αs0 ] (9.48)

We set
V (x) := C

1/2
m̄ aαeαx (9.49)

and, in analogy with (9.46),

σ(x) :=
∑

n≥1

∫ s0

0

dx1..

∫ s0

0

dxn

∫ s0+1

s0

dxn+1{
n∏

j=0

A∞(xj , xj+1)}V (xn+1) (9.50)

By (2.19) and (2.10), there are constants c and c′ so that for x ∈ [s0, s0 + 1]

∣∣vm,`(x)−e−αξV (x)
∣∣ ≤ ∣∣vm,`(x)− m̃′

ξ(x)
∣∣ +

∣∣m̃′
ξ(x)− e−αξV (x)

∣∣
≤ c

(
e−2αξeα(ξ−x)ξ4 + e−α0(ξ−x)

) ≤ c′e−δξV (x)

with 0 < δ ≤ (α0 − α)/2. Then

vm,`(x) ≤ e−αξ
∑

n≥1

[1 + ce−δξ]n+1

∫ s0

0

dx1..

∫ s0

0

dxn

∫ s0+1

s0

dxn+1{
n∏

j=0

A∞(xj , xj+1)}V (xn+1)

(9.51)
The lower bound holds as well with c → −c.

Since p∞ < 1 there is b > 0 so that for all ξ large enough

∑

n≥bξ

[1 + ce−δξ]n+1

∫ s0

0

dx1..

∫ s0

0

dxn

∫ s0+1

s0

dxn+1{
n∏

j=0

A∞(xj , xj+1)}V (xn+1) ≤ e−αξ

On the other hand for n < bξ

[1 + ce−δξ]n+1 ≤ c′bξe−δξ

so that there is c > 0 and for x ∈ [0, 2]

∣∣vm,`(x)− e−αξσ(x)
∣∣ ≤ 2e−αξ + cξe−δξV (x)e−αξ (9.52)
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To estimate V (x) we introduce

T (x, y) := w(x)−1A∞(x, y)w(y) (9.53)

where
w(x) := eαx + e−αx

so that
A∞ ? w = w

Therefore T (x, y) is a transition probability. Denoting by Ex the expectation for the Markov chain
{xn}n≥0 that starts from x0 = x, we then have

σ(x) = e−αξw(x)
∑

n≥1

Ex

(
{

n∏

i=1

1xi<s0}
V (xn+1)
w(xn+1)

)

Since ∣∣∣V (xn+1)
w(xn+1)

− C
1/2
m̄ aα

∣∣∣ ≤ ce−2αs0

For x ≤ 2 ∣∣∣σ(x)− w(x)C1/2
m̄ aα

∣∣∣ ≤ ce−2αs0

which together with (9.52) proves (9.44). Proposition 9.3 is proved. ¤

The same estimates of Proposition 9.3 hold for x ∈ [`− 2, `], we omit the details.

Conclusion of the proof of Proposition 9.2.
It remains to prove (9.39). We rewrite explicitly

B2(ξ) = e2αξ

∫

R+

dxχξ(x)
∫

R
dy

∫

R
dzP̃ (x, y)P̃ (|y|, z)

×
(m̃′

ξ(|y|)
m̃′

ξ(y)
− 1

) v(|z|)
m̃′

ξ(|z|)

By (8.56) we can replace in the above expression e2αξχξ(x) by κ(x), the error vanishing exponen-
tially as ξ → +∞. Moreover by (8.53) we can replace

Pξ(a, b) −→ p∞J(a, b)e−α(a−b)

with an error that again vanishes exponentially as ξ → +∞. Then using (9.45) we get

lim
ξ→+∞

B2(ξ) =
∫ 1

0

dx κ(x)
∫ 0

−1

dy

∫ 2

−1

dz p2
∞J(x, y)J(|y|, z)e−α(x−y)e−α(|y|−z)

× (e−α(y−|y|) − 1)(eαz + e−αz)e−α|z|
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which proves (9.39). Theorem 9.2 is proved. ¤

Proof of (2.20). It follows immediately from (9.1) and Proposition 9.2. ¤

10. Spectral gap

In this Section we will prove Theorem 2.5.
We write

‖eLm,`tw‖ζ,ξ,` ≤ e−t
∑

n≥0

tn

n!
‖An

m,`w‖ζ,ξ,`

A bound as in (2.23) is then obvious when w = vm,`. By writing

w = w̃ + πm,`(w)vm,`(x), πm,`(w̃) = 0

the proof of (2.23) is reduced to that of (2.24), that we prove next.

