Automated Workload Characterization in
Cloud-based Transactional Data Grids

Diego Didona*, Pierangelo Di Sanzo , Roberto Palmieri,
Sebastiano Pelusof, Francesco QuagliaT, and Paolo Romano*
*INESC-ID/IST, Lisbon, Portugal
TSapienza Rome University, Rome, Italy

Abstract—Cloud computing represents a cost-effective
paradigm to deploy a wide class of large-scale distributed
applications, for which the pay-per-use model combined with
automatic resource provisioning promise to reduce the cost of
dependability and scalability. However, a key challenge to be
addressed to materialize the advantages promised by Cloud
computing is the design of effective auto-scaling and self-tuning
mechanisms capable of ensuring pre-determined QoS levels at
minimum cost in face of changing workload conditions.

This is one of the keys goals that are being pursued by the
Cloud-TM project, a recent EU project that is developing a
novel, self-optimizing transactional data platform for the cloud.
In this paper we present the key design choices underlying the
development of Cloud-TM’s Workload Analyzer (WA), a crucial
component of the Cloud-TM platform that is change of three key
functionalities: aggregating, filtering and correlating the streams
of statistical data gathered from the various nodes of the Cloud-
TM platform; building detailed workload profiles of applications
deployed on the Cloud-TM platform, characterizing their present
and future demands in terms of both logical (i.e. data) and
physical (e.g. hardware-related) resources; triggering alerts in
presence of violations (or risks of future violations) of pre-
determined SLAs.

I. INTRODUCTION

The Cloud Computing paradigm is profoundly changing
both the architectures of the IT systems and the organization of
the enterprise IT infrastructure management. Architectures of
distributed computing platforms are moving from a traditional
static model, where the amount of resources allocated to
applications/services are a-priori estimated, towards an elastic
model, where resources can be provisioned on-demand. The
flexibility of Cloud computing’s pay-per-use model is driving
many enterprises to move their IT infrastructure and services
to the “cloud”. Anyway this new paradigm opens up new
challenges.

One of these is related to the design of effective auto-
scaling and self-tuning mechanisms capable of ensuring pre-
determined QoS levels at minimum costs in face of chang-
ing workload conditions. In fact, on one hand, an elastic
platform provides a very cost-effective model to improve
system performance and dependability by means of data and
services replication. On the other hand, in order to take
advantage of the elasticity of the underlying infrastructure,
both the data and services replication management need to
be automated by means of mechanisms able to guarantee the
desirable Quality of Service (QoS) levels while minimizing
the operational cost of the infrastructure. In such a context,

the efficiency of the adopted replication scheme plays a role of
paramount importance. In fact, in environments characterized
by dynamic and/or heterogeneous workloads, the costs due to
the replication can be highly variable and, as a consequence,
the dynamic configuration and/or selection of the replication
mechanisms represent crucial aspect to reduce the cost of
dependability.

This is one of the key goals that is being pursued by the
Cloud-TM project [1], a European Project that is develop-
ing a distributed self-optimizing data management platform
tailored for cloud environments. The Cloud-TM platform
includes auto-tuning policies aimed at automating the system
(re-)configuration in order to meet user-specified SLAs (in
terms of both performance and fault-tolerance) at minimum
operational costs. This is achieved via the joint-usage of
elastic scaling schemes, aimed at automating provisioning of
infrastructural (e.g. computational or storage) resources, and
pervasive self-optimization strategies that dynamically select
the optimal replication algorithm to use, given the scale of the
platform and the workload characteristics of the application
deployed on it.

In this paper we present the key design choices underlying
the development of Cloud-TM’s Workload Analyzer (WA), a
crucial component of the Cloud-TM platform that is in charge
of gathering and extracting the information on whose basis
the self-tuning policies, driving the auto-configuration process
of the platform, can be defined. More specifically, the WA
provides three key functionalities: i) aggregating, filtering and
correlating the streams of statistical data gathered from the
various nodes of the Cloud-TM platform; ii) building detailed
workload profiles of applications deployed on the Cloud-TM
platform, characterizing their present and future demands in
terms of both logical (i.e. data) and physical (e.g. hardware-
related) resources; iii) triggering alerts in presence of viola-
tions (or risks of future violations) of pre-determined SLAs.

