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Abstract. In this paper we continue the analysis of the Glauber evolution in Ising systems
with Kac interactions. In the first paper, we have proved that in a continuum limit, called the
mesoscopic limit, the magnetization density converges to the solution of a non-local deterministic
equation. Here we study the fluctuations around the limit proving convergence to a generalized
Ornstein–Uhlenbeck process. We also prove asymptotic formulae for the correlation functions
that improve those established in the previous paper and that will be used in a successive paper
to study phase separation.

AMS classification scheme numbers: 60K35, 82A05

1. Introduction

This is the second paper in a series devoted to the analysis of the Glauber evolution of±1
valued spins on the latticeZd , interacting via a Kac potential. The purpose of the series
is to extend to non-equilibrium the equilibrium theory of Kac interactions developed in the
late 1960s, thus giving a full justification to the van der Waals theory in the context of
statistical mechanics.

We refer to [5] and references therein for more comments on the model, we only recall
here the two main features of a Kac potential, namely that its range diverges asγ −1, whereγ

is a positive scaling parameter that eventually goes to 0, and that the total interaction energy
of any single spin with all the others is bounded uniformly inγ . In [6] it is proved that in
the mesoscopic limitγ → 0, where space is scaled by the sameγ , the limit magnetization
densitym(r, t) solves the non-local equation

∂m

∂t
= −m + tanh{β(J ? m + h)} (1.1)

(J ? m)(r) =
∫

dr ′ J ([r − r ′])m(r ′) . (1.2)
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The deterministic behaviour described by (1.1) is a mean-field effect due to the scaling of
the interaction and to the validity of a law of large numbers for the density field. In this
paper we study the fluctuations proving in theorem 2.8 below that the small deviations from
the deterministic limit converge to a generalized Ornstein–Uhlenbeck process.

Fluctuations have a relevant role in non-equilibrium statistical mechanics, see for
instance the fluctuating hydrodynamic theory in [13] where the case of stochastic interacting
particle systems is explicitly discussed. Fluctuations are particularly important when the
system is in a critical state where they may produce large, macroscopic effects. This will
be discussed at length in the next paper [7], where we study the phase separation. We also
refer to [2, 8, 9] for the study of the fluctuations of the interface in the Ginzburg–Landau
equation with noise and to [1, 7] for the analysis of the one-dimensional fluctuations at the
critical point for the same model considered here. The fluctuations in such a case solve,
in a suitable limit, the stochastic quantization equation of Euclidean field theory. A more
detailed discussion of all these aspects may be found in an earlier version of this paper [5].

All the proofs in this and in the subsequent paper [7], are consequences of sharp estimates
on some special functions, thev and theω functions, whose analysis is reminiscent of
the cluster expansion in equilibrium statistical mechanics. Thev and theω functions
are a linear combination of the correlation functions. Thev functions define ‘a distance’
between the actual measure at timet and the product measure with averagesm(γ x, t),
m(r, t) solving (1.1). In [5] we have proved that thev functions of ‘order’n (i.e. sum of
expectations of products of at mostn spins) are bounded bycnγ

dn/2, cn a positive coefficient
that depends only onn. Theω functions are special linear combinations of thev functions
and are similar to the truncated correlations functions. They ‘measure the distance’ of the
v functions from the moments of a Gaussian process. The main result in this paper is
theorem 2.6 where we show that theω functions are bounded byc′

nγ
2dn/3, c′

n > 0, which
vanishes faster than the bound,cnγ

dn/2, on thev-functions. Thus to first order the spins
are independent, while to the next order they are mutually correlated as in a Gaussian
distribution. In this way we prove that all the moments of the fluctuation fields converge to
the moments of a limit Ornstein Uhlenbeck process. The weak convergence of the whole
process is then a simple consequence of the Holley and Stroock theory [9].

The paper is organized as follows. In section 2 we state the main results, in section 3 we
study theω functions proving theorem 2.6, and finally in section 4 we prove the convergence
of the fluctuation fields to the generalized Ornstein–Uhlenbeck process.

2. Main definitions and results

For ease of reference we first recall the basic definitions from [5] and state precisely the
bounds on thev functions mentioned in the introduction.

The Glauber dynamics is a Markov process with state space{−1, 1}Zd

, whose elements,
the spin configurations, are denoted byσ , σ = {σ(x), x ∈ Zd}. σt , t ≥ 0, denotes the spin
configuration (i.e. the state of the process) at timet ≥ 0.

The generator of the process, denoted byLγ , γ > 0, is defined by its action on the
cylindrical functionsf :

Lγ f (σ ) =
∑
x∈Zd

cγ (x, σ )[f (σ x) − f (σ)] (2.1)

where

σx(y) =
{

σ(y) if y 6= x

−σ(x) if y = x
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cγ (x, σ ) = e−βhγ (x)σ (x)

e−βhγ (x) + eβhγ (x)
(2.2)

hγ (x) = h + (Jγ ◦ σ)(x) (Jγ ◦ σ)(x) =
∑
y 6=x

Jγ (x, y)σ (y) (2.3)

and, finally,

Jγ (x, y) = γ dJ (γ [x − y]) (2.4)

with J ∈ C3(Rd), spherically symmetric and vanishing when|r| ≥ 1, see [5].
β > 0 is the inverse temperature,h ∈ R an external magnetic field andγ > 0 the

scaling parameter of the Kac potential, that goes eventually to 0.

Definition 2.1 (The initial distribution.) In this paper we always consider initial distributions
µ that are product measures on{−1, 1}Zd

. Sometimes we restrict to a particular classµγ of
product measures determined by a functionm0 ∈ C0(Rd) such that‖m0‖∞ ≤ 1; µγ is then
the product measure such that

Eµγ (σ (x)) = m0(γ x) x ∈ Zd . (2.5)

Finally for any probabilityµ, we denote byPγ
µ the law of the Markov process generated by

Lγ with initial measureµ; Eγ
µ denotes the corresponding expectation.

In many applicationsµ will simply be the measure supported by a single
configurationσ0, then Eµ(σ (x)) = σ0(x). For a while we keepγ > 0 fixed and for
notational simplicity we will often drop the dependence onγ .

The basic quantities that have been extensively studied in [6] are the correlation
functions, i.e. the expectation of products of spins all at the same time. We will use
the following notation:x denotes a finite subset ofZd , S the collection of all such subsets,
S(n), n ≥ 0, the subset ofS of all the setsx whose cardinality,|x|, is n. Given x and y

in S we denote byx + y the union ofx andy and byx − y, y ⊂ x, their set theoretical
difference. We then write

σt (x) =
∏
x∈x

σt (x) . (2.6)

We will study the deviation of the expectation ofσt (x) from the product of the expectations
of its factorsσt (x)’s and determine the leading term asγ → 0.

Rather than centring the spins it is convenient to consider the variables

σ̃t (x) =
∏
x∈x

[σt (x) − mt(x)] (2.7)

wheremt solves

dmt(x)

dt
= −mt(x) + tanh{β[(Jγ ◦ mt)(x) + h]} (2.8)

with initial condition

m0(x) = Eµ

(
σ(x)

)
. (2.9)
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Equation (2.8) is a discretized version of (1.1). Its solution depends in general onγ and,
under suitable assumptions on the initial data, converges to the solution of (1.1) [6].

