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Abstract—Software Transactional Memory (STM) may suf-
fer from performance degradation due to excessive conflicts
among concurrent transactions. An approach to cope with
this issue consists in putting in place smart scheduling policies
which temporarily suspend the execution of some transaction
in order to reduce the actual conflict rate. In this paper, we
present an adaptive transaction scheduling policy relying on
a Markov Chain-based model of STM systems. The policy
is adaptive in a twofold sense: (i) it schedules transactions
depending on throughput predictions by the model as a
function of the current system state; (ii) its underlying Markov
Chain-based model is periodically re-instantiated at run-time to
adapt it to dynamic variations of the workload. We also present
an implementation of our adaptive transaction scheduler which
has been integrated within the open source TinySTM package.
The accuracy of our performance model in predicting the sys-
tem throughput and the advantages of the adaptive scheduling
policy over state-of-the-art approaches have been assessed via
an experimental study based on the STAMP benchmark suite.

Keywords-transactional memory; scheduling; performance
modeling; performance optimization;

I. INTRODUCTION

The large diffusion of multi-core architectures has raised

the need for programming paradigms aimed at simplifying

the development of concurrent and parallel applications.

Particularly, efficient synchronization of thread accesses to

shared-data has become a core aspect to cope with.

Coarse-grain locking is a quite immediate synchronization

mode, but it generally provides reduced performance levels,

especially for scaled up numbers of threads. Conversely,

fine-grain locking strategies provide the potential for im-

proved performance levels, but are time-consuming and

error-prone for programmers.

Transactional Memory (TM) stands as an alternative,

simple and intuitive, transaction-based synchronization ap-

proach. With TM, programmers can think the easy way in

terms of coarse-grain locking (transactions), while applica-

tion performance can benefit from fine-grain data-conflict

management mechanisms transparently operated at the level

of the TM layer. The relevance of this kind of approach

is clearly evident by the recent inclusion of TM support

in world-leading multiprocessor hardware and open source

compilers (see [1]).

However, although providing a number of advantages

especially on the side of programmability, the performance

of TM systems can be strongly affected by trashing phenom-

ena. Indeed, depending on the actual data access pattern by

transactions, an high degree of transaction concurrency may
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Figure 1. Execution time of the Intruder benchmark on top of TinySTM.

lead to experience (execution phases of) workloads generat-

ing an unacceptably high rate of aborts. This is detrimental

to performance, given that an aborted transaction leads to

useless carried out work. This phenomenon affects both

Software based implementations of the TM layer (STM) [2]

and Hardware based ones (HTM) [3], thus being a highly

general and very relevant problem to cope with.

To provide the reader with empirical data quantifying

this problem, we report in Figure 1 the variation of the

execution time of the Intruder benchmark—taken from the

STAMP benchmark suite [4]—while changing the number

of concurrent threads. This experiment has been executed on

top of a 16-cores HP ProLiant server equipped with 2GHz

AMD Opteron 6128 processors and 64 GB of RAM. The

underlying operating system is Linux (kernel version 2.7.32-

5-amd64) and the TM layer is TinySTM [5]. By the plot we

see that with more than 8 concurrent threads the performance

rapidly decreases because of thrashing phenomena. With 16

concurrent threads the execution time increases up to about

3 times the one achieved with 8 concurrent threads. Overall,

mechanisms avoiding thrashing and keeping performance

close to optimal values for the target (changing) workload

are mandatory.

Such an issue has been dealt with in literature by relying

on either a transaction scheduler [6] or a thread scheduler

[7]. The transaction scheduling approach is based on delay-

ing the execution of a transaction depending on the current

system state and some scheduler-embedded policy. As an

example, a transaction could be temporarily blocked until

the number of already running transactions falls below a

given threshold value. Alternatively, it could be delayed if

its estimated probability to conflict with already running



transactions is high. Thread scheduling in TM systems

is instead based on dynamically changing the number of

threads sustaining the application execution, depending on

how this variation favors or not the system throughput.

As for a high level comparison of the two approaches,

transaction scheduling looks to be a more general one since

it can be employed in contexts where different threads are

bound to different transactional tasks. In such a scenario,

temporarily blocking the execution of some specific thread

via a thread-scheduling approach would result in starvation

of any thread-bound task. Nonetheless, the two approaches

(transaction vs thread scheduling) are kind of orthogonal

methods that could be ideally combined. In this article our

focus is on transaction scheduling, particularly for STM

layers.

