
A Performance Model of Multi-Version Concurrency Control

Pierangelo Di Sanzo, Bruno Ciciani and Francesco Quaglia

Sapienza, Università di Roma

Paolo Romano

INESC-ID

Abstract

In this article we present a performance model for Multi-

Version Concurrency Control (MVCC). This type of concur-

rency control is currently very popular among mainstream

commercial and open source database systems thanks to its

ability to well cope with read intensive workloads, as in the

case of transaction profiles proper of Web applications. To

build the model we had to tackle the intrinsic higher com-

plexity of MVCC when compared to traditional concurrency

control mechanisms (i.e. 2-Phase-Locking and optimistic

ones), such as the joint use of locks and aborts to resolve

direct conflicts among write accesses to the same data item,

and the management of multiple data versions. We validate

our analytical model via an extensive simulation study, con-

sidering both uniform and skewed data accesses, as well as

differentiated transaction profiles. To the best of our knowl-

edge, the present study provides the first analytical model of

MVCC.

1 Introduction

Database systems, and more in general transactional sys-

tems, are recognized as core software components for a

wide spectrum of applications. These span from traditional

client/server applications, to more modern multi-tier ones

(e.g. Web-based e-business applications). As a conse-

quence, adequate tuning and configuration of the database

system is still a fundamental issue to address.

One of the most critical aspects to be tackled when eval-

uating the performance of database systems lies in captur-

ing the effects of the employed concurrency control mech-

anism, which regulates concurrent data access in order to

ensure desired isolation levels. Concerning this point, sev-

eral maintstream proprietary (such as Oracle Database) and

open source (such as PostgreSQL) database systems cur-

rently rely on Multi-Version Concurrency Control (MVCC)

algorithms [9]. These algorithms exploit previous versions

of data items in order to improve the level of concurrency

among transactions. This approach revels particularly at-

tractive in read intensive environments, where a read access

(that would otherwise be delayed or aborted in case of con-

flict) can be immediately served via a previous version of

that same data item. Read intensive workloads have been

shown to be representative of several Web-based applica-

tions, which is one reason for the increasing diffusion of

such a type of concurrency control algorithms.

In this article we provide a complete analytical model

capturing the performance of the most diffused MVCC al-

gorithm, namely the one specifically oriented to guarantee

the so called snapshot-isolation consistency criterium [8].

Although not providing serializability guarantees (while en-

suring repeatable reads), this isolation level is considered

acceptable for a wide set of applicative contexts. Also, sev-

eral recent works have provided formal frameworks for the

identification/generation of classes of applications where

this type of isolation level suffices to ensure serializability

[12], or for detecting (and correcting) applications poten-

tially exposed to non-serializable execution histories [15].

Some literature works have addressed the evaluation of

the performance of MVCC algorithms. However, these

works are mostly based on simulative approaches [11].

Hence, to the best of our knowledge, our proposal is the first

analytical model describing the performance of snapshot-

isolation MVCC algorithms. Actually, some analytical re-

sults for MVCC have been provided in [1, 23]. However,

different from our approach, the objective of those studies

is to provide an analysis of the storage cost for maintain-

ing data item versions (vs the data update frequency), and

not to provide an analytical expression for transaction ex-

ecution latency and related system throughput. Also, the

level of abstraction considered in our analysis makes the

model valid independently of the real policy adopted by the

database system to retrieve data item versions (e.g. explicit

storing [20] vs dynamic regeneration of the required version

via rollback segments [17]). This makes the model suited

for a variety of implementations for version management

mechanisms inside the database.

We validate our analytical model via an extended simu-

lation study relying on synthetic workload descriptions (e.g.

in terms of machine instructions for specific transaction op-

erations) analogous to those used for the validation of ana-

lytical models describing the performance of other types of

concurrency control mechanisms, namely 2-Phase-Locking

and Optimistic [25].

The remainder of this paper is structured as follows. In

Section 2 we discuss literature works on database mod-

eling/evaluation, which are closely related to our analy-

sis. The performance model for snapshot-isolation oriented

MVCC is provided in Section 3. Finally, the model valida-

tion is presented in Section 4.

2 Related Work

A large volume of research results exist in literature,

which cope with the evaluation of database systems and

concurrency control algorithms. However, most of them are

focused on the evaluation of lock-based and optimistic ap-

proaches for conflict management among concurrent trans-

actions. For these classical concurrency control strategies,

analytical results have been presented, e.g., in [14, 21, 22]

for the case of centralized database systems, and in [6, 7] for

the case of distributed/replicated databases. In [25] a gen-

eral methodology for modeling and analytical evaluation of

both centralized and distributed systems is provided, still

coping with lock-based and optimistic concurrency control

schemes.

For what concerns simulative studies, locking protocols,

and their impact on performance, have been extensively ad-

dressed by several works [3, 18, 19]. On the other hand, the

work in [2] provides simulative studies specifically aimed at

evaluating optimistic concurrency control, and at compar-

ing this type of concurrency control with locking strategies.

One of the main findings of this work is probably that the

amount of computing power is a fundamental aspect deter-

mining which of the two concurrency control approaches

has the chance to provide better performance levels.

For what concerns MVCC strategies, complete perfor-

mance studies in literature are exclusively based on simula-

tion results [11]. In fact, analytical models have been pro-

posed exclusively for the evaluation of storage management

tradeoffs vs the data item update frequency [1, 23]. These

are oriented to the evaluation/prediction of space occupancy

for the different versions of the data items under specific

data access patterns (in order to provide facilities for storage

size planning). Compared to these studies, we tackle the dif-

ferent issue of providing a complete performance model of

MVCC (in the form of snapshot-isolation algorithms) that

allows transaction latency and system throughput analysis

and prediction.

