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Abstract—One of the problems of Software-Transactional-
Memory (STM) systems is the performance degradation that
can be experienced when applications run with a non-optimal
concurrency level, namely number of concurrent threads. When
this level is too high a loss of performance may occur due
to excessive data contention and consequent transaction aborts.
Conversely, if concurrency is too low, the performance may be
penalized due to limitation of both parallelism and exploitation of
available resources. In this paper we propose a machine-learning
based approach which enables STM systems to predict their
performance as a function of the number of concurrent threads
in order to dynamically select the optimal concurrency level
during the whole lifetime of the application. In our approach,
the STM is coupled with a neural network and an on-line control
algorithm that activates or deactivates application threads in
order to maximize performance via the selection of the most
adequate concurrency level, as a function of the current data
access profile. A real implementation of our proposal within
the TinySTM open-source package and an experimental study
relying on the STAMP benchmark suite are also presented. The
experimental data confirm how our self-adjusting concurrency
scheme constantly provides optimal performance, thus avoiding
performance loss phases caused by non-suited selection of the
amount of concurrent threads and associated with the above
depicted phenomena.

I. INTRODUCTION

Over the last decade multi-core systems have become main-
stream computing architectures so that even desktop and laptop
machines are nowadays equipped with multiple processors
and/or CPU-cores. Also, systems with up to 16 or 32 CPU-
cores can be purchased for a few thousands dollars. This
trend has lead to a growing need for the development of
applications which can effectively exploit parallelism, thus
bringing parallel programming out from the niche of scientific
and high-performance computing.

Within this context, Software Transactional Memories
(STMs) [1] have emerged as a programming paradigm tailored
for the development of concurrent applications. By leveraging
on the concept of atomic transactions, historically used in the
field of database systems, STMs relieve programmers from
the burden of explicitly writing complex, error-prone thread
synchronization code. STMs provide a simple and intuitive
programming model, where programmers wrap critical-section
code within transactions, thus removing the need for using
fine-grained lock-based synchronization approaches. Program-
mers’ productivity is therefore improved, while not sacrificing
the advantages provided by high parallelism, thus avoiding any
loss in performance typically associated with serial execution
scenarios, or with cases where an easy to program, coarse-
grained locking approach is used.
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Data conflicts are handled within STMs by means of conflict
detection and management (CDMAN) algorithms, and most of
the literature work made in this field has been aimed at design-
ing increasingly effective CDMAN schemes, thus ultimately
aiming at improving the throughput of STM applications.
Example solutions can be found in [2], [3], [4], [5], [6].

On the other hand, none of the above approaches has
been targeted at directly controlling and optimizing the level
of parallelism, which would lead to the identification of
suited values for the total amount of threads sustaining the
application as a function of the workload profile. Increasing the
number of concurrent threads can speed-up the application as
more transactions (and/or more non-transactional code blocks)
can be processed in parallel. However, increasing the number
of concurrent transactions typically causes an increase of the
transaction conflict rate. As a consequence, transactions may
experience more abort/retry phases, which give rise to an
increase of the execution time.

A rule which helps is that, in general, it is not convenient
to have more active threads than the available CPU-cores [7],
since for fine-grained computations (just like main memory
transactions proper of STM systems) this would lead to exces-
sive CPU-dispatching costs/latencies at the operating system
level, which might even negatively impact the duration of
critical sections accessing shared data. However, this is not
sufficient to avoid the loss of performance due to excessive
data contention, in particular in systems with a scaled-up
amount of CPU-cores. In relation to the latter point, for some
tests we carried out using TinySTM [3] and running the
STAMP benchmark suite [8] on top of a HP ProLiant server
with 16 CPU-cores, the best performance was several times
achieved using less than 16 concurrent threads.