Proof of (2.24). We drop m, ξ and ` when no ambiguity arises. We have

Anw̃(x) = λnv(x)
∫ `

0

dy Qn(x, y)v(y)−1w̃(y)

Q = Qm,`. Letting ν(dx) := u(x)v(x)dx,

∫ `

0

ν(dy)w̃(y)v(y)−1 = πm,`(w̃) = 0

and since ν is invariant for Q, i.e.
∫ `

0

ν(dx′)Qn(x′, y)v(y)−1w̃(y) = 0

we have

Anw̃(x) = λnv(x)
{ ∫ `

0

dy Qn(x, y)v(y)−1w̃(y)−
∫ `

0

ν(dx′) Qn(x′, y)v(y)−1w̃(y)
}

hence

Anw̃(x) = λnv(x)
∫ `

0

ν(dx′)
∫ `

0

dy
{
Qn(x, y)−Qn(x′, y)

}
w̃(y)v(y)−1
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Then, letting ‖ · ‖ ≡ ‖ · ‖ζ,ξ,`,

|Anw̃(x)| ≤ λnv(x)
∫ `

0

ν(dx′)
∫ `

0

dy
∣∣Qn(x, y)−Qn(x′, y)

∣∣v(y)−1‖w‖eζ|ξ−y|

Let s be as in Theorem 7.4, let Ns,m = min(N+
s,m, N−

s,m), see (6.20), then

v(y)−1eζ|ξ−y| ≤ N−1
s,mγs,ζ,m(y)1|ξ−y|≥s + 1|ξ−y|≤sv(y)−1e|ζ|s

By Lemmas 5.3 and 5.4 there is c so that

v(y)−1eζ|ξ−y| ≤ cγs,ζ,m(y)

hence, by Theorem 7.4 there are c and r < 1 so that

|Anw̃(x)| ≤ c‖w‖λnv(x)
∫ `

0

ν(dx′)
∫ `

0

dy
∣∣Qn(x, y)−Qn(x′, y)

∣∣γs,ζ,m(y)

≤ c‖w‖λnv(x)c′rn
(
γs,ζ,m(x) +

∫ `

0

ν(dx′)γs,ζ,m(x′)

The last integral is bounded by a constant, see the remark after the proof of Theorem 6.4. Hence
recalling that γs,ζ,m(x) ≥ 1, there is c so that (if ξ is large enough)

|Anw̃(x)| ≤ c‖w‖[rλ]nv(x)γs,ζ,m(x)

and
‖Anw̃‖ ≤ c‖w‖[rλ]n sup

0≤x≤`
{e−ζ|ξ−x|v(x)γs,ζ,m(x)}

Recalling that γs,ζ,m(x) = 1 if |x− ξ| ≤ s, by (2.18),

sup
|x−ξ|≤s

{e−ζ|ξ−x|v(x)γs,ζ,m(x)} ≤ e|ζ|s sup
|x−ξ|≤s

v(x) ≤ c

Moreover there is a new constant c so that

sup
|x−ξ|≥s

{e−ζ|ξ−x|v(x)γs,ζ,m(x)} ≤ c

In conclusion if ξ is large enough, there is c > 0 so that

‖Anw̃‖ ≤ c‖w‖[rλ]n, ‖eLm,`tw‖ ≤ c‖w‖e−t
∑

n≥0

[rλt]n

n!

hence (2.24).

