
Integrated Monitoring of Infrastructures and
Applications in Cloud Environments

Roberto Palmieri∗, Pierangelo di Sanzo∗, Francesco Quaglia∗,
Paolo Romano†, Sebastiano Peluso†, and Diego Didona†

Dipartimento di Informatica e Sistemistica, Sapienza Rome University,
Italy(∗);Distributed Systems Group, INESC-ID, Lisbon, Portugal(†)

Abstract. One approach to fully exploit the potential of Cloud tech-
nologies consists in leveraging on the Autonomic Computing paradigm. It
could be exploited in order to put in place reconfiguration strategies span-
ning the whole protocol stack, starting from the infrastructure and then
going up to platform/application level protocols. On the other hand, the
very base for the design and development of Cloud oriented Autonomic
Managers is represented by monitoring sub-systems, able to provide au-
dit data related to any layer within the stack. In this article we present
the approach that has been taken while designing and implementing the
monitoring sub-system for the Cloud-TM FP7 project, which is aimed
at realizing a self-adapting, Cloud based middleware platform providing
transactional data access to generic customer applications.

1 Introduction

As well known, Cloud based technologies are making a revolutionary
change in the way systems and applications are built, configured and run.
In particular, the ability to acquire computational power and storage on-
the-fly has opened the possibility to massively put in place Autonomic
Management schemes aimed at optimizing performance/availability in-
dexes vs specific cost metrics.

A relevant reflection of such a revolutionary change is in that several
projects targeting Cloud oriented software platforms and applications aim
at designing/integrating multi-modal operating modes. In particular, the
target is to make differentiated protocols coexist within both the platform
and the application layer in order to dynamically select the best suited
protocol (and well suited parameter settings for it) depending on specific
environmental conditions, such as the current workload profile. Conse-
quently, the need arises for defining/implementing frameworks and sys-
tems supporting audit and monitoring functionalities spanning the whole
set of differentiated layers within the Cloud based system.



At current date, several proposals exist in the context of monitor-
ing the usage of infrastructure level resources (e.g. CPU and RAM) [1].
These are mostly suited for Infrastructure-as-a-Service (IaaS) customers,
to whom the possibility to trigger infrastructure level reconfigurations ei-
ther automatically or on demand, based on the monitoring outcomes, is
provided. On the other hand, Cloud providers offer the possibility to mon-
itor the level of performance provided by specific, supported platforms [4],
such as Web based platforms, in order to enable, e.g., auto-scale facilities
aimed at dynamically resizing the offered computational platform. This is
suited for Platform-as-a-Service (PaaS) customers, who aim at delivering
specific performance levels, while relying on facilities already offered by
their reference Cloud providers.

In this paper we describe the approach we have taken in the de-
sign/development of a Workload and Performance Monitor (WPM) that
provides audit data for both infrastructure resources and platform (or
application) level components in an integrated manner. The main dis-
tinguishing feature of our solution is that it does not target any specific
platform or application. Instead, it is flexible and adaptable so to al-
low integration with differentiated platform/application types. On the
technological side, our design comes from the integration of the Lattice
framework (natively oriented to infrastructure monitoring), which has
been largely exploited in the context of the RESERVOIR project [2], and
the JMX JAVA oriented framework (suited for the audit of JAVA based
components). The whole design/implementation has been tailored for in-
tegration within the platform targeted by the Cloud-TM FP7 project
[3]. This project aims at designing/developing a self-adaptive middleware
level platform, based on the Infinispan in-memory data management layer
[6], providing transactional data access services (according to agreed upon
QoS vs cost constraints) to the overlying customer applications.

2 Technological Background

2.1 The Lattice framework

Lattice relies on a reduced number of interacting components, each one
devoted (and encapsulating) a specific task in relation to distributed data-
gathering activities. In terms of interaction abstraction, the Lattice frame-
work is based on the producer-consumer scheme, where both the producer
and consumer components are, in their turn, formed by sub-components,
whose instantiation ultimately determines the functionalities of the im-
plemented monitoring system. A producer contains data sources which,



in turn, contain one or more probes. Probes read data values to be moni-
tored, encapsulate measures within measurement messages and put them
into message queues. Data values can be read by probes periodically,
or as a consequence of some event. A message queue is shared by the
data source and the contained probes. When a measurement message is
available within some queue, the data source sends it to the consumer,
which makes it available to reporter components. Overall, the producer
component injects data that are delivered to the consumer. Also, pro-
ducer and consumer have the capability to interact in order to internally
(re)configure their operating mode.

