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ABSTRACT In the context of aerospace engineering, the optimization of processes may often require to
solve multi-objective optimization problems, including mixed variables, multi-modal and non-differentiable
quantities, possibly involving highly-expensive objective function evaluations. In Air Traffic Management
(ATM), the optimization of procedures and protocols becomes even more complicated, due to the involve-
ment of human controllers, which act as final decision points in the control chain.
In this article, we propose the use of computational intelligence techniques, such as Agent-Based Modelling
and Simulation (ABMS) and Evolutionary Computing (EC), to design a simulation-based distributed
architecture to optimize control plans and procedures in the context of ATM. We rely on Agent-Based
fast-time simulations to carry out offline what-if analysis of multiple scenarios, also taking into account
human-related decisions, during the strategic or pre-tactical phases. The scenarios are constructed using
real-world traffic data traces, while multiple optimization variables governed by an EC algorithm allow to
explore the search space to identify the best solutions. Our optimization approach relies on ad-hoc multi-
objective performance metrics which allow to assess the goodness of the control of aircraft and air traffic
regulations.
We present experimental results which prove the viability of our approach, comparing them with real-world
data traces, and proving their meaningfulness from an Air Traffic Control perspective.

INDEX TERMS Air Traffic Control, Distributed Optimization, Evolutionary Algorithms, Modeling and
Simulation, Multi-Objective Optimization, Support to Strategic Design

I. INTRODUCTION

A IR Traffic Management (ATM) is a complex socio-
technical system composed of multiple entities and

physical/human actors. Its ultimate goal is to safely and
efficiently manage the flow of aircraft in all flight phases
(departure, en-route, landing). The complexity behind ATM
lies in the fact that the number of systems, devices, and the
amount of people involved in the process is large, as well
as the number of aircraft which have to be simultaneously
managed. Moreover, this number is subject to bursts in rush
hours, thus making the overall process even more compli-
cated. Finally, an additional level of complexity is related

to the interoperability and the harmonization of different
ATM systems, since various countries have developed their
own ATM system individually, each one concentrating on its
specific requirements.

Today, enhancing ATM is a relevant international objec-
tive, and it is fundamental to be ready to meet future traffic
demand and environmental requirements. To overcome the
complexity related to interoperability, there is an ongoing
effort aimed at designing new services [1]. However, the high
complexity of ATM makes enhancements extremely diffi-
cult, because performing in-vitro testing of new procedures
or equipment is almost unfeasible. At the same time, the
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criticality of ATM makes it highly improbable that possible
enhancements can be safely tested in real-world scenarios,
also considering the safety-wise and performance-wise criti-
cal requirements of ATM services.

In this article, we propose an approach based on com-
putational intelligence techniques which, combining Agent-
Based Modelling and Simulation (ABMS) [2] and Evolution-
ary Computing (EC) [3], allows to carry out offline what-
if analyses of changes to ATM policies or procedures, and
supports the design of new solutions aimed at ATM system
optimization. The purpose of these analyses is to explore
new configurations for the ATM system in advance, namely
during the strategic (i.e., several days before the actual oper-
ations) or pre-tactical phases (i.e., up to several hours before
the actual operations). Such optimization is intended with
respect to the estimated performance of the simulated ATM
system and implies the minimization or maximization of
some reference ATM performance metrics in the identified
simulation scenario.

We designed a distributed simulation-based evolutionary
optimization architecture which enables what-if analyses via
an agent-based simulation model, and allows to evaluate
objective measures (such as the timeliness of the flights in
a set of sectors), as well as subjective measures related to
human behavior—in particular the behavior of Air Traffic
Controllers (ATCOs). This simulation model is placed at the
center of an optimization loop, which allows to modify input
parameters to the simulation model so as to identify properly-
tuned configurations which increase the global performance
of the ATM system. Overall, our approach involves ABMS
to discover the evolution of the ATM system under certain
constraints, and EC to explore a complex search space to bet-
ter understand how architectural and design choices influence
the ATM system at micro-scale, i.e. at the level of individual
agent behaviors. The versatility of our optimization archi-
tecture lies in the full decoupling between the exploration
of the search space, the assessment of the goodness of a
specific solution by means of ABMS, and the evaluation of
performance metrics. The utilization of different simulation
paradigms or the inclusion of additional performance metrics
can be easily plugged in the proposed architecture.

The optimization process we designed is based on
Evolutionary Algorithms (EAs). EAs are a category of
metaheuristics-based algorithms. Inspired by concepts from
the nature, such as evolution and natural selection, they are
particularly useful to provide solutions to computationally-
intensive problems. They maintain a population of individ-
uals which must compete for survival, and new offspring
are created by recombining and mutating individuals selected
from the population.

Placed in the context of ATM optimization, our proposal
has a twofold goal. On the one hand, our architecture allows
to perform an impact assessment of the changes applied to
an ATM system. On the other hand, we support the design of
new solutions, by identifying the optimal tuning of specific
design parameters to achieve some required performance

level. Generally speaking, according to our methodology,
both approaches involve the following steps: i) modeling the
part of ATM system of interest representing some reference
scenario, i.e. the baseline which represents the basis for the
change design; ii) modeling the scenario under the envisaged
changes in the system; iii) identify the metrics of interest
to study the impact of the changes; iv) simulating both the
reference and the changed scenarios; v) assess the impact of
the changes according to the selected metrics. Our architec-
ture allows to effectively carry out all these steps, with minor
human intervention, to study the behavior of an ATM system
under differentiated characteristics.

We provide a detailed description of the overall
simulation-based optimization architecture, along with an
assessment comparing the performances achieved in two
different scenarios, based on real-world traces. The two sce-
narios relate to “direct routing” (i.e., when an aircraft flies
through the great circle arc1 between 2 assigned waypoints)
and “free routing” (i.e., when the pilot has the ability to
plan/re-plan a route according to some defined preferences)
operations of the ATM system. The selected case studies
are highly representative of the ATM-domain complexity,
and have been identified to stress-test our solution due to
the inclusion of all elements of socio-technical systems. In
detail, the transition from direct routing to free routing has
already been tackled in Italy from 2013 to 2016, therefore it
represents an ideal “oracle” with its known change history.
Indeed, these scenarios have been used as a test oracle for
our validation activities.

The remainder of this article is organized as follows.
Section III presents the agent-based simulation model we use
in our architecture. In Section IV, we discuss the evolutionary
optimization algorithm which allows to explore the search
space, seeking for a well-tuned configuration of the input
parameters. Section V presents the distributed optimization
architecture which we envisaged to cope with the computa-
tional demand of our optimization strategy. An experimental
evaluation of our proposal, both from a performance and a
correctness point of view, is presented in Section VI. Related
work is discussed in Section II.

II. RELATED WORK
Agent-based Evolutionary Search (AES) is an emerging re-
search paradigm lying at the intersection between EC and
ABM. It is gaining attention [4] as a viable and innovative
way to investigate complex adaptive systems thanks to a
conceptual framework that allows to capture both the “sim-
plexity” of ABM and the robustness and adaptability of EC
methods.

In the context of ATM, some recent proposals in the lit-
erature have explored the possibility to rely on Evolutionary
Computing to study or optimize some characteristics of ATM

1The shortest path between two points on the surface of a sphere is given
by the arc of the great circle passing through the two points. A great circle is
defined to be the intersection with a sphere of a plane containing the centre
of the sphere.
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(see, e.g., [5]–[9]). This is an indication of the fact that
this kind of optimization strategy is hot. Nevertheless, no
proposal has tried to consider all the aspects addressed by
our work, nor ABM simulation-based optimization has ever
been used for the purpose.

Modelling socio-technical systems has been largely stud-
ied in the last decade. Different and interconnected trends
are notably to mention [10]: Actor Network Theory (ANT),
Agent- Based Modelling technique (ABM), Bayesian Be-
lief Network (BBN), Configuration Modelling (CM). Fuzzy
Logic (FL), Morphological Analysis (MA), Social Network
Analysis (SNA) and finally System Dynamics (SD). Such
approaches have been applied to very different fields from
project management to software engineering, from energy to
aviation.

The choice of the most suitable formalism may depend on
different aspects, the level of abstraction that it is expected
to target, the capability to model and distinguish between
human and non human elements, the capability to manage
the interdependencies, the feedback and the uncertainties. In
the last ten years, ABM has been used for modelling complex
systems in different domains [11], including ATM.

There are several commercial tools to assess ATM
concepts. Among them, we mention Simmod2, AirTOp3,
CAST4, RAMSrams plus5, Total Airspace and Airport Mod-
eler6 (TAAM) or the AgentFly ATM simulation suite [12].
It is notable the effort put by NASA and FAA to develop
FACET [13]. Most of these tools provide detailed models
of airports and airspace for fast-time gate-to-gate simulation;
very few use multi-agent architectures for different actors of
the scene, e.g. for airport controllers. None embeds the hu-
man behavior modelling. In the recent years, some attempts
have been made within the SESAR Program. Many ex-
ploratory research projects (e.g., ELSA [14], ACCESS [15],
TREE [16], CASSIOPEIA [17], MAREA [18], SPAD [19],
EMERGIA [20]) have adopted the agent-based modeling
paradigm to address a wide number of different ATM prob-
lems. In these projects, the agent-based simulation is used
(usually in combination with other techniques) either as an
analysis tool to understand emergent behaviors of the ATM
system or to study resilience and disturbance propagation,
or even as a tool to determine airport slot auctioning and
allocation. Most of these studies address technical aspects
in modeling, without considering the social aspects that
influence the overall performance of the ATM system, and
focus on specific cases instead of defining a methodological
approach for modeling and simulation to assess the change
impact.

