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Abstract—Transaction Memory systems may suffer from per-
formance degradation when the concurrency level grows. The
transaction abort rate caused by high concurrency may be detri-

mental to energy efficiency as well. Thread scheduling techniques,
which proactively block some threads to optimize the concurrency
level, help to reduce these phenomena. In this paper, we show
that the efficiency of mechanisms used by tread schedulers for
blocking/unblocking concurrent threads can be improved using
CPU-core frequency scaling options offered by modern hardware
systems. Particularly, we study a low-frequency busy waiting
approach, in which blocked threads scale down the frequency of
CPU-cores where they are running. We compare this approach
with two commonly used approaches by thread schedulers, and
we demonstrate that it achieves the best results in term of both
performance and energy efficiency.

I. INTRODUCTION

Over the last years, multi-core systems have become main-

stream computing platforms. Consequently, the need for de-

veloping concurrent and parallel applications that can effec-

tively exploit the hardware parallelism of these systems is

increasingly common. Transactional Memories (TMs) simplify

the problem of thread synchronization when developing con-

current applications. They allow programmers to mark as a

transaction the code blocks executing shared data accesses that

require to be executed in isolation (e.g. critical sections). At

run-time, TMs guarantee transactions to be executed atomi-

cally without interferences on share data accesses with other

concurrent transactions.

TMs use an optimistic approach for taking advantage of

multi-core architectures. Transactions are allowed to execute

in parallel, and conflicts on shared data accesses are resolved

after that they occur by aborting and restarting one conflicting

transaction. However, the performance of TM systems does

not grow indefinitely while increasing the thread parallelism.

Indeed, when the concurrency level excessively grows, the per-

formance may even (drastically) decrease. This phenomenon

is due to the high transaction conflict rate and to contention

on shared hardware resources. Figure 1 shows some example

data of an experiment executed with the Intruder application

(included in the STAMP benchmark suite [1] for TMs) with a

number of concurrent threads from 1 up to 16. The experiment

was executed with TinySTM [2] on a 16-core machine. Results

show that the application execution time decreases (i.e. the

system performance increases) while incrementing the number

of concurrent threads up to 5. After, its starts increasing due to
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Fig. 1. Application Execution Time and Energy Consumption of Intruder.

the high concurrency level. In the same figure, we also report

data related to the energy consumption of the machine during

each run of the application. The shape of the energy curve is

similar to the application execution time. Indeed, intuitively,

the (wasted) energy used by CPU-cores to process (aborted)

transactions is proportional to the (waste) time for processing

them.

In TM systems, the phenomenon of performance loss due

to high concurrency can be partially prevented by bounding

the number of threads to the number of available CPU-cores

[3]. However, such as shown in Figure 1, the performance

degradation may arise even when there are less concurrent

threads than CPU-cores.

One solution to cope with this problem relies on thread

scheduling. In such a case, the TM system is equipped with

a scheduler, which, based on a given scheduling strategy,

can (temporarily) block some threads in order to reduce the

concurrency level. Various thread scheduling techniques for

TMs have been proposed in literature. They use alterna-

tive scheduling strategies for deciding when and how long

threads should be blocked. For example, some techniques use

feedback-based control strategies (e.g. [4], [5], [6]). Other

techniques rely on performance models of TM applications

(e.g. [7], [8], [9]).

Irrespectively of the adopted strategy, a common problem of

thread schedulers is to minimize the impact on performance of

operations required for thread blocking/unblocking. This issue

has been evidenced, e.g., in [6] and [7]. An approach in which

a thread to be blocked sleeps for a pre-determined time (e.g. by



calling the sleep(time) POSIX/Unix-Like standard function) is

generally unsuitable. Indeed, thread schedulers typically use

on-line adaptive strategies, thus it is not possible to foresee

when a thread should wake up in the future. If the sleep time

is too long, the thread may wake up too late. Conversely, too

short sleep times may lead to unnecessary overhead due to

repetitive sleeping and waking up operations. We note that

a scheduler could block even many threads over the total

number of running threads, and that a thread could be blocked

for a long time. Thus, the overhead associated to the above-

mentioned operations could be relevant.