Overall, the choice of the well suited degree of concur-
rency is fundamental in order to obtain adequate trade-offs
between parallelism and data conflict. Also, it is an orthogonal
problem with respect to CDMAN, and has been shown to be
addressable through pro-active transaction scheduling, as in [9]
and [10]. Essentially, the approach behind these works aims
at reducing the performance degradation due to transaction
aborts by avoiding to schedule the execution of transactions
whose associated conflict probability is estimated to be high.
However, by exclusively considering the transaction rollback
probability, several relevant parameters having an impact on
the actual transaction wasted time (and hence on the transac-
tion execution latency) are not included, such as the workload
profile of the running application as well as the effects due
to the underlying hardware (e.g. in relation to the caching
hierarchy).

In this paper we present an approach relying on machine



learning, which also tackles the aforementioned shortcomings,
where we use a neural network [11] to enable the performance
prediction of STM applications as a function of the concur-
rency level (by also indirectly capturing the above mentioned
workload profile and hardware effects). The neural network
is trained using a data set obtained by profiling the workload
generated by the application. Then, at run time, a statistical
characterization of the application workload is periodically
generated, which is used by a control algorithm as input to
the neural network in order to predict the wasted transaction
execution time. The prediction is finally exploited by the
control algorithm to regulate the concurrency level with the
aim at maximizing the application throughput.

To evaluate the effectiveness of our self-adjusting concur-
rency proposal, we have implemented the whole architecture
by leveraging on TinySTM [3], which is a popular open-source
STM layer written in C language, and we have performed
an extended experimental study by relying on applications
selected from the STAMP benchmark suite [8]. In our architec-
ture, we indirectly control the maximum number of concurrent
transactions by directly controlling the actual number of active
threads in the different phases of the application run. This
has been done in order to support a fair comparison with the
baseline case where TinySTM applications are run with no
self-adjusting concurrency scheme, given that TinySTM only
provides support for managing threads (not for selecting the
maximum number of concurrent transactions). By the experi-
mental data the overhead introduced by the implemented self-
adjusting concurrency functionalities (vs the baseline case) re-
veals almost negligible, which, together with the effectiveness
of the proposed machine-learning based prediction method,
allow our solution to provide optimal performance across the
whole set of tested workloads.

The reminder of this paper is organized as follows. Related
work is discussed in Section II. A recall on neural networks is
provided in Section III. The model of target STM applications
is presented in Section IV. The architecture of the self-
adjusting concurrency proposal and its implementation are
described in Section V and Section VI, respectively. The
results of the experimental evaluation are provided in Section
VII.

II. RELATED WORK

In [12] an analytical modeling approach has been proposed
to evaluate the performance of STM applications as a function
of the number of concurrent threads and other workload
configuration parameters. This kind of approach is targeted
at building mathematical tools allowing the analysis of the
effects of the contention management scheme on performance.
For this reason a detailed knowledge of the specific CDMAN
scheme used by the target STM is required, which is instead
not required by the approach we are currently proposing.

The work in [13] presents an analytical model taking as
input a workload characterization of the application, expressed
in terms of transaction profiles, contention probability and
consumption of hardware resources. The model predicts the
application execution time as function of the number of
concurrent threads sustaining the application, however the
prediction is a representation of the average system behavior
over the whole lifetime of the application. Hence, differently

from our proposal, no ability to capture run-time variations
(with consequent adaptation of the level of concurrency) is
envisaged.

The proposal in [14] is targeted at evaluating scalability as-
pects of STM systems. It relies on the usage of different types
of functions (such as polynomial, rational and logarithmic
functions) to approximate the performance of the application
when considering different amounts of concurrent threads.
The approximation process is based on measuring the speed-
up of the application over a set of runs, each one executed
with a different number of concurrent threads, and then on
calculating the proper function parameters by interpolating
the measurements, so as to generate the final function used
to predict the speed-up of the application vs the number of
threads. Differently from our proposal, a limitation of this
approach is due to the fact that the workload profile of the
application is not taken into account, hence the prediction may
prove unreliable when the profile gets changed wrt the one
used during measurement and interpolation phases.

