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Abstract. In this paper we prove the existence of a stationary, spatially non homogeneous
solution of a non local, mean field equation which describes the phases of a fluid.

1. Introduction

The main goal of this paper is to prove the existence of the critical droplet which marks
the saddle point in the path from the metastable to the stable state; the work is done in
the context of one dimensional Ising spins with Kac interactions and Glauber dynamics. By
exploiting the spectral estimates derived in the first paper of this series, [2], we will prove here
the existence of the critical droplet. The series will continue with papers on the existence of
one dimensional manifolds which connect the critical droplet respectively to the stable and to
the metastable states. In the final paper we will then prove that the preferred path of the spin
system will follow the time reversed motion along the latter manifold and, after “jumping“
across the critical droplet it will “land” on the other manifold following the classical motion
toward the stable state.

We start with a brief description of the underlying spin model, even though our analysis
refers only to a deterministic, mesoscopic equation which describes the limit behavior of the
stochastic Glauber dynamics on the spins. The spin model can be described as follows. At
each side of the one-dimensional lattice there is a spin variable with two different values ±1.
The value of the spin at x is flipped at rates which depend on the value of the others spins.
This interaction is long range, of order γ−1, with γ small. More precisely, the interaction
among two given spin at x and y is γJ(γ|x − y|), where J(r) r ∈ R is a smooth symmetric,
probability density (thus J ≥ 0) with compact support, the precise assumptions are stated
in Definition 2.1 below. These type of interactions have been studied in [5], [6], in order to
derive the van der Waals phase transition theory. Lebowitz and Penrose in [7] give a rigorous
explanation of metastability in this context.
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The free energy density of the spatially homogeneous spin state with constant magneti-
zation s is given by

f(s) = −1
2
s2 − hs − β−1i(s), s ∈ [−1, 1] (1.1)

i(s) = −1 + s

2
log{1 + s

2
}− 1 − s

2
log{1 − s

2
} (1.2)

where −s2/2 represents the internal energy density, −hs is the energy density due to the
external field h and i(s) is its entropy (which is the entropy of a {±1} Bernoulli process with
average s).

The stationary points of the mean field free energy density solve the following mean field
equation in R

s = tanh
(
β[s + h]

)
(1.3)

Given β > 1 there is h! > 0 so that for 0 ≤ h < h! (1.3) has three and only three different
roots, denoted by

m−
β (h) < m0

β(h) ≤ 0 < m+
β (h) (1.4)

For h > 0, |m−
β (h)| < m+

β (h) and m0
β(h) < 0; for h = 0, m0

β(0) = 0 and m+
β (0) = −m−

β (0) =:
mβ .

The diagram of f(s) versus s at h = 0 changes when β increases past 1 from a single to a
double well shape with two minimizers, m±

β (0). As h increases past 0 at β > 1 fixed, the two
roots m±

β (0) move to m±
β (h) with f

(
m+

β (h)
)

< f
(
m−

β (h)
)
, hence m+

β (h) is the only minimizer
while m−

β (h) is just a local minimum. For this reason they are interpreted respectivley as the
magnetizations in the stable and in the metastable phases.This interpretation is fully justified
by the analysis of Ising spin system with Kac potentials, [7].

As mentioned in the beginning, our ultimate purpose is to characterize the tunnelling
from the metastable to the stable phase in the above described, d = 1 Ising system with
Glauber dynamics and Kac interactions. As we will see, the metastable phase is stable under
small perturbations and therefore it will persist for a long time and till when, due to a large
deviation event, a large enough region becomes occupied by the stable phase. Afterwards this
region expands indefinitely and the stable phase grows everywhere. The intuition that instead
the system goes to the stable phase passing through the intermediate phase m0

β(h) is definitely
wrong. In fact the nucleation of the stable phase from the metastable one is characterized by
the formation of “a critical droplet” which breaks the spatial homogeneity, and, in our case,
it is given by the bump m!

J , solution of the following non local, one dimensional equation (in
L∞(R; [−1, 1]))

m!
J(x) = tanh

(
β[J # m!

J(x) + h]
)

(1.5)

with asymptotic conditions
lim

|x|→∞
m!

J(x) = m−
β (h) (1.6)

In (1.5) we have used the notation

(f # g)(x) :=
∫

R
dyf(x − y)g(y) (1.7)

Observe that (1.5) is a space-dependent version of the mean field equation.
In this paper we will prove the existence of “the bump” m!

J for β > 1 and h > 0 small
enough using Newton’s method as we are going to explain in the next Section.
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2. Definitions, results, outline of proofs

We first state the assumptions on the probability density J in (1.5):

Definition 2.1. J(x), x ∈ R, is a C3(R), symmetric, non negative, non increasing in R
function such that ∫

R
dy J(y) = 1 (2.1)

sup {x ∈ R : J(x) > 0} = 1 (2.2)

We will study (1.5) perturbatively around h = 0. However, when h = 0 there is no critical
droplet and no metastable phase as well, because m±

β (0) ≡ m±
β are both minimizers of the

free energy (1.1). There are however many spatially non homogeneous solutions of (1.5), the
relevant one for our purposes is the instanton m̄(x), whose asymptotes at ±∞ are m±

β . Its
existence has been proved in [1], [4], its stability properties have been derived in [3], [4] and
in Section 3 of [2]. The main properties of the instanton are:

Theorem 2.2 ([3], [4], [2]). There exists a solution m̄J(x) of (1.5) with h = 0 and β > 1.
(To avoid heavy notations we will write m̄ instead of m̄J).

m̄(x) = tanh
(
βJ # m̄(x)

)
(2.3)

which is a C∞, strictly increasing, antisymmetric function with asymptotes

lim
x→±∞

m̄(x) = ±mβ (2.4)

m̄(x) is, modulo translation, the unique solution of (2.3) with asymptotes (2.4). Moreover,
letting α > 0 be such that

β(1 − m2
β)

∫
dyJ(y − x)e−α(x−y) = 1 (2.5)

there are, a > 0, α0 > α and c > 0 so that for all x ≥ 0
∣∣m̄(x) − (mβ − ae−αx)

∣∣ +
∣∣m̄′(x) − aαe−αx

∣∣ +
∣∣m̄′′(x) + α2ae−αx

∣∣ ≤ ce−α0x (2.6)

where m̄′ and m̄′′ are respectively the first and second derivatives of m̄.

Our main result is

Theorem 2.3. Given β > 1, there is h0 > 0 and for any h ∈ (0, h0] there is m!
J ∈

Csym(R; [−1, 1]) (i.e. the space of symmetric, continuous functions with range in [−1, 1])
which solves (1.5) with asymptotes as in (1.6). (In the sequel we will write m! instead of
m!

J).
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Moreover there are ξ! = ξ!(h) and c > 0 so that

lim
h→0+

sup
x≤0

∣∣∣m!(x) − m̄(x + ξ!)
∣∣ = 0 (2.7)

lim
h→0+

e2αξ!(h)h = c (2.8)

where α is as in (2.5).

We may think of (1.5) as a fixed point problem relative to the map on the space of
functions m(x) given by the r.s.h. of the equation itself. Such an approach was used by Dal
Passo and de Mottoni, [1], to prove the existence of the instanton (when h = 0). After setting
the problem in the class of antisymmetric functions, they have showed that the transformation
m → tanh{βJ # m} is a contraction, in a suitable norm and in a suitable neighborhood of m̄.

When h > 0 is small it is natural to conjecture that the instanton has still an important
role. We then introduce, for any ξ > 1, the symmetric function given for non negative x by

m0
ξ(x) := m̄ξ(x) − ae−α(x+ξ), m̄ξ(x) = m̄(ξ − x) (2.9)

Except for the second term (whose origin is technical) m0
ξ is an instanton on the negative half

line shifted by −ξ and its mirror image on the positive half line. A neighborhood of m0
ξ (with

ξ > 0 to be chosen suitably as a function of h) is therefore the natural place where to look
for the bump m!. We cannot hope however to have a contraction property like in [1]: the
analysis in [2] shows in fact that the transformation m → tanh{β(J # m + h)} is expansive
(in some direction) in a neighborhood of m0

ξ .
The natural alternative is to use the Newton method, whose application, however, is not

at all straightforward in our case. We need in fact, from one side, h small in order to use the
perturbative analysis of [2] but, on the other side, if h is small the derivative operator involved
in the Newton method has an eigenvalue very close to zero. We are thus confronted with a
small divisors problem. Let us briefly recall the Newton method in its more elementary, one
real variable setting, underlining the questions concerning the small divisors.

The Newton method
The method is designed for computing the zeros of a smooth function f(x) in terms of the

limit points of the orbits of a map T (the Newton map). T (x) is defined on {z : f ′(z) (= 0}
as the solution of the linear equation

f(x) + f ′(x)[T (x) − x] = 0 (2.10)

The search of a zero is succesful if one has a point x0 for which the Newton orbit Tn(x0) is
well defined for all n ≥ 1 and converges to a point x! where f ′(x!) (= 0. x! is then the required
zero because, by the continuity of T , T (x!) = x!, hence, by (2.10), f(x!) = 0. All the zeros
x! such that f ′(x!) (= 0 can in principle be found with this procedure because any point x0

sufficiently close to x! gives rise to a succesful Newton orbit. This is evidently not too usefull
as it requires an a-priori knowledge of the unknown zero x!. The truly constructive criteria
are those which involve x0 alone, like the following one whose formulation takes care of the
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small denominator problems that arise in our case when the magnetic field becomes small. In
Section 4, Theorem 4.2, we will prove an infinite dimensional version of the following lemma:

Lemma 2.4. There exist universal, positive constants c, c′, δ, ε′ so that if f , x0 and
ε ∈ (0, ε′] satisfy the relations

|f(x0)| ≤ cε2+δ, f ′(x0) ≥ c′ε, ‖f ′′‖∞ ≤ c′′ (2.11)

then {Tn(x0)}n≥1 is a succesful Newton orbit.