The rich set of functionalities provided by Cloud-TM’s
WA is obtained by combining, on one side, leading open
source projects in the areas of systems management [2],
statistical computing [3] and stream-based algorithms [4], and
on the other, innovative methodologies for what concerns the
characterization of transactional applications [5].

The paper presents also the results of an experimental
study highlighting the efficiency of the proposed solution that
allows extracting detailed workload information at the cost of

a negligible overhead.

The remainder of this paper comprises three sections. In
Section II an overview of the Cloud-TM platform is provided.
The WA is presented in Section III, where we describe its key
functionalities, its main components and the evaluation study.
Finally, Section IV concludes the paper.

II. OVERVIEW OF THE CLOUD-TM PLATFORM

Figure 1 overviews the architecture of the Cloud-TM plat-
form. It encompasses two main logical components: the Data
Platform and the Autonomic Manager.

The Data Platform is responsible for retrieving, manipulat-
ing, and storing data across a dynamic set of distributed nodes
that are elastically acquired from one or more underlying IaaS
Cloud providers. It will expose a set of APIs, denoted as Data
Platform Programming APIs in Figure 1, aimed at increasing
the productivity of Cloud programmers in two ways:

o By allowing ordinary programmers to read/write data
from/to the Data Platform using the familiar abstractions
provided by the object-oriented paradigm, such as inher-
itance, polymorphism, associations.

« By allowing ordinary programmers to take full advantage
of the processing power of the Cloud-TM platform via a
set of abstractions that will hide the complexity associ-
ated with parallel/distributed programming, such as load
balancing, thread synchronization, scheduling, or fault-
tolerance.

The main component of the Data Platform, is a highly
scalable, elastic and dynamically Reconfigurable Distributed
Software Transactional Memory (RDSTM). As starting point
for developing this essential component of the Cloud-TM
platform, it has been selected to use Red Hat’s Infinispan
[6], a recent in-memory transactional data grid designed from
the ground up to be extremely scalable. Infinispan is being
extended with new algorithms both for data replication and
distribution, and real-time self-tuning schemes aimed at guar-
anteeing optimal performance even in highly dynamic Cloud
environments.

The lowest level of the Data Platform provides abstrac-
tions that allow state to be persisted over a wide range of
heterogeneous durable storage systems, from local/distributed
filesystems to Cloud storages. The Autonomic Manager is the
component in charge of automating the elastic scaling of the
Data Platform, as well as of orchestrating the self-optimizing
strategies that will dynamically reconfigure the data distri-
bution and replication mechanisms to maximize efficiency
in scenarios entailing dynamic workload. Its topmost layer
will expose an API allowing the specification and negotiation
of QoS requirements and budget constraints. The Autonomic
Manager will collect information not only about heterogeneous
system-level resources (such as CPU, memory, network and
disk), but will also characterize the workload of each of the
components of the Data Platform and their efficiency.

To this end, the streams of statistical data collected by the
Workload & QoS Monitor are aggregated, filtered and corre-
lated by the Workload Analyzer, triggering whether needed

alerts (e.g. in presence of violations, or risks of violations,
of pre-agreed SLAs) towards the Adaptation Manager. The
Adaptation Manager is responsible for self-tuning the various
components of the Data Platform and control the dynamic
auto-scaling mechanism with the ultimate goal of enforcing
predetermined QoS levels while minimizing the operational
costs of the system.

III. CLOUD-TM’S WORKLOAD ANALYZER

As showed in Figure 1 the Workload Analyzer (WA) is the
component in between the Workload and Performance Mon-
itor (WPM) and the Adaptation Manager (AM). The WPM
is a flexible, scalable and easy to (re-)configure subsystem
responsible of audit data for both infrastructure resources and
platform (or application) level components in an integrated
manner [7]. The AM is in charge of determining the adaptation
criteria according to either i) on-line computed performance
forecasts, or ii) off-line computed adaptation policies (e.g.
based on thresholds).