As we hinted before, the issue of performance degradation
due to excessive data contention has been addressed using
pro-active transaction scheduling, which relies on collecting
information related to data contention over the recent past
of the application. In [9] a control algorithm dynamically
changes the number of threads which can concurrently execute
transactions on the basis of the observed transaction conflict
rate. It is decreased when the rate exceeds a threshold, while it
is incremented when the rate is lower than another threshold.
In the approach proposed in [10], incoming transactions are
enqueued and sequentialized when an indicator, referred to
as contention intensity, exceeds a pre-established threshold.
The contention intensity is dynamically calculated depending
on the number of aborted vs committed transactions. In the
proposal presented in [15], a transaction is sequentialized
when a potential conflict with other running transactions is
predicted. The prediction leverages on the estimation of the
expected transaction read-set and write-set (on the basis of
the past behavior of the same or other transactions). Actually,
the sequentializing mechanism is activated only when the
amount of aborted vs committed transactions exceeds a given
threshold. Compared to our approach, all the above proposals
do not directly estimate the wasted time due to aborted
transactions (vs the level of concurrency), while they only
indirectly attempt to control the wasted time according to
heuristics schemes.

As for machine learning, to the best of our knowledge, it
has been used in the context of transactional memories by two
works. In [16], machine learning techniques are used to select
the best performing CDMAN algorithm. Conversely, in [17],
machine learning is used to select the most suitable thread
mapping, i.e., the placement of application threads on different
CPU-cores, in order to get optimized performance. The goals
of both these works are different and orthogonal with respect
to our one since we focus on the regulation of the overall
concurrency level within the system.

III. BRIEF RECALL ON NEURAL NETWORKS

A Neural Network (NN) is a machine learning method [11]
providing the ability to approximate various kinds of functions,
including real-valued ones. Inspired to the neural structure of



the human brain, an NN consists of a set of interconnected
processing elements which cooperate to compute a specific
function, so that, provided a given input, the NN can be used
to calculate the output of the function. By relying on a learning
algorithm, the NN can be trained to approximate an unknown
function f exploiting a data set {(i,o)} (training set), which
is assumed to be a statistical representation of the function f
such that, for each element (i,o), o = f{i}+ δ, where δ is a
random variable (also said noise).

IV. MODEL OF THE STM APPLICATION

We denote with m the actual number of concurrent threads
characterizing the execution of the STM application. Threads
can be activated and deactivated over the application life-
time so that the value of m can be dynamically changed.
The execution flow of each thread is characterized by the
interleaving of transactions and non-transactional code blocks
(ntc). Any transaction starts with a begin operation and
ends with a commit operation. Also, during the execution of
the transaction, the thread can perform both (A) read and
write operations on a set S of shared data objects, and (B)
code blocks where it does not accesses shared data objects
(e.g. it accesses variables within its own stack). Data objects
read (written) by a transaction are included in its read-set
(write-set). If a data conflict between concurrent transactions
occurs, one of the conflicting transactions is aborted and is
subsequently re-started. An ntc block is allowed to start right
after the thread executes the commit operation of a transaction,
and ends right before the execution of the begin operation of
the subsequent transaction along the same thread.

V. SYSTEM ARCHITECTURE

The self-adjusting concurrency approach we propose lever-
ages on three architectural building blocks, namely:

• A Statistics Collector (SC);
• A Neural Network (NN); and
• A Control Algorithm (CA).

The system architecture is depicted in Figure 1. When a
workload sampling interval terminates (hence on a periodic
basis), CA gets from SC a set of values characterizing the
application workload. In our design, the acquired characteri-
zation is assumed to be representative of the workload profile
of the application for the near future.

NN is able to predict the average wasted transaction ex-
ecution time spent by the application, i.e., the average time
spent executing aborted transactions, as a function of (A) a
given set of values characterizing the workload and (B) a
given number of concurrent threads sustaining the application.
CA exploits NN to calculate, over a range of values for the
number of concurrent threads, the expected wasted time that
will characterize the application execution in the near future.
Then, on the basis of this outcome, CA determines the number
of threads that is expected to provide the best application
throughput, and keeps active such a number of threads during
the subsequent workload sampling interval.