State-of-the-art scheduling approaches for STM can be

divided in two groups: (a) the ones based on performance

prediction models (e.g. [7]), such as analytical or machine

learning models describing the system performance as a

function of the degree of concurrency among transactions,

and (b) the ones based on heuristic methods (e.g. [8]).

Model-based approaches have the drawback of requiring a-

priori profiling of the system for collecting measurements

and parameter values to instantiate the performance model.

On the other hand, heuristic-based ones require the user

to configure scheduler parameters (such as conflict rate

thresholds) based on which the decisions on how to schedule

transactions is taken. This may not be an easy task given

that the optimal parameter configuration may depend on

both workload and system level settings. Additionally, since

the workload profile may change over time, the selected

parameter settings could be optimal for given execution

phases of the application, but could be unsuitable for others.

Example data showing the effects on performance by

different configurations of scheduler parameters are provided

in Figure 2. The data refer to two heuristic-based state-

of-the-art transaction schedulers, namely Shrink [9] and

ATS [6]. These schedulers become operational as soon as

the contention level among transactions oversteps a given

threshold referred to as Contention Intensity (CI), which

needs to be set by the user. The plotted data show the

execution time of the Intruder benchmark when using (in

a given system configuration) different CI values, ranging

from 10% to 90%. We can note that the delivered per-

formance significantly changes (with the different settings)

for both the schedulers. Overall, the efficiency of these

schedulers clearly depends on the ability to set up the right

parameters’ configuration, which might be a non-trivial task

especially for unknown/unforeseen workloads.

To tackle the aforementioned problems, we devise a

Markov Chain-based performance modelling approach with

the aim at developing an innovative adaptive STM scheduler.

Our proposal exploits a lightweight model predicting the

system throughput, which can be instantiated on-the-fly at
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Figure 2. Performance variation with different values of CI.

run-time (e.g. according to a periodic basis) by collecting

a reduced number of samples related to the current trans-

actional workload profile. The predictions by the model are

then used for scheduling purposes by adaptively tuning the

number of transactions that are allowed to run concurrently

along a given application execution phase.

Our approach provides two main advantages: (a) it does

not require a-priori (e.g. off-line) workload profiling, just

because the performance model can be instantiated on-the-

fly, and (b) it does not rely on any complex configuration

parameter, given that it only requires to set the length of the

time period for sampling the workload and re-instantiating

the model. Additionally, the model instantiation requires the

measurement of a very small set of parameters at run-time

(namely, 4 parameters in total) and does not need to sample

read/write-sets of transactions.

We integrated our Markov Chain-based adaptive scheduler

within the open source TinySTM package and we also report

data showing its advantages, when compared to a few state-

of-the-art proposals, for the case of benchmark applications

belonging to the STAMP suite.

The remainder of this article is organized as follows.

Related work is discussed in Section II. The Markov Chain-

based performance model is presented in Section III, to-

gether with a model-validation study. The model-based adap-

tive transaction scheduling policy is described in Section

IV. The implementation of the adaptive scheduler within

TinySTM and its experimental assessment are presented in

Section V.

II. RELATED WORK

Our proposal is related to results in the field of perfor-

mance modeling of TM systems, as well as to scheduling

approaches based on either models or heuristics.

As for analytical models targeting STM performance pre-

diction, the works in [10], [11], [12] share with our proposal

the reliance on Markov Chain-based modeling formalisms.

However, the proposals are suited for off-line STM perfor-

mance analysis and rely on training data collected during

system profiling phases in order to instantiate the models.



They show therefore limited (if not null) applicability to

the problem of on-line performance forecasting and adaptive

scheduling. This limitation is also linked to the high number

of parameters to be estimated for instantiating the models.

Another drawback of these modeling approaches is that the

size of the Markov Chain grows quadratically with the num-

ber of concurrent threads and/or the number of operations

executed by transactions. This may generate non-negligible

overhead in case one would decide to periodically instantiate

and resolve these models at run-time for adaptive schedul-

ing purposes. Unlike the above approaches, we present a

lightweight Markov Chain-based model, which: (a) requires

the estimation of only 4 parameters for being instantiated,

which can be done at run-time (and periodically) in a non-

intrusive manner, given that they correspond to transaction

start/end times and transaction commit/anort outcomes; (b)

grows linearly (not quadratically) with respect to the number

of concurrent threads.