The v functions are defined by

vt (x) = Eµ

(
σ̃t (x)

)
. (2.10)

The initial measureµ in (2.10) will always be a product measure.µ specifiesm0 by (2.9),
mt by (2.8) and theñσt by (2.7). Everything in (2.10) depends onγ : the law of the process,
the variableσt andvt . For ease of reference we report below theorem 2.3.4 of [5].

Theorem 2.2There area > 0, cn, n ≥ 1, andC so that for any initial product measure, for
any t ≤ a logγ −1 andx ∈ S,

|vt (x)| ≤ c|x| eC|x|t γ d|x|/2 (2.11)

where|x| denotes the cardinality ofx.

If aC < d/2, the right-hand side of (2.11) vanishes as a power ofγ |x|.
As mentioned in the introduction we will prove that the leading term in thev functions

is given by ‘a Gaussian approximation’. We need several definitions before stating this
result in theorem 2.6.

We callVt the linear space of all the cylindrical functionsf (σt ), σt the spin configuration
at timet . Vt is the linear span of the set{σt (x), x ∈ S}. The linear span of{σt (x), x ∈ S(n)}
will be denoted byV (n)

t .
Let M(S) be the linear space of functions onS. Then

σ t := {σt (x), x ∈ S} σ̃ t := {σ̃t (x), x ∈ S} (2.12)

are random variables with values inM(S): namely, every spin configurationσt at time t

determines the valuesσt (x) and σ̃t (x); these collections specify the values ofσ t and σ̃ t at
the given configurationσt .

We use the convention

σt (∅) = σ̃t (∅) = 1 . (2.13)

As usual in equilibrium statistical mechanics, [12], we introduce an algebraic structure
in M(S) defined by the∗ product

(f ∗ g)(x) =
∑
y⊂x

f (y)g(x − y) . (2.14)

It is then readily seen that, setting

mt =
{
mt(x) =

∏
x∈x

mt (x)

}
mt(∅) = 1 (2.15)

with mt solution of (2.8);

σ t = σ̃ t ∗ mt σ̃ t = σ t ∗ m−1
t (2.16)
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where,m−1
t , the∗ inverse ofmt , is

m−1
t (x) = (−1)|x|mt(x) . (2.17)

For future reference we observe that the identity for the∗ product isI , whereI (x) = 0
if |x| > 0 andI (∅) = 1. Moreoverf ∈ M(S) has a∗ inverse if and only iff (∅) 6= 0: in
fact we can constructf −1 iteratively, settingf −1(∅) = f (∅)−1, then solving

0 = (f −1 ∗ f )(x) which gives f −1(x) = −f (∅)−1[f −1(∅)f (x)]

and so forth.
We next introduce the linear operatorKt on M(S) as follows:

Definition 2.3 Let m ∈ [−1, 1]Z
d

, mt , t ≥ 0, the solution of (2.8) with initial datumm. Then
for any t ≥ 0, x andy in Zd we set

kt (x, y, m) = −1x,y + f (1)
x (mt )βJγ (x, y) (2.18)

where 1x,y is the Kronecker delta, and denoting bytanh(n)(·) the nth derivative of the
hyperbolic tangent,

f (n)
x (m) = tanh(n){β[Jγ ◦ m(x) + h]} fx(m) = f (0)

x (m) . (2.19)

We then define the linear operatorKt on M(S) by setting

(Ktg)(x) =
∑
x∈x

∑
y /∈x−x

kt (x, y, m)g(x − x + y) (2.20)

and letK(n)
t , n ≥ 0, the restriction ofKt to M(S(n)). We finally denote byKt(x, y) the kernel

of Kt :

(Ktg)(x) =
∑

y

Kt(x, y)g(y) . (2.21)

Observe thatkt (x, y, m) is the kernel of the operator obtained by linearizing (2.8). By
the help ofKt we next define theW functions:

Definition 2.4 Given m as in definition 2.3, we defineκt (x, y), dependent onm and
interpreted as the value of the functionκt on S(2), as

κt (x, y) = βJγ (x, y)
{
f (1)

y (mt )[1 − mt(x)2] + f (1)
x (mt )[1 − mt(y)2]

}
(2.22)

wt : S(2) → R denotes the solution of

dwt

dt
= K

(2)
t wt + κt w0 = 0 . (2.23)

We then define Wt as an element ofM(S) by setting Wt = 0 on S(2n+1) while, onS(2n),

Wt (x) =
∑

{(i1,j1),...,(in,jn)}

n∏
`=1

wt (xi` , xj`
) x = (x1, . . . , x2n) (2.24)
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where the sum is over all the partitions{(i1, j1), . . . , (in, jn)} of {1, . . . , 2n} into n disjoint
pairs.

Observe that ifξx , x ∈ x, are centred Gaussian variables with covariancewt (x, y), then
Wt (x) is the expectation of their product. We will prove thatWt (x) is the leading term in
the expectation of̃σ(x). It is easy to see that there is a constantC such that

‖K(2)
t ‖ ≤ C (2.25)

as on operator on the spaceM(S(2)), equipped with sup norm. Moreover there is a constant
c such that‖kt‖∞ ≤ cγ d . We then have by (2.23)

‖wt‖∞ ≤ c eCtγ d . (2.26)

Then

|Wt (x)| ≤ (
ceCtγ d

)|x|/2
. (2.27)

The relation betweeñσ t andWt is conveniently expressed in terms of theω̂ functions
as

σ̃ t = ω̂t ∗ Wt ω̂t = σ̃ t ∗ W−1
t (2.28)

where the∗ inverse is

W−1
t (x) = (−1)|x|/2Wt (x) . (2.29)

Observe that̂ω(x) = σ̃ (x) for x ∈ Zd . The proof of (2.29) is obtained by checking that for
|x| > 0

0 =
∑
y⊂x

(−1)|y|/2Wt (y)Wt (x − y) . (2.30)

We define

ωt(x) = Eµ

(
ω̂t (x)

)
(2.31)

observing that

vt = ωt ∗ Wt ωt = vt ∗ W−1
t (2.32)

As we shall see in theorem 2.6 theω functions are much smaller than thev functions so
that the leading term in the first equality in (2.32) is the one with onlyWt , the other terms
are corrections and are smaller the larger is the order (i.e. the number of sites) ofωt . We
next specify the assumptions needed in theorem 2.6.

Definition 2.5 (The assumptions). Givent ≥ s ≥ 0, we denote byUt;s the flow onM(S)

defined as follows. Letf ∈ M(S), fs ′ , s ≤ s ′ ≤ t the solution of

dfs ′

ds ′ = Ks ′fs ′ fs = f . (2.33)
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ThenUt;sf = ft . We also denote byUt;s(x, y) the matrix elements ofUt;s , in agreement
with definition 2.3, and byU(n)

t;s the restriction ofUt;s to M(S(n)).
We suppose that there are increasing functionsat , bt , (bt ≥ ct for somec), both larger

than 1, and coefficientsc′
n, so that, for allt ≥ s

‖U(n)

t;s ‖∞ ≤ c′
na

n
t−s ‖wt‖∞ ≤ c′

2btγ
d (2.34)

and that

b−1
t at−sbs ≤ c′

0 . (2.35)

It is readily seen that the above assumptions are always satisfied by the choice

at = bt = eCt (2.36)

for a suitableC. In some cases however, other choices forat andbt are available and more
convenient.