In what follows, a detailed description of the fuction-
alites/features of each component within the system architec-
ture is provided.

Fig. 1. System architecture.

A. Statistics Collection
At the end of each sampling interval, SC makes an estima-

tion of the below listed statistical parameters:
• the average read-set size (rssize);
• the average write-set size (wssize);
• the average execution time (ttime) for committed trans-

actions;
• the average execution time for ntc blocks (ntctime).
In addition, SC calculates two indexes which provide an

estimation of the conflict affinity of transactions upon ex-
ecuting a read or a write operation, respectively. The first
one (rwaff ) provides an estimation of the probability that an
object read by a transaction is also written by other concurrent
transactions. The second one (wwaff ) provides an estimation
of the probability that an object written by a transaction is
also written by other concurrent transactions.

In order to determine rwaff and wwaff , SC performs an
estimation of the probability distribution of the read operations
and of the write operations over the set S of shared data
objects. The rwaff index is obtained by calculating the dot
product between the distribution of read operations and the
distribution of write operations, while the wwaff index can
be evaluated by the dot product of the distribution of write
operations with itself.

B. Performance Prediction
The rationale for the set of statistics calculated by SC, as

presented in the previous paragraph, is that we consider the
following function as the fulcrum of performance prediction:

wtime = f(rssize, wssize, rwaff , wwaff , ttime, ntctime, k),

where wtime is average wasted transaction execution time and
k is the number of concurrently running threads. Intuitively,
we expected that, keeping fixed the other input parameters,
wtime increases if one of the following inputs rssize, wssize,
rwaff , wwaff , ttime and k increases. Conversely, we expect
wtime to decrease if ntctime gets increased.

The goal of NN is to provide an approximation fN of the
function f . To this purpose, the data set used to train NN
consists of a set of samples, each one derived by observing
the application during a training time interval, which includes
the following quantities (where we use the apex t to indicate
that they are related to the training phase):

• the same set of statistics calculated by SC, i.e., rst
size,

wst
size, tttime, ntct

time, rwt
aff , wwt

aff ;



• the average wasted transaction execution time wt
time;

• the number kt of active threads.
Hence, a training sample (i,o) is such that i =

(rst
size, wst

size, t
t
time, ntct

time, rw
t
aff , wwt

aff , kt) and o =
(wt

time).

C. Controlling the Concurrency Level

At the end of each sampling interval, CA gets the vec-
tor (rssize, wssize, rwaff , wwaff , rtime, ntctime) from SC.
Then, for each i such that 1 ≤ i ≤ maxthread (where
maxthread is the maximum amount of concurrent threads
admitted for the application), it generates the vector vi =
{rssize, wssize, rwaff , wwaff , ttime, ntctime, i} and predicts
wtime,i = fN (vi) by relying on NN. After, it uses the
set of predictions {(wtime,i)} to estimate the number m of
concurrent threads which is expected to maximize the appli-
cation throughput along the subsequent observation period.
Specifically, exploiting ttime and ntctime as predictions of
the average execution time of committed transactions and of
ntc blocks, respectively, m is equal to the value of i, with
1 ≤ i ≤ maxthread, for which

i

wtime,i + ttime,i + ntctime

(1)

is maximized. Note that wtime,i+ttime,i+ntctime corresponds
to the predicted average execution time between the commit
operations of two consecutive transactions along a given thread
when there are i active threads. Finally, during the subsequent
sampling interval, CA keeps active m threads, deactivating (if
active) the remaining maxthread − m threads.