In our setup
f(m) := −m + tanh{βJ # m + βh} (2.12)

Let Lm be the operator on Csym(R; [−1, 1]) defined by,

Lm(ψ) := −ψ + pmJ # ψ; pm(x) :=
β

cosh2{βJ # m(x)}
(2.13)

then Lm+h is the derivative Df |m of f(m) at m, recall in fact that

Df
∣∣
m

(ψ) =
d

dt
f(m + tψ)

∣∣
t=0

(2.14)

Similarly to the one dimensional case the Newton map is

m → T (m) = m + ψ, ψ = −L−1
m+hf(m) (2.15)

To be well defined we need the invertibility of Lm+h, which has been proved in [2] in a suitable
neighborhood of m0

ξ . In the next section, Section 3, we will recall this and other properties
proved in [2] which will be used in the rest of the paper. In Section 4 we will state and
prove the analogue of 2.4. The important point in the whole method is then to find the good
starting point, a problem that we will solve in the remaining sections.

3. Some spectral properties

In this section we report properties proved in [2]. about the spectrum of Lm, when m is
in a neighborhood of m0

ξ , properties that will be crucial for the applicability of the Newton
method and for proving the existence of the bump m!, as explained in the previous section.

Definition 3.1. We fix ξ > 1 and, given m ∈ Csym(R; [−1, 1]), we set

δ0
ξm = m − m0

ξ (3.1)
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We then define G(c,ξ), c > 0, as the set of all m in Csym(R, [−1, 1]) such that

∣∣δ0
ξm(x)

∣∣ ≤ c

{
e−2αξeα(ξ−x) for 0 ≤ x ≤ ξ

e−2αξ for ξ < x
(3.2)

We will also consider a subset G(c,ξ,δ) of G(c,ξ), δ > 0, made of all m such that

−
∫

|x−ξ|≤ξ1/2
dx δ0

ξm(x)m̄′(ξ − x)2m̄(ξ − x) > −ce−2(α+δ)ξ (3.3)

A first result on the spectrum of Lm for general m is

Theorem 3.2 ([2]). Let m ∈ Csym(R, [−1, 1]). Then there are λm > −1, um and vm in
Csym(R), um and vm strictly positive, so that

Lmvm = λmvm, umLm = λmum (3.4)

and for any x ≥ 0
vm(x) = pm(x)um(x) (3.5)

Any other point of the spectrum is strictly inside the ball of radius λm.

We define m̃(x) :=
√

Cm̄m̄(x), where Cm̄ is a constant such that
∫

R
dx

m̃′(x)2

pm̄(x)
= 1 (3.6)

and set m̃′
ξ(x) = m̃′(ξ − x). We also normalize um(x) (and then vm) in such a way that

∫ ∞

0

dx

pm(x)
vm(x)2 ≡

∫ ∞

0
dx um(x)vm(x) = 1 (3.7)

We then have

Theorem 3.3 ([2]). For any c > 0 there are c± and c′ all positive so that for all ξ > 1
and all m ∈ G(c,ξ)

−c−e−2αξ ≤ λm ≤ c+e−2αξ (3.8)
um(x), vm(x) ≤ c+e−α′|ξ−x|, α′ = α′(ξ) := α − c′e−2αξ (3.9)∣∣∣vm(x) − m̃′

ξ(x)
∣∣∣ ≤ c+e−2αξ+α|ξ−x|ξ4, for all x such that |ξ − x| ≤ ξ/2 (3.10)

There is ξ̂ so that for any c > 0, δ > 0 ξ > ξ̂ and m ∈ G(c,ξ,δ)

λm ≥ D

2
e−2αξ (3.11)

where

D := 2β

∫

R
dx

m̃′(x)2

pm̄(x)
m̄(x)a sinh(αx) (3.12)
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Moreover
∣∣
dvm0

ξ

dξ
− m̃′′(ξ − x)

∣∣ ≤ c0e
−αξξ4 for|ξ − x| ≤ ξ/2 (3.13)

∣∣
dvm0

ξ

dξ

∣∣ ≤ c0ξ
2vm0

ξ
for |ξ − x| > ξ/2 (3.14)

Finally,
∣∣
dvm0

ξ
(x)

dξ
+

dvm0
ξ
(x)

dx

∣∣ ≤ ce−αξξ4 (3.15)

Given m ∈ Csym(R, [−1, 1]), we define the linear functional πm on C(R+) as

πm(w) :=
∫ ∞

0
dx um(x)w(x) (3.16)

(um normalized as in (3.7)).

Theorem 3.4 ([2]). Given c > 0 there are d± > 0, and ξ! > 1, so that for any ξ ≥ ξ!,
m ∈ G(c,ξ) and t ≥ 0

‖eLmt‖∞ ≤ d+eλmt (3.17)
and, for any w̃ ∈ C(R+) such that πm(w̃) = 0,

‖eLmtw̃‖∞ ≤ d+e−d−t‖w̃‖∞ (3.18)

Moreover given δ > 0 there is C > 0 so that if m is in G(c,ξ,δ), then the inverse (Lm)−1 exists
and

‖(Lm)−1‖∞ ≤ Ce2αξ (3.19)
If w̃ is such that πm,ξ(w̃) = 0 then

(Lm)−1w̃ = −
∫ +∞

0
dteLmtw̃, ‖(Lm)−1w̃‖∞ ≤ C‖w̃‖∞ (3.20)

4. The Newton method and the bump

In this section we will prove that for h small enough there is m ∈ Csym(R; [−1, 1]) such
that (recall the definition (2.15)) the Newton orbit {Tn(m)}n≥0 is succesful, namely it is well
defined for all n and it converges as n → ∞ to the bump m! (i.e. a solution of (1.5)). The
proof is divided into two parts. In the first one, which is the argument of this section, we
prove that if m satisfies the criterion stated in Definition 4.1 below, then Tn(m) → m!, see
Theorem 4.2. Roughly speaking the criterion requires that m should be close to m0

ξ with
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ξ ≈ log h−1 and moreover that ‖f(m)‖∞ ≤ o(h2). In Section 7 we construct a function which
in Section 8 is shown to fulfill the criterion of Definition 4.1.

Definition 4.1. Recalling the Definition 3.1, we let F (c, δ, h, ζ), c > 1, δ, ζ positive, be
the set of all m ∈ Csym(R; [−1, 1]) such that m + h ∈ G(c,ξ,δ) with ξ such that

c−1h ≤ e−2αξ ≤ ch (4.1)

and furthermore
‖f(m)‖∞ ≤ ch2+ζ (4.2)

Theorem 4.2. For any C > 1 and any δ and ζ positive, there are C ′ and h′ positive so
that if h ≤ h′ and m ∈ F (C, δ, h, ζ) then for any n ≥ 1 Tn(m) is well defined,

‖Tn(m) − Tn−1(m)‖∞ ≤ C ′h[C ′hζ ]2
n

(4.3)

and
lim

n→∞
‖Tn(m) − m!‖∞ = 0 (4.4)

where m! ∈ Csym(R; [−1, 1]) solves (1.5) and (1.6).

Proof.
In the course of the proof we will determine h′. Setting mn := Tn(m) we will first prove

by induction on n that there is δ1 > 0 so that, for all h ≤ h′, mn + h ∈ G(2C,ξ,δ1). Suppose
that this is true for 1 ≤ n ≤ N , N ≥ 1. Then by Theorem 3.4 (which requires ξ large enough,
a condition which is satisfied by choosing h′ small enough and recalling that e−2αξ ≤ Ch)
there is c > 0 so that by (3.19)

‖L−1
mn+h‖∞ ≤ ch−1 (4.5)

Setting ψn := mn − mn−1, m0 = m, by definition (of the Newton map T )

ψn = −L−1
mn−1+hf(mn−1), ‖f(mn)‖∞ ≤ c′′‖ψn‖2

∞ (4.6)

The second inequality is obtained by expanding to second order in ψn the function f(mn) =
f(mn−1+ψn) and observing that the 0-th and the first order terms vanish by the first relation
in (4.6). Since ψn is defined in terms of Lmn−1 , (4.6) holds till n = N + 1. By (4.5) we get
from (4.6)

‖f(mn)‖∞ ≤ c′′[ch−1‖f(mn−1)‖∞]2 (4.7)
Calling

gn := ‖f(mn)‖∞[(c′′)1/2ch−1]2 (4.8)
we get

gn ≤ g2
n−1, gn ≤ g2n

0 , g0 := ‖f(m)‖∞[(c′′)1/2ch−1]2 (4.9)
Thus

‖f(mn)‖∞ ≤ (c′′)−1c−2h2[c′′c2h−2Ch2+ζ ]2
n ≤ c2n

0 h2+2nζ (4.10)
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which holds for n ≤ N + 1, h ≤ h1 and with c0 > 0 a suitable constant which depends on C.
By (4.5) and (4.6)

‖ψn+1‖∞ ≤ cc2n

0 h1+2nζ (4.11)
For all h small enough (this is the last condition on h′)

c
∑

n≥0

(c0h
ζ)2

n ≤ hζ/2 (4.12)

Then
φN+1 := mN+1 − m = ψ1 + · · · + ψN+1, ‖φN+1‖∞ ≤ h1+ζ/2 (4.13)

We need to prove that mN+1 + h ∈ G(2C,δ1,ξ). Let

ΨN+1 := mN+1 + h − m0
ξ , Ψ := m + h − m0

ξ (4.14)

Then
ΨN+1 = Ψ + φN+1 (4.15)

so that recalling that h ≤ Ce−2αξ and that m + h ∈ G(c,ξ,δ)

‖ΨN+1(x)e−α|ξ−x|‖∞ ≤ ‖Ψ(x)e−α|ξ−x|‖∞ + [Ce−2αξ]1+ζ/2

≤ Ce−2αξ
(
1 + Cζ/2e−αζξ

)
≤ 2Ce−2αξ (4.16)

if h′ is small enough. We have thus proved that the first inequality in (3.2) is satisfied by
mN+1 + h with c = 2C.