A notable work [21] relies on ABMS as a method for
capturing emergent behavior of the socio-technical air trans-
portation system, so as to evaluate novel system designs. The

2http://www.atac.com/simmod-pro.html, last accessed June 10, 2020.
3http://www.airtopsoft.com, last accessed June 10, 2020.
4http://www.airport-consultants.com, last accessed June 10, 2020.
5http://www.ramsplus.com, last accessed June 10, 2020.
6http://www.jeppesen.com/taam, last accessed June 10, 2020.

author focuses on the identification of emergent safety risk
of an active runway crossing operation, on the evaluation of
the role of coordination in Airline Operations Control (AOC)
resilience. Differently from our proposal, no utilization of
EAs is proposed to rely on simulations so as to optimize ATM
scenarios.

As concerns some technical choices which have driven
the design our evolutionary optimization architecture, Scott
et al. [22] performed both theoretical and practical analysis
of a simple asynchronous master-slave EA. They found that
the amount of increased throughput that can be expected
from an asynchronous EA depends on the number of slave
processors, the size of the population and the variance of the
evaluation time distribution. Furthermore, they investigated
whether there is a bias towards fast-evaluating solutions
in asynchronous EAs. In fact, when evaluation time is a
heritable trait, many fast-evaluating individuals may be born,
evaluated and compete for a place in the population in the
time it takes for a single slower individual to be evaluated.

Similarly, Yagoubi et al. [23] observed evidence that asyn-
chronous EAs had a harder time at finding good solutions
when they were located in a region of the search space that
was artificially configured to have slower evaluation times,
and they similarly found that there is no independent selec-
tion pressure that favors fast-evaluating individuals. Indeed,
they found that an asynchronous EA is able to find a global
optimum on the Holder table function much more frequently
than the generational EA does and that the asynchronous EA
does not exhibit any particularly adverse performance. To
the contrary, it does a good job of delivering the promised
speedup in time-to-convergence and it has a much smaller
risk of premature convergence. This does not, however, rule
out an evaluation-time bias that can emerge from a combi-
nation of reproduction, variation and selection, so the results
of [22] do not contradict the bias observed in practice by [23].
Overall, the studies in [22], [23], confirm several of the
design choices which have driven the construction of our
optimization architecture.

III. AGENT-BASED ATM SIMULATION
In this section, we present our agent-based simulation ap-
proach. We discuss the main challenges to face when de-
signing ATM simulation systems and the related modeling
problems, and we discuss the design choices that have been
put in place, along with the related motivations. The overall
organization of the Agent-based Model (ABM) based simu-
lation system is depicted in Figure 1.

We implemented our ABM simulation system as a stochas-
tic time-stepped Discrete Event Simulation (DES) model.
This is a traditional paradigm typically used in the context of
ABMS, but given the complex ATM scenarios which we tar-
get, great case has been put in the management, dispatching,
and scheduling of the events, as well as into the ontologies
formalizing the agent interactions.

The ABMS system is composed of different components.
Agents implement the most important part of the logic in the
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FIGURE 1. Architecture of the ABM Simulation System.

simulation, and in a given simulation scenario there can be
any required number of agents. At the same time, the system
ships with some fundamental ATM-related algorithms, which
allow to configure the overall simulation run, or which allow
the different agents to carry out tasks which are related to
the current dynamics of the simulation scenario. The agents
interact with these algorithms by means of explicit function
calls in the agents’ implementation. The set of algorithms
which have been implemented are:

• Air space configuration: this algorithm creates a rep-
resentation of the structured air space (Functional
Airspace Blocks, sectors, waypoints, etc) as to be used
in the simulated scenario.

• Extract Transform Load: it allows to transform real
traces associated with flown flights into the internal
representation which is used to carry out the airspace
simulation.

• Conflict Detection: this set of algorithms implement
medium- and short-term conflict detection, which can
be used by ATCO agents to trigger corrective actions
with respect to the current state of the observed flights.

• Conflict Resolution: this set of algorithms allow ATCO
agents to take decisions on the current state of the
flights.

• Flight Management System: this is a set of algorithms
used to provide the relevant flight information, including
the flight intent (expressed as a 4D profile until desti-
nation), and allow to modify trajectories according to
simulated ATCOs’ directives.

The model is fed with an air space configuration, in the
form of several sectors to which multiple agents are then
mapped. These agents are in charge of monitoring and taking
decisions with respect to the simulated air traffic—e.g., an
ATCO planner and an ATCO executive. Input parameters
to the model allow to fine tune the behavior of the agents,
in the face of the different simulated conditions that can be
encountered.

Traffic information is extracted from so6 files [24], a stan-
dard file format for ATM which stores a description of 4D-

trajectories of flights in the European airspace. Our dataset
is provided by Eurocontrol via their Demand Data Reposi-
tory 2 (DDR2)7. Similarly, a dedicated Extract-Transform-
Load layer transforms the data contained in so6 files into
an internal representation which maps the traffic informa-
tion immediately to airspace sectors. Moreover, the agents
involved in the simulation can, at any time, alter the trajectory
of the flights, depending on the trajectory of the stochastic
simulation.

There are agents of different nature available in the ABM
system. As mentioned, any number of agents can be spawn
in a simulation run, depending on the input configuration (in
terms of flights and sectors). In particular, at the time of this
writing, we have implemented the following agents:

• Pilot: this agent is responsible for flying an aircraft, and
interacting with the ATCOs in order to obtain clearance
to carry out several tasks.

• Planner Controller: this agent is the ATCO who is
mainly responsible for the coordination of the traffic
entering or exiting within the sector.

• Executive Controller: this agent is the ATCO who is
responsible for the safe and expeditious flow of all
flights operating within its sector. This agent monitors
and separates flights that operate within its area of
responsibility and, if necessary, it issues instructions to
pilots for conflict resolution.

• Aircraft: this agent implements an aircraft. The reason
why we have decided to implement the aircraft as agents
is that different companies typically implement different
flying strategies. Therefore, this level of abstraction
allows to better capture the intrinsic variability in the
behavior of different flights, and enhances the capability
of the system to observe emergent behaviors.

• Controller Working Position: this agent implements the
controller workstation where traffic can be monitored
allowing for situational awareness. We have decided to
implement a technical part of the system as an agent to
reach the goal of allowing to perform what-if analyses of
changes in the overall organization of the ATM system.
In this sense, mapping a technical system to an agent
allows to experiment more easily with changes at the
level of ATCOs operations.

As mentioned, one goal of our simulation-based architec-
ture is to allow to study the behavior of the ATM system
including the behavior of the humans which take part of
it [25]. Therefore, we have identified a set of human-behavior
variables which are related to the ATCOs’tasks, also taking
into account the organizational context and traffic situation.
The ATCOs’ behavior has been modeled [26] by characteriz-
ing the tasks assigned to each human actor according to both
the human and context variables. This characterization of
tasks includes a variety of factors, such as time sensitiveness,
task complexity (number of alternative and optional actions
in a task), behavioural level (skill/rule/knowledge based),

7https://www-test.eurocontrol.int/ddr.
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TABLE 1. Human-factor characterization: Personal Factors

Variable Definition Values or Resources involved Dependencies

Age Biological age. expressed in numbers or in
range

—

Seniority Length of continuous service in the same profes-
sional field/licences (it includes different roles).
Timespan of the experience the actor has developed
on the airspace (free-routing).

expressed in Nr. of years or in
a scale

—

Expertise Level in which the person is knowledgeable.
It refers to the range of sector and licences and
different professional experience the actor has de-
veloped (e.g. pilot, military airspace, ...)

Basic/multiple Positively correlated with Seniority

English Level of knowledge and use of the English lan-
guage

mother tongue/non-master It may be positively affected by Expertise

Role Current professional role. It refers to goals, tasks
and responsibilities.

• Planning ATCO
• Executive ATCO
• Other sector Controllers

May be related to Seniority.
It can affect the Mental workload.

resources allocation (human/computer/human with computer
assistance).

The variability of pilots’ behavior is represented with a
higher-level of abstraction thanks to a characterization of
airlines’ standard interactions with ATCOs. One of the main
modeling targets is to try to emulate the time variability of
the ATM tasks by properly representing the ATCOs’ men-
tal resource availability and the tasks load considering the
contextual conditions. Thus, when an ATCO is performing
monitoring functions and a conflict is detected—namely, the
possibility that two aircrafts infringe separation minima—the
available mental resources will be different if at the same
time the ATCO is evaluating a conflict resolution of another
conflict in its sector.

Overall, the agents (with particular focus on ATCOs and
pilots) are described in terms of multiple sets of attributes:

• static attributes: these are attributes which are deter-
mined at simulation startup time, and typically persist
throughout the whole simulation run;

• dynamic attributes: these are human factor variables
which can change at runtime, and typically allow to
capture the current state of an agent, depending on the
dynamic context evolution during the simulation;

• cultural attributes: these are attributes that are drawn at
simulation startup depending on some probability dis-
tributions, which are configured according to the input
configuration of the simulation.

We report in Tables 1–3 a characterization of all the vari-
ables which are represented in an agent, and which influence
the evolution of the simulated ATM system. The metrics
built on top of these aspects (as discussed in Section IV-E)
will allow to establish a characterization of the ATM socio-
technical system [27].

Some agents in the system can interact directly with each
other by means of event exchange. Nevertheless, this solution
does not scale, given the complexity of the scenarios which
we tackle by means of ABM simulation.

Indeed, the performance of an ATM system is strongly
affected by the decisions made by ATCOs involved in the
process of managing the flights. Different ATCOs, depend-
ing on their expertise, might rely on different strategies to

minimize the delay of flights and improve the overall safety.
Moreover, different companies may have different business
models that imply different objectives. In general, the human
behavior which shall be captured by the ABM simulation
system is strongly related to the type of activities performed
by the agents. As an example, some companies might have
as primary goal the minimization of fuel consumption, while
other companies might primarily target the comfort of their
customers. Accordingly, the first ones typically ask the AT-
COs in a stubborn way the permission to follow routes which
minimize fuel consumption, independently of the current
traffic condition, while the second ones ask for routes which,
e.g., avoid severe weather conditions—again, independently
of the current traffic. ATCOs have to manage all these aspects
at once, still guaranteeing the safety of the flights. Ultimately,
these different goals of different companies, especially in
heavy-loaded traffic scenarios, increase the stress of ATCOs,
who are in the end legally responsible for the safety of air
traffic.