Another model-based study aimed at forecasting STM

performance has been presented in [13]. In this proposal,

the performance model is built off-line collecting (for a

given application) speedup measures while varying the level

of concurrency among transactions. Performance prediction

functions are generated by interpolating the collected data

via a set of parametric functions. This approach is again non-

suitable for on-line scheduling, given that it still requires an

a-priori profiling phase of the system behavior (under a given

workload).

Although our focus is on transaction scheduling, our

proposal is anyhow loosely related to a few results in

the area of thread scheduling in TM systems, which we

shortly discuss. A thread scheduler for STM based on an

analytical performance model has been described in [14].

In this solution the model is instantiated via regression

analysis applied to a family of reference functions on the

basis of measurements collected during system profiling

phases. The work in [7] presents a machine learning-based

thread scheduling approach for STM. This solution has

been then improved, as described in [15], by introducing a

dynamic feature selection mechanism to reduce the run-time

workload sampling overhead for determining the input to the

pre-instantiated machine learning-based performance model.

The work in [2] proposes a solution for instantiating an

STM performance model via the combination of analytical

and machine learning techniques so as to reduce the long

training-phase of the pure machine learning-based approach.

Finally, in [16] a machine learning-based model, instantiated

off-line, is used to derive a thread scheduling mechanism

suited for HTM systems. As compared to our approach, all

these proposals still rely on lengthy preliminary profiling

phases in order to instantiate the performance models that

drive thread scheduling, a problem that is only partially

addressed by either the pure analytical approach in [14] or

the mixed (analytical/machine-learning) one in [2]. Rather,

we provide a very lightweight model with true capabilities

for on-line fast (re-)instantiation so as to cope with dynamic

and unforeseen workloads. Also, our solution targets the

orthogonal objective of transaction scheduling (not the one

of thread scheduling in TM systems).

Still for thread scheduling, we can find the heuristic based

approach in [17], where the authors propose a hill-climbing

scheme that dynamically increases or decreases the number

of concurrent threads running the application. As compared

to this work, our proposal deals with the orthogonal issue of

transaction scheduling and is model-based (rather than being

based on an heuristic approach).

As for the transaction scheduling problem in STM sys-

tems, joint to the reliance on heuristics as the solution

method, we can find the proposals in [8], [6], [9]. The

proposed schedulers delay the execution of some transaction

when its probability of conflicting with already running

transactions is estimated to be high, and the proposals differ

from each other by the way they estimate such a conflict

probability. The main drawbacks of these transaction sched-

ulers are the following ones: (a) their underlying heuristic

techniques do not guarantee convergence to the optimal

solution, and their effectiveness may change with respect

to the workload profile, and (b) the user (as we discussed

before) is in charge of setting configuration parameters

that affect the scheduler efficiency. Our proposal aims at

overcoming both these drawbacks.

An alternative transaction scheduler for STM systems has

been presented in [18]. This is based on the concept of

serialization queues where all the transactions accessing a

same data partition are sequentialized to avoid aborts due

to conflicting concurrent accesses. Proactive move of the

transactions to the correct queues requires user specified

information in relation to the access pattern, hence the

approach is not fully transparent. Unlike this proposal, we

do not rely on any transaction queuing discipline, and do not

base our scheduler on the concept of partitions of data (to

be specified by the user). Hence transactions can be run

concurrently in our scheme independently of their actual

data access, whose effects on conflict likelihood (in case

of actual concurrency) are captured by the Markov Chain-

based model. Also, the decisions of our scheduler about

whether transactions need to be delayed are fully application

transparent.

Still concerning transaction scheduling, we can find the

recent work in [3], which is targeted at HTM systems.

This proposal copes with the issue of estimating what

are the actual sources of data conflicts across transactions

executed via HTM support, given that no software layer is

used for HTM-based transactions to drive their execution

and to profile data access. The estimation is then used to

temporarily block the execution of HTM-based transactions

that are supposed to access the same data slices touched by

already running ones according to a threshold based heuristic



scheme. Conversely, our proposal is targeted at STM systems

(not HTM ones) and does not rely on heuristics, rather on

an analytical performance model.