Two alternative approaches to block threads are commonly

used by thread schedulers for TMs. Both of them have

been analysed in [6] and [7]. The first approach is based

on busy waiting, and the second one on semaphores. These

approaches impose a trade-off between performance and en-

ergy consumption, as also confirmed by the results of the

experimental study that we present in Section III. Specifically,

the first one improves performance at the cost of energy

efficiency. Indeed, it can be implemented by simply using

per-thread synchronization flags, on which each thread spins

when blocked. This avoids the overhead of any system call,

and threads can immediately run when unblocked. However,

it is energy-consuming, given that the CPU-core is kept

busy by the blocked thread. With the second approach, the

performance may be penalized due to the overhead associated

to system calls for operating on semaphores. However, given

that blocked threads can sleep until the semaphore is busy,

the energy consumption of unused CPU-cores can be reduced

due to the spontaneous activation of the per-core frequency

scaling mechanism [10] offered by recent operating systems

(that exploit the dynamic frequency scaling technologies of

recent processors [11]).

To cope with the disadvantages of the above-mentioned

approaches, we studied a low-frequency busy-waiting based

solution, which exploits the chance for a thread to dynamically

scale down/up the frequency of the CPU-core where it is run-

ning. Today, mainstream multi-core hardware systems offer the

option to scale down/up the frequency of an individual CPU-

core, which can be actuated via the Operating System support.

Based on this facility, in our approach, the thread by itself

scales down the frequency of the associated CPU-core upon

entering a blocking phase. Then, when unblocked, it scales

up the frequency and proceeds along its execution path. We

remark that, as we already discussed, in TM applications it is

generally convenient to bound the number of active threads to

the number of CPU-cores to prevent performance loss (e.g. see

[3]). Under this condition, it is possible to assign each thread to

a different CPU-core (e.g. using CPU affinity functions, such

as sched setaffinity on Linux/UNIX OS), whose frequency can

be regulated by the assigned thread. However, our approach

is not limited by this condition. Indeed, it can be easily

implemented even for the case where there are more threads

than CPU-cores. More generally, it can be implemented for the

case it is required to correctly restore the frequency of CPU-

cores under scenarios with thread reschedule (e.g. when some

thread of the application is context-switched off the CPU-

core in favour of other threads of the same application, or

threads of other applications/services running on top of the

machine). In Section IV, we discuss a possible extension of the

implementation of our approach to cope with these scenarios.

We conducted an experimental study to evaluate the effi-

ciency of our approach in terms of both performance and en-

ergy consumption. We executed experiments using TinySTM

equipped with a thread scheduler, and some applications of the

STAMP benchmark suite. Results show that the low-frequency

busy waiting mechanism that we implemented achieves the

best, in terms of both performance and energy efficiency, of

the two approaches that we described above. Finally, we note

that, although we evaluated this approach in the case of TM

applications, it could be used to optimize blocking/unblocking

operations in thread scheduling techniques also for other kind

of concurrent and parallel applications.

In the next section, we enter into details of the imple-

mentations we used to compare the different approaches. The

experimental results are presented in Section III. In Section,

we present the IV solution to cope with execution scenarios

where frequency restore is required after thread reschedule.

Finally, related work is discussed in Section V.

II. IMPLEMENTATIONS OF THE EVALUATED APPROACHES

We consider a TM application running with N concurrent

threads. The TM system is equipped with a thread scheduler

that uses some scheduling strategy to adaptively change the

number of threads k, with k ≤ N , that are kept running along

the application execution.

We assume that each thread can be assigned to a differ-

ent CPU-core. A coordinator thread is in charge of block-

ing/unblocking threads according to the scheduling strategy

(1). Each thread, before starting a new transaction, checks if

it should be blocked or not.

When using the first busy waiting approach (the one without

frequency scaling, we refer to as basic busy waiting approach),

a thread checks an its own flag. The coordinator thread sets to

0 all flags of threads that are allowed to run (i.e. of threads that

must not block), otherwise they are set to 1. Thus, a thread

spins while its flag is equal to 1.