For the second one we have

sup
x≥ξ

|ΨN+1(x)| ≤ sup
x≥ξ

|Ψ(x)| + ‖φN+1‖∞ ≤ Ce−2αξ + [Ce−2αξ]1+ζ/2

≤ 2Ce−2αξ (4.17)

Thus (3.2) is verified by mN+1 + h with c = 2C.
We will next prove that also (3.3) is verified. We write

−
∫

|ξ−x|≤ξ1/2
dx ΨN+1(x)m̄′(ξ − x)2m̄(ξ − x) ≥ −Ce−(2α+δ)ξ − [Ce−2αξ]1+ζ/2c

≥ −2Ce−(2α+δ1)ξ

with
δ1 :=

1
2

min{δ, αζ

2
} (4.18)

and for h′ small enough. We have thus concluded the proof by induction that mn + h ∈
G(2C,ξ,δ1) for all n ≥ 1. (4.3) is then proved by (4.11) and (4.12). Moreover

m! := lim
n→+∞

mn = m0
ξ +

∑

n≥1

ψn (4.19)

is well defined and since f(m) is a continuous function of m in the topology of the sup norm,

f(m!) = lim
n→+∞

f(mn) = 0 (4.20)

by (4.6).
Theorem 4.2 is proved. !
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5. Ansatz on the starting point of the Newton orbit

In this section we make an educated ansatz on the starting point m of the Newton orbit.
In Sections 6, 7 and 8 we will prove that m is indeed a good choice, as it will be shown to
satisfy the conditions of Definition 4.1. Then, according to Theorem 4.2, the Newton orbit
Tn(m) converges to a bump, m!, as n → +∞ and Theorem 2.2 is proved.

The 0-th order approximation
We use a perturbative method close in spirit to the Chapmann-Enskogg expansion of the

Boltzmann equation. The 0-th order approximation will be m0
ξ(x), which is defined in (2.9).

Why m0
ξ(x) and not mξ(x)? (mξ(x) the symmetric function obtained from m0

ξ(x) by dropping
the somewhat misterious last term in (2.9)). To compare the two, let

f0(m) = −m + tanh{βJ # m}
(i.e. f(m) after dropping h from the argument of the hyperbolic tangent)

bξ = f0(m0
ξ) ≡ tanh{βJ # m0

ξ}− m0
ξ , b̃ξ = f0(mξ) (5.1)

b̃ξ(x) = 0 for x ≥ 1, so that in this region mξ is definitely the best choice. However b̃ξ(x) ≈
e−αξ for x ∈ [0, 1]. Instead bξ(x) (= 0 when x ≥ 1 but |bξ(x)| ≤ ce−α0ξ and such a better
behavior at x ∈ [0, 1] compensates for being worse elsewhere making m0

ξ overall a better
choice than mξ.

In Lemma 5.1 below we will not only prove that |bξ(x)| is bounded in [0, 1] by ce−α0ξ, but
also that it is bounded by ce−2αξ in [1, ξ] and by ce−2αξe−2α(x−ξ) in [ξ,∞).

Let kξ ∈ Csym(R) be defined for x ≥ 0 as

kξ(x) := e−2αξk0
ξ (x) (5.2)

where k0
ξ (x) = k0(ξ − x) and

k0(y) :=
a

1 − m2
β

[mβ + m̄(y)]{eαy[mβ − m̄(y)]} (5.3)

Lemma 5.1. Let α0 > α be as in Theorem 2.2. Then there is c > 0 so that for all ξ and
x ≥ 0 ∣∣∣bξ(x) + kξ(x)

∣∣∣ ≤ c
(
e−2α(ξ+x) + 10≤x≤1e

−ξα0

)
(5.4)

∣∣∣
d

dξ

(
e2αξbξ(x)

)
+

d

dx

(
e2αξbξ(x)

)∣∣∣ ≤ c
(
e(2α−α0)ξ10≤x≤1 + e−2αξe2α(ξ−x)

)
(5.5)

Proof.
As m0

ξ(x) is continued symmetrically through the origin, the expression on the r.h.s. of (2.9)
does not remain valid for x < 0. We denote by Rξ(x) their difference, setting however
Rξ(x) = 0 for x < −1, thus Rξ(x) = 0 unless x ∈ [−1, 0), where

Rξ(x) = m0
ξ(x) − [m̄(ξ − x) − ae−α(x+ξ)] = [m̄(x + ξ) − ae−α(ξ−x)] − [m̄(ξ − x) − ae−α(x+ξ)]
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We can then write

Rξ(x) = 1x∈[−1,0]

{
[mβ − ae−α(ξ−x) − m̄(ξ − x)] + [m̄(x + ξ) − mβ + ae−α(x+ξ)]

}
(5.6)

Then, by Theorem 2.2, there are c > 0 and α0 > α so that

|Rξ(x)| ≤ ce−α0ξ (5.7)

For x ≥ 0,

bξ(x) = tanh
(
β

∫
dy J(y − x){m̄(ξ − y) − ae−α(y+ξ) + Rξ(y)}

)

− tanh
{
β

∫
dy J(y − x)m̄(ξ − y)

}
+ ae−α(x+ξ) (5.8)

Recalling the definition (2.13) of Lm, after a Taylor expansion we get

bξ = Lm̄ξ

(
− ae−α(x+ξ)

)
+ Gξ (5.9)

where
Gξ = pm̄ξJ # Rξ +

1
2
zm̄ξ [J # e−α(y+ξ)]2 + Hξ (5.10)

zm̄ξ := β tanh′′{βJ # m̄ξ(x)} (5.11)
with Hξ(x) the remainder, so that

|Hξ(x)| ≤ ce−3α(x+ξ) + e−2α0ξ1x∈[0,1] (5.12)

Then

|Gξ(x)| ≤ c[e−2α(x+ξ) + 1x∈[0,1]e
−α0ξ] (5.13)

with c > 0 a suitable constant.
Recalling that m̄ξ is defined in (2.9), we have

Lm̄ξ

(
e−α(x+ξ)

)
= e−2αξeα(ξ−x)

m2
β − m̄(ξ − x)2

1 − m2
β

(5.14)

because, by (2.5),

β

∫
dy J(y − x)eα(y−x) =

1
1 − m2

β

(5.15)

(5.4) follows from (5.9), (5.14) and (5.13).

By (5.1) and (5.8) we have for x ≥ 0

e2αξbξ(x) = e2αξ tanh
(
β

∫
dy J(y − x){m̄(ξ − y) − ae−2αξeα(ξ−y) + Rξ(y)}

)

−e2αξm̄(ξ − x) + aeα(ξ−x)

Then
e−2αξ d

dξ

(
e2αξbξ(x)

)
= I1 + · · · + I5 (5.16)

where
I1 := 2α

(
tanh

{
βJ # m0

ξ(x)
}
− m̄(ξ − x)

)
(5.17)

I2 := 2α cosh−2
{
βJ # m0

ξ(x)
}
β

∫
dy J(y − x)[ae−2αξeα(ξ−y)] (5.18)
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I3 := cosh−2
{
βJ # m0

ξ(x)
}
β

∫
dy J ′(y − x)

(
m0

ξ(y) − Rξ(y)
)

(5.19)

where J ′(y − x) denotes the derivative of J(y − x) with respect to x.

I4 :=
d

dx
m0

ξ(x) (5.20)

I5 := cosh−2
{
βJ # m0

ξ(x)
} d

dξ

(
βJ # Rξ(x)

)
(5.21)

We have ∣∣∣I1 + I2

∣∣∣ ≤ c
(
1x∈[0,1]‖Rξ‖∞ + [e−2αξeα(ξ−x)]2

)
(5.22)

I3 + I4 = − d

dx
tanh

{
βJ # m0

ξ

}
+

d

dx
m0

ξ(x) + cosh−2
{
βJ # m0

ξ(x)
}
βJ # R′

ξ(x)

= − d

dx
bξ(x) + cosh−2

{
βJ # m0

ξ(x)
}
βJ # R′

ξ(x)

where R′
ξ(x) = dRξ(x)/dx. By (5.6) we get for x ∈ [−1, 0]

d

dx
Rξ(x) = m̄′(x + ξ) − aαe−α(ξ−x) + m̄′(ξ − x) − aαe−α(x+ξ) (5.23)

d

dξ
Rξ(x) = m̄′(x + ξ) + aαe−α(ξ−x) − m̄′(ξ − x) − aαe−α(x+ξ) (5.24)

By (2.6) the right hand sides are bounded by ce−α0ξ, c a suitable constant. With the first
expression we complete the bound of I3 + I4 and with the second one that of I5. In this way
we prove (5.5).