Three logical channels are defined for the interaction between the two
components, named

– data plane;
– info plane;
– control plane.

The data plane is used to transfer data-messages, whose payload is a
set of measures, each kept within a proper message-field. The structure
of the message (in terms of amount of fields, and meaning of each field) is
predetermined. Hence, message-fields do not need to be explicitly tagged
so that only data-values are really transmitted, together with a concise
header tagging the message with very basic information, mostly related to
source identification and timestamping. Such a structure can be anyway
dynamically reconfigured via interactions supported by the info plane.
This is a very relevant feature of Lattice since it allows minimal message
footprint for (frequently) exchanged data-messages, while still enabling
maximal flexibility, in terms of on-the-fly (infrequent) reconfiguration of
the monitoring-information structure exchanged across the distributed
components within the monitoring architecture.

Finally, the control plane can be used for triggering reconfiguration of
the producer component, e.g., by inducing a change of the rate at which
measurements need to be taken. Notably, the actual transport mechanism
supporting the planes is decoupled from the internal architecture of pro-
ducer/consumer components. Specifically, data are disseminated across
these components through configurable distribution mechanisms ranging
from IP multicast to publish/subscribe systems, which can be selected on
the basis of the actual deployment and which can even be changed over
time without affecting other components, in term of their internal con-
figuration. The framework is designed to support multiple producers and
multiple consumers, providing the chance to dynamically manage data



source configuration, probe-activation/deactivation, data sending rate,
redundancy and so on.

2.2 Portability issues

The Lattice framework is based on JAVA technology, so that producer/
consumer components encapsulate sub-components that are mapped onto
a set of JAVA threads, each one taking care of specific activities. Some
of these threads, such as the data-source or the data-consumer, consti-
tute the general purpose backbone of the skeleton provided by Lattice.
Other threads, most notably the probe-thread and the reporter-thread,
implement the actual logic for taking/reporting measurement samples.
The implementation of these threads can be seen as the ad-hoc portion
of the whole monitoring infrastructure, which performs activities tailored
to specific measurements to be taken, in relation to the context where the
monitoring system operates.

By the reliance on JAVA, portability issues are mostly limited to
the implementation of the ad-hoc components. As an example, a probe-
thread based on direct access to the “proc” file system for gathering
CPU/memory usage information is portable only across (virtualized) op-
erating systems supporting that type of file system (e.g. LINUX). How-
ever, widening portability across general platforms would only entail re-
programming the internal logic of this probe, which in some cases can
even be done by exploiting, e.g., pre-existing JAVA packages providing
platform-transparent access to physical resource usage.

The aforementioned portability considerations also apply to reporter-
threads, which can implement differentiated, portable logics for exposing
data to back-end applications (e.g. by implementing logics that store the
data within a conventional database).

3 Architectural Organization

Figure 1 shows the general architectural organization we have devised
for WPM. It has been defined according to the need for supporting the
following two main functionalities:

– statistical data gathering (SDG);
– statistical data logging (SDL).

The SDG functionality maps onto an instantiation of the Lattice
framework. In our instantiation, the elements belonging to the monitored



infrastructure, such as Virtual Machines (VMs), can be logically grouped,
and each group will entail per-machine probes targeting two types of re-
sources: (A) hardware/virtualized and (B) logical. Statistics for the first
kind of resources are directly collected over the Operating System (OS),
or via OS decoupled libraries, while statistics related to logical resources
(e.g. the data-platform) are collected at the application level by relying
on the JMX framework for JAVA components.

Log	  Service	  

LAN/WAN	  

LAN	  

GROUP	  1	  

…	   Group	  i 

Consumer	  

Local	  Storage(RAM/FS)	  

Op@mized-‐transmission	  
Service	  (SFTP,	  FS	  sharing)	  

Virtual	  Machine	  1	  

Probes	  
HW	  

SW	  

Producers	  

JMX 

Virtual	  Machine	  n 

Probes	  
HW	  

SW	  

Producers	  

JMX 

Fig. 1. WPM Architectural Organization.

