Machine Learning-based Management of Cloud
Applications in Hybrid Clouds: a Hadoop Case Study

D. R. Avresky

IRIANC
Munich, Germany / Boston, MA, USA
autonomic@irianc.com

Abstract—This paper illustrates the effort to integrate a
machine learning-based framework which can predict the
remaining time to failure of computing nodes with Hadoop
applications. This work is part of a larger effort targeting the
development of a cloud-oriented autonomic framework to
increase the availability of applications subject to software
anomalies, and to jointly improve their performance. The
framework uses machine-learning, software rejuvenation, and
load distribution techniques to proactively prevent failures. We
believe that this work allows to set a possible path towards the
definition of best practices for the development of systems to
support autonomic management of cloud applications,
illustrating what are the issues that should be addressed by the
research community. Indeed, given the scale and the complexity
of modern computing infrastructures, effective autonomic
management approaches of cloud applications are becoming
mandatory.
cloud;

Keywords—autonomic; rejuvenation;

Hadoop; best practices

monitoring;

I. INTRODUCTION

This paper presents the results of the integration between an
cloud application management framework, called Autonomic
Cloud Manager (ACM) framework [21], [23], and applications
based on Hadoop. ACM is a framework which, by relying on
runtime statistics and machine learning (ML)-based models,
allows to predict the remaining time to failure of computing
nodes of applications on any number of cloud-based facilities.
The framework is designed in such a way that computing nodes
can be scattered on multiple geographically-distributed regions.
By relying on load balancing techniques and overlay networks,
the system is able to redirect any traffic across the different
computing nodes. Particularly, it transparently hides away
failures of computing nodes of the application by predicting
faults and by rejuvenating any node which is approaching a
failure point. Also, it spawns new nodes to join the network, in
order to promptly replace nodes to be rejuvenated. The ACM
framework can predict failures due to software anomalies, such
as memory leaks and/or unterminated threads.

Apache Hadoop [17] is an open-source software
framework used for distributed storage and big data processing.
It is designed to exploit computer clusters built
from commodity hardware. The core of Apache Hadoop
includes a storage part, known as Hadoop Distributed File

978-1-5386-1465-5/17/$31.00 ©2017 IEEE

Alessandro Pellegrini
Pierangelo Di Sanzo

Sapienza, University of Rome
Rome, Italy
{pellegrini,disanzo } @dis.uniromal .it

System (HDFS), and a processing part, based on the
MapReduce programming model. Hadoop splits files into large
blocks and distributes them across nodes in the cluster. It then
transfers packaged code into nodes to process the data in
parallel. This approach takes advantage of data locality
[18] where computing nodes manipulate the data they have
access to. This allows the dataset to be processed faster and
more efficiently than it would be in a more
conventional supercomputer architecture that relies on
a parallel file system where computation and data are
distributed via high-speed networking.

In this paper, we illustrate our effort to integrate the ACM
framework with cloud applications based on Hadoop. Our
choice fell onto Hadoop due to the wide diffusion of this
framework. Primarily, our effort aims at understanding the
current limitations and the possible improvements required to
integrate  state-of-the-art  autonomic cloud application
management frameworks with a wide employed class of
applications. As we will show, by the organization of Hadoop,
the system we built as a result of our integration effort allowed
us only to transparently determine the effects of software
anomalies, as a step towards the possibility to increase the
availability of generic Hadoop-based applications. This
illustrates the need for clear future technical steps to be taken.

The remainder of this paper is structured as follows. Section II
provides a short recap on the ACM framework. Section III
presents how the integration with Hadoop applications has
been carried out and the implications of the integration. Section
IV discusses related work. Section V draws the conclusions,
Recap on the ACM framework

As mentioned, the ACM framework [21], [23] targets a
geographically-distributed cloud architecture composed of a
number of cloud regions. Cloud regions can be either public or
private, thus they can also form hybrid cloud infrastructures.
The ACM framework enables to manage, in a straightforward
zmulti-cloud architectures. It allows to dynamically add or
remove cloud regions (also belonging to different cloud
providers) at run-time, in order to cope, e.g., with overall
system workload fluctuations.



Cloud Region 1 \\ ®C0ntroiler

\\* Overlay

KR

T 4 ﬁ}‘“
Load balancer ‘\

|

Clients

e
-
v
Control[er® yd 4

/ X F
Load balancer

P o

Cloud Region 2

Fig. 1. The ACM framework with overlay network in a hybrid cloud
composed of 3 regions.