VI. IMPLEMENTATION

We have implemented a fully featured Self-Adjusting Con-
currency STM (SAC-STM) based on the architecture proposed
in the previous sections. The STM layer has been implemented
by relying on the release of TinySTM version 1.0 for Unix
systems. We used the facilities natively offered by TinySTM
to determine wtime, ttime and ntctime. In addition, we instru-
mented TinySTM code to gather samples to evaluate rssize

and wssize. In order to compute the access distribution of
read/write operations, we added a read counter and a write
counter for each element of the lock vector. At the end of the
commit phase of a successfully committing transaction, the
read (write) counter for each lock associated with an item in
the read (write) set of the transaction gets incremented. To
keep low the overhead associated with the sampling mecha-
nisms, statistics are gathered by a single thread (that we name
master thread). This choice also permits not to affect system
scalability as thread synchronization mechanisms are avoided
at all within the added statistics-collection modules. Actually,
the master thread is randomly selected among the active
threads at the beginning of each sampling interval. A sampling
interval terminates after the master thread has committed n
subsequent transactions. At the end of each sampling interval,
the master thread calculates the aggregated statistics and then,
by relying on an implementation we have developed for NN,
it calculates the number m of concurrent threads which is
expected to maximize the throughput according the approach
depicted in Section V-C. Finally, it keeps active m threads

(out of the maximum number of maxthread threads) during
the next sampling interval.

We actually tested two thread activation/deactivation mech-
anisms. The first one leverages on a shared array with
maxthread elements. The master thread sets to 1 (0) the
elements associated with the threads which have to be de-
activated (activated). The slave threads (namely the remaining
maxthread−1 threads) check their corresponding value before
executing a new transaction, by trapping into a busy waiting
phase while the value is 1. The second mechanism leverages
on a shared array of maxthread POSIX semaphores initialized
to 0. In this case, the master thread increments (decrements)
the semaphores associated with the threads which have to
be deactivated (activated), and the slave threads, on check,
perform a wait-for-zero operation on the associated semaphore.
Note that in this case, when a thread is deactivated, it actually
sleeps (thus not consuming CPU cycles) until it is reactivated.
On the other hand, the two different approaches provide differ-
ent reactiveness since the usage of semaphores imposes sleep-
ready thread transitions at the operating system level. In order
to further study the effects of thread wake-up and rescheduling,
for the case where we rely on semaphores we have studied
two different configurations. The first one is such that the
m threads to be maintained active (across the maxthread

threads) are selected according to a round-robin scheme, while
the second configuration is such that always the same set of
threads are kept active, except for those that have to be newly
activated or deactivated, which might reduce the cost of thread
reschedule. We note anyway that the latter configuration is not
suitable for all kinds of applications. Specifically, it can not be
used for applications that make a pre-partitioning of the work
among threads, because, in this case, sleeping threads may
prevent the application to fairly make progress for a relatively
long time interval. Overall, the different configurations we
consider allow us to study differentiated trade-offs involving
both performance and applicability aspects.

Finally, our implementation of NN consists of an acyclic
feed-forward full connected network [11] that has been coded
by leveraging on FANN open-source libraries (version 2.2.0)
[18]. NN has an input layer containing seven nodes and
an output layer containing a single node, according to the
number of input and output parameters of the function f to
be estimated.

VII. EXPERIMENTAL EVALUATION

In this section we present the results of an experimental
study we carried out to evaluate the effectiveness of our
proposal. We run applications from the STAMP benchmark
suite on top of the above described implementation of SAC-
STM, which has been hosted by an HP ProLiant server
equipped with two AMD OpteronTM6128 Series Processor,
each one having eight hardware cores (for a total of 16
cores), and 32 GB RAM, running a Linux Debian distribution
with kernel version 2.7.32-5-amd64. We present the results
for three different STAMP applications, Kmeans, Intruder and
Genome. These applications span from low to high percentage
of time spent executing transactions (vs non-transactional code
blocks), and from low to high data contention levels. When
running these applications with different workload configura-
tion parameters on top of the native version of TinySTM, the



Fig. 2. Example training configurations and test configurations for the case
of three workload configuration parameters.

statically configured optimal number of threads remarkably
changed for Kmeans (between 4 and 16) and a bit less for
Genome (between 4 and 14). Conversely, for Intruder we
observed a very low variation (between 4 and 6). Hence, the
different variability exhibited by these applications, in terms
of optimality of the number of threads when considering the
static case, gives rise to a good test-suite for the evaluation of
our self-adjusting proposal.