Finally, less loosely related to our proposal are the works

in [19], [20], where operating system support is provided

for running TM applications. These proposals target the

modification of the Linux scheduler so as to reduce the

likelihood of a thread running a transaction to be interfered

on the same CPU-core by some other thread, which might

lead to the increase of the transaction abort probability. Our

proposal is again fully orthogonal to these approaches given

that we base it on a user-space scheduling policy/mechanism.

III. THE MARKOV CHAIN-BASED STM PERFORMANCE

MODEL

We present our modelling approach by initially providing

a description of the target STM environment, thus introduc-

ing the reference system model for our analysis. Then we

focus on the derivation of the performance model.

A. Target STM System

We assume an STM system where a number N of concur-

rent threads are run. A thread can execute either transactional

code or non-transactional code (ntc) blocks. A transaction

commits if no conflicts with other concurrent transactions

occur, otherwise, it is aborted and a new run of the same

transaction is executed. We assume a transaction scheduler

that admits up to m transactions to be run concurrently, so

as to avoid thrashing due to excessive conflicts. Hence, upon

the start of a new transaction along any thread, it may either

enter the running state or the waiting state depending on the

value of m. The transaction is put into the waiting state in

case there are m transactions (with m ≤ N ) that already

entered the running state. When one of these m transactions

commits, a waiting transaction, if any, is unblocked, thus

being allowed to proceed along its original execution path.

B. Performance Model Derivation

Our performance model leverages a Continuous Time

Markov Chain (CTMC) [21] with N +1 states. A graphical

representation of the CTMC is shown in Figure 3. A state

marked with k in the CTMC represents a system state

when there are k threads executing transactions, where k

accounts for both already running and blocked transactions.

Consequently, when the system resides in state k there are

N − k threads executing ntc blocks. A transition from state

k to k + 1 occurs upon the startup of a transaction along

any thread. A transition from state k to k − 1 occurs upon

the successful commit of whichever running transaction.

We denote with tntc the average time for executing some

ntc block. Thus, the transaction inter-arrival rate along any

thread is λ = 1

tntc

. Consequently, denoting with λk the

transition rate from state k to k + 1, we have

λk = (N − k) · λ (1)

Figure 3. The CTMC used to model the system performance.

As for the transition rate from state k to k − 1, it depends

on k and m (we remark that m represents the number of

concurrent transactions that have been allowed to run by

the scheduler, hence not being blocked). Denoting with tk
the average transaction execution time when there are k

executing transactions, the transaction execution rate in state

k is equal to µk = 1

tk
. Accordingly, for all the states marked

with k ≤ m, since exactly k transactions are running (i.e.

none of these transactions is blocked), the transition rate

from state k to k − 1 is

γk = k · µk (2)

Conversely, for any state marked with k > m, the running

transactions are m, while the remaining k −m transactions

are blocked. Consequently, for any of the states such that

k > m, the transition rate to k − 1 is

γk = m · µk (3)

The assumption allowing us to rely on a Markov Chain for

modeling the system behavior is that the parameters used

in the above equations, which express latency values related

to state transitions (e.g. the latency for executing some ntc

block) are exponentially distributed.

Transaction execution time. Now we focus on the average

transaction execution time tk. We note that tk is affected

by the number of times a transaction is aborted (hence re-

started) while the system is in state k, before successfully

committing. We refer to as wasted time, which we denote

with wt,k , the average time spent for executing all the

aborted runs of a transaction (including the time to execute

abort operations and transaction restarts) while the system

is in state k. Further, we refer to as useful time, which

we denote with ut,k, the average time to execute the last

transaction run (i.e. the successfully committing one), when

the system is in state k. Hence, we have that tk = wt,k+ut,k

by definition.

Further, we also have that the wasted time wt,k is equal

to the product between the average time wr
t,k to execute a

transaction run that is aborted while the system is in state k

and the average number of times rk a transaction is aborted

while the system is in that same state, say

wt,k = wr
t,k · rk (4)



Assuming that, for a given state k, the transaction abort event

is independent of previous abort events affecting the same

transaction, the probability distribution of the number of runs

of a transaction, before a successful commit takes place, is

geometric. Thus, if pk is the transaction abort probability

when the system is in state k, we have

rk =
pk

1− pk
(5)

As a final observation, we can safely assume that all the

abort probability values pk for k > m are equal to pm,

given that in all the states marked with k > m, exactly m

transactions are in the running state.

System throughput. The system throughput thrm when the

scheduler admits at most m transactions to the running state

can be estimated through the CTMC stationary distribution.