The WA bears the following responsibilities in the Cloud-
TM platform (see Figure 2):

« Data aggregation and filtering: the streams of monitor-
ing data produced by the distributed nodes of the Cloud-
TM platform via the WPM are gathered by the WA,
which exposes programmatic APIs and web-based GUIs
allowing for aggregating/filtering statistics originated by
different software layers and/or groups of nodes.

o Workload and resource demand characterization: the
WA allows for deriving detailed transactional profiles that
include a number of statistical information characterizing
the resource usage demand of applications deployed in
the Cloud-TM platform both at the physical (e.g. CPU,
memory, etc.) and data (e.g. probability of conflicts
among transactions, identification of hot spots for lock
contention and remote reads) levels.

o Workload and resource demand prediction: the WA
integrates a set of scripts/interfaces allowing for using the
ample library of statistical functionalities implemented by
the R [3] free software project. This opens the possibility
to run a wide range of time-series analysis methods
(such as, moving averages, ARIMAX models, Kalman
filters [8]) aimed to forecast future trends of the workload
fluctuations.

o QoS monitoring and alert notification: the WA allows
for graphing raw or aggregated statistics (e.g. on the
performance or availability of some servers/services), and
defining complex alert conditions on the base of the
collected data.

A key decision taken within the Cloud-TM consortium was to
build the WA by capitalizing on several existing open-source
software packages, which currently represent leading solutions
in their application domain:
« RHQ: The RHQ project [2] is a popular systems manage-
ment suite that provides extensible and integrated systems

Data Platform

Data Platform Programming APIs

Distributed
Execution
Framework

Object Grid

Mapper Search API

Reconfigurable Distributed
Software Transactional Memory

Data Platform Reconfiguration & Tuning

Fig. 1.

management for multiple products and platforms. Devel-
oped as an open source by Red Hat, RHQ is designed
with layered modules that provide a flexible architecture
for deployment. It delivers a core user interface that
provides audited and historical management across an
entire enterprise. A Server/Agent architecture provides
remote management and plugins implement all specific
support for managed products.

The RHQ project provides industrial-quality implemen-
tations of some of the key functionalities required by
the WA (and more in general by Cloud-TM’s Autonomic
Manager, see Figure 1), including monitoring and graph-
ing of values, alerting on error conditions or whenever a
particular events occur, remote configuration of managed
resources, remote operation execution, provisioning of
software onto managed machines.

Stream-lib: stream-lib is an open-source JAVA library
that integrates a number of recent algorithms for sum-
marizing data in streams on-the-fly, namely avoiding to
store all events in the stream [9]. As we will detail in
Section III-B, we use stream-lib in order to identify, using
lightweight probabilistic top-k algorithms, hot spots of
different nature in the data access patterns generated by
transactions running in the Cloud-TM platform.
R-project: R is a language and environment for statistical
computing and graphics, which provides a wide variety
of statistical, including linear and non-linear modelling,
classical statistical tests, time-series analysis, classifica-

N

E'I::> o
7|13 o
[2 s = E=
[- o:>> 3 o
1 @) =] N Zh
= =4 |® o
1 > = = 3
Yy o o = 3
>
N] ey g —
" S = < m
1 > b= o
S E =z |52
1 = = ® |5 °
= £ T R8
o B
=>| S 55
\ o

|
L

resource
provisioning /
SLA negotiation

Architectural Overview of the Cloud-TM Platform.

tion and clustering. As we will detail in Section III-C,
the WA exploits the ample library of statistical functions
provided by R in order to derive workload forecasts using
a range of time series analysis methodologies (ranging
from simple moving averages, to more complex ARMA
models and Kalman filter-based predictors), allowing for
identifying trends and seasonal components among the
collected data.

The diagram in Figure 2 depicts the architecture of the
WA. Let us analyze it more in detail, discussing how the
above mentioned open-source projects have been extended and
integrated in the Cloud-TM platform architecture.

A first important step has been to extend the set of statistics
exported by the components of the Cloud-TM Data Platform
in order to generate a detailed profile of the transactional
workload in input to the system. More details on this can be
found in Section III-B.