Theorem 2.6Let at , bt andc′
n as in the Assumptions 2.5; then there area > 0, `n andcn so

that for all γ , all t ≤ a logγ −1, all x and all initial measuresµ (that are product measures)

|ωt(x)| ≤ c|x|t`|x|b
|x|
t γ 2d|x|/3 for all |x| ≥ 3 (2.37)

|ωt(x)| ≤ c2t
`2b5

t γ
2d for all |x| = 2 (2.38)

|ωt(x)| ≤ c1tb
2
t γ

d for all x ∈ Zd . (2.39)

By recalling (2.32) and (2.34) the leading contribution tovt (x) differs from Wt (x) by
a term that vanishes faster than [btγ

d/2]|x|. This allows us to go beyond the law of large
numbers, as we did in [6], and to study the fluctuation fields. We will see in theorem 2.8 that
they converge to a Ornstein–Uhlenbeck process by proving convergence of all the moments
and the weak convergence of the process.

Before defining the fluctuation fields we recall from [6] the definition of the density
fields. Forφ ∈ S(Rd), the Schwartz space of smooth functions with fast decay to infinity,
we define the (magnetic) density field

X
γ
t (φ) = γ d

∑
x∈Zd

φ(γ x)σt (x) . (2.40)

By using the Chebishev inequality and (2.11), (we do a similar computation in section 4),
we can easily see that for anyδ > 0

lim
γ→0

sup
0≤t≤a logγ −1

Pγ
µγ

(∣∣Xγ
t (φ) −

∫
dr φ(r)mt(r)

∣∣ > δ

)
= 0 (2.41)

where mt(r) is the solution of (1.1) with initial conditionm0(r), m0 and µγ as in
definition 2.1. By using martingale techniques, see for instance [13], it is also possible
to show that ifPγ is the law of the fields{Xγ

t (φ)} thought of as the canonical variables
{Xt(φ)} in D(R+, S ′(Rd)), thenPγ converges weakly on the compacts ofR+ to P, the law
supported by the trajectoryt → mt(r) dr.
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We next consider the fluctuation fields

Y
γ
t (φ) = γ d/2

∑
x∈Zd

φ(γ x)[σt (x) − m
γ
t (x)] (2.42)

wherem
γ
t (x) is the solution of (2.8) with initial conditionm0(γ x), here we make explicit

the dependence onγ . The distribution of{σt } in (2.42) isPγ
µγ with µγ as in definition 2.1.

We then consider the spaceD(R+, S ′(Rd)) and its canonical variables

Yt (φ) =
∫

dr φ(r)ξ(r, t)

where{ξ(r, t), r ∈ Rd , t ≥ 0} are the elements ofD(R+, S ′(Rd)). We denote bŷPγ the law
on D(R+, S ′(Rd)) whose marginal on the variablesYt (φ) is the same as the distribution of
the variablesY γ

t (φ) induced byPγ
µγ . We finally let Êγ denote the expectation with respect

to P̂γ .

Definition 2.7 (The Ornstein–Uhlenbeck process.) LetP̂ be the law of the Gaussian process
on D(R+, S ′(Rd)) with mean zero and covariance

Ê
(
Ys(φ)Yt (ψ)

) = Cs,t (φ, ψ) ≡
∫

dr dr ′ Cs,t (r, r
′)φ(r)ψ(r ′) (2.43)

where, for any0 ≤ s < t :

Cs,t (r1, r2) =
∫

dr ′
2 eL(t−s)(r2, r

′
2)Cs,s(r

′
1, r

′
2) (2.44)

and for anyt ≥ 0

Ct,t (r, r
′) = (1 − mt(r)

2)δ(r − r ′) + C0
t (r, r

′) (2.45)

whereL is the operator with kernel,

L(r, r ′, t) = −δ(r − r ′) + L0(r, r ′, t)Ê L0(r, r ′, t) = `(r, t)βJ (|r − r ′|) (2.46)

`(r, t) = 1

cosh2{β(J ∗ mt)(r) + h} (2.47)

andC0
t (r, r

′) solves

dC0
t (r, r

′)
dt

=
∫

dr ′′[L(r, r ′′, t)C0
t (r

′′, r ′) + L(r ′, r ′′, t)C0
t (r, r

′′)]

+ L0(r, r ′, t)Ê[1 − mt(r
′)2] + L0(r, r ′, t)[1 − mt(r)

2] (2.48)

C0
0(r, r ′) ≡ 0 .

Observe thatL(r, r ′, t) in (2.46) and`(r, t) in (2.47) are the continuous version of
kt (x, y, m) andf (1)

x (m) defined in (2.18) and (2.19).
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It can be seen that̂P is supported by the solutionsξ(r, t) of the stochastic equation

dξ(r, t)

dt
=

∫
dr ′ L(r, r ′, t)ξ(r ′, t) + dB(r, t)

dt
. (2.49)

The noiseB(r, t) is Gaussian with mean zero and covariance

Ê
(

dB(r, t)

dt

dB(r ′, t ′)
dt ′

)
= δ(t − t ′)δ(r − r ′)2b(r, t) (2.50)

where

b(r, t) = 1 − mt(r) tanh{β[(J ? mt)(r) + h]} . (2.51)

The initial conditionξ(r, 0) of (2.49) is a Gaussian process with mean 0 and covariance

C0,0(r, r
′) = δ(r, r ′)

(
1 − m0(r)

2
)
.

The distribution P̂ of the solution (2.49) is the Gaussian process with mean zero and
covariances (2.44) and (2.45).

Observe that̂P is a ‘generalized Ornstein–Uhlenbeck process’ since only the variables
Yt (φ) have a meaning as real functions, the variablesξ(r, t) being only defined as
distributions.

Theorem 2.8With the above notation,̂Pγ converges weakly tôP on D([0, T ], S ′(Rd)), for
any givenT > 0. Also theP̂γ -expectation of the product of any finite number ofYt (φ)’s
converges to the correspondingP̂-expectation, for any fixedt .

3. Proof of theorem 2.6

The proof starts from the computation of the derivative ofωt(x):

dωt(x)

dt
= Eµγ

(
D?

t ω̂t (x)
)

(3.1)

where

D?
t = Lγ + ∂

∂t
(3.2)

whereLγ is the generator of the process, see equation (2.1), and∂/∂t the derivative with
respect to time ofmt andWt .

D?
t is a linear operator onVt and the whole proof follows from a good characterization

of its action. We first need some more notation:

Definition 3.1 Given a linear operatorA? on Vt we defineA(x, y) so that

A?ω̂t (x) =
∑

y

A(x, y)ω̂t (y) (3.3)
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and the operatorA on M(S) as

(Af )(x) =
∑

y

A(x, y)f (y) . (3.4)

We callχn the projection ontoM(S(n)):

(χnf )(x) =
{

f (x) if |x| = n

0 otherwise
(3.5)

and

χ≤n =
∑
k≤n

χk . (3.6)

We also define the operatorsp±
t,α on M(S) as

(p±
t,αf )(x) = p±

t,α(|x|)f (x) p±
t,α(|x|) = [γ 2d/3−αbt ]

±|x| (3.7)

with eitherα = d/2 or α = 2d/9; bt is the function introduced in (2.34).
We finally denote by‖A‖∞ the norm of the operatorA on the spaceM(S) equipped with

sup norm and set

|A|t,α = ‖p−
t,αAp+

t,α‖∞ |A|t,α,n = ‖χnp
−
t,αAp+

t,α‖∞ . (3.8)