With the second approach, upon checking, a thread executes

a wait-for-zero operation on a its own semaphore, whose value

is set to 1 by the coordinator thread when the thread must

block. Conversely, it is set to 0 when the thread is allowed to

run. Upon the wait-for-zero operation, if the semaphore value

is equal to 1, the thread transits into the sleeping state. It

is woken up by the operating system when the value of the

semaphore becomes 0.

With the low-frequency busy waiting approach, each thread

uses the same its own flag, as with the basic busy waiting

approach, which is modified by the coordinator thread. How-

ever, upon checking, if the thread finds the flag to be 1, it

1The coordinator thread could be a dedicated thread or one of the concurrent
application threads, e.g. selected with a round robin strategy.



scales down the frequency of the CPU-core it is assigned to.

Then, it continues spinning at low-frequency, as determined

by the lower CPU-core speed. When the flag is set to 0 by

the coordinator thread, the thread scales up the frequency and

runs again.

III. EXPERIMENTAL STUDY

To compare the different approaches, we conducted a set of

experiments with TinySTM and three applications of STAMP

benchmark suite, including Intruder, Kmeans and Yada. We

selected these applications since they show very different

workload profiles, spanning from short to long transactions,

from low to high contention level and from low to high time

spent in transactions (see [1] for details). All experiments were

executed on top of a 16-core HP ProLiant server with 2GHz

AMD Opteron 6128 processors, 64 GB of RAM and Linux

operating system (kernel version 2.7.32-5-amd64).

As for semaphores, we used the standard implementation

of POSIX Semaphore APIs on Linux. As for frequency

scaling operations, we used Linux CPUfreq subsystem [10].

With the basic busy waiting approach and the semaphore-

based approach, we activated the governor ”ondemand”,

which allows the operating system to decide when scaling

down/up the frequency of each CPU-core depending on the

individual utilization. With the low-frequency busy waiting

approach, we activated the governor ”userspace”, which allows

users/applications to modify the frequency of each CPU-core.

This can be done by updating (pseudo) files of the Linux

virtual file system under the path ”/sys/devices/system/cpu/...”.

In our experiments, we used two frequency levels: 2GHz

when the CPU-core was busy, and 0.8GHz when the CPU-

core was idle or when a thread executes the scaling down

operation. These levels were the maximum and the minimum

one supported by the HP server of our study.

To assess the different approaches independently of the

effectiveness of a specific thread scheduling strategy, we pre-

ventively executed some experiments using a static scheduling

approach. Specifically, the number of non-blocked threads

was pre-established and was not modified by the scheduler

along the entire application execution. After, we executed other

experiments using an adaptive scheduler based on an on-line

strategy used in various scheduling techniques, such as those

proposed in [5], [6], [12]. The strategy is inspired by the Hill

Climbing search. The scheduler performs continues increments

and decrements of the number of blocked threads in order to

find the configuration for which the application throughput

(in terms of transactions per time unit) is maximum. In short,

the scheduler runs a continuous loop. For each step of the

loop, if in the previous step it incremented (decremented) the

number of blocked threads and the throughput has increased, it

continues to increment (decrement) this number, otherwise the

number is decremented (incremented). We call this scheduler

H-Scheduler.

In our experiments, we configured H-Scheduler to com-

pleted a single step each time the coordinator thread executed

1000 consecutive transactions. After each step, once modified

the number of threads to keep running, H-Scheduler randomly

selects the specific threads to be blocked. Similarly, with

the static scheduler, the specific threads to be blocked are

randomly selected periodically, each time that the coordinator

thread executed 1000 consecutive transactions.

In the rest of this Section, we show performance and energy

data we collected with TinySTM without scheduling support

(that we call ”baseline”) and with TinySTM for the cases

of both static and on-line scheduler, for each one of the

three approaches. Each benchmark application was run while

varying the number of concurrent threads between 2 and 16

A. Results with static scheduling

In the experiments with static scheduling, results that we

achieved with the different benchmark applications are similar

and provide the same insights. Thus, for brevity, we show

only results with Intruder. In Figure 2 we show results with

TinySTM without scheduling support and with the static

scheduler for configurations with 2, 5 and 8 non-blocked

threads (we note that, when the number of concurrent threads

is less or equal to the pre-established number of non-blocked

threads, the scheduler does not actually block any thread). By

the plots, both the application execution time and the energy

consumption with the baseline rapidly grow with more than

5 concurrent treads. Conversely, the static scheduler avoids,

or in the worst case reduces, this phenomenon with all three

approaches. We note that, with the workload configuration of

Intruder that we used in our experiments, 5 corresponds to the

static number of threads providing the best performance. Thus,

it represents the optimal static scheduling configuration. Con-

versely, 2 and 8 threads correspond to suboptimal scheduling

configurations.