3 Performance Analysis of MVCC

3.1 An Overview of MVCC Protocols Ensuring
Snapshot­Isolation

In typical, pragmatical implementations, MVCC [8] pro-

tocols ensuring snapshot-isolation can be considered as a

middle ground between locking and optimistic concurrency

control [20]. In fact, some form of locking is used, how-

ever it involves only exclusive locks associated with write

accesses to data items.

With snapshot-isolation, each transaction is associated

with a so called Start-Timestamp, whose value is set upon

the first data access operation executed by the transaction.

This value is used to determine the set of transactions that

are concurrent with T . In particular, this set is formed by the

transactions that are active when Start-Timestamp is set for

T , plus the transactions with timestamp grater than Start-

Timestamp.

When a transaction T tries to write a data item x that

has not yet been accessed by this same transaction, ver-

sion check is performed to determine whether no concurrent

transaction that wrote x has already been committed. In the

positive case, version check is said to have failed, and T is

immediately aborted. Otherwise, T tries to acquire an ex-

clusive write lock on x, which can lead to a wait phase in

case the lock is currently held by any other active transac-

tion T ′. In the latter case, if T ′ is eventually committed,

then T gets aborted in order to avoid the so called lost up-

date phenomenon [8]. Upon lock acquisition, T is allowed

to create a new version of x.

If T wants to read/write a data item x previously written

during its execution, the version of x just created by T is

immediately supplied. Instead, a read operation on a data

item x not previously written by T is served by accessing

the version of x that has been committed by the most re-

cent transaction not concurrent with T . In this way all read

operations are never blocked and do not cause transaction

abort.

When T commits or aborts, all the acquired write locks

are released. In case of commit, all the data item versions

created by T become visible.

3.2 Modeling Assumptions

We consider an open system in which transactions arrive

according to a Poisson Process with mean value λ. Com-

pared to closed system approaches (e.g. [14]), the open ap-

proach is more suited for scenarios with larger user popula-

tion, like in, e.g., Web-based applications.

Begin, write and commit operations are assumed to re-

quire a mean number of CPU instructions denoted with Ib,

Iw and Ic, respectively. CPU instructions to support read

accesses are modeled in a slightly more complex way, as a

reflection of the fact that a read access can require traversing

the history of data item versions to retrieve the correct one.

This is modeled by assuming for a read access a baseline of

IF
r CPU instructions, plus IV

r CPU instructions for each tra-

versed version. In the case of transaction abort, we assume

the execution of a mean number of Ia CPU instructions.

Also, the transaction is rerun after a randomly distributed

back-off time with mean value Tbackoff .

Each disk access, for serving buffer misses for specific

data items, is assumed to require a fixed latency tI/O. Al-

though this is done for simplicity of model construction,

given the optimized algorithms used by operating system

kernels to schedule disk accesses, it is commonly accepted

that the disk delay can be well captured via a constant value

begin 0 1

1

2

2

commit

PE,1

PW,1

P
I

A,1

P
C

A,1

PE,2

PW,2

P
I

A,2

P
C

A,2

abort

1-P
C

A,1 1-P
C

A,2

r, r,..., r w, r,..., r w, r,..., roperations:

Figure 1. Base Transaction Execution Model.

expressing the average latency in such an optimized sce-

nario [24, 25].

We do not explicitly model deadlocks and related trans-

action abort/restart since, as already shown by other studies

(see, e.g., [5, 13]), these affects have no significative im-

pact on performance. Given that those studies deal with 2-

Phase-Locking, the previous assumption reveals even more

realistic in case of MVCC since it does not use read locks,

hence further reducing the deadlock probability.

The CPU is modeled as an M/M/k queue, where k is the

number of CPUs, each of which is assumed to have a pro-

cessing speed denoted as MIPS.

We first present a basic version of the analytical model,

relying on the following additional approximations and as-

sumptions: (1) transactions belong to a unique class with

a mean number of Nw write and Nr read operations, (2)

transactions perform accesses uniformly distributed over

the whole set of D data items within database. Both these

assumptions will be then removed while presenting an ex-

tended version of the analytical model.

Also, as in previous concurrency control evaluation stud-

ies [14, 22, 25], we assume the system is stable and er-

godic, so that quantities like the contention probability and

the mean transaction response time exist and are finite, and

defined to be either long-run averages or steady-state quan-

tities.

Finally, as also assumed in existing performance models

of database concurrency controls [24, 25, 22], we consider

an interleaving of read/write operations by a single transac-

tion such that the Nr reads are uniformly mixed with the

Nw writes.

3.3 Basic Analytical Model

3.3.1 Transaction Execution Model

The execution of a transaction is modeled through a directed

graph. Figure 1 shows an example for a transaction with

Nw = 2. Each node represents the state of a transaction,

corresponding to a specific phase for the execution of the

transaction.