Specifically, denoting with qk the stationary probability of

state k, we have

thrm =

N∑

i=1

qk · γ = q1µ1 + q22µ2 + ...

+qmmµm + qm+1mµm + ...+ qNmµm (6)

In order to calculate qk, with 0 ≤ k ≤ N , we can use the

solution equations for general equilibrium [21], say

qk = q0

k−1∏

i=0

λi

γi+1

, (7)

q0 =
1

1 +
∑N

k=1

∏k−1

i=0

λi

γi+1

(8)

In order to apply Equation 8 to our CTMC, we define, for

any k ≤ m

ak =

k−1∏

i=0

(N − i)λ

(i+ 1)µi+1

(9)

and, for any k > m

bk =

k−1∏

i=m

(N − i)λ

mµm

(10)

Hence, by Equation 7, for any state marked with k ≤ m we

have

qk = q0 · ak, (11)

and for any state marked with k > m we have

qk = q0 · am · bk (12)

Finally, Equation 8 can be rewritten by spitting the sum at

the denominator into two sums, where k varies from 1 to

m− 1 and from m to N , respectively. Thus we achieve

q0 =
1

1 +
∑m−1

k=1
ak +

∑N

k=m am · bk
(13)

ut,k average transaction useful time in state k

wr
t,k

average time for an aborted transaction run in state k

pk transaction abort probability in state k

tntc average latency of the ntc block (independent of the CTMC state)

Table I
PARAMETERS REQUESTED FOR MODEL INSTANTIATION

By relying on Equations 9-13 we can finally calculate qk,

for any k between 0 and N . Hence we can calculate the

throughput values thrm via Equation 6 for any value of

the parameter m corresponding to the maximum number of

concurrent transactions admitted to the running state.

We finally note that instantiating our model only requires

the knowledge of the four parameters listed in Table I,

which can be easily and non-intrusively sampled at run time

(or even approximated as we will discuss in the remainder

of this article). Further, by construction of our CTMC-

based model, once fixed a value for m, we have that

for any state marked with k > m these parameters will

have the same values (given that pk does not change for

k ≥ m). This further contributes to keep small the number

of observations to be collected for instantiating the parameter

values characterizing the different states of the CTMC-based

model.

C. Validation of the Performance Model

In this section, we present experimental data for an assess-

ment of the accuracy of the above introduced performance

model. Further, we illustrate how the model can be used

to perform what-if analysis vs the number of concurrent

transactions admitted to the running state by the scheduler.

What-if analysis constitutes one of the building blocks on

top of which the adaptive scheduler we present in the next

section is built.

We report data that have been achieved with the Intruder,

Yada and Vacation applications of the STAMP benchmark

suite [4]. We run these applications by deploying them on

the open source TinySTM layer [5], hosted by the same

16-core HP ProLiant machine we used for the experiments

whose outcomes have been reported in Section I. We aug-

mented TinySTM with profiling capabilities to estimate the

parameters in Table I and with the possibility to admit

a given maximum number of concurrent transactions to

the running state. Details on the implementation of these

facilities within TinySTM will be provided in Section V,

where the description and the experimental assessment of

our adaptive transaction scheduler are presented.

Throughput prediction accuracy. In order to evaluate

the model accuracy, we compared the predicted system

throughput and the real one as measured while the selected

benchmark applications were in progress. The throughput

prediction has been performed at run-time, every 1000

executed transactions, by dynamically re-instantiating the



model. This has been done exploiting samples for the

estimation of the parameters in Table I collected along

the execution interval of those 1000 transactions. In these

experiments we selected a set of different configurations in

relation to the number of threads used to run the applications,

and the maximum number m of concurrent transactions

admitted to the running state. Thus we assessed the accuracy

of the CTMC-based model in predicting the real system

behavior for relatively broad settings.

The results are shown in Figure 4. By the plots we

can observe an extremely accurate throughput prediction

by the CTMC-based performance model in all the tested

configurations, including the ones where the applications are

run by relying on 16 threads. This is a relevant achievement

when considering that, for two of the three benchmarks,

the reliance on 16 threads, none of them ever blocked

while running a transaction, represents an over-parallelism

configuration leading to thrashing. In fact, with such a

settings, the execution times of both Intruder and Yada are

definitely stretched (compared to settings with lower levels

of parallelism) just due to trashing phenomena. Anyhow,

these phenomena, as well as more favorable run-time be-

haviors, are reliably captured by our performance model.