Additionally, it is able to proactively distribute the
workload across cloud regions, so as to balance both the
workload and the overhead associated with the proactive
management of failures of computing nodes, and to avoid
overloaded regions. Particularly, it can balance the workload
also accounting for different anomaly occurrences in different
regions and different computing power of regions.

While for the technical details on the ACM framework we
refer the reader to [23], we report in Fig. 1 the high-level \cloud
composed of three geographically-distributed regions. We
consider the case where a node of the application runs on a
single Virtual Machine (VM). The main components of the
ACM framework are the Control Unit (or Controller), and the
Load Balancer. The former implements an autonomic
monitoring and controlling system, while the latter distributes
the load by managing incoming connections from clients.
ACM allows to increase the availability of applications and
keeps their response time below a certain threshold by
exploiting several techniques in a joint manner:

o Replication of virtualized resources: at a single cloud
region, a computing node of the application is
replicated on a pool of VMs. A pool can be seen by as a
single (virtualized) computing node of the application.

e Software rejuvenation: when a VM in a pool is
approaching a failure, a new VM is proactively joined
to the pool (taking the place of the about-to-fail one),
and the failing one is rejuvenated. The application sees
the new VM as if it is the same as the rejuvenated one.

network -

(]

Clilants‘k

.
v

* Load balancer

e
. - P
A

—_——— @ /A"/,,?/ Cloud Region 3

Controller

<y .D.

Clients

In Fig. 1, we present an example deployment of the framework
in the case of 3 cloud regions. The overlay network, depicted in
the center of the figure, allows to determine what is the best-
suited communication path across the regions, when an
incoming connection at one end is redirected towards a remote
node, in order to optimize the response time.

Worker 1 Wiorker 2 Waorker 3 Worker n

000 @
g g

Master Master
Aesource NameNode
Manager

Fig. 2. Hadoop Cluster Configuration.

II. INTEGRATION OF HADOOP WITH THE ACM FRAMEWORK

An example of system architecture for an Hadoop-based
application is shown in Fig. 2. Hadoop implements the
MapReduce programming model. The Master Resource
Manager and the Master NameNode control the evolution of
the computation, and manage available computing resources. A
number of workers carry out the computational tasks of the



application, which are therefore distributed across the nodes in
data separation. At the end of the computation, the results are
gathered and are delivered to the user.

Our first step for the integration of a generic application
with the ACM framework was the construction of ML-based
prediction models of the Remaining Time to Failure (RTTF) of
VMs hosted in the cloud infrastructure where the application is
deployed. We remark that the ACM framework allows to build
prediction models of applications that are subject to software
anomalies, whose accumulation over time can lead to failure of
computing nodes.

For experimental purposes, we set up 5 VMs on Amazon
EC2 Cloud Hosting’ , using the simple PI computation
benchmark provided by Hadoop. We modified this benchmark
so as to last longer and to artificially produce and accumulate
memory leaks. This allows to meet the required experimental
conditions for evaluating the ACM framework, and therefore to
create ML-based models to predict when the VMs are about to
fail. In our test case, VMs failures are due to the exhaustion of
memory.

A. Building Prediction Models

As for the components of the ACM framework within a
cloud region, we installed the Virtual Machine Controller
(VMC) on a dedicated node of each region, and the Local
Managing Unit (LMU) on all worker nodes of the Hadoop
cluster of each region. The high level architecture and
connections of these two components are shown in Fig. 3.
Measurement Unit is the component in charge of monitoring,
during the lifetime of the application, all system features (e.g.,
memory usage, CPU usage) which are used either for training
ML models or to predict the RTTF at run-time.

During the data collection phase required to populate the
model training sets, we varied the incidence of memory leaks
on the application. This has been done by varying the inter
arrival time (namely, the sleep period among two consecutive
leak generations) so as to have a VM saturating the memory
after different amounts of time per each run. The inter arrival
time was selected using a random uniform distribution in
between 15 and 35 seconds. To collect the training data, we
configured LMU to consider a VM failed when the limit for
Java Heap was reached. To show some example of
measurements collected by LMU along one run of the
application, we report in Fig. 4 the measured values of some
system parameters monitored by LMU.