The label of an arc from a node p to a node q represents

the transition probability from state p to state q. If the label

is omitted, than the transition probability is intended to be

1. Obviously, the sum of all transition probability values for

outgoing arcs from a node must be 1.

begin 0 1

1

2

2

commit

PE,01

PW,01

P
I

A,01

P
C

A,01

PE,02

PW,02

P
I

A,02

P
C

A,02

abort begin 0 1

1

2

2

PE,11

PW,11

P
I

A,11

P
C

A,11

PE,12

PW,12

P
I

A,12

P
C

A,12

abort begin 0 1

1

2

2

PE,21

PW,21

P
I

A,21

P
C

A,21

PE,22

PW,22

P
I

A,22

P
C

A,22

1-P
C

A,01 1-P
C

A,02

1-P
C

A,11 1-P
C

A,12

1-P
C

A,21 1-P
C

A,22

subgraph G0

subgraph G1

subgraph G2

Figure 2. Modified Transaction Execution

Model.

The states labelled with begin, commit and abort are

used to model the execution of the respective operations. In-

stead, for what concerns read/write accesses to data items,

we use a different state labelling approach to denote the

corresponding phases. Considering that the sequence of

Nr read operations performed by a transaction is uniformly

distributed across the Nw write operations, on average we

will have a write access to a data item after executing

NS
r = Nr/(Nw + 1) read operations (see Figure 1). Ac-

cording to this rule, state 0̂ represents the phase in which

the initial NS
r read operations are performed before the first

write access, and states î (with 1 ≤ i ≤ Nw) represent

phases in which a write operation has been issued, followed

by a mean number of NS
r read operations.

According to the MVCC description provided in Section

3.1, when a write operation needs to be carried out, ver-

sion check is performed. If version check for the i-th write

fails, the transaction is aborted. The corresponding state

transition probability is denoted as P I
A,i. (The related arc

starts from state ̂i − 1 and ends to state abort.) On the other

hand, if version check succeeds (this occurs with probabil-

ity 1 − P I
A,i) a wait phase for lock acquisition occurs with

probability Pcont, corresponding to the probability that an

exclusive write lock is being held by another transaction.

Note that, by assumption (2) in Section 3.2, Pcont is in-

dependent of the accessed data item. Thus, the probability

of transition from state ̂i − 1 to state ĩ can be expressed as

Pw,i = (1 − P I
A,i)Pcont. On the other hand, the probabil-

ity that a lock is immediately granted after version check

is 1 − Pcont. Thus, the probability of transition from state
̂i − 1 to state î is PE,i = (1 − P I

A,i)(1 − Pcont).

A transaction in a waiting state ĩ gets aborted with prob-

ability PC
A,i, which we will subsequently evaluate.

When a read/write operation is executed, the accessed

data item might be already available into the buffer pool,

otherwise a disk access is needed. We denote with PBH1

the expected buffer hit probability. However, as suggested

in [25], in order to provide a more accurate evaluation of the

effects of buffer hits in case of transaction restart after an

abort, a different value of the expected buffer hit probabil-

ity PBH2 is considered when, in a rerun, the transaction ac-

cesses a data item already accessed prior to the abort. Both

PBH1 and PBH2 are intended as input parameter for our

model, whose value will reflect specific choices for what

concern buffer pool size and related replacement policies.

According to the previous considerations, the graph

modeling transaction execution is extended as in Figure 2.

Specifically, the graph is partitioned in Nw + 1 subgraphs

G0, G1, . . . , Gw. Subgraph G0 represents the first transac-

tion run, for which we consider PBH1 as the buffer hit prob-

ability for all read/write operations. Subgraphs Gk (with

1 ≤ k ≤ Nw) represent reruns of the transaction where

data items accessed until the k-th write have already been

accessed in a previous run. Hence, for these data items, we

use PBH2 as the buffer hit probability, while PBH1 is used

as the buffer hit probability for subsequent data accesses

during the same run. For example, referring to Figure 2, if

the transaction aborts in state 1̃ of subgraph G0, the subse-

quent run is represented by subgraph G1, where PBH2 is

the buffer hit probability for all read operations occurring

up to the 1-st write.

In the extended graph, we use the subscript ‘ki’ to la-

bel arcs of subgraph Gk. Hence, we have PW,ki = (1 −
P I

A,ki)Pcont and PE,ki = (1 − P I
A,ki)(1 − Pcont). For a

run associated with a generic subgraph Gk, we denote with

P̂k(i) the probability to reach state î (i.e. the transaction

does not abort before). This probability value iteratively

depends on the probability to reach state ̂i − 1, thus

P̂k(0) = 1,

P̂k(1) = P̂k(0)(1 − (P I
A,k1 + PW,k1P

C
A,k1)),

and, for a generic state î,

P̂k(i) = P̂k(i − 1)(1 − (P I
A,ki + PW,kiP

C
A,ki)).

Note that, by construction, P̂k(commit) = P̂k(Nw).

3.3.2 Transaction Response Time

Depending on the experienced aborts, successful comple-

tion of a transaction will require a number N of (re)runs.

We denote with NGk
the amount of those runs described by

subgraph Gk (i.e. runs where data items accessed until the

k-th write have already been accessed in a previous run).

Note that NG0
= 1 and, after some algebra, we obtain

NGk
=

1

P̂k(k)

k−1∑

j=0

NGj
P̂j(k − i)(P I

A,jk + PW,jkPC
A,jk).

We denote with Rbegin, Rkî, Rkĩ, Rcom and Rabt, re-

spectively, the mean residence time for states begin, î, ĩ,
commit and abort. Runs represented by subgraph Gk

spend Rbegin time in state begin, plus time in other states,

according to the probability for these states to be reached.