Also, the predictions by the model are extremely accurate

independently of the stability of the real throughput curve

associated with the different settings. Overall, the average

relative error in predicting the system throughout by our

model (across all the configurations) falls in the intervals

between 5.5% and 8.5% for Intruder, 2.4% and 5.9% for

Yada, and 1.3% and 3.3% for Vacation.

What-if analysis accuracy. The CTMC-based model can

also be used to perform what-if analysis, which is a core

building block for the construction of our adaptive transac-

tion scheduler. We assess this capability by showing how

the application throughput can be predicted for some value

m = x′ of the number of concurrent transactions admitted to

the running state by instantiating the model on the basis of

statistics collected while running under the settings m = x.

Thanks to the way our model is built, the throughput

for m = x′ can be predicted by measuring the values of

the parameters in Table I when running with m = x and

then solving the model for m = x′. However, we note that

for scenarios where x′ > x, the set of transaction abort

probabilities {pk : x < k ≤ x′}, which are needed to solve

the model, cannot be determined on the basis of the available

observations, hence they need to be estimated in a different

way. To this end we rely on the following considerations

and approach. When there are x running transactions in

the system, a transaction can conflict with any of the

other x − 1 transactions. Denoting with pa the probability

that a transaction conflicts with one of the other running

transactions, the probability for a transaction to experience

no abort when there are x running transactions (i.e. the

probability that no conflicts occur with any of the other

x − 1 running transactions) is equal to (1 − pa)
x−1. Thus,

the abort probability when there are x running transactions

can be calculated as

px = 1− (1− pa)
x−1 (14)

Solving by pa the above equation we have

pa = 1− (1− px)
1

x−1 (15)

and if we know the transaction abort probability px for a

generic state x, we can calculate py using Equation 15.

Hence, we can calculate pk for any k 6= x, thus also for

any k > x, using k in place of x in Equation 14.

To evaluate the model accuracy in performing what-if

analysis according to the above scheme, we report both

real and predicted throughput values for configurations with

m = 2 and m = 5, respectively, where the predictions

are based on observations gathered with m = 4. Figure 5

reports both real and predicted throughput curves, which

show that the average prediction errors are 8.8% (m = 2)

and 9.2% (m = 5) for Intruder, 7.2% (m = 2) and 5.9%

(m = 5) for Yada, and 2.6% (m = 2) and 1.9% (m = 5) for

Vacation. Overall, a very good matching is still observed

when using the presented CTMC-based model for what-if

analysis purposes according to the devised approach.

IV. MODEL-BASED ADAPTIVE TRANSACTION

SCHEDULING

In this section, we describe the adaptive transaction sched-

uler based on the performance model presented in Section

III-B, which we call MCATS (Markov Chain-based Adaptive

Transaction Scheduler). The objective of MCATS is the

one of maximizing the system throughput by dynamically

regulating the number of concurrent transactions admitted

to the running state along the application lifetime.

MCATS works by initially admitting a default number of

m concurrent transactions to the running state, where m

could be set to correspond to the number of threads running

the application. Then, it periodically performs the following

steps:

Step 1: Observation. The workload is sampled for a given

time period so as to estimate the four parameters listed

in Table I, whose values are needed for instantiating the

CTMC-based model underling MCATS to calculate the

expected throughput values thrm while varying m. Clearly,

it might happen that no samples could have been collected

for some particular state k. This may be the case when the

transition rates λk are relatively high with respect to the

transition rates γk. In fact, this settings would likely lead the

system to work in states associated with high values of k,

thus not allowing the measurements of the target parameters

in correspondence with states associated with low values of

k. Conversely, if γk values are relatively high with respect

to the transition rates λk, measurements for states with
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Figure 4. Predicted vs measured throughput for Intruder, Yada and Vacation.
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Figure 5. Predicted and measured throughput with m=2 and m=5 based on measurements taken with m=4 for Intruder (left graph), Yada (middle graph)
and Vacation (right graph).

higher values of k might be missing. If no measurements

are available for some state k, the following fall-back sub-

step is executed:

Step 1.1: Fall-back. the missing values of the pa-

rameters ut,k, wr
t,k and pk, related to state k are set

equal to the average values of these same parameters

as observed for all other states for which measurements

are available. We note that this settings leads to an

approximation that is expected to cause a very low (or

null) error on the throughput estimation by the CTMC-

based model. In fact, if measurements for some state

k are missing, this means that the system is expected

to work in state k with very low probability, or even

not to enter that state with the current workload. As

a consequence, when predicting the system throughput

via Equation 6, the associated probability values qk is

expected to be very low. We remark that Equation 6

calculates a weighted sum, where qk probability values

represent the weights.