Proof of (2.26) and (2.25). The integral in (2.26) converges in the ‖ · ‖ norm, then (2.26) follows
from standard arguments. (2.25) follows from the eigenvalue equation L−1v = (λm − 1)−1v and
the inequality (2.17). Theorem 2.5 is proved. ¤
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11. Eigenvalues and eigenvectors: dependence on ξ

To simplify notation we will write in this subsection Aξ, Lξ vξ and λξ respectively for Am0
ξ,`

,
Lm0

ξ,`
, vm0

ξ,`
and λm0

ξ,`
, vξ normalized as in (2.16).

We denote by v′ξ and λ′ξ the derivative of vξ and λξ with respect to ξ, whose existence follows
from classical perturbation theory, see [18]. By differentiating Aξvξ = λξvξ and then taking the
scalar product in R+ with uξ (the left eigenvector) we get

λ′ξ = (uξ, A
′
ξvξ) (11.1)

and
(Aξ − λξ)v′ξ = (A′ξ − λ′ξ)vξ (11.2)

By shorthanding π := πmξ
we have from (11.1)

π
(
[A′ξ − λ′ξ]vξ

)
= 0 (11.3)

We can then use (2.26) to solve (11.2) as an equation in v′ξ obtaining:

11.1 Theorem.
For any η ∈ (0, 3α/2) there are ξ0 and c0 > 0 so that for all ξ > ξ0

|λ′ξ| ≤ c0e−ηξ (11.4)

∣∣∣v′ξ(x)− m̃′′(ξ − x)
∣∣∣ ≤ c0e−αξξ4 for |ξ − x| ≤ ξ/2

|v′ξ(x)| ≤ c0ξ2vξ(x) for |ξ − x| ≥ ξ/2 (11.5)

Proof.
To simplify exposition we give an explicit proof only for the case ` = ∞. It will be clear that

all the arguments extend with minor changes to the case ` > 2ξ.
Let x ≥ 0. By definition

A′ξ(x, y) =
( d

dξ
pm0

ξ
(x)

)
J(x, y) (11.6)

By (2.10) there is c > 0 so that

∣∣A′ξ(x, y)
∣∣ ≤ ce−α|ξ−x|J(x, y) (11.7)
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Then, recalling that uξ(x) := vξ(x)/pm0
ξ
(x), there is c > 0 so that

∣∣∣λ′ξ −
∫

|ξ−x|≤ξ/2

dx
m̃′(ξ − x)
pm̄(ξ − x)

∫
dyA′ξ(x, y)m̃′(ξ − y)

∣∣∣ ≤ c[e−2αξξ4 + e−(α+2α′)ξ/2] (11.8)

The first term on the right hand side bounds the terms that arise when we replace vξ(x) by m̃′
ξ(x)

and pm0
ξ
(x) by pm̄(ξ−x) for |ξ−x| ≤ ξ/2. When |ξ−x| > ξ/2 we bound vξ using (2.18). We have

also used (11.7).
We set

Bξ(x, y) := pm̄(ξ − x)J(x, y), B′
ξ(x, y) :=

( d

dξ
pm̄(ξ − x)

)
J(x, y) (11.9)

By (2.10) there is c > 0 so that for any x > 0

∣∣B′
ξ(x, y)

∣∣ ≤ ce−α|ξ−x|J(x, y);
∣∣∣A′ξ(x, y)−B′

ξ(x, y)
∣∣∣ ≤ ce−2αξeα|ξ−x|J(x, y) (11.10)

We then obtain from (11.8)

∣∣∣λ′ξ −
∫

|ξ−x|≤ξ/2

dx
m̃′(ξ − x)
pm̄(ξ − x)

∫
dyB′

ξ(x, y)m̃′(ξ − y)
∣∣∣ ≤ ce−3α′ξ/2 (11.11)

with c > 0 a suitable constant. Then there is c′ > 0 so that
∣∣∣λ′ξ −

∫

R
dx

m̃′(ξ − x)
pm̄(ξ − x)

∫
dyB′

ξ(x, y)m̃′(ξ − y)
∣∣∣ ≤ ce−3αξ/2 (11.12)

The integral on the left hand side is equal to 0 because it is the derivative with respect to ξ of the
maximal eigenvalue of Bξ := Am̄ξ

which is identically 1, Bξm̄
′
ξ = m̄′

ξ as obtained by differentiating
(1.7) with respect to x. We have thus proved (11.4).