Hence we get

R̂ki = P̂k(i)Rkî,

R̃ki = P̂k(i − 1)PW,kiRkĩ,

Rk com = P̂k(commit)Rcom,

Rk abt = (1 − P̂k(commit))Rabt.

State 0̂ of each subgraph is always visited in each run, thus

R̂k0 = Rk0̂. Therefore, the mean time for a run represented

by subgraph NGk
is

RGk
= Rbegin + R̂k0 +

Nw∑

i=1

(R̂ki + R̃ki)+Rk com +Rk abt.

The mean transaction response time is

Rtx =

Nw∑

k=0

NGk
RGk

.

3.3.3 Lock Holding Time

A write lock is acquired when visiting each state î (with

1 ≤ i ≤ Nw), and is released at end of the run. If the run

terminates with transaction commit, then all its locks are

released upon completion of the phase associated with the

state commit. Instead, if the run terminates with transac-

tion abort, then the locks are released upon entering the state

abort. In other words, as in models for 2-Phase-Locking

strategies [25], we consider lock release in case of abort as

an instantaneous action, which does not contribute to lock

holding time. Hence, locks are held by a transaction in the

time interval between the acquisition and either the start of

the abort phase, or the end of the commit phase. Using the

expressions previously defined for the mean time spent in

each state, the mean lock holding time for the i-th acquired

lock in a generic run represented by subgraph Gk can be

expressed as

TH,ki =

Nw∑

j=i

R̂ki +

Nw∑

j=i+1

R̃ki + Rk com.

Hence, the mean lock holding time for the i-th acquired

lock, evaluated across all the (re)runs of the transaction, can

be expressed as

TH,i =

Nw∑

k=0

NGk
TH,ki,

and the mean lock holding time is

TH =
1

Nw

Nw∑

i=1

TH,i.

3.3.4 Lock Contention Probability

As already hinted, due to assumption (2) in Section 3.2,

the probability of contention Pcont is uniform across all the

data items, thus being independent of the specific accessed

data. Given that transactions arrive according to a Pois-

son Process, the analysis in [25] for the case of 2-Phase-

Locking still holds in our case. Hence, the probability of

contention can be expressed as the expected data utilization

factor, namely

Pcont =
λNwTH

D
.

3.3.5 Lock Waiting Time

Now we evaluate Rkĩ, namely the average residence time in

state ĩ of subgraph Gk. As for the analysis in [25], we con-

sider the approximation in which at most one transaction is

queued for write lock acquisition on whichever data item.

In our case this approximation is further supported by the

fact that, differently from 2-Phase-Locking, in MVCC if a

transaction T ′ commits, then any transaction T waiting for

a lock held by T ′ gets immediately aborted. Hence, if T ′

commits, T needs to wait for the completion of at most one

transaction. We approximate Rkĩ as the mean residual time

required by T ′ to terminate the current run (with either com-

mit or abort), evaluated at the time of conflict occurrence,

namely when T enters state Rkĩ. The probability that, at the

time of conflict occurrence, T ′ is executing a run modeled

by subgraph Gk is

Pcont,k =
NGk

TTot
H,k

TTot
H

,

where

TTot
H,k =

Nw∑

i=1

TH,k,i,

and

TTot
H =

Nw∑

k=0

NGk
TTot

H,k .

Thus, at conflict time, the probability values for T ′ to be in

states î and ĩ (with 1 ≤ i ≤ Nw) within subgraph Gk are

Pcont,kî =
R̂ki

TTot
H,k

i,

Pcont,kĩ =
R̃ki

TTot
H,k

(i − 1),

and, finally, the probability for T ′ to be in state commit is

Pcont,k com =
Rk,com

TTot
H,k

Nw.

Now we introduce the conditional probability P̂k(j|i) to

reach state ĵ during a (re)run associated with subgraph Gk,

given that state î (with i ≤ j) has already been reached

during that same run. For j = i we have

P̂k(j|i) = 1,

and, for j > i, we have the following iterative expression

P̂k(j|i) = P̂k(j−1|i)(1−(P I
A,k i+1 +PW,k,i+1P

C
A,k,i+1)).

If, at conflict time, T ′ was executing in state î (with 1 ≤ i ≤
Nw), then we approximate the residual lock holding time as

R̃kî =
R̂k,i

2
+ Bkî,

where we consider an average residual time for state î equal

to half the permanence time in this same state, and where

Bkî is the additional time to terminate the current run given

that T ′ has reached state î, that is

Bkî =

Nw∑

j=i+1

P̂k(j|i)(Rkî + PW,kiRkĩ) + P̂k(Nw|i)Rcom.

Similarly, if at conflict time T ′ is executing in state ĩ (with

2 ≤ i ≤ Nw) we have

R̃kĩ =
R̃

2
+ Bkĩ,

where

Bkĩ =

Nw∑

j=i

P̂k(j|i)Rkî +

Nw∑

j=i+1

P̂k(j|i)(PW,kiRkĩ)

+P̂k(Nw|i)Rcom.

Finally, if at conflict time T ′ is executing in state commit,
we have

R̃com =
Rcom

2
.

Overall, we express Rkĩ as

Rkĩ =

Nw∑

k=0

Pcont,k(

Nw∑

i=1

Pcont,kîR̃kî +

Nw∑

i=2

Pcont,kĩR̃kĩ+

Pcont,k comR̃com).