The next step has been integrating the WPM framework
with the RHQ infrastructure. This was achieved by developing
an ad-hoc RHQ plug-in, designed for being fully compatible
with the WPM’s Log Service component (LS) output [7]. The
plug-in externalizes to RHQ the statistics collected by the
Cloud-TM nodes that are being monitored by the WPM. In
order to decouple the LS from its RHQ plug-in (e.g. allowing
to deploy them on different machines), the plug-in registers
a set of listeners on an Infinispan cache, which is populated
by the LS whenever a new sample (or batch of samples) is

Cloud-TM node #1 3

Lattice
bus

I

I

i

Data Platform API !
Reconfigurable i
DSTM !

WPM
Reconfigurable <_'_>

probe
Storage System !

Cloud-TM
Adaptation
Manager

Server-API
(JAVA)

WPM
Log
Service

RHQ
Server

Web
Console

RHQ
Plug-in

K=

A

Cloud-TM node #n

1

Data Platform API

Reconfigurable
DSTM
Reconfigurable

Storage System

WPM
probe

\ammd

Fig. 2.

gathered from the monitored nodes. This way, we exploit the
fault-tolerance features of Infinispan in order to ensure high
availability of the communication bus between LS and its RHQ
plug-in.

Finally, once the monitoring data is convoyed by RHQ, we
use its rich set of APIs and interfaces as building blocks to
support a breadth of functionalities for workload analysis and
forecasting.

A. Data aggregation and filtering

In order to support aggregation and filtering of incoming
monitoring data streams, the WA exploits the advanced group-
ing functionalities provided by RHQ. In the latter, groups serve
a twofold purposes:

« defining which access permission are applied to resources
monitored by RHQ inventory;

o providing a way to view aggregate data and perform
actions across all group members en mass.

RHQ enables flexible group membership policies, which sup-
port not only the manual addition of resources to groups, but
also the definition of regular expressions, called DynaGroups,
that maintain groups membership in a dynamic fashion.
Once groups are defined, it is possible to specify control
access polices directly to groups of resources, instead of in-
dividual resources. By using DynaGroups, one can effectively
create dynamic ACLs (access control lists) to lessen the burden
of security maintenance, especially against large inventories
Compatible groups (those composed entirely of the same
type of resource, e.g. all Linux platforms, all JBossAS servers)
have additional features available to them, such as: group-
wise availability; min, max, and average metrics across the
group; aggregate events viewer; operations against all group
members, either serialized or concurrent execution policies;
fine-grained changes to connection properties and resource
configuration across one or more members of the group.

Infinispan
Data Grid

REST
APls

R Statistical
Engine

Architectural Scheme of the Workload Analyzer.

B. Workload and resource demand characterization

In order to characterize the workload and resource de-
mand of transactional applications deployed on the Cloud-TM
platform, the workload analyzer acquires a large amount of
statistical information from the various layers of the Cloud-
TM platform. We focus in this paper on discussing the main
statistical information that we employed to characterize the
transactional profile of Cloud-TM applications. These statistics
are collected using a number of probes scattered across several
sub-components of the Infinispan data grid (e.g. Lock Man-
ager, Distribution Manager, Rpc Manager) and are externalized
using JMX interfaces [10] in order to permit their monitoring
via standard JMX-based consoles or applications (and by the
WPM).

We classify the statistics into high-level and low-level statis-
tics, and describe them in the following.

1) High Level Statistics: High-level statistics can be in their
turn distinguished in two classes:

o statistics that identify hot spots data items for two essen-
tial subsystems of a data grid: the data placement and
concurrency management schemes;

o statistics aimed at identifying the maximum degree of
data parallelism for an application.

For what concerns hot-spots identification, we trace the top-k
keys (where k is a parameter that is dynamically configurable
via JMX) that have been:

1) updated (using the put command);

ii) either remotely or locally read - thus requiring or not a
remote interaction with another node during transaction
execution;

iii) locked, causing no contention, contention, or abort, of a
transaction.

This information is extremely valuable for the automatic and
human-driven tuning of these performance-critical modules of
the system, and we plan to make use of this info into the
Autonomic Manager component, in order to develop different
kinds of self-optimizing strategies.

In order to minimize overheads, we identify these keys using
recently proposed top-k algorithms for data stream analysis. In
particular we used the algorithm presented in [9] (implemented
by the stream-lib opensource project [4]): this algorithm gives
up the goal of providing exact guarantees, but analyze streams
using a limited (constant) memory space, thus optimizing
performance and lending itself to the analysis of massive
streams of data.