With the optimal static scheduling configuration (see central

plots in Figure 2), the basic busy waiting approach and the

low-frequency busy waiting one can preserve the maximum

performance achievable with the baseline up to 16 concurrent

threads. The performance with the semaphore-based approach

deteriorates, on average, of about 10% with more than 5

concurrent treads. As for energy consumption, the best results

are archived with the low-frequency busy waiting approach.

Indeed, although the number of blocked threads grows while

increasing the number of concurrent threads, the scaled down

frequencies of CPU-cores keep the energy consumption close

to the minimum level. With the semaphore-based approach,

the energy consumption is slightly higher. With the basic busy

waiting approach, the energy consumption constantly grows

with more than 5 threads.

In the cases of 2 and 8 non-blocked threads (see left and

right plots in Figure 2, respectively), the suboptimal scheduling

configurations lead to worse results with all approaches with

respect to the optimal scheduling configuration. In any case,

data show that the low-frequency busy waiting approach still

achieves the best results, in terms of both performance and

energy consumption, with respect to the other approaches. This

outcome shows that it is convenient to use the low-frequency
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Fig. 2. Application Execution Time and Energy Consumption of Intruder with static scheduling.

busy waiting independently of the ability of a scheduler to find

the best configuration.

B. Results with the on-line adaptive scheduler

Figure 3 shows the results with H-Scheduler for all bench-

mark applications. We note that with the baseline, even in

the case of Kmeans and Yada, both the application execution

time and the energy consumption rapidly grow after that the

number of concurrent threads overcomes the optimal value

(i.e. 3 for Kmeans and 7 for Yada). H-Scheduler partially

reduces this phenomenon. We remark that H-Scheduler uses

an on-line adaptive strategy, thus we can expect that it does

not achieve results as good as the optimal static scheduling

configuration. Also, the overhead of the online adaptive strat-

egy is responsible of the slightly increment of the application

execution time with the basic busy waiting and the low-

frequency busy waiting approach with respect to the baseline

(it can be observed with Intruder between 2 and 5 concurrent

threads).

Overall, results show that the advantages with the low-

frequency busy waiting approach are, on average, more evident

in these scenarios. Indeed, the differences of the application

execution times with respect to the semaphore-based approach

are higher than in the case of static scheduling, particularly

with Intruder. This is due to the overhead generated by the

operations on semaphores, whose rate is higher due to the on-

line adaptive strategy. The application execution times with the

low-frequency busy waiting approach with respect to the basic

busy waiting approach are similar for all applications. As for

the energy efficiency, the semaphore-based approach reduces,

on average, the energy consumption with respect to the basic

busy waiting approach. On the other hand, the best results are

still achieved with the low-frequency busy waiting approach.

The advantages provided by this approach are particularly

evident when the number of concurrent thread is high (e.g

with 16 concurrent threads for Intruder and Yada).

Conclusively, experimental data of our study show that

the low-frequency busy waiting approach provides the best

results in term of both application execution time and energy

efficiency compared to the other two approaches. Further, these

advantages exist independently of the workload profile, which

is notably different for the three applications used in our study,

and independently of the effectiveness of the scheduler.