A. Evaluation Methodology

For each test-bed application we performed an off-line
training of NN using samples gathered during the execution
of a set of runs of the test-bed applications. In order to
evaluate the robustness of our proposal, we purposely avoided
the generation of training samples that would cover uniformly
the sampling space. Conversely, the training runs have been
executed by randomly selecting non-equidistant samples for
both the values of the workload configuration parameters of the
application, each one between its corresponding two extreme
values, and the number of concurrent threads. Finally, training
samples have been randomly selected across samples gathered
during the execution of the runs.

We tested SAC-STM using various workload configurations.
Further, to assess its robustness, we also used workload
configurations associated with the extreme values of the in-
tervals in which the values of the workload configuration
parameters have been selected for the training phase of NN.
An example of the type of workload configurations we used
in our tests is depicted in Figure 2 for the case of three
configuration parameters. The vertices of the cube represent
the configurations defined through the extreme values of the
intervals. Note that these configurations represent border cases
with respect to the configurations used to train NN. Indeed,
all the randomly selected configurations used for the training
phase are contained within the cube. Since the workload
configuration parameters of the application also affect the
number of transactions to be executed, in our tests we excluded
those configurations for which the number of transactions
within the parallel run was so short that it did not allow the
completion of at least three sampling intervals.

B. Off-line Training

We trained NN using 800 samples randomly selected over
the execution of 64 runs according to the methodology de-
scribed in the previous section. The number of concurrent
threads for each run was randomly selected between 1 and
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Fig. 4. Average wasted transaction execution time: measured vs. predicted.

32 (1). Each sample contains the values calculated over a
sampling interval whose duration was determined by the ex-
ecution of 2000 subsequent committed transactions along any
thread. To limit the number of outliers, we discarded (filtered
out) samples stemming from sampling intervals in which more
than 99% of the transaction runs have been aborted. Note that,
when moving towards such an abort probability, the transaction
response time grows very fast and exhibits high variability. We
assume that in this situation the system throughput is never
optimal. Hence, for higher abort probability it suffices that
NN approximates the transaction response time by relying on
the closest samples which have not been filtered out.

To train NN we used a back-propagation algorithm [19],
[20], [21]. We observed that a number of hidden layers equal
to one was a good trade-off between prediction accuracy and
learning time. In this case, the number of hidden nodes for
which NN provided the best approximations was between 4
and 16, depending on the application. Further, we observed
that 0.1 and 0.0 were good values for the learning coefficient
and the momentum, respectively. In the worst cases, the
iterations of the back-propagation algorithm have been no
more than 25000, and the algorithm execution time was less

1Although, as hinted in the Introduction, it is generally not convenient to
use more threads than the available cores, for completeness of the analysis
(and for compliance with what done in other studies), we also report some
performance data related to the case where maxthread is varied up to 32,
thus doubling the 16 CPU-cores available on the used hardware platform.
This is the reason why we considered up to 32 threads in the off-line learning
phase.



than 20 seconds on a desktop machine equipped with an
Intel R©CoreTM2 Duo P8700 and 8 GB RAM. On the other
hand, the on-line computation latency by NN was on the order
of less than one microsecond.

To provide some graphical details about off-line training, in
Figure 3 we plot the dispersion of the training set values of
the wasted transaction execution time, namely wt

time, together
with the function fN learned by NN as result of the off-line
training process. These data refer to the Intruder benchmark.
The plots refer to different values of the number of concurrent
threads, that has been varied between 8 and 16. Note that,
fixed the number of concurrent threads, the values of fN

depend on other six parameters which have been projected
on a two-dimensional space, where the fN function is plotted
according to an increasing ordering of its values. In order
to assess the quality of the prediction by NN, in Figure 4
we plot the estimated function fN and the wasted transaction
execution time associated with a larger set of training samples
that have not been used for the aforementioned training phase.
As we can note, also in cases where very few training
samples are used (see, e.g., Figure 3 in correspondence to 16
concurrent threads), NN is able to reliably predict the wasted
transaction execution time (see Figure 4 in correspondence
to the same number of concurrent threads) thanks to its
interpolation/extrapolation ability.