An other key high level statistic computed by the Workload
Analyzer is an innovative metric, which we named Application
Contention Factor (see the technical report [5] for more details
on it), that allows for characterizing the maximum degree of
data parallelism exhibited by transactional applications.

In order to explain more rigorously its definition, it is
required to introduce some background concepts at the ba-
sis of the analytical performance modelling approaches of
transactional systems presented so far in literature. Exist-
ing works in this area [11], [12] share a common reliance
on queuing theoretical arguments to derive the transaction
contention probability. Denoting with A\ the average arrival
rate of locks to a data item, and assuming that locks are
held for an average time Ty, one can model a data item
as a queue and approximate the probability of encountering
lock contention on a data item with the utilization of the
corresponding queue (namely, the fraction of time during
which the data item is locked), which is computable as [13]:
U = NoekTH , assuming Ao Ty < 1. Then, assuming that
accesses are uniformly distributed on one [12] (or more [14])
set of data items of cardinality D, a-priori known, it is possible
to compute the probability of lock contention on any of the
data items simply as:

1
]Dlock = EAlockTH (1)

Unfortunately, the availability of information on D, and the
assumption on the uniformity of the data access patterns
strongly limits the employment of these models with complex
applications, especially if these exhibit dynamic shifts in the
data access distributions.

The idea underlying the definition of the Application Con-
tention Factor (ACF) is to extract the equivalent value of D
for an application in execution on the Cloud-TM platform by
exploiting the availability of information on Pk, Ajocr and
Ty in the current configuration. Given Pjyck, Ajock and Ty, in
fact, we can invert Eq. 1 and obtain the Application Contention
Factor (ACF) as:

Bock

ACF = ———
AlockTH

2)
By equation 1, it follows that ﬁ can be interpreted as the
size D of an “equivalent” set DI of data items, such that, if the
application issues lock requests on disjoint data items selected
uniformly from set D3, it would incur in the same contention
probability that it experienced in the current configuration.
From an other perspective, the ACF (or better, its inverse)
represents the maximum number of transactions that can

12000 . i , ' ‘ ‘
100k skew-1TO
1 100K unif-1TO0 ———
10000 [1Kk Unif-1TO
8000 | |
@\ K
[0}
2 6000} " |
3 N
Q .
O
o S
4000 | e o |
2000 | L i |
0 L L L L)) e

200 400 600 800 1000

Interarrival lock request time

1200 1400

Fig. 3. Distribution of lock inter-arrival time using three different Radargun
workloads.

be concurrently executed in the system assuming that each
transaction holds its locks for a single time unit. The ACF
allows for characterizing the application data access pattern
distribution in a very concise, lightweight and pragmatical
manner, abstracting over arbitrarily complex data access pat-
terns (e.g. with strong skew or complex analytical representa-
tion) and over the effects of contention on physical resources
(abstracted away by normalizing the ACF with respect to Tx)
via an easily tractable analytical model.

2) Low Level Statistics: The set of additional low level
statistics gathered from each individual Infinispan node (see
[15] for an exhaustive list), is aimed to provide a detailed
characterization of the performance and costs of the main
subsystems involved in the processing of transactions along its
life-cycle. These include both statistics (mean, and percentiles)
on metrics typically used in SLAs (for instance, transaction ex-
ecution time) and statistics useful for modelling purposes, such
as the latency experienced by transactions along their various
execution stages, the frequency of different types (write vs
read) of transactions and of various contention-related events
(e.g. successful vs failed lock acquisition). Among these, two
types of statistics are particularly noteworthy:

Probability distribution of lock inter-arrival time: this in-
formation, encoded as an histogram, allows verifying whether
one critical assumption holds for the applicability of Equation
1, namely, whether the lock arrival rate can be approximated
by an exponential distribution. Equation 1, in fact, is guar-
anteed to hold only in case the lock requests arrival rate
is poissonian, condition sufficient to ensure that the PASTA
(Poissonian Arrival See Time Averages) property [16].