Generally speaking, the relations and information flow that
characterize the ATM system could be too complicated to be
handled in a closed form with respect to the large amount
of interactions and interconnections which characterize the
high number of agents which are involved in the simulation.
Therefore, the ABM simulation system which we have de-
vised relies on a projection module, which allows to support
complex relationship dynamics described by multiple loops
and chains, nested loops, mutual cross-feed relationships
connecting the agents, inhibitory connections, and preferen-
tial reactions in the face of different events. The projection
module acts as a broker of events and actions, which allows
to efficiently interconnect the large amount of agents in
a single simulation, in a data- and event-driven way. The
projection module is one of fundamental components which
allows to formalize the agent interactions and to analyze the
aggregated behaviour from ABM simulations. This module
allows for a fast extension of the simulation model, if new
agents or different algorithms/behaviors shall be included to
extend the modeling capabilities of the architecture.

The ABM model represents the agent behavior in terms
of tasks which, in turn, are decomposed into elementary or
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TABLE 2. Human-factor characterization: Cognitive Factors

Variable Definition Values or Resources involved Dependencies

Situation Awareness Perception of elements in the environment, their
interpretation and the projection of the future sta-
tus [18]. It focuses on how operators develop and
maintain a sufficient understanding of “what is
going on” in order to achieve success in task per-
formance. It results in problem detection.

• Visual perception
• Selective attention
• Information processing [18]
• Projection

Both external conditions (traffic complexity and
automated tools) and Cognitive ones (mental fa-
tigue) may negatively affect the persistence and
efficacy, in terms of boredom [28]. Moreover, the
Expertise might influence the SA, particularly in
terms of projection

Mental Workload Subjective experience of the demand imposed by
the ATC task [29].

• Visual perception
• Selective attention
• Information processing
• Memory
• Multitasking

It highly depends on the task nature. External
conditions (traffic complexity, time worked and
quantity of automated tools) may decrease the
mental tenure over time. Personal factors might
have positive role (Expertise). It affects Situational
awareness.

Problem Solving Process oriented to reach a solution to cope with a
problem that has been identified.
It refers to the strategy the actor selects and the
impact in terms of changes or requests to other ac-
tors that the strategy requires. It results in terms of
efficiency (number of changes or actions required
to other actors or operations)

• Information processing
• Working memory
• Episodic memory
• Reasoning
• Action planning

External conditions (traffic complexity and quan-
tity of supporting tools) and personal factors (Ex-
pertise) may affect it.

Automated Tools
Mastery

It refers to the confidence or proficiency in use
of the digital supports and HCI, as described in
Parasuraman et al. [30]

• Selective attention
• Information processing
• Procedural memory
• Action planning

It highly depends on specific characteristics of the
tool such as usability, predictability, algorithms
reliability. The Mental workload might bring the
person to err more. It also correlates with personal
factors (age, expertise).

Technology Trust Attitude that an agent will help achieve an indi-
vidual their goals in a situation of uncertainty and
vulnerability [31]

• Procedural memory
• Episodic memory
• Information processing

Trust can vary a lot: transitions between levels de-
pends on Automated tools Mastery and Expertise.

atomic actions, whose execution consume time and resources
(both human and/or technical). A hierarchical task analysis
has been performed to identify the relevant human proce-
dures and protocols, as well as the systems and supporting
tools relevant to the simulation scenarios. This hierarchical
structure allows both to model tasks performed by a single
agent (e.g. the continuous monitoring of the sector activity)
as well as to allocate each of the actions of a distributed
procedure involving several agents (e.g. the flight handover
among two sectors). In the second case, an ontology formal-
izes the required interaction and communication among the
involved agents.

On top of time events in traditional DES systems (e.g.
sector monitoring is continuously executed), the simulation
is driven by the so-called traffic events, emulating human and
technical-component reactions in the face of the operational
context evolution—e.g. an aircraft is approaching, entering
or leaving a sector, a potential conflict has been detected
by the ATCO or by the supporting tools, a communication
request has been received from another agent, etc. Time
and Traffic events trigger the task execution which consists
in performing the corresponding actions. As the result of a
performed action, a new action in the same task or a new task
can be triggered. In this sense, the projection module plays
a fundamental role, because it becomes a co-orchestrator of
task-scheduling activities, effectively bridging the gap be-
tween two different traditional programming models, namely
DES and task-based ones, such as OpenMP [32].

Once an action is triggered, the agent will execute it,
provided that the agent is ready and all the required resources
(human and/or technical) are also available. This means that
at a given time step, an agent can have a certain amount of
concurrent actions to perform, which are associated with the

FIGURE 2. Finite State Machine describing the Lifecycle of an Action.

different tasks that the agents carry out. Parallelism at action
level has been taken into account considering the following
criteria, which are reasonable for the ATM scenario from
the human factor perspective: i) no more than two actions
can be executed in parallel, except when they involve shared
physical resources (voice, hearing, sight, hand touch, foot
touch); ii) both potential concurrent actions belong to a skill
or rule-based task; iii) none of the potential concurrent ac-
tions is a safety-related priority action—prioritization criteria
depend on the contextual traffic scenario. If an action cannot
be executed, then it remains in the pending state, until the
system determines that it can be executed or it is cancelled
because of a specific deadline (in some cases, performing
an action makes sense just during a given period after being
triggered).

Figure 2 shows the Finite State Machine which describes
the lifecycle of an action in the system. Once an action is
triggered, an object that represents it is created and handed
over the projection module, along with the associated set of
preconditions P , the set of resources R required for execu-
tion, and the temporal execution deadline T . A given action,
thanks to the projection module, is constantly monitored.

6 VOLUME 4, 2020
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TABLE 3. Human-factor characterization: Socio-Cultural Factors

Variable Definition Values or Resources involved Dependencies

Team Work Cooperation and operational support among staff
people and with other organizations’ professionals
in achieving standard procedures simpler. It can
largely affect the output of tasks. It results in a
variable level of Shared Situation Awareness.

• Organization of work
• Leadership style
• Members turnover
• Mutual trust

It may correlate with Rule Accomplishment.

Informative
Communication

Information quality and quantity the actor is able to
transfer to the receiver both in direct and mediated
communication, in terms of priority and clarity,
including also the informal or tacit communication
level with attributes.

• Organization of work
• Leadership style
• Mutual trust

It may be positively affected by Expertise. In case
of mediated communication, it may depend on the
tool characteristics.

Negotiation Inspired to Power Distance [33], the negotiation
refers to the inclination of the actor to accept to
receive request and accomplish them. It may result
in different problem-solving style.

• Organization of work
• Leadership style

It may vary according personal factors such as
the Seniority and the Expertise. Differences might
depend on the cultural distance.

Rules Accomplish-
ment

Organization’s tolerance towards deviation from
procedures and rules. It refers to the uncertainty
Avoidance [33] or tolerance towards written proce-
dures and formal rules. It is a organizational style
that affects the flexibility of individuals’ behaviors
in task accomplishment and error management.

• Organization of work
• Leadership style

—

Safety Culture Result of values, attitudes, perceptions, skills and
behaviour patterns of individuals and a group,
which determines the commitment, the approach
and the skills in the management of safety [34].

• Mutual trust
• Confidence in the efficacy of
prevention
• Training

—

Cultural Distance Culturally related characteristics able to influence
mental models and behaviors, at organizational
and individual level, such as error management or
timely risk recognition [33]

— —

Once the conditions in P , and R are met—this could happen
after that a previous action is completed, thus meeting some
precondition in P , or because some resource in R becomes
available—the action is started. During the execution, the
action will involve all the required agents in the model. Once
the action is completed successfully, the projection module
and the scheduler will determine whether some additional
actions are ready to be started. On the other hand, if the
time required to complete the action T expires, the action
is considered as failed and the task associated with the action
will be either restarted or cancelled.

The human performance model consists of specific rules
that combine traffic complexity, past traffic events and airline
characteristics with the human variables identified as relevant
for the specific task. This approach enables the simulation
model to assign a nominal or degraded behavior to the human
agents. The degraded behavior has the effect to extend the
duration of the assigned action of a percentage of the nominal
duration. Such human-performance degradation model repre-
sents the effect of human behavior variability on the overall
ATM system and its single parts.

The output of the simulation model is composed of two
different pieces of information. On the one hand, a new so6
file is generated, which describes the simulated trajectories
which show differences with respect to the planned trajec-
tories supplied as model input. At the same time, a log file,
which reports all the actions taken by the agents, is generated.
These outputs are used to compute the objective measures, as
we shall describe in Section IV-E.

IV. EVOLUTIONARY OPTIMIZATION FOR ATM SYSTEMS
In this section, we focus on the optimization process aimed at
identifying properly-tuned configurations which increase the
overall performance of the ATM system. The optimization
problem that we tackle here relates to identifying the best
non-dominated solution, i.e. the solution which minimizes
or maximizes metrics related to the ATM scenario among
all feasible solutions, i.e. solutions which do not violate
critical thresholds (such as safety separation). We introduce
our optimization approach based on evolutionary computing,
and then we discuss the formulation of our multi-objective
optimization problem and the definition of the objective
functions.