Step 2: Tuning. The values of the system throughput thrm,

for 0 ≤ m ≤ N , are estimated via what-if analysis, and the

maximum number of concurrent transactions admitted to the

running state by the scheduler is set to the value of m for

which the predicted thrm value is the maximum one.

V. IMPLEMENTATION AND ASSESSMENT OF MCATS

We developed an implementation of MCATS (1) inte-

grated within the open source TinySTM layer, which is

targeted at Posix/x86 platforms. In this section we initially

describe a few implementation details and then provide

experimental data for its assessment.

A. Implementation Details

We used a shared global variable c to count the number

of transactions residing in the running state. This counter

variable is modified by threads willing to enter a transaction

by using the compare-and-swap instruction provided by the

underlying hardware architecture. Upon the attempt to start

a transaction, the thread tries to modify c atomically, and

the access to the running state is allowed only in case the

value of c does not oversteps the value of the scheduling

parameter m. In case of check failure, the thread puts the

transaction in the wait state, which is supported by simply

letting the thread keep on retrying the above operation. The

value of c is decremented when a transaction successfully

commits, so as to allow other threads to eventually succeed

in the access to the running state for the transactions they

are handling.

The duration of Step 1 in the scheduler logic (namely the

system observation phase after which the actual tuning of

the maximum number m of concurrent transactions admitted

1Available at https://github.com/HPDCS/stmMCATS.



to the running state is set) corresponds to T subsequent

transaction commits, where T is the unique value to be

specified by the user, which has anyhow no direct effect

on the transaction scheduling logic (2).

The latency samples for the estimation of ut,k, wr
t,k

and tntc are taken by relying on the RDTSC instruction,

which returns the time-stamp kept by a 64-bit CPU register

measuring the passage of time by counting the number of

CPU-cycles since the machine was started (3). The abort

probability pk is estimated by computing the ratio between

the number of aborted transaction runs and the sum of all

aborted and committed transaction runs. In order to associate

each taken sample with the correct state k, we rely on the

value of c at the time the samples are taken (recall that for

k ≥ m all the statistics are collapsed together given that

they coincide for all the states associated with those values

of k).

For the purpose of keeping low the sampling overhead,

only one thread at a time collects the target statistics. The

thread responsible of collecting measurements is selected

in a round-robin fashion, with round-robing taking place

according to a fine-grain scheme operating within each

observation window. This scheme allows more robust sam-

pling outcomes, especially in contexts where the underlying

architecture is characterized by asymmetries such as Non-

Uniform Memory Access (NUMA). In such a case, the

latencies sampled by one individual thread could be biased

on the basis of the distance between the CPU-core where the

thread is running and the NUMA node where actual memory

accesses were performed. Averaging the samples taken by

multiple threads operating in round-robin fashion would

allow for reducing this bias. Further, a better estimation of

the average values of the target parameters is guaranteed by

the round-robin scheme in case the application is such that

specific transactional profiles are bound to given threads (a

kind of application level asymmetry).

B. Experimental Results

We assessed MCATS by relying on the same experimental

setting that has been described in Section III-C. For all

the selected benchmark applications, we present results for

three different inputs, which gives rise to different work-

load profiles of the applications, as described in [4]. We

compared the performance results achieved with MCATS

with those achieved by the baseline implementation of

2The Value of T may only impact the statistical goodness of the
parameters that need to be sampled for instantiating the CTMC-based
model. However, as we have shown via model validation data, T could
be set to a few thousands of transactions independently of the managed
workload (at least for the considered applications) while still guaranteeing
reliable sampling outcomes. A thorough study on how to automate the
settings of this parameter is planned as future work.

3This approach allows measuring wall-clock-time interval durations.
Hence any non-negligible bias on the duration of the sampled time intervals
due to time-sharing interference, e.g. by kernel-level housekeeping threads,
is tackled via the elimination of spike values from the statistics.