The data reported in Figure 3 shows an example of three
lock inter-arrival time distributions that were obtained by
configuring Radargun to generate transactions accessing data
using different data access patterns (uniform vs skewed) on
keysets of different sizes (1K vs 100K). As it can be seen the
above parameters have a significant impact on the shape of the

now
k k+1

samples - [13[18[18]14[17[15]23]22]26]..

(]
1 ?
)
]

P=n/k <-
=n/(k+1) <«--

reservoir [14[24[18[17[21[19]
n

Fig. 4. Reservoir sampling algorithm [19] (Figure from [20]).

empirical lock inter-arrival time distributions, which present,
at high skew or contention levels, spikes that are symptomatic
of non-poissonian behaviors that can have an impact on the
accuracy of the modelling methodology at the basis of the
computation of the ACF.

By comparing, via Good of Fitness tests [17], the empirical
lock arrival rate with (best-fitting) exponential distributions
(or with other distributions for which the PASTA property
holds, such as uniform distributions), one can therefore obtain
a measure of the expected accuracy of the ACF in predict-
ing the maximum degree of concurrency for a transactional
application.

Percentiles of transaction execution times: percentiles are
often preferred to simple averages in SLA negotiations as
they provide more meaningful guarantees on the actual QoS
delivered to the population of end users of a system. On the
other hand, computing exact percentiles requires storing all
the samples across the considered time window, or solving
the problem of determining (statically or dynamically) an
appropriate binning size [18].

In order to avoid the above complexity, we compute per-
centiles using Vitters reservoir sampling algorithm [21], which
over time gives us an appropriate model for the distribution
of the transaction execution lengths. Vitters algorithm fills
an initially empty reservoir (array) of size n with the first
n samples. Then, each k-th element is inserted in a random
spot of the reservoir with a probability of n/k. This ensures
an uniform sampling over the stream of data. The requested
percentile is obtained by sorting the reservoir and picking the
percentile of interest. For instance, to obtain the 95% of the
transaction execution time we can simply read the value stored
at index j = n * 0.95 of the sorted array.

3) Thread Level Statistics: The native statistics collection
mechanism of Infinispan relies on a set of counters maintained
by each node of the data grid. These counters are imple-
mented by means of shared atomic variables that are updated
(possibly concurrently) by threads upon the occurrence of
relevant events. This approach to gather statistics has two main
drawbacks:

o In many transactional applications, different threads have

specialized transactional profiles (e.g. read vs write dom-
inated workloads). By aggregated statistics at the data

[Thread 1 |

[Thread 2 |

[Thread 3 |

[Thread 4 |

atomic
updates

¥ ry
| atomic counter |

f

| getCounter() |

Fig. 5. Schema of the centralized statistics collection mechanism natively
implemented in Infinispan.

grid node level, it is impossible to capture statistical
information that would allow for performing a detailed
workload profiling on basis of activity of the different
threads.

e On multi-core machines, atomic variables can increase
the cache coherency traffic and impose the use of low-
level atomic constructs (e.g. Compare and Swap), which,
typically, rely on costly hardware operations, requiring,
e.g., the generation of cache invalidation traffic or locking
of system buses. The impact on system performance due
to these factors may became relevant with some workload
profiles and/or with high concurrency level, and may limit
the system scalability.

On basis of the above motivations, the statistical data collec-
tion mechanism used in Infinispan has been extended, intro-
ducing, as a configurable alternative to the native centralized
scheme, also a per-thread data gathering scheme. In the novel
mechanism, each thread maintains a set of private copies
of counters, one copy for each monitored metric. Upon the
occurrence of an event that requires the update of a counter,
the thread updates its own copy of the counter avoiding
any kind of synchronization. This allows, on one hand, to
gather differentiated statistics for each thread. Of course, when
statistics at node level are needed, they can be still computed
by collecting the values of the counters of the locally executing
threads for the desired metric and by calculating the aggre-
gated value (e.g. the average, the maximum, the minimum). In
this implementation, the computation of an aggregated metric
is performed when the metric is queried via its JMX interface.
Figure 5 and Figure 6 provide, respectively, a comparison
between the architectures of the collection mechanism used
in Infinispan and the novel mechanism.