In an ATM system, there are generally multiple metrics
of interest to be optimized. We designed a simulation-based
optimization architecture which relies on an Evolutionary
Algorithm (EA), which manages a population of configura-
tions for the ABM simulation system discussed before. The
exploration of the overall search space is driven by multiple
objective functions, which also target variables associated
with the human behavior, such as the stress experienced by
ATCOs. These functions are included in a multi-objective
minimization problem, whose solutions identify the best-
suited configurations of the input parameters. The multiple
objectives are jointly optimized at the same time, so that
the fitness function used to evaluate the goodness of the
individuals is directly derived from these objectives.

The idea behind EAs is simple: if a population wants
to thrive, it must improve constantly; the fittest individuals
should inspire the new offspring, but the other individuals
should not be forgotten in order to maintain diversity within
the population, needed to produce outstanding individuals.
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By borrowing terms from biology, the individual or structure
is called chromosome, and represents an encoded solution to
some problem, in particular decoding into a set of parameters
that are the input to the optimization function of the problem
under consideration.

Overall, our optimization approach is based on a parallel/
distributed variant of the NSGA-II algorithm [35]. In the fol-
lowing, we provide the basics to discuss our design choices of
the optimization engine. This discussion is motivated by the
“no free lunch theorem” [36], which states that no algorithm
can be better than all other algorithms on all problems. We
therefore describe what principles behind EAs have driven
the selection of the final organization of our optimization
engine, with respect to the ATM system.

The first issue that must be faced is the representation of
individuals, namely the choice of the data structure defining
an individual. This representation affects the operators that
are applied to the individuals, and is a fundamental building
block—although not the only requirement—towards the cre-
ation of a solver which could be easily adapted to multiple
optimization scenarios. In EAs, the data structure storing an
individual has a fixed size, and therefore it shoud be general
enough to have the potential to contain an optimal solution.
Conversely, in Genetic Programming (GP) approaches the
representativeness problem is solved by having individu-
als stored in variable-size data structures, mostly in parse
trees [37]. In the context of ATM optimization, we can
observe that configuration variables are mostly numerical.
Therefore, it is sufficient to represent an individual as a
(fixed-size) set of uniform parameters, without the need
to resort to more complicated GP approaches. Generally
speaking, we assume that there are multiple input variables
to optimize: it is possible to suppose that this number can
even change in different ATM-related optimization scenarios.
Anyhow, it is legit to assume that a single population is ho-
mogeneous, i.e. that all the individuals in a single population
(namely, an ATM optimization problem) will share the same
set of explanatory variables. Therefore, the optimization
framework and algorithm will have to deal with a number
of input variables to optimize which is not necessarily known
a-priori, but which is stable in a single optimization process.
A more complicated individual representation, like the ones
used for GP, is not necessary in our scenario.

Any EA must first create an initial population of indi-
viduals. Larger populations have higher initial diversity, but
there is a trade-off between the need for sufficient diversity to
ensure the identification of a proper optimal solution, and the
need to avoid a so-large population that slows down the time-
to-solution. It is also important that the initial population
encompasses a wide range of different solutions. In our ATM
context, the domains upon which the single components
of the individuals are known beforehand. This knowledge
can be exploited in the initialization of the population. In
particular, we setup an initial population with a number of
individuals proportional to the space covered by the domains
of the variables, and each individual is randomly initialized.

FIGURE 3. Example of a two-dimensional Pareto front.

A. MULTI-OBJECTIVE OPTIMIZATION
As discussed, ATM optimization requires to solve a problem
characterized by multiple objectives. These objectives are
formally captured by the metrics that we will discuss in
Section IV-E. These metrics can not be handled in isolation,
since some of them might be in contrast to each other. As
an example, the timeliness of a flight might be in contrast
with safety separation. The straightest route could increase
timeliness, but it might produce safety-separation violations.
Thus, the problem which we address must consider all the ob-
jectives at once. It therefore comes handy the family of multi-
objective optimization problems (MOPs). A MOP minimizes
f(x) = (f1(x), . . . , fk(x)) subject to the constraints gi(x) ≤
0 i = {1, . . . ,m} and hj(x) = 0 j = {1, . . . , p}, where
k is the number of objectives and x = (x1, . . . , xn) is an
N -dimensional vector.

Having several objective functions fi, the notion of opti-
mum becomes the Pareto optimality (or Pareto efficiency),
which is a state of the variables under optimization from
which it is impossible to move so as to make any other
configuration better off, without making at least one variable
worse off. Considering the example of timeliness vs safety
separation, this concept becomes clearer: timeliness might
not be the best configuration on its own, but increasing
timeliness might make safety separation worse. Therefore,
with this approach, the search space is explored with the goal
of finding the best-suited trade-offs among all the variables
to be optimized. More formally, given f : Ω ⊆ Rn → Rk,
Ω 6= ∅, k ≥ 2 the Pareto Front set

PF ∗ = {f(x∗
i )|x∗

i ∈ Ω ∧ @x ∈ Ω s.t. f(x) 4 f(x∗
i )} (1)

is called the global minimum, where the set of all x∗
i is called

the global minimum solution set, f is the multi-objective
function, Ω is the feasible region, and 4 is used to indicate
the Pareto dominance.

The concept of Pareto Front is illustrated in Fig. 3, in
a sample search space composed of only the two objec-
tive functions introduced before. The boxed points represent
feasible solutions to the problem, and smaller values are
preferred to larger ones—a minimization problem. Point C is
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not on the Pareto front because it is dominated by both point
A and point B. Points A and B are not strictly dominated
by any other, and hence do lie on the front. Deciding to
pick either A or B as the final solution highly depends on
the problem being tackled, and/or the search algorithm being
adopted.

Multi-objective EAs (MOEAs) algorithms which allow to
solve a MOP are generally based on three different techiques:
i) a-priori techniques, ii) progressive techniques, and iii) a-
posteriori techniques. A-priori techniques require to define
the relative importance of the MOP objectives prior to the
search. The optimum solution is then obtained by optimizing
each objective in sequence, from the most to the least impor-
tant. This strategy is not suitable for ATM systems, because
it is not practical to assign a priority to different objectives.
In this scenario, Foruman has proposed [38] to define an
order by selecting at each evaluation a random objective. This
could lead to wrong results in our context—as an example,
safety-separation could be deemed to be not important, which
is unacceptable. Similarly, progressive techniques have to
define preferences to bias the search. The main issue here lies
in the definition of the methods to incorporate the preferences
into the MOEA.

We have therefore decided to exploit an a-posteriori tech-
nique, which tries to generate the elements of the Pareto op-
timal set (performing a broad search) followed by a decision-
making process. There are several subclasses of these algo-
rithms. We have explicitly discarded approaches which com-
pute the fitness of the individuals according to some linear
combination of the objective functions, or which consider
only a subset of the objectives, as these approaches have been
proven to suffer from an increased time-to-solution or they
could miss an optimal solution at all [39]. This has been the
only choice, given the large search space characterizing ATM
systems, and the criticality of the identification of the optimal
solution for the redesign of such systems.

Conversely, we have adopted a Pareto-based approach,
which assigns a fitness value to each individual according
to Pareto dominance, and therefore directly considers for
reproduction all non-dominated individuals in the current
population. Since those non-dominated solutions once found
are not guaranteed to survive in then next generation, an
additional population containing all non-dominated solutions
found so far is included [40]. This secondary population
is updated to include the newly-found non-dominated so-
lutions and is periodically culled, since Pareto dominance
is dependent upon the set on which it is evaluated. The
drawback of this approach is that the update rate drastically
increases the cost of the algorithm, and as the population
size grows, the comparison time may become dominant. This
is a relevant aspect. Considering that the evaluation of the
population is based on an ABM stochastic model, a large
number of simulations is required to effectively explore the
search space. In our implementation, we paid close attention
to reducing the time required to carry out a single simulation.
Based on this, we have shown experimentally (see section

VI-A) that, in our context, this approach is computationally
viable.

We borrow the Pareto-based approach from NSGA-II [35].
The fitness of an individual is an integer number (the rank),
representing a non-dominated front. An individual having
rank equal to zero is a non-dominated solution in the current
set, and individuals with rank i, with i ≤M and M the pop-
ulation size, are dominated only by individuals with smaller
ranks. In order to sort the individuals into non-dominated
ranks, we rely on the fast non-dominated sorting approach
requiring O(kM2) time and O(M2) space.

B. ELITISM
An another aspect to deal with in EC is elitism. This concept,
borrowed from sociology, describes the belief that individu-
als who form an elite are more likely to be constructive to
society as a whole, and therefore deserve influence or author-
ity greater than the others. In the EA jargon, elitism refers to
the high likelihood that a few individuals in the population
are the best ones, and therefore should be preserved in the
next iterations as much as possible.

Given the large search space of ATM optimization prob-
lems, elitism can be exploited as a way to reduce the time-
to-solution. We preserve elitism by the strategy used to make
the population evolve. In particular, after the computation of
the rank of the individuals in the current generation of the
population, we select the best-suited ones for reproduction,
in order to generate an offspring. Different strategies exist to
properly deal with the offspring. Our strategy is based on a
variation of the Double Tournament Selection, called Binary
Tournament Selection [41], where a group of two creatures
is taken from the population and the most fit individual is
picked as a parent, repeating the process to get a second
parent, choosing whether the first parent is excluded in the
second selection. In particular, we randomly choose two
individuals and if they differ in the non-domination rank, we
select the solution with the lower (better) rank. Otherwise, if
both solutions belong to the same front, then we select the so-
lution that is located in a “lesser crowded” region, to preserve
diversity. The selection is based on a combined population,
containing individuals of the offspring and individuals of
the parent population. Since both the previous and current
individuals are included, elitism is ensured.