After the data collection phase, we run the ACM
framework to build the ML-based prediction models. The first
step entails running Lasso Regularization [24] to select only the
most relevant parameters to the construction of prediction
models. The parameters which have been selected by Lasso for
the Hadoop, with the related weights, scenario are reported in
Table 1. These results show that Lasso correctly identified that,
in our specific case, the system fails only due to memory
saturation. In fact, the only type of anomaly injected in the
system were memory leaks, and Lasso correctly discarded any
parameter not necessarily related to memory.

The ACM framework builds various linear prediction
models from the data selected by relying on Lasso

Regularization. While we again refer the reader to [21] for a
thorough discussion on the prediction models, we report for the
sake of clarity in Fig. 5 the output of the prediction model
generated by the REP-Tree based model [25]. On the x-axis of
the plot we have the real RTTF, while on the y-axis we have
the RTTF predicted by the model. The straight line denotes the
“right” prediction.

B. Predicting the RTTF

It is interesting to note that, as soon as the actual RTTF gets
close to the actual failure point, the predicted RTTF is able to
approximate the real RTTF with good precision (for brevity,
we do not report data related to the prediction error, yet we
refer the reader to [21] for a discussion).

‘ Local Managing Unit ‘ |

re-- | Communication || Measurement
: T Ui || unit
1 | VML
Managing Unit H VM2:
x ' :
Prediction Communication glbs ottt
Unit Unit H
Load E
Batancing t || Local Managing Uni ‘ '
| vMC | || .
L ... | Communication || Measurement
I 1] Unit | Unit
== Client requests | VM 1x
----- = Control Flow VM2

Fig. 3. Basic architecture components and interactions within a cloud region

of the ACM framework.

100
-~ GenTime
‘\ cpuyser
Lo 5, cpupice
\ CpUgystem
- \ - cpujowait
o \ ¥ cpugteal
o N\ cpudle
= nh
E \,_-/\‘ " mermysed
i Vi Nac /\\ o memgree
8 | \ A » € memghared s
X | \ p \ S
E \ | \ IATAN g mempuffers
2 \ [ \/\ ¢ memcached
< om0 e 11 5 swap,sed
5 =
& \ \ g swapgree
£ w \ w3
> \ 5]
£ \IA
500 \
g VA
400 .\
K
s,
T 00 800 140
RTTH/RRTC (seconds)
Fig. 4. System Parameters measured by LMU.



TABLE 1. PARAMETERS SELECTED BY LASSO

PARAMETER WEIGHT
mem_free 0.000300

mem_cached 0.001127
swap_used -0.000132
swap_free 0.000152

2000

1500 - 3

1000

500

Predicted RTTF (seconds)

(1] L 1 i i i
a 200 400 &o0 8oo 1000 1200 1400

RTTF (seconds)

Fig. 5. Prediction model fitted using REP-Tree.

Anyhow, in order for the ACM framework to support the
availability of the Hadoop deployment, it should be possible to
dynamically add new VMs to replace about-to-fail ones, and
remove the latter to rejuvenate them. Unfortunately, by itself,
Hadoop does not allow this join/leave pattern required for
software rejuvenation at any point in computation. Indeed, if a
VM is added, the Hadoop NameNode and Resource
Manager—see Fig. 2—must be informed of the availability.
Similarly, depending on the application, removing a VM might
require notifying the NameNode. In any case, the running node
which should be removed may not have finished its computing
task. In this case, some portion of the computation might be
lost. While Hadoop allows to recover portion of the
computation in this scenario, the ACM framework is a lower-
level component that has no clue about the nature of the
application it is managing.

Therefore, it is clear that any complex (distributed)
application which has to be integrated with an autonomic
management system, like the ACM framework, should expose
some of its internal organization to the manager. The Hadoop
integration effort described in this paper therefore calls for the
existence of either some sort of integration middleware, or
some sort of standardized API for autonomic management.

The possibility of predicting the actual RTTF of a generic
application in an autonomic way is an important aspect which

has been deemed fundamental for large-scale computations
several times in the literature (see, e.g., [3], [4], [6], [8], [23]).
Nevertheless, in order to cope with the large variety of
applications which are available nowadays, some sort of
standardized “autonomic communication layer” should be
designed with an agreement across software producers.