Lemma 5.1 is proved. !

The next orders of the perturbative expansion.
We write

m = m0
ξ + ψ1 + ψ2 (5.25)

and want to determine ξ, m0
ξ , ψ1 and ψ2 as 0-th, first and second order approximations to

the bump. According to perturbation theory we will determine recursively the various order
of approximation. We write

f(m) = tanh{βJ # (m0
ξ + ψ1 + ψ2) + βh}− tanh{βJ # m0

ξ} + bξ − (ψ1 + ψ2) (5.26)

with bξ defined in (5.1).
We consider ψ1, ψ2 and h as “infinitesimals” and we Taylor expand to second order.

Writing Lξ and pξ for Lm0
ξ

and pm0
ξ

we get

f(m) = Lξ(ψ1 + ψ2) + hpξ + bξ +
1
2
zξ{J # (ψ1 + ψ2)}2 +

h2

2
zξ

+hzξ{J # (ψ1 + ψ2)} +
1
3!

z̃ξ(J # ψ1)3 + 03
(
ψ1, ψ2, h

)
(5.27)

where setting
z(·) = β2 tanh′′(·), z̃(·) = β3 tanh′′′(·) (5.28)
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we define zξ(x) and z̃ξ(x) as respectively z(·) and z̃(·) computed at βJ # m0
ξ(x). 03 is the

remainder term,
∣∣∣03

(
ψ1, ψ2, h

)∣∣∣ ≤ c
∑

i1+i2+i3=3;i1<3

|J # ψ1|i1 |J # ψ2|i2hi3 (5.29)

with c a suitable constant.

The first order equation is
Lξψ1 + hpξ + bξ = 0 (5.30)

It looks natural to solve (5.30) by choosing ξ = ξ0 ≡ ξ0(h) so that the sum of the last two
terms on the left hand side has no component along the eigenvector with maximal eigenvalue
of L0

ξ , which is very close to 0 for h small. Using the notation (3.16), we then set

πm0
ξ0

(
hpξ0 + bξ0

)
= 0 (5.31)

In Proposition 5.2 below we will see that indeed (5.31) has a solution, at least for h small
enough, and that e−αξ0 = 0(

√
h), in agreement with the previous claims on the length of the

bump. Even neglecting the difference between bξ and −kξ, ψ1 is at best of the order of h. We
then have from (5.27)

f(m) = Lξ0ψ2 +
1
2
zξ0 [J # ψ1]2 +

1
2
zξ0

(
[J # ψ2]2 + 2[J # ψ1][J # ψ2]2

)
+

h2

2
zξ0

+hzξ0{J # (ψ1 + ψ2)} +
1
3!

z̃ξ0(J # ψ1)3 + 03
(
ψ1, ψ2, h

)

=
1
2
zξ0

(
[J # ψ2]2 + 2[J # ψ1][J # ψ2]2

)
+ hzξ0J # ψ2 + 03

(
ψ1, ψ2, h

)
(5.32)

having chosen ψ2 so that

Lξ0ψ2 +
1
2
zξ0{J # ψ1}2 +

h2

2
zξ0 + hzξ0J # ψ1 +

1
3!

z̃ξ0(J # ψ1)3 = 0 (5.33)

In this way f(m) may only be 0(h2). In fact, if ψ1 is of the order of h and the sum of the
second, the third and the fourth terms in (5.33) has a component along the eigenvector with
maximal eigenvalue of Lξ0 ,then ψ2 is also of the order of h and the term in (5.32) is of the
order of h2 and not smaller as requested in Definition 4.1. Unless a miracolous but unlikely
cancellation, this approach is not going to work.

To avoid the impasse we expand also ξ (with a procedure which may remind of the
Chapman-Enskogg expansion). Set τ := ξ0

2 and let Γ ∈ Csym(R) be defined for x ≥ 0 as

Γ(x) :=
∫ τ

0
dteLξ0

t
(
hpξ0(x) + bξ0(x)

)
(5.34)

By Theorem 3.4 (details are given later) Γ(x) is a good approximation to ψ1(x). The new
ansatz which replaces (5.25) has still the form

m = m0
ξ + ψ + ψ! (5.35)
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but ξ, ψ and ψ! will be different from ξ0, ψ1 and ψ2. We rewrite (5.27) as

f(m) = Lξ(ψ + ψ!) + hpξ + bξ +
1
2
zξ

(
J # [Γ + h]

)2
+

1
3!

z̃ξ(J # Γ)3

+
1
2
zξ

{
[J # (ψ + ψ!)]2 − [J # Γ]2} + 2h{J # (ψ + ψ! − Γ)

}

+
1
3!

z̃ξ

{
(J # ψ)3 − (J # Γ)3

}
+ 03

(
ψ, ψ!, h

)
(5.36)

which is obtained after the Taylor expansion of (5.27) by adding and subtracting the term

1
2
zξ

(
J # [Γ + h]

)2
+

1
3!

z̃ξ(J # Γ)3

which is the same as the sum of the second to the fifth terms on the l.h.s. of (5.33), if we
neglect the difference between Γ and ψ1.

Choice of parameters.
We choose ξ = ξ1, ξ1 = ξ1(h), so that

πm0
ξ1

(
hpξ1 + bξ1 +

1
2
zξ1

(
J # [Γ + h]

)2
+

1
3!

z̃ξ1(J # Γ)3
)

= 0 (5.37)

ψ so that

Lξ1ψ + hpξ1 + bξ1 +
1
2
zξ1

(
J # [Γ + h]

)2
+

1
3!

z̃ξ1(J # Γ)3 = 0 (5.38)

and finally ψ! so that

Lξ1ψ
! +

1
2
zξ1

{
[J # ψ]2 − [J # Γ]2 + 2h[J # (ψ − Γ)]

}
= 0 (5.39)

Then, setting m as in (5.35),

f(m) =
1
2
zξ1

{
[J # ψ!]2 + 2[J # ψ][J # ψ!] + 2hJ # ψ!

}
+

1
3!

z̃ξ1

{
(J # ψ)3 − (J # Γ)3

}

+03
(
ψ, ψ!, h

)
(5.40)

We will prove that ξ1 is close to ξ0 as (5.31) differs from (5.37) by terms of order h2. We
will then show that ψ and Γ are so close to each other that ψ! has order higher than h and
m = m0

ξ1
+ ψ + ψ! will satisfy the conditions of Definition 4.1.

6. Existence of ξ0 and of ξ1

In this section we will prove that for all h small enough there exist solutions ξ0 and ξ1 of
(5.31) and respectively (5.37). We will also establish a bound on Γ(x).
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Proposition 6.1. For any h > 0 small enough there are ξ0 and ξ1 which verify (5.31)
and respectively (5.37). Both he2αξ0 and he2αξ1 have limits when h → 0+ and these limits
coincide. Moreover for any α! < α there is c > 0 so that

|ξ1 − ξ0| ≤ ce−(2α0−α)ξ1 , |Γ(x)| ≤ c
[
eα!(ξ0−x)e−(α0+α!)ξ0 + e−2αξ0

]
(6.1)

Proof.
Let ξ! ≡ ξ!(h) be such that e2αξ!(h)h = 1 and let

ζ = ξ − ξ!(h), ζ0(h) = ξ0(h) − ξ!(h), ζ1(h) = ξ1(h) − ξ!(h) (6.2)

In the following we will consider ζ and h as independent variables, with then ξ a function of
h and ζ via (6.2), ξ = ξ(h, ζ). Consequently (5.31)-(5.37) are now thought of as equations in
ζ which depend parametrically on h. We multiply (5.31) by h−1, then ζ0 solves the equation

F 0
h (ζ) := Ah(ζ) − e−2αζB0

h(ζ) = 0 (6.3)

where setting vξ := vm0
ξ
, uξ := um0

ξ
, λξ := λm0

ξ
and pξ := pm0

ξ
and recalling (3.16) with the

relation uξpξ = vξ

Ah(ζ) :=
∫

R+

dx vξ(x), ξ = ξ(h, ζ) (6.4)

B0
h(ζ) := −

∫

R+

dx

pξ
vξe

2αξbξ, ξ = ξ(h, ζ) (6.5)

Analogously, by (5.37) ζ1 solves the equation

Fh(ζ) := F 0
h (ζ) + B1

h(ζ) = 0 (6.6)

where

B1
h(ζ) :=

∫

R+

dx

pξ
vξ

(
1
2
zξ

(
h−1[J # Γ]2 + 2J # Γ + h

)
+ h−1 1

3!
z̃ξ(J # Γ)3

)
(6.7)

We postpone the proof that Ah(ζ), B0
h(ζ) and B1

h(ζ) are for any h continuous and dif-
ferentiable functions of ζ, that they and their derivatives with respect to ζ are continuous
functions of h and that, uniformly on the compacts,

lim
h→0+

Ah(ζ) = A > 0; lim
h→0+

B0
h(ζ) = B0 > 0; lim

h→0+
B1

h(ζ) = 0 (6.8)

lim
h→0+

∂

∂ζ
Ah(ζ) = lim

h→0+

∂

∂ζ
B0

h(ζ) = lim
h→0+

∂

∂ζ
B1

h(ζ) = 0 (6.9)

Existence of ξ0(h)
(6.8) and (6.9) imply the existence of ξ0(h) for all h small enough. In fact let ζ0(0) be

such that

A − e−2αζ0(0)B0 = 0, e2αζ0(0) =
B0

A
(6.10)

Then there is h′ > 0 so that for all h ≤ h′ and all |ζ − ζ0(0)| ≤ 1
d

dζ
F 0

h (ζ) ≥ 1
2
[2αe−2αζB0] ≥ 1

2
[2αAe−2α] (6.11)
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Since F 0
h

(
ζ0(0)

)
→ 0 as h → 0+ there is h′′ ≤ h′ so that for all h ≤ h′′

∣∣F 0
h

(
ζ0(0)

)∣∣ ≤ 1
10

[2αAe−2α] (6.12)

Then for any h ≤ h′′ there is a unique value ζ0(h) ∈ [ζ0(0)−1, ζ0(0)+1] where F 0
h

(
ζ0(h)

)
= 0.