Proposition 3.2 Given anyN > 2 there are two linear operators onVt , A?
t and R?

t , and
coefficientsc(n) so that

D?
t = K?

t + A?
t + R?

t (3.9)

with

K?
t ω̂t (x) =

∑
y

Kt(x, y)ω̂t (y)

see equation (2.21);

|R?
t ω̂t (x)| ≤ c(|x|)

∑
x∈x

∣∣Jγ ◦ σ̃t (x)
∣∣N . (3.10)

Moreover,A?
t : V

(n)
t → V

(n+N)
t and, recalling (3.8),

|At |t,α,n ≤ c(n)γ α ‖χnAt‖∞ ≤ c(n) . (3.11)

Proof. To have lighter notation we dropt from ω̂t , D?
t , K?

t , R?
t , . . . . By the definition ofω̂,

if x /∈ x:

ω̂(x + x) = σ̃ (x)ω̂(x) −
∑
y∈x

w(x, y)ω̂(x − y) . (3.12)
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Recalling (2.19) for notation,

D?σ̃ (x) = −σ̃ (x) + fx(σ ) − fx(m) . (3.13)

We then get

D?ω̂(x) =
∑
x∈x

{
ω̂(x − x)[fx(σ ) − fx(m) − σ̃ (x)] − 1

2

∑
y∈x−x

ω̂(x − x − y)ẇ(x, y)

}
(3.14)

whereẇ(x, y) is the right-hand side of (2.23). After a Taylor expansion we get

fx(σ ) − fx(m) =
N−1∑
k=1

1

k!
f (k)

x (m)[βJγ ◦ σ̃ (x)]k + r(x, σ, m, N)[βJγ ◦ σ̃ (x)]N (3.15)

and identify

R?ω̂(x) :=
∑
x∈x

ω̂(x − x)r(x, σ, m, N)[βJγ ◦ σ̃ (x)]N . (3.16)

Since|σ̃ (x)| ≤ 2, by (2.34)

|ω̂(x)| ≤ c(|x|) wherec(|x|) is a combinatorial factor

hence (3.10).
We thus have

D?ω̂(x) = �1 + �2 + R?ω̂(x) (3.17)

�1 =
∑
x∈x

{
ω̂(x − x)

( − σ̃ (x) + f (1)
x (m)βJγ ◦ σ̃ (x)

) − 1
2

∑
y∈x−x

ω̂(x − x − y)ẇ(x, y)

}
(3.18)

�2 =
∑
x∈x

ω̂(x − x)

N−1∑
k=2

1

k!
f (k)

x (m)[βJγ ◦ σ̃ (x)]k =:
∑

y

�2(x, y)ω̂(y) . (3.19)

We write

�1 = �1,1 + �1,2 + �1,3 (3.20)

with, see equation (2.18),

�1,1 =
∑
x∈x

{
f (1)

x (m)
∑
z /∈x

βJγ (x, z)σ̃ (z)ω̂(x − x)

− 1
2

∑
y∈x−x

ω̂(x − x − y)
∑
z /∈x

(
k(x, z, m)w(z, y) + k(y, z, m)w(x, z)

)}
(3.21)

�1,2 =
∑
x∈x

{ ∑
y∈x−x

w(x, y)ω̂(x − x − y) − σ̃ (x)ω̂(x − x)

}
(3.22)

�1,3 =
∑
x∈x

∑
y∈x−x

{
f (1)

x (m)βJγ (x, y)σ̃ (y)ω̂(x − x) − 1
2ω̂(x − x − y)κ(x, y)

− 1
2

∑
z∈x−x−y

ω̂(x − x − y)[k(x, z, m)w(z, y) + k(y, z, m)w(x, z)]

}
. (3.23)
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Thus the first term,�1,1, takes into account the contribution fromJγ ◦ σ̃ (x) and ẇ(x, y)

due to the sites not inx. The contribution toẇ(x, y) from k(x, x) andk(y, y) is in �1,2,
that also accounts for the first term on the right-hand side of (3.18). The remaining terms
are collected in�1,3.

We observe that the last term on the right-hand side of (3.21) is equal to

−
∑
x∈x

∑
y∈x−x

∑
z /∈x

ω̂(x − x − y)k(x, z, m)w(z, y) .

Thus, using (3.12) and (2.18) we have

�1,1 =
∑
x∈x

∑
z∈x−x

k(x, z, m)ω̂(x + z − x) .

By equation (3.12)

�1,2 = −
∑
x∈x

ω̂(x)

hence

�1,1 + �1,2 = K?ω̂(x) . (3.24)

We next consider�1,3. Let x ∈ x andy ∈ x − x be fixed, then, using (3.12),

ω̂(x − x) = σ̃ (y)ω̂(x − x − y) −
∑

z∈x−x

w(y, z)ω̂(x − x − y − z) . (3.25)

Since

σ̃ (y)2 = 1 − m(y)2 − 2m(y)σ̃ (y) (3.26)

and recalling the definition ofκ(x, y), see (2.22), the second term on the right-hand side
of (3.23) is cancelled by a term contributing to the first one, precisely the one that comes
from 1− m(y)2 in (3.25). Thus

�1,3 = −
∑
x∈x

∑
y∈x−x

{
k(x, y, m)2m(y)σ̃ (y)ω̂(x − x − y)

+
∑

z∈x−x−y

w(y, z)(k(x, y, m)σ̃ (y)ω̂(x−x−y−z)+k(x, z, m)ω̂(x−x−y))

}
= :

∑
y

�1,3(x, y)ω̂(y) . (3.27)

We have proven so far that

D?ω̂ = K?ω̂ + �2 + �1,3 + R?ω̂ (3.28)

with �1,3 as in (3.27) and�2 as in (3.19). We have also proved the bound (3.10) for
R?ω̂(x).
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All the terms in �2 and �1,3 are of the formσ̃ (x1) . . . σ̃ (xn)ω̂(z), for somen ≥ 1,
x1 . . . xn andz. Multiplication by σ̃ (x) is a linear operator onVt , identified by the matrix
elementsSx(x, y) via the identity

σ̃ (x)ω̂(x) =
∑

y

Sx(x, y)ω̂(y) . (3.29)

Using equation (3.12) we obtain that forx /∈ x∑
y

Sx(x, y)ω̂(y) = ω̂(x + x) +
∑
y∈x

w(x, y)ω̂(x − y) . (3.30)

The same equation can be used to find also the other ones. Letx ∈ x and denote by
y = x − x, then

σ̃ (x)ω̂(y + x) = σ̃ (x)2ω̂(y) − σ̃ (x)
∑
y∈y

w(x, y)ω̂(y − y)

= (1 − m(x)2)ω̂(y) − 2m(x)σ̃ (x)ω̂(y) −
∑
y∈y

w(x, y)σ̃ (x)ω̂(y − y) . (3.31)

Thus forx /∈ x, |x| = n from (3.30) and (2.34) we get,

p−
t,α(|x|)

∑
y

|Sx(x, y)|p+
t,α(|y|) ≤ btγ

2d/3−α + nγ −(2d/3−α)b−1
t c′

2btγ
d

≤ Aγ,n := c1nγ d/3+α/2bt (3.32)

becauseα = 0 or α = 2d/9 and

γ 2d/3−α ≤ γ d/3+α/2

for all t ≤ a logγ −1 and allγ small enough.
For x ∈ x we use (3.31) and we observe that we can apply the same estimates as before

for the second and third term on the right-hand side of (3.31). Then from (2.34) we get

p−
t,α(|x|)