The data collected by the probes are sent to the producer component
via the facilities natively offered by the Lattice framework. Each producer
is coupled with one or many probes and it is responsible of managing
them. The consumer is the Lattice component that receives the data from
the producers, via differentiated messaging implementations, which could
be selected on the basis of the specific system deployment. We envisage
a LAN based clustering scheme such that the consumer is in charge of
handling one or multiple groups of machines belonging to the same LAN.
Anyway, in our architectural organization, the number of consumers is not



meant to be fixed, instead it can be scaled up/down depending on the
amount of instantiated probes/producers. Overall, the consumer can be
instantiated as a centralized or a distributed process. Beyond collecting
data from the producers, the consumer is also in charge of performing a
local elaboration aimed at producing a suited stream representation to
be provided as the input to the Log Service, which is in turn in charge of
supporting the SDL functionality.

We decided to exploit the file system locally available at the consumer
side to temporarily keep the stream instances to be sent towards the
Log Service. The functional block which is responsible for the interaction
between SDG and SDL is the so called optimized-transmission service.
This can rely on top of differentiated solutions depending on whether the
instance of SDL is co-located with the consumer or resides on a remote
network. Generally speaking, with our organization we can exploit, e.g.,
SFTP or a locally shared File System. Also, stream compression schemes
can be actuated to optimize both latency and storage occupancy.

The Log Service is the logical component responsible for storing and
managing all the gathered data. It must support queries from any exter-
nal application so to expose the statistical data for subsequent process-
ing/analysis. The Log Service could be implemented in several manners,
in terms of both the underlying data storage technology and the selected
deployment (centralized vs distributed). As for the first aspect, differ-
ent solutions could be envisaged in order to optimize access operations
depending on, e.g. suited tradeoffs between performance and access flex-
ibility. This is also related with the data model ultimately supported by
the Log Service, which might be a traditional relational model or, alter-
natively, a <key,value> model. Further, the Log Service could maintain
the data onto a stable storage support or within volatile memory, for per-
formance vs reliability tradeoffs. The above aspects could depend on the
the functionality/architecture of the application that is responsible for
analyzing statistical data, which could be designed to be implemented as
a geographically distributed process in order to better fit the WPM de-
ployment (hence taking advantage from data partitioning and distributed
processing).

3.1 Implementation of infrastructure oriented probes

In this section we provide some technical specification for the probes
developed in WPM. The design and the implementation of the infras-
tructure oriented probes has been tailored to the acquisition of statistical
data in relation to (virtualized) hardware resources with no binding on



a specific Operating System. This has been done by implementing the
JAVA code associated with the probe on top of the SIGAR cross-platform
JAVA based library (version 1.6.4) [5]. Infrastructure oriented probes are
in charge of gathering statistical data on

1) CPU (per core): %user, %system, %idle.
2) RAM: kB free memory, kB used memory.
3) Network interfaces: total incoming data bytes, total outgoing data

bytes, inbound bandwidth usage, outbound bandwidth usage.
4) Disks: %Free space (kB), %Used space (kB), mountPoint or Volume.

For all of the above four resources, the associated sampling process can
be configured with differentiated timeouts whose values can be selected
on the basis of the time-granularity according to which the sampled sta-
tistical process is expected to exhibit non-negligible changes.

3.2 Implementation of data platform oriented probes

The implementation of the data platform oriented probes has been ex-
tensively based on the JMX framework [7], which is explicitly oriented
to support audit functionalities for JAVA based components. Essentially,
each data platform oriented probe implements a JMX client, which can
connect towards the JMX server running within the process where the
monitored component resides. Then, via the JMX standard API, the
probe retrieves the audit information internally produced by the mon-
itored JAVA component in relation to its own activities. Anyway, the
adoption of JMX Framework as a reference technology for implementing
application level probes is not necessarily tied to a JAVA component. This
is because a generic JMX probe can retrieve data form a JAVA compo-
nent that wraps any possible monitored application, also written using
any programming language.

As an instantiation of application level probes, in our implementa-
tion we developed a data platform probe that accesses the internal audit
system of single Infinispan [6] caches (1), in order to sample some param-
eters such as the Number of Commit, Number of Rollback, the Commit
latency, etc.

3.3 Startup and base message tagging rules

Particular care has been taken in the design of the startup phase of WPM
components, in relation to the fact that each probe could be deployed
1 We recall that Infinispan has been selected as the data layer within the Cloud-TM

project, for which WPM constitutes one of the building blocks.



within a highly dynamic environment, where the set of monitored com-
ponents (either belonging to the infrastructure or to the data platform)
and the related instances can vary over time.