3.3.6 Version Check Failure Probability

Version check for transaction T upon write access to data

item x fails if a concurrent transaction wrote x and commit-

ted. Unless we have reached system saturation, the rate of

commit events is equal to the transaction arrival rate λ. By

approximating commit events occurrence as a Poisson Pro-

cess, for assumption (2) in Section 3.2, we have that version

check failure probability corresponds to the probability that

the requested data has been updated by at least one concur-

rent transaction during the time period from the startup of

transaction T and the data access instant. Hence, the ver-

sion check failure probability P I
A,ki while performing the

i-th write during an run modeled by subgraph Gk can be

expressed as

P I
A,ki = (1 − exp(−

λNw

D
~Rki)),

where ~Rki is time between the startup of T and version

check occurrence. This time can be evaluated as

~Rki =
i−1∑

j=0

(Rkî + PW,kiRk ĩ+1
).

3.3.7 Version Access Cost Model

Existing implementations of multiversion concurrency con-

trol rely on different approaches for the management of data

item versions. Some products (e.g. Oracle Database [17]),

explicitly store only the most recent committed data item

versions, so to reduce space usage, and exploit the informa-

tion stored in the DBMS log to reconstruct data pages when

an older data item version is required. Instead, other prod-

ucts use explicit version storing (e.g. PostgreSQL [20]).

Given that our aim is to provide an analytical model in-

dependent of specific implementation issues, we model the

cost of a read operation as IF
r + IV

r NV
read, where NV

read is

the number of backward traversed data item versions in or-

der to retrieve the correct one. With this approach, further

implementation dependent management costs (e.g. garbage

collection cost) could be modeled as additional workload on

hardware resources, which we neglect in the present analy-

sis for simplicity.

For solving the previous read cost model, we now eval-

uate the average number of backward traversed versions

for each read operation in state î of whichever subgraph

Gk, namely NV
read,ki. Given assumption (2) in Section 3.2,

committed versions of a data item are born with an approx-

imated rate σ = λNw/D. Denoting with ∆Ts,ki the time

interval between transaction startup and the arrival in state î
of subgraph Gk, we can then approximate NV

read,ki as

NV
read,ki = ∆Ts,ki σ.

Note that this value corresponds to the average number of

versions committed during the time interval ∆Ts,ki. Using
~Rki previously introduced, we approximate ∆Ts,ki as

∆Ts,ki = ~Rki + Rkî/2.

3.3.8 Hardware Resource Model

The CPU load (number of instructions) due to the execution

of a run represented by subgraph Gk is

Ck = Ib + NS
r (IF

r + IV
r NV

read,k 0) + Ivc+

+P̂k(i)

Nw−1∑

i=1

(Iw + NS
r (IF

r + IV
r NV

read,ki) + Ivc)+

+P̂k(Nw)(Iw + NS
r (IF

r + IV
r NV

read,k Nw
))+

+P̂k(commit)Ic + (1 − P̂k(commit))Ia.

where we denote with Ivc the average number of CPU

instructions to perform version check. Note that version

check occurs in states î (with 0 ≤ i ≤ Nw − 1). The CPU

utilization can be expressed as

ρ =
λ

∑Nw

k=0(NGk
Ck)

k MIPS

We denote with p[queuing] the wait probability for CPU

requests, which can be easily computed by leveraging clas-

sical queuing theory results on M/M/k queues [16]. Then,

defining γ = 1 + p[queuing]/(k(1 − ρ)), we can evaluate

the average response time for each state of the graph as

Rb = γ
Ib

MIPS
,

Rcom = γ
Ic

MIPS
,

Rabt = γ
Ia

MIPS
,

Rkî = γ
NS

r (IF
r + IV

r NV
read,ki) + Iw + Ivc

MIPS
+ TIOGki

where Iw = 0 for i = 0, Ivc = 0 for i = Nw, and Gki is

expressed as

Gki = NS
r PBH1

for k=0 and i=0,

Gki = NS
r PBH2

for 1 ≤ k ≤ Nw and i = 0,

Gki = NS
r PBH2 + PBH2

for 1 ≤ k ≤ Nw and i = k,

Gki = (NS
r + 1)PBH2

for 1 ≤ k ≤ Nw and 1 ≤ i < k,

Gki = (NS
r + 1)PBH1

for 1 ≤ k ≤ Nw and k < i ≤ Nw.

3.3.9 Numerical Resolution

The proposed model, analogously to, e.g., those in [6, 14,

25], can be solved via an iterative approach. Once assigned

numerical values to all parameters described in Section 3.2

and to Ivc, PBH1 and PBH2, and once the initial values of

all other probabilities are set equal to 0, all model param-

eters can be evaluated via the provided equations, and can

be used as the input for the next iteration. We have exper-

imentally observed that, if the chosen initial values define

a stable system, then the computation converges in a few

iterations.

3.4 Extended Analytical Model

We provide in this section an extension of the model,

which is able to handle both variable length transactions and

non-uniform data access. In practice, this means removing

assumptions (1) and (2) in Section 3.2.

3.4.1 Variable Length Transactions

We adopt a transaction clustering approach based on the av-

erage number of operations executed by transactions within

a same class. Specifically, transactions with a similar num-

ber of read and write operations are grouped into a class

Crw, where r and w identify the corresponding number of

expected reads and writes. Further we denote with R and

W two sets of integers, which are used to list the average

number of read and write operations of different classes.

Thus, for each Crw, r ∈ R and w ∈ W . We denote

with X = {(r, w)} the set of all (r, w) pairs characteriz-

ing the workload, hence |X| is the total number of classes.