∑
y

|Sx(x, y)|p+
t,α(|y|) ≤ γ −(2d/3−α)b−1

t + 2γ −(2d/3−α)b−1
t Aγ,n

+ n[γ −(2d/3−α)b−1
t ]2c′

2btγ
dAγ,n ≤ c2n

2γ −(2d/3−α) . (3.33)

Recalling (3.27) and using (3.32) we have

p−
t,α(|x|)

∑
y

|�1,3(x, y)|p+
t,α(|y|) ≤ c

([
γ −(2d/3−α)b−1

t

]2
γ d/3+α/2γ dbt

+ [
γ −(2d/3−α)b−1

t

]3
γ d/3+α/2γ 2dbt + [

γ −(2d/3−α)b−1
t

]2
γ 2dbt

)
(3.34)

wherec is proportional to|x|3. We thus have

p−
t,α(|x|)

∑
y

|�1,3(x, y)|p+
t,α(|y|) ≤ c

{
γ 5α/2b−1

t + γ d/3+7α/2b−2
t + γ 2d/3+2αb−1

t

}
.

(3.35)
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We next observe that from (3.32) and (3.33), givenx ∈ x,∑
y

|Jγ (x, y)|p−
t,α(|x|)

∑
y

|Sy(x, y)|p+
t,α(|y|)≤ c′

1Aγ,n

+
∑
y∈x

|Jγ (x, y)|p−
t,α(|x|)

∑
y

|Sy(x, y)|p+
t,α(|y|)

≤ c′
1Aγ,n + c′

2n
3γ dγ −(2d/3−α) ≤ cγ d/3+α/2 . (3.36)

Hence, recalling (3.19):

p−
t,α(|x|)

∑
y

|�2(x, y)|p+
t,α(|y|) ≤ c max

2≤k≤N
[γ −(2d/3−α)b−1

t ][γ d/3+α/2]k ≤ cγ 2αb−1
t . (3.37)

We have thus concluded the proof of proposition 3.2. �

Proof of (2.37). Using proposition 3.2 we rewrite (3.1) as follows. Letωt = {ωt(x), x ∈ S}
in M(S), ωt(∅) ≡ 1. Then

dωt

dt
= Ktωt + Atωt + Rt (3.38)

Rt(x) = Eµγ

(
R?

t ω̂t (x)
)
. (3.39)

Kt is as in definition 2.3 withK(0) ≡ 0; At is related toA?
t by definition 3.1, with

At(∅, y) ≡ 0.
Both At andRt depend onN , N will be specified later in terms of the valuen = |x|

for which we wish to prove (2.37). Recalling thatI (∅) = 1 andI (x) = 0, |x| > 0, we
have

ωt = I +
∫ t

0
ds Ut,s

(
Asωs + Rs

)
(3.40)

becauseω0(x) ≡ 0, |x| > 0; Ut,s is defined in definition 2.5.
Given h? > n we call

χ? = χ≤h? ω−
t = χ?ωt ω+

t = (1 − χ?)ωt . (3.41)

We then have

ω−
t = I +

∫ t

0
ds Ut,sχ

?
(
Asω

−
s + Asω

+
s + Rs

)
. (3.42)

After H iterations we get

ω−
t = I +

∫ t

0
dsUt,sχ

?[Asω
+
s + Rs ] +

H−1∑
k=1

{0k(t) + 3k(t) + 1k(t)} + 1(t)

=
H−1∑
k=0

{0k(t) + 3k(t) + 1k(t)} + 1(t) (3.43)
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where

0k(t) =
∫ t

0
ds s1 . . .

∫ sk−1

0
ds skUt,s1A

?
s1

. . . Usk−1,sk
A?

sk
I A?

t = χ?At (3.44)

3k(t) =
∫ t

0
ds s1 . . .

∫ sk−1

0
dsk Ut,s1A

?
s1

. . . Usk−1,sk
A?

sk

[ ∫ sk

0
ds Usk,sχ

?Rs

]
(3.45)

1k(t) =
∫ t

0
ds1 . . .

∫ sk−1

0
ds skUt,s1A

?
s1

. . . Usk−1,sk
A?

sk

[ ∫ sk

0
ds Usk,sA

?
sω

+
s

]
(3.46)

1(t) =
∫ t

0
ds s1 . . .

∫ sH−1

0
ds sHUt,s1A

?
s1

. . . UsH−1,sH
A?

sH
ω−

sH
. (3.47)

We fix n and we need to bound|ωt(x)| with |x| = n. Observe that

ωt(x) = ω−
t (x) for all x such that|x| = n . (3.48)

We start by bounding from0k(t). We write

χn0k(t) =
∫ t

0
ds1 . . .

∫ sk−1

0
dsk χnUt,s1A

?
s1
χ≤(n+N) . . . χ≤(n+(k−1)N)Usk−1,sk

A?
sk
I (3.49)

becauseA?
s : V

(j)
s → V

(j+N)
s , by proposition 3.2. Recalling (3.7), we write forα = 0 and

α = 2d/9:

Ũt,s = p−
t,αUt,sp

+
s,α A

(α)
t = p−

t,αA?
t p

+
t,α . (3.50)

Observe thatŨt,s does not depend onα.
We next chooseα = 0 and, recalling thatp±

t (∅) = 1, we get

χn0k(t) = p+
t,0(n)

∫ t

0
ds1 . . .

∫ sk−1

0
dsk χnŨt,s1A

(0)
s1

χ≤(n+N) . . . χ≤(n+(k−1)N)Ũsk−1,sk
A(0)

sk
I .

(3.51)

By equations (2.34), (2.35) and proposition 3.2 we have

‖χ`Ũt,s‖∞ ≤ c′
`a

`
t−sb

−`
t b`

s ≤ c′
`(c

′
0)

` ‖χ`A
(0)
t ‖∞ ≤ c(`) . (3.52)

Hence there is a constantc0(n, h?, N, H) so that fork ≤ H − 1

‖χn0k(t)‖∞ ≤ c0(n, h?, N, H)[btγ
2d/3]n

tk

k!
. (3.53)

From equation (3.45) we get

‖χn3k(t)‖∞ = p+
t,α(n)

∫ t

0
ds1 . . .

∫ sk−1

0
dsk χnŨt,s1A

(α)
s1

χ≤(n+N) . . .

. . . χ≤(n+(k−1)N)Ũsk−1,sk
A(α)

sk

∫ sk

0
ds Ũsk,sp

−
s,αχ?Rs . (3.54)

By proposition 3.2 we have

‖χ`A
(α)
t ‖∞ ≤ c(`)γ α . (3.55)
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Then there is a constantc1 ≡ c1(n, h?, N, H) so that

‖χn3k(t)‖∞ ≤ c1b
n
t γ

(2d/3−α)nγ αk tk+1

(k + 1)!
γ −(2d/3−α)h?

sup
s≤t

sup
x

Eµγ

(|Jγ ◦ σ̃ (x)|N)
≤ c1[btγ

(2d/3)]nγ α(h?−n)γ αk tk+1

(k + 1)!
γ −(2d/3)h?

sup
s≤t

sup
x

Eµγ

(|Jγ ◦ σ̃ (x)|N)
.