We have thus proved the existence of ξ0(h) = ξ!(h) + ζ0(h) for all h ≤ h′′. Moreover

he2αξ0(h) = e2αζ0(h), lim
h→0+

he2αξ0(h) = e2αζ0(0) (6.13)

After proving the first inequality in (6.1) we will conclude that also limhe2αξ1(h) = e2αζ0(0).

Existence of ξ1(h)
By the same arguments there is h′′′ ≤ h′′ so that for all h ≤ h′′′ and all |ζ − ζ0(0)| ≤ 1

d

dζ
Fh(ζ) ≥ 1

2
[2αAe−2α] (6.14)

We also take hiv ≤ h′′′ so that for all h ≤ hiv

∣∣Fh

(
ζ0(0)

)∣∣ ≤ 1
10

[2αAe−2α] (6.15)

Then there is a unique solution ζ1 = ζ1(h) of Fh(ζ) = 0 in [ζ0(0) − 1, ζ0(0) + 1].

Proof of the first inequality in (6.1)
We have ∣∣ζ1(h) − ζ0(h)

∣∣ ≤ 2
2αAe−2α

max
|ζ−ζ0(0)|≤1

∣∣B1
h(ζ)

∣∣ (6.16)

We will prove that there are hv ≤ hiv and c > 0 so that for all h ≤ hv

∣∣B1
h(ζ)

∣∣ ≤ ce(α−2α0)ξ, for all |ζ − ζ0(0)| ≤ 1 (6.17)

so that ∣∣ξ1(h) − ξ0(h)
∣∣ =

∣∣ζ1(h) − ζ0(h)
∣∣ ≤ ce(α−2α0)ξ (6.18)

which proves the first inequality in (6.1).

Proof of the first two limits in (6.8)
Since for any c and δ, m0

ξ ∈ G(c,ξ,δ) the conclusions of Theorem 3.3 apply to m ≡ m0
ξ .

Then by (3.9) and (3.10)

lim
ξ→+∞

∫

R+

dx vξ(x) =
∫

R
dx m̃′(x) = A (6.19)

which proves the first limit in (6.8). We will next prove that

B0 =
∫

R
dx

m̃′(x)k0(x)
β(1 − m̄(x)2)

(6.20)
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k0 being defined in (5.2). In fact by (3.9) and (5.2)-(5.4) the contribution of x ∈ [0, 1] to the
integral in (6.5) is bounded by

c

∫ 1

0
dx e−α|ξ−x|{k0(ξ − x) + c[e−2αx + e(2α−α0)ξ]} (6.21)

that vanishes as ξ → +∞ because α0 > α and ‖k0‖∞ < ∞.
When x > 1 the last term is absent. We then use (3.9) when |ξ − x| ≥ ξ/2 and (3.10)

otherwise. We then obtain the second limit in (6.8) with B0 as in (6.20).

Proof of the first two limits in (6.9)
The first limit in (6.9) is a straight consequence of (3.13) and (3.14). For the second one

we write
∂

∂ζ
B0

h(ζ) = −
∫

|ξ−x|≤ξ/2
dx

d

dx

(
vξ(x)

e2αξbξ(x)
pξ(x)

)
+ Λ1 + Λ2 + Λ3

+
∫

|ξ−x|>ξ/2
dx

{dvξ

dξ

e2αξbξ(x)
pξ(x)

− vξ
d

dx

(e2αξbξ(x)
pξ(x)

)}
(6.22)

where

Λ1 :=
∫

|ξ−x|≤ξ/2
dx

{ d

dξ
vξ(x) +

d

dx
vξ(x)}

e2αξbξ(x)
pξ(x)

}
(6.23)

Λ2 :=
∫

R+

dx
vξ(x)
pξ(x)

{ d

dξ
e2αξbξ(x) +

d

dx
e2αξbξ(x)

}
(6.24)

Λ3 :=
∫

R+

dx vξ(x)e2αξbξ(x)
{ d

dξ

1
pξ(x)

+
d

dx

1
pξ(x)

}
(6.25)

The first integral on the right hand side of (6.22) vanishes as ξ → +∞ by (3.10), (2.6) and
(5.2)-(5.4).

The first term in the second integral vanishes by (3.13) and (5.2)-(5.4). The other one
can be written as

∫

|ξ−x|>ξ/2
dx

e2αξbξ(x)
pξ(x)

d

dx
vξ(x) −

[
vξ

e2αξbξ(x)
pξ(x)

]ξ/2

0
−

[
vξ

e2αξbξ(x)
pξ(x)

]∞
3ξ/2

(6.26)

We have
d

dx
vξ(x) = [1 + λξ]−1 d

dx

∫
dy pξ(x)J(y − x)vξ(y)

hence by (3.9) and (3.8) ∣∣∣
d

dx
vξ(x)

∣∣∣ ≤ ce−α′|ξ−x| (6.27)

Using again (3.9) and (5.2)-(5.4) we conclude that (6.26) vanishes as ξ → +∞.
By (3.15) and (5.2)-(5.4) Λ1 vanishes as ξ → +∞. Λ2 vanishes because of (5.5) and (3.9)

(recall that α0 > α). Λ3 vanishes because of (5.2)-(5.4), (3.9) and because there is c > 0 so
that ∣∣∣

d

dξ

1
pξ(x)

+
d

dx

1
pξ(x)

∣∣∣ ≤ ce−α(ξ+x) (6.28)

(recall that pξ(x) = pm0
ξ(x)).

We have therefore proved the first two limits in (6.9).
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The existence of ξ0(h) (and hence of Γ) follows, for all h small enough, from the first two
limits in (6.9) and it is thus established.

The bound (6.1) on Γ
We set

γ = γ(h) := −πξ0

(
hpξ0 − kξ0

)
(6.29)

(kξ as in (5.2)) and write

Γ(x) :=
∫ τ

0
dt eLξ0

t
{(

hpξ0 − kξ0 + γvξ0

)
+

(
bξ0 + kξ0 − γvξ0

)}
(6.30)

By the definition of ξ0

γ = −πξ0

(
kξ0 + bξ0

)
(6.31)

Using (5.4) and (3.9) there is c′ > 0 so that

|γ| ≤
∫

R+

dxuξ0(x)ce−2α(ξ0+x) +
∫ 1

0
dxuξ0(x)ce−α0ξ0 ≤ c′e−(α+α0)ξ0 (6.32)

By (3.18)

‖
∫ τ

0
dt eLξ0

t
(
hpξ0 − kξ0 + γvξ0

)
‖∞ ≤ d+

∫ τ

0
dt e−d−t

(
‖hpξ0‖∞

+‖kξ0‖∞ + ‖γvξ0‖∞
)

≤ c′e−2αξ0 (6.33)

having used (6.32) the fact that h < ce−2αξ0 , and that ‖kξ0‖∞ ≤ ce−2αξ0 . By (5.4)
∣∣∣
∫ τ

0
dt eLξ0

t
(
bξ0 + kξ0 − γvξ0

)∣∣∣ ≤ cτ |γ| +
∫ τ

0
dt eLξ0

t
(
1y∈[0,1]e

−α0ξ0

+e−4αξ0e2α(ξ0−y)
)

(6.34)

We will prove that for any α! < α there is c > 0 so that
∫ τ

0
dt [eLξ0

t1y∈[0,1]](x) ≤ ce−α!x (6.35)

∫ τ

0
dt eLξ0

te2α(ξ0−y) ≤ ce2αξ0 (6.36)

Then by (6.30)-(6.36), recalling that τ = ξ2
0

∣∣Γ(x)
∣∣ ≤ c

(
e−2αξ0 + ξ2

0e
−(α+α0)ξ0 + e−(α0+α!)ξ0eα!(ξ0−x) + e−2αξ0

)
(6.37)

which proves the second inequality in (6.1).
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Proof of (6.35). By Proposition 6.3, equations (6.28)-(6.29) of [2], for any ζ ∈ (0, α) there
is c > 0 so that for all x > 0 and y > 0

eLξ0
t(x, y) ≤ e−t

∑

n

[(λξ0 + 1)t]n

n!
c!ne−ζ|x−y|

≤ c!t(λξ0 + 1)etλξ0e−ζ|x−y| (6.38)

If y ∈ [0, 1] by (3.8) and recalling that t ≤ τ = ξ2
0 there is c > 0 so that

eLξ0
t(x, y) ≤ cξ2

0e
−ζx (6.39)

(6.35) then follows with α! ∈ (0, ζ).