A transaction belongs to class Crw with probability P rw
TC ,

thus the average arrival rate of transactions of class Crw is

λrw = λP rw
TC . Now we redefine some parameters appear-

ing in the basic model in order to capture the presence of

transaction classes. To this end, we use the superscript ’rw’

to denote the parameter redefinition for each class Crw. We

have

P rw
W,ki = (1 − P I,rw

A,ki)Pcont,

where P I,rw
A,ki is version check failure probability for a trans-

action of class Crw, and

P̂ rw
k (i) = P̂ rw

k (i − 1)(1 − (P I,rw
A,ki + P rw

W,kiP
C
A,ki)).

The expected number of runs whose execution is repre-

sented by subgraph Gk for a transaction of class Crw is

Nrw
Gk

=
1

P̂ rw
k (k)

×

×

k−1∑

j=0

Nrw
Gj

P̂ rw
j (k − i)(P I,rw

A,jk + P rw
W,jkPC

A,jk).

The mean times spent in the different states by a transac-

tion of class Crw in a run are the following

R̂rw
ki = P̂ rw

k (i)Rrw
kî

,

R̃rw
ki = P̂ rw

k (i − 1)PW,kiRkĩ,

Rrw
k com = P̂ rw

k (commit)Rrw
com

and

Rrw
k abt = (1 − P̂ rw

k (commit))Rrw
abt.

The mean execution time for a run modeled by subgraph

Gk is

Rrw
Gk

= Rbegin+R̂rw
k0 +

w∑

i=1

(R̂rw
ki +R̃rw

ki)+Rrw
k com+Rrw

k abt.

and the mean transaction response time for class Crw is

Rrw
tx =

w∑

k=0

Nrw
Gk

Rrw
Gk

.

Concerning lock holding time equations in Section 3.3.3,

the corresponding expressions for transactions of class Crw

are

T rw
H,ki =

w∑

j=i

R̂rw
ki +

w∑

j=i+1

R̃rw
ki + Rrw

k com,

T rw
H,i =

Nw∑

k=0

Nrw
Gk

T rw
H,ki,

and

T rw
H =

1

w

w∑

i=1

T rw
H,i.

Contention probability against transactions of class Crw

can be expressed using the average transaction arrival rates

for the different classes, that is

P rw
cont =

λrwwT rw
H

D
,

thus the average contention probability becomes

Pcont =
∑

(r,w)∈X

P rw
cont.

Version check failure probability for a transaction of class

Crw is therefore

P I,rw
A,ki = 1 − exp(−

λwavg

D
~Rrw

ki),

where

~Rrw
ki =

i−1∑

j=0

(Rrw
kî

+ P rw
W,kiR

rw

k ĩ+1
)

and

wavg =
∑

(r,w)∈X

λrww

|X|
.

The average lock waiting time becomes a weighted average

across the waiting times caused by transactions of different

classes. Hence

Rkĩ =
1

Pcont

∑

(r,w)∈X

P rw
contR

rw
kĩ

,

where Rrw
kĩ

is the residual execution time of transactions

specialized for each single class.

Finally, to evaluate the average number of accessed ver-

sions for read operations, since committed versions of a data

item are generated with an average rate

σ =
∑

(r,w)∈X

λrww

D
,

we have for read operations by a transaction of class Crw

the following expression

NV,rw
read,ki = ∆T rw

s,ki σ,

where

T rw
s,ki = ~Rrw

ki + Rrw
kî

/2.

Expressions for the hardware resource model in Section

3.3.8 still hold when considering per class parameters.

3.4.2 Non-uniform Data Access

We now consider non-uniform data access probability. For

each data item x ∈ D we denote as PD(x) the correspond-

ing data access probability. For simplicity, we consider in

this section fixed length transactions, even though, in a sim-

ilar manner to what was done in the previous section, it is

possible to consider several transaction classes character-

ized by different lengths.

Differently from the uniform access case, the contention

probability depends on the accessed data item. Data item

x is locked for an approximated average time fraction

λPD(x)NwTH , which we denote with Pcont(x). Thus con-

tention probability is

Pcont =
∑

x∈D

PD(x)Pcont(x) =
∑

x∈D

P 2
D(x)λNwTH .

To evaluate version check failure probability we note that

committed versions of data item x are born with an average

rate σ(x) = λPD(x)Nw/D, thus

P I
A,ki =

∑

x∈D

PD(x)(1 − exp(−
σ(x)

D
~Rki)),

where ~Rki is the same as in Section 3.3.6. Also, the aver-

age number of accessed data item versions depends on the

data access distribution. Hence, similarly to what done in

Section 3.3.7 we have

NV
read,ki(x) = ∆Ts,ki σ(x).

Therefore, the average number of accessed versions for a

read operation in state î of subgraph Gk is

NV
read,ki =

∑

x∈D

PD(x)NV
read,ki(x).

4 Model Validation

In this section we present a simulation study aimed at

evaluating the accuracy of the proposed analysis. To this

end, we have developed a discrete event simulator, which

explicitly models the behavior of all the components char-

acterizing the database. These include the buffer pool, for

which we have implemented in the simulator a classical

Least-Recently-Used replacement policy.

For space constraints, we report only the validation re-

sults obtained while considering parameter settings analo-

gous to those typically used in previous concurrency control

evaluation studies, e.g. [24, 25] (even though the accuracy

of our analytical model was verified for a much wider range

of parameter values). Specifically, we consider a database

consisting of 10000 data items, and a buffer pool having

size equal to the 20% of the data set of the database. Con-

cerning the number of instructions required for the differ-

ent phases of the execution of a transaction (e.g. the be-

gin phase and the data item read phase), we have used in

both the simulator and the analytical model values com-

pliant with those used in the studies presented in [24, 25].