Recalling (11.3) and shorthanding w := (A′ξ−λ′ξ)vξ, by (2.26) and (11.2) we have, for all ξ large
enough,

v′ξ = −
∫ +∞

0

dt e[Lξ−(λξ−1)]tw (11.13)

Let τ := ξ2 and |ζ| ≤ α′, then by (2.24) and since 0 < λξ − 1 ≤ c1e
−2αξ there is c > 0 so that

∣∣v′ξ +
∫ τ

0

dt eLξtw
∣∣
ζ,ξ
≤ ce−2αξξ2 (11.14)

because |w|ζ,ξ < +∞. We have
∫ τ

0

dt eLξtλ′ξvξ = λ′ξ

∫ τ

0

dt e(λξ−1)tvξ

hence by (11.4) and (2.17) there is c > 0 so that

∣∣v′ξ +
∫ τ

0

dt eLξtA′ξvξ

∣∣
ζ,ξ
≤ ce−ηξξ2 (11.15)
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Since
A′ξvξ(z) = [

d

dξ
pm0

ξ
(z)]

1
pm0

ξ
(z)

Aξvξ(z) = [
d

dξ
pm0

ξ
(z)]

λξ

pm0
ξ
(z)

vξ(z) (11.16)

and ‖dpm0
ξ
/dξ‖∞ < ∞ there is c > 0 so that for |ξ − x| > ξ/2

∣∣∣
∫ τ

0

dt eL0
ξtA′ξvξ(x)

∣∣∣ ≤ c

∫ τ

0

dt eL0
ξtvξ(x) ≤ cξ2e(λξ−1)τvξ(x) ≤ c′ξ2vξ(x) (11.17)

which proves the second inequality in (11.5).
We shorthand

γ(x) := 1|ξ−x|≥ξ/2

(
A′ξvξ

)
(x) (11.18)

and write

eAξtγ =
∑

n≥0

tn

n!

∫
dy An

ξ (x, y)γ(y) =
∑

n≥0

(λξt)n

n!
1

uξ(x)

∫
dy γ(y)uξ(y)Tn(y, x) (11.19)

where
T (y, x) := uξ(x)Aξ(x, y)

1
λξuξ(y)

(11.20)

is the transition probability associated to Aξ via the left eigenfuction uξ.
We have

Tn(y, x) :=
∫

dz Tn−1(y, z)T (z, x)

T (z, x) ≤ J(z, x) sup
|z−x|≤1

uξ(x)
uξ(z)

≤ c

having used (4.12), after recalling that uξ(x) = vξ(x)pmξ
(x)−1. Then

∣∣eAξtγ
∣∣ ≤ c

∑

n≥0

(λξt)n

n!
1

uξ(x)

∫
dy |γ(y)uξ(y)| (11.21)

By (11.7) and (2.18) there is c > 0 so that

∣∣γ(y)uξ(y)
∣∣ ≤ ce−(2α′+α)|ξ−y|1|ξ−y|≥ξ/2 (11.22)

By (2.19) and (2.10) for |ξ − x| ≤ ξ/2

uξ(x)−1 ≤ ceα|ξ−x| (11.23)

By (11.21) there are c and c′ so that for |ξ − x| ≤ ξ/2

∣∣eAξtγ(x)
∣∣ ≤ ceλξte−2α′ξ/2 ≤ c′′e−αξetξ (11.24)
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because, by (2.17), λξt ≤ t + (λξ − 1)t ≤ t + ce−2αξξ2 ≤ t + c′. Moreover by (2.18) α′ξ > αξ + c,
with c a suitable constant. Therefore for |ξ − x| ≤ ξ/2 we have eLξtγ(x)| ≤ c′e−αξξ, then, by
(11.15) for any η ∈ (α, 3α/2), there is c > 0 so that for all |ξ − x| ≤ ξ/2