Without this kind of layer, in order to support the
integration of the ACM framework with the Hadoop
application which we have used as a testbed, we had to modify
the application itself and to realize an additional (although
simple) middleware. While this allowed us to reach the goal of
increasing the availability of the application, it has not been an
easy task. This clearly contrasts with the spirit of the ACM
framework, as well as of Hadoop and, generally, of autonomic
computing. To illustrate more in detail our effort, with our
additional middleware, when a VM is deemed to be failing
soon, Hadoop Resource Manager is asked to decommission it.
Therefore, no new application or task of actual running
applications will be scheduled to that node. At this point, the
ACM framework can provide a new VM. By using our
middleware, the new node is assigned to Hadoop and it can
start assigning jobs to it. Therefore, we are able to provide a
new VM to be added to an existing Hadoop cluster. If a
running application has a subtask mapped to the node which
has been rejuvenated, the application—hence the need to
change the original code—can simply remap the task to the
Hadoop cluster again. In fact, the Hadoop cluster has already
received a new (rejuvenated) worker node.

III. RELATED WORK

Predicting the effect of application anomalies is not a new
idea [2]. Along this path, several works have already proposed
prediction techniques and models [5]. In [6], the authors
propose a proactive prediction and control system for large
clusters. The proposal relies on time series, rule-based
classification, and Bayesian networks, to filter the initial data,
selecting only the entries, which are useful to carry on a
prediction. A framework to automatically detect anomalies and
track the performance of an application is proposed in [7]. The
framework relies on a regression-based transaction model,
which reflects the resource consumption model of the
application. On the front of enforcing autonomic actions to
avoid the effects of application anomalies, we find in the
literature several proposals. While more traditional approaches
try to recover a previous state by undoing wrong operations
(see, e.g., [16]), proposals to predict upcoming crashes by
using decision rules generated at runtime in order to support
software rejuvenation better match autonomic properties (see,
e.g., [8]). There is also a set of commercial tools [9], [10], [11]
which can be wused to monitor Java applications by
instrumenting the JVM.

In the context of cloud-based applications, several works
have been proposed to use ML techniques either for optimizing
the proper cloud organization (see, e.g., [22]) or to enforce
proactive rejuvenation (see, e.g., [12], [13]). Specifically in the
context of hybrid cloud environments, the work in [14]
proposes a hybrid cloud computing model to make the best use
of public cloud services along with privately-owned data
centers. In [15], workload forecasting and optimal resource



allocation is studied. This is done by illustrating a model
predictive algorithm for workload forecasting that is used for
resource auto scaling

IV. CONCLUSIONS AND FUTURE WORK

We have presented in this paper our efforts towards the
integration of a state-of-the-art autonomic cloud application
management framework to contrast the effects of software
anomalies with applications based on the well-known Hadoop
framework. While we have shown that it is possible, in practice,
to put in place some level of interoperability across Hadoop
applications and frameworks such as ACM framework, we
have shown that it is no easy task, given the fact that some
internals of the Hadoop framework must be exposed to the
autonomic monitoring system. We therefore conclude that in
order to effectively enforce autonomic properties, the existence
of either some sort of integration middleware, or some sort of
standardized API for autonomic computing must be devised in
the future.

ACKNOWLEDGMENT

The research presented in this paper has been supported by the
European Union via the EC funded project PANACEA, contract
number FP7 610764.

REFERENCES

[1] A. Pellegrini, P. Di Sanzo, and D. R. Avresky, “A Machine Learning
based Framework for Building Application Failure Prediction Models,”
in Proceedings of the 20th IEEE Workshop on Dependable Parallel,
Distributed and Network-Centric Systems, ser. DPDNS. IEEE Computer
Society, 2015.

[2] L. M. Silva, J. Alonso, and J. Torres, “Using Virtualization to Improve
Software Rejuvenation,” IEEE Trans. Comput, vol. 58, no. 11, pp.
1525- 1538, 2009.

[3] P. Di Sanzo, A. Pellegrini, and D. R. Avresky, “Machine Learning for
Achieving Self-* Properties and Seamless Execution of Applications in
the Cloud,” in Proceedings of the Fourth IEEE Symposium on Network
Cloud Computing and Applications, ser. NCCA. IEEE Computer Society,
2015.

[4] O. Brun, L. Wang, E. Gelenbe, “Big Data for Autonomic Intercontinental
Overlays,” IEEE Journal on Selected Areas in Communications 34(3):
575-583, IEEE Computer Society, 2016.