However, our experiments are carried out considering more

modern hardware. Specifically, for both simulation and an-

alytical model, the database system is assumed to be hosted

by a 8-CPU machine with processor speed equal to 1GHz.

In a first set of observations, we aimed at verifying the

accuracy of the basic analytical model, namely the one re-

lying on the hypotheses of single transaction class and uni-

form data access. For this setting, we report in Figure

3(a) the transaction execution latency, the lock waiting time

and the lock holding time (lock duration) vs the transac-

tion arrival rate. In compliance with the indications in, e.g.

[25], transactions of the unique class perform an expected

amount of 20 data item accesses, with 20% of them being

write operations. By the plotted results, we can see that the

model provides a very good accuracy when comparing its

latency prediction and the simulation outputs. Slight dis-

crepancies between analytical and simulative data can be

observed for transaction workload close to the system satu-

ration point (i.e. on the order of 2500 transactions per sec-

ond). To further observe the behavior of the model, we plot

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 500 1000 1500 2000 2500

S
e
c
o
n
d
s

Transactions per Second (TPS)

Uniform Data Access Probability

Avg. Response Time (Simulation)
Avg. Response Time (Analytical)
Avg. Lock Duration (Simulation)
Avg. Lock Duration (Analytical)

Avg. Lock Wait (Simulation)
Avg. Lock Wait (Analytical)

(a) Uniform Data Access.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.3 0.4 0.5 0.6 0.7 0.8

S
e
c
o
n
d
s

Zipf α Parameter

Skewed Data Access Probability (300 TPS)

Avg. Response Time (Simulation)
Avg. Response Time (Analytical)
Avg. Lock Duration (Simulation)
Avg. Lock Duration (Analytical)

Avg. Lock Wait (Simulation)
Avg. Lock Wait (Analytical)

(b) Skewed Data Access.

Figure 3. Latency Results.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 500 1000 1500 2000 2500

V
e
rs

io
n
 C

h
e
c
k
 F

a
ilu

re
 P

ro
b
a
b
ili

ty

Transactions per Second (TPS)

Uniform Data Access Probability

Simulation
Analytical

(a) Uniform Data Access.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.3 0.4 0.5 0.6 0.7 0.8

V
e
rs

io
n
 C

h
e
c
k
 F

a
ilu

re
 P

ro
b
a
b
ili

ty

Zipf α Parameter

Skewed Data Access Probability (300 TPS)

Simulation
Analytical

(b) Skewed Data Access.

Figure 4. Version Check Failure Probability.

in Figure 4(a) and in Figure 5(a), respectively, the proba-

bility of version check failure and the expected number of

transaction (re)runs required for successful completion. The

first metric is proper of snapshot-isolation based MVCC,

hence allowing us to observe the model accuracy from a per-

spective not considered by models oriented to the evaluation

of classical 2-Phase-Locking and optimistic concurrency

control protocols. On the other hand, the average number

of (re)runs for successful completion is a general parame-

ter characterizing transaction management under whichever

situation possibly inducing aborts. By the plotted results we

have again very good compliance between analytical and

simulative values, unless for workload close to the satura-

tion point.

In a second set of experiments, we have considered non-

uniform data access, so to evaluate the accuracy of the

model extension provided in Section 3.4.2. We have fo-

cused on a single transaction class, with data access pat-

tern ruled by a Zipf distribution function with parameter α.

For this setting, we have fixed the transaction workload (at

300 transactions per second - TPS) and we have varied the

value of α in between 0.3 and 0.8 (as in the classical range

observed for data access skew in Web contexts [4, 10]).

The results for latencies, version check failure probability

and expected number of (re)runs are reported, respectively,

in Figures 3(b), 4(b) and 5(b). Compared to the uniform

data access case, the skewed data access settings show non-

monotonic behavior for what concerns transaction execu-

tion latency. This is due to the mixed effects of both in-

creased buffer hit and increased contention as the parameter

α of the Zipf distribution grows. The effects show differ-

ent balances while α gets increased so monotonic behavior

is not guaranteed. However, also in this case the analytical

model provides results well matching the simulative data.

An increased discrepancy (compared to the uniform data

access case) is observed near the saturation point (which is

reached for α values close to 0.8). This is mainly due to

that, as the skew increases, the probability for a transaction

to abort because of an access to a highly popular data item

correspondingly increases. The subsequent re-execution of

such transactions leads, in its turn, to an overall increase

of the skewness of the initially assumed data access distri-

bution, namely PD(x). Extending the proposed model to

capture this phenomenon is part of our future work.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 500 1000 1500 2000 2500

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

R
u
n
s
 B

e
fo

re
 C

o
m

m
it

Transactions per Second (TPS)

Uniform Data Access Probability

Simulation
Analytical

(a) Uniform Data Access.

 0

 0.5

 1

 1.5

 2

 0.3 0.4 0.5 0.6 0.7 0.8

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

R
u
n
s
 B

e
fo

re
 C

o
m

m
it

Zipf α Parameter

Skewed Data Access Probability (300 TPS)

Simulation
Analytical

(b) Skewed Data Access.