IV. HINTS ON HOW TO COPE WITH EXECUTION SCENARIOS

WITH THREAD RESCHEDULE

In this section, we discuss a possible extension to implement

our approach to cope with execution scenarios where it is

required to correctly restore the frequency of CPU-cores as a

consequence of thread reschedule. Frequency restore may be

required when, e.g., a blocked thread of the TM application

has scaled down the frequency of a CPU-core, and then it

is context-switched off the CPU-core before scaling up the

frequency (i.e. before being unblocked). In this case, another

thread of the same TM application, or a thread of other

applications/services running on the same machine, would

run at low CPU-core frequency if rescheduled on the same

CPU-core. The solution that we describe also allows to cope

with scenarios where a TM application is executed with more

concurrent threads than CPU-cores, which necessarily leads

threads of the TM application to be context-switched. The

solution is based on a kernel-scheduler hooking mechanism,

where a custom callback function is invoked as soon as a

thread is rescheduled. Such a mechanism is used, e.g., in

[13], [14]. In our case, when a thread is rescheduled on a

given CPU-core, the frequency of the CPU-core can be scaled
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Fig. 3. Application Execution Time and Energy Consumption of Intruder, Kmeans and Yada with H-Scheduler.

up by the callback function. Further, this callback function

can be implemented for a thread of the TM application

such that, when the thread is rescheduled, it checks (by

reading the thread’flag) if the thread is blocked. If it is not

blocked and the CPU-core frequency is low, the frequency

is scaled up, or vice versa. If the frequency is the correct

one, it is not changed. The above-cited works showed that the

overhead introduced by such call-back mechanisms, given the

conventional thread schedule frequency of kernel-schedulers

of mainstream operating systems, does not appreciably affect

the performance of applications. Also, our experimental study

showed that the overhead of operations for scaling down/up

the CPU-core frequency is negligible in our approach. Thus,

we expect the above described solution to be effective. We

plan to integrate it in the implementation of our approach as

a part of our future work.

V. RELATED WORK

Scheduling techniques have been largely explored in the

context of TMs with the aim of optimizing the application

performance (e.g. in [4], [5], [6], [7], [8], [15], [9], [16]).

On the other hand, energy efficiency of scheduling techniques

for TMs has been poorly explored. Few studies analyse the

impact on energy consumption of alternative techniques [17],

[18]. Performance and energy efficiency of different TM

implementations have been evaluated in [19]. Techniques for

reducing the energy consumption in TMs have been studied

out of the specific context of scheduling. In [20], the authors

sketched out a mechanism based on clock gating [21] to reduce

the energy consumption in Hardware Transactional Memories.

This mechanism gates a processor when an hardware transac-

tion aborts, and un-gates it based on the number of transaction

aborts and the state of conflicting transactions. Still in context

of Hardware TMs, in [22] the authors proposed alternative

cache structures and contention management schemes to im-

prove the energy efficiency of TM applications for embedded

systems. Differently from the above-mentioned proposals, our

approach can be easily adopted in the case of both Software

and Hardware TMs, and does not require any architectural

modification.

In [23], the authors present Green-TM, an energy-efficient

contention manager for TMs. When a transaction gets aborted

and the thread enters the back-off phase, Green-TM dynam-

ically adapts the back-off time and decides if the tread must

spin or sleep, with the aim of improving performance and

energy efficiency. Further, Green-TM groups threads in two

different sets: 1) threads that are likely to back off, and 2)

threads that spend most of their time executing transactions.

This separation aims at favouring the spontaneous activation

of the operating system control mechanism for scaling the

frequency of CPU-cores where the running threads are likely

to back off. Differently from Green-TM, our low-frequency

busy waiting approach is targeted to overcome drawbacks of

both spin-based and sleep-based waiting mechanisms. Further,

it directly controls the frequency of a specific CPU-core,

without waiting for the activation of the operating system

control, which is generally less effective given that it may

require various (architecture/system dependent) pre-conditions

to be verified.

VI. CONCLUSIONS

In this paper, we addressed the problem of optimizing

performance and energy efficiency of thread scheduling in

TMs. Particularly, we focused on the overhead associated to

thread blocking/unblocking operations. We analysed the two

approaches commonly used by thread schedulers proposed in



literature, then we proposed a low-frequency busy waiting

approach, in which threads scale down/up the frequency of the

CPU-cores when they are blocked/unblocked. Results of our

experimental study show that this approach is able to provide

the best results in terms of both performance and energy

efficiency in different execution scenarios. We also proposed

a possible extension of our approach to cope with frequency

restore requirements in the case of thread reschedule. We will

integrate it in our implementation as a future work.
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