C. Results
For all the tests we present in this section, we plot the

application execution time (expressed in sec) achieved with
SAC-STM and with the original TinySTM, which we use as
a baseline, while varying maxthread. We initially consider
test cases where maxthread is less than or equal to the value
16, which corresponds to the amount of CPU-cores available
on the used hardware platform. After (as already hinted,
for completeness of the analysis) we present the results for
a test where we consider values for maxthread up to 32.
When considering values of maxthread less than or equal
to 16, the selected mechanism for managing thread activa-
tion/deactivation within SAC-STM is busy-waiting, which for
the specific configuration conditions does not give rise to
delays in the progress of individual threads (since each thread
runs on an exclusively dedicated CPU-core) and avoids sleep-
ready thread transitions at the operating system level.

For each test-bed application, we present the results
achieved with three different workload configurations. These
include the two configurations corresponding to the vertices of
the cube (see Section VII-A) where SAC-STM achieved the
worst and the best performance with respect to the best case
observed when running on top of TinySTM while manually
varying the number of threads.

In Figure 5 we present the results for the Intruder bench-
mark. As we can see, for all the considered configurations, the
application execution time achieved with TinySTM decreases
when increasing the number of used threads up to 4-6, while
for greater values it drastically increases. Conversely, for all
the tests, SAC-STM achieves very good results independently
of the maximum amount of allowed concurrent threads. In
fact, in scenarios where maxthread is less than the amount of
threads giving rise to the optimum case for TinySTM, the re-
sults achieved with SAC-STM and TinySTM are comparable.

 5

 10

 15

 20

 25

 30

 35

 40

 2  4  6  8  10  12  14  16

A
pp

lic
at

io
n 

ex
ec

ut
io

n 
tim

e 
(s

ec
)

Concurrent threads

intruder - configuration 1
 input: -a8 -l176 -n109187

SAC-STM
TinySTM

 40

 60

 80

 100

 120

 140

 2  4  6  8  10  12  14  16

A
pp

lic
at

io
n 

ex
ec

ut
io

n 
tim

e 
(s

ec
)

Concurrent threads

intruder - configuration 2
 input: -a20 -l256 -n262025

SAC-STM
TinySTM

 3

 4

 5

 6

 7

 8

 9

 10

 11

 2  4  6  8  10  12  14  16

A
pp

lic
at

io
n 

ex
ec

ut
io

n 
tim

e 
(s

ec
)

Concurrent threads

intruder - configuration 3
 input: -a2 -l16 -n262025

SAC-STM
TinySTM

Fig. 5. Application execution time with SAC-STM and TinySTM with
Intruder.

With more threads, SAC-STM is able to constantly ensure an
application execution time very close to the best one achieved
with TinySTM. In particular, also for the two configurations
corresponding to the vertices of the cube, i.e., configuration
2 and configuration 3, the performance results are good. In
the most adverse case to SAC-STM, which corresponds to
configuration 2, SAC-STM constantly achieves an execution
time no more than 12.5% worse compared to the best case
provided by TinySTM, i.e. when it runs with a fixed number of
6 threads. However we note that as soon as 8 or more threads
are used by TinySTM, its performance rapidly degrades up
to a factor 2.8x, thus exhibiting a clear scalability problem
with this workload. This phenomenon is avoided at all by
SAC-STM thanks to its proper thread activation/deactivation
functionalities, which provide a means to control the negative
effects associated with data contention.

The results of the tests with the Genome benchmark are
shown in Figure 6. For configuration 1 and configuration 2
(the latter is a vertex configuration of the cube), the execution
times with SAC-STM and TinySTM are comparable up to
4 threads. With more threads, while the performance with
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Fig. 6. Application execution time with SAC-STM and TinySTM with
Genome.