Proof of (6.36). Let

γ′ = πm0
ξ0

(
e2α(ξ0−y)

)
(6.40)

there is c > 0 so that

|γ′| ≤
∫

|x−ξ0|≤ξ/2
dx

vξ0(x)
pξ0(x)

e2α(ξ0−x) +
∫

|x−ξ0|≥ξ/2
dx

vξ0(x)
pξ0(x)

e2α(ξ0−x) ≤ ceαξ0 (6.41)

having used (3.9). Then by (3.18), there are c and c′ so that for any t ≤ τ = ξ2
0

∣∣∣[eLξ0
te2α(ξ0−y)](x)

∣∣∣ ≤ c
(
etλξ0‖γ′vξ0‖∞ + e−d−t‖e2α(ξ0−y) − γ′vξ0‖∞

)

≤ c′
(
eαξ0 + e2αξ0e−d−t

)

hence (6.36).

Proof of (6.17) and of the third limit in (6.8)
Let |ζ − ζ0(0)| ≤ 1 and h so small that |ζ0(h) − ζ0(0)| ≤ 1. Then

|ξ − ξ!(h)| ≤ |ζ0(0)| + 1 (6.42)

because ξ = ξ!(h) + ζ = ξ!(h) + ζ0(0) + [ζ − ζ0(0)]. Analogously,

|ξ − ξ0(h)| ≤ 2 (6.43)

because ξ − ξ0(h) = ζ − ζ0(h) + ζ0(0)− ζ0(0). Then by (3.9) and (3.10) there is c > 0 so that
∣∣∣B1

h(ζ)
∣∣∣ ≤ c

∫ ξ

0
dx e−α(ξ−x)

{
h−1e−2(α0+α!)ξ0e2α!(ξ0−x) + eα!(ξ0−x)e−(α0+α!)ξ0 + h

}

+c

∫ ∞

ξ
dx e−α′(x−ξ)

{
h−1e−2(α0+α!)ξ0 + e−(α0+α!)ξ0 + h

}

≤ c
{
e(2α!−α)ξe−2(α0+α!)ξh−1 + h + e−(α0+α!)ξ + h−1e−2(α0+α!)ξ0

+e−(α0+α!)ξ0 + h
}

≤ c′e(α−2α0)ξ
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Proof of the third limit in (6.9)
We denote by {·} the factor that multiplies vξ/pξ in the integral in (6.7). Then

d

dζ
B1

h(ζ) =
∫

R+

dx

(( d

dξ
vξ

) 1
pξ

{·} + vξ

( d

dξ

1
pξ

)
{·} +

vξ

pξ

d

dξ
{·}

)
(6.44)

By (3.13) and (3.14), there are c and δ positive so that
∣∣∣

d

dξ
vξ(x)

∣∣∣ ≤ c
(
e−α|ξ−x| + e−2αξe−δ|ξ−x|

)
(6.45)

By (6.44) the first term on the right hand side of (6.38) can be bounded proceeding as in
the proof of (6.17) and shown to vanish as h → 0+, we omit the details. Since dp−1

ξ /dξ is
bounded the same argument works for the second term which also vanishes when h → 0+.
By observing that dz−1

ξ /dξ and dz̃−1
ξ /dξ are bounded we are again in the same situation thus

proving that also the third term vanishes as h → 0+. This completes the proof of the third
inequality in (6.9).

Having proved (6.8) and (6.9) the previous analysis is justified and we have the existence
of ξ0(h) and of ξ(h). The first inequality in (6.1) which is the same as (6.18) was proved
under the assumption of validity of (6.17) which has been established above, so that (6.18)
is also proved. Proposition 6.1 is proved. !

7. Existence of ψ and ψ!

Since ξ1(h) → +∞ as h → 0+, for all h small enough ξ1(h) verifies the conditions of
Theorem 3.4 that can therefore be applied in the present context and used to solve (5.38),
thus finding ψ. Let τ := ξ2

0 and

ψ̃(x) :=
∫ τ

0
dt eLξ1

t
{

hpξ1 + bξ1 +
1
2
zξ1

(
J # [Γ + h]

)2
+

1
3!

z̃ξ1(J # Γ)3
}

(7.1)

Recalling that, by the choice of ξ1, the curly bracket term has no component along vξ1 , by
(3.18) and (3.20) we get

‖ψ̃ − ψ‖∞ ≤ ce−d−ξ2
0 (7.2)

for h so small that ξ1 is as large as required by Theorem 3.4.

Lemma 7.1. There are δ > 0 and c > 0 so that for all h small enough
∣∣ψ̃(x) − Γ(x)

∣∣ ≤ ceα(ξ1−x)+e−(3α+δ)ξ1 (7.3)

where (y)+ = y1y>0.
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Proof.
We write

ψ̃(x) − Γ(x) =
∫ τ

0
dt

(
[eLξ1

t − eLξ0
t]{hpξ0 + bξ0} + eLξ1

t[F1 + F2]
)

(7.4)

with
F2 :=

1
2
zξ1

(
J # Γ

)2
+ {pξ1J # Rξ1 − pξ0J # Rξ0 + Hξ1 − Hξ0} (7.5)

Rξ(x) being defined in (5.6) and Hξ in (5.10)

F1 := h(pξ1 − pξ0) +
(
b̂ξ1 − b̂ξ0

)
+

1
2
zξ1

{(
J # [Γ + h]

)2
−

(
J # Γ

)2}
+

1
3!

z̃ξ1

(
J # Γ

)3
(7.6)

b̂ξ1(x) := bξ1 − pξ1J # Rξ1 − Hξ1 (7.7)

Analysis of the term containing F1

By (3.17) and (3.8)

‖
∫ τ

0
dt eLξ1

tF1‖∞ ≤ d+τec+τe−2αξ‖F1‖∞ ≤ c′ξ2
0‖F1‖∞ (7.8)

with c′ suitable constant. By (6.1) ‖Γ‖∞ ≤ ce−α0ξ0 and since h ≤ ce−2αξ1 we have

‖F1‖∞ ≤ h‖pξ1 − pξ0‖∞ + ‖b̂ξ1 − b̂ξ0‖∞ + c′e−(α0+2α)ξ1 (7.9)

c′ a suitable constant. The third term is all right because

c′ξ1
2e−(α0+2α)ξ1 ≤ ce−(3α+δ)ξ1 (7.10)

for suitable values of the parameters.
We will next show that also the two other terms on the right hand side of (7.9) are

bounded by the right hand side of (7.3). By (6.1) and (2.6) there are c and c′ so that

h|pξ1(x) − pξ0(x)| ≤ chm̄′(ξ1 − x)|ξ1 − ξ0| ≤ c′e−2αξ1e−α|ξ1−x|e(α−2α0)ξ1 (7.11)

By (5.9), (5.10) and (7.7)

b̂ξ1 = Lm̄ξ1

(
e−α(x+ξ1)

)
+ Ĝξ1 , Ĝξ :=

1
2
zm̄ξ [J # e−α(y+ξ)]2 (7.12)

We then have

‖b̂ξ1 − b̂ξ0‖∞ ≤ ‖Ĝξ1 − Ĝξ0‖∞ + ‖Lm̄ξ1

(
e−α(x+ξ1)

)
− Lm̄ξ0

(
e−α(x+ξ0)

)
‖∞ (7.13)

By (5.14)

d

dξ
Lm̄ξ

(
e−α(x+ξ)

)∣∣∣
ξ=ξ1

= −αe−2αξ1eα(ξ1−x)
m2

β − m̄(ξ1 − x)2

1 − m2
β

−2m̄(ξ1 − x)m̄′(ξ1 − x)e−2αξ1eα(ξ1−x)[1 − m2
β ]−1

Hence by (2.6) and (6.1)

‖Lm̄ξ1

(
e−α(x+ξ1)

)
− Lm̄ξ0

(
e−α(x+ξ0)

)
‖∞ ≤ c|ξ1 − ξ0|e−2αξ1 ≤ c′e(α−2α0−2α)ξ1 (7.14)

Recalling (7.12) there is c > 0 so that

‖Ĝξ1 − Ĝξ0‖∞ ≤ ‖ d

dξ

1
2
zm̄ξ [J # e−α(y+ξ)]2

∣∣∣
ξ=ξ1

‖∞|ξ1 − ξ0| ≤ ce(α−2α0)ξ1e−2αξ1 (7.15)
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In conclusion
‖F1‖∞ ≤ c

(
e−(2α0+α)ξ1 + e−(α0+2α)ξ1

)
(7.16)

which by (7.8) shows that the contribution of F1 to the integral in (7.4) is bounded by the
right hand side of (7.3) for suitable values of the parameters.