C. CROSSOVER AND MUTATIONS
In EAs, children can be generated by applying either a single-
point or a double-point crossover operator to the pair of
parents, depending on the number of variables which are
used to represent an individual. The crossover operator is
used to combine disparate creatures facilitating novelty, and
therefore leading to a broad search. In particular, it is not
viable for our ATM scenario to consider an individual as
a mere bit string, as in generic EAs. Indeed, as we have
already discussed, every input variable is associated with
a feasibility domain. This domain already limits the search
space, because it excludes configurations which are a-priori
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known to be unacceptable with respect to the optimization
measures. As an example, setting the minimum horizontal
separation between two aircraft to a too low value would
increase the likelihood of safety-separation violations. Since,
as mentioned, our input parameters are all numerical (in most
cases, they are real numbers), applying a crossover operator
in the middle of the binary representation of a parameter
will likely move far away the parameter from the feasible
domain—this is related mainly to the binary representation
of floating-point values. Our crossover operator, therefore,
determines the crossover point at the granularity of a single
(atomic) parameter. If the number of parameter is high (over a
pre-determined threshold), we identify two crossover points,
and the exchange of portions of the parameters is carried
out in between these two points. In case of a large number
of parameters, a two-point crossover operator is likely to
explore the search space more conservatively, preventing
individuals in a new generation to drift too much from points
associated with the parents in the search space.

With some random ε-probability, the newly-generated in-
dividual is mutated. The mutation operator facilitates the
local search (especially when a tiny portion of the individual
representation is mutated). Again, mutations must not violate
the domains of the parameters. To this end, a mutation is
applied in terms of an increment/decrement of the current
value of the parameter, which anyhow is tested to keep the
mutated value in the domain. The magnitude of this variation
is such that the variable does not oscillate from the previous
value of an amount greater than 10% of the span covered
by its associated domain. Empirically, we have observed that
this criterion fastens the convergence time to an optimum in
ATM scenarios.

D. DIVERSITY PRESERVATION
In our ATM scenario, we do not want the overall population
to grow to a large extent, particularly to keep bounded the
amount of time which is required to run the simulations
needed to evaluate the fitness of the individuals. Therefore,
once the children have been generated, we borrow the re-
placement technique of NSGA-II, to ensure that the average
fitness increases over time, to guarantee a sufficient diversity
in the population, and to enhance elitism. This is an important
point, because (as discussed) loosing genetic variance can
lead to sub-optimal solutions.

In more details, we adopt a non-dominated sorting ap-
proach, where for each solution we calculate the number of
solutions dominating it (the domination count), and the set of
solutions it dominates—this requires O(kM2) comparisons.
Each non-dominated solution has a domination count equal
to zero. Then, for each solution with domination count zero,
we reduce the rank of the members of the set of solutions
it dominates, and if the domination count of any member
becomes zero, we put it in a separate list representing the
second non-dominated front. The process is repeated to iden-
tify all fronts. Since each solution can have dominance rank
at most M − 1, it will be visited at most M − 1 times before

D
p

i
i-1

f1

f2

i+1
cuboid

FIGURE 4. Crowding-distance calculation.

identifying its front, thus requiring O(M2) time. The overall
complexity is therefore O(kM2).

Diversity preservation is faced up by using the crowding
distance estimator. This estimator assigns to each solution a
real number representing the density of solutions surrounding
it. The crowding-distance computation requires sorting the
population according to each objective function value in
ascending order of magnitude. For each objective, the solu-
tions with the highest and the smallest values are assigned
an infinite crowding distance value. Each other solution is
assigned a value equal to the difference between the values
of its adjacent solutions in the current sorting, divided by
the difference between the highest and smallest values. The
computation is continued with other objective functions and
the overall crowding-distance value is calculated as the sum
of individual distance values for each objective. In other
words, the crowding distance is an estimate of the density
of solutions surrounding a particular solution. Fig. 4 shows a
graphical representation of this metric in a two-dimensional
world.

When a non-dominated set does not fit entirely in the new
population, because the number of its members is higher
than the remaining space, we sort the solutions in it using
the crowded-comparison operator in descending order and
choose only the best solutions to fill the remaining new
population slots.

E. ATM OBJECTIVE FUNCTIONS
The objective functions which we use to drive the exploration
of the search space are performance metrics which are related
to both human and physical aspects of the ATM systems. We
introduce the following parameters that we use to define the
objective functions:

• M is the total number of involved flights,
• Nm is the total number of sectors traversed by one flight,
• tn−1 is the time at the entrance in a sector,
• tn is the time at the departure from the sector,
• Tn is the expected time to cover that sector,
• fn is the specific fuel consumption per unit thrust and

unit time,
• Sn is the throttle setting of the thrust (in Newton),
• G is the total number of groups of ATCOs, and
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• Nm is the total number of actions of group m.
The performance metrics we consider are the following:

• Timeliness. It is evaluated as the time in seconds in a
sector, namely:

∆t =

M∑
m=1

1

Nm

Nm∑
n=1

tn − tn−1

Tn
− 1

• Occupancy. It is defined as the number of flights in a
given sector, in a specified timeframe (in our case, 30
minutes).

• Fuel consumption. It is the estimated amount of fuel
used by the aircraft, computed as:

F =

N∑
m=1

Nm∑
n=1

fn · Sn · (tn − tn−1)

• Safety. It is evaluated through minimum vertical or
horizontal separation, whose minimal thresholds depend
on the type of route (e.g., national vs transoceanic)

• ATCO workload. It is a human-related metric which
describes the cognitive resources required to accomplish
the various tasks. Namely, it is numerically expressed
as:

W =

G∑
g=1

ωgNg

In the last metric, the parameter ωg measures the compara-
ble workload. This parameter depends on a characterization
of the ATCO. In particular, we consider different aspects
which affect the value of ωg , namely the agents’ attributes
previously presented in Table 1.

Both physical and human-related metrics are computed
starting from the output of a simulation run. As mentioned,
the simulator generates an so6 file and a log of timestamped
events. From the former, we evaluate the trajectory-related
metrics associated with occupancy, timeliness, safety, and
fuel consumption. Timeliness, occupancy, and fuel consump-
tion are computed relying on the traffic library [42] and Ope-
nAP [43]. To this end, we compare the trajectories recorded
in the so6 file generated by the simulator, and the ones in the
original input so6 file—which is preprocessed to determine
the reference values for the performance metrics. For each
mutated trajectory, we are able to determine the impact on
the original metrics, and generate the new measures.

From the generated log file, we compute the final human-
related metrics. In particular, this can be done by parsing
the log—an excerpt of the log of one simulator is reported
in Fig. 5—so as to identify what ATCOs are involved in
which actions. The number of actions per timeframe which
are found in the log file determine an increase in the work-
load, accounting for all the characteristic variables which are
discussed in Table 1.

It is interesting to note that our approach decouples the
metrics of interest form the simulation-based optimization
loop. In this sense, it is possible to apply the same simulation-
based optimization scheme in order to study different ATM

scenarios, only by specifying additional metrics to be max-
imized or minimized. Conversely, as stated in Section III, if
an extension or a change to the simulation model is provided,
as well as the inclusion of additional decision variables, the
same metrics (and therefore the same ATM scenario) can be
studied under different perspectives, possibly in more details.

V. THE DISTRIBUTED OPTIMIZATION ARCHITECTURE
MOEAs have been proven to be one of the most effective
ways to solve MOPs, since they are able to produce sev-
eral non-dominated solutions in a single run. However, to
discover good solution sets, they require a large number of
solutions to be evaluated during each iteration. This can be
problematic for our ATM target. As explained, our Evolu-
tionary Optimization approach is based on a stochastic ABM
model, which therefore requires multiple runs, configured
with different random seeds, to determine how well (from
a performance-metrics point of view) a certain configuration
of the model’s explanatory variables (an individual) behaves.

With respect to the computational demand of the discussed
EA approaches, in [44] a comparison between generational
and steady-state asynchronous EAs has been carried out on
two popular algorithms (NSGA-II [35] and SPEA2 [45]).
They concluded that the level of variance in time to evaluate
a solution and the parallelization ratio are the key factors
that influence the relative performance between steady-state
asynchronous and generational EAs. The authors showed
that a substantial speedup can be achieved with steady-state
asynchronous algorithms.

The differences between steady-state and generational al-
gorithms are more apparent when dealing with simulation-
based optimization, where the simulation times can differ
drastically from one solution to another. The Master-Slave
parallelization paradigm [46] is well-suited for this case.

The overall organization of the optimization architecture
is therefore depicted in Fig. 6. The logical building blocks of
the Master-Slave architecture are the following:

1) The Orchestrator: it is responsible for splitting the
current population into different subsets of individuals,
distributing the sets to the different available comput-
ing nodes, and controlling them along the computation.

2) Compute nodes: they evaluate (through stochastic sim-
ulations) the goodness of an individual of the popu-
lation. These compute nodes represent performance-
critical elements. Indeed, for each individual of the
population, the orchestrator schedules for execution
multiple runs (the number is parameterizable) of the
simulation model (with different random seeds). We
refer to the multiple runs of the same configuration of
the simulation model to as a batch of simulation.