As pointed out, WPM will be a part of the Autonomic Manager of
the Cloud-TM platform, which will rely on a Repository of Tunable Com-
ponents where an XML description for each component currently taking
part to the Cloud-TM platform is recorded at component startup time. In
the design of the WPM we rely on this repository, by exploiting it as a reg-
istry, where each probe can automatically retrieve information allowing it
to univocally tag each measurement message sent to the Lattice consumer
with the identity of the corresponding monitored component instance, as
currently maintained by the registry. This will allow supporting a perfect
matching between the measurement message and the associated instance
of component, as seen by the overall infrastructure at any time instant.
Such a process has been supported by embedding within Lattice probes
a sensing functionality, allowing the retrieval of basic information related
to the environment where the probe is activated (e.g. the IP number of
the VM hosting that instance of the probe), which has been coupled with
a matching functionality vs the registry in order to both

(a) retrieve the ID of the currently monitored component instance;
(b) retrieve information needed to correctly carry out the monitoring task,

in relation to the target component instance.

Such a behavior is shown in Figure 2, where the interaction with the
registry is actuated as a query over specific component types, depend-
ing on the type of probe issuing the query (an infrastructure oriented
probe will query the registry for extracting records associated with VM
instances, while a data platform oriented probe will query the registry for
extracting records related to the specific component it is in charge of).

As for point (b), data platform probes rely on the use of JMX servers
exposed by monitored components. Hence, the information requested to
correctly support the statistical data gathering process entails the ad-
dress (e.g. the port number) associated with the JMX server instance
to be contacted. The information associated with point (b) is a “don’t
care” for infrastructure oriented probes since they do not operate via any
intermediary (e.g. JMX server) entity.

3.4 Implementation of the Optimized-transmission Service

In the current implementation, the optimized-transmission service has
been implemented by relying on the use of zip and SSL-based file trans-



probe

environmental sensing

(e.g. local IP retrieve)

registry

XML records

(e.g. VM records)

matching

measurement message tag

measurement task requested parameters (if any)

Fig. 2. Interaction between the Probes and the Registry.

fer functionalities. Each data stream portion assembled by the Lattice
consumer is locally logged within a file, which is then zipped and sent
towards the Log Service front-end via SSL. Exactly-once transmission
semantic has been guaranteed via well known retransmission/filtering
schemes, which have been based on a univocally determined name for
each transmitted zipped file. Specifically, each Lattice consumer is uni-
vocally identified via a consumer ID, which has been used to generate
unique file names in the form

consumer ID + start timestamp + end timestamp

where start and end timestamp values within the file name identify the
time interval during which the statistical data have been gathered by the
consumer. These timestamp values are determined by exploiting the local
clock accessible at the consumer side via the System.currentTimeMillis()
service.

3.5 Implementation of the Log Service

As for the Cloud-TM data layer, the Log Service has been implemented
by still relying on Infinispan [6], specifically by instantiating it as an Infin-
ispan application that parses the input streams received from the Lattice



consumer, and performs put operations on top of an Infinispan cache in-
stance. The keys used for put operations correspond to message tags, as
defined by the Lattice producer and its hosted probes. In particular, as
explained above, each probe tags measurement messages with the unique
ID associated with the monitored component. This ID has been used
in our implementation to determine a unique key, to be used for a put
operation, formed by:

component ID + type of measure + measure timestamp

where the type of measure identifies the specific measure carried out for
that component (e.g. CPU vs RAM usage in case of a VM component),
and the value expressed by measure timestamp is again generated via
the local clock accessible by the probe instance producing the message.
Currently, the Log Service exposes to the external applications the Infin-
ispan native <key,value> API, which does not prevent the possibility of
supporting a different API in future releases.

4 Summary

In this article we have presented the architecture and the implementa-
tion of a Workload and Performance Monitor to be integrated within the
architectural design of the Cloud-TM FP7 project platform. Our moni-
toring system provides integrated supports for gathering samples related
to both hardware/virtualized resources and logical resources. It relies on
the integration between the Lattice framework and JMX.

References

1. Stuart Clayman, Alex Galis, Clovis Chapman, Giovanni Toffetti and Luis Rodero-
Merino and Luis M. Vaquero and Kenneth Nagin and Benny Rochwerger, Moni-
toring Service Clouds in the Future Internet. IOS Press, 2010.

2. http://www.reservoir-fp7.eu/index.php?page=open-source-code
3. http://www.cloudtm.eu/
4. http://aws.amazon.com/ec2/
5. http://www.hyperic.com/products/sigar
6. http://www.jboss.org/infinispan
7. Java Management Extensions (JMX) Technology,

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-
140525.html