Analysis of the term containing F2

By (6.38) for any α! ∈ (0, α) there is c > 0 so that (recall τ = ξ2
0)

∣∣∣
∫ τ

0
dt eLξ1

tF2(x)
∣∣∣ ≤ cξ4

1

∫

R+

dy e−α!|x−y||F2(y)| (7.17)

By (6.1)

e−α!|x−y| 1
2
zξ1

(
J # Γ(y)

)2
≤ ce−α!|x−y|

{
[eα!(ξ1−y)e−(α0+α!)ξ1 ]2 + e−4αξ1

}
(7.18)

The integral over y ∈ [0, ξ1] of the the first term on the right hand side is bounded by

c

∫ ξ1

0
dy e−α!(x−y)[eα!(ξ1−y)e−(α0+α!)ξ1 ]2 ≤ c′e−2(α0+α!)ξ1eα!(ξ1−x)eα!ξ1

= c′eα!(ξ1−x)e−(2α0+α!)ξ1

with c and c′ suitable constants. The integral over y > ξ1 is bounded by

c

∫ ∞

ξ1

dy e−α!(x−y)[e−(α0+α!)ξ1 ]2 ≤ c′e−2(α0+α!)ξ1 (7.19)

Thus
∣∣∣
∫ τ

0
dt eLξ1

t 1
2
zξ

(
J # Γ

)2
(x)

∣∣∣ ≤ cξ4
0

{
e−4αξ + eα!(ξ−x)e−(2α0+α!)ξ1 + e−2(α0+α!)ξ1

}
(7.20)

which is bounded by the right hand side of (7.3) (with a suitable choice of the parameters).
By (5.12)

∫

R+

dy e−α!|x−y||Hξ1(y)| ≤ c

∫

R+

dy e−α!|x−y|{e−3α(y+ξ) + e−2α0ξ11y∈[0,1]}

≤ c′e−α!x[e−3αξ1 + e−2α0ξ1 ] ≤ c′eα!(ξ1−x)[e−(3α+α!)ξ1 + e−(2α0+α!)ξ1 ]

Thus ∣∣∣
∫ τ

0
dt eLξ1

tHξ1(x)
∣∣∣ ≤ cξ4

0c
′eα!(ξ1−x)[e−(3α+α!)ξ1 + e−(2α0+α!)ξ1 ] (7.21)

which is also bounded by the right hand side of (7.3) (with a suitable choice of the parameters).
The last term to estimate is

∣∣∣pξ1J # Rξ1(x) − pξ0J # Rξ0(x)
∣∣∣ ≤

∣∣∣
d

dξ

(
pξJ # Rξ(x)

)∣∣∣
ξ=ξ1

∣∣∣|ξ1 − ξ0|

≤ 1x∈[0,1]|ξ1 − ξ0|c
(
e−α0ξ1e−αξ1 + e−α0ξ1

)
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We have used that, by (2.6), |dpξ/dξ| ≤ ce−αξ; we have laso used (5.7) to bound Rξ and
(5.24) to bound dRξ/dξ. We thus have

∣∣∣
∫ τ

0
dt eLξ1

t
(
pm̄ξ1

J # Rξ1(x) − pm̄ξ0
J # Rξ0(x)

)∣∣∣ ≤ cξ4
0e

−α!xe(α−3α0)ξ1

≤ c′ξ4
0e

α!(ξ1−x)e(α−3α0−α!)ξ1

which is again bounded by the right hand side of (7.3). The bound of the term containing
F2 is completed.

Conclusion of the proof of Lemma 7.1
The last term to estimate in (7.4) is

A :=
∫ τ

0
dt

(
[eLξ1

t − eLξ0
t]{hpξ0 + bξ0} (7.22)

By the integration by parts formula

A =
∫ τ

0
dt

∫ t

0
ds eLξ1

(t−s)[Lξ1 − Lξ0 ]e
Lξ0

s
(
hpξ0 + bξ0

)
(7.23)

Using (6.38), by (5.2) and (5.4) there is c > 0 so that

eLξ0
s
(
|hpξ0 | + |bξ0 |

)
(x) ≤ s

∫

R+

dy e−α!|x−y|c
(
h + e−2αξ0‖k0‖∞

+e−2α(ξ0+y) + 1y∈[0,1]e
−ξ0α0

)

≤ c′ξ2
0

(
e−2αξ0 + eα!(ξ0−x)[e−(2α+α!)ξ0 + e−(α0+α!)ξ0

)

because s ≤ τ = ξ2
0 . We have

[Lξ1 − Lξ0 ](x, y) = [pξ1(x) − pξ0(x)]J(y − x) (7.24)

Then by (6.1) and (2.6) there is c > 0 so that
∣∣∣[Lξ1 − Lξ0 ](x, y)

∣∣∣ ≤ ce−α|ξ1−x|e(α−2α0)ξ1J(y − x) (7.25)

Thus applying again (6.38)

|A| ≤ cξ4
0

∫

R+

dy

∫

R+

dz e−α|x−y|e−α|ξ−y|e(α−2α0)ξ1J(y, z)
(
e−2αξ1

+eα!(ξ−z)[e−(2α+α!)ξ1 + e−(α0+α!)ξ1 ]
)

≤ c′ξ4
0e

(α−2α0)ξ1
(
e−2αξ1 + [e−(2α+α!)ξ1 + e−(α0+α!)ξ1 ]

)

Lemma 7.1 is proved. !

We next study ψ! which is defined as the solution of (5.39). Recalling Theorem 3.2 we
have
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Lemma 7.2. There are δ > 0 and c > 0 so that

|ψ!(x)| ≤ c
(
e−(2α+δ)ξ1vξ1(x) + e−(3α+δ)ξ1

)
(7.26)

Proof.
We shorthand (5.39) as

Lξ1ψ
! + K = 0 (7.27)

Then
ψ! = −λ−1

ξ1
ωvξ1 − (Lξ1)

−1[K − ωvξ1 ] (7.28)

where

ω := πm0
ξ

(
K

)
=

∫

R+

dx
vξ1

pξ1
K (7.29)

We are going to prove that there is c > 0 so that

|ω| ≤ ce−(4α+δ)ξ1 (7.30)

We rewrite K as

2K = zξ1

{
[J # (ψ − Γ)][2h + 2J # Γ + J # (ψ − Γ)

}
(7.31)

By (6.1), (7.2) and (7.3)

|K(x)| ≤ c{eα(ξ1−x)+e−(3α+δ)ξ1}{e−2αξ1 + eα!(ξ1−x)e−(α0+α!)ξ0} (7.32)

Then by (3.9)and (3.10) we get

|ω| ≤ c

∫

R+

dx
vξ1

pξ1
|K(x)| ≤ c′

(
ξe−(5α+δ)ξ1 + e−(α0+α!+3α+δ−α!)ξ1

)
(7.33)

which proves (7.30).
By (3.20) and (3.8) there is c > 0 so that

|ψ!(x)| ≤ c
{
e2αξ1 |ω|vξ1(x) +

(
‖K‖∞ + |ω|

)}
(7.34)

which proves (7.26). Lemma 7.2 is proved. !

8. m0
ξ1

+ ψ + ψ! satisfies the conditions in Definition 4.1

To have lighter notation we write in this section ξ for ξ1 = ξ1(h).
Proof of (4.2)

We need to show that there are ζ > 0 and c > 0 so that

‖f
(
m0

ξ + ψ + ψ!
)
‖∞ ≤ ce−(4α+ζ)ξ (8.1)
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We go back to (5.40) and examine separately all the terms. For the first one we use (7.26)
and get

‖zξ[J # ψ!]2‖∞ ≤ ce−2(2α+δ)ξ (8.2)

After writing ψ = (ψ − ψ̃) + (ψ̃ − Γ) + Γ, see (7.1), we bound the second term by

‖zξ[J # ψ][J # ψ!]‖∞ ≤ c
(
[e−d−ξ2

+ e−(2α+δ)ξ]e−(2α+δ)ξ

+ sup
x≥0

[eα!(ξ−x)e−(α0+α!)ξ + e−2αξ][e−(2α+δ)ξe−α′|ξ−x| + e−(3α+δ)ξ]
)

(8.3)

We have used (6.1) and (7.2) for ψ − ψ̃, (7.3) for ψ̃ − Γ and (6.1) for Γ; we have used (7.26)
for ψ! and (3.9) to bound vξ (which appears in (7.26)).

Since for ξ large enough, α′ can be chosen as close to α as we need, we have α! < α′ and
α0 + α! > 2α for ξ large enough. In such a case the right hand side of (8.3) is bounded by
ce−(4α+ζ)ξ, for suitable values of c and ζ.

For the third term in (5.40) we have by (7.26) and since h < ce−2αξ

‖zξh[J # ψ!]‖∞ ≤ ce−2αξe−(2α+δ)ξ (8.4)

For the fourth term in (5.40) we write

‖z̃ξ

{
(J # ψ)3 − (J # Γ)3

}
‖∞ ≤ c[e−α0ξ]2e−(2α+δ)ξ (8.5)

which is obtained using (6.1), (7.2), (7.3) and observing that the largest contribution comes
from (J # Γ)2[J # (ψ̃ − Γ)].

The term with 03
(
ψ, ψ!, h

)
is bounded as in (5.29) with ψ1 and ψ2 replaced by ψ and ψ!.

The leading term is ‖J # ψ‖2
∞‖J # ψ!‖∞. Since ‖ψ‖∞ ≤ c‖Γ‖∞ we get

‖03
(
ψ, ψ!, h

)
‖∞ ≤ c[e−α0ξ]2e−(2α+δ)ξ (8.6)

thus (4.2) is proved.