3) Compute metrics: they are activated after that a batch
of simulation is completed, and compute the average
values for the metrics of interest. In this way, given
that each execution in a batch is configured using a
different random seed, the different behavior of the
stochastic runs can be safely captured when evaluating
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2019-07-03T01:51:00,CWP-LIRRES37,-1,Flight FORTE10 will enter LIRRES37 at 2019-07-03T02:06:10.0
2019-07-03T01:51:17,PCA-LIRRES37,1b-1.1,-1,Action Action 1b-1.1 ’Check flight FORTE10 in radar screen

(label and route)’ executed by PCA-LIRRES37. I own 0 flights and 1 are coming.
2019-07-03T01:51:22,PCA-LIRRES37,1b-1.3,-1,Action 1b-1.3 Evaluate future situation. No-warning.
2019-07-03T01:51:22,PCA-LIRRES37,1b-1.3.1,-1,Action 1b-1.3.1 Flight FORTE10 will enter with no-warning.
2019-07-03T02:01:10,CWP-LIRRES37,-1,Flight FORTE10 will enter LIRRES37 at 2019-07-03T02:06:10.0
2019-07-03T02:01:17,ECA-LIRRES37,1b-1.1,-1,Executive Action 1b-1.1 ’Check flight FORTE10 in radar screen

(label and route)’ executed by ECA-LIRRES37. I own 0 flights and 1 are coming.
2019-07-03T02:01:23,ECA-LIRRES37,1b-1.3.1,-1,Executive Action 1b-1.3.1 Flight FORTE10 will enter with no-warning.
2019-07-03T02:01:23,ECA-LIRRES37,1b-1.End,-1,Executive Task 1b-1 ’Prepare inbound traffic for approaching flight

(FORTE10)’ successfuly completed by ECA-LIRRES37.
2019-07-03T02:03:17,ACA-231632986,3b-2.1,-1,Pilot Action 3b-2.1 ’communication to LIRRES37 for sector entry’ processed by FORTE10.
2019-07-03T02:03:17,ACA-231632986,3b-2.2,-1,Pilot Action 3b-2.2 ’waiting reply from LIRRES37 for sector entry’ created by FORTE10.
2019-07-03T02:03:22,ECA-LIRRES37,3b-2.1,-1,Executive Action 3b-2.1 ’Flight FORTE10 requests assumption’ by ECA-LIRRES37 with flag null.
2019-07-03T02:03:22,ACA-231632986,3b-2.2,-1,Pilot Action 3b-2.2 ’LIRRES37 gives me clearance for sector entry’ processed by FORTE10
2019-07-03T02:03:22,ACA-231632986,3b-2.End,-1,Task 3b-2 ’Sector LIRRES37 entry request’ successfuly completed by FORTE10.
2019-07-03T02:03:26,ECA-LIRRES37,3b-2.2,-1,Executive Action 3b-2.2 ’Establish radar contact with FORTE10 and assume the flight’

executed by ECA-LIRRES37.
2019-07-03T02:03:27,ECA-LIRRES37,3b-2.End,-1,Task 3b-2 ’Flight FORTE10 assumption’ successfuly completed by ECA-LIRRES37.
2019-07-03T02:06:10,CWP-LIRRES37,-1,Flight FORTE10 has entered LIRRES37
2019-07-03T02:35:52,CWP-LIBBES57,-1,Flight FORTE10 will enter LIBBES57 at 2019-07-03T02:51:02
2019-07-03T02:36:09,PCA-LIBBES57,1b-1.1,-1,Action Action 1b-1.1 ’Check flight FORTE10 in radar screen (label and route)’

executed by PCA-LIBBES57. I own 0 flights and 1 are coming.

FIGURE 5. Excerpt of a log generated by the simulation model.
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FIGURE 6. Conceptual organization of the optimization architecture.

an individual. We emphasize that this simulation-based
approach allows to avoid scenarios in which, due to
stochasticity, the EA-based optimization process might
oscillate across two different points in the search space.
The final metrics are here computed from the logs
of the ABM simulation and are associated with the
individual.

4) Selection and evolution: this logical block applies the
evolutionary strategy to evolve the current population
towards the optimal solution.

The master is therefore responsible for managing the cur-
rent population, running the Orchestrator and performing the
selection and evolution task. The slaves run a loop which
executes the following steps: 1) receive in input a subset of
the current population, 2) spawn instances of the ABM model
on each available processing unit of the computing infras-
tructure by passing the explanatory variables taken from an
individual in input to the simulation model, 3) wait for the

completion of a batch of simulation, 4) parse the log files, 5)
compute all the average metrics of interest and associate their
values to the individual. Once all the subsets of the population
have been evaluated by a slave, the metrics are sent back to
the orchestrator, which is able to apply the aforementioned
evaluation and selection strategy.

VI. EXPERIMENTAL EVALUATION
In this section, we present an experimental assessment of
our simulation-based evolutionary optimization architecture,
targeting two main goals. As a first goal, we assess the
computational performance of the implementation of our
architecture, also taking into account the fact that population
evaluation is simulation-based. We also evaluate the perfor-
mance sensitivity to the delay introduced by the execution of
the ABM model, which, as discussed, can be non-minimal
given the complexity of the problem being tackled. As a
second and overall goal, we assess the capabilities of our
optimization architecture on real-world scenarios.

We have implemented the software components of our EA-
based optimization architecture in the C11 language, relying
on the Message Passing Interface (MPI) [47], to support
scatter/gather primitives to distribute the population to the
slaves and recollect the computed metrics. In the experimen-
tal assessment we present, we have used a dedicated compute
cluster composed of the following four heterogeneous com-
pute nodes:

• Two HP ProLiant servers equipped with 4 AMD
Opteron 6128 multicore processors, each one encom-
passing 8 cores, for a total of 32 cores per node, and
32 GB of RAM per each node;

• One HP ProLiant server, equipped with 2 AMD Opteron
6174 multicore processors, each one having 12 cores,
for a total of 24 CPU cores, and 32 GB of RAM;

• One server equipped with 4 AMD Opteron 6168 multi-
core processors, each one with 12 cores, resulting in a
total of 48 cores, and 128 GB of RAM.
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Overall, our computing infrastructure accounts for 136
cores and 524 GB of RAM, making it a medium-size infras-
tructure. The system software on each node is Linux 4.19.13
(taken from the Debian 9 distribution), the compiler used is
gcc 8.2.0. As for the MPI runtime, we have used MPICH 3.3
(Hydra runtime).

A. COMPUTATIONAL PERFORMANCE AND
SENSITIVITY TO SIMULATION TIME
To study the computational performance of the our architec-
ture, we used a synthetic benchmark. We used a population of
50 individuals described by 10 explanatory variables, which
have been randomly generated with no constrained domain.
The number 10 has been selected as a worst-case scenario for
the goals of our kind of ATM optimization. In particular, at
the time of this writing, we have not been able to identify a
single real-world optimization scenario which would hit this
number of parameters.

For the sake of this performance study, we have replaced
all metrics with uniform pseudo-random number generators.
This means that the population which is kept in a different it-
eration of the evolutionary optimization is randomly selected.
This has been done because we are not actually interested
in the population being selected, rather on internal execution
dynamics.

Taking inspiration from the Hold benchmark traditionally
used to stress test software data structures [48] and the PHold
model for Parallel Discrete Event Simulation [49], we have
replaced the inner part of the evolutionary optimization archi-
tecture with a busy loop, which mimics the execution delay
of arbitrary operations—this is, in our case, the execution
latency of a simulation model.

The duration of this loop (in seconds) has been determined
according to a Normal distribution, with standard deviation
σ = 0.1, 0.2, 0.5 and with three different means µ =
0.5, 1, 2. Moreover, we have considered the special case in
which no duration of the busy loop was considered. The mean
value of the busy loop has been set to the order of seconds,
because we observed that this is the order of magnitude of
an execution of a simulation. Overall, this preliminary exper-
imental assessment (which has been carried out to highlight
the functional capabilities of the optimization architecture) is
organized to be representative of the operating settings for
the optimization problems.

We have carried out experiments running on all available
136 cores. The total population used in this evaluation has
been set to 1360 individuals—we consider this to be sig-
nificant for ATM optimization contexts with this number of
explanatory variables in the individuals. The number of total
iterations has been set to 10. We report results averaged over
5 different optimization runs.

In Table 4, we report the total execution time (in hours)
required to run the synthetic PHold benchmark which we
have described above. On the other hand, Table 5 shows
the slowdown produced by the busy loop in the overall
optimization architecture when executed with no delay at

TABLE 4. Time required to run the PHold test case in the distributed
environment (in hours).

µ
σ

0.1 0.2 0.5 stddev

0.5 2.10 2.15 1.33 0.46
1 2.02 1.52 1.18 0.42
2 6.65 7.08 6.88 0.21

TABLE 5. Slowdown with respect to the evolutionary optimization architecture
with no delay.

µ
σ

0.1 0, 2 0, 5

0.5 5571.10 5681.30 3531.00
1 5339.40 4013.30 3133.60
2 17601.60 18729.90 18204.10

all—in this case, the overall execution time amounts to 1,36
seconds.

By these results, we can draw two conclusions. On the one
hand, the optimization architecture which we have designed
is quite efficient and its convergence time does not affect the
overall performance of the ATM-optimization framework.
On the other hand, as expected, in a simulation-based evo-
lutionary computation system, the part of the loop which
affects more the duration of the algorithm to find an optimal
solution is the execution of the simulation model. Although
the slowdown figures might look large, we note that (Ta-
ble 4) the total time required to find an optimal solution are
perfectly acceptable, given the complexity of the problem
which we tackle. Additionally, we can observe (Table 4,
last column) that the overall optimization architecture is
quite resilient to variations in the duration of the simulation.
This result suggests that there is no actual requirement to
devise more complicated strategies to schedule the execution
of simulations on the distributed environment, which could
anyhow increase the deploy complexity.

The fact that for higher standard deviations smaller total
execution times are observed is related to the Normal distri-
bution defined on [−∞,+∞], while we use this distribution
to setup a busy loop. If a negative value is drawn from
a distribution, this value is artificially forced to zero. This
artifice happens more often with larger values of the standard
deviation, and is observed in the reduced amount of total
execution time.

B. RESULTS IN REAL-WORLD SCENARIOS
To evaluate the capabilities of our simulation-based opti-
mization architecture, we have relied on a real-world ATM
scenario addressed in the execution phase of the SESAR
Solution #32 “Free Route through the use of direct routing”,
and the and SESAR Solution #33 “Free Route through Free
Routing” [50]. The direct routing environment highlights
the different aspects of the ATM socio-technical complexity,
specifically: a) cognitive aspects, dealing with the cognitive
behavior of human actors, b) social aspects, dealing with
the place and the role of human actors within the system,
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c) technical aspects, dealing with the engineering of the
technical components and of the system architecture, and d)
interrelations of the above-mentioned three aspects.