(3.56)

By equation (2.11), for every evenN there isc so that

Eµγ

(|Jγ ◦ σ̃ (x)|N) ≤ c
[
eCtγ d/2

]N
. (3.57)

Expression (3.57) is obtained by expanding the product on the left-hand side. Terms with
all sites distinct give rise to av function that is bounded using (2.11). This behaves as the
right-hand side of (3.57). All the other terms are smaller, as there is an extra factorJγ

whenever two sites are equal (and possibly two sites less in thev function).
Sinceh? > n, t ≤ a logγ −1 andbt ≤ eCt we have fora small enough and for a suitable

constantc2 ≡ c2(n, h?, N, H),

‖χn3k(t)‖∞ ≤ c2[btγ
(2d/3)]nγ −(2d/3)h?

γ (d/2−aC)N . (3.58)

Analogously,

χn1k(t) = p+
t,α(n)

∫ t

0
ds1 . . .

∫ sk−1

0
dsk χnŨt,s1A

(α)
s1

χ≤(n+N) . . . χ≤(n+(k−1)N)Ũsk−1,sk
A(α)

sk

×
∫ sk

0
ds Ũsk,sA

(α)
s p−

s,αω+
s . (3.59)

By theorem 2.1

sup
s≤a logγ −1

sup
|x|=h

|ωs(x)| ≤ c′
hγ

(d/2−aC)h (3.60)

wherec′
h is a suitable constant. Hence there is a constantc3 ≡ c3(n, h?, N, H), such that

for α = 2d/9 andt ≤ a logγ −1,

‖χn1k(t)‖∞ ≤ c3b
n
t γ

(2d/3−α)nγ αk tk+1

(k + 1)!
sup

h?≤h≤h?+N

c′
h γ [(d/2−aC)−(2d/3−α)]h

≤ c3[btγ
2d/3]nγ −2dn/9γ [(d/18)−aC)]h?

. (3.61)

We bound1(t) in an analogous way, getting the existence constantsc4 ≡ c4(n, h?, N, H)

andc′
4 ≡ c′

4(n, h?, N, H), such that for allt ≤ a logγ −1,

‖χn1(t)‖∞ ≤ c4b
n
t γ

(2d/3−α)nγ αH tH

H !
γ −(2d/3−α)h?

≤ c′
4[btγ

2d/3]nγ α(h?−n)
(
γ α logγ −1

)H
γ −(2d/3)h?

. (3.62)

We first chooseh? > n so that (see (3.61))

γ −2dn/9γ [(d/18)−aC]h? ≤ 1 . (3.63)
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Then we choseH andN so that (see (3.62) and (3.58), respectively)(
γ α logγ −1

)H
γ −(2d/3)h? ≤ 1 γ (d/2)−aC)Nγ −(2d/3)h? ≤ 1 . (3.64)

From equations (3.43), (3.53), (3.58), (3.61), (3.62) and the choice ofh?, H and N , we
finally get that there is a constantc̄ so that

sup
|x|=n

|ω−
t (x)| ≤ c̄

{
[btγ

2d/3]ntH + [btγ
2d/3]n

}
. (3.65)

The inequality (2.37) is therefore proven.

Proof of (2.38), (2.39). We go back to (3.9) recalling that the action ofA?
t is given by

�2 + �1,3, see (3.28). Letx = (x1, x2) in (3.19), then, for a suitable constantc,

|�2(x, ∅)| ≤ c[btγ
d ]2 (3.66)

as it only arises from values ofk ≥ 3 in (3.19) and the largest contribution comes from the
product of twowt ’s for which we use (2.34). Analogously we have, for a suitable constant
c,∑

y

|�2(x, y)| ≤ c[btγ
d ]

∑
|y|=2

|�2(x, y)| ≤ c[btγ
d ]

∑
|y|≥3

|�2(x, y)| ≤ c . (3.67)

When |x| = 1 we get

|�2(x, ∅)| ≤ c[btγ
d ]

∑
y

|�2(x, y)| ≤ c[btγ
d ] (3.68)∑

|y|=2

|�2(x, y)| ≤ c
∑
|y|≥3

|�2(x, y)| ≤ c . (3.69)

From equation (3.27) we get�1,3(x) = 0 if |x| = 1, while, if |x| = 2,

|�1,3(x, ∅)| ≤ cγ dbtγ
d (3.70)

(the first factorγ d comes fromk(x, z, m) the other factor from boundingwt in the second
term on the right-hand side of (3.27)):∑

y

|�1,3(x, y)| ≤ cγ d . (3.71)

We call

ψt = sup
|x|=2

sup
s≤t

|ωs(x)| φt = sup
|x|=1

sup
s≤t

|ωs(x)| . (3.72)

We then get

ψt ≤
∫ t

0
ds |Ut,sχ2

(
Asωs + Rs)| φt ≤

∫ t

0
ds |Ut,sχ1

(
Asωs + Rs)| . (3.73)



44 A De Masi et al

We use (2.35), (3.16) and (3.57) to conclude that

‖Ut,sχ2‖∞ ≤ (btc
′
0)

2 ‖Ut,sχ1‖∞ ≤ btc
′
0 sup

s≤a logγ −1

‖Rs‖∞ ≤ c̄
(
γ (d/2)−a

)N
.

(3.74)

Furthermore, using (2.37) that has been already proven, we have from (3.67) that there isc̄

so that for alls ≤ a logγ −1∑
|y|≥3

|�2(x, y)||ωs(y)| ≤ N sup
3≤k≤N

s`kbk
s γ

2dk/3 ≤ c̄ s`3b3
s γ

2d . (3.75)

From all this we then get that, for a suitable constantc,

ψt ≤
∫ t

0
ds (btc

′
0)

2c
{
[(bsγ

d)2 + bsγ
dφs + bsγ

dψs + s`3b3
s γ

2d ] + [bsγ
2d + γ dφs ]

}
. (3.76)

Analogously

φt ≤
∫ t

0
ds (btc

′
0)c

{
bsγ

d + bsγ
dφs + ψs + s`3b3

s γ
2d

}
. (3.77)

Hence, for a suitablec′,

ψt ≤ c′tb2
t

{
(btγ

d)2 + btγ
dφt + t`3b3

t γ
2d

}
(3.78)

φt ≤ c′tbt

{
btγ

d + ψt + t`3b3
t γ

2d
}
. (3.79)

It then follows that, for a suitablec′′, and`3 ≥ 1

ψt ≤ c′′t`3+1b5
t γ

2d φt ≤ c′′tb2
t γ

d . (3.80)

Theorem 2.6 is thus proven. �

4. Fluctuations

In this section we prove theorem 2.8. The key ingredients of the proof are the bounds on
the ω functions. We start with a lemma which follows quite easily from theorem 2.6. We
will now write explicitly the dependence onγ in the v functions and theω functions.

Lemma 4.1 There area > 0 and, for any odd integern, cn, n ≥ 1, and C̄ so that for all
initial measuresµ (that are product measures), for allt ≤ a logγ −1 and for all x ∈ S,
|x| = n,

|vγ
t (x)| ≤ c|x| eC̄|x|t γ d(|x|+1)/2 (4.1)

where|x| denotes the cardinality ofx.

Proof. Using the first equality in (2.32) we write

v
γ
t (x) =

∑
y

ω
γ
t (x − y)W

γ
t (y) .
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We recall thatWγ
t (y) = 0 if |y| is odd, so that in all terms there is aω function.