Figure 5. Average Number of Runs Before Commit.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 200 300 400 500 600 700 800 900 1000

E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
o
n
d
s
)

Transactions per Second (TPS)

Variable Length Transactions

9 writes/8 reads (Sym.)
9 writes/8 reads (Anal.)

9 writes/14 reads (Sym.)
9 writes/14 reads (Anal.)

14 writes/20 reads (Sym.)
14 writes/20 reads (Anal.)
14 writes/26 reads (Sym.)
14 writes/26 reads (Anal.)

Figure 6. Latency Results for Variable Length

Transactions (Uniform Data Access Case).

Finally, we have considered uniform data access but dif-

ferentiated transaction classes. This has been done to eval-

uate the accuracy of the extension of the analytical model

provided in Section 3.4.1. For this setting, we have consid-

ered 8 different transaction classes, with different length in

terms of requested data items, spanning from about 20 up

to 40 accessed data items, and with different percentages of

read vs write operations. In Figure 6, we report the expected

execution latency for 4 of the considered classes, as evalu-

ated via both the analytical model and the simulator. Again,

we observe a very good compliance between analytical and

simulative data.

References
[1] K. A. Merchant, P. Yu, and M. Chen. Performance analysis of dynamic finite

versioning for concurrent transaction and query processing. ACM SIGMET-
RICS Performance Evaluation Review, 20(1), June 1992.

[2] R. Agrawal, M. J. Carey, and M. Livny. Concurrency control performance
modeling: Alternatives and implications. ACM Transactions on Database
Systems, 12(4), December 1987.

[3] N. Al-Jumaha, H. Hassaneinb, and M. El-Sharkawia. Implementation and
modeling of two-phase locking concurrency. Information and Software Tech-
nology, 42(4), pp.257–273, March 2000. Elsevier Science.

[4] M. Arlitt and T. Jin. A workload characterization study of the 1998 wold cup
web site. IEEE Network, 14(3), pp.30–37, 2000.

[5] R. Balter, P. Berard, and P. Decitre. Why control of the concurrency level
in distributed systems is more fundamental than deadlock management. In
Proceedings of the first ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, Ottawa, Canada, pages 183–193. ACM New York,
NY, USA, 1982.

[6] B.Ciciani, D.M.Dias, and P.S.Yu. Analysis of concurrency-coherency control
protocols for distributed transaction processing systems with regional locality.
IEEE Transactions on Software Engineering, 18(10), pp.899–914, October
1992.

[7] B.Ciciani, D.M.Dias, and P.S.Yu. Dynamic and static load sharing in hybrid
distributed-centralized systems. Computer Systems Science and Engineering,
7(1), pp.25–41, January 1992.

[8] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A
critique of ANSI SQL isolation levels. In Proceedings of the 1995 ACM
SIGMOD international conference on Management of data, volume 99, pp.1–
10, May 22-25, 1995. San Jose, California, United States.

[9] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

[10] L. Breslau, P. Cao, L. Fan, G. Phillipps, and S. Shenker. Web caching and
Zipf-like distributions: Evidence and implications. In Proceedings of IEEE
INFOCOM, 1999.

[11] M. J. Carey and W. A. Muhanna. The performance of multiversion concur-
rency control algorithms. ACM Transactions on Computer Systems, 4(4),
pp.338–378, November 1986.

[12] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha. Making snap-
shot isolation serializable. ACM Transactions on Database Systems, 30(2),
pp.492–528, 2005.

[13] J. Gray, P. Homan, R. Obermarck, and H. Korth. A straw man analysis of
probability of waiting and deadlock. IBM Research Report RJ 3066, 1981.

[14] I.K.Ryu and A.Thomasian. Analysis of database performance with dynamic
locking. Journal of the ACM, 37(3), pp.491–523, July 1990.

[15] S. Jorwekar, A. Fekete, K. Ramamritham, and S. Sudarshan. Automating the
detection of snapshot isolation anomalies. In VLDB’07, pages 1263–1274.
VLDB Endowment, 2007.

[16] L. Kleinrock. Queuing Systems (Vol1 and Vol2). Wiley-Interscience, 1975.
[17] Oracle Inc. www.oracle.com/technology/documentation/database10g.html.
[18] D. R. Ries and M. Stonebraker. Locking granularity revisited. ACM Transac-

tions on Database Systems, 4(2), 1974.
[19] D. R. Ries and M. Stonebraker. Effects of locking granularity in a database

management system. ACM Transactions on Database Systems, 2(3), Septem-
ber 1977.

[20] The PostgreSQL Global Development Group. Postgresql 8.2.6 Documenta-
tion.

[21] A. Thomasian. Concurrency control: Methods, performance, and analysis.
ACM Computing Surveys, 30(1), March 1998.

[22] A. Thomasian and I. Ryu. Performance analysis of two-phase locking. IEEE
Transactions on Software Engineering, 17(5), pp.386–402, May 1991.

[23] P. Yu and M. Chen. Performance analysis of dynamic finite versioning
schemes: storage cost vs. obsolescence. IEEE Transactions on Knowledge
and Data Engineering, 8(6), December 1996.

[24] P. Yu, D. Dias, J. Robinson, B. Iyer, and D. Cornell. On coupling multi-
systems through data sharing. Proceedings of the IEEE, 75(5), pp.573–587,
May 1987.

[25] P. S. Yu, D. M. Dias, and S. S. Lavenberg. On the analytical modeling
of database concurrency control. Journal of the ACM, 40(4), pp.831–872,
September 1993.