∣∣∣∣v′ξ(x) +
∫ τ

0

dt [eLξt1|ξ−y|≤ξ/2A
′
ξvξ](x)

∣∣∣∣ ≤ ce−αξξ3 (11.25)

By (11.10) we have for |y − ξ| ≤ ξ/2
∣∣∣A′ξvξ(y)−B′

ξvξ(y)
∣∣∣ ≤ ce−2αξeα|ξ−y| sup

|z−y|≤1

vξ(z) ≤ c′e−2αξ

Then using (2.19) and (11.25) there is a constant c > 0 so that
∣∣∣∣v′ξ(x) +

∫ τ

0

dt [eLξt1|ξ−y|≤ξ/2B
′
ξm̃

′
ξ](x)

∣∣∣∣ ≤ ce−αξξ3 (11.26)

We write
Γ(x) :=

∫
dy 1|ξ−x|≤ξ/2B

′
ξ(x, y)m̃′

ξ(y) (11.27)

µk(dx1...dxn) := 1x1≥1 · · ·1xk−1≥11xk∈[0,1)dx1 · · · dxn (11.28)

so that

An
ξ Γ(x) =

∫
dx1 · · · dxn1x1≥1 · · ·1xn≥1Aξ(x, x1) · · ·Aξ(xn−1, xn)Γ(xn)

+
n∑

k=1

∫
µk(dx1...dxn)Aξ(x, x1) · · ·Aξ(xn−1, xn)Γ(xn) (11.29)

Recalling (11.20) and setting

S(x, y) :=
1

λξvξ(x)
Aξ(x, y)vξ(y) (11.30)

we rewrite the k-th term of the sum in (11.29) as

λn
ξ

∫
µk(dx1...dxn)T (xk, xk−1) · · ·T (x1, x)S(xk, xk+1) · · ·

· · ·S(xn−1, xn)Γ(xn)
uξ(xk)vξ(xk)
uξ(x)vξ(xn)

≤ cλn
ξ e−2αξeαξ/2

(11.31)

To prove the last inequality we have used (2.18) to bound uξ(xk)vξ(xk); (11.23) to bound uξ(x)−1.
Moreover by (2.19) Γ(x)vξ(x)−1 is bounded and, as we have already seen, Tn(x, y) is bounded for
all n, x and y. It is clear that we can treat in a similar way the quantity Bn

ξ Γ(x) obtaining the
same estimate as (11.31) for the analogous quantity.
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We write in the first term on the right hand side of (11.29)

Aξ(xi, xi+1) = Bξ(xi, xi+1)
(
[
Aξ(xi, xi+1)
Bξ(xi, xi+1)

− 1] + 1
)

Thus the product of the Aξ(xi, xi+1)’s is equal to the product of the Bξ(xi, xi+1)’s times the
product of the bracket terms. We then get (writing x = x0)

∣∣An
ξ Γ(x)−Bn

ξ Γ(x)
∣∣ ≤ cλn

ξ e−2αξ+αξ/2n +
∫

x1≥1

dx1· · ·
∫

xn≥1

dxnBξ(x, x1) · · ·

· · ·Bξ(xn−1, xn)
∣∣∣

n−1∏

i=0

{
1 +

(Aξ(xi, xi+1)
Bξ(xi, xi+1)

− 1
)}

− 1
∣∣∣|Γ(xn)|

There is c̃ > 0 so that for all positive x and y

∣∣∣Aξ(x, y)
Bξ(x, y)

− 1
∣∣∣ ≤ c̃e−αξ

Then ∣∣∣
n−1∏

i=0

{
1 +

(Aξ(xi, xi+1)
Bξ(xi, xi+1)

− 1
)}

− 1
∣∣∣ ≤ (1 + c̃e−αξ)n − 1

and
∫

x1≥1

dx1 . . .