TinySTM degrades, SAC-STM ensures, again independently
of the number of available threads, an execution time com-
parable to, or lower than, the best one provided by TinySTM
(i.e. with 4 threads). With configuration 3 (which is the other
vertex configuration of the cube) the best execution time
with TinySTM is achieved with 14 threads, after which the
performance slightly decreases. With this configuration, the
results achieved with SAC-STM are, on average, comparable
with those by TinySTM.

Finally, the results plotted in Figure 7 refer to the tests with
the Kmeans benchmark. Also in this case, SAC-STM provides
performance benefits in all the scenarios when maxthread is
set to a larger value than the one giving rise to the best case
for TinySTM. For configuration 2, namely a vertex configu-
ration of the cube, the execution times are comparable while
varying the amount of available threads. For the other vertex
configuration, namely configuration 3, the best execution time
achieved by TinySTM (i.e. with 4 threads) is about 22% lower
than the execution time achieved with SAC-STM. But with
more available threads, SAC-STM constantly achieves a better
execution time, hence outlining again how TinySTM may
suffer from selection of an oversized degree of concurrency,
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Fig. 7. Application execution time with SAC-STM and TinySTM with
Kmeans.

which is instead not the case for SAC-STM.
In order to show the different effects on performance

determined by the specific thread activation/deactivation mech-
anisms, in Figure 8 we plot the application execution time
obtained with SAC-STM in a test with the Intruder benchmark,
where we used busy-waiting or semaphores. For the latter case,
we also report data related to both round-robin and non-round
robin policies for the selection of the threads to be kept active
during the subsequent observation period. Additionally, we
plot the application execution time obtained with TinySTM.
This time we consider values of maxthread up to 32. We note
that the estimated optimal number of threads by NN in this
test was always around 5.

We can see by the plots that differences between the
execution times are low when considering up to 6 threads.
After, the execution time with TinySTM quickly increases.
With busy-waiting the execution time by SAC-STM remains
low up to 16 threads, then it quickly increases, as expected
by the fact that only 16 CPU-cores are available (thus leading
busy-waiting threads to interfere with the advancement of the
threads actively supporting the application). With semaphores,
the execution time increases with 6 to 10 threads. Then it
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Fig. 8. Application execution time with SAC-STM and TinySTM with
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tends to remain quite constant, even after 16 threads. This is
due to the fact that, up to 5 threads, none or a few threads,
for each sampling interval, are context-switched due to round-
robin selection, giving way to other threads which are resumed.
With more than 5 threads, and up to 10 threads, the number
of threads that are context-switched progressively increases,
causing an increase of the execution time. With more than 10
threads, we get that 5 threads, on average, are context-switched
and 5 threads are resumed for each sampling period, then the
cost of these operations tends to remain constant when further
increasing the number of threads of the application. Finally,
using semaphores without round-robin selection, the execution
time remains quite close to the optimum case independently of
the number of threads. In fact, avoiding round-robin selection,
running threads tend to remain the same, so reducing costs
associated with wait-ready transitions (namely sleeping-thread
resume operations) and context-switching.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a novel machine learning-based
solution addressing the problem of the dynamic selection of
the optimal concurrency level in the context of STM systems.
We experimented our approach by implementing the system
architecture we depicted, thus building an STM which can
self-adjust the concurrency level by activating and deactivating
concurrent threads on the basis of the profile of the current
workload. In our evaluation experiments, we used applications
selected from the STAMP benchmark suite. The results we got
are very promising, as they shown that, in most of the cases,
the performance achieved is, independently of the maximum
number of concurrent threads of the application, close to the
best case when using a fixed (optimal) number of running
threads. In particular, we observed that when an application is
executed with an overestimated number of concurrent threads,
our self-adjusting STM proves to be able to reduce the con-
currency level so to avoid the typical performance degradation
experienced with traditional (non-self adjusting) STM systems.
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