Proof of (3.3)
Shorthanding m = m0

ξ + ψ + ψ!, we need to prove that the function m + h satisfies (3.3).
We have

δ0
ξ (m + h) = m + h − m0

ξ = ψ + ψ! + h

and split
δ0
ξ (m + h) = δ0,1

ξ + δ0,2
ξ (8.7)

We next define δ0,1
ξ (δ0,2

ξ is then determined by (8.7)).

δ0,1
ξ (x) := −

∫ τ

0
dt

∫

|ξ−y|≤ξ1/2
dy Gξ,t(x, y)kodd

ξ (y) (8.8)

where Gξ,t(x, y) is defined in (8.10) below and

kodd
ξ (x) =

1
2
[kξ(x) − kξ(2ξ − x)] (8.9)
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(i.e. it is the odd part of the function kξ defined in (5.2), where oddness is w.r.t. the point ξ).
The kernel Gξ,t(x, y) is defined by setting Aξ(x, y) = pm0

ξ
(x)J(y − x) and

Gξ,t(x0, y) = e−t
∑

n≥0

tn

n!

∫
dx1..dxn−1(

n−1∏

i=0

1xi∈(1,2ξ−1))Aξ(x, x1)..Aξ(xn−1, y) (8.10)

As we will see Gξ,t(x, y) is a good approximation to eLξt(x, y).
We will prove that there are c and δ positive so that

∣∣∣
∫

|ξ−x|≤ξ1/2
dx δ0,2

ξ m(x)m̄′
ξ(x)2m̄ξ(x)

∣∣∣ ≤ ce−(2α+δ)ξ (8.11)

We will also prove that δ0,1
ξ is odd (w.r.t. the point ξ) and that for x ≥ ξ

δ0,1
ξ (x) ≥ 0 (8.12)

Since m̄′
ξ is symmetric, m̄ξ antisymmetric and non positive for x ≥ ξ, (8.11) and (8.12) prove

(3.3).

Proof of (8.11)
We write δ0,2

ξ as

δ0,2
ξ := h + ψ! + [ψ − ψ̃] +

{
ψ̃ +

∫ τ

0
dt

∫

|ξ−y|≤ξ1/2
dy Gξ,t(x, y)kodd

ξ (y)
)

(8.13)

and examine separately the contribution to the integral in (8.11) of all the terms on the right
hand side of (8.13).

The first term with h vanishes by symmetry. By (2.6) and (7.26) there are c > 0 and
c′ > 0 so that

∣∣∣
∫

|ξ−x|≤ξ1/2
dx ψ!(x)m̄′

ξ(x)2m̄ξ(x)
∣∣∣ ≤ c

∫
dx e−2α|ξ−x|e−(2α+δ)ξ ≤ c′e−(2α+δ)ξ (8.14)

The contribution of [ψ − ψ̃] is also bounded as on the right hand side of (8.11) as it follows
using (7.2).

We use the expression (7.1) for ψ̃. The last two terms can be bounded using (3.17) and
(6.1): there are c and c′ so that

‖
∫ τ

0
dt eLξt

(1
2
zξ[J # (Γ + h)]2 +

1
3!

z̃ξ(J # Γ)3‖∞ ≤ cτeτd+e−2αξ
(
‖Γ‖∞ + h2

)

≤ c′ξ2e−2α0ξ (8.15)

(recall that τ = ξ2). Since α0 > α (8.15) is bounded by c′′e−(2α+δ′)ξ, for suitable values of
c′′ > 0 and δ′ > 0 in agreement with (8.11).

The remaining term in ψ̃ gives rise to

M1 := −
∫

|ξ−x|≤ξ1/2
dx m̄′

ξ(x)2m̄ξ(x)
∫ τ

0
dt eLξt

{
hpξ + bξ

}
(8.16)

We will next show that there are c and δ positive so that

|M1 − M2| ≤ ce−(2α+δ)ξ (8.17)
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where

M2 := −
∫

|ξ−x|≤ξ1/2
dx m̄′

ξ(x)2m̄ξ(x)
∫ τ

0
dt eLξt

{
hpξ − kξ

}
(8.18)

In fact by (5.4) there is c > 0 so that

|M1 − M2| ≤ c

∫

|ξ−x|≤ξ1/2
dx m̄′

ξ(x)2m̄ξ(x)
∫ τ

0
dt eLξt(x, y)

{
e−2α(ξ+y) + 1y∈[0,1]e

−ξα0
}

(8.19)

Using (6.38) and (2.6) we then obtain (8.17), we omit the details.
We next compare M2 with

M3 := −
∫

|ξ−x|≤ξ1/2
dx m̄′

ξ(x)2m̄ξ(x)
∫ τ

0
dt Gξ,t(x, y)

{
hpξ − kξ

}
(8.20)

We write

eLξt(x, y) = Gξ,t(x, y) + e−t
∑

n≥0

tn

n!

n−1∑

k=1

∫
dx1..dxn−1(

k−1∏

i=1

1xi∈(1,2ξ−1))1xk /∈(1,2ξ−1)

×Aξ(x, x1) . . . Aξ(xk−1, xk)An−k
ξ (xk, y) (8.21)

By Proposition 6.3 of [2] for any 0 < ζ < α there is c so that for all k ≥ 1

Ak
ξ (x, y) ≤ ck(1 + λξ)k e−ζ|x−y|

Then there are c > 0 and c′ > 0 so that
∣∣∣eLξt(x, y) − Gξ,t(x, y)

∣∣∣ ≤ ceλξt[(1 + λξ)t]2e−ζ(x+y)]

≤ c′ξ4e−ζ(x+y) (8.22)

Using (8.22) and (2.6) we have for suitable c > 0 and δ > 0

|M2 − M3| ≤ ce−(2α+δ)ξ (8.23)

We next observe that
Gξ,t(ξ − x, ξ − y) = Gξ,t(ξ + x, ξ + y) (8.24)

while m̄′
ξ(x)2m̄ξ(x) is antisymmetric. Then the even part of hpξ − kξ in (8.20) does not

contribute to the integral and we are left with the odd one. Since hpξ is even this term drops
out and we are left with the odd part of kξ. This compensates exactly the last term on the
right hand side of (8.13) (which has the opposite sign) so that (8.11) is proved.

δ0,1
ξ is an odd function because such is kodd

ξ and because Gξ,t is even, see (8.24). By (5.2)

kξ(y) − kξ(2ξ − y) = e−2αξa
m2

β − m̄(ξ − y)2

1 − m2
β

[eα(ξ−y) − e−α(ξ−y)] (8.25)

which is non positive for y ≥ ξ. Thus −kodd
ξ is an odd function which is non negative for

y ≥ ξ. To prove that δ0,1
ξ has the same property we use for the first time in the paper the

assumption that J(x) is not increasing for x ≥ 0.
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Lemma 8.1. Let fξ(x) be a bounded function antisymmetric around ξ and non negative
for x ≥ ξ. Then for any x ≥ ξ and t ≥ 0

Gξ,tf(x) ≥ 0 (8.26)

Proof.
Let x ≥ ξ, then

∫

R
dy J(y − x)fξ(y) =

∫ ∞

ξ
dy fξ(y)[J(y − x) − J(2ξ − y − x)]

Let x ≥ ξ, y ≥ ξ and

A+
ξ (x, y) = pm0

ξ
(x)[J(y − x) − J(2ξ − y − x)] (8.27)

Since |2ξ − y − x| ≥ |y − x|, it follows, by the monotonicity of J(·) in R+, that

A+
ξ (x, y) ≥ 0 (8.28)

On the other hand

∫

R
dy Gξ,t(x, y)fξ(y) = e−t

∑

n≥0

tn

n!

∫ ∞

ξ
dxdx1..dxn−1(

n−1∏

i=1

1xi∈(ξ,2ξ−1))

×A+
ξ (x, x1)..A+

ξ (xn−1, y)fξ(y) (8.29)

which by (8.28) is non negative. Lemma 8.1 is proved. !

References

[1] R. Dal Passo, P. de Mottoni: The heat equation with a nonlocal density dependent advection term Preprint
(1991)

[2] A. De Masi, E.Olivieri, E.Presutti: Spectral properties of integral operators in problems of interface
dynamics and metastability Markov Processes and related fields Vol. 4 no.1, (1998) 27–113

[3] A. De Masi, E.Orlandi, E.Presutti, L.Triolo: Stability of the interface in a model of phase separation
Proceedings Royal Soc. Edinburgh 124A(1994) 1013–1022

[4] A. De Masi, E.Orlandi, E.Presutti, L.Triolo: Uniqueness and global stability of the instanton in non local
evolution equations Rendiconti di Matematica 14 (1994) 693–723

[5] M. Kac, G.E.Uhlenbeck, P.C. Hemmer: J. Math. Phys. 4(1963) 216
[6] J. Lebowitz, O. Penrose: Rigorous treatment of the Van der Waals Maxwell theory of the liquid vapour

transition J. Math. Phys. 7(1966) 98
[7] J. Lebowitz, O. Penrose: Rigorous treatment of metastable state in the Van der Waals Maxwell theory J.

Stat. Phys. 3(1971) 211–236



CRITICAL DROPLET 29

Dipartimento di Matematica, Università di L’Aquila, 67100 L’Aquila, Italy
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