∫

xn≥1

dxnBξ(x, x1) · · · · · ·Bξ(xn−1, xn)|Γ(xn)| = m̃′(ξ − x)
∫

x1≥1

dx1 . . .

· · ·
∫

xn≥1

dxnP (ξ − x, ξ − x1) · · ·P (ξ − xn−1, ξ − xn)
|Γ(xn)|

m̃′(ξ − xn)
≤ c

for all x and n.
∣∣∣An

ξ Γ(x)−Bn
ξ Γ(x)

∣∣∣ ≤ cλn
ξ e−2αξeαξ/2n + c

{
[1 + c̃e−αξ]n − 1

}
(11.32)

Calling ε := c̃e−αξ we use the inequality

(1 + ε)n − 1 ≤ εn(1 + ε)n−1

Then going back to (11.26)
∣∣∣∣v′ξ(x)+

∫ τ

0

dt [e(Bξ−1)t1|ξ−y|≤ξ/2B
′
ξm̃

′
ξ](x)

∣∣∣∣ ≤ ce−αξξ2

+
∫ τ

0

dt e−tc
∑

n≥0

tn

n!

{
λn

ξ e−3αξ/2n + εn(1 + ε)n−1
}

≤ ce−αξξ2 + c

∫ τ

0

dt e−t
{

e−3αξ/2tλξe
λξt + tεet(1+ε)

}

≤ ce−αξξ2 + cξ4e−αξ (11.33)
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By using the same arguments starting from

Bξm̃
′(ξ − x) = m̃′(ξ − x)

we obtain ∣∣∣m̃′′(ξ − x) +
∫ τ

0

dt e(Bξ−1)tB′
ξm̃

′(ξ − x)
∣∣∣ ≤ c′e−αξξ4 (11.34)

Theorem 11.1 is proved. ¤

We conclude the subsection with a corollary of Theorem 11.1.

11.2 Theorem.
There are ξ0 and c > 0 so that for all ξ ≥ ξ0 and all |ξ − x| ≤ ξ/2

∣∣∣ d

dξ
vξ(x) +

d

dx
vξ(x)

∣∣∣ ≤ ce−αξξ4 (11.35)

Proof.
By (11.5) ∣∣∣ d

dξ
vξ(x) +

d

dx
m̃′(ξ − x)

∣∣∣ ≤ c0e−αξξ4 (11.36)

For |ξ − x| ≤ ξ/2
d

dx
m̃′(ξ − x) =

∫
dy

( d

dx
[pm̄ξ

(x)J(x, y)]
)
m̃′(ξ − y) (11.37)

Recalling the definition of m0
ξ , there is a constant c′ > 0 so that for |ξ − x| ≤ ξ/2

∣∣∣ d

dx
pm̄ξ

(x)− d

dx
pm0

ξ
(x)

∣∣∣ ≤ c′e−α(ξ+x),
∣∣∣pm̄ξ

(x)− pm0
ξ
(x)

∣∣∣ ≤ c′e−α(ξ+x) (11.38)

Moreover by (2.19) (whose validity can be extended to |ξ − x| ≤ ξ/2 + 1) we conclude that for a
suitable constant c′′ > 0

∣∣∣ d

dx
m̃′(ξ − x)−

∫
dy

( d

dx
[pm0

ξ
(x)J(x, y)]

)
vξ(y)

∣∣∣ ≤ c′′[e−α3ξ/2 + e−2αξ+αξ/2|ξ4] (11.39)

Then ∣∣∣ d

dx
m̃′(ξ − x)− λξ

d

dx
vξ(x)

∣∣∣ ≤ 2c′′e−α3ξ/2ξ4 (11.40)

(11.35) then follows from (11.36), (11.40) and (2.20). Theorem 11.2 is proved. ¤
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