We considered a real-world high-complexity traffic sce-
nario in this part of the experimentation. It is related to a
number of elementary sectors within the Brindisi (LIBB) and
Rome (LIRR) Area Control Centres (ACCs) of the Italian
airspace. Specifically the operational configuration includes
four collapsed sectors belonging to Brindisi (LIBBCN37,
LIBBCS37, LIBBES37, LIBBND37) and one belongin to
Rome (LIRRUS37). The considered flights are those over
FL315, which is the threshold for direct routing. Each con-
sidered sector has been collapsed. The number of flights in
the day are 378.

To perform a preliminary validation to generate trust in the
simulation model, we have carried out a comparison between
the simulated and the actual timeliness and occupancy in
a time window. Fuel consumption has not been used for
validation purposes due to the adoption of DDR2 data, which
do not allow an accurate determination of the fuel flow in
a given trajectory point of a given aircraft. In Fig. 7 we
report, for some simulated flights, the comparison between
the simulated, planned and flown trajectory. The planned
trajectory is the one which is established before the flight
is actually departed. The flown trajectory is associated with
the actual trace (taken from the so6 file), which is associated
with direct routing. Conversely, the simulated trajectory is the
output of our simulation model. Similarly, in Fig. 8 we report,
for some sectors, the comparison between the simulated and
the flown occupancy. The fact that in both Figures the results
between the simulated and the flown data are very close is an
indication of the capability of our simulation system to well
capture the dynamics of individual flights (Figure 7) and also
to well capture emergent behavior (Figure 8).

Fig. 9 reports an example of the comparison of the oc-
cupancy each 30 minutes in the LIBBCN sector. As it is
possible to see, the trends are nearly the same. The behavior
is more or less the same for the other sectors and days. The
deviation of the achieved timeliness in simulated traffic with
respect to that evaluated on the actual traffic in percentage
does not overcome 10% on all sectors. The deviation of
the achieved occupancy in simulated traffic with respect
that evaluated on the actual traffic in percentage does not
overcome the 7% on all sectors.

As a second experimentation, we have selected two op-
timization variables and we have run the evolutionary opti-
mization module to fine tune the values of these variables.
The variables are the horizontal separation minima for the
ATCO Planner (HP) and the ATCO Executive (HE), ex-
pressed in nautical miles. We have run a total of 50 iterations,
and we have used the trajectory-related metrics discussed in
Section IV-E to drive the exploration of the search space,
namely occupancy per 30 minutes (i.e., average number of
flights every 30 minutes) and timeliness (in seconds). We
have run the evolutionary optimization basing the simulation
on the traffic in the aforementioned scenario focusing on the

FIGURE 7. Comparison between the simulated, planned and flown trajectory.

FIGURE 8. Comparison between the simulated (left) and flown (right) occupancy.

time slot from 12 pm to 2 pm on July 6, 2016 related to the
ACC of Brindisi. By the nature of the simulated traffic, we
categorize this experiment as a “high-complexity” one.

In Table 6, we report the results related to the first 10
iterations of the evolutionary optimization. After 10 itera-
tions, the evolutionary optimization is able to identify the
Pareto-optimal configuration—this individual has been gen-
erated by means of mutation on the previous iteration, and
in the later iterations no better individual has been found,
also by mutation. The optimization has been particularly
challenging in the proposed case, due to the high number of
objective metrics and the low number of decision variables.
The obtained results correctly minimize the objective metrics
according to Pareto dominance. In addition, it provides more
“conservative” values for the separation minima, which are
anyway able to minimize occupancy and timeliness metrics.
This is related to the specific nature of the simulated traffic
of the high-complexity scenario, which is mostly a sliding
traffic over the ACC of Brindisi.

We have also run a similar optimization, with respect to
optimization variables and metrics, but considering a more
complicated simulation scenario. In particular, we have opti-
mized the aforementioned horizontal separation minima for
the traffic on the 6th of July 2016 in the time slot from
12 pm to 2 pm, considering flights within the ACC of Mi-
lan and Padua—collapsed sectors LIMME37, LIMMWC37,
LIPPCS37, LIPPN37, LIPPSD37, LIMMWC37, LIPPCS37,
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TABLE 6. Convergence history for partial traffic on July 6, 2016, Area Control Center of Brindisi.

# HP HE LIMME LIMMWC LIPPCS LIPPN LIPPSD LIMME LIMMWC LIPPCS LIPPN LIPPSD
(occ.) (occ.) (occ.) (occ.) (occ.) (tim.) (tim.) (tim.) (tim.) (tim.)

1 7.2 4.8 4.08 4.00 4.08 5.23 3.88 537.63 430.72 803.59 679.80 532.49
2 8.8 7.0 4.10 4.00 4.10 5.23 3.88 533.14 429.86 801.55 680.31 532.41
3 8.8 7.0 4.10 4.00 4.10 5.23 3.88 533.14 429.86 801.55 680.31 532.41
4 8.8 7.0 4.10 4.00 4.10 5.23 3.88 533.14 429.86 801.55 680.31 532.41
5 8.8 7.0 4.10 4.00 4.10 5.23 3.88 533.14 429.86 801.55 680.31 532.41
6 8.8 7.0 4.10 4.00 4.10 5.23 3.88 533.14 429.86 801.55 680.31 532.41
7 8.8 7.0 4.10 4.00 4.10 5.23 3.88 533.14 429.86 801.55 680.31 532.41
8 8.8 7.0 4.10 4.00 4.10 5.23 3.88 533.14 429.86 801.55 680.31 532.41
9 8.8 7.0 4.10 4.00 4.10 5.23 3.88 533.14 429.86 801.55 680.31 527.54
10 8.6 7.0 4.06 3.96 4.02 5.23 3.90 535.22 430.29 808.37 678.69 527.54

TABLE 7. Convergence history for partial traffic on July 6, 2016, Area Control Centers of Milan and Padua.

# HP HE LIBBCN LIBBCS LIBBES LIBBND LIRRUS LIBBCN LIBBCS LIBBES LIBBND LIRRUS
(occ.) (occ.) (occ.) (occ.) (occ.) (tim.) (tim.) (tim.) (tim.) (tim.)

1 6.9 5.6 2.77 3.19 3.04 3.77 2.10 552.19 763.08 574.32 549.08 618.03
2 6.9 7.0 2.85 3.21 3.04 3.83 2.08 545.42 773.08 578.98 545.29 623.08
3 7.3 6.9 2.79 3.19 3.04 3.81 2.15 550.84 757.37 568.10 555.08 606.49
4 6.8 6.6 2.77 3.17 3.02 3.79 2.08 549.18 770.27 577.98 552.04 622.77
5 8.8 6.4 2.77 3.19 3.00 3.83 2.10 559.57 766.15 573.86 551.21 618.25
... ... ... ... ... ... ... ... ... ... ... ... ...
13 7.2 6.6 2.77 3.21 3.00 3.79 2.10 551.83 756.40 574.92 554.83 615.26
14 7.2 6.9 2.81 3.23 3.00 3.79 2.13 549.99 769.04 566.87 552.51 614.41
... ... ... ... ... ... ... ... ... ... ... ... ...
16 7.2 4.7 2.79 3.23 3.02 3.83 2.13 552.22 753.99 566.84 551.86 613.96
... ... ... ... ... ... ... ... ... ... ... ... ...
23 6.6 4.7 2.75 3.17 3.00 3.81 2.13 554.45 767.27 578.16 552.09 615.47
... ... ... ... ... ... ... ... ... ... ... ... ...
50 6.6 4.7 2.75 3.17 3.00 3.81 2.13 554.45 767.27 578.16 552.09 615.47

FIGURE 9. Simulated/Actual Occupancy for the LIBBCN Sector on 2016-07-05.

LIPPN37, LIPPSD37. By the nature of the simulated traffic,
we classify this experiment as a “very-high complexity” one.

In Table 7, we report the results related to an excerpt of
the first 50 iterations. Also in this case, the optimization is
particularly challenging—there is a high number of objective
metrics and a low number of decision variables. From the
results, we can draw multiple conclusions. On the one hand,
the results obtained from the optimization procedure exhibit
more “aggressive” values for the separation minima with
respect to their nominal values. This is an expected result,
also due to the nature of the very-high complexity of the
simulated traffic, which is composed of sliding, crossing,
climbing and descending parts over the ACC of Milan and
Padua. On the other hand, it could be argued that “multiple”

optimal solutions are identified. We refer, in particular, to
the best-fit individuals identified at iterations 16 and 23—
the best-fit individual at iteration 23 was generated by means
of mutation. The former on average implies better (i.e.,
lower) values for the occupancy metrics, whereas the latter on
average implies better (i.e., lower) values for the timeliness
metrics. While a human might decide that the individual at
iteration 16 could be deemed “better” than the one at iteration
23, Pareto-optimality selects the latter as the best-suited one.
This is coherent with the contrasting nature of occupancy
and timeliness metrics, whose optimization requires some-
how a compromise. Moreover, these results highlight the
importance of the mutation operator in this kind of ATM
optimization.

In a third experiment, we have carried out a different kind
of optimization. In particular, we have optimized the opera-
tional sectorization configuration of the environment in terms
of allocation of elementary sectors in the collapsed sectors of
both executive controllers and planning controllers to opti-
mize trajectory-related performances. The decision variables
are represented by the combination of elementary sectors in
the collapsed sectors, which represent the actual simulated
sectors for each iteration of the optimization module. A num-
ber of 5 iterations is considered for the convergence threshold
of the optimization module. A number of 6 individuals is
applied for the population size at each iteration. The human-
related metrics encompass the number of communications
between the executive controllers (ExeC) and the flight crew
(FC). We have used the real-world traffic on July 3, 2019
in the time slot from 12 pm to 2 pm, considering the ACCs
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TABLE 8. Convergence history for partial traffic on July 3, 2019, Area Control Centers of Milan and Padua.