We conclude this section by presenting in Figure 7 the
results of an experimental study aimed to assess the impact
on Infinispan’s performance due to the introduction of the new

_ [Thread 1 |
list updates
B -
| Thread 2 |

|

-

| Thread 3 |

:

~om | private counter

| Thread 4 |

-

|
Id—

getCounter() |

Fig. 6. Schema of the new per-thread statistics collection mechanism
implemented in Infinispan.

18000 .
M Statistics off

M Native Statistics
O Per-Thread Statistics

16000

14000

12000

10000

8000

6000

Transactions per Second

4000

2000

0

Single node Number of Nodes ~ Replication (8 nodes)

Fig. 7. Evaluating the overhead of the statistics collection mechanisms

set of statistics. To this end we injected a workload generating
transactions with a very reduced conflict probability, and
measured the throughput (committed transactions per second)
achieved when running Infinispan in a single node and on 8
nodes (replication mode). The plots show that the throughput
achieved by Infinispan when gathering the whole new set
of statistics (implemented using the per thread collection
scheme) is around 2% lower than when totally disabling the
statistics collection system. This confirms the efficiency and
feasibility of the proposed workload monitoring and analysis
methodology.

C. Workload and resource demand prediction

As already mentioned, the WA relies on the powerful R
statistical engine in order to perform various time series
analysis. This is made possible by exploiting the recently
introduced REST APIs of RHQ, which allows exporting the
statistical data gathered from the monitored platform as time-

series encoded in JSON [22] format.

Figure 8 shows a plot obtained computing 5% and 95%
quantile, as well as 20-items simple moving average, of
example workload data. The metrics are plotted in black, the
average in blue, the 5% and 95% quantile in orange and green
and with the help of the TTR library, the 50 samples moving
average is plotted in red.

As a final remark, note that by exposing data via REST
interfaces, the data gathered by RHQ can be straightforwardly
provided as input to a plethora of machine learning tools,
and not only to R. In fact, work is currently ongoing aimed
to automatize data extraction from several popular machine
learning tools, such as Cubist© [23] and Weka [24].

D. QoS monitoring and alert notification

Cloud-TM’s WA leverages on RHQ’s advanced QoS mon-
itoring and alert notification engine. The latter engine is
designed to provide proactive notifications about events hap-
pening throughout the monitored platform. These events can
be resources becoming unavailable, specific values for metrics
being collected, resource configuration being changed, oper-
ations being executed, or even specific conditions found by
parsing log events. As information flows into the RHQ system,
it passes through the alerts processing engine. Here, the data
can be transformed, filtered, or even correlated with data from
other parts of the system. Users have full control over what
they want to be notified about, and RHQ keeps a full audit
trail of any conditions that have triggered alerts to fire. The
alerts subsystem provides a wealth of different options for
being notified proactively about potential issues in the system.
As a result, it supports a breadth of different configuration
options that allow for deriving very specific and customized
semantics.

IV. CONCLUSIONS

In this paper we presented an integrated system, tailored
for transactional applications deployed in Cloud environments,
allowing a detailed workload characterization and its accurate
analysis. In particular we presented the Workload Analyzer,
a key component of the Cloud-TM infrastructure that is in
charge of automating workload characterization and providing
estimates of future workload profile and resource demands.
Further, the WA relies on the advanced alert processing engine
of RHQ to generate alert signals upon the occurrence of QoS
violations. The services provided by the WA are essential in
order to extract from the Cloud-TM data grid information
on whose basis the self-tuning policies driving the auto-
configuration process of the platform can be defined.

We discussed the key design choices underlying the devel-
opment of this component, which was built by combining,
on one side, leading open source projects in the areas of
systems management, statistical computing and stream-based
algorithms, and on the other, innovative methodologies for
what concerns the characterization of transactional applica-
tions.

Fig. 8.

e 211

1.50+08

Fraa mamory (bytas)
1.0e+08

5.0e+08
1

i

301542 310212 31,1242 312312 01,0842 0120012 02,0642

0.0a+00

tlime

Example plot of time series analysis obtained on data extracted via

REST interfaces from RHQ.