Equation (4.1) then follows from (2.27), (2.37) and (2.39). �
Recalling the notation below (2.42) and the definition 2.7 we first prove in the next

lemma the convergence of the moments ofY
γ
t (φ), thus proving the last statement of

theorem 2.8.

Lemma 4.2 Let n ≥ 2 andφ1, . . . , φn in S(Rd). Then, for anyt > 0

lim
γ→0

Êγ

( n∏
i=1

Y
γ
t (φi)

)
= Ê

( n∏
i=1

Yt (φi)

)
.

Proof. Let n ≥ 2 and letx ∈ S(n), x = (x1, . . . , xn). We define a partition of the set
{1, . . . , n} by saying thati and j are in the same atom of the partition if and only if
xi = xj . We callh(x) the number of atoms of the partition so that

{1, . . . , n} =
h(x)⋃
k=1

Ak Ak ⊂ {1, . . . , n} Ak ∩ Ah = ∅ if k 6= h . (4.2)

We also denote byf (x) the number of atomsAk such that|Ak| = 1. We suppose to have
ordered the atoms of the partition in such a way that the firstA`, ` ≤ f (x) are singletons,
i.e.

A` = {i`} ` = 1, . . . , f (x) . (4.3)

We then have

n ≥ h(x) ≥ f (x) ≥ 0 h(x) ≤ f (x) + n − f (x)

2
(4.4)

and also

n∏
i=1

σ̃t (xi) =
f (x)∏
`=1

σ̃t (xi` )

h(x)∏
k=f (x)+1

σ̃t (xik )
|Ak | ik := min{i : i ∈ Ak} . (4.5)

We now observe that for anyk ≥ 1

σ̃t (x)k = 1 + σ(x)

2
[1 − m

γ
t (x)]k + 1 − σ(x)

2
[−1 − m

γ
t (x)]k

= σ̃t (x)

{
[1 − m

γ
t (x)]k

2
− [−1 − m

γ
t (x)]k

2

}
+ 1 + m

γ
t (x)

2
[1 − m

γ
t (x)]k + 1 − m

γ
t (x)

2
[−1 − m

γ
t (x)]k

= σ̃t (x)a(k, m
γ
t (x)) + b(k, m

γ
t (x)) (4.6)

with a andb defined by the last equality. Thus

a(1, m
γ
t (x)) = 1 b(1, m

γ
t (x)) = 0

a(2, m
γ
t (x)) = −2m

γ
t (x) b(2, m

γ
t (x)) = 1 − m

γ
t (x)2

(4.7)
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and there are constantsck so that

|a(k, m
γ
t (x))| ≤ ck |b(k, m

γ
t (x))| ≤ ck . (4.8)

Since

Êγ

( n∏
i=1

Y
γ
t (φi)

)
= γ dn/2

∑
x∈S(n)

( n∏
i=1

φi(γ xi)

)
Eγ

µγ

( n∏
i=1

σ̃t (xi)

)
. (4.9)

Denoting by [(f + 1)/2] the integer part of(f + 1)/2, we then have∣∣∣∣γ dn/2
∑

x∈S(n)

( n∏
i=1

φi(γ xi)

)
Eγ

µγ

( n∏
i=1

σ̃t (xi)

)∣∣∣∣
≤ cγ dn/2

?∑
h,f

∑
x∈S(n)

1(h(x) = h, f (x) = f )

( n∏
i=1

|φi(γ xi)|
)

γ d[(f +1)/2]

≤ c′γ dn/2
?∑

h,f

γ −dhγ d[(f +1)/2] (4.10)

where the starred sum is restricted to the non-negative integersh andf which satisfy (4.4).
We have applied (2.11) whenf is even, observing that the integer part of(f + 1)/2,
denoted by [(f + 1)/2], is equal tof/2. We instead use (4.1) whenf is odd, in which
case [(f + 1)/2] = (f + 1)/2. By equation (4.4), the right-hand side of (4.10) is uniformly
bounded inγ and it vanishes in the limitγ → 0, unlessf is even andh = (f + n)/2.
This is possible only whenn is also even, we shall therefore restrict ourselves henceforth
to this case.

We thus have

Êγ

( 2n∏
i=1

Y
γ
t (φi)

)
= Gγ + R

γ

1 (4.11)

where

Gγ = γ dn
n∑

k=0

∑
I⊂{1,...2n}

|I |=2k

∑
z∈S

(2(n−k)
6=

( ∏
i /∈I

φi(γ zi)

)
v

γ
t (z)

×
∑

{(i1,j1)...(ik ,jk)}

∑
x∈S

(k)
6=

x∩z=∅

( k∏
`=1

φi`(γ x`)φj`
(γ x`)[1 − m

γ
t (x`)

2]

)
(4.12)

whereS
(i)
6= is the subset ofS(i) with configurations with sites different from each other and

thereforez = {zi, i /∈ I } is a configuration with 2(n−k) sites different from each other. The
sum over(i1, j1) . . . (ik, jk) is over all the partitions ofI into k elements (atoms), each with
two indices. The remainderRγ

1 can be estimated as in (4.10) and vanishes whenγ → 0.
By equation (2.32) we have

v
γ
t (y) = Wγ

t (y) +
∑

∅6=z⊂y

ω
γ
t (z)Wγ

t (y − z) . (4.13)
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Then by theorem 2.6, for any positivep,

lim
γ→0

γ −dp sup
y∈S

(2p)

6=

∣∣vγ
t (y) − Wγ

t (y)
∣∣ = 0 . (4.14)

We then substitute in (4.12) the following:

v
γ
t (z) = W

γ
t (z) + [vγ

t (z) − W
γ
t (z)] (4.15)

and we obtain

Gγ = G′
γ + R

γ

2

where

G′
γ =

n∑
k=0

∑
I⊂{1,...2n}

|I |=2k

γ 2d(n−k)
∑

z∈S
(2(n−k))
6=

( ∏
i /∈I

φi(γ zi)

)
γ −d(n−k)Wt(z)

×
∑

{(i1,j1)...(ik ,jk)}
γ dk

∑
x∈S

(k)
6=

x∩z=∅

( k∏
`=1

φi`(γ x`)φj`
(γ x`)[1 − m

γ
t (x`)

2]

)
(4.16)

and R
γ

2 vanishes in the limitγ → 0. From equation (2.8) and the choice ofµγ in
definition 2.1 we have

lim
γ→0

sup
x∈Zd

|mγ
t (x) − mt(γ x)| = 0 for all t ≥ 0 (4.17)

wheremt solves (1.1) with initial conditionm0.
We finally observe that from (4.17), (2.23) and (2.48) it follows that

lim
γ→0

sup
x,y∈Zd

|γ −dwt (x, y) − C0
t (γ x, γy)| = 0 for all t ≥ 0 (4.18)

namely, thatC0
t (r, r

′) in (2.48) is the continuous version, suitable normalized, ofwt(x, y).
From equations (2.45), (4.17) and (4.18) we then have that

lim
γ→0

∣∣∣∣G′
γ − Ê

( 2n∏
i=1

Yt (φi)

)∣∣∣∣ = 0 . (4.19)

The lemma is thus proven. �

To complete the proof of theorem 2.8 we need to prove the convergence of the fluctuation
fields as a process onD([0, T ], S ′(Rd)). This is done following criteria which are by now
standard in this field. Their applicability is granted in our case by the bounds proven on
the v andω functions. We give below some details and references.