#
Optimal Sector
Configuration

Total ExeC
Communication

Standard Deviation
of Exe Communication

Total ExeC
Separations

Standard Deviation
of ExeC Separations

Total PC
Separations

Standard Deviation
of PC Separations

1 LIMME37; LIMMWC37; LIPPCS37;

LIPPN37; LIPPSD37

3332 235.65 1371 81.82 3676 429.90

2 LIMME3; LIMME4; LIMME5;

LIMME6; LIMME7; LIMMWC3;

LIMMWC4; LIMMWC5; LIMMWC6;

LIMMWC7; LIPPCS3; LIPPCS4;

LIPPCS5; LIPPCS6; LIPPCS7;

LIPPN3; LIPPN4; LIPPN5; LIPPN6;

LIPPN7; LIPPSD3; LIPPSD4;

LIPPSD6; LIPPSD37

5325 66.27 1836 34.59 3865 55.25

3 LIMME37; LIMMWC37; LIPPCS3;

LIPPCS4; LIPPCS5; LIPPCS6;

LIPPCS7; LIPPN3; LIPPN4; LIPPN5;

LIPPN6; LIPPN7; LIPPSD3; LIPPSD4;

LIPPSD6; LIPPSD7

4195 186.94 1446 82.21 3155 152.38

4 LIMME34 LIMME57 LIMMWC34

LIMMWC57 LIPPCS3 LIPPCS4

LIPPCS5 LIPPCS6 LIPPCS7 LIPPN3

LIPPN4 LIPPN5 LIPPN6 LIPPN7

LIPPSD3 LIPPSD4 LIPPSD6 LIPPSD7

4514 130.82 1555 61.59 3330 105.18

5 LIMME34; LIMME57; LIMMWC34;

LIMMWC57; LIPPCS34; LIPPCS5;

LIPPCS6; LIPPCS7; LIPPN34;

LIPPN5; LIPPN6; LIPPN7; LIPPSD34;

LIPPSD6; LIPPSD7

4144 127.08 536 33.69 3216 107.26

of Milan and Padua, which corresponds to our “very-high
complexity” scenario. In this scenario, we have also used
human-related metrics, with the ultimate goal of minimizing
also the workload suffered by ATCOs.

The obtained solution (highlighted in Table 8) on average
minimizes the objective metrics. Indeed, even if other solu-
tions exhibit better values for the total metrics (e.g., solution
1, which aggregates as much as possible the elementary
sectors) or for the standard deviation metrics (e.g., solution
2, which separates as much as possible the elementary sec-
tors), the highlighted solution represents a good compromise
between the “extreme” solutions. It qualitatively aggregates
the sectors of the ACCs according to their peak of traffic, pro-
ducing nearly uniform workload distributions for controllers
and with a limited total workload.

The results shown so far have highlighted that evolu-
tionary optimization can be effectively used to fine tune
optimization parameters, also taking into account human-
related metrics. In particular, we have shown that, in real-
world scenarios, it is possible to minimize the timeliness and/
or the number of ExeC/FC communications. By these prelim-
inary results, we have shown that these aspects are mostly
affected by the ExeC horizontal separation, the executive
controller outbound lookahead, and the planning controller
lookahead. From a numerical point of view, the variation of
such parameters may be further explored to provide a detailed
analysis for the optimization of the average timeliness and the
total number of communication from ExeC to FC. We refer
to this exploration as sensitivity analysis, i.e. a numerical
optimization with the goal of assessing what is the actual
decision variable which has the largest impact of the metrics.

Our evolutionary optimization architecture can be also
used to carry out this kind of sensitivity analysis, in an auto-

mated way. In particular, we have run a set of optimizations
in which we have used only one variable for the exploration
of the search space. This assessment allows to determine
what is the decision variable which has the largest impact on
the results, therefore showing what should be the best-suited
variables to be used when optimizing an ATM scenario. For
this experiment, we have used the “very-high complexity”
traffic on July 6, 2016 in the time slot from 12 pm to 2 pm,
considering the ACCs of Milan and Padua.

Tables 9–12 report the results obtained when optimizing
one variable at a time—among ExeC horizontal separation
(nautical miles), ExeC Outbound Lookahead (seconds), HP
Horizontal Separation (nautical miles), and PC Lookahead
(seconds)—while using as performance metrics the overall
timeliness (seconds) and the number of ExeC/FC commu-
nications. In all optimizations the evolutionary architecture
is able to find Pareto-optima, but the most interesting result
lies in that some of these optimization variables (e.g., PC
horizontal separation) do not affect the metrics. Therefore,
this kind of analysis effectively allows to identify what are the
best-suited parameters to be dealt with for the optimization of
an ATM scenario.

The achieved validation results indicate good agreement
between simulated and real flights, with limited deviations
for the assessment of performance metrics under evaluation.
Indeed, assessment errors are always under low thresholds,
such as 4 minutes for flight timeliness and 0.6 flights/10
minutes for sector occupancy. Additionally, all the results
have also been validated by ATCOs from Air Navigation Ser-
vice Providers (ANSPs), such as ENAIRE (Spain) and ENAV
(Italy), in a series of dedicated meetings. The optimizations
which have been identified by our architecture have been
considered satisfactory. In particular, the controllers have
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TABLE 9. Automated sensitivity analysis of the ExeC horizontal separation.

# ExeC Horizontal Separation Timeliness Total ExeC/FC Communications
1 5.7 611.60 2169
2 5.4 611.34 2174
3 5.4 611.34 2174
4 4.6 611.10 2182
5 4.6 611.10 2182
6 4.5 611.34 2171
7 4.4 610.73 2178
8 4.4 610.73 2178
9 4.0 611.35 2165
10 4.0 611.35 2165
11 4.2 611.06 2167
12 4.2 611.06 2167

TABLE 10. Automated sensitivity analysis of the ExeC outbound lookahead.

# ExeC Outbound Lookahead Timeliness Total ExeC/FC Communications
1 378.4 611.51 2192
2 378.4 611.51 2192
3 367.7 614.90 2189
4 320.0 613.80 2187
5 291.2 614.90 2167
6 291.2 614.90 2167
7 261.5 617.94 2141
8 261.5 614.90 2141
9 244.1 614.90 2141

10 220.2 617.54 2133
11 206.7 617.94 2121
12 206.7 617.94 2121

TABLE 11. Automated sensitivity analysis of the PC horizontal separation.

# PC Horizontal Separation Timeliness Total ExeC/FC Communications
1 7.5 616.02 2164
2 6.9 616.02 2164
3 6.9 616.02 2164
4 7.5 616.02 2164
5 6.9 616.02 2164
6 6.9 616.02 2164
7 7.5 616.02 2164
8 6.9 616.02 2164
9 6.9 616.02 2164
10 7.5 616.02 2164
11 6.9 616.02 2164
12 6.9 616.02 2164

TABLE 12. Automated sensitivity analysis of the PC lookahead.

# PC Lookahead Timeliness Total ExeC/FC Communications
1 849.5 613.13 2186
2 849.5 613.13 2186
3 859.3 612.02 2180
4 859.3 612.02 2180
5 909.1 608.84 2181
6 909.1 608.84 2181
7 936.4 610.22 2172
8 937.2 611.10 2170
9 967.0 608.91 2166
10 975.8 607.30 2167
11 975.8 607.30 2167
12 971.6 609.84 2163
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found acceptable the behavior of emulated human agents,
highlighting that often humans behave in different ways
though they are facing the same situation and such variability
was, in fact, fairly modelled in our approach.

The achieved results are strictly generalizable since the
simulation errors are limited and show the same magnitudes
for a given performance metric, without a clear dependence
on the sectors and on the type of traffic. Furthermore, the
simulation errors appear to be mainly related to real and
non-deterministic ATM events (e.g., delays, severe weather
conditions, etc.). These events produce deviations of the real
traffic flow from the planned one and cannot be predicted by
the simulation engine without injecting additional input data
which are not usually available during the strategic and pre-
tactical phase. Nevertheless, our simulation model effectively
represents the socio-technical dynamics of a generic ATM
scenario. This is directly applicable to an accurate perfor-
mance evaluation of an ATM solution using both human-
related and trajectory-related metrics, which in turn feed our
optimization architecture for automated support to the design
of the ATM solution itself.

As a consequence, the proposed simulation system and
optimization architecture may be a first attempt to a “stan-
dardized” toolset to support ATM change management. In-
deed, such toolset would enable a systematic process for the
design and the verification of new concepts in ATM by means
of fast-time simulation and optimization, including human
behavior assessment.

VII. CONCLUSIONS AND FUTURE WORK
We presented an ABMS-based evolutionary architecture de-
signed for the evaluation and optimization of ATM systems.
Our proposal allows to carry out several differentiated op-
timizations, involving multiple different optimization vari-
ables, and relying on several trajectory- and human-based
metrics to assess the goodness of a solution. The optimization
is based on an ABM model which allows to simulate both
aircraft and humans (ATCOs) involved in the ATM proce-
dures. Experimentally, we have shown that our architecture
allows to carry out optimizations of real-world scenarios in a
reduced amount of time, thus placing itself as a versatile tool
for what-if analysis in the contexts of ATM.

Currently ongoing work entails the identification of proper
trade-offs between accuracy and timeliness for real-time ap-
plications (during the tactical phase), in order to allow the
identification of better-performing operations in a bounded
execution time, as an assistive technology to ATCOs. This
kind of any-time optimization is currently being tackled by
tweaking the time-window and the sectors involved in the
simulations in the main loop of the evolutionary algorithm,
and also in terms of the selection of a proper subset of the
simulated flights.
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