[1

—

[2
[3
[4

[5]

[10]

(1]

[12]

[13]
[14]

[15]

[16]

REFERENCES

Cloud-TM, “Cloud-tm, a novel programming paradigm for the cloud.”
http://www.cloudtm.eu/.

RHQ project - Red Hat, “The rhq project.” http://www.rhg-project.org/.
R-project, “The R-project.” http://www.r-project.org.

The stream-lib library, “A Java library for summarizing data in streams.”
https://github.com/clearspring/stream-lib.

D. Didona, P. Romano, S. Peluso, and F. Quaglia, “Transactional auto
scaler: Elastic scaling of nosql transactional data grids,” Tech. Rep. 50,
INESC-ID, December 2011.

Red Hat / JBoss, “JBoss Infinispan.” http://www.jboss.org/infinispan,
2011.

R. Palmieri, P. D. Sanzo, F. Quaglia, P. Romano, S. Peluso, and
D. Didona, “Integrated monitoring of infrastructures and applications
in cloud environments,” June 2011.

G. Box, G. Jenkins, and G. Reinsel, Time series analysis: forecasting
and control. Wiley series in probability and statistics, John Wiley, 2008.
A. Metwally, D. Agrawal, and A. E. Abbadi, “An integrated efficient
solution for computing frequent and top-k elements in data streams,”
ACM Trans. Database Syst., vol. 31, no. 3, pp. 1095-1133, 2006.

Java / Oracle, “Java Management Extensions (JMX)
Technology.” http://www.oracle.com/technetwork/java/javase/tech/
javamanagement- 140525.html.

P. S. Yu, D. M. Dias, and S. S. Lavenberg, “On the analytical modeling
of database concurrency control,” J. ACM, vol. 40, 1993.

P. D. Sanzo, B. Ciciani, F. Quaglia, and P. Romano, “Analytical
modelling of commit-time-locking algorithms for software transactional
memories,” in Proc. 35th International Computer Measurement Group
Conference (CMG), 2010.

L. Kleinrock, Theory, Volume 1, Queueing Systems. Wiley-Interscience,
1975.

Y. C. Tay, N. Goodman, and R. Suri, “Locking performance in central-
ized databases,” ACM Trans. Database Syst., vol. 10, 1985.

Diego Didona, Pierangelo Di Sanzo, Roberto Palmieri, Sebastiano
Peluso, Francesco Quaglia, Paolo Romano, Heiko W. Rupp, “Cloud-
TM - Deliverable 3.2: Workload Analyzer.” http://www.gsd.inesc-id.pt/
~romanop/files/deliverables/D3_2.pdf.

D. Konig, V. Schmidt, and E. A. Van Doorn, “On the pasta property and
a further relationship between customer and time averages in stationary
queueing systems,” Communications in Statistics. Stochastic Models,
vol. 5, no. 2, pp. 261-272, 1989.

[17]

[18]

[19]

[20]

[21]

[22]

(23]
[24]

. W. D. Schunn, C. D., “Evaluating goodness-of-fit in comparison of
models to data,” W. Tack (Ed.), Psychologie der Kognition: Reden and
Vortrge anlsslich der Emeritierung von Werner Tack.

H. Shimazaki and S. Shinomoto, “A method for selecting the bin size of
a time histogram,” Neural Computation, vol. 19, no. 6, pp. 1503-1527,
2007.

J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math.
Softw., vol. 11, pp. 37-57, March 1985.

W. Maldonado, P. Marlier, P. Felber, J. L. Lawall, G. Muller, and E. Riv-
iere, “Deadline-aware scheduling for software transactional memory,” in
DSN, pp. 257-268, 2011.

J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math.
Softw., vol. 11, no. 1, pp. 37-57, 1985.

D. Crockford, “Request for Comments 4627: The application/json Media
Type for JavaScript Object Notation (JSON).” http://www.ietf.org/rfc/
rfc4627.txtInumber=4627.

J. R. Quinlan, “Cubist.” http://www.rulequest.com/cubist-info.html.

E. Frank, M. A. Hall, G. Holmes, R. Kirkby, B. Pfahringer, and
I. H. Witten, Weka: A machine learning workbench for data mining.,
pp. 1305-1314. Berlin: Springer, 2005.