Tightness.
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We first prove tightness of̂Pγ on D([0, T ], S ′(Rd)). By Mitoma’s theorem, [11], it is
enough to show that the marginal ofP̂γ on {Yt (φ), t ∈ [0, T ]} is tight. For this we use the
criterion stated in theorem 2.6.3 of [4]. We thus need to prove that there isc such that

sup
0≤t≤T

Êµγ

(
F

γ

1 (t)2 + F
γ

2 (t)2 + Y
γ
t (φ)2

) ≤ c (4.20)

where

F
γ

1 (t) =
(

L + d

dt

)
Y

γ
t (φ) (4.21)

(the time derivative acts only onmγ
t )

F
γ

2 (t) = LY
γ
t (φ)2 − 2Y

γ
t (φ)LY

γ
t (φ) . (4.22)

For any functionf ∈ C3(R) we have(
L + d

dt

)
f

(
Y

γ
t (φ)

) =
∑

x

cγ (x, σt )

[
f

(
Y

γ
t (φ) − 2γ d/2φ(γ x)σt (x)

)
− f

(
Y

γ
t (φ)

)]
− f ′(Y γ

t (φ)
)
γ d/2

∑
x

φ(γ x)
d

dt
m

γ
t x)

= f ′(Y γ
t (φ)

)
F

γ

1 (t) + 1
2f ′′(Y γ

t (φ)
)(

4γ d
∑

x

cγ (x, σt )φ(γ x)2

)
+ R

γ

1 (t)

(4.23)

F
γ

1 (t) = γ d/2
∑

x

φ(γ x)

(
Lx + d

dt

)
σ̃t (x) (4.24)

where

Lxg(σ ) = cγ (x, σ )[g(σ x) − g(σ )] (4.25)

and for anyT > 0 there isc so that

|Rγ

1 (t)| ≤ cγ d/2 t ≤ T .

By choosing in (4.23)f (y) = y2, (4.22) can be written as

F
γ

2 (t) = 4γ d
∑

x

cγ (x, σt )φ(γ x)2 (4.26)

and

|Fγ

2 (t)| ≤ c . (4.27)

We use (2.8) to write(
Lx + d

dt

)
σ̃t (x) = −σ̃t (x) + [fx(σt ) − fx(m

γ
t )] . (4.28)



Glauber evolution with Kac potentials: II. Fluctuations 49

We then linearize (4.28) aroundmγ
t , the solution of (2.8) with initial conditionm0(γ x), and

we get

F
γ

1 (t) = γ d/2
∑

x

φ(γ x)(Kt σ̃t )(x) + Rγ

2 (t) (4.29)

where

Rγ

2 (t) = F
γ

1 (t) − γ d/2
∑

x

φ(γ x)(Kt σ̃t )(x) . (4.30)

By equation (2.11), for anyT > 0 there are constantsc1 andc2 so that

Êγ

([
γ d/2

∑
x

φ(γ x)(Kt σ̃t )(x)

]2)
≤ c1 t ≤ T (4.31)

Êγ
(
[Rγ

2 (t)]2
) ≤ c2γ

d t ≤ T . (4.32)

The martingale problem.
To identify the limiting lawP̂ along a convergent subsequenceP̂γ , we first observe thatP
is supported by continuous trajectories. This follows from the fact that the jumps ofY

γ
t (φ)

are bounded by the sup norm ofφ timesγ d/2, see for instance Spohn [13]. We will then
identify the limit as the solution of a martingale problem. We start from the martingale
characterization of̂Pγ . We have that for any functionf ∈ C3(R)

f
(
Y

γ
t (φ)

) −
∫ t

0
ds

(
L + d

ds

)
f

(
Y γ

s (φ)
)

is a P̂γ -martingale . (4.33)

We use (4.23). For the term (4.26) using (2.11) and arguments similar to those used when
proving tightness we have that

sup
t≤T

Êγ

(∣∣∣∣Fγ

2 (t) − 2γ d
∑

x

bγ (x, t)φ(γ x)2

∣∣∣∣2)
≤ cγ d (4.34)

where

bγ (x, t) = 1 − m
γ
t tanh{β[(Jγ ◦ m

γ
t )(x) + h]} . (4.35)

Note that sincemγ
t Ê → mt solution of (1.1)bγ is the discretized version ofb of (2.51).

From this, by taking the limit along the subsequence which converges toP̂, we get that

f
(
Yt (φ)

) −
∫ t

0
ds f ′(Ys(φ)

)
Ys(L+φ) − 1

2

∫ t

0
ds f ′′(Ys(φ)

)‖2b(·, s)φ2‖1 (4.36)

is a P̂-martingale,L+ being the adjoint ofL andb(r, t) is as in (2.51). Since the distribution
at time 0 is specified as in theorem 2.8, this information together with the support properties
of P̂ and (4.36) (for arbitraryf , t ≤ T andφ) identifiesP̂ according to Holley and Stroock’s
theory, see [10, 13].

It is easy to compute from (4.36) the covariance at different time ofP̂ and verify that they
are given by (2.44). Less straightforward is the identification of the equal time covariance,
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which we report below for the sake of completeness. CallCt(r, r
′) the expressionCt,t (r, r

′)
of (2.45) and recalling (2.43) consider

Ê
(
Yt (φ)2

) =
∫

dr dr ′ Ct(r, r
′)φ(r)φ(r ′) .

Then, from (4.36)

Ct(r, r
′) =

∫ t

0
ds

∫
dr ′′ {L(r, r ′′, s)Cs(r

′′, r ′) + L(r ′, r ′′, s)Cs(r, r
′′)

}
+

∫ t

0
ds 2b(r, s)δ(r − r ′) + δ(r − r ′)[1 − m0(r)

2] . (4.37)

Defining C0
t (r, r

′) so that (2.45) holds and substituting it into (4.37), we get

C0
t (r, r

′) −
∫ t

0
ds

∫
dr ′′ {L(r, r ′′, s)C0

s (r
′′, r ′) + L(r ′, r ′′, s)C0

s (r, r
′′)

}
= − δ(r − r ′)[1 − mt(r)

2] + δ(r − r ′)[1 − m0(r)
2]

+
∫ t

0
ds

∫
dr ′′ {L(r, r ′′, s)δ(r ′ − r ′′)[1 − ms(r

′)2]

+ L(r ′, r ′′, s)δ(r − r ′′)[1 − ms(r)
2]

}
+

∫ t

0
ds 2b(r, s)δ(r − r ′) . (4.38)

The last two integrals can be rewritten, using (2.46), (1.1) and (2.51) as∫ t

0
ds

{L0(r, r ′, s)[1 − ms(r
′)2] + L0(r ′, r, s)[1 − ms(r)

2]
}

−
∫ t

0
ds 2δ(r − r ′)[1 − ms(r)

2] + 2
∫ t

0
ds b(r, s)δ(r − r ′)

=
∫ t

0
ds

{L0(r, r ′, s)[1 − ms(r
′)2] + L0(r ′, r, s)[1 − ms(r)

2]
}

−
∫ t

0
ds

d

ds
ms(r)

2δ(r − r ′) . (4.39)

Using equation (4.39), equation (4.38) shows thatC0
t defined by (2.45) is the same as

in (2.48). Theorem 2.8 is thus proven. �
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