TinySTM (employing no transaction scheduling logic) and

two other schedulers proposed in literature, i.e. Shrink and

ATS, both integrated within releases of TinySTM. For these

schedulers we used the configurations proposed in [9] and

[6], respectively. The results of our experimental study

are shown in Figures 6, 7 and 8 for Intruder, Yada and

Vacation, respectively. We report the application execution

time as a function of the number of concurrent threads

used for running the application. By the plots we note

that, for almost all the test cases, the best performance (i.e.

the minimum application execution time) with the baseline

TinySTM is achieved for a number of concurrent threads

lower than 16 (except for configuration 2 of Yada, where the

best performance is achieved with 16 concurrent threads).

When executing the applications with parallelism degree

higher than the optimal one, the performance provided

by the baseline TinySTM (rapidly) drops down. This is

because the transaction conflict rate grows more rapidly

than the performance improvement potentially provided by

the increased transaction parallelism. In these scenarios, a

transaction scheduler should likely reduce the transaction

conflict rate in order to prevent the performance loss caused

by thrashing. Conversely, in scenarios with fewer threads

(hence with lower transaction conflict rates), the scheduler

should not hamper performance by excessively blocking

transactions. The data we report allow assessing MCATS

in these two antithetical scenarios.

The results show that, when running with fewer threads

than the optimal parallelism level, the execution time values

achieved by any of the considered schedulers is generally

(slightly) worse that the one provided by the baseline

TinySTM. This is essentially due to the overhead associated

with the implementation of the schedulers, and to the fact

that, in under-parallelism settings, a transaction scheduler is

not expected to provide benefits, given that the system likely

works far from thrashing conditions. For Yada, which rep-

resents a kind of worst case overhead scenario for MCATS,

the response time with MCATS is, on the average, 11.3%

higher than the one with baseline TinySTM for executions

with fewer threads than the optimal number. For Intruder

and Vacation, it is, on the average, 7.3% and 4.5% higher.

However, the results also show that, still for these scenarios,

the application response time of MCATS with respect to

other schedulers is noticeably lower for Intruder and Yada,

and comparable for Vacation.

In scenarios where the applications run with parallelism

degree higher than the optimal one, which leads the per-

formance of the baseline TinySTM to drop down, MCATS

effectively prevents such a performance loss, for all the

test cases. Also, it gives rise to a considerably lower ap-

plication execution time than the other schedulers for all

the configurations of Intruder and Yada, as well as for two

configurations out of three of Vacation (say configurations

1 and 3). As for configuration 2 of Vacation, we note that
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Figure 6. Performance comparison for Intruder.
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Figure 7. Performance comparison for Yada.
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Figure 8. Performance comparison for Vacation.

the application scales up to 16 concurrent threads with all

the tested schedulers and with the baseline TinySTM, which

all provide very similar performance. Overall, in all the

scenarios, the average performance improvement of MCATS

for Intruder is about 58%, 63% and 40% compared to the

baseline TinySTM, Shrink and ATS, respectively. With Yada,

the performance improvements by MCATS are of about

80%, 128% and 135%, respectively. Finally, for Vacation,

MCATS provides about 321% better performance with re-

spect to the baseline TinySTM, while its is comparable

with respect to Shrink and ATS. As a final observation,

although Shrink and ATS represent state-of-the-art solutions

for transaction scheduling, in our tests they generally did

not provide exalting results with respect to the baseline

TinySTM, except for two configurations of Yada. We believe

that this is due to the problem of configuring the parameters

of these schedulers, whose default values suggested by the

authors can be optimal for some application configurations,

while suboptimal for others. Conversely, the results show

that MCATS does not suffer from this drawback.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a lightweight performance model for

Software Transactional Memory based on Markov Chain

formalisms, which we have then used to build an adaptive

(on-line) transaction scheduler. Our scheduler controls at

run-time the maximum number of transactions that are

allowed to run concurrently thus avoiding thrashing phenom-

ena due to excessive conflicts and transaction aborts. We

integrated our scheduler within the open source TinySTM

layer. Further, we provided experimental results, based on

the STAMP benchmark suite (run on top of a 16-core HP

ProLiant machine), assessing both the prediction accuracy

of the Markov Chain-based performance model and the

effectiveness of our scheduler compared to state-of-the-art



proposals. As future work, we plan to study the applicability

of our approach to Hardware Transactional Memory, and to

assess our solution from the perspective of energy efficiency.
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