[S] F. Salfner, M. Lenk, and M. Malek, “A Survey of Online Failure
Prediction Methods,” ACM Computing Surveys, vol. 42, no. 3, pp.
10:1—10:42, 2010.

[6] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma, R.
Vilalta, and A. Sivasubramaniam, “Critical Event Prediction for Proactive
Management in Large-scale Computer Clusters,” in Proceedings of the
Ninth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD. ACM, 2003, pp. 426-435.

[71 L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni, “Anomaly?
Application Change? or Workload Change? Towards Automated
Detection of Application Performance Anomaly and Change,” in
Proceedings of the 2008 International Conference on Dependable
Systems and Networks. IEEE Computer Society, 2008.

[8] D. Simeonov and D. R. Avresky, “Proactive Software Rejuvenation Based
on Machine Learning Techniques,” in Cloud Computing, ser. Lecture
Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, D. Avresky, M. Diaz, A. Bode, B.
Ciciani, and E. Dekel, Eds. Springer Berlin Heidelberg, 2010, vol. 34, pp.
186-200.

[9] IBM Corporation, “Tivoli Web
http://www.ibm.com/software/tivoli/.

[10] Hewlett-Packard, “HP  Diagnostics,”
softwaresolutions/diagnostics-software/.

Management Solution,”

http://www8.hp.com/us/en/

[11] Dell, “Foglight,” http://www.quest.com/foglight-for-java/.

[12] J. Alonso, L. Belanche, and D. R. Avresky, “Predicting Software
Anomalies Using Machine Learning Techniques,” in Proceedings of the
2011 IEEE 10th International Symposium on Network Computing and
Applications, ser. NCA. IEEE Computer Society, 2011, pp. 163-170.

[13] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Software aging
and rejuvenation: Where we are and where we are going” in
Proceedings - 2011 3rd International Workshop on Software Aging and
Rejuvenation, WoSAR 2011, 2011, pp. 1-6.

[14] H. Zhang, G. Jiang, K. Yoshihira, and H. Chen, “Proactive Workload
Management in Hybrid Cloud Computing,” 2014..

[15] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud
using predictive models for workload forecasting,” in Proceedings -
2011 IEEE 4th International Conference on Cloud Computing, CLOUD
2011, 2011, pp. 500-507.

[16] D. Cingolani, A. Pellegrini, F. Quaglia, “Transparently mixing undo logs
and software reversibility for state recovery in optimistic PDES”. ACM
Transactions on Modeling and Computer Simulation (TOMACS) 27
(2), 11

[17] "Hadoop Releases". apache.org. Apache Software Foundation.

[18] "What is the Hadoop Distributed File System (HDFS)?". ibm.com. IBM.

[19] "Resource (Apache Hadoop Main 2.5.1 API)". apache.org. Apache
Software Foundation.

[20] A. Murthy, “Apache Hadoop YARN: Concepts and Applications”.
hortonworks.com. Hortonworks.

[21] A. Pellegrini, P. Di Sanzo and D. R. Avresky, “Proactive Cloud
Management for Highly Heterogeneous Multi-Cloud Infrastructures”. In
Proceedings of the 21st IEEE Workshop on Dependable Parallel,
Distributed and Network-Centric Systems (DPDNS), Chicago, IL, USA,
IEEE Computer Society, May 2016.

[22] P. Di Sanzo, F. Quaglia, B. Ciciani, A. Pellegrini, D. DIdona, P. Romano,
R. Palmieri, S. Peluso, “A flexible framework for accurate simulation of
cloud in-memory data stores”. Simulation Modelling Practice and
Theory 58, 219-238. Elsevier.

[23] D. R. Avresky, P. Di Sanzo, A. Pellegrini, B. Ciciani, L. Forte, “Proactive
scalability and management of resources in hybrid clouds via machine
learning”. In Proceedings of the 2015 IEEE 14" International
Symposium on Network Computing and Applications (NCA), IEEE
Computer Society, 2015, pp. 114-119.

[24] R. Tibshirani, “Regression Shrinkage and Selection Via the Lasso,”
Journal of the Royal Statistical Society, Series B, vol. 58, pp. 267-288,
1994.

[25] H. A. Chipman, E. I George, and R. E. Mcculloch, “Extracting
Representative Tree Models From a Forest,” in IPT Group, IT Division,
CERN, 1998, pp